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Machine learning in atomistic materials science has grown to become a powerful tool, with most
approaches focusing on atomic geometry, typically decomposed into local atomic environments. This
approach, while well-suited for machine-learned interatomic potentials, is conceptually at odds with
learning complex intrinsic properties of materials, often driven by spectral properties commonly
represented in reciprocal space (e.g., band gapsormobilities) which cannot be readily partitioned in real
space. For such applications, methods that represent the electronic rather than the atomic structure
could bemore promising. In this work, we present a general framework focused on electronic-structure
descriptors that take advantage of the natural symmetries and inherent interpretability of physical
models. We apply this framework first to material similarity and then to accelerated screening, where a
model trainedon217materials correctly labels 75%ofentries in theMaterialsCloud3Ddatabase,which
meet common screening criteria for promising transparent-conducting materials.

The past two decades have seen an explosion in the amount and availability
of materials structures properties database1–14. Simultaneously, the infra-
structure and protocols for performing high-throughput studies have
matured and now allow for producing large volumes of high-quality data
with ease15–22. As in computer vision, natural language processing, and other
fieldswhere the combination of data availability andmachine learning (ML)
techniques have enabled powerful technologies from autonomous driving
to machine translation, data-driven materials science is a promising new
approach for accelerated materials discovery, property prediction, and
inverse design.

This promise is somewhat tempered by the unique problem of
representation: traditional “xyz” descriptions of atomic configurations as a
set of atomic positions and species {RI, αI} cannot be used directly to effi-
ciently drive traditional statistical models. Properties of atomic systems, like
total energy and forces, are either invariant or equivariant to rotations and
translations of atoms and to permutations in the order in which they are
listed,while the atomic coordinates and species arenot.Therefore, oneof the
foremost problems in data-drivenmaterials science is how to efficiently and
compactly describe relevant information about an atomic system in a fra-
mework suited to ML applications. There exist a few broad categories of
approaches to solving this problem23,24, including atomic-density field fea-
tures like the smooth overlap of atomic positions (SOAP)25, internal coor-
dinates representations like Behler-Parrinello symmetry functions26,27,
atomic cluster expansions28, and end-to-end neural network models, often
based on atom graphs, like the CGNN29, NequIP30, or MACE31 models. All
of these approaches take atomic structures as the fundamental objects to
process into inputs for ML models, and most decompose them into atom-

centered motifs for the purpose of imposing translational invariance and
aiding transferability. These approximations are well-founded for learning
problems where the target property or properties are extensive or con-
ceptually decomposable into atomic contributions. However, these
approaches can be limited by their strong scaling with compositional
complexity, degeneracies in the local atomic expansion at low body orders32,
and by the fundamental concept of atomic decomposition, which struggles
to capture important electronic quantities like band gap, quasi-particle
energies, electrical conductivity, or optical properties, to name a few.

For these applications, a class of descriptors that cancapture thephysics
and interactions pertaining to these complex properties would be beneficial.
A promising approach can be seen in methods that leverage electronic
structure for featurization. Methods in this class include the spectrum of
approximated Hamiltonian matrices (SPAHM)33, the D-fingerprint34, and
moments of the density of states (DOS)35,36, among many others37–39, with
successful applications to structure similarity34,39, regression of various
quantum-chemical properties33, and delta learning of G0W0 quasi-particle
energies38. These algorithms follow the general approach of computing the
spectrum of a physical operator applied to a model electronic structure
followed by a transformation into an ML descriptor. We formalize and
generalize this process in a framework for designing electronic-structure
features, which we call spectral operator representations (SOREPs).

Results
SOREP framework
SOREPs aim to describematerials using targeted features of their electronic
structure. However, neither experimental nor high-throughput ab initio
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materials databases generally provide detailed electronic-structure objects
(e.g., Kohn–Sham orbitals), so the process begins with knowledge of only
atomic structure. The first step in featurizing a material with a SOREP is to
build amodel electronic structure from atomic positions. The quality of this
electronic-structure calculation determines the quality of the information
content of the representation – a consideration that must be carefully
balanced in terms of the corresponding computational cost of directly
determining the quantity of interest. Predicting more complex physical
phenomena may require more expensive but more faithful electronic-
structure representations, while applications involving millions of systems
might necessitate more cost-effective approximations. In general, this first
step entails applying somemap f of the atomic structure (positions, species,
etc.), which yields, in principle, a many-body wavefunction or another
representation of the electronic structure (e.g., a density matrix or Green’s
function)

f : fRI ; αI ; . . .g ! Ψðr1; r2; . . . ; rN Þ: ð1Þ

However, forML applications, many-body electronic structure calculations
are impractical.Amorepragmatic approach, and the onewewill consider in
moving forward, is to generate a set of single-particle orbitals from the
atomic structure:

f : fRI ; αI ; . . .g ! f∣ϕiig ð2Þ

This electronic system, however, it may be represented, exists in a much
higher-dimension space than its originating atomic configuration (an
atomic structure ofN atoms can be considered to exist in a 3N-dimensional
Cartesian space, while in principle, its electronic wavefunction exists in the
Hilbert space of the problem considered). In order to extract compact and
useful information from this raw electronic structure, a Hermitian operator
Â selected from physical intuition or constructed through careful
engineering can be projected onto the set of orbitals to compute the
operator matrix elements

Aij ¼ hϕijÂjϕji: ð3Þ

Âmay be simple and efficient to evaluate, like the identity or kinetic energy
operators,more expressive yet expensive like theKohn–ShamHamiltonian,
or somewhere in between like the various guess Hamiltonians explored in
ref. 33. Here, we consider only scalar operators (in the physical sense, i.e.
independent of changes in frame of reference) in order to achieve rotation
and translation invariance of the matrix elements. A further generalization
can be made to higher-order tensor operators, like position, if the features
are to be used in an equivariantmodel or if further consideration is taken in
the following steps to enforce reference-frame invariance. Regardless, the
resulting operator matrix A represents a distillation of the electronic
structure, filtered through the lens of the operator and expressed in the
chosen basis.

To make use of all the information contained within the operator
matrix, one could consider leveraging the matrix elements Aij as ML fea-
tures, as explored in ref. 38. Although invariant to translation, rotation, and
other physically relevant symmetries (because Â is scalar), the matrix ele-
ments are sensitive the choice of the basis functions ∣ϕi

�
. So, a key step in

formulating a SOREP, mirroring the standard procedure for electronic-
structure calculations, is to diagonalize the operator matrix

A∣ϕii ¼ λiS∣ϕii; ð4Þ

using the overlap matrix S, to retrieve its set of eigenvalues {λi}. This pro-
cedure removes explicit dependence on the choice of basis (for complete
bases), and, significantly, it also mixes the information contained in the
operator matrix in a non-trivial and physically meaningful manner40,41. In
order to bring the eigenspectrum into a system-independent constant-
dimensional space, as is required by all ML models, and to enforce

invariance to permutations of the eigenvalue indices, the final step of the
SOREP procedure is to apply a map g from the set of eigenvalues λi to a
feature vector x:

g : fλig ! x: ð5Þ

One simple and compactmethod for systemswith few eigenvalues is to sort
the spectrum and pad it with zeros up to a common constant dimension, as
done in the SPAHM method33. However, the resulting features are dis-
continuous w.r.t. level crossings and are high-dimensional for systems
where many eigenstates are considered (e.g., periodic systems sampled at
many k-points and/or withmany bands). To remedy these shortcomings, a
DOScomputedonabasis, e.g., as a sum-over-poles42 or usingpolynomials23,
and sampled on a fixed domain can be more compact and is smooth w.r.t.
level crossings. Other maps used in the literature are spectral
histograms34,37,39,43, moments of the DOS35,40, and radially-decomposed
projected densities of states38.

In general, SOREPs exhibit many desirable properties for ato-
mistic descriptors “for free” due to the properties of spectra23. Key
symmetry invariances, such as rigid translation and rotation, are
ensured by construction through the utilization of scalar operators.
Beyond respecting physical symmetries, atomic descriptors should be
complete; i.e. they should always distinguish (symmetry-)inequivalent
structures. It has been shown32 that low body-order local atomic
descriptors can suffer to an extent from incompleteness, mapping
distinct configurations to (nearly) identical descriptors. Overlap
matrix (OM) fingerprints, as atom-centered spectral representations
that leverage the overlap (identity) operator, have been seen in practice
to lift these degeneracies23,44. However, the limits of the completeness of
spectral representations, in particular of global (i.e., not atomically-
decomposed) fingerprints, have not been rigorously bounded45.
Additionally, because many properties of interest (e.g., total energies)
vary smoothly with continuous deformations of the atomic structure,
feature maps are often constructed to be similarly smooth. It is key to
note that this criterion is intended to ensure that no nonphysical dis-
continuities can be found in the feature map, which could lead to, e.g.,
spurious discontinuities in a learned potential energy surface. Some
electronic properties, like band gaps and Van Hove singularities, may
not be smooth w.r.t. structural deformations. Unlike local atomic
descriptors, spectral representations can capture these physical dis-
continuities and should be better suited for learning similarly non-
smooth properties.

To provide amore direct understanding of what this procedure entails
and to show how specific constraints influence choices in each of the steps,
we next consider the case where one aims to minimize as much as possible
the computational cost of featurization while maintaining a spectral
representation.

Kinetic energy SOREP
Often, the featurization of millions of structures may be required in
order to apply ML to a given problem, for example, in testing structure
uniqueness or learning from frames of molecular dynamics trajec-
tories. In these situations low-cost featurizations are essential, so here
we discuss how to design a SOREP with this constraint in mind.
Generally, the diagonalization of operator matrices is the most com-
putationally demanding step in producing SOREP features, but, as
discussed above, it is essential in enforcing various symmetry invar-
iances and in capturing non-local properties. Therefore, the important
ingredients to consider for optimization are the choices of how to
determine and represent the electronic structure, which operator to
apply, and how to map the operator spectrum onto features after
diagonalization.

An appealing electronic-structure model for these purposes is a linear
combinationof contractedGaussian-typeorbitals (cGTOs), forwhichmany
basis sets have been constructed alongside efficient libraries likelibcint46
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for applying operators and computing integrals analytically. A cGTO with
quantumnumbers n, l,m for atomof species α is constructed as the product
of a spherical harmonic Ym

l ðθ; ϕÞ and a radial function

Rα
nlðrÞ ¼ rl

X
p

cαp Bðl; aαpÞ e�aαp r
2

ð6Þ

where cαp and a
α
p are the contraction coefficient and exponent for speciesα in

the primitive Gaussian p, and B is a normalization constant. The cGTO for
atom I of species αI at position RI is therefore

ϕInlmðrÞ ¼ RαI
nl ðjr� RI jÞYm

l ðθ; ϕÞ: ð7Þ

For periodic systems, we can write approximate Bloch states as Bloch sums
of cGTOs

ϕνkðrÞ ¼
X
R

eik�RϕInlmðr� RÞ ð8Þ

withband index ν capturing the cGTO indicesn, l,m, and I, and crystalwave
vector k. We define the electronic-structure map as a simple decoration of
the atomic positions with the cGTOs of the corresponding species, which
requires no significant computational effort.

A simple yet descriptive one-electron integral is the kinetic energy,
which can be applied to the Bloch sums

Tνμk ¼ hϕνk ∣�
_2

2
∇2∣ϕμki ð9Þ

and subsequently diagonalized. The density of kinetic energy eigenvalues
per unit volume can then be calculated using Gaussian smearing. Volume
normalization ensures that the spectra for unit cells and supercells are
identical, which is the desired behavior in solids when predicting intrinsic
properties such as structural similarity or electronic band gap. The kinetic
energy SOREP features are therefore

xi ¼
1
V

1
NνNk

X
νk

exp
�½ðEi � λνkÞ=ðkBTsÞ�2ffiffiffi

π
p

� �
ð10Þ

where Ts is a smearing temperature, Ei are uniformly-spaced energies
running from Emin to Emax, and λνk are the kinetic energy eigenvalues.

Figure 1a shows the kinetic energy SOREPs for silicon, germanium,
and K2Sn2O3 calculated using a customized version of the atomic natural
orbital (ANO) cGTO basis set47–55 which covers the full energy spectrum.
This custom basis set, which we call ANO-ML-OS, is obtained from the
relativistic ANO-type orbitals50–55 known as ANO-RCC, as available on the
Basis Set Exchange library47–49, where we keep only the orbitals corre-
sponding to the smallest closed-shell configuration. As one might expect,
the SOREPs for the two elemental solids look qualitatively quite similar,
mirroring their similar structural electronic properties. When comparing
these materials to a more complex system with heavier elements, like
K2Sn2O3 as shown, we observe a rapidly growing spectral range due to the
increasingly highly localized nature of the additional tightly bound (semi-)
core orbitals. In order to improve the features for this purpose, one might
consider modifying the operator by adding a nuclear potential or changing
the final representation to one that compresses the spectrummore than the
DOS. For example, the DOS could be truncated at the energy where the
cumulativeDOS is some fraction of itsmaximum, following the observation
that only a small amount of the DOS is at high energy. Applying such a
cutoff would yield features similar to those pictured in Fig. 1b. The
underlying complication is not only that the spectral range is large but that it
differs between chemistries in a way thatmakes it difficult to select themost
important region(s) of the DOS beyond the intuition that low-curvature,
relatively delocalized, and thus low-kinetic-energy states are more chemi-
callymeaningful than high-curvature, highly-localized, high-kinetic-energy
ones. However, for systems of the same or similar compositions, such as the
carbon nanotubes (CNTs) shown in Fig. 1c, this filtering is more intuitive.
Here, we compare the kinetic SOREPs as above for CNTs of varying elec-
tronic character and find that the features around 18 Hartree, as seen in
Fig. 1d, are quite similar to the pz tight-binding DOSs

56,57 (shown in gray)
and exhibit a gap forming for the semiconducting (0, 8) configuration. We
conclude that the kinetic features are well-suited to comparing such com-
positionally similarmaterials, like inmolecular dynamics,metallic alloys, or
elemental systems with many allotropes.

One application in this regard is identifying unique structures of fixed
stoichiometry in a large database. For illustration, we have selected the
relaxed geometries for 127 BaTiO3 entries in the Materials Cloud 3D
database (MC3D)58 feedstock and compare against the uniqueness analysis
conducted by the MC3D developers using the pymatgen structure
matcher59. To find an appropriate energy range for featurization, we first
analyze the inexpensive-to-compute cumulative distribution of kinetic
eigenvalues across all structures, shown in Fig. 2a. This cumulative

a)

b)

c)

d)

Fig. 1 | Illustrative examples of kinetic energy SOREP features. a Kinetic energy
SOREPs of diamond-structure Ge and Si along with the transparent-conducting
oxide K2Sn2O3. The width of the spectral range (≈2000 Ha) is dominated by tightly
bound semi-core orbitals of K2Sn2O3. b The two elemental solids display qualita-
tively similar features at low energies (≲20 Ha). c Kinetic energy SOREPs for three

carbon nanotubes of different chiralities, overlaid with pz tight-binding densities of
state (dashed lines, shifted by +18 Ha to be similarly centered). d The transition
from metallic to insulating configurations is correlated with a disappearance of the
kinetic DOS in the (3,9) and (0,8) configurations around ~18 Ha.
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distribution function increases in quasi-discrete steps at energies higher
than approximately 7Hartree. Past this point, the density of kinetic states is
likely dominated by tightly bound (semi-)core states, which are likely
uninformative. The DOS computed up to 15 Hartree, also in Fig. 2a, is
indeed sparse, highly peaked, and therefore likely related to highly localized
Ba and Ti cGTOs above ~6.5 Hartree. The final SOREP features are
therefore computed from 0 to 6.5 Hartree using Gaussian-type smearing
with a width of 0.03 Hartree sampled at 1024 equally-spaced energies.

To determine a set of unique prototype structures, the SOREP features
are clustered using the density-based spatial clustering of applications with
noise (DBSCAN)60 algorithm, which has two parameters: the minimum
number of samples required to create a cluster Nmin, and a neighborhood
radius ε. DBSCAN performs its clustering based on the distances between
data points, not the data themselves; here, we use the cosine distance
dcosðxi; xjÞ ¼

xi�xj
jjxijjjjxj jj. The distancematrix, sorted by theMC3D grouping, is

shown in Fig. 3. Here, there are three groups containing only one structure
each (an orthorhombic non-perovskite, a super-tetragonal non-perovskite,
and an erroneous structure with the positions of barium and titanium
swapped) along with six groups with multiple members (two-layered per-
ovskites, and the four standard polymorphs). However, it can be seen that

some groups (notably those labeled as orthorhombic and rhombohedral)
contain structures that are relativelyunlike the rest of their respective clusters.

As we expect to find some completely unique structures with no
duplicates in the database, we setNmin = 1 for the following investigation. To
determine ε, we inspect the sorted k-nearest neighbors (k-NN) distances
(Fig. 2b–d) and find an “elbow” in the curve, which indicates a domain of
reasonable values, fromapproximately 1 × 10−4 to 1 × 10−1. Correlating these
values of εwith the number of clusters found byDBSCAN, it can be seen that
within this regionof thek-NNdistance curve, thenumberofunique structure
groups ranges from >50–8 with increasing ε, compared to the 9 groups
predictedby theMC3Dprocedure.However, the clustering is highly sensitive
to small changes in the neighborhood radius for ε < 9 × 10−4, so we focus on
values in the range [9× 10−4, 1 × 10−1], which yield between 12 and 8 groups.
The 9 clusters produced for ε in the range [0.014, 0.05] are identical to those
from the MC3D as determined using pymatgen’s structure matcher. To
understand how the clustering at lower and higher values of ϵ differs within
the focus region, we describe the process of cluster merging as ε increases in
Fig. 4. Of the 13 groups generated at low ε, most are in agreement with the
reference groups aside from a splitting of the tetragonal, orthorhombic, and
rhombohedral clusters, where the visual outliers seen in Fig. 3 are separated.

a)
b)

c)

d)

Fig. 2 | Feature selection andDBSCAN parameterization for BaTiO3 uniqueness
analysis. aDensity and cumulative distribution function of kinetic eigenvalues for all
BaTiO3 structures considered. Below 15 Hartree, the DOS is computed with
Gaussian smearing; above, a logarithmically binned histogram is shown. b–d Sorted
k-nearest neighbor distance curves on linear and semi-log scales display an “elbow”
at optimal values of the DBSCAN neighborhood radius parameter ε. DBSCAN

models are fit for ε values within the elbow region (~1 × 10−4 to 1 × 10−1), and the
corresponding number of clusters is shown in solid black. The number of structure
groups determined by theMC3D procedure is overlaid in dashed gray for reference.
An optimal choice of ε exists in the region of relatively stable clustering around
1 ×10−3 to 1 × 10−1.

Fig. 3 | Cosine distance matrix relating kinetic
SOREPs for 127 BaTiO3 structures with columns
sorted byMC3D classification. Some outliers stand
out visually in the orthorhombic and rhombohedral
groups, alongside possible outliers in the tetra-
gonal block.
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We conclude from this analysis that the kinetic SOREP features have
the ability to capture and describe subtle structural differences in poly-
morphs of complex materials, similar to structure-based methods like the
pymatgen structure matcher. However, significant weight is given speci-
fically to structural changes that strongly affect the electronic structure, as
seen in the CNTs. This simple and efficient example serves as a good case
study for how one might approach crafting and electronic-structure fea-
turization under the SOREP framework with a quite restrictive efficiency
constraint. As mentioned above, more complex learning problems often
require more expressive descriptors, so next, we consider constructing a
featurization for such a situation.

Single-shot DFT SOREP
For applications suchas screening large anddiversedatabasesofmaterials, a
representation is required that is rich enough to describe and compare any
chemical compositionbut computationally efficient enough to be applied to
tens of thousands of systems (containing up to ~100 atoms each). To guide
the development of a SOREP fit for this application, we consider as a use
case an ML-accelerated screening for transparent-conducting materials
(TCMs) in the MC3D. TCMs are characterized by band gaps wide enough
to allow for transparency across the visible spectrum, high mobility of
charge carriers, and the ability to inject these carriers via n- or p-type
doping. Most screening studies for these materials focus initially on
approximating the first two properties via high-throughput density-func-
tional theory (DFT) band-structure calculations61–63. From these calcula-

tions, theDFT-PBE64 band gap and approximate electron andhole effective
masses are used as figures of merit. Our aim is to define a featurization
method descriptive enough to reproduce a classification based on effective
masses andbandgaps at a fraction of the cost.More concretely, we target an
order of magnitude speedup compared to self-consistent DFT calculations;
otherwise, it would be more efficient and practical to perform a traditional
screening. Using these guiding principles, we propose a SOREP method
based on a single-shot (i.e., non-self-consistent) DFT calculation of a
superposition of pseudo-atomic valence charge densities ~ρ and a linear
combination of pseudo-atomic orbitals (PAOs) χnl taken from pseudopo-
tentials from the standard solid-state pseudopotential (SSSP) library65,66.
These pseudo-atomic quantities are exact matches to the all-electron
quantities of an isolated atom outside a small pseudization radius and as
such represent a reasonable guess of the true ground-state wavefunction
and chargedensity of the chemically-active electronsof eachelement.Using
a locallymodified copy of theQUANTUMESPRESSO67pw.x code, the PAOs
(provided on a real-space radial grid) are transformed into Bloch orbitals.
The Kohn–Sham DFT Hamiltonian and orbital overlap matrices are then
calculated non-self-consistently from the potential derived from the
superposition of atomic densities

Hνν0k ¼ hχνk ∣Ĥ∣χν0ki ð11Þ

Sνν0k ¼ hχνkjχν0ki ð12Þ
where

Ĥ ¼ T̂ þ V̂H½~ρ� þ V̂xc½~ρ� þ V̂ext þ V̂PS: ð13Þ
The Hamiltonian matrix then is diagonalized exactly (i.e., non-iteratively)
on the basis of the PAOs to find the eigenvalues εnk and eigenstates ψnk at
each k-point

Hkψnk ¼ εnkSkψnk; ð14Þ

yielding a k-resolved eigenspectrum, i.e. a band structure. With respect to
the kinetic energy operator used above, the Kohn–Sham Hamiltonian is
well-behaved due to the inclusion of potential terms, with a meaningful
Fermi energy and band extrema that can be leveraged as anchoring points.
Finally, the features are the DOS calculated with Gaussian smearing as in
Eq. (10)where the discretization over energiesEi, and smearing temperature
Ts are taken as parameters of the featurization.

Figure 5 shows the evolution of the DFT DOS with respect to the
electronic self-consistent step for a reference semiconductor, elemental
silicon, and the transparent-conducting oxide K2Sn2O3. Remarkably, the
qualitative shape of the DOS is quite similar to the fully converged calcu-
lation, especially around the Fermi level. Importantly for the application of

Fig. 5 | Densities of states for silicon and K2Sn2O3

across self-consistent iterations. a shows elemental
silicon, while b shows the transparent-conducting
oxideK2Sn2O3. “0” iterations correspond to a single-
shot SOREP, while in both cases, the uppermost
DOS corresponds to the self-consistent DFT ground
state. The SOREP for silicon is remarkably similar to
the converged DOS, while the features for the more
complex K2Sn2O3 are further from the ground-state
solution.

a) b)

Fig. 4 | Progression of DBSCAN clusters with varying neighborhood radius
parameters ε. The number of materials in each initial cluster is shown in par-
entheses. As the neighborhood radius is increased, clusters merge, agreeing with the
MC3D's structure-based grouping for values from 2 × 10−2 to ~5 × 10−2, after which
meaningfully distinct clusters combine.
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screening TCMs, the shape of the DOS at the conduction and valence band
edges is well-reproduced in the single-shot SOREPs, so the features contain,
to some extent, reliable information related to the electron andhole effective
masses. A small-scale timing study is reported in Supplementary Infor-
mation (SI) Sec. S3, where it is shown that single-shot DFT calculations do,
in fact, meet the order-of-magnitude performance increase over self-
consistent DFT targeted above.

Accelerated TCM screening
A generalized procedure for screening TCMs is shown in Fig. 6a, and
consists of two broad steps: high-throughput DFT calculations (boxed) and
low-throughput refined calculations. The most computationally expensive
step is running DFT band-structure workflows for every material in the
database, numbering often in the tens of thousands. These calculations are
used to find the band gap and effective mass (proxies for transparency and
conductivity, respectively) following the criteria shown in Fig. 6c. To
accelerate the procedure, we featurize the database using the single-shot
DFT SOREPs and construct a classification model which predicts which
materials are likely to meet the DFT-based screening criteria (Fig. 6b). This
approach significantly reduces the computational cost by performing DFT
band-structure calculations only on a subset of the entire database,
including, if available, some known TCMs in order to construct an ML
model used to screen the rest of the database. Note that this approach is
more general than the case of TCMs; screening studies for many materials
classes and properties could follow a similar procedure.

As this is a validation study and not a true screening, we take the
MC3D, a curated database of relaxed three-dimensional crystal structures,
for ground-truth DFT simulation results. Using band structures from the
MC3D, all materials are classified as TCM candidates or non-candidates
based on the criteria shown in Fig. 6c. The filter, adapted from general
guidelines outlined byWoods-Robinson et al.63, selects candidate materials
first by having a generalized gradient approximation (GGA) electronic
band-gap wider than 0.5 electron-volts. Then, if the material meets either
the electron (m�

e ≤ 0:5me) or hole (m
�
h ≥ � 1:0me) effectivemass condition

(or both), it is considered a candidate material; otherwise, it is labeled as a
non-candidate.

The band gap is simply calculated as the difference between the con-
duction band minimum (CBM) and valence band maximum (VBM) on a
Monkhorst-Pack grid Eg = ECBM− EVBM. The electron effective masses are
approximated from band structures computed along high-symmetry lines
provided by SeeKPath68 using the so-called “line effective mass” of Hautier
et al.62:

1
m�

e;line

¼ max
α

P
n2CB

R kαb
kαa

� ∂2

∂k2α
εnðkαÞθeðεnðkαÞÞdkαP

n2CB
R kαb
kαa

θeðεnðkαÞÞdkα

2
4

3
5 ð15Þ

where the maximum is taken over high-symmetry lines α, the sum is over
conduction bands, and θ is the Fermi-Dirac distribution at 300 K:

θeðEÞ ¼ exp
E � ECBM

kBT300K

� �
þ 1

� ��1

: ð16Þ

Hole effective masses are approximated similarly by exchanging E− ECBM
in the Fermi-Dirac distribution for EVBM− E and summing over valence,
rather than conduction, bands in Eq. (15).

These labeled data are then used to train a random forest classifier
(RFC) to predict theDFT-derived binary classification based on the SOREP
features; the RFC model is chosen for its simplicity and interpretability.
Unlike neural network models, which are often quite opaque, the binary
decisions in each of the trees of the random forest are easily understood as
conditions on the DOS at particular energies, and the model can provide a
measure of the importance of each of the input features. Because the input
features have clear physical meanings, the results of the model training not
only provide classification predictions but also useful feedback for
improving the SOREP features if necessary.

Featurization
SOREP Featurization begins with performing single-shot calculations on a
subset of the MC3D, followed by DOS sampling. Statistics describing the
materials considered, various computed properties, and the time cost of
these calculations are reported in the SI Sections S1.1 and S3.We investigate

a) b) c)

Fig. 6 | Flow diagrams illustrating the ML-accelerated screening procedure.
a Standard high-throughput screening for TCMs, where the boxed section corre-
sponds to the steps accelerated by SOREP-based ML. bML-accelerated procedure:
random materials from the database are used to train a classification model that

labels the remaining materials. With a perfect classification model, the “ML can-
didates” in a would correspond exactly to the “high-throughput candidates” in b.
cTCM screening criteria based on band gaps and hole and electron effectivemasses.
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four different SOREP parameterizations derived from the single-shot band
structures, focusing on different aspects of the DOS in a similar spirit to a
weighted DOS fingerprint43. In the first, the DOS is sampled at 513 evenly-
spaced energies 2 eV below and 6 eV above the VBM. These features are
designedwith selectinghole-conducingTCMs inmind; byfixing theDOSat
the VBM to a specific feature, the model has a higher likelihood of learning
to distinguish materials with high DOS and likely low effective mass at that
point. Including 6 eV above the VBM should also provide enough infor-
mation about the band gap so that insulators may be distinguished from
conductors. For most insulators, this energy range should also provide a
glimpse at the bottom of the conduction bands. The second set of para-
meters yields a standard Fermi level-centered DOS, sampled on a range of
±5 eV, allowing the valence and conduction bands to be captured in any
material with a band gap less than 10 eV. For insulatingmaterials, the Fermi
level is taken as the mid-gap energy so that the valence and conduction are
equally well represented. A fourth parameterization mirrors the VBM-
centered features but with the CBM as the anchoring point, providing a
feature set that is likely to be more useful for identifying n-type TCMs.
Finally, a concatenated SOREP is constructed by combining features cen-
tered at the VBM, Fermi level, andCBM, each sampled on a range of ± 1 eV
at 171 evenly-spaced energies to yield 513 total features.

In addition to these SOREP features, we also consider the SOAP25

representation, which is a widely used and well-established local atomic
environment descriptor. As an atomically decomposed representation,
SOAP provides a vector of features for each atom in the unit cell whose
dimension is determined by various parameters, notably the maximum n
and l values in a spherical harmonic expansionof the local atomicdensity. In
order to produce feature vectors that are comparable in dimension to the
SOREPs, we fix nmax ¼ 10, lmax ¼ 9, and average over atoms using the
“inner” approach implemented in DScribe69,70, yielding 550 features.

As shown in refs. 34 and 39, distance metrics based on the self-
consistent DFT DOS can be used in practice to both map out the space of
electronic structures and to search for materials with complex electronic
properties. To more rigorously investigate the information content of the
SOREPs described above, we observe the correlation between the properties
of the Fermi level-centered single-shot DFT SOREP features and identically
sampled SCF densities of state from the MC3D. Figure 7 shows a strong
correlation between self-consistent DFT and SOREP Euclidean distances
across the database, confirming that this featurization not only contains
physically relevant informationbut that it yields a topologically similar space
to true self-consistent densities of state. This confirmation opens the door to

applying SOREPs to materials cartography and other further investigations
into electronic-structure space and its dimensionality using tools like
DADApy71.

Model training and performance
Using the three SOREP parameterizations described above, balanced RFC
models, which correct for heavily imbalanced training data, as we have here,
are trained using a gridded parameter cross-validation with k = 5 folds on a
range of train-test splits. On a 14-core workstation, training all the models
for all train-test splits and all SOREP features can be done in less than
an hour.

A first question to ask after training themodels is: what features do the
models find to bemost useful in their predictions? Figure 8 shows themean
mean decrease in impurity (MDI) feature importances for the four types of
SOREPover themodel ensemble trainedon50%of thedatabase. TheVBM-
centered model gives significant importance to the valence bands and
exhibits a strongpeak just above theVBMand into the gap (if present), likely
to probe the shape of the decay of theDOS at the band edge and thewidth of
the gap. This follows the physical intuition used in constructing these fea-
tures: the shape of the bands around the VBM and information about the
band gap are both important for classifying materials as TCMs given the
criteria imposed. This same behavior is seenmirrored in the CBM-centered
features, with a strong peak just below the conduction band edge and a
similar decay into the potential gap. The Fermi-centered SOREP has its
importance peak just above and below the Fermi level, with smaller sub-
peaks just below and above the positive and negative limits, which define a
0.5 eV band gap, respectively. Because no anchoring point for the band
edges is present in these features, the model expectedly focuses on distin-
guishing between conductors and insulators as defined by the screening
criteria. Finally, the concatenated SOREP’s importance show all the same
major features as their component parts, as discussed above. As informative
and affirming as this analysis seems to be with respect to the physical
meaning of the features making up each SOREP, it is important to note that
MDI feature importances are solely derived from training data and suffer
from the same biases as the model itself (e.g., overfitting to noise, class
imbalance, etc.). Despite these limitations, the feature importances provide
an efficient and useful, if heuristic, guide for understanding in a broad sense
how well the model agrees with an investigator’s physical intuition and can
point to possible improvements in SOREP engineering and parameteriza-
tion. For example, importance seems to be much more highly localized
around the anchoring points than we expected in all the parameterizations
presented, suggesting that lower-dimensional features with a more targeted
sampling of the DOS might be equally effective and more computationally
efficient.

Although the feature importances tell quite different stories for each of
the different SOREPs, classification metrics evaluated on a hold-out set of
10% of the database shown in Table 1 confirm that the relative performance
of the features is comparable within the variance due to training data
selection. In broad terms, themodels trained using 1% of training data each
achieve true positive rates of above 60% and up to 75% with corresponding
false negative rates of between 25%and38%. These quantities are important
measures of howwell a given classificationmodel can accelerate a screening:
a high false positive rate would mean that significant calculation time is
wasted on false leads, while a low true positive rate would signal that many
good candidates go overlooked. The effects of these factors are shown in
Fig. 9. Figure 9a shows the relative speedup achieved by RFCs trained on
each type of feature which is calculated as the ratio of TCMs found per
calculation by the ML-accelerated screening to that of a high-throughput
search:

speedup ¼ yieldML

yieldHT
¼

NTPþN train�f TCM
NTPþNFPþN train

f TCM
: ð17Þ

NTP is the number of true positives (TCMs labeled as such),NFP the number
of false positives (non-TCMs labeled as TCMs), Ntrain the number of

Fig. 7 | Parity plot comparing Euclidean distances among Fermi-centered SCF
DOSs and corresponding distances among single-shot DFT SOREPs. The dis-
tances are highly correlated between the two sets of features, suggesting that the
space of single-shot densities of states is not too different from that of fully self-
consistent DOSs, which have been previously employed for materials cartography.
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training samples, and fTCM the fraction of materials in the database, which
meet theTCMcriteria. This speedup factor is an informativemetric for such
a screening task because generating training data comes at a non-negligible
cost and is actually less effective at discovering promising materials than a
well-performing classifier. The turning point where generating more
training data reduces the speedup can be seen in Fig. 9a beginning at ~1000

training samples. Above approximately 100 training samples, all SOREP
features significantly outperform SOAPs in terms of speedup, with the
concatenated features showing the highest mean performance followed by
VBM-centered, CBM-centered, and Fermi-centered features. The relative
performance of the various SOREP parameterizations is generally in line
with expectations and the analysis of feature importances above. Notably,

a) b)

c) d)

Fig. 8 | Average mean decrease in impurity feature importances over 30 random
forest classification models trained on independent 50:50 splits of the
training data. a Importance reaches a maximum at the VBM anchor point and
decays far away, with a slight increase of importance ~0.5 eV above the VBM.
b Fermi-centered SOREPs give large importance within a region of ±0.25 eV around
the (gap-centered) Fermi level. c CBM-centered SOREPs show an importance

distribution mirroring that of the VBM features. d Concatenated SOREPs give, as
expected, a superposition of the importance distributions of their individual com-
ponents. In all SOREPs, feature importances peak around the anchoring points
(Fermi level, band edges) and decay strongly outside the 0.5 eV band gap range away
from the anchoring points.

Table 1 | Mean values and standard deviations of classificationmetrics for models trained on 1%of the data computed over 30
independent train-test splits and evaluated on a hold-out set

Features True negative True positive False negative False positive Balanced accuracy
(Rate) (Rate) (Rate) (Rate)

VBM-centered 1704 ± 52 151 ± 14 62 ± 14 253 ± 52 0.58 ± 0.06

(0.871 ± 0.026) (0.710 ± 0.067) (0.290 ± 0.067) (0.129 ± 0.026)

Fermi-centered 1684 ± 51 134 ± 18 79 ± 18 273 ± 51 0.49 ± 0.08

(0.860 ± 0.026) (0.628 ± 0.087) (0.372 ± 0.087) (0.140 ± 0.026)

CBM-centered 1682 ± 72 134 ± 20 79 ± 20 275 ± 72 0.49 ± 0.07

(0.859 ± 0.037) (0.628 ± 0.095) (0.372 ± 0.095) (0.141 ± 0.037)

Concatenated 1705 ± 48 159 ± 13 54 ± 13 252 ± 48 0.62 ± 0.05

(0.871 ± 0.024) (0.746 ± 0.061) (0.254 ± 0.061) (0.129 ± 0.024)

SOAP 1783 ± 71 36 ± 13 177 ± 13 174 ± 71 0.08 ± 0.04

(0.911 ± 0.036) (0.168 ± 0.060) (0.832 ± 0.060) (0.089 ± 0.036)

The best-performing features are shown in bold; concatenated SOREPs have the best true positive and false negative rates, while the SOAP features have the best true negative and false positive rates.
SOAP’sperformancehere canbeattributed topredictingcloser to themeanof thedata,which, due to theheavyclass imbalance, is anegative classification. This is reflected in thebalancedaccuracy,which
for SOAP features is not significantly better than random.
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the VBM-centered features do, to a minor extent, outperform the CBM-
centered features, likely due to the valence bands being better reproduced in
the single-shot DFT calculations than the conduction bands. An analysis of
self-consistent field (SCF) DFT-based SOREP features is reported in SI Sec.
S1.2, where the difference between the VBM-centered and CBM-centered
features is indeed reduced.

The speedup can hide a non-negligible decrease in total yield, i.e., a
high false negative rate. Therefore, in Fig. 9b, we show a fraction of
TCMs found via the ML-accelerated screening versus what would be
found in an exhaustive high-throughput search as a function of the
number of training samples. All models strongly outperform a brute-
force screening at low training fractions, in agreement with the yield
results, but even the best model saturates at around an 80% discovery
rate. Notably, SOAP features underperform a high-throughput search
when trained on more than ~40% of the data, while all of the SOREPs
continue to outperform the exhaustive search up to an 80:20 train-test
split. As seen in the speedups, SOREPs consistently outperform SOAP
features across the data regime by approximately a factor of 2, well
outside the standard deviation of the metric.

The best-performing model, both in terms of yield and fraction of
TCMs found, uses the concatenated features and is trained on 0.5–1.5% of
the database, or between 100 and 300 materials. After training on 217
materials, the RFC predicts on average 1410 true positives and 2525 false
positives, requiring in total 4152 SCF and band-structure calculations, or
~20% of the database. In turn, it finds ~75% of the TCM candidates present
in the database. This is a significant improvement over SOAP features,
which, even when trained on 80% of the database (~15,000 materials), only
find 40% of the TCM candidates.

An identical study to the one described above has also been performed
using SCF DFT SOREP features, and its results are reported in SI Sec. S1.2.
The performance of SCF features is, on average, slightly betterwith a smaller
variance but within two standard deviations of that of the single-shot fea-
tures reported here. In order to confirm the improved performance w.r.t.
SOAP observed in this classification study, an additional regression study
into DFT band gap prediction is presented in SI Sec. S2, where it is shown
that SOREP features do indeed outperform SOAP.

Discussion
In this work, we have presented a unified framework for constructing
machine-learning features based on the electronic structure of molecules
andmaterials, leveraging the symmetry preservation and conceptual clarity
of physical approaches. By formalizing the process of featurization as a
multistep algorithm, involving the selection of an electronic model, design
and application of a spectral operator, and reduction of the spectrum into
compact, invariant features, we were able to rapidly design and apply two
sets of features to the problems of polymorph similarity and the discovery
of TCMs.

We have described and investigated a kinetic-operator-based SOREP
method and applied it successfully to distinguishing structurally similar, but
electronically diverse, CNTs. Using the SOREPs, metallic and insulating
polymorphswere clearly distinguishable, with particular features paralleling
pz-tight-binding densities of states. Applied to the uniqueness analysis of
BaTiO3 structures from the MC3D feedstock, these kinetic features also
showed a remarkable ability to highlight configurations that are missed by
the currently employed atomic-structure-based method. In combination
with advanced clustering algorithms, dimensionality reduction schemes,
and intrinsic dimension analyses such as those implemented in DADApy,
the physical interpretability of SOREP featuresmay also lead in future work
to a better understanding of the important electronic collective variables in
similar datasets.

A second SOREP featurization based on a single-shot evaluation of the
Kohn–ShamHamiltonian was then investigated for the more complex and
compositionally diverse problem of TCM discovery within the MC3D. By
leveraging the SOREP framework, minimal modifications to the kinetic
SOREPs were identified and remedied, producing features remarkably
similar to self-consistent DFT DOS features at a fraction of the computa-
tional effort. Used to train a random forest classifier, these features allowed
for the “discovery” of 75% of materials in the MC3D that meet common
TCM screening criteria while relying on only 1% of the database for refer-
ence data. Comparing these results against those of classifiers trained on
SCF-based SOREP features, we find no significant ML performance
improvement, particularly considering the associated increase in compu-
tational cost. The success of this approach is not only due to their inherently

a) b)

Fig. 9 | Performance metrics as a function of training fraction for the different
SOREP features and SOAP features. a Speedups for the different descriptors versus
an exhaustive high-throughput search.bFraction ofTCMs foundbyML-accelerated
screening for different amounts of training data. In both panels, the dotted lines plot
the mean performance over 30 independent train-test splits, while the shaded

regions show the mean plus and minus the standard deviation. All SOREPs sig-
nificantly outperform the SOAP features in terms of speedup and fraction of TCMs
found for this classification task. Of the SOREPs, the concatenated features have the
highest mean performance, although the standard deviations are large.
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physical information content but also to their interpretability, allowing
researchers to select the most meaningful features by leveraging their sci-
entific knowledge and experience. The strong data efficiency of SOREP
features, i.e., that they can be used to train accurate models with little
training data, opens the door to their application in learning difficult-to-
compute properties or predictions from levels of theory beyondDFT,which
are much more computationally expensive.

Methods
Kinetic SOREP
Ge, Si, and K2Sn2O3. The germainum, silicon, and K2Sn2O3 unit cell
structures are taken from the Materials Project59 database entries mp-32,
mp-149, andmp-7502, respectively. Using the ANO-ML-OS cGTO basis
set, the kinetic energy and overlap matrices are computed with a k-point
distance of 0.1Å−1 and Gaussian smearing with a width of σ = 0.05
Hartree. PySCF’ssafe_eigh function is used to diagonalize the kinetic
energy matrix, and the kinetic DOS is sampled on an evenly-spaced grid
of points from −5σ to the maximum eigenvalue with a spacing of 0.01
Hartree.

Carbon nanotubes. The CNTs for kinetic SOREP featurization are
generated using ASE’s15,16ase.build.nanotube method with a
bond length of 1.42 Å and vacuum of 30Å. Using the ANO-ML-OS
cGTO basis set, the kinetic energy and overlap matrices are computed
with ak-point distance of 0.05Å−1 andGaussian smearingwith awidth of
σ = 0.015 Hartree. SciPy’s72 eigh function is used to diagonalize the
kinetic energy matrix, and the kinetic DOS is sampled on an evenly-
spaced grid of points from0 to 20Hartreewith a spacing of 0.001Hartree.
The nanotube structures for the pz tight-binding DOS are generated by
the CNTbands57 tool hosted on nanoHUB with default parameters. The
pz densities of states are computed from the band dispersion provided by
CNTbands using the smearing parameters reported above and are
sampled from the minimum to the maximum tight-binding energy ± 5σ
with a spacing of 0.001 Hartree.

BaTiO3 uniqueness analysis
The BaTiO3 dataset consists of 127 structures relaxed with the MC3D73

protocol and PBE functional with unit cells containing either 5 or 30 atoms
(1 or 6 formula units). As a baseline method, the structures are grouped
using Pymatgen’s59 StructureMatcher with default parameters using
the “first come, first serve” algorithm implemented in the mc3d-source
package (https://github.com/mbercx/mc3d-source). Each structure is fea-
turizedusing thekinetic energySOREPviaPySCF74,75 v1.7.6using theANO-
ML-OS cGTO basis set, a k-point distance of 0.2Å−1, Gaussian smearing
with a width of σ = 0.03 Hartree, and scipy’s eigh function for diag-
onalization. The kinetic DOS is sampled on an evenly spaced grid of 512
points from−5σ to 6.5 Hartree.

TCM screening
DFT calculations. SCF calculations were performed using QUANTUM

ESPRESSO76–78 (QE) (v6.4.1 and v6.5) via AiiDA17,18 and the AiiDA QE
plugin (v3.0.0a3, v3.0.0a5, v3.0.0, v3.2.1, v3.1.0, and v3.4.2) with SSSP66

PBE efficiency (v.1.1) pseudopotentials and associated plane-wave cut-
offs, PBE64 exchange-correlation functional, cold smearing79, and a
0.15Å−1 k-point spacing. High-symmetry line band structure calcula-
tions were performed via AiiDA and the AiiDA QE plugin (v3.4.2) using
QE (v6.8) with SSSP PBEsol efficiency (v.1.2) pseudopotentials and
associated plane-wave cutoffs, PBEsol80 exchange-correlation functional,
cold smearing, and a 0.025Å−1 k-point spacing. Single-shot calculations
are performed via AiiDA and a modified version of the AiiDAQE plugin
(v3.4.2) using a modified version of QE (v6.7, v6.8) with identical input
parameters to the respective SCF calculations excepting the number of
allowed SCF iterations (set to 0).

Post-processing is performed on all calculations in order to deter-
mine the Fermi level consistently across different QE versions. Due to

the modifications made to QE in order to enable the single-shot calcu-
lations, the Fermi level and occupations are not computed by the code.
Additionally, QE versions up to and including 6.8 use a bisection algo-
rithm with known limitations when cold smearing is employed81. To
address these issues, the Fermi level determination algorithm described
in ref. 81 is implemented in Python and applied while retrieving relevant
calculations from AiiDA.

SOAP. SOAP features are computed without distinguishing atomic
species (due to rapidly increasing feature dimension) using DScribe69,70

(v1.1.0) with a radial cutoff of 6Å,nmax ¼ 10, lmax=9, σ = 0.3Å, “gto” type
radial basis, “inner” type averaging, and “poly” type weighting with
r0 = 5.0Å, c = 1.0, m = 1.0.

Random forest classification. Random forest classification imple-
mentations in the scikit-learn82 (v1.5.1) and imbalanced-learn83 (v0.12.3)
packages are used. Prior to any hyperparameter optimization or model
training, the 21,691 materials in the MC3D subset are split into training
andhold-out datasets, with 10%of the data held out. The training data are
then used to optimize the RFC hyperparameters via fivefold grid search
cross-validation with a 60:40 train-test split. The final models are trained
with 500 estimators with ccp_alpha=0 and “balanced-subsample”
class weighting with replacement, bootstrapping, and a 50:50 class bal-
ance. Using these parameters, models are trained using each set of fea-
tures on 30 independent train-test splits for training fractions ranging
from 0.001 to 0.8. Each trained model is evaluated on the hold-out
dataset, and themean and standard deviation of the classificationmetrics
are reported.

Data availability
The datasets are available on theMaterials CloudArchive at https://archive.
materialscloud.org/record/2024.128.

Code availability
The code used to process and feature the data and train the models is
available in static form with the data on the Materials Cloud in the entry
listed above and also in a GitHub repository at https://github.com/
azadoks/sorep.
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S1 ML-accelerated TCM screening

S1.1 Database statistics

The subset of the Materials Cloud 3D database (MC3D) considered in this work consists of 21,691 materials for which

self-consistent field (SCF), high-symmetry line band structure, and single-shot calculations were available and successfully

completed. These are derived from the union of 34,970 SCF calculations performed on structures relaxed with the PBE

exchange-correlation functional, 29,296 high-symmetry line band structure calculations performed on relaxed structures with

PBEsol, and 29,702 single-shot calculations performed on relaxed structures with PBE.

Of the SCF calculations, 18,211 were run using QE version 6.4.1 and 3,480 were run using version 6.5. All 21,691 band

structure calculations were run using QE version 6.8. 21,552 single-shot calculations are run using a modified QE version 6.7

and 139 are run using a modified version 6.8.

The distribution of the number of atoms in the unit cell of the materials in the subset is shown in Supp. Fig. 1a. The unit

cells considered range in size from 1 to 52 atoms, with a mean of 15.6 atoms and a median of 12 atoms. A periodic table

heatmap describing the number of materials containing each element is shown in Supp. Fig. 1b. 70 unique elements are present

in the MC3D subset, with every non-lanthanide and non-actinide element up to radon, except for astatine, present in at least

1



one material. The MC3D subset contains 12,151 materials considered to be metallic by analysis of their SCF bands and 9,540

insulators, whose band gap distribution in shown in Supp. Fig. 1c and effective mass distribution in Supp. Fig. 1d. Using the

transparent conducting material (TCM) screening criteria described in Sec. “Accelerated TCM screening” of the main text,

9,088 materials meet the band gap criterion, of which 1’909 also meet the effective mass criterion. Therefore, 1,909 materials

(8.8% of the database) are considered as potential TCMs for the purposes of this proof-of-concept study.

S1.2 SCF SOREP study

In order to compare the performance of self-consistent and single-shot spectral operator representation (SOREP) features, we

present here the results of the random forest classifier (RFC) accelerated screening task when performed using SCF SOREP

features. All QE parameters are identical between the calculations, as noted above, except for the maximum number of

self-consistent steps. Supp. Fig. 2 parallels Fig. 8 in the main text, with slightly cleaner peaks around the anchoring points.

Supp. Tab. 1 shows identical relative performance among the different features investigated, and most metrics are higher

but within a few standard deviations of the corresponding values for the single-shot SOREP features. Supp. Fig. 3 also shows

slightly higher mean yield and speedup than with single-shot features, in agreement with Supp. Tab. 1.

We conclude that the relative cost increase of fully-self-consistent calculations is not justified by the marginal improvement

in performance (which itself is in agreement with the relative differences in distances between the two sets of features as shown

in Fig. 7 of the main text).

S2 Band gap regression

While effective in the goal of accelerating the discovery of candidate TCM materials, classification models are of limited use in

gleaning more granular insights into the relative quality of proposed materials for a given task. To this end, we train a regression

model on the insulating materials of the MC3D subset to predict the band gap of materials using the single-shot SOREP and

smooth overlap of atomic positions (SOAP) features. An XGBoost1 regression model with 500 estimators, max depth of 5, and

learning rate of 0.1 (with all other parameters the defaults provided by XGBoost) is trained on standard-scaled features with

various train-test splits and evaluated on a hold-out set as in the classification task. Mean absolute errors (MAEs), root mean

squared errors (RMSEs), and root mean squared log errors (RMSLEs) are shown in Supp. Fig. 4 for the “standard” SOREP and

SOAP features as well for those features with the single-shot band gap appended as an additional feature. The mean value and

standard deviation of each metric over 5 independent train-test splits are displayed. Two baseline predictors are also shown: the

band gap of the single-shot dispersion and the mean of the SCF DFT band gaps across all non-hold-out materials. All standard
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a)

c)

b)

d)

Supplementary Figure 1. Statistics of the MC3D subset. a) Distribution of the number of atoms in the unit cells of the

materials considered in the TCM screening. Values range from 1 to 48 atoms. b) Periodic table heatmap of the number of

materials containing each element in the MC3D subset. c) Distribution of non-zero band gaps in the MC3D subset. d)

Distribution of insulator effective masses in the MC3D subset.
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a)

c)

b)

d)

Supplementary Figure 2. Average mean decrease in impurity feature importances from 30 random forest classifiers trained

on independent 50:50 splits of the training data. a) VBM-centered SOREP features. b) Fermi-centered SOREP features. c)

CBM-centered SOREP features. d) Concatenated SOREP features.

a) b)

Supplementary Figure 3. Balanced random forest classifier performance metrics for models trained on SCF SOREP

features. a) Speedup in TCM discovery versus a high-throughput search. b) Fraction of TCMs found by machine learning

(ML)-accelerated screening.
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Features True Negative True Positive False Negative False Positive Balanced accuracy

(Rate) (Rate) (Rate) (Rate)

VBM-centered 1709±67 163±17 50±17 248±67 0.64±0.05

(0.873±0.034) (0.765±0.078) (0.235±0.078) (0.127±0.034)

Fermi-centered 1685±60 161±18 52±18 272±60 0.62±0.07

(0.861±0.031) (0.757±0.085) (0.243±0.085) (0.139±0.031)

CBM-centered 1702±54 162±15 51±15 255±54 0.63±0.05

(0.870±0.028) (0.759±0.072) (0.241±0.072) (0.130±0.028)

Concatenated 1712±55 170±12 43±12 245±55 0.67±0.04

(0.875±0.028) (0.797±0.056) (0.203±0.056) (0.125±0.028)

SOAP 1783±71 36±13 177±13 174±71 0.08±0.04

(0.911±0.036) (0.168±0.060) (0.832±0.060) (0.089±0.036)

Supplementary Table 1. Mean values and standard deviations of classification metrics for models trained on 1% of the data

computed over 30 independent train-test splits and evaluated on a hold-out set.

SOREP features consistently outperform these baseline methods, even at the lowest training fraction of 0.01, and consistently

out-perform SOAP features by a wide margin. However, the addition of the single-shot band gap as a feature leads the model to

ignore, in large part, all other features and leads to significantly increased performance across the board, beating out standard

Fermi-centered SOREP features by a slight margin, as can be seen in Supp. Tab. 2, which reports metric statistics for a 20:80

train-test split.

S3 Timing

In order to directly measure the time cost of SOREP featurization, we perform calculations on 120 of the 127 BaTiO3 structures

and report the timing and speedup of single-shot and kinetic SOREPs as well as SOAP featurization w.r.t. SCF DFT calculations

in Supp. Fig. 5. The mean (± std. dev.) observed speedups for this set of 5-atom unit cells with respect to SCF DFT

calculations for single-shot DFT SOREP, kinetic energy SOREP, and SOAP calculations are 61± 15×, 992± 418×, and

216,717±146,863 respectively.
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Supplementary Figure 4. Regression metrics displaying the performance of XGBoost predictions of self-consistent DFT

band gaps in eV. Baselines representing predicting the single-shot band gap and the mean of the training band gaps are shown

for reference.
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Features RMSLE RMSE MAE

VBM 0.2774 ± 0.0016 1.0153 ± 0.0075 0.7401 ± 0.0039

CBM 0.2593 ± 0.0016 0.9614 ± 0.0144 0.6933 ± 0.0057

Fermi 0.2458±0.0028 0.8358±0.0140 0.6113±0.0063

VBM || CBM 0.2508 ± 0.0024 0.9152 ± 0.0174 0.6600 ± 0.0061

Concatenated 0.3174 ± 0.0060 1.1960 ± 0.0211 0.9023 ± 0.0229

SOAP 0.3954 ± 0.0022 1.4164 ± 0.0124 1.0512 ± 0.0088

VBM || ESS
g 0.2341 ± 0.0038 0.8003 ± 0.0152 0.5974 ± 0.0078

Fermi || ESS
g 0.2298±0.0039 0.7816 ± 0.0108 0.5741 ± 0.0057

CBM || ESS
g 0.2362 ± 0.0051 0.8105 ± 0.0252 0.5973 ± 0.0147

VBM || CBM || ESS
g 0.2266±0.0034 0.7669±0.0261 0.5567±0.0117

Concatenated || ESS
g 0.2344 ± 0.0051 0.7833±0.0211 0.5760 ± 0.0134

SOAP || ESS
g 0.2284±0.0031 0.7812 ± 0.0087 0.5564±0.0058

Supplementary Table 2. Mean regression metrics for 20:80 train-test split XGBoost predictions of self-consistent DFT

band gaps (eV). Results within 1 standard deviation of the best result are shown in bold.
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Supplementary Figure 5. Timing statistics for performing SCF DFT, single-shot DFT SOREP, kinetic energy SOREP, and

SOAP calculations on 120 5-atom BaTiO3 structures.

All calculations are done on a single physical core with OMP disabled on a workstation containing one 14-core 28-thread

Intel i9-10940X CPU clocked at 4.8 GHz and 64 GB of DDR4 RAM clocked at 2933MHz. Single-shot calculations are

performed with a modified copy of QE version 7.2 and self-consistent calculations with QE version 7.1. QE parameters default

to those of AiiDA QE plugin protocol and are adjusted for single-shot calculations where the number of allowed self-consistent

iterations is set to 0, and the number of bands are set to the number of pseudo-atomic states in the pseudopotential files. For

BaTiO3, this leads to consistently more bands than the protocol default. The kinetic energy SOREP calculations are performed

with PySCF version 2.6.2 using the parameters as described in the “BaTiO3 uniqueness analysis” subheading of the Methods

section in the main text. SOAP calculations are performed as described in the “SOAP” subheading of the Methods section in

the main text.
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