
Nonlinear Analysis 237 (2023) 113366

o
f

h
0

Contents lists available at ScienceDirect

Nonlinear Analysis

www.elsevier.com/locate/na

Convergence of metric measure spaces satisfying the CD condition
for negative values of the dimension parameter

Mattia Magnabosco a, Chiara Rigoni b,∗, Gerardo Sosa
a Institut für Angewandte Mathematik, Universität Bonn, Germany
b Faculty of Mathematics, University of Vienna, Austria

a r t i c l e i n f o

Article history:
Received 20 December 2022
Accepted 9 August 2023
Communicated by Enrico Valdinoci

Keywords:
Metric measure space
Curvature-dimension condition
Negative dimension
Convergence
Stability result

a b s t r a c t

We study the problem of whether the curvature-dimension condition with negative
values of the generalized dimension parameter is stable under a suitable notion
of convergence. To this purpose, first of all we propose an appropriate setting to
introduce the CD(K, N) condition for N < 0, allowing metric measure structures in
which the reference measure is quasi-Radon. Then in this class of spaces we define
the distance diKRW, which extends the already existing notions of distance between
metric measure spaces. Finally, we prove that if a sequence of metric measure
spaces satisfying the CD(K, N) condition with N < 0 is converging with respect
to the distance diKRW to some metric measure space, then this limit structure is
still a CD(K, N) space.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the last years, the class of metric measure spaces satisfying the synthetic curvature-dimension condition
has been a central object of investigation. These spaces, in which a lower bound on the curvature formulated
in terms of optimal transport holds, have been introduced by Sturm in [1,2] and independently by Lott and
Villani in [3]. For a metric measure space (X, d,m) the curvature-dimension condition CD(K,N) depends
n two parameters K ∈ R and N ∈ [1,∞] and it relies on a suitable convexity property of the entropy
unctional defined on the space of probability measures on X: the CD(K,N) condition for finite N is an

appropriate reformulation of the CD(K,∞) one introduced as the K-convexity of the relative entropy with
respect to m. Spaces satisfying the curvature-dimension condition are Riemannian manifolds [1,2], Finsler
spaces [4] and Alexandrov spaces [5,6]. In particular, in the case of a weighted Riemannian manifold, namely
a Riemannian manifold (M, g) equipped with a weighted measure m = e−ψvolg which leads to a weighted
Ricci curvature tensor RicN , being a CD(K,N) space is equivalent to the condition RicN ≥ K that can be
regarded as the combination of a lower bound by K on the curvature and an upper bound by N on the
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dimension. Moreover, in the setting of Riemannian manifolds, it turns out that for N > 0 it is possible to
haracterize the CD(K,N) condition in terms of a property of the relative entropy: the required property is

the (K,N)-convexity introduced in [7]. This notion reinforces the one of K-convexity and can be generalized
to the case of metric measure spaces.

In the Euclidean setting a direct application of the results in [8] ensures that given any convex measure
µ with full dimensional convex support and C2 density Ψ , the space (Rn, dEucl., µ) satisfies the CD(0, N)
condition for 1/N ∈ (−∞, 1/n] (i.e. N ∈ (−∞, 0) ∪ [n,∞]), in the sense that RicN ≥ 0. This class of
measures, introduced by Borell in [9], extends the set of the so-called log-concave measures and it has been
largely studied for example in [10–12]. In particular, following the terminology adopted by Bobkov, the case
N ∈ (−∞, 0) corresponds to the “heavy-tailed measures” (see also [13]), identified by the condition that
1/Ψ1/(n−N) is convex. An explicit example of these measures is given by the family of Cauchy probability
measures on (Rn, dEucl.)

µn,α = cn,α(
1 + |x|2

)n+α
2

dx, α > 0, (1.1)

here cn,α > 0 is a normalization constant. It then follows that (Rn, dEucl., µ
n,α) is a CD(0,−α) space.

Admitting N < 0 may sound strange if one thinks of N as an upper bound on the dimension; however, as
xplained in [14,15], in the case of weighted Riemannian manifolds it is useful to consider a generalization
f the entropy, called m-relative entropy Hm(·|ν), m ∈ R \ {1}, stemming from the Bregman divergence in
nformation geometry, which is closely related to the Rényi entropies in statistical mechanics. More precisely,
n these papers Ohta and Takatsu prove that if (M, ω) is a weighted Riemannian manifold and ν = expm(Ψ)ω
s a conformal deformation of ω in terms of the m-exponential function, then the fact that Hm(·|ν) ≥ K in the

asserstein space (P2(M),W2) is equivalent to the fact that HessΨ ≥ K and RicN ≥ 0 with N = 1/(1−m),
here RicN is the weighted Ricci curvature tensor associated with (M, ω). In this setting, depending on the

hoice of the particular entropy, i.e., the value of m, the value of the dimension N can be negative. Hence
hey show that the bounds HessΨ ≥ K and RicN ≥ 0 imply appropriate variants of the Talagrand, HWI,
ogarithmic Sobolev and the global Poincaré inequalities as well as the concentration of measures. Moreover,
sing similar techniques as in [16–18], they prove that the gradient flow of Hm(·|ν) produces a weak solution
o the porous medium equation (for m > 1) or the fast diffusion equation (for m < 1) of the form

∂ρ

∂t
= 1
m
∆ω(ρm) + divω(ρ∇Ψ), (1.2)

ω and divω being the Laplacian and the divergence associated with the measure ω. This result was
emonstrated also by Otto [19] in the case in which the reference measure ν in the m-relative entropy Hm(·|ν)

is given by the family of m-Gaussian measures, which is in turn closely related to the Barenblatt solution
to (1.2) without drift (see [20,21]).

In [22], the author extends the range of admissible “dimension parameters” to negative values of N in
the theories of (K,N)-convex functions, of tensors RicN and of the CD(K,N) condition in the more general
setting of metric measure spaces. In particular, it is proved that the (K,N)-convexity for N < 0 is weaker
than the K-convexity, thus it covers a wider class of functions. This means that the class of metric measure
spaces satisfying the CD(K,N) condition for negative values of N includes all CD(K,∞) ones; in particular,
since a metric measure space which satisfies the CD(K,N) condition for some N > 0 is also a CD(K,∞)
space, it follows that:

(X, d,m) is a CD(K, N) space,

for some N > 0.
⇒ (X, d,m) is a CD(K, ∞) space ⇒

(X, d,m) is a CD(K, N) space,

for any N < 0.
2
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The curvature-dimension condition for negative values of the dimension has not been largely studied up
to now. In the setting of metric measure spaces, the only paper devoted to the study of this notion is the
aforementioned work by Ohta [22]. Therein, many direct consequences are extracted from the definitions as in
the case of the standard curvature-dimension bounds theory and a number of results valid in the case of N >

are generalized to these spaces, including the Brunn–Minkowski inequality and some other functional ones.
Nevertheless, most of the results on this topic are obtained in the case of weighted Riemannian manifolds.
first example of a model space is provided in [23]: it is therein proved that the n-dimensional unit sphere

quipped with the harmonic measure, namely the hitting distribution by the Brownian motion started at
∈ Sn, |x| < 1 (which can be equivalently described as the probability measure whose density is proportional

o Sn ∋ y → 1/|y − x|n+1) is a CD
(
n − 1 − (n + 1)/4,−1

)
space. More generally, Milman provides an

quivalent to the family (1.1) of Cauchy measures in Rn+1, showing that the family of probability measures
n the n-dimensional unit sphere having density proportional to

Sn ∋ y ↦→ 1
|y − x|n+α

atisfies the curvature-dimension condition CD(n − 1 − n+α
4 ,−α) for all |x| < 1, α ≥ −n and n ≥ 2.

In [24] the author studies the isoperimetric, functional and concentration properties of n-dimensional
weighted Riemannian manifolds satisfying a uniform bound from below on the tensor RicN , when N ∈
(−∞, 1), providing a new one-dimensional model-space under an additional diameter upper bound (namely,
a positively curved sphere of possibly negative dimension). In this setting, many other rigidity results have
been obtained (see for example [25,26]). As for the Lorentzian splitting theorem in this setting, we would
cite Wylie–Woolgar’s paper [27]. Other interesting geometric results have been proved when the tensor RicN
for N ∈ (−∞, 0] is uniformly bounded from below: for example, in the paper [28], Kolesnikov and Milman
prove various Poincaré-type inequalities on the manifolds and their boundaries (making use of the Bochner’s
inequality and of the Reilly formula, when the boundary is nonempty).

Finally, let us underline that Bochner’s inequality, generalized to the setting of weighted Riemannian
manifolds satisfying the CD(K,N) condition for N < 0 in [22] and in [28], independently, does not yet have
a corresponding in the nonsmooth setting of metric measure spaces. We recall that for N > 0, this important
inequality has been extended to the setting of singular spaces in a series of works, precisely in [29] for Finsler
manifolds, in [6,30] for Alexandrov spaces and in [31] for RCD(K,∞) spaces.

Despite the progress made in [22], some fundamental questions remain open. The objective of this paper
is to address the question of whether the curvature-dimension condition with negative value of generalized
dimension is stable under convergence in a suitable topology. Special attention has to be payed to establishing
an appropriate setting. In fact, inspired by some of the results found in [22], we prove that for any
N < −1 the interval I := [−π/2, π/2] equipped with the Euclidean distance and the weighted measure
dm(x) := cosN (x)dL1(x), L1 being the 1-dimensional Lebesgue measure on I, is a CD(N,N) space. This
fundamental example shows that the natural setting to introduce this curvature-dimension condition cannot
be the one of complete and separable (Polish, in short) metric spaces equipped with Radon measures as in
the case of CD(K,N) spaces with N > 0, but rather the one of Polish spaces endowed with quasi-Radon
measures, i.e., measures which are Radon outside a negligible set. In fact, roughly speaking, the information
that the weighted measure cosN (x)dL1(x) is the right one to consider in order to have a space with negative
dimension comes from the theory of (K,N)-convex functions (see [22, Section 2]). However, despite the fact
that the “natural” domain for the function cosN (x) with N < 0 would be the open interval (−π/2, π/2), the
theory of optimal transport forces us to consider the underlying metric space to be complete and separable,
in order to ensure that also the Wasserstein space (P2(X),W2) enjoys the same properties. Furthermore, we
prove that also the space obtained by gluing together n-copies of the interval (I, dEucl.,m) introduced above
still satisfies the CD(N,N) condition: this in particular shows that the negligible set of points in which the

reference measure explodes is not just appearing in the “boundary” of our space, but also in the interior of it.

3
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In this new and more general setting, a sequence of spaces satisfying the curvature-dimension condition
for negative dimension parameter may fail to be stable under the standard measured Gromov–Hausdorff
convergence of metric measure spaces. For example, it can be the case that a well-defined limit of a sequence
of CD(K,N) spaces does not exist due to failure of convergence of the metric or the measure. We present
ome examples of metric measure spaces whose reference measures are quasi-Radon and presenting this kind
f behavior:

(1) (σ-finiteness lost in limit) Consider the sequence of compact metric measure spaces given by
{([0, 1], dEucl.,mn := x−ndx)}n≥2. Each one of these spaces satisfy the CD(0,−n) condition, but since all
these measures are unbounded, it is not clear a priori in which way we want the measures to converge.
One possibility, however, is the following: note that for every neighborhood U of 0 the measure mn|[0,1]\U
is finite, therefore, up to being cautious with boundaries, one could ask for the weak∗-convergence of the
restricted finite measures mn|X\U to some measure mU∞, for every neighborhood U of the origin. Then
using an extension theorem we would obtain a unique measure m∞ defined on the whole interval [0, 1].
However this construction leads to a measure m∞ which is infinite for every measurable subset A of [0, 1]
with L1(A) > 0, losing thus any regularity.

(2) (Bounded measures to unbounded measures) Consider now the sequence of metric measure spaces given
by
{

([2−n,+∞), |·|, xNL1)
}
n∈N for some fixed N < −1. For each n ∈ N the space ([2−n,+∞), |·|, xNL1)

is CD(0, N) and its reference measure is Radon, but the limit measure is such that every neighborhood
of 0 has infinite mass.

We recall that in the setting of metric measure spaces, a suitable notion of convergence, called measured
Gromov–Hausdorff convergence, was introduced by Fukaya in [32] as a natural variant of the purely metric
Gromov–Hausdorff one. Then the stability of the CD(K,N) condition for N ∈ [1,∞) was proved following
these two approaches:

• Lott and Villani proved that the CD(K,N) condition is stable under pointed measured Gromov–
Hausdorff convergence in the class of proper pointed metric measure spaces. Roughly speaking, this
means that for any R > 0 there is a measured Gromov–Hausdorff convergence of balls of radius R
around the given points of the spaces;

• Sturm worked in the setting of Polish spaces equipped with probability measures with finite second
moment as reference measures. In this class of spaces he defined a distance D by putting

D
(

(X1, d1,m1), (X2, d2,m2)
)

:= inf W2
(
(ι1)♯m1, (ι2)♯m2

)
,

the infimum being taken among all complete and separable metric spaces (X, d) and all the isometric
embeddings ιi : (supp(mi), di) → (X, d), i = 1, 2. He then showed that the curvature-dimension condition
is stable with respect to this D-convergence.

In particular, these two techniques produce the same convergence in the case of compact and doubling
metric measure spaces. Then, in [33] Gigli, Mondino and Savaré introduced a notion of convergence of
metric measure spaces, called pointed measured Gromov convergence, which works without any compactness
assumptions on the metric structure and for more general Radon measures which are finite on bounded sets.
Moreover, they prove that lower Ricci bounds are stable with respect to this convergence.

As the first achievement of this paper we propose a suitable setting to introduce the curvature-dimension
condition for negative values of the dimension parameter, extending and complementing the work by
Ohta [22]. We then propose an appropriate notion of distance, that we call intrinsic pointed Kantorovich–
Rubinstein–Wasserstein distance diKRW, and we prove that the curvature-dimension bounds with negative
values of the dimension are stable with respect to the diKRW-convergence. In particular, this distance extends

the one introduced in [33] to the set of equivalence classes of metric measure spaces with more general σ-finite

4



M. Magnabosco, C. Rigoni and G. Sosa Nonlinear Analysis 237 (2023) 113366

m

a

I
4

I
o
m
I
i
a
H
t

c
o

s
t
d
a

n

a
t
p

measures, allowing us to analyze sequences of metric measure spaces in which the reference measures may
“explode” in some points and are not necessarily finite on bounded sets (we underline that also in this setting
we do not require the local compactness assumption on the metric structure).

More specifically, the structures we work with are isomorphism classes of pointed generalized metric
easure spaces (X, d,m, C, p) where:

• (X, d) is a complete separable metric space,
• m ∈ M qR(X) is a quasi-Radon measure, m ̸= 0,
• C ⊂ X is a closed set with empty interior and m(C) = 0,
• p ∈ supp(m) ⊂ X is a distinguished point,

nd (X1, d1,m1, C1, p1) is said to be isomorphic to (X2, d2,m2, C2, p2) if there exists

an isometric embedding i : supp(m1) → X2 such that i(C1) = C2, i♯m1 = m2 and i(p1) = p2.

ntuitively, here for “quasi-Radon measure” m on (X, d) (following the terminology introduced in [34, Volume
]) we mean a complete σ-finite measure with the following properties:

• there exists a closed negligible set with empty interior Sm ⊂ X such that m(U) = ∞ for every open
neighborhood U of x ∈ Sm

• the restricted measure m|X\Sm is Radon on the open set X \ Sm.

n this class of spaces we then introduce the intrinsic distance diKRW. This is constructed by taking partitions
f the space: each element of the partition has finite measure and can be then renormalized; hence, we
easure the intrinsic Kantorovich–Rubinstein–Wasserstein distance between these renormalized elements.

n doing so, we take inspiration from the ideas behind the construction of the distance pGW in [33]. However,
n contrast to their setting, the lack of regularity of the measure becomes an obstacle to find a canonical and
ppropriate manner to partition the metric measure space. In particular, it turns out that a control on the
ausdorff distance of the singular sets in the definition of the diKRW-distance is actually necessary in order

o provide an extrinsic realization of the distance given as an intrinsic one.
Then in this setting the CD(K,N) condition for negative values of N is introduced requiring a suitable

onvexity property of the extended Rényi entropy functional defined on the space of probability measures
n X, as in the case N > 0.

We prove that this notion is stable with respect to the diKRW-distance: our main result (Theorem 4.1)
hows that if a sequence of pointed generalized metric measure spaces {(Xn, dn,mn, Cn, pn)}n∈N satisfying
he CD(K,N) condition for some N < 0 (and some other technical assumptions) is converging in the diKRW-
istance to some generalized metric measure space (X∞, d∞,m∞, C∞, p∞), then this limit structure is still
CD(K,N) space.
This result in the case N > 0 strongly relies on the fact that the (standard) Rényi entropy functional is

lower semicontinuous with respect to the weak topology in P2(X). Unfortunately, the same property does
ot hold for the extended Rényi entropy functional SN,m when the reference measure m is quasi-Radon.

Therefore we provide a new argument to prove this stability, which extends the proofs of Lott–Villani and
Sturm when N > 0 and the one of Gigli–Mondino–Savaré when N = ∞ (in all these classes of spaces the
reference measure m is Radon, namely Sm = ∅). We show that SN,m is weakly lower semicontinuous on the
space

PSm(X) := {µ ∈ P2(X) : µ(Sm) = 0}

nd that this will be enough to prove the desired stability result, provided that each one of the spaces in
he converging sequence {(Xn, dn,mn, Cn, pn)}n∈N is not accumulating “too much mass” around any of the
oints in S in a uniform way.
mn

5
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Finally, in Theorem 4.2 we manage to adapt this Stability Result also in the case in which we only
ave at our disposal a distance which is not explicitly dependent on the behavior of the m-singular sets.
ntuitively, one of the examples we would like to include in our theory consists in approximating the
D(0, N + 1) space ([0,∞), | · |, xNL1), where N < −1, making use of the sequence of metric measure
paces ([2−n,+∞), | · |, xNL1): clearly each space in this sequence is still a CD(0, N + 1) space for N < −1
ut now the singularity of the measure is ruled out from the domain, meaning that each metric space
[2−n,+∞), | · |) is actually equipped with a Radon measure. Hence, we rely on an extrinsic approach to
onvergence which does not require any control on the Hausdorff distance between m-singular sets in the
efinition of the diKRW-distance.

. Metric spaces equipped with quasi-Radon measures

.1. Measure theory background

.1.1. Quasi-Radon measures
We begin this section by introducing some notation and concepts from measure theory. Let X be a set,
, Σ be, respectively, a topology and a σ-algebra on X, and m be a positive measure defined on Σ such that
(X) ̸= 0. Whenever T ⊆ Σ we say that the quadruple (X, T ,Σ ,m) is a topological measure space.

efinition 2.1. Let (X, T ,Σ ,m) be a topological measure space. We say that the measure m is:

(i) locally finite if for every x ∈ X there exists a neighborhood U ∈ T with m(U) < ∞;
(ii) effectively locally finite if for every A ∈ Σ with m(A) > 0, there exists an open set U ∈ T with finite

measure such that m(A ∩ U) > 0;
(iii) σ-finite if there exists {Ai}i∈N ⊂ Σ with m(Ai) < ∞ for any i ∈ N such that X = ∪i∈NAi;
(iv) inner regular with respect to a family of sets F ⊂ Σ if for any E ∈ Σ it holds

m(E) = sup{m(A) : A ∈ F and A ⊂ E}.

In particular when F is the family of compact sets of X, this property is called tightness.

We denote by B(X) the Borel σ-algebra of (X, T ), namely the smallest σ-algebra containing all open sets
of a topological space (X, T ). A measure defined on B(X) is referred to as a Borel measure. In the following
we will always consider measures m on X which are Borel.

For the purpose of this paper we can restrict our study to the case in which the Borel measures are defined
on a complete and separable metric space (X,d), in short, on a Polish space. In particular it is useful to recall
that every metric space is Hausdorff, which ensures that every compact subset is closed and in B(X).

It can be proven that every effectively locally finite Borel measure which is defined on a metric space is
actually inner regular with respect to closed sets (see [34, Volume 4, Theorem 412E]). Moreover, every finite
Borel measure on a Polish space is tight (see [35, Volume 2, Theorem 7.1.7]). In this regard, we recall the
following useful characterization of tight measures valid in the setting of Polish spaces (see [34, Volume 4,
Corollary 412B]):

Proposition 2.2. Let (X, d) be a Polish space and m be a Borel measure on X which is effectively locally
finite. Then the following are equivalent:

(i) the measure m is tight,
ii) for every A ∈ B(X) with m(A) > 0 there exist a measurable compact set K ⊂ A with the property that
m(K) > 0.
6
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This result in particular allows us to prove an important property of effectively locally finite measures
defined on a Polish space:

Lemma 2.3. Let (X, d) be a Polish space and m be a Borel measure on X which is effectively locally finite.
hen m is tight.

roof. Let us fix any subset A ∈ B(X) with m(A) > 0. Since m is effectively locally finite, there exists
n open set U such that 0 < m(A ∩ U) < ∞. Moreover, being m defined on a metric space, the inner
egularity with respect to closed sets guarantees the existence of a closed set C ⊂ A ∩ U with the property
hat 0 < m(C) < ∞. At this point the elementary observation that every closed subset of a Polish space is
till a Polish space together with the fact that a finite Borel measure on a Polish space is tight ensure the
xistence of a measurable compact set K ⊂ A with the property that m(K) > 0. Thanks to Proposition 2.2
e can conclude that m is tight. □

We can now introduce the following classes of Borel measures, which are of central interest to us. We
orrow the terminology proposed in [34, Volume 4, Definitions 411H(a), (b)], where the classes of Radon
nd quasi Radon measures are defined in the more general setting of topological measure spaces, specializing
hese characterizations to the setting of Polish spaces.

efinition 2.4 (Radon and Quasi-Radon Measures). Let (X, d) be a Polish space. We say that a complete
orel measure m is

(i) Radon if it is locally finite;
(ii) quasi-Radon if it is effectively locally finite.

emark 2.5 (Assumptions on Inner Regularity). We remark that if the metric space (X, d) is just separable
ut not complete, an additional assumption on the inner regularity of m is needed: in fact in this case a
adon measure has to be also inner regular with respect to compact sets, while a quasi-Radon measure is

equired to be inner regular with respect to closed sets. However in our setting of Polish spaces both locally
nite and effectively locally finite measures are tight, in view of Lemma 2.3, and for Hausdorff spaces tight
easures are inner regular with respect to closed sets.

Let us now list some properties that these classes of measures satisfy. Before stating and proving these
esults, we recall that a topological space Y is called Lindelöf if for every open cover of Y , there exists a
ountable sub-cover. Moreover, Y is called hereditary Lindelöf if the same property holds for every subset

⊂ Y . Now we note that a Polish space (X, d) is second countable, since it is separable, and we recall
hat second countable topological spaces are Lindelöf. Moreover, since second countability is an hereditary
roperty we have that actually any separable metric space is hereditary Lindelöf.

roposition 2.6. Let (X, d) be a Polish space equipped with a complete Borel measure m. Then it holds:

(i) if m is a Radon measure, then m is a quasi-Radon measure;
ii) if m is a quasi-Radon measure, then m is σ-finite;
ii) if m is quasi-Radon, then there exists a closed set Sm with empty interior and m(Sm) = 0 such that m|X\Sm

is a Radon measure on the open set X \ Sm.

roof. The first point (i) follows from the fact that on a separable metric space (X, d) a locally finite tight
easure is essentially locally finite (see [34, Volume 4, 416A] for a proof of this result).
7
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Let us then prove (ii) by showing the existence of a countable collection of open sets {Ui}i∈N such that
(Ui) < ∞ for every i ∈ N and that m(X\

⋃
i∈N Ui) = 0. The effective local finiteness property of the measure

m ensures the existence of a family V of open sets V ⊂ X with m(V ) < ∞. Using the hereditary Lindelöf
property of X, we can extract a countable sub-cover {Ui}i∈N of the family V, still satisfying the property
m(Ui) < ∞ for every i ∈ N . Finally, we observe that X \

⋃
i∈N Ui is a closed set with m(X \

⋃
i∈N Ui) = 0,

since the intersection of X \
⋃
i∈N Ui with each open set of finite measure is empty.

At this point, the proof of (iii) is straightforward. In fact, we can take as Sm the set X \
⋃
i∈N Ui: as

already remarked this is a closed set with m(Sm) = 0. The fact that Sm has empty interior is guaranteed by
the fact that m is effectively locally finite, while to conclude that m|X\Sm is a Radon measure follows from
the fact that it is locally finite. □

Finally, we show the validity of the Radon–Nikodym Theorem for quasi-Radon measures. With this aim,
we first introduce another concept which is a strengthening of absolute continuity between measures.

Definition 2.7. Let (X,Σ ,m) be a measurable space and µ be a measure on Σ . We say that a measure µ
s truly continuous with respect to m if:

(i) µ is absolutely continuous with respect to m

ii) for any E ∈ Σ with µ(E) > 0 there is F ∈ Σ such that m(F ) < ∞ and µ(E ∩ F ) > 0.

We refer to [34, Volume 2, Section 232] for a proof of the following result:

heorem 2.8 (Radon–Nikodym Theorem on Measurable Spaces). Let (X,Σ ,m) be a measurable space
quipped with a quasi-Radon measure, and µ be a measure on X which is truly continuous with respect to
. Then there exists a measurable function f on X such that for any B ∈ B(X) it holds

µ(B) =
∫
B

f dm.

Lemma 2.9. Let (X,Σ ,m) be a measurable space equipped with a quasi-Radon measure which is σ-finite.
hen µ is truly continuous with respect to m if and only if it is absolutely continuous.

roof. Directly from the definition, we have that a measure µ which is truly continuous with respect to m

s also absolutely continuous with respect to m. In order to get the conclusion, we have just to show that if
is an absolutely continuous measure with respect to a σ-finite measure m, then point (ii) in Definition 2.7

s automatically satisfied. To show this, let {Xn}n∈N be a non-decreasing sequence of sets of finite measure
overing X, and µ absolutely continuous with respect to m. For any E ∈ Σ such that µ(E) > 0, we have
hat limn→∞ µ(E ∩Xn) > 0, which means that there exists a n̄ ∈ N with µ(E ∩Xn̄) > 0. □

heorem 2.10 (Radon–Nikodym Theorem on Polish Spaces). Let (X, d,m) be a Polish space equipped with a
uasi-Radon measure, and µ be a measure on X which is absolutely continuous with respect to m. There exists
measurable function f on X such that for any B ∈ B(X) it holds

µ(B) =
∫
B

f dm.

roof. Since in this setting Proposition 2.6 ensures that the measure m is σ-finite, we can conclude just

pplying Lemma 2.9 and Theorem 2.8. □

8



M. Magnabosco, C. Rigoni and G. Sosa Nonlinear Analysis 237 (2023) 113366
2.1.2. Convergence of quasi-Radon measures
Let (X, d) be a Polish space and let us define

P(X) :=
{
m : m is a probability measure on X

}
;

P2(X) :=
{
m ∈ P(X) :

∫
d2(x, x0) dm(x) < ∞ for some, and thus any, x0 ∈ X

}
.

On the space P2(X) we introduce the 2-Wasserstein distance

W 2
2 (µ, ν) := inf

γ∈Adm(µ,ν)

∫
X×X

d(x, y)2 dγ(x, y), (2.1)

where Adm(µ, ν) :=
{
γ ∈ P(X × X) |π1

♯ γ = µ and π2
♯ γ = ν

}
, π1,2 : X × X → X being the natural projection

onto the first and the second coordinate respectively.
It is important to recall that the infimum in (2.1) is always realized and the plans γ ∈ Adm(µ, ν) such

that
∫

d(x, y)2 dγ(x, y) = W 2
2 (µ, ν) are called optimal couplings, or optimal transport plans. The set that

contains them all is denoted by Opt(µ, ν). It is well known that W2 is a complete and separable distance on
P2(X).

Now let S ⊂ X. We say that U ∈ B(X) is a neighborhood of S, if there exists an open V ∈ B(X), such
that S ⊂ V ⊂ U and we write NS for the set of all the neighborhoods of S in X. Let us fix a closed set with
empty interior S ⊂ X to introduce the following classes of measures:

M (X) :=
{
m : m is a finite measure on X

}
;

MR
loc(X) :=

{
m : m is a Radon measure on X s.t. m(B) < ∞,∀B ⊂ X bounded

}
;

MS(X) :=
{
m : m is a quasi-Radon measure on X, S is an m-null set and

m|X\U ∈ MR
loc(X), for every U ∈ NS

}
.

The next class of measures is of central importance in our work,

M qR(X) :=
{
m : m is a quasi-Radon measure on X for which there exists S ⊂ X

closed with the property that m(S) = 0 and m ∈ MS(X)
}
.

Notice that we have the following chain of inclusions: P(X) ⊂ M (X) ⊂ MR
loc(X) ⊂ M qR(X).

The adequate study of quasi-Radon measures will require us to monitor their singularities. Intuitively said,
given a closed set S ⊂ X with empty interior, in the definition above we isolate the set of singular points of a
quasi-Radon measure inside S. Thus one should regard MS(X) as the set of quasi-Radon measures which are
locally finite and concentrated in X \S. Recall that the effective local finiteness implies that all singular sets
S of quasi-Radon measures have empty interior, that is, MS(X) = ∅ if int(S) ̸= ∅. Moreover, Proposition 2.6
proves that for every m ∈ M qR(X) there exists a singular set Sm ⊂ X, closed with empty interior, providing
that m ∈ MSm(X). Finally, note that, in particular, MR

loc(X) ⊂ M qR(X) ∩ M∅(X).
Let us now introduce the following sets of functions

Cbs(X) :=
{

bounded continuous functions with bounded support on X
}
,

Cb(X) :=
{

bounded continuous functions on X
}
,

CS(X) :=
{

continuous functions on X which vanish on some neighborhood of S
}
,

where S is a closed set with empty interior, and proceed to define a convergence on MS(X) in duality with
functions in Cbs(X) ∩ CS(X). In detail, we say that

Definition 2.11 (Weak Convergence for Quasi-Radon Measures). We say that a sequence of measures
{mn}n∈N ⊂ MS(X) converges weakly to m∞ ∈ MS(X), and we write mn ⇀ m∞, if

lim
∫
f dmn =

∫
f dm∞ for every f ∈ Cbs(X) ∩ CS(X). (2.2)
n→∞

9
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We wish to emphasize that many useful properties enjoyed by Radon measures are not necessarily valid in
the setting of quasi-Radon measures. For example, it is well known that in a complete and separable metric
space (X, d) equipped with a Radon measure m, the set Cb(X) ∩L1(m) is dense in L1(m) (see [36, Theorem
.14]), while this result is no more true when m is a quasi-Radon measure.

The following proposition substantiates our choice of convergence.

Proposition 2.12. Let (X, d) be a Polish space, S ⊂ X be a closed set with empty interior, and m, n ∈ MS(X)
wo quasi-Radon measures on X such that

∫
f dm =

∫
f dn for every function f ∈ Cbs(X) ∩ CS(X). Then

= n.

roof. According to [34, Volume 4, Proposition 415I], if m, n ∈ M qR(X) are such that
∫
f dm =

∫
f dn,

or every function f ∈ Cb(X) ∩ L1(m) ∩ L1(n), then m = n. In particular this is valid for measures
, n ∈ MS(X) ⊂ M qR(X). The conclusion is attained using an approximating argument.
Let x0 ∈ X \ S and, for any n ∈ N, consider a sequence of Lipschitz functions gn : X → [0, 1] with the

roperty that

gn =
{

1 on B2n(x0) ∩ {x ∈ X : d(x, S) ≥ 2−n},
0 on X \B2n+1(x0) ∩ {x ∈ X : d(x, S) ≤ 2−(n+1)}.

(2.3)

Now, for every f ∈ Cb(X) ∩ L1(m) ∩ L1(n), the sequence fn := gnf is such that

{fn}n∈N ⊂ Cbs(X) ∩ CS(X), lim
n→∞

fn=f m, n-a.e., and |fn| ≤ |f |,

since m(S) = n(S) = 0. We can then conclude applying the dominated convergence theorem. □

Our definition of weak convergence for quasi-Radon measures turns out to be well-fitted for our purposes.
Indeed, we have tailored it precisely with this goal. So let us then conclude this Subsection giving some
observations regarding the corresponding topology.

Remark 2.13.

(i) For our purposes we would like to have at disposal a notion of convergence for quasi-Radon measures
without making any a priori assumption on the uniformity of singular sets. However this seems out of
reach: in fact, without having any control on the singular sets of a given sequence, we would be able to
generate an unfavorable limiting singular set and thus, for instance, obtain that CS∞(X) = {f ≡ 0}. In
this case, the weak convergence is trivial. As an example, consider a dense and countable collection of
points P = {pm}m∈N ⊂ X in a complete and separable space, and non-atomic measures νn ∈ M qR(X),
∀n ∈ N, such that for any neighborhood Un ⊂ X of the set of the first n-points Pn := {p1, . . . , pn},
νn(Un) = ∞ while νn(X \ Un) < ∞. Letting n → ∞, we would expect a limit measure having P as
a singular set but, for the reason given above, convergence defined against any meaningful subclass of
continuous functions turns out to be trivial. Furthermore, note that such a limit measure would fall
outside the realm of quasi-Radon measures.

ii) Consistency. Let us underline that by considering S = ∅ and by restricting the topology to MR
loc(X)

the above definition coincides with the weak∗ topology (induced in duality with Cbs(X)); by further
restricting the topology to M (X), the weak topology agrees with the narrow topology (defined in duality

with Cb(X)).

10
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2.2. Pointed generalized metric measure spaces and their convergence

2.2.1. Metric spaces equipped with quasi-Radon measures
In the following we say that (X, d,m) is a metric measure space if (X, d) is a Polish space equipped with a

quasi-Radon measure m. We will refer to a generalized metric measure space meaning a structure (X, d,m, C)
where:

• (X, d) is a complete separable metric space,
• m ∈ M qR(X) is a quasi-Radon measure, m ̸= 0,
• C ⊂ X is a closed set with empty interior and m(C) = 0.

A pointed generalized metric measure space is then the structure (X, d,m, C, p) consisting of a generalized
metric measure space with a distinguished point p ∈ supp(m) ⊂ X.

Two generalized metric measure spaces (Xi, di,mi, Ci), i = 1, 2 are called isomorphic if there exists

an isometric embedding i : supp(m1) → X2 such that i(C1) = C2 and i♯m1 = m2

and, in the case of pointed metric measure spaces (Xi, di,mi, Ci, pi), i = 1, 2, we further require that
i(p1) = p2. Any such i is called an isomorphism from X1 to X2.

We denote by X := [X,d,m, C, p] the equivalence class of the given pointed generalized metric measure
space (X,d,m, C, p) and by MqR the collection of all equivalence classes of pointed generalized metric
measure spaces.

In particular, the portion of the space outside the support of the measure can be neglected since
(X,d,m, C) (resp. (X,d,m, C, p)) is isomorphic to (supp(m),d,m, C) (resp. (supp(m),d,m, C, p)). Hence, we
will assume that supp(m) = X, except when considering the associated kth cuts, Xk, of a metric measure
space, which we now turn to define.

For a quasi-Radon measure m ∈ M qR(X), let Sm ⊂ X be the m-singular set, or singular set in short,
namely the set of all points in X for which every open neighborhood has infinite measure

Sm :=
{
x ∈ X : m(U) = ∞ for every open neighborhood U of x

}
. (2.4)

Recall that from Proposition 2.6 we have that Sm is a closed set with m(Sm) = 0. Moreover Sm = ∅ if and
only if the measure m is Radon. In particular, to any metric measure space (X, d,m) we can associate a
generalized metric measure space in a canonical way by considering (X, d,m,Sm). Now we fix once and for
all a cut-off Lipschitz function fcut : [0,∞) → [0, 1] such that⎧⎪⎨⎪⎩

fcut(x) = 1 for 0 ≤ x ≤ 1,
fcut(x) ∈ (0, 1) for 1 < x < 2,
fcut(x) = 0 for 2 ≤ x

and for k ∈ N we define the kth cut of X as the generalized metric measure space Xk := (X, d,mk, C, p) where
the measure is given by

mk := fk m, where fk(x) :=
{
fcut(d(x, p)2−k)

(
1 − fcut(d(x,Sm)2k)

)
if Sm ̸= ∅,

fcut(d(x, p)2−k) if Sm = ∅.
(2.5)

Intuitively, the kth cut (X, d,mk, C, p) resembles more X as k grows (see Remark 2.17 below).

Remark 2.14 (Regularity of the Measure m). We point out that since we are considering metric measure
spaces (X, d,m) endowed with measures m ∈ M qR(X), it holds that
11
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• mk(X) < ∞ for any k ∈ N, and that
• there exists a k̃ ∈ N such that for any k ≥ k̃ it holds mk(X) > 0.

We say that (X, d,m) is a metric measure space with m-regularity parameter k̃ if the aforementioned
condition is satisfied for k̃ ∈ N.

Finally, for a metric measure space (X, d,m), we define its kth m-regular set, or k-regular set in short, as

Rk := B2k+1(p) \ N2−k (Sm) for any k ∈ N, (2.6)

where N2−k (Sm) := ∪x∈SmB2−k (x). Observe that m|Rk is a finite measure and that supp(mk) = Rk.

2.2.2. Convergence of pointed metric measure spaces
First of all, we recall what is the intrinsic Kantorovich–Rubinstein–Wasserstein (iKRW, in short) distance

between two metric measure spaces of finite mass. For this aim, we start fixing a cost function c, that is,

c ∈ C([0,∞)) is non-constant and concave with c(0) = 0, c(d) > 0 for d > 0 and lim
d→∞

c(d) < ∞ (2.7)

(e.g., c(d) = tanh(d) or c(d) = d ∧ 1). Then the iKRW-distance between two probability measures
m, n ∈ P(X) on a complete and separable metric space (X, d) is given by

Wc(m, n) := inf
γ∈Adm(m,n)

∫
X×X

c(d(x, y)) dγ(x, y). (2.8)

Observe that the distance Wc allows us to deal with all measures in P(X), rather than with the ones
in the restricted set P2(X). Moreover, regardless of the choice of c as in (2.7), (P(X),Wc) is a complete
and separable metric space and the convergence with respect to the weak topology of probability measures
is equivalent to the convergence provided by the Wc-distance (see [37, Chapter 6]); the last claim is a
consequence of the fact that c◦d defines a bounded complete distance on X, whose induced topology coincides
with the one induced by d.

In the same spirit as Sturm’s D distance, the iKRW-distance is used to define an intrinsic complete separa-
ble distance dfmiKRW between pointed metric measure spaces with finite mass [33]. Let X1 := (X1, d1,m1, C1, p1),
X2 := (X2, d2,m2, C2, p2) ∈ MqR be generalized metric measure spaces with finite mass, then we set

dfmiKRW(X1,X2) :=⏐⏐⏐⏐log
(
m1(X1)
m2(X2)

)⏐⏐⏐⏐+ inf
{

d
(
i1(p1), i2(p2)

)
+ dH

(
i1(C1), i2(C2)

)
+Wc

(
(i1)♯m̄1, (i2)♯m̄2

)}
,

(2.9)

here the infimum is taken over all isometric embeddings ij : (Xj , dj) → (X, d) into a complete separable
etric space, m̄j := mj

mj(Xj) is a normalization of the measure mj , for j ∈ {1, 2} and dH is the Hausdorff
distance between the two closed sets i1(C1) and i2(C2). In the following we set dH(∅, A) := +∞ if A ̸= ∅
while dH(∅, ∅) := 0.

Notice that the distance dfmiKRW is defined only in the case in which the total mass of the two measures
m1 and m2 is finite (and strictly positive). Therefore, in order to define a distance between two generalized
metric measure spaces in MqR, we cover the spaces making use of the k-cuts and we sum up the contributions
given by the dfmiKRW-distance between them.

In particular, we need the mass of the k-cuts to be strictly positive: for that purpose, given any k̄ ∈ N,
e introduce the following class of spaces

MqR :=
{

(X, d,m, C, p) ∈ MqR : mk̄(X) > 0
}

k̄

12
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Let us observe that for any finite family of generalized metric measure spaces in MqR, there exists a k̄ ∈ N
uch that the whole family is contained in MqR

k̄
(in particular, it is sufficient to take k̄ := max k̃i, where k̃i

s the regularity parameter of the ith space). Nevertheless, for a sequence in MqR it is necessary to assume
he existence of a common regularity parameter in order to introduce a meaningful distance. Hence, in the
ollowing, we will restrict ourselves to the class MqR

k̄
for some k̄ ∈ N.

efinition 2.15 (Intrinsic Pointed Kantorovich–Rubinstein–Wasserstein Distance). For any couple of metric
easure spaces Xi := (Xi, di,mi, Ci, pi) ∈ MqR

k̄
, i ∈ {1, 2}, k̄ ∈ N, we define the pointed iKRW-distance as

diKRW(X1,X2) :=
∑
k≥k̄

1
2k min

{
1, dfmiKRW

(
Xk1 ,Xk2

)}
,

where Xki = (Xi, di,mki , Ci, pi) is the kth cut of Xi, for i ∈ {1, 2}.

Notice that the distance diKRW depends on the common regularity parameter k̄, but we drop this
ependence, since it will be clear from the context.

efinition 2.16 (Converging Sequence of Pointed Generalized Metric Measure Spaces). We say that a
equence of pointed generalized metric measure spaces {Xn}n∈N ⊂ MqR

k̄
, for some k̄ ∈ N, is iKRW-converging

o X∞ ∈ MqR

k̄
if

lim
n→∞

diKRW(Xn,X∞) = 0.

Observe that the fact that dfmiKRW is a distance function guarantees that also diKRW : MqR

k̄
→ R+ ∪ {0}

defines a finite distance function.

Remark 2.17. Directly from the definitions of diKRW and dfmiKRW, it follows that

lim
n→∞

diKRW(Xn,X∞) = 0 if and only if lim
n→∞

dfmiKRW(Xkn,Xk∞) = 0 for every k ≥ k̄, (2.10)

where k̄ is the common regularity parameter associated to the converging sequence.

In the next result we prove an extrinsic approach to convergence. From now on we assume that the
generalized metric measure space (X, d,m, C) is the canonical one associated to (X, d,m), namely C = Sm

is the m-singular set.

Proposition 2.18. Let {Xn}n∈N∪{∞} ⊂ MqR

k̄
, Xn = (Xn, dn,mn,Smn , pn) be a sequence of pointed

generalized metric measure spaces, k̄ ∈ N. Then the following statements are equivalent:

(i) limn→∞ diKRW(Xn,X∞) = 0,
ii) there exist a complete and separable metric space (Z, dZ) and a sequence of isometric embeddings{

in : Xn → Z
}
n∈N, for which⏐⏐⏐⏐log

(
mkn(Xn)
mk∞(X∞)

)⏐⏐⏐⏐+ dZ
(
in(pn), i∞(p∞)

)
+
(
dZ
)
H

(
in(Smn), i∞(Sm∞)

)
+ Wc

(
(in)♯m̄kn, (i∞)♯m̄k∞

) n→∞→ 0,
(2.11)

for any k ≥ k̄.

We refer to
((
Z, d

)
,
{
i
} )

as an effective realization for the convergence of {X } to X .
Z n n∈N n n∈N ∞

13
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Proof. (i) ⇒ (ii) We start assuming that diKRW(Xn,X∞) → 0. In this case, the metric space (Z, dZ) as
well as the isometric embeddings {in}n∈N are constructed relying on a twofold gluing argument. Roughly
speaking, the strategy is the following: for any fixed k ≥ k̄ we use a “gluing” procedure to construct a common
space Zk equipped with the metric that makes all the kth cuts {Xkn}n∈N∪{∞} be isometrically embedded.
Next, we show that a certain compatibility condition holds between the spaces {Zk}k∈N: this allows us to
“glue” one more time, and obtain the desired common complete and separable metric space (Z, dZ) in which
we will embed the sequence {Xn}n∈N∪{∞}. In the following we present the detailed argument, which is a
suitable adaptation of [33, Theorem 3.15].

For every fixed k ≥ k̄, (2.10) ensures the existence of a sequence of complete and separable metric spaces
{(Zkn, dZk

n
)}n∈N, and of two sequences of isometric embeddings

{
ikn : Rk

n → Zkn
}
n∈N and

{
ik∞,n : Rk

∞ →
Zkn
}
n∈N, where Rk

n = supp(mkn) and Rk
∞ = supp(mk∞), with the property that⏐⏐⏐⏐log

(
mkn(Xn)
mk∞(X∞)

)⏐⏐⏐⏐+ dZk
n

(
ikn(pn), ik∞,n(p∞)

)
+
(

dZk
n

)
H

(
ikn(Smn), ik∞,n(Sm∞)

)
+ Wc

(
(ikn)♯m̄kn, (ik∞,n)♯m̄k∞

) n→∞→ 0.
(2.12)

e then define the set Zk = ⊔n∈NZ
k
n and the function dZk :Zk × Zk → [0,∞) by setting

dZk (x, y):=
{

dZk
n

(x, y) if (x, y) ∈ Zkn × Zkn, ∃n ∈ N,
infw∈Xk

∞
dZk

n

(
x, ik∞,n(w)

)
+ dZk

m

(
ik∞,m(w), y

)
if (x, y) ∈ Zkn × Zkm, ∃n ̸= m.

(2.13)

Thus, we can define an equivalence relation ∼ on Zk saying that v ∼ w if and only if dZk (v, w) = 0, for
v, w ∈ Zk: we take the quotient of Zk by this relation and then its completion. We denote by Z̃k the resulting
space. Note that dZk canonically induces a distance function on Z̃k × Z̃k, which we still denote by dZk , and
that the operations made so far preserve the separability of the space. Thus, the pair (Z̃k, dZk ) is a complete
and separable metric space. By construction, for n ∈ N, the composition

ikn : =pk ◦ jkn ◦ ikn : Rk
n → Z̃k (2.14)

is an isometric embedding, where jkn :Zkn → Zk is the canonical inclusion and pk :Zk → Z̃k the projection
map. Moreover, the fact that for every m,n ∈ N the set jkn(ik∞,n(Rk

∞)) is identified under the equivalence
relation with jkm(ik∞,m(Rk

∞)) implies that the maps

pk ◦ jkn ◦ ik∞,n : Rk
∞ → Z̃k and pk ◦ jkm ◦ ik∞,m : Rk

∞ → Z̃k

coincide for every n,m ∈ N. In this manner, we see that also pk ◦ jkm ◦ ik∞,m : Rk
∞ → Z̃k is an isometric

embedding, which is independent of m. Let us denote it by ik∞. The convergence in (2.12) yields⏐⏐⏐⏐log
(

mkn(Xn)
mk∞(X∞)

)⏐⏐⏐⏐+ dZk

(
ikn(pn), ik∞(p∞)

)
+ (dZk )H

(
ikn(Smn), ik∞(Sm∞)

) n→∞→ 0. (2.15)

To finish the first step of the argument we note that the pushforward of a coupling under the map
(pk ◦ jkn) × (pk ◦ jkn) : Zkn × Zkn → Z̃k × Z̃k, is again a coupling between the pushforward of the original
marginal measures, namely

if π ∈ Adm
(
(ikn)♯m̄kn, (ik∞,n)♯m̄k∞

)
, then π̃ : =((pk ◦ jkn)2)♯π ∈ Adm

(
(ikn)♯m̄kn, (ik∞)♯m̄k∞

)
.

Therefore, if we choose π ∈ Opt
(
(ikn)♯m̄kn, (ik∞,n)♯m̄k∞

)
, we get

W Z̃k
(

(ik ) m̄k , (ik ) m̄k
)

≤ W
Zk

n
c

(
(ik ) m̄k , (ik ) m̄k

)
,
c n ♯ n ∞ ♯ ∞ n ♯ n ∞,n ♯ ∞
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since pk ◦ jkn : Zkn → Z̃k is an isometry. Jointly with the last term in (2.12), this inequality implies the
convergence (ikn)♯m̄kn → (ik∞)♯m̄k∞ in

(
P(Z̃k),W Z̃k

c

)
. We have hereby shown the existence of a complete and

eparable metric space (Z̃k, dZk ) and a sequence of isometric embeddings {ikn : Rk
n → Z̃k}n∈N∪{∞} which

rovide a realization of the convergence Xkn → Xk∞ for any k ≥ k̄.
For the second part of the argument, first of all we prove that for any k̄ ≤ j < k − 1, the embeddings

k
n : Rk

n → Z̃k serve as an effective realization for the convergence Xjn → Xj∞. To that purpose, let us consider
he function

gj,kn : Z̃k → [0, 1]

y ↦→

{
fcut

(
dZk

(
y, ikn(pn)

)
2−(j+1)) (1 − fcut

(
dZk

(
y, ikn (Smn)

)
2j+1)) if Smn ̸= ∅,

fcut
(

dZk

(
y, ikn(pn)

)
2−(j+1)) if Smn = ∅.

The Lipschitz continuity of the cut-off function fcut, together with the convergence of {ikn(pn)}n∈N

to ik∞(p∞) by (2.12), ensures that the sequence fcut
(

dZk

(
y, ikn(pn)

)
2−(j+1)) is uniformly converging to

fcut
(
dZk (y, ik∞(p∞)) 2−(j+1)) as n → ∞. In the same way, the triangular inequality ensures that⏐⏐⏐dZk

(
y, ikn (Smn)

)
− dZk

(
y, ik∞ (Sm∞)

)⏐⏐⏐ ≤ (dZk )H
(
ikn (Smn) , ik∞ (Sm∞)

)
.

and the convergence (2.12) guarantees that the sequence fcut
(
dZk

(
y, ikn (Smn)

)
2j+1) uniformly converges

to fcut
(
dZk

(
y, ik∞ (Sm∞)

)
2j+1) as n → ∞. Hence, for every y ∈ Z̃k the sequence {gj,kn (y)}n∈N uniformly

converges as n → ∞ to

gj,k(y) :=
{
fcut

(
dZk (y, ik∞(p∞)) 2−(j+1)) (1 − fcut

(
dZk

(
y, ik∞ (Sm∞)

)
2j+1)) if Sm∞ ̸= ∅,

fcut
(
dZk (y, ik∞(p∞)) 2−(j+1)) if Sm∞ = ∅.

This in particular implies the weak convergence of the sequence of measures(
ikn
)
♯
m̄jn =

(
gj,kn ◦ ikn

)
♯
m̄kn

n→∞
⇀

(
ik∞
)
♯
m̄j =

(
gj,k ◦ ik∞

)
♯
m̄k

(note that we ask for k̄ ≤ j < k − 1). The former convergence, together with (2.15) and the fact that⏐⏐⏐log
(

m
j
n(Xn)

m
j
∞(X∞)

)⏐⏐⏐ → 0, shows that the embeddings ikn : Rk
n → Z̃k realize the convergence of the sequence of

-cuts, for every k̄ ≤ j < k − 1.
At this point an analogous “gluing” argument can be applied to the sequence (Z̃k, {ikn}n∈N∪{∞}) when
≥ k̄: we can in fact construct a common space Z := ⊔k≥k̄Z̃

k, which, endowed with the distance dZ
efined analogously as in (2.13), is a complete and separable metric space, and a sequence of embeddings
n : Xn → Z for n ∈ N∪{∞} as in (2.14). The pair

(
(Z, dZ), {in}n∈N∪{∞}

)
is the desired effective realization

f the iKRW-convergence Xn → X∞.
(ii) ⇒ (i) Note that the existence of an effective realization of the convergence Xn

n→∞→ X∞ implies that
fm
iKRW(Xkn,Xk∞) n→∞→ 0, for all k ≥ k̄. Then, we can conclude by using (2.10). □

In some situations, it would be practical to have at our disposal a metric which is not explicitly dependent
n the behavior of the m-singular sets. For instance, we could gain flexibility by not asking for a control on the
ausdorff distance between m-singular sets in the definition of the diKRW-distance. However, as we just saw,

his term is necessary to provide an extrinsic realization of the distance given as an intrinsic one. Therefore,
he following definition turns out to be useful.

efinition 2.19 (Extrinsic Convergence). We say that a sequence of pointed generalized metric measure
paces {X } ⊂ MqR converges extrinsically to X ∈ MqR, k̄ ∈ N, if there exist a complete and separable
n n∈N k̄ ∞ k̄

15
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metric space (Z, dZ) and a sequence of isometric embeddings
{
in : Xn → Z

}
n∈N for which⏐⏐⏐⏐log

(
mkn(Xn)
mk∞(X∞)

)⏐⏐⏐⏐+ dZ
(
in(pn), i∞(p∞)

)
+Wc

(
(in)♯m̄kn, (i∞)♯m̄k∞

) n→∞→ 0, (2.16)

for any k ≥ k̄.

Note that we dropped the assumption on the Hausdorff distance between singular sets at the cost of
presenting ourselves a space providing the extrinsic realization. Furthermore, by Proposition 2.18 we know
that a iKRW-converging sequence converges also in the extrinsic manner.

We finish the Section with some remarks.

Remark 2.20. We observe that the convergence with respect to the Wasserstein distance have the following
characterization (cf. [38, Section 7.1]):

µn
W2−→ µ ⇐⇒ µn ⇀ µ and

∫
d(x0, x)2dµn →

∫
d(x0, x)2dµ ∀x0 ∈ X.

This description shows in particular that for a sequence of probability measures with uniformly bounded
support, the W2-convergence is equivalent to the weak one and, consequently, to the Wc-convergence. Hence,
in this case, (2.11) in Proposition 2.18 and Eq. (2.16) in Definition 2.19 remain valid when we replace the
Wc-distance with the W2-one.

Remark 2.21 (Connection to Gigli–Mondino–Savaré’s pGW Distance). In [33] the authors define a distance
between X1 and X2 metric measure spaces endowed with Radon measures giving finite mass to bounded sets.
This is what inspired us to propose the definition of diKRW: in fact, in this case the m-singular set of a metric
measure space in such a family is the empty set and thus our definition coincides with theirs.

Remark 2.22. We recall that in [33, Theorem 3.17] the authors prove that the class of all metric measure
spaces equipped with Radon measures is complete with respect to the pGW distance. It is worth to underline
hat in our context we cannot hope for a similar completeness result. The main reason is that the set of all
losed sets with empty interior is not closed for the Hausdorff distance. Hence, intuitively, we cannot prevent
sequence of quasi-Radon measures from converging to a measure which is not quasi-Radon.

. CD condition for negative generalized dimension

.1. Basic definitions and properties

We introduce the Rényi entropy SN,m for N < 0 with respect to the reference measure m as the functional
efined on P(X) by posing

SN,m(µ) :=

⎧⎪⎨⎪⎩
∫

X
ρ(x)

N−1
N dm(x) if µ ≪ m, µ = ρm,

+∞ otherwise,

where ρ = dµ/dm is the Radon–Nikodym derivative of µ with respect to m, whose existence is guaranteed
y Theorem 2.10. In the following we will denote by Pac(X,m) the set of probability measures in P2(X)

that are absolutely continuous with respect to the reference measure m.

Remark 3.1. We can already point out two major differences between the case N ≥ 1 and N < 0.

16
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• when N ≥ 1 the Rényi entropy is defined as SN,m(ρm) := −
∫

X ρ(x)
N−1

N dm(x), while when N < 0, the
minus sign have to be left out to get the convexity of the function h(s) = s(N−1)/N .

• for N ≥ 1, the Rényi entropy is defined on Polish spaces equipped with Radon reference measures. In
this case, under a volume growth condition on the reference measure m, the functional SN,m(·) is lower
semicontinuous with respect to the weak topology and, in particular, it is also lower semicontinuous with
respect to the 2-Wasserstein convergence in P2(X). Unfortunately, the same property is not necessarily
true for negative values of N < 0 and quasi-Radon reference measures m. However, what we prove in
Proposition 4.8 is that SN,m(·) is lower semicontinuous with respect to the weak convergence on the
subspace

PSm(X) := {µ ∈ P2(X) : µ(Sm) = 0 where Sm is the m-singular set}.

In fact, we show a more general result stating that the Rényi entropy functional SN,n(ν) is a lower
semicontinuous function of (n, ν) ∈ MSm(X) × PSm(X), where the convergence of the first coordinate is
intended to be the weak convergence of quasi-Radon measures.

In order to give the definition of curvature-dimension bounds, we need also to introduce the following
distortion coefficients for K ∈ R and N < 0:

σ
(t)
K,N (θ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞, if Kθ2 ≤ Nπ2,

sin(tθ
√
K/N)

sin(θ
√
K/N)

if Nπ2 < Kθ2 < 0,

t if Kθ2 = 0,
sinh(tθ

√
−K/N)

sinh(θ
√

−K/N)
if Kθ2 > 0

(3.1)

nd
τ

(t)
K,N (θ) := t1/Nσ

(t)
K,N−1(θ)(N−1)/N , (3.2)

or every θ ∈ [0,∞) and t ∈ [0, 1].

efinition 3.2. For any couple of measures µ0, µ1 ∈ Pac(X,m), µi = ρim, we denote by π ∈ P(X × X) a
coupling between them, and by T tK,N (π|m) the functional defined by

T
(t)
K,N (π|m) :=

∫
X×X

[
τ

(1−t)
K,N

(
d(x, y)

)
ρ0(x)− 1

N + τ
(t)
K,N

(
d(x, y)

)
ρ1(y)− 1

N

]
dπ(x, y).

We are ready to introduce the definition of metric measure spaces satisfying a curvature-dimension
ondition for negative values of the dimensional parameter.

efinition 3.3 (CD Condition). For fixed K ∈ R, N ∈ (−∞, 0), we say that a metric measure space (X, d,m)
satisfies the CD(K,N) condition if, for each pair µ0 = ρ0m, µ1 = ρ1m ∈ Pac(X,m), there exists an optimal
coupling π ∈ Opt(µ0, µ1) and a W2-geodesic {µt}t∈[0,1] ⊂ P2(X) such that

SN ′,m(µt) ≤ T
(t)
K,N ′(π|m) (3.3)

holds, for every t ∈ [0, 1], and every N ′ ∈ [N, 0), provided that SN ′,m(µ0), SN ′,m(µ1) < ∞.

We mention that a notion of CD(K,N) condition with N = 0 was also introduced by Ohta in [39].

17
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Remark 3.4. Note that the CD-inequality becomes trivial when K < 0 and

π
({

(x, y) ∈ X × X : d(x, y) ≥ π
√

(N ′ − 1)/K
})

> 0.

and that the coefficients τ (t)
K,N (·) are bounded whenever K ≥ 0 or diam(X) <

√
π(N − 1)/K for K < 0.

Furthermore observe that Jensen’s inequality guarantees that SN,m(µ0), SN,m(µ1) are finite, provided that
he entropies SN ′,m(µ0), SN ′,m(µ1) are finite for some N ′ ∈ [N, 0). In this case the CD(K,N) condition
uarantees that the Wasserstein geodesics along which the inequality (3.3) holds are absolutely continuous
ith respect to m.

emark 3.5. It is worth to underline that Definition 3.3 requires the finiteness of the entropies at the
arginal measures, restricting the domain where inequality (3.3) have to be verified to the set D(SN ′,m) :=
µ : SN ′,m(µ) < ∞}. This is consistent with the standard definition of curvature-dimension condition for
ositive values of N : indeed, in the classical theory of curvature-dimension bounds for N ≥ 1, the assumption
n the finiteness of the entropy is not necessary, since the Rényi entropy is bounded on any absolutely
ontinuous measure in P2(X) as a consequence of the fact that CD(K,N) spaces possess reference measures
ith a controlled volume growth. A proof of the finiteness of some entropy functionals, in particular the
ényi one, under suitable volume growth assumptions can be found for example in [3, Proposition E.17].
Moreover, in the case in which the terminal marginals have bounded supports, Definition 3.3 coincides

ith the one introduced by Ohta in [22]. In fact, if the supports of µ0 and µ1 are bounded in (X, d), then
he coefficients τ (1−t)

K,N (·) are bounded below away from 0 on the support of any coupling π ∈ Opt(µ0, µ1) for
xed 0 < t < 1. Thus, if for some N ′ ∈ [N, 0) one of the terminal measures has unbounded entropy SN ′,m,
hen T

(t)
K,N ′(π|m) = ∞, for any t ∈ (0, 1), and inequality (3.3) is always satisfied.

We underline that, as in the case N ≥ 1, the definition of curvature-dimension condition is invariant
nder standard transformations of metric measure structures. Precisely, the CD condition is stable under
somorphisms, scalings, and restrictions to convex subsets of metric measure spaces (this can be proved
sing the same techniques as in [1, Propositions 4.12, 4.13 and 4.15]) and in [2, Proposition 1.4]. We also
oint out, that the “hierarchy property” of CD(K,N) spaces, with N < 0, remains valid. Specifically,

roposition 3.6. If (X, d,m) satisfies the curvature-dimension condition CD(K,N) for some K ∈ R, N < 0,
hen it also satisfies the curvature-dimension condition CD(K ′, N ′) for any K ′ ≤ K and N ′ ∈ [N, 0).

roof. The monotonicity in N follows directly from Definition 3.3, while the monotonicity in K follows
rom the fact that the coefficient σ(t)

κ (θ) is non-decreasing in κ once t and θ are fixed (see [40, Remark
.2]). □

Let us conclude by recalling that the CD(K,N) condition is weaker than the CD(K,∞) one (see [22]) and
t follows that CD(K,∞) spaces are also CD(K,N) for every N < 0.

.2. Examples

In this section we present some examples of negative dimensional CD spaces, referring to [23,24,28] for
ther model spaces satisfying the CD(K,N) condition with N < 0. Moreover, we show that singular points
f the reference measure in negative dimensional CD spaces can appear as inner points of geodesics. This
act motivates us to present the definitions of approximate CD condition and ω-uniform convexity, objects
f Section 3.3, which will enable us to deal with this kind of behavior in the proof of our Stability Theorem.
18
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A fundamental notion in the presentation of the examples is the one of (K,N)-convexity of a function on
metric space, for a negative value of N . This definition is the natural counterpart of the one with positive

N , and it was introduced by Ohta in [22].

Definition 3.7 ((K,N)-Convexity). In a metric space (X, d), for every fixed K ∈ R and N ∈ (−∞, 0), a
function f : X → R̄ is said to be (K,N)-convex if for every x0, x1 ∈ {f < +∞}, with d := d(x0, x1) <√

N/K when K < 0, there exists a constant speed geodesic γ connecting x0 and x1, such that

fN (γt) ≤ σ
(1−t)
K,N (d)fN (x0) + σ

(t)
K,N (d)fN (x1) ∀t ∈ [0, 1], (3.4)

here fN (x) = e−f(x)/N .

The following result ([22, Corollary 4.12]) is used to produce examples of CD(K,N) spaces with negative
alues of the generalized dimension.

roposition 3.8. Let M be a n-dimensional complete Riemannian manifold with Riemannian distance
g and Riemannian volume volg. Let us then consider a weighted volume measure m = e−ψvolg, for some
unction ψ :M → R, and let numbers K1,K2 ∈ R, N2 ≥ n and N1 < −N2 be given.

Then if (M,dg,m) satisfies the CD(K2, N2) condition, the weighted space (M,dg, e−Ψm) satisfies the
D(K1 +K2, N1 +N2) condition provided that Ψ ∈ C2(M) is (K1, N1)-convex.

xample 3.9 (1-Dimensional Models). In the following we will denote by | · | the Euclidean distance and
y L1 the 1-dimensional Lebesgue measure.

(i) For any pair of real numbers K > 0, N < −1 the weighted space (R, | · |, V L1) with

V (x) = cosh
(
x

√
−K

N

)N
satisfies the curvature-dimension condition CD(K,N + 1) with no singular set, i.e. SV L1 = ∅.

(ii) For any pair of real numbers K > 0, N < −1 also the weighted space ([0,∞), | · |, V L1) with

V (x) = sinh
(
x

√
−K

N

)N
atisfies the curvature-dimension condition CD(K,N + 1) with singular set SV L1 = {0}.

(iii) For any N < −1 the space ([0,∞), | · |, xNL1) is a CD(0, N +1) space with singular set SxN L1 = {0}.
(iv) For any pair of real numbers K < 0, N < −1 the weighted space([

−π

2

√
N

K
,
π

2

√
N

K

]
, | · |, cos

(
x

√
K

N

)N
L1

)

satisfies the curvature-dimension condition CD(K,N + 1) with singular set given by

S
cos
(
x
√
K/N

)N
L1

=
{

−π

2

√
N

K
,
π

2

√
N

K

}
.

Example 3.9 provides negative dimensional CD spaces, whose set of singular points is a subset of their
topological boundary. Unfortunately, this is not a general behavior and we proceed now to show this. With
this goal in mind, we will rely on a modification of Proposition 3.8, whose proof needs a preliminary result.
19
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Lemma 3.10. Let f : I → R̄ be a function on the interval I := [a, b] ⊂ R. Assume that there exists
c ∈ (a, b) ∩ {f < +∞} such that f |[a,c] and f |[c,b] are (K,N)-convex and for every x0 ∈ [a, c), x1 ∈ (c, b] it
holds that

fN (c) ≤ σ

(
x1−c

x1−x0

)
K,N (x1 − x0)fN (x0) + σ

(
c−x0

x1−x0

)
K,N (x1 − x0)fN (x1). (3.5)

Then f is (K,N)-convex.

Proof. We have to prove the convexity inequality (3.4) for every x0, x1 ∈ I in the domain {f < ∞}.
However, this holds by hypothesis, if x0, x1 ∈ [a, c] or x0, x1 ∈ [c, b], thus it is sufficient to consider the
ase where x0 ∈ [a, c) and x1 ∈ (c, b]. Without loss of generality, we can assume that xt ∈ [a, c), then the
K,N)-convexity of f |[a,c] yields that

fN (xt) ≤ σ

(
c−xt
c−x0

)
K,N (c− x0)fN (x0) + σ

(
xt−x0
c−x0

)
K,N (c− x0)fN (c).

Combining this last inequality with (3.5) we obtain

fN (xt) ≤
[
σ

(
c−xt
c−x0

)
K,N (c− x0) + σ

(
xt−x0
c−x0

)
K,N (c− x0)σ

(
x1−c

x1−x0

)
K,N (x1 − x0)

]
fN (x0)

+σ
(

xt−x0
c−x0

)
K,N (c− x0)σ

(
c−x0

x1−x0

)
K,N (x1 − x0)fN (x1).

(3.6)

n the other hand it is easy to realize that

σ

(
xt−x0
c−x0

)
K,N (c− x0)σ

(
c−x0

x1−x0

)
K,N (x1 − x0) = σ

(
xt−x0
x1−x0

)
K,N (x1 − x0).

As an example, we consider K < 0: it holds that

σ

(
xt−x0
c−x0

)
K,N (c− x0)σ

(
c−x0

x1−x0

)
K,N (x1 − x0) =

sin(
√
K/N(xt − x0))

sin(
√
K/N(c− x0))

·
sin(

√
K/N(c− x0))

sin(
√
K/N(x1 − x0))

= sin(
√
K/N(xt − x0))

sin(
√
K/N(x1 − x0))

=

σ

(
xt−x0
x1−x0

)
K,N (x1 − x0).

oreover, with an explicit computation, using the sum-to-product trigonometric formulas, it is also possible
o prove that

σ

(
c−xt
c−x0

)
K,N (c− x0) + σ

(
xt−x0
c−x0

)
K,N (c− x0)σ

(
x1−c

x1−x0

)
K,N (x1 − x0) = σ

(
x1−xt
x1−x0

)
K,N (x1 − x0).

ombining the previous trigonometric identities with inequality (3.6) we obtain the (K,N)-convexity
nequality. □

An immediate corollary follows from the fact that fN (c) = 0 if f(c) = −∞.

orollary 3.11. Let f : I → R̄ be a function on the interval I := [a, b]. Assume that there exists c ∈ (a, b)
uch that f |[a,c] and f |[c,b] are (K,N)-convex and that f(c) = −∞, then f is (K,N)-convex.

Now, we present an alternative version of Proposition 3.8, in which we do not need to assume regularity
f the weight function ψ at the price of restricting to the case M = R.
20
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Proposition 3.12. Let ψ : R → [−∞,∞) be (K,N)-convex with N < −1, such that L1({ψ = −∞}) = 0.
hen the metric measure space (R, | · |, e−ψL1) is a CD(K,N + 1) space.

roof. In this proof we denote with m the reference measure e−ψL1. In order to prove the CD condition
e fix two absolutely continuous measures µ0 = ρ0m, µ1 = ρ1m ∈ P2(R). Notice that the assumption
1({ψ = −∞}) = 0 ensures that µ0, µ1 ≪ L1 and we denote by ρ̃0 and ρ̃1 (respectively) their densities, that

s µ0 = ρ̃0L1 and µ1 = ρ̃1L1. Now, Brenier’s theorem ensures that there exists a unique optimal transport
lan between µ0 and µ1, and it is induced by a map T , which is differentiable µ0-almost everywhere. It is
lso well known that the map T is increasing, thus T ′(x) will be non-negative when defined. Moreover, the
nique Wasserstein geodesic connecting µ0 and µ1 is given by µt = (Tt)#µ0, where Tt = (1 − t)id + tT .

Then, calling ρ̃t the density of µt with respect to the Lebesgue measure L1, the Jacobi equation holds and
gives that

ρ̃0(x) = ρ̃t(Tt(x))T ′
t (x) = ρ̃t(Tt(x))(1 + t(T ′(x) − 1)),

for µ0-almost every x. On the one hand it is obvious that ρ̃t = e−ψρt for every t ∈ [0, 1], therefore

e−ψ(x)ρ0(x) = e−ψ(Tt(x))ρt(Tt(x))(1 + t(T ′(x) − 1)) (3.7)

for every t ∈ [0, 1] and µ0-almost every x. On the other hand notice that for every N ′ < −1

SN ′+1(µt) =
∫
ρ

− 1
N′+1

t dµt =
∫
ρ

− 1
N′+1

t d[(Tt)#µ0] =
∫
ρt(Tt(x))− 1

N′+1 dµ0(x)

=
∫ (

e−ψ(x)ρ0(x)
)− 1

N′+1
(
e−ψ(Tt(x))(1 + t(T ′(x) − 1))

) 1
N′+1 dµ0(x).

(3.8)

e can then prove the convexity pointwise, using the (K,N)-convexity of ψ. In particular, ψ is (K,N ′)-
onvex for every N ′ ∈ [N, 0) (cf. [22, Lemma 2.9]). Therefore, calling A(x) = T ′(x) − 1 in order to ease the
otation, for every N ′ ∈ [N,−1), it holds that

(
e−ψ(Tt(x))(1 + tA(x))

) 1
N′+1 =

[
e−ψ(Tt(x))/N ′] N′

N′+1 (1 + tA(x))
1

N′+1

≤ (1 + tA(x))
1

N′+1

[
σ

(1−t)
K,N ′ (|T (x) − x|)e−ψ(x)/N ′

+ σ
(t)
K,N ′(|T (x) − x|)e−ψ(T (x))/N ′

] N′
N′+1

.

hen, by rewriting the last term, we obtain

[
(1 + tA(x))

1
N′ σ

(1−t)
K,N ′ (|T (x) − x|)e−ψ(x)/N ′

+ (1 + tA(x))
1

N′ σ
(t)
K,N ′(|T (x) − x|)e−ψ(T (x))/N ′

] N′
N′+1

=
[

1 − t

1 + tA(x) ·
(
1 + tA(x)

)N′+1
N′

1 − t
σ

(1−t)
K,N ′ (|T (x) − x|)e−ψ(x)/N ′

+ t(1 +A(x))
1 + tA(x) ·

(
1 + tA(x)

)N′+1
N′

t(1 +A(x)) σ
(t)
K,N ′(|T (x) − x|)e−ψ(T (x))/N ′

] N′
N′+1

≤ τ
(1−t)
K,(N ′+1)(|T (x) − x|)e−ψ(x)/(N ′+1) + τ

(t)
K,(N ′+1)(|T (x) − x|)(1 +A(x))

1
N′+1 e−ψ(T (x))/(N ′+1),

where the last inequality follows from the definition of τ (t)
K,N ′ (see (3.2)) and from the convexity inequality,

applied to the function (·)
N′

N′+1 with coefficients 1−t and t(1+A(x)) .
1+tA(x) 1+tA(x)
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Substituting the above inequality into (3.8) and using (3.7) with t = 1, we obtain that

SN ′+1(µt) ≤
∫
τ

(1−t)
K,(N ′+1)(|T (x) − x|)ρ0(x)− 1

N′+1 dµ0(x)

+
∫
τ

(t)
K,(N ′+1)(|T (x) − x|)(1 +A(x))

1
N′+1

(
e−ψ(x)ρ0(x)

)− 1
N′+1 e−ψ(T (x))/(N ′+1)dµ0(x)

=
∫
τ

(1−t)
K,(N ′+1)(|T (x) − x|)ρ0(x)− 1

N′+1 dµ0(x) +
∫
τ

(t)
K,(N ′+1)(|T (x) − x|)ρ1(T (x))− 1

N′+1 dµ0(x)

=
∫ [

τ
(1−t)
K,(N ′+1)(|y − x|)ρ0(x)− 1

N′+1 + τ
(t)
K,(N ′+1)(|y − x|)ρ1(y)− 1

N′+1
]
d[(id × T )#µ0](x, y),

or every N ′ ∈ [N,−1), which is the desired inequality. □

A direct application of the previous result leads to the following refinement of Example 3.9:

Example 3.13. (ii’) For any pair of real numbers K > 0, N < −1, the weighted space(
R, | · |, V L1

)
with V (x) = sinh

(
x

√
−K

N

)N
,

obtained gluing two copies of the half-line space in Example 3.9-(ii), satisfies the curvature-dimension
condition CD(K,N + 1) with singular set SV L1 = {0}.

(iii’) Similarly, for any N < −1 the space (R, | · |, |x|NL1) is a CD(0, N + 1) space with singular set
|x|N L1 = {0}.

(iv’) For any pair of real numbers K < 0, N < −1 the space which is obtained gluing J-copies of the
nterval in Example 3.9-(iv), for example by considering

(⋃J
j=1 Ij , | · |, V L1

)
with

Ij :=
[

(2j − 1)π
2

√
N

K
,

(2j + 1)π
2

√
N

K

]
and V :=

J∑
j=1

1Ij
· cos

(
(x− xj)

√
K

N

)N
, xj := jπ

√
N

K
,

atisfies the curvature-dimension condition CD(K,N + 1) with singular set given by

SV L1 =
{

(2j − 1)π
2

√
N

K
: j = 1, . . . , J + 1

}
.

We end this section by pointing out that there exist unbounded CD spaces with negative dimension for
every value of the curvature. In particular, unlike to what happens for positive dimensional CD spaces, it is
never possible to obtain a bound on the diameter of the space. Actually this not only happens for singular
spaces, as in Example 3.13 (iv’): for example, also the hyperbolic plane satisfies the CD(−1, N) condition
for any N < 0 (recall that every CD(K,N) space with N ≥ 1 is automatically a CD(K,N) space for any
N < 0). Therefore, there exists no counterpart of the generalized Bonnet-Myers theorem [2, Corollary 2.6]
for negative dimensional CD spaces. This is not completely surprising, since there exist also CD(K,∞) spaces
with K > 0 (such as Gaussian spaces), having infinite diameter.

3.3. Approximate CD condition and regularity assumptions

Examples 3.9 and 3.13 exhibit that m-singular sets associated to CD(K,N) spaces are not necessarily
empty sets. Moreover, as already noticed, the geometric behavior in these examples can be extremely
different: in opposition to Examples 3.9, where points in Smm appear only as terminal points of geodesics
in the space, singular points in Examples 3.13 occur as inner points of geodesics. This observation shows
22
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Fig. 1. A visual representation of the property of ω-uniform convexity. In particular the shaded set has µt-mass bounded above by
(k, h, M), if SN,m(µ0), SN,m(µ1) ≤ M .

hat the kth regular set Rk of a space X, which was introduced in (2.6), is not necessarily geodesically
onvex and this turns out to produce major difficulties in the proof of our main result. Indeed, we would
ike to approximate metric spaces equipped with purely quasi-Radon measures m (meaning that Sm ̸= ∅)
y considering their kth regular sets, but the CD condition is precisely a condition made on geodesics: the
roblems arising from the non-geodesic convexity of the regular sets will be the main challenge to overcome
n the proof of the Stability Theorem 4.1. For this reason, we introduce the following two definitions.

efinition 3.14 (Approximate CD Condition). We say that a metric measure space (X, d,m) satisfies the
approximate curvature-dimension condition CDa(K,N) if the CD condition in Definition 3.3 is satisfied by
further requiring that the supports of the measures µ0, µ1 ∈ Pac(X,m) satisfy supp(µ0), supp(µ1) ⊂ Rk,
or some k ∈ N.

Note that in the definition above k is not fixed.
As discussed above, we need to carefully approach the topic of the non-geodesic convexity of the regular

ets Rk, for some k ∈ N. The following concept directs us in this direction by quantifying in terms of masses
and thus, controlling – to what extent convexity of the kth cuts is unsatisfied.

efinition 3.15 (ω-Uniform Convexity). A metric measure space (X, d,m) is ω-uniformly convex if there
exists a function ω :N × N × R+ → [0, 1] with the following properties:

• for any µ0, µ1 ∈ P2(X), with SN,m(µ0), SN,m(µ1) ≤ M and supp(µ0), supp(µ1) ⊆ Rk, every t-middle
point of any geodesic {µt}t∈[0,1] ⊂ P2(X) between µ0 and µ1 satisfies

µt(Rh) ≥ 1 − ω(k, h,M) for any h ∈ N;

• for any k ∈ N, M ∈ R+

lim
h→∞

ω(k, h,M) = 0. (3.9)

Fig. 1 shows a schematic representation of the ω-uniform convexity.

emark 3.16. We illustrate with some examples the concept of ω-uniform convexity.

∗ If the kth regular set Rk is geodesically convex, then we can choose ω(ℓ, h,M) = 0, for all entropy
bounds M > 0 and ℓ ≤ k ≤ h. This is the case, for example, of metric measure spaces with empty

m-singular set and the spaces presented in Example 3.9.
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∗ Conversely, if µ0, µ1 ∈ P2(X) are supported in Rk with bounded entropies and the support of µt, a
geodesic joining µ0 and µ1 evaluated at time t, is contained in the complement of Rh, for some t ∈ (0, 1)
and h ∈ N, then ω(k, h,M) = 1.
In particular, the metric measure space ([−1, 1], |·|,m), with dm = δ−1+δ1+1/x2dL1 serves as an example
of a metric measure space which is not ω-uniformly convex. Indeed, at time t = 1/2, the support of the
unique 2-Wasserstein geodesic (δ2t−1)t∈[0,1] is contained inside X \ Rh for any h ∈ N, since Sm = {0},
while its terminal points have entropy equal to 1.

∗ Lastly, a more interesting behavior occurs in a convex subset of Example 3.13 given by(
[0, π] ,

⏐⏐ ·
⏐⏐ ,1[0,π

2 ]cos (x)−2 L1 + 1[ π
2 ,π]cos (x− π)−2 L1

)
,

whose singular set is Sm = {π2 }. This is a CD(−2,−1) space as well as an ω-uniformly convex space for
a non-trivial function ω(k, h,M). Note that since there exist Wasserstein geodesics which are, at some
time t, entirely contained in the complement of Rk, there are actually some values k, h ∈ N, M ∈ R+

for which ω(k, h,M) = 1. Also, for fixed values of k ∈ N and M ∈ R+, ω(k, h,M) → 0 as h → ∞, since
W2-geodesics are absolutely continuous and V L1(X \ Rh) → 0 as h → ∞. Indeed, the key observation
here is that we cannot force arbitrarily large amounts of mass to transit through X \ Rh, at a given
time, without losing the upper bound on the entropy of the terminal points. Intuitively, to produce
such geodesics, we would have to consider measures with arbitrarily small supports or which accumulate
arbitrarily large masses around a point. However, these type of measures have large entropy.

A concrete and useful property which ω-uniformly convex metric measure spaces enjoy is that we are able
to quantify interpolated mass outside the set Rh, even if the marginals are not necessarily supported on Rk,
ranted they supply sufficient mass to the kth regular sets. In the following, we will denote by Geo(X) the
et of all the constant speed geodesics in the Polish space (X, d).

Proposition 3.17. Let (X, d,m) be an ω-uniformly convex space. Then there exists a function Ω :N × N ×
+ × [0, 1] → R such that:

(i) for any µ0, µ1 ∈ P2(X) with SN,m(µ0), SN,m(µ1) ≤ M and µ0(Rk), µ1(Rk) ≥ 1 − δ, any t-middle point
of the geodesic {µt}t∈[0,1] satisfies µt(Rh) ≥ 1 − Ω(k, h,M, δ) (see Fig. 2),

ii) for every 0 ≤ δ < 1
4 it holds that

lim sup
h→∞

Ω(k, h,M, δ) ≤ 2δ, (3.10)

for every fixed k ∈ N and M ∈ R+.

roof. Notice that we can limit ourselves to the case when 0 ≤ δ < 1
4 , because we can simply put

(k, h,M, δ) = 1 if δ ≥ 1
4 . Fixed µ0, µ1 ∈ P2(X) such that SN,m(µ0), SN,m(µ1) ≤ M and µ0(Rk), µ1(Rk) ≥

− δ, consider a t-middle point of a geodesic {µt}t∈[0,1], connecting µ0 and µ1. Let η ∈ P(Geo(X)) be a
epresentation of {µt}t∈[0,1] and define

η̃ := 1
η(G) · η|G ∈ P(Geo(X)),

here
G := {γ ∈ Geo(X) : γ(0), γ(1) ∈ Rk}.

otice that η̃ is actually well-defined, since our condition on µ0 and µ1 ensures that η(G) ≥ 1 − 2δ > 0.
oreover,

η = η(G) · η̃ + η̄ for some η̄ ∈ M (Geo(X)) with η̄(Geo(X)) ≤ 2δ. (3.11)
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Fig. 2. A visual representation of the property provided by the function Ω, that is (i) in Proposition 3.17. In particular the shaded
et in the center has µt-mass bounded above by Ω(k, h, M, δ), if the shaded set on the left and the one on the right have µ0-mass
nd µ1-mass (respectively) less than δ and SN,m(µ0), SN,m(µ1) ≤ M .

Observe that {µ̃t = (et)#η̃}t∈[0,1] is a Wasserstein geodesic connecting two measures µ̃0 and µ̃1, which are
upported on Rk and satisfy

max{SN,m(µ̃0), SN,m(µ̃1)} ≤
[

1
η(G)

]1− 1
N

max{SN,m(µ0), SN,m(µ1)}

≤
[

1
1 − 2δ

]1− 1
N

M ≤ 21− 1
N M.

hen, the ω-uniform convexity of (X, d,m) ensures that, for every h,

µ̃t(Rh) ≥ 1 − ω(k, h, 21− 1
N M).

oreover, taking into account (3.11), we can conclude that

µt(Rh) ≥ (1 − 2δ) · µ̃t(Rh) ≥ 1 − ω(k, h, 21− 1
N M) − 2δ.

herefore, to satisfy (i), we can set

Ω(k, h,M, δ) := ω(k, h, 21− 1
N M) + 2δ.

ith this definition, (ii) is a straightforward consequence of the condition (3.9) on ω(k, h,M). □

. Stability of CD condition

In this last section we present the proof of our main result.

heorem 4.1 (Stability). Let K ∈ R, N ∈ (−∞, 0), and
{

(Xn, dn,mn,Smn , pn)
}
n∈N ⊂ MqR

k̄
be a

sequence of pointed generalized metric measure spaces converging to (X∞, d∞,m∞,Sm∞ , p∞) ∈ MqR

k̄
in the

iKRW-distance, for some k̄ ∈ N. Assume further that:

(i) (Xn, dn,mn) is a CD(K,N) space for every n ∈ N;
ii) there exists ω : N × N × R+ → [0, 1], for which (Xn, dn,mn) is ω-uniformly convex, for every n ∈ N;
ii) supn∈N∪{∞} diam(Xn, dn) < π

√
1

|K| , if K < 0.

hen (X , d ,m ) is a CD(K,N) space.
∞ ∞ ∞
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As a matter of fact, Theorem 4.1 is concluded from the slightly more general statement below, since
Proposition 2.18 provides an effective realization for an iKRW-converging sequence of metric measure spaces.

ecall that the extrinsic convergence of metric measure spaces is presented in Definition 2.19.

heorem 4.2 (Extrinsic Stability). Let K ∈ R, N ∈ (−∞, 0). Then the CD(K,N) condition is stable under
he extrinsic convergence of metric measure spaces, granted conditions (i)-(iii) from Theorem 4.1 are satisfied
y the converging sequence.

The following is an immediate result of Theorem 4.2.

orollary 4.3. Let K ∈ R, N ∈ (−∞, 0), and
{

(Xn, dn,mn,Smn , pn)
}
n∈N ⊂ MqR

k̄
be a sequence converging

to (X∞, d∞,m∞,Sm∞ , p∞) ∈ MqR

k̄
, in the extrinsic or intrinsic manner. Assume that the regular sets Rk

n

are geodesically convex, for all k, n ∈ N. If for every n ∈ N the space (Xn, dn,mn) satisfies the CD(K,N)
condition (with supn∈N∪{∞} diam(Xn, dn) < π|K|−1/2, if K < 0), then also (X∞, d∞,m∞) is a CD(K,N)
space.

When compared with Stability Theorem 4.1, the advantage of Extrinsic Stability Theorem 4.2, is that
no assumptions have to be made, regarding the limiting behavior of singular sets along the sequence. This
contrasts with the Stability Theorem, which is stated in terms of the intrinsic diKRW-convergence, since the
diKRW-distance controls the Hausdorff distance between singular sets. Therefore, with the latter Theorem
one gains some flexibility to study the aforementioned sets; nevertheless, there is a price to pay in exchange.
Namely, it is necessary to be in possession of an effective realization for the convergence. In this sense, we
find that both results complement very well each other.

We fix some notation prior to outlining the argument in the proof of Theorem 4.2.
First of all, since by assumption we have a realization of the convergence in a complete and separable

metric space (Z, dZ), for simplicity we will identify all objects with their embedded version. In particular,
for every n ∈ N ∪ {∞} we will call Xn the embedded set in(Xn), mn the push-forward measure (in)#mn
(and the same for its restricted and normalized versions), pn the reference point in(pn). Moreover, since the
embeddings are isometries, it will suffice to work with the distance dZ , which from now on will be denoted by
d, for sake of simplicity. With this identification, our extrinsically convergent sequence of pointed generalized
metric measure spaces {Xn}n∈N ⊂ MqR

k̄
, which converges to X∞ ∈ MqR

k̄
, satisfies⏐⏐⏐⏐log

(
mkn(Xn)
mk∞(X∞)

)⏐⏐⏐⏐+ d
(
pn, p∞

)
+W2

(
m̄kn, m̄

k
∞
) n→∞→ 0, (4.1)

or any k ≥ k̄. Notice that it was possible to put the Wasserstein distance W2 in (4.1), according to
emark 2.20.
In the remainder, we use the adjective horizontal to refer to the approximations we construct inside a

xed space Xn, for n ∈ N. Respectively, we denote as vertical approximations those approximations made
ver the sequence Xn → X∞, when we let n → ∞. Our objective is, naturally, to demonstrate, for every pair
f measures µ0, µ1 ∈ Pac(X∞,m∞), the existence of a 2-Wasserstein geodesic {µt}t∈[0,1] ⊂ P2(X∞) and an
ptimal plan q ∈ Opt(µ0, µ1), for which the curvature-dimension inequality (3.3) is satisfied. We accomplish
his by following the next steps.

1. We assume that supp(µi) ⊆ Rk
∞, for i ∈ {0, 1} and fixed k ∈ N, and construct a geodesic (µt)t∈[0,1] ⊂

P2(X∞) between µ0 and µ1 and an optimal plan q ∈ Opt(µ0, µ1), for which the CD-inequality (3.3)
is fulfilled, relying on the following vertical approximation argument. (Above, and in the following, we
write Rk ⊂ X to denote the kth m -regular set of X , k-regular set in short, for n ∈ N ∪ {∞}.)
n n n n
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Fig. 3. Approximation procedure for the midpoints.

The assumption on the supports allows us to approximate vertically the marginal measures µ0 and
µ1, by employing a canonical map between Wasserstein spaces P kn : Pac(X∞,m

k
∞) → Pac(Xn,mkn),

induced via an optimal coupling of the normalized reference measures pkn ∈ Opt(m̄k∞, m̄kn). Let us denote
these approximations by (µn,i)n∈N, for i ∈ {0, 1}.
At this point we construct the pair (µt, q) as the vertical limits of a sequence of geodesics (µn,t)t∈[0,1] ⊂
P2(Xn), between µn,0 and µn,1, and a sequence of optimal plans qn ∈ Opt(µn,0, µn,1), both indexed
by n ∈ N. Furthermore, we provide these sequences using the CD-hypothesis on (Xn, dn,mn), so in
particular we can guarantee that, for n ∈ N, each pair (µn,t, qn) satisfies the CD-inequality, for every
t ∈ [0, 1].
After demonstrating the lower semicontinuity SN ′,m∞(µt) ≤ lim infn→∞ SN ′,mn(µn,t) and the upper
semicontinuity lim supn→∞ T

(t)
K,N ′(qn|mn) ≤ T

(t)
K,N ′(q|m∞), along our sequences as n → ∞, we conclude

the validity of the CD-inequality (3.3) for (µt, q), for every t ∈ [0, 1].
(Look at Fig. 3 for a schematic representation)

2. Additionally, we produce, for i ∈ {0, 1}, favorable horizontal approximations (µki )k∈N ⊂ Pac(X∞,m∞),
W2-converging to µi, whose supports satisfy supp(µki ) ⊆ Rk

∞, for every k ∈ N. Subsequently, by
approximating with the pairs constructed in Step 1, we show the existence of the sought geodesic
{µt}t∈[0,1] ⊂ P2(X∞) and optimal plan q ∈ Opt(µ0, µ1). After showing that the appropriate
semicontinuity of the functionals SN ′,m∞(·) and T

(t)
K,N ′(·|m∞) hold, we are able to verify the CD

condition and conclude.

The rough idea behind a proof of geometric stability in Wasserstein spaces is well known: for well-behaved
measures, as a first step one shows that P(X∞) inherits the CD-convexity property directly from the stability
of the geometry of P(Xn) under vertical approximations. Hence one can conclude the same property for more
general measures by approximating them horizontally using a sequence of well-behaved measures. To pursue
this plan, the properties of semicontinuity and precompactness play a crucial role.

Inspired by the techniques used in [3], we manage to provide a Legendre-type representation formula
for the entropy, which handles one of the functionals in question. Therefore a suitable generalization of the
arguments in [2] allows to conclude the upper semicontinuity of T (t)

K,N ′(·|m∞).
The very challenging obstacles in the proof of the stability theorem appear when we approach the problem

of the existence of limits and of the convergence of inner points of geodesics. We empathize that the general
class of metric measure structures under consideration is not even locally compact, while the “wildness”
of quasi-Radon measures prohibit us to control the reference measures in any uniform way, preventing in
particular to recover any tightness results from them. Thus, to overcome these problems, we propose some
original arguments.

The crucial ingredient to get back into track will be the control of the mass given by Wasserstein geodesics
to m-singular sets when taking the limits and this can be extracted from the ω-uniform convexity.

We advance to the presentation of some auxiliary results in the next Section. The vertical approximation
argument is presented afterwards in Section 4.2, while Step 2. above is discussed in the final Section 4.3.
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4.1. Auxiliary results

We collect in this section the preliminary results needed to prove Theorem 4.1. In particular, in the first
part we present the tools which turn out to be useful in approximating t-midpoints of geodesics, while in
he consecutive subsection we deal with the required semicontinuity results.

.1.1. Approximation and compactness results
We start by exhibiting the existence of well-behaved horizontal approximations to measures. Recall that

or a reference measure m ∈ M qR(X), mk is its k-cut defined by (2.5).

emma 4.4. Let (X, d,m) be a metric measure space, m ∈ M qR(X), and µ ∈ Pac(X,m). Then:

(1) The sequence of measures {mk}k∈N approximates m, in the sense of quasi-Radon measures:

mk ⇀ m.

(2) There exists a sequence of measures {µk}k∈N ⊂ Pac(X,m), µk ≪ mk for any k ∈ N, converging to µ in
the W2-distance. In particular, for every k ∈ N, we have that supp(µk) ⊆ Rk := B2k+1(p)\N2−(k+1)(Sm),
thus these measures have bounded support.

Proof. We start noticing that (1) follows directly from the definition of weak convergence because
supp(f) ⊆ Rk holds eventually, for any function f ∈ Cbs(X) ∩ CSm(X).

As for (2), let us consider µk := ckfkµ, where fk is the cut-off function defined in (2.5), ck is the
normalization constant providing µk(X) = 1, and k is a sufficiently large number, the estimate of which
will be determined along the proof. Clearly, µk ≪ mk. At this point we recall that supp(fk) ⊂ Rk with
0 ≤ fk ≤ 1 for any k ∈ N, and that fk → 1 pointwise m-almost everywhere as k → ∞. As a consequence,
fk → 1 pointwise µ-almost everywhere, and supp(µk) is bounded since supp(µk) ⊂ supp(mk) ⊂ Rk.

By choosing k0 sufficiently large, we can assume that supp(µ) ∩ Rk ̸= ∅, for all k ≥ k0. (Although the
particular choice of k0 does depend on µ, there is no loss of generality, since such a bound exists for every
measure µ and we are interested exclusively in the limit behavior of µk.) Let ck := (

∫
X
fk dµ)−1: in view of

the previous remarks, ck is well-defined and monotone decreasing in k ∈ N and limk→∞ ck = 1.
We can then conclude using the dominated convergence theorem, recalling that a sequence of measures

is W2-convergent if and only if it is weakly convergent and the sequence of its second moments is also
convergent. □

Take two complete and separable metric measure spaces (X, dX ,mX) and (Y, dY ,mY ) embedded in Z, such
that mX and mY are probability measures. Recall that, given a coupling p ∈ Adm(mX ,mY ), we can consider
a canonical map between their Wasserstein spaces P : Pac(X,mX) → Pac(Y,mY ), which is induced by
pushing forward weighted versions of the coupling p. We refer to these maps as Weighted Marginalizations
and we will use them to produce vertical approximations.

In detail, for each n, k ∈ N we consider (and fix) an optimal coupling pkn ∈ Opt(m̄k∞, m̄kn). Here
n̄ = n(Y)−1n denotes the normalization of a finite measure n ∈ M (Y). We then write {Pn,k(x)}x∈X∞ ⊂
P({x} × Xn) ≈ P(Xn) and {P ′

n,k(y)}y∈Xn ⊂ P(X∞ × {y}) ≈ P(X∞) the disintegration kernels of the
coupling pkn with respect to the projection maps p1 : X∞ × Xn → X∞ and p2 : X∞ × Xn → Xn, respectively.
More precisely, for m̄k∞-a.e. x ∈ X∞, and m̄kn-a.e. y ∈ Xn, we let Pn,k(x) and P ′

n,k(y) be the measures given
by the Disintegration Theorem, which are characterized by

pkn(A) =
∫

Pn,k(x)(Ax) dm̄k∞(x) =
∫

P ′
n,k(y)(Ay) dm̄kn(y).
X∞ Xn
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for every measurable A ⊂ X∞ ×Xn, where Ax = {y : (x, y) ∈ A} and Ay = {x : (x, y) ∈ A}. Furthermore,
e can define the Weighted Marginalization maps between Wasserstein spaces via the push forward along

he coordinate projections of the weighted couplings ρ pkn. With a slight abuse of notation, we denote again
hese maps as P ′

n,k and Pn,k. Specifically, let

P ′
n,k : Pac(X∞,m

k
∞) → Pac(Xn,mkn)

µ = ρ m̄k∞ ↦→ P ′
n,k(µ) := (p2)♯ ρ pkn = ρ′ m̄kn,

with ρ′(y) =
∫
X∞

ρ(x)P ′
n,k(y)(dx).

(4.2)

he map Pn,k : Pac(Xn,mkn) → Pac(X∞,m
k
∞) is defined in an analogous manner. Note that, in particular,

pkn ∈ Adm(µ, P ′
n,k(µ)). The following lemma shows that the well-known properties of the Weighted

arginalization map P ′
n,k are still valid in our framework.

emma 4.5. Let µ = ρmk∞ ∈ P2(X∞), then P ′
n,k satisfies the following properties:

(i) For every N < 0 the functional SN,·(·) satisfies the contraction property:

SN,mk
n

(P ′
n,k(µ)) = mkn(Xn) 1

N SN,m̄k
n

(P ′
n,k(µ))

≤ mkn(Xn) 1
N SN,m̄k

∞
(µ) =

[
mkn(Xn)
mk∞(X∞)

] 1
N

SN,mk
∞

(µ).
(4.3)

ii) If the density ρ of µ is bounded, then the Wasserstein convergence holds:

W 2
2 (µ, P ′

n,k(µ)) ≤
∫

d2(x, y)ρ̃(x) dpkn(x, y) → 0, as n → ∞,

where ρ̃ = mk∞(X∞) ρ is the density of µ with respect to the normalized measure m̄k∞.

roof. Observe that the two equalities in (4.3) are obvious, then we just have to prove the inequality.
onsequently (i) follows directly from Jensen’s inequality applied to the convex function ψ(r) := r1− 1

N .
ndeed,

SN,m̄k
n

(P ′
n,k(µ)) =

∫
Xn

[∫
X∞

ρ̃(x)P ′
n,k(y)(dx)

]1− 1
N

dm̄kn(y)

≤
∫

Xn

∫
X∞

ρ̃(x)1− 1
N P ′

n,k(y)(dx) dm̄kn(y) = SN,m̄k
∞

(µ).

egarding (ii), notice that, since ρ is bounded, the same holds for ρ̃. Moreover, we have that ρ̃ pkn ∈
dm(µ, P ′

n,k(µ)), and consequently

W 2
2 (µ, P ′

n,k(µ)) ≤
∫

d2(x, y)ρ̃(x) dpkn(x, y) ≤ ∥ρ̃∥L∞(mk
∞)W

2
2 (m̄k∞, m̄kn) → 0. □

The last result we are going to prove in this subsection is useful to conclude tightness for a sequence of
easures, provided that we have a uniform bound on their Rényi entropies, and a tightness condition on

he reference measures. The analogous result stated for the relative entropy functional was proven in [33,
roposition 4.1], and this proof can be easily adapted.

emma 4.6. Let {nn}n∈N, {µn}n∈N ⊂ P(Z) be two sequences of measures such that {nn}n∈N is tight and

upn∈N SN,nn(µn) < ∞. Then {µn}n∈N is tight.
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Proof. First of all we observe that, being the entropy bounded, we can write µn = ρnnn. Thus, a direct
pplication of Jensen’s inequality gives that, for every n ∈ N and for every measurable set E ⊂ Z,

µn(E)1− 1
N

nn(E)1− 1
N

≤ 1
nn(E)

∫
E

ρ
1− 1

N
n dnn ≤ SN,nn(µn)

nn(E) .

The tightness of {nn}n∈N assures the existence of a sequence of compact sets {Dl}l∈N such that supn∈N nn(Z\
l) → 0 as l → ∞. We write El = Z \Dl and we conclude from the above inequality that {µn}n∈N is tight,

ince
sup
n∈N

µn(El)1− 1
N ≤ sup

n∈N
nn(El)− 1

N sup
n∈N

SN,nn(µn) l→∞→ 0. □

This result can be applied to our extrinsic converging sequence {Xn}n∈N∪{∞} ⊂ MqR

k̄
, with a straightfor-

ard normalization argument by recalling that mkn(Xn) approaches mk∞(X∞) as n → ∞, for every suitable
.

orollary 4.7. Given a fixed k ≥ k̄, and {µn}n∈N ⊂ P(Z) a sequence of probability measures, such that
upn∈N SN,mk

n
(µn) < ∞, then {µn}n∈N is tight.

4.1.2. Semicontinuity properties
We present semicontinuity properties of SN,·(·) and T

(t)
K,N (·|·) conditioned to their domain of definition.

We start by proving the lower semicontinuity of SN,·(·) that we anticipated in Section 3.1. This property is
well known in classical frameworks, that is, for positive values of N and well-behaved reference measures.
For example, lower semicontinuity for a big class of functionals, in which the Rényi entropy is included, was
proved in [3] for locally compact spaces endowed with reference measures having uniformly bounded volume
growth. Inspired by the techniques used in [3], we provide below a Legendre-type representation formula for
the entropy to attain our result. With this aim, let us write

PS(X) := {µ ∈ P2(X) : µ(S) = 0}.

Proposition 4.8. Let (X, d, p) be a pointed Polish space and S ⊂ X a closed subset with empty interior.
Then the Rényi entropy functional SN,n(ν) is a lower semicontinuous function of (n, ν) ∈ MS(X) × PS(X).
Specifically, for sequences

(nn)n∈N∪{∞} ⊂ MS(X) and (νn)n∈N∪{∞} ⊂ PS(X),

uch that nn⇀n∞ as quasi-Radon measures and νn ⇀ ν∞, we have that,

SN,n∞(ν∞) ≤ lim inf
n→∞

SN,nn(νn).

n particular, the conclusion remains valid under W2-convergence in the second argument.

roof. The semicontinuity of the Rényi entropy functional is verified by exhibiting SN,m as the supremum
of a set of continuous functions on MS(X)×PS(X) endowed with the corresponding product convergence. In
articular we define Rk := B2k+1(p)\N2−(k+1)(S) and we show that, for every pair (m, µ) ∈ MS(X)×PS(X),

SN,m(µ) =

sup
{∫

Fdµ−
∫
f∗(F )dm : F ∈ Cb(X) supported in Rk, for some k ∈ N

}
,

(4.4)
30
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where f∗ is the convex conjugate function of f(x) = |x|1− 1
N , for x ∈ R. That is,

f∗ : R → [0,∞)

y ↦→ f∗(y) := sup
x∈R

(y x− f(x)) = − 1
N

(
N

N − 1

)1−N

|y|1−N .

Proving (4.4) will be enough to deduce the lower semicontinuity of the functional SN,·(·), in fact, for every
F ∈ Cb(X) supported in some Rk, the functional

(µ,m) ↦→
∫
Fdµ−

∫
f∗(F )dm

is indeed (weakly) continuous in MS(X) × PS(X), since f∗(F ) ∈ Cbs(X) ∩ CS(X). As a result, the
unctional SN,·(·) will be the supremum of (weakly) continuous functionals, and thus it will be (weakly)
ower semicontinuous. For simplicity, let us denote by S̃N,m(µ) the expression on the right-hand side of (4.4).

We first verify that SN,m(µ) ≥ S̃N,m(µ), for every (m, µ) ∈ MS(X) × PS(X). We assume that µ = ρm

since the aforementioned inequality is trivially satisfied when µ ̸≪ m. We get the desired result, integrating
the expression f(z) ≥ z y∗ − f∗(y∗) with respect to m which, by definition of f∗, holds for any z, y∗ ∈ R,
after replacing z = ρ(x) and y∗ = F (x), for F ∈ Cb(X) with support inside some Rk.

Before proceeding with the converse inequality let us point out that S̃N,m(µ) = ∞ granted µ ̸≪ m. Indeed,
in this case, there exists a Borel set A ⊂ X with m(A) = 0 and µ(A) > 0. At this point, recall that every Borel
nite measure in a Polish spaces is inner regular with respect to compact sets and outer regular with respect
o open sets (see for instance [35, Theorem 7.1.7]). For this reason, since µ ∈ PS(X) and A is a compact

set, it is possible to assume that A ∩ S = ∅. Observe also that compactness grants the existence of k ∈ N
for which A ⊂ Rk. Since m and µ restricted to Rk+1 are finite measures, there exist a sequence of compact
sets (Kn)n∈N and one of open sets (An)n∈N such that Kn ⊂ A ⊂ An ⊂ Rk+1 and (µ+ m)(An \Kn) < 1/n,
for any n ∈ N. Then for M > 0 Tietze’s Theorem ensures the existence of a sequence of approximating
functions

(
FMn

)
n∈N ⊂ Cb(X) satisfying: 0 ≤ FMn ≤ M , FMn = M on Kn, and FMn = 0 on X \An. Therefore,

as n → ∞, the functions FMn converge, in L1(µ + m), to the scaled characteristic function M · 1A. On the
other hand, since for every n, FMn is an admissible function for the supremum in S̃N,m, we have that∫

FMn dµ−
∫
f∗(FMn )dm ≤ S̃N,m(µ), (4.5)

for any n ∈ N. Passing now to the limit as n goes to infinity in (4.5), we obtain that M · µ(A) ≤ S̃N,m(µ).
The arbitrariness of M implies then that S̃N,m(µ) = ∞.

We proceed now to prove that SN,m(µ) ≤ S̃N,m(µ) and we will assume that S̃N,m(µ) < +∞, since
otherwise there is nothing to prove. The paragraph above enables us to write µ = ρm. We then have the
following expression for S̃N,m(µ):

S̃N,m(µ) = sup
{∫

Fρ− f∗(F ) dm : F ∈ Cb(X) supported in Rk, for some k ∈ N
}
.

And, recalling that f(x) = (f∗)∗(x) = supy∈R{x y − f∗(y)} because f is finite, convex and continuous, it
follows that

SN,m(µ) =
∫

sup
s∗∈Q

{ρ(x)s∗ − f∗(s∗)}dm(x).

By fixing Q = {qn}n∈N, an enumeration of rational numbers with q0 = 0, we introduce the family of
pproximating functionals{

ShN,m(µ) :=
∫

sup
∗

{ρ(x)s∗ − f∗(s∗)}dm(x)
}

.

s ∈{q0,...,qh}

h∈N
31
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Observe that the integrands are monotone increasing in h and that 0 = ρ(x)q0 − f∗(q0). In particular,
eppo Levi’s Theorem ensures that ShN,m(µ) → SN,m(µ), as h → ∞. Therefore, it suffices to show that
h
N,m ≤ S̃N,m, for any fixed h ∈ N. To this aim, one confirms directly that

ShN,m(µ) = sup
{∫

(ρF − f∗(F ))dm : F is a step function with values in {q0, . . . , qh}
}
. (4.6)

ote that the fact that S is an m-null set guarantees that we can further require that the aforementioned
unctions are supported in Rk for some k ∈ N without modifying the supremum, as an approximation
rgument using the Monotone Convergence Theorem shows. Finally, since m and µ are finite measures
hen restricted to Rk+1, every step function with support in Rk can be obtained as the L1(µ+ m)-limit of
ontinuous and uniformly bounded functions implying that ShN,m ≤ S̃N,m, which concludes the proof. □

Applying this proposition to our extrinsic converging sequence {Xn}n∈N∪{∞} ⊂ MqR

k̄
, we can extract a

seful corollary with a couple of observations. From (4.1) we easily deduce that, for any k ≥ k̄, the sequence
mkn)n∈N converges to mk∞ ∈ M (Z) ⊂ M∅(Z) in the weak convergence. Moreover, Remark 2.13 states that,

granted we restrict ourselves to the set M (Z), then weak convergence in the sense of quasi-Radon measures
oincides with the usual weak one.

orollary 4.9. Given a fixed k ∈ N and {µn}n∈N ⊂ P2(Z) a sequence converging weakly to µ ∈ P2(Z),
it holds that

SN,mk
∞

(µ) ≤ lim inf
n→∞

SN,mk
n

(µn). (4.7)

We conclude the section with a corresponding continuity result for the functional T (t)
K,N . We stress that

although, it would be sufficient for the proof of Theorem 4.1 to have the upper semicontinuity of T (t)
K,N , we

prefer to present a more general statement.

Proposition 4.10. Let K ≥ 0 and N < 0 and (X, d,m) be a metric measure space. Furthermore, set
µ0 = ρ0m, µ1 = ρ1m ∈ P(X) to be absolutely continuous with respect to the quasi-Radon reference measure m,
with SN,m(µ0), SN,m(µ1) < ∞. Consider a sequence (πn)n∈N ⊂ P(X×X), weakly converging to π ∈ P(X×X)
and such that

(p1)#πn = µ0 and (p2)#πn = µ1 for every n ∈ N.

Then, for t ∈ [0, 1], it holds that
lim
n→∞

T
(t)
K,N (πn|m) = T

(t)
K,N (π|m).

Additionally, the conclusion remains valid for K < 0, granted diam(X) < π
√

N−1
K .

roof. Let us fix any t ∈ (0, 1), since the statement is clearly true for the remaining values. We want to
rove that

lim
n→∞

∫
X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπn(x, y) =
∫
X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπ(x, y), (4.8)

since the other term of T (t)
K,N (·|m) can be treated analogously. Notice that being SN,m(µ0) < ∞, ρ0(x)−1/N ∈

1(µ0) thus by the density of Cb(X) ∩ L1(m) in L1(m), for every fixed ε > 0 there exists fε ∈ Cb(X) such
that ∥ρ−1/N

0 − fε∥L1(µ0) < ε. Moreover, notice that the coefficients τ (1−t)
K,N (·) are bounded and continuous.

Indeed, this is always the case for K ≥ 0, and since diam(X) < π
√

N−1
K is bounded by our assumptions,

his holds as well for K < 0. Therefore,

τ
(1−t)(d(x, y))fε(x)
K,N
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is itself bounded and continuous. Consequently, the weak convergence (πn)n ⇀ π shows that,

lim
n→∞

∫
X×X

τ
(1−t)
K,N (d(x, y))fε(x)dπn(x, y) =

∫
X×X

τ
(1−t)
K,N (d(x, y))fε(x)dπ(x, y).

Furthermore, the boundedness of τ (1−t)
K,N allows to deduce the following estimate

lim sup
n→∞

∫
X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπn(x, y) ≤ lim
n→∞

∫
X×X

τ
(1−t)
K,N (d(x, y))fε(x)dπn(x, y) + ε∥τ

(1−t)
K,N ∥L∞

=
∫

X×X

τ
(1−t)
K,N (d(x, y))fε(x)dπ(x, y) + ε∥τ

(1−t)
K,N ∥L∞

≤
∫

X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπ(x, y) + 2ε∥τ
(1−t)
K,N ∥L∞ .

nalogously, it follows that

lim inf
n→∞

∫
X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπn(x, y) ≥
∫

X×X

τ
(1−t)
K,N (d(x, y))ρ0(x)− 1

N dπ(x, y) − 2ε∥τ
(1−t)
K,N ∥L∞ ,

nd since ε > 0 can be chosen arbitrarily, Eq. (4.8) holds true. We conclude by recalling the arbitrariness of
. □

.2. Proof of the approximate CD condition

The objective of this section is to prove the next partial result

heorem 4.11. Let K ∈ R, N ∈ (−∞, 0), and
{

(Xn, dn,mn,Smn , pn)
}
n∈N∪{∞} ⊂ MqR

k̄
be a sequence

of metric measure spaces satisfying the assumptions of the Stability Theorem 4.1, for some k̄ ∈ N. Then
(X∞, d∞,m∞) is a CDa(K,N) space.

We recall the discussion before Eq. (4.1) to work directly in the realization space (Z, d), where we will
consider the embedded versions of the converging sequence of pointed metric measure spaces.

We follow the plan explained above and argue using vertical approximations. Specifically, the following
Step 1 and Step 2 serve the purpose of constructing useful approximations of the marginals µ0 and µ1. Next,
we follow the argumentation of Sturm in [2] in Steps 3 to 6, to exhibit the upper semicontinuity of T (t)

K,N

along a sequence of optimal couplings, provided by the curvature-dimension assumption. Additionally, we
demonstrate the existence of a favorable limiting optimal coupling. Step 7 focuses on proving the convergence
of inner points of a vertical sequence of Wasserstein geodesics, as well as, the lower semicontinuity of the
Rényi entropy along this sequence.

Let us fix first the notation. Set k ≥ k̄ and assume that µ0, µ1 ∈ Pac(X∞,m∞) have supports satisfying
supp(µ0), supp(µ1) ⊂ Rk−1

∞ . We denote by ρi the density of µi with respect to m∞, for i = {0, 1}. Define
the set,

I := {N ′ ∈ [N, 0) : SN ′,m∞(µ0), SN ′,m∞(µ1) < ∞},

and observe that I is an interval, as a consequence of Jensen’s inequality. Then, surely, we are able to assume
that (and set)

(M := ) max {SN,m∞(µ0), SN,m∞(µ1)} < ∞,

and that, for every q ∈ Opt(µ0, µ1),
T

(t) (q|m ) < ∞, (4.9)
K,N ′ ∞
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since the CD condition is trivial in failure of any of these inequalities. Therefore, the arbitrariness of k
nd initial measures shows that, in order to demonstrate Theorem 4.11, we are required to validate the
D-inequality (3.3), for every N ′ ∈ I, and every t ∈ [0, 1].

Additionally, we fix as before an optimal coupling pn ∈ Opt
(
m̄k∞, m̄

k
n

)
between the normalized k-cuts of

he reference measures, for every n ∈ N. And, as defined in Section 4.1, we consider {Pn(x)}x∈X∞ ⊂ P(Xn)
nd {P ′

n(y)}y∈Xn ⊂ P(X∞) the disintegration kernels of pn with respect to the projections p1 and p2

espectively, and consider the map P ′
n : Pac(X∞,m

k
∞) → Pac(Xn,mkn). Note that, in contrast to Section 4.1,

ere we have omitted the dependence on the number k, since it is fixed for now.

STEP 1: Horizontal approximation with bounded densities
During the argument it proves useful to work with bounded-density measures. Therefore we construct

here a horizontal approximation of µ0 and µ1, for which its elements enjoy this property.
For the construction, we fix an arbitrary optimal coupling q̃ ∈ Opt(µ0, µ1) and define, for every r > 0,

Er := {(x0, x1) ∈ X∞ × X∞ : ρ0(x0) < r, ρ1(x1) < r} (4.10)

nd consequently, for sufficiently large r,

q̃(r) := α−1
r q̃( . ∩ Er),

here αr := q̃(Er). The measure q̃(r) ∈ P(X∞ × X∞) has marginals given by

µ
(r)
0 := (p1)♯ q̃(r) and µ

(r)
1 := (p2)♯ q̃(r). (4.11)

otice that both µ
(r)
0 and µ

(r)
1 have bounded densities and that µ(r)

i converges to µi in (P2(X∞),W2), for
= 0, 1. Moreover, notice that SN,m∞(µ(r)

i ) → SN,m∞(µi) as r → ∞, for i = 0, 1. Then we fix ε > 0 and
nd r = r(ε) such that αr ≥ 1 − ε and that the following estimates hold:

max
i∈{0,1}

W2(µi, µ(r)
i ) ≤ ε and max

i∈{0,1}
SN,mk

∞
(µ(r)
i ) = max

i∈{0,1}
SN,m∞(µ(r)

i ) ≤ M + 1
2 . (4.12)

We point out that the parameter r depends on ε, but we won’t be explicit on this dependence for the sake
of the presentation.

STEP 2: Vertical approximation
Once we have identified the horizontal approximations µ(r)

0 and µ
(r)
1 , we may proceed to their vertical

pproximation. First of all, observe that µ
(r)
0 and µ

(r)
1 are absolutely continuous with respect to the

normalized reference measure m̄k∞, so we denote by ρ̃
(r)
0 and ρ̃

(r)
1 their bounded densities. Then, for every

n ∈ N, we define µ0,n, µ1,n ∈ P2(Xn, dn,mkn) as

µi,n := P ′
n(µ(r)

i ) = ρi,nm̄
k
n, (4.13)

where ρi,n(y) =
∫
ρ̃

(r)
i (x)P ′

n(y)(dx). Notice that µ0,n and µ1,n depend on r (and ultimately on ε), but, once
gain, we prefer not to make this dependence explicit, in order to maintain an easy notation in the following.
nyway, we invite the reader to keep in mind that every object we are going to define depends only on ε.
ow, since mkn(Xn) → mk∞(X∞), observe that Lemma 4.5 guarantees the existence of an n̄ ∈ N, such that if
≥ n̄ it holds that

max
i∈{0,1}

W2(µ(r)
i , µi,n) ≤ ε. (4.14)

nd that
max SN,mn(µi,n) ≤ max SN,mk (µi,n) ≤ M + 1. (4.15)

i∈{0,1} i∈{0,1} n
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Moreover, according to Lemma 4.5, for every N ′ ∈ I, it holds that

SN ′,mn(µi,n) ≤ SN ′,mk
n

(µi,n) ≤
[
mkn(Xn)
mk∞(X∞)

] 1
N′
SN ′,mk

∞
(µ(r)
i ) < ∞.

herefore, for every n ∈ N large enough, since (Xn, dn,mn) is a CD(K,N) space, there exist an optimal
lan πn ∈ Opt(µ0,n, µ1,n) and a 2-Wasserstein geodesic (µt,n)t∈[0,1] ⊂ P2(Xn) connecting µ0,n and µ1,n, for
hich,

SN ′,mn(µt,n) ≤ T
(t)
K,N ′(πn|mn) (4.16)

olds, for every t ∈ [0, 1] and every N ′ ∈ I. Note that Remark 3.4 together with the assumption that
supi∈N∪{∞} diam(Xi, di) < π

√
1

|K| , if K < 0, assures that the geodesic µt,n is absolutely continuous with
espect to mn.

STEP 3: Estimate for T (t)
K,N ′

In this step we start the proof of the upper semicontinuity of the functional T (t)
K,N ′ . In particular, we fix

N ′ ∈ [N, 0) and a time t ∈ [0, 1] and we call Qn and Q′
n be the disintegrations of πn with respect to µ0,n

and µ1,n respectively. Then we define the following two functions

v0(y0) =
∫

Xn

τ
(1−t)
K,N ′ (d(y0, y1))Qn(y0, dy1)

and
v1(y1) =

∫
Xn

τ
(t)
K,N ′(d(y0, y1))Q′

n(y1, dy0).

A direct application of Jensen’s theorem leads to

T
(t)
K,N ′(πn|m̄kn) =

1∑
i=0

∫
Xn

ρi,n(yi)1−1/N ′
· vi(yi) dm̄kn(yi)

=
1∑
i=0

∫
Xn

[∫
X∞

ρ̃
(r)
i (xi)P ′

n(yi,dxi)
]1−1/N ′

· vi(yi) dm̄kn(yi)

≤
1∑
i=0

∫
Xn

∫
X∞

ρ̃
(r)
i (xi)1−1/N ′

P ′
n(yi,dxi) · vi(yi) dm̄kn(yi)

=
1∑
i=0

∫
X∞

ρ̃
(r)
i (xi)1−1/N ′

[∫
Xn

vi(yi)Pn(xi,dyi)
]

dm̄k∞(xi).

t this point we see that∫
Xn

v0(y0)Pn(x0,dy0) =
∫

Xn×Xn

τ
(1−t)
K,N ′ (d(y0, y1))Qn(y0,dy1)Pn(x0,dy0)

=
∫

Xn×Xn×X∞
τ

(1−t)
K,N ′ (d(y0, y1)) ρ̃

(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0)

≤
∫

Xn×Xn×X∞

[
τ

(1−t)
K,N ′ (d(x0, x1)) + C · |d(y0, y1) − d(x0, x1)|

]
ρ̃

(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0)

≤
∫

Xn×Xn×X∞

[
τ

(1−t)
K,N ′ (d(x0, x1)) + C · (d(x0, y0) + d(x1, y1))

]
ρ̃

(r)
1 (x1)

P ′
n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0),
ρ1,n(y1)
35
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and analogously that∫
Xn

v1(y1)Pn(x1,dy1) ≤
∫

Xn×Xn×X∞

[
τ

(t)
K,N ′(d(x0, x1)) + C · (d(x0, y0) + d(x1, y1))

]
ρ̃

(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0)Q′

n(y1,dy0)Pn(x1,dy1),

where C := maxθ∈[0,Θ],s∈[0,1]
∂
∂θ τ

(s)
K,N ′(θ) and Θ is the maximum between d(x0, x1) and d(y0, y1). Observe

hat the constant C is indeed finite because we know that supn∈N∪{∞} diam(Xn, dn) < π
√

1
|K| , if K < 0,

from assumption (iii) in Theorem 4.1.
Moreover we notice that∫

X∞
ρ̃

(r)
0 (x0)1−1/N ′

∫
Xn×Xn×X∞

d(x0, y0) ρ̃
(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0) dm̄k∞(x0)

=
∫

X∞
ρ̃

(r)
0 (x0)1−1/N ′

∫
Xn

d(x0, y0)Pn(x0,dy0) dm̄k∞(x0)

≤ r1−1/N ′
∫

Xn×X∞
d(x0, y0)dpn(x0, y0) ≤ r1−1/N ′

W2(m̄kn, m̄k∞)

(4.17)

and ∫
X∞

ρ̃
(r)
0 (x0)1−1/N ′

∫
Xn×Xn×X∞

d(x1, y1) ρ̃
(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0) dm̄k∞(x0)

≤ r−1/N ′
∫

Xn×Xn×X∞×X∞
d(x1, y1) ρ̃

(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)

Qn(y0,dy1)Pn(x0,dy0)ρ̃(r)
0 (x0) dm̄k∞(x0)

= r−1/N ′
∫

Xn×Xn×X∞
d(x1, y1) ρ̃

(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1)Qn(y0,dy1)µ0,n(dy0)

= r−1/N ′
∫

Xn×X∞
d(x1, y1)ρ̃(r)

1 (x1)P ′
n(y1,dx1)dm̄kn(y1)

≤ r1−1/N ′
∫

Xn×X∞
d(x1, y1)dpn(x1, y1) ≤ r1−1/N ′

W2(m̄kn, m̄k∞),

(4.18)

here the last inequality in both chains follows by the Jensen’s inequality. Consequently, for every n ∈ N,
e define a – not necessarily optimal – coupling q̄(r)

n ∈ Adm(µ(r)
0 , µ

(r)
1 ) by imposing that

dq̄(r)
n (x0, x1) =

∫
Xn×Xn

ρ̃
(r)
0 (x0)ρ̃(r)

1 (x1)
ρ0,n(y0)ρ1,n(y1)P

′
n(y1,dx1)P ′

n(y0,dx0) dπn(y0, y1)

=
∫

Xn×Xn

ρ̃
(r)
0 (x0)ρ̃(r)

1 (x1)
ρ1,n(y1) P ′

n(y1,dx1)Qn(y0,dy1)Pn(x0,dy0) dm̄k∞(x0)

=
∫

Xn×Xn

ρ̃
(r)
0 (x0)ρ̃(r)

1 (x1)
ρ0,n(y0) P ′

n(y0,dx0)Q′
n(y1,dy0)Pn(x1,dy1) dm̄k∞(x1).

With this definition of q̄(r)
n and keeping in mind (4.17) and (4.18), we end up with

T
(t)
K,N ′(πn|m̄kn) ≤ T

(t)
K,N ′(q̄(r)

n |m̄k∞) + 4Cr1−1/N ′
W2(m̄k∞, m̄kn).

Now, up to taking a greater n̄, we can require that for every n ≥ n̄ it holds that

W2(m̄k∞, m̄kn) ≤ ε
N′−1 ,
4Cr N′
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for every N ′ ∈ [N, ε). As a consequence we obtain that

T
(t)
K,N ′(πn|m̄kn) ≤ T

(t)
K,N ′(q̄(r)

n |m̄k∞) + ε, (4.19)

for every n ≥ n̄ and every N ′ ∈ [N, ε).

STEP 4: q̄(r)
n converges to an optimal plan

The objective now is to prove that∫
d2(x0, x1)dq̄(r)

n (x0, x1) → W 2
2 (µ(r)

0 , µ
(r)
1 ) as n → ∞. (4.20)

First of all notice that, since every q̄(r)
n is an admissible plan between µ(r)

0 and µ(r)
1 , then for every n ∈ N

t holds that ∫
d2(x0, x1)dq̄(r)

n (x0, x1) ≥ W 2
2 (µ(r)

0 , µ
(r)
1 ). (4.21)

n the other hand the triangular inequality ensures that

d(x0, x1) ≤ d(x0, y0) + d(y0, y1) + d(x1, y1)

nd consequently, since d(y0, y1) < diam(Rk
n) ≤ 2k+2 for πn-almost every pair (y0, y1), we have that

d2(x0, x1) − d2(y0, y1) ≤ 2d2(x0, y0) + 2d2(x1, y1) + 2k+3d(x0, y0) + 2k+3d(x1, y1)

or πn-almost every pair (y0, y1). It is then possible to perform the following estimate∫
X∞×X∞

d2(x0, x1)dq̄(r)
n (x0, x1)

=
∫

X∞×X∞
d2(x0, x1)

∫
Xn×Xn

ρ̃
(r)
0 (x0)ρ̃(r)

1 (x1)
ρ0,n(y0)ρ1,n(y1)P

′
n(y1,dx1)P ′

n(y0,dx0) dπn(y0, y1)

≤
∫

Xn×Xn

d2(y0, y1)dπn(y0, y1)

+
∫

X∞

∫
Xn×Xn

2d2(x0, y0) ρ̃
(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0) dπn(y0, y1)

+
∫

X∞

∫
Xn×Xn

2k+3d(x0, y0) ρ̃
(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0) dπn(y0, y1)

+
∫

X∞

∫
Xn×Xn

2d2(x1, y1) ρ̃
(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1) dπn(y0, y1)

+
∫

X∞

∫
Xn×Xn

2k+3d(x1, y1) ρ̃
(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1) dπn(y0, y1)

We can now consider one term at a time and start by noticing that, according to Lemma 4.5,∫
X∞

∫
Xn×Xn

2d2(x0, y0) ρ̃
(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0) dπn(y0, y1)

=
∫

X∞

∫
Xn

2d2(x0, y0)ρ̃(r)
0 (x0)P ′

n(y0,dx0) dm̄kn(y0)

=
∫

X∞

∫
Xn

2d2(x0, y0)ρ̃(r)
0 (x0) dpn(x0, y0) → 0,

nd similarly ∫ ∫
2d2(x1, y1) ρ̃

(r)
1 (x1)

P ′
n(y1,dx1) dπn(y0, y1) → 0.
X∞ Xn×Xn
ρ1,n(y1)
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Moreover Hölder’s inequality ensures that∫
X∞

∫
Xn×Xn

2k+3d(x0, y0) ρ̃
(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0) dπn(y0, y1)

≤ 2k+3

[∫
X∞

∫
Xn×Xn

d2(x0, y0) ρ̃
(r)
0 (x0)
ρ0,n(y0)P

′
n(y0,dx0) dπn(y0, y1)

] 1
2

→ 0,

nd analogously that ∫
X∞

∫
Xn×Xn

2k+3d(x1, y1) ρ̃
(r)
1 (x1)
ρ1,n(y1)P

′
n(y1,dx1) dπn(y0, y1) → 0.

Therefore, putting together the estimates on every term, we can conclude that

lim sup
n→∞

∫
d2(x0, x1)dq̄(r)

n (x0, x1) ≤ lim sup
n→∞

∫
Xn×Xn

d2(y0, y1)dπn(y0, y1)

= lim sup
n→∞

W 2
2 (µ0,n, µ1,n) = W 2

2 (µ(r)
0 , µ

(r)
1 ),

here we used that πn is an optimal plan and that µ0,n
W2−−→ µ

(r)
0 , µ1,n

W2−−→ µ
(r)
1 . This last inequality,

ombined with (4.21), allows us to conclude (4.20).

STEP 5: Definition of approximating plan with fixed marginals
We have shown the existence of n(ε) ≥ n̄ such that⏐⏐⏐⏐ ∫ d2(x0, x1)dq̄(r)

n(ε)(x0, x1) −W 2
2 (µ(r)

0 , µ
(r)
1 )
⏐⏐⏐⏐ < ε. (4.22)

ecalling the properties of n̄ proven in the previous steps, we also know that

T
(t)
K,N ′(πn|m̄kn) ≤ T

(t)
K,N ′(q̄(r)

n |m̄k∞) + ε, (4.23)

or every n ≥ n̄ and every N ′ ∈ [N, ε). At this point, using q̄(r)
n(ε), we define a coupling qε between µ0 and µ1

y
qε(·) := αr q̄

(r)
n(ε) + q̃(· ∩ (X2

∞ \ Er)). (4.24)

irst of all, notice that⏐⏐⏐⏐ ∫ d2(x0, x1)dq̄(r)
n(ε)(x0, x1) −

∫
d2(x0, x1)dqε(x0, x1)

⏐⏐⏐⏐ ≤ 2(1 − αr)diam(Rk−1
∞ )2 ≤ ε22k+3.

onsequently, putting together this last estimate with (4.12) and (4.22), we can conclude that∫
d2(x0, x1)dqε(x0, x1) = W 2

2 (µ0, µ1) +O(ε). (4.25)

n the other hand, it is immediate from the definition of qε that

(1 − ε)1−1/N ′
T

(t)
K,N ′(q̄(r)

n(ε)|m̄
k
∞) ≤ α1−1/N ′

r T
(t)
K,N ′(q̄(r)

n(ε)|m̄
k
∞) ≤ T

(t)
K,N ′(qε|m̄k∞). (4.26)

STEP 6: Convergence of plans
We turn now to prove the weak convergence of the plans qε introduced in the previous step, as ε → 0,

nd consequently the upper semicontinuity of T (t)
K,N ′ .

We first note that, since for every ε > 0, it holds that qε ∈ Adm(µ0, µ1), then the family (qε)ε>0
s tight and Prokhorov Theorem ensures the existence of a sequence (ε ) converging to 0 such that
m m∈N
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t
N

qεm ⇀ q ∈ Adm(µ0, µ1). Eq. (4.25) ensures the optimality of q ∈ Opt(µ0, µ1). Furthermore, putting together
he estimates (4.23) (that holds definitely for every N ′ ∈ [N, 0)) and (4.26), we conclude that, for every

′ ∈ [N, 0) and t ∈ [0, 1],

lim sup
m→∞

T
(t)
K,N ′(πn(εm)|mn(εm)) ≤ lim sup

m→∞
T

(t)
K,N ′(πn(εm)|mkn(εm))

= lim sup
m→∞

1
mkn(εm)(Xn(εm))−1/N ′ · T (t)

K,N ′(πn(εm)|m̄kn(εm))

= 1
mk∞(X∞)−1/N ′ lim sup

m→∞
T

(t)
K,N ′(πn(εm)|m̄kn(εm))

≤ 1
mk∞(X∞)−1/N ′ lim sup

m→∞
T

(t)
K,N ′(q̄(r)

n(εm)|m̄
k
∞) + εm

= 1
mk∞(X∞)−1/N ′ lim sup

m→∞
T

(t)
K,N ′(q̄(r)

n(εm)|m̄
k
∞)

≤ 1
mk∞(X∞)−1/N ′ lim sup

m→∞

1
(1 − εm)1−1/N ′ T

(t)
K,N ′(qεm |m̄k∞)

= lim sup
m→∞

T
(t)
K,N ′(qεm |mk∞).

(4.27)

Now, notice that every qεm has as marginals µ0 and µ1, which are supported in Rk−1
∞ and therefore

T
(t)
K,N ′(qεm |mk∞) = T

(t)
K,N ′(qεm |m∞).

Thus we can apply Proposition 4.10 to T (t)
K,N ′(qεm |m∞), for N ′ ∈ I, which together with the above estimate

guarantees that

lim sup
m→∞

T
(t)
K,N ′(πn(εm)|mn(εm)) ≤ lim sup

m→∞
T

(t)
K,N ′(qεm |m∞) = T

(t)
K,N ′(q|m∞) (4.28)

holds for every N ′ ∈ I and t ∈ [0, 1].

STEP 7: Convergence of midpoints
The goal of this step is to show the existence of a limit geodesic {µt}t∈[0,1], such that for any t ∈ [0, 1],

µt,n(εm) W2-converges (up to subsequences) to µt, as m → ∞. Furthermore, we are going to prove a suitable
lower semicontinuity of the Rényi entropies that will allow us to pass to the limit in the CD inequality. In
order to ease the notation we will denote the Rényi entropy SN,mn(εm) by SN,n(εm).

Claim 1. For every fixed t ∈ [0, 1], the sequence (µt,n(εm))m∈N converges (up to subsequences) to a measure
µt ∈ P(X∞).

First of all, notice that estimate (4.28), the CD condition (4.16) and assumption (4.9) together ensure
that the entropies SN,n(εm)(µt,n(εm)) are uniformly bounded above by a constant M ′, for m ∈ N. Moreover,
for every n(εm), the approximation Lemma 4.4 provides the existence of a sequence (µlt,n(εm))l∈N, that W2-
converges to µt,n(εm), as l → ∞, and such that supp(µlt,n(ε)) ⊆ Rl

n(ε). From the proof of Lemma 4.4 we
recall that µlt,n(εm) = cl f l µt,n(εm) so, we can easily notice that,

(cl)−1 =
∫
f l dµt,n(εm) ≥ µt,n(εm)(Rl−1

n(εm)) ≥ 1 − ω(k, l − 1,M + 1).

Consequently, for sufficiently large l it holds that, as measures,

µlt,n(εm) ≤ 1 · µt,n(εm). (4.29)
1 − ω(k, l − 1,M + 1)
39
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f

Notice that we took into account that supp(µ0,n(εm)), supp(µ1,n(εm)) ⊆ Rk
n(εm) and we have used the ω-

uniform convexity assumption, keeping in mind that M+1 bounds from above the terminal entropies (4.15).
In turn, inequality (4.29) implies that,

SN,n(εm)(µlt,n(εm)) ≤ 1
(1 − ω(k, l − 1,M + 1))1−1/N SN,n(εm)(µt,n(εm)). (4.30)

Moreover, the fact that supp(µ0,n(εm)), supp(µ1,n(εm)) ⊆ Rk
n(εm) shows that the measure µt,n(εm) has

bounded support. In particular, for every l ∈ N (and every m ∈ N)

supp(µlt,n(εm)) ⊆ supp(µt,n(εm)) ⊆ B(pn(εm), 2k+2).

As a consequence of this bound, it is easy to deduce that,

W 2
2 (µlt,n(εm), µt,n(εm)) ≤ (2 · 2k+2)2 ω(k, l − 1,M + 1), (4.31)

because µt,n(εm) ≤ µlt,n(εm) when restricted to Rl−1
n(εm), and µt,n(εm)(X \ Rl−1

n(εm)) ≤ ω(k, l − 1,M + 1), by
ω-uniform convexity. Now, for every fixed l sufficiently large, such that ω(k, l− 1,M + 1) < 1, observe that,
according to (4.30), the entropies SN,n(εm)(µlt,n(εm)) are uniformly bounded above by the constant

1
(1 − ω(k, l − 1,M + 1))1−1/NM

′,

or all m ∈ N. Notice also that, since µlt,n(εm) is supported in Rl
n(εm), it holds that

S
N,ml+1

n(εm)
(µlt,n(εm)) = SN,n(εm)(µlt,n(εm)).

Therefore, Corollary 4.7 shows that µlt,n(εm) weakly converges to some µlt ∈ P(X∞) as m → ∞, for
some choice of a subsequence. Moreover, we extract the bound S

N,ml+1
∞

(µlt) < ∞ from Corollary 4.9,
which guarantees the lower semicontinuity of SN,·(·) along our sequence. Consequently, this implies that
the support of µlt is contained in Rl+1

∞ . Finally, note that then the sequence of measures (µlt,n(εm))m∈N is
supported in a uniformly bounded set, since supp(µlt,n(εm)) ⊆ B

(
pn(εm), 2k+2) and pn(εm) → p∞, as m → ∞.

Thus, we are able to conclude, up to picking again subsequence, that for every sufficiently large l ∈ N

µlt,n(εm)
W2−−→ µlt as m → ∞.

As a matter of fact, we can show using inequality (4.31) that,

W 2
2 (µit, µ

j
t ) ≤ 22k+7[ω(k, i− 1,M + 1) + ω(k, j − 1,M + 1)

]
,

for every (large enough) i, j ∈ N. Then, our assumption on ω ensures that (µlt)l∈N is a Cauchy sequence,
which therefore W2-converges to µt ∈ P(X∞). We conclude by noting that the uniform estimate (4.31)
guarantees that µt,n(εm) → µt.

Claim 2. For every t ∈ [0, 1] the measure µt does not give mass to the set S of singular points.

For every m ∈ N and every l ∈ N sufficiently large, let us introduce the measures

µ̃lt,n(εm) = [1 − ω(k, l − 1,M + 1)]µlt,n(εm),

and notice that, for every l ∈ N sufficiently large,

µ̃l l l

t,n(εm) ⇀ µ̃t := [1 − ω(k, l − 1,M + 1)]µt.

40



M. Magnabosco, C. Rigoni and G. Sosa Nonlinear Analysis 237 (2023) 113366

a
p
e

A

F

C

O

a

Observe also that all measures µ̃lt,n(εm) have total mass equal to [1−ω(k, l−1,M+1)], as m varies. Thus, µ̃lt
lso has total mass equal to [1 −ω(k, l− 1,M + 1)]. On the other hand it follows from the uniform convexity
roperties (and in particular from (4.29)) that for every m ∈ N and every l ∈ N sufficiently large, there
xists a positive measure µ̄lt,n(εm) such that

µt,n(εm) = µ̃lt,n(εm) + µ̄lt,n(εm).

Notice that, since the sequences µt,n(εm) and (µ̃lt,n(εm))m∈N are weakly converging, the sequence µ̄lt,n(εm) is
also weakly converging to a (positive) measure µ̄lt, such that

µt = µ̃lt + µ̄lt.

s pointed out before µlt is supported in Rl+1
∞ , thus the same holds for µ̃lt, and therefore

µt(Rl+1
∞ ) ≥ 1 − ω(k, l − 1,M + 1).

inally observe that this is sufficient to prove the claim, because of the arbitrariness of l.

laim 3. The lower semicontinuity of the Rényi entropies holds, that is for every N ′ ∈ [N, 0)

SN ′,m∞(µt) ≤ lim inf
m→∞

SN ′,n(εm)(µt,n(εm)). (4.32)

First of all notice that, the result of Claim 2 combined with Proposition 4.8 yields that

SN ′,m∞(µt) ≤ lim inf
l→∞

SN ′,m∞(µlt). (4.33)

n the other hand Corollary 4.9 ensures that for every l ∈ N large enough

SN ′,m∞(µlt) = S
N ′,ml+2

∞
(µlt) ≤ lim inf

m→∞
S
N ′,ml+2

n(εm)
(µlt,n(εm)) = lim inf

m→∞
SN ′,n(εm)(µlt,n(εm)). (4.34)

Moreover, we deduce as in Claim 1 the following estimate for every N ′ ∈ [N, 0)

SN ′,n(εm)(µlt,n(εm)) ≤ 1
(1 − ω(k, l − 1,M + 1))1−1/N ′ SN ′,n(εm)(µt,n(εm))

nd consequently for every l ∈ N

lim inf
m→∞

SN ′,n(εm)(µt,n(εm)) ≥ lim inf
m→∞

(1 − ω(k, l − 1,M + 1))1−1/N ′
SN ′,n(εm)(µlt,n(εm))

≥ (1 − ω(k, l − 1,M + 1))1−1/N ′
SN ′,m∞(µlt),

where the last passage follows from (4.34). Then, since this last inequality holds for every l ∈ N, we can
conclude that

lim inf
m→∞

SN ′,n(εm)(µt,n(εm)) ≥ lim inf
l→∞

(1 − ω(k, l − 1,M + 1))1−1/N ′
SN ′,m∞(µlt)

≥ SN ′,m∞(µt),

where we used (4.33). This is exactly what we wanted to prove.
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Conclusion

So far we were able to prove that for every fixed t ∈ [0, 1], the sequence (µt,n(εm))m∈N converges (up to
ubsequences) to a measure µt ∈ P2(X∞) and

SN ′,m∞(µt) ≤ lim inf
m→∞

SN ′,n(εm)(µt,n(εm)), (4.35)

for every N ′ ∈ [N, 0). Now, a diagonal argument ensures that, by selecting a suitable subsequence (that we
do not rename for sake of simplicity),

(µt,n(εm))
W2−→ µt,

and that estimate (4.35) holds for every t ∈ [0, 1] ∩Q. Our approximation ensures also that µ0,n(εm)
W2−→ µ0

nd µ1,n(εm)
W2−→ µ1 therefore, since µt,n(εm) is a t-midpoint of µ0,n(εm) and µ1,n(εm), for every t ∈ [0, 1] ∩Q

he limit point µt is a t-midpoint of µ0 and µ1. Now it is easy to realize that we can extend by continuity
µt to a Wasserstein geodesic (connecting µ0 and µ1) on the whole interval [0, 1], obtaining also that

(µt,n(εm))
W2−→ µt, for every t ∈ [0, 1].

This argument will be explained with more details in Lemma 4.12 below. Moreover, we know from the proof
of Claim 2, that for every l ∈ N

µt(Rl+1
∞ ) ≥ 1 − ω(k, l − 1,M + 1),

for every t ∈ [0, 1] ∩ Q. Then by continuity we can conclude the same inequality for every t ∈ [0, 1], and
consequently we know that µt gives no mass to the set of singular points.

Finally, inequality (4.35), combined with (4.28), allows to pass to the limit as m → ∞ of the inequality
(4.16) at every rational time and obtaining that

SN ′,m∞(µt) ≤ T
(t)
K,N ′(q|m∞)

holds for every t ∈ [0, 1] ∩ Q and every N ′ ∈ I. Finally, the lower semicontinuity of the entropy (ensured by
the fact that µt gives no mass to the set of singular points) and the continuity of T (t)

K,N ′(q|m∞) in t (which is
a straightforward consequence of the dominated convergence theorem), allow to extend this last inequality
to every t ∈ [0, 1], concluding the proof of the approximate CD condition.

4.3. Proof of the CD condition

This final section is devoted to the proof of our main result Theorem 4.2. As already mentioned, the
proof of the approximate CD condition and the approximation argument that made it possible are exactly
the fundamental tools to prove the CD condition. As the reader will notice, we are going to use basically the
same techniques, but refining them further to achieve a more general result. We specify that we could prove
the CD condition directly, but we preferred to divide the proof in order to be clearer.

Before going on, we prove a preliminary lemma, that will help us later in this section: a result of this type
is now needed because the marginals may not have bounded support.

Lemma 4.12. Given a metric space (X, d), for every n ∈ N let (νnt )t∈[0,1] ⊂ P2(X) be a Wasserstein
geodesic. Assume that for every t ∈ [0, 1] the family (νnt )n∈N is tight and that there exist ν0, ν1 ∈ P2(X) such
that

νn0
W2−→ ν0 and νn1

W2−→ ν1 as n → ∞.

Then there exists a Wasserstein geodesic (νt)t∈[0,1] ⊂ P2(X) connecting ν0 and ν1 such that, up to
subsequences,

n
νt ⇀ νt as n → ∞, for every t ∈ [0, 1] ∩ Q.
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Proof. First of all, notice that applying Prokhorov theorem we deduce that, for every fixed t, the sequence
νnt )n∈N is weakly convergent, up to subsequences. Thus the diagonal argument ensures that, up to taking
suitable subsequence which we do not recall for simplicity, for every t ∈ [0, 1] ∩ Q there exists νt ∈ P2(X)

uch that
νnt ⇀ νt as n → ∞, for every t ∈ [0, 1] ∩ Q.

t is well-known that the Wasserstein distance is lower semicontinuous with respect to the weak convergence
see for example Proposition 7.1.3 in [38]), then

W2(ν0, νt) ≤ lim inf
n→∞

W2(νn0 , νnt ) = lim inf
n→∞

t ·W2(νn0 , νn1 ) = t ·W2(ν0, ν1)

nd analogously
W2(νt, ν1) ≤ (1 − t) ·W2(ν0, ν1).

ombining this two inequalities with the triangular inequality we deduce that

W2(ν0, νt) = t ·W2(ν0, ν1) and W2(νt, ν1) = (1 − t) ·W2(ν0, ν1),

hich means that νt is a t-midpoint of ν0 and ν1. The lower semicontinuity of the Wasserstein distance also
nsures that for every s, t ∈ [0, 1] ∩ Q it holds that

W2(νt, νs) ≤ lim inf
n→∞

W2(νnt , νns ) = |t− s| · lim inf
n→∞

W2(νn0 , νn1 ) = |t− s| ·W2(ν0, ν1).

inally, since for every r ∈ [0, 1] ∩ Q νr is an r-midpoint of ν0 and ν1, the triangular inequality allow us
onclude that

W2(νt, νs) = |t− s| ·W2(ν0, ν1), for every s, t ∈ [0, 1] ∩ Q,

hen we can extend νt to the whole interval [0, 1], finding a Wasserstein geodesic (νt)t∈[0,1] connecting ν0
nd ν1. □

Now that we have this last result at our disposal we can proceed to the proof of Theorem 4.2. To
his aim, we fix µ0, µ1 ∈ Pac(X∞,m∞). In analogy with the previous section, we can assume that
N,m∞(µ0), SN,m∞(µ1) < ∞ and introduce the constant

M := max{SN,m∞(µ0), SN,m∞(µ1)}.

e can also define the interval

I := {N ′ ∈ [N, 0) : SN ′,m∞(µ0), SN ′,m∞(µ1) < ∞},

n particular we will need to prove (3.3) for every N ′ ∈ I and every t ∈ [0, 1]. Now, according to Lemma 4.4
here exist two sequences (µl0)l∈N and (µl1)l∈N, W2-converging to µ0 and µ1 respectively and such that

supp(µl0), supp(µl1) ⊆ Rl−1
∞ for every l ∈ N.

oreover, keeping in mind the definition of µl0 and µl1 (see Lemma 4.4), it is easy to realize that for l
ufficiently large

SN ′,m∞(µl0), SN ′,m∞(µl1) < ∞ for every N ′ ∈ I

nd that the dominated convergence theorem ensures that

lim SN,m∞(µl0) = SN,m∞(µ0) and lim SN,m∞(µl1) = SN,m∞(µ1).

l→∞ l→∞
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Thus, for every l large enough

SN,m∞(µl0), SN,m∞(µl1) ≤ max
{
SN,m∞(µ0), SN,m∞(µ1)

}
+ 1 = M + 1

nd then we can apply the argument presented in the last section and deduce the existence of an optimal
lan ql ∈ Opt(µl0, µl1) and of a Wasserstein geodesic (µlt)t∈[0,1] connecting µl0 and µl1, such that

SN ′,m∞(µlt) ≤ T
(t)
K,N ′(ql|m∞) (4.36)

olds for every t ∈ [0, 1] and every N ′ ∈ I. Now, we divide the proof into two steps, the first dedicated to
he convergence of the plans (ql)l∈N and to the upper semicontinuity of T (t)

K,N ′ , the second dedicated to the
onvergence of the measures (µlt)l∈N and the lower semicontinuity of SN ′,m∞ .

Step 1: Upper semicontinuity for T (t)
K,N ′

Notice that (ql)l∈N is a sequence of probability measures having as marginals two sequences of converging,
nd thus tight, probability measures. As a consequence the sequence (ql)l∈N is itself tight, then up to
ubsequences it weakly converges to a plan q ∈ P(X∞ × X∞). It is well known and easy to prove that
∈ Opt(µ0, µ1). We are now going to prove that

lim sup
l→∞

T
(t)
K,N ′(ql|m∞) ≤ T

(t)
K,N ′(q|m∞) (4.37)

or every t ∈ [0, 1] and every N ′ ∈ I. The argument we are going to use is essentially the same as the
ne explained in the proof of Proposition 4.10, nevertheless we briefly recall it for the sake of completeness,
voiding to repeat all the details.

In particular, for every l ∈ N let us call ρl0 and ρl1 the densities of µl0 and µl1 with respect to the reference
easure m∞, we just need to prove that

lim sup
l→∞

∫
τ

(1−t)
K,N ′ (d(x, y))ρl0(x)− 1

N′ dql ≤
∫
τ

(1−t)
K,N ′ (d(x, y))ρ0(x)− 1

N′ dq.

otice that, the particular definition of µl0 (check Lemma 4.4), ensures that the density ρl0 is a suitable
renormalization of f lρ0, then for a fixed ε > 0 we can find l̄ ∈ N such that

∥
(
ρl0
)−1/N ′

− ρ
−1/N ′

0 ∥L1(µl
0) < ε for every l ≥ l̄.

urthermore, recalling that Cb(X) ∩ L1(m) is dense in L1(m), for the same reason (up to possibly changing
) we can find fε ∈ Cb(X) such that

∥ρ−1/N ′

0 − fε∥L1(µ0) < ε and ∥ρ−1/N ′

0 − fε∥L1(µl
0) < ε for every l ≥ l̄.

utting together this last two estimates we end up proving that

∥
(
ρl0
)−1/N ′

− fε∥L1(µl
0) < 2ε for every l ≥ l̄.

n the other hand, since the function
τ

(1−t)
K,N (d(x, y))fε(x)

s bounded and continuous, the weak convergence of (ql)l to q yields that

lim
∫
τ

(1−t)
K,N ′ (d(x, y))fε(x)dql =

∫
τ

(1−t)
K,N ′ (d(x, y))fε(x)dq.
l→∞
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Then, since definitely l ≥ l̄, we can deduce the following estimate

lim sup
l→∞

∫
τ

(1−t)
K,N ′ (d(x, y))ρl0(x)− 1

N′ dql ≤ lim
l→∞

∫
τ

(1−t)
K,N ′ (d(x, y))fε(x)dql + 2ε∥τ (1−t)

K,N ′ ∥L∞

=
∫
τ

(1−t)
K,N ′ (d(x, y))fε(x)dq + 2ε∥τ (1−t)

K,N ′ ∥L∞

≤
∫
τ

(1−t)
K,N ′ (d(x, y))ρ0(x)− 1

N′ dq + 3ε∥τ (1−t)
K,N ′ ∥L∞ .

nd since ε > 0 can be chosen arbitrarily, (4.37) holds true.

Step 2: Lower semicontinuity for SN ′,m∞

In this second step we prove an additional property on µlt, which is fundamental to prove the CD condition.
et us start with a preliminary lemma.

emma 4.13. Fix k ≤ h ∈ N and let ν ∈ Pac(X∞,m∞) with bounded density be such that supp(ν) ⊆ Rk−1
∞ .

hen, for every ϵ > 0, there exists ñ ∈ N large enough such that, P ′
n,h(ν)(Rk+1

n ) ≥ 1 − ϵ for every n ≥ ñ.

Proof. Notice that, according to Lemma 4.5, both the sequences (P ′
n,k(ν))n∈N and (P ′

n,h(ν))n∈N W2-
onverge to ν. Assume that P ′

m,h(ν)(Rk+1
m ) < 1 − ϵ for some arbitrarily large m ∈ N. Observe that

inf
{

d(x, y) : x ∈ Rk
m, y ∈ (Rk+1

m )c
}

≥ 2−(k+2),

s a consequence, since P ′
m,k(ν) is supported in Rk

m, we obtain that

W 2
2 (P ′

m,k(ν), P ′
m,h(ν)) ≥ ϵ · 2−(2k+4). (4.38)

n the other hand, since the sequences (P ′
n,k(ν))n∈N and (P ′

n,h(ν))n∈N have the same limit, it holds that

W 2
2 (P ′

n,k(ν), P ′
n,h(ν)) → 0 as n → ∞.

hen definitely (4.38) cannot hold, proving the desired result. □

Fix ϵ > 0 and take k(ϵ) ∈ N such that µ0(Rk(ϵ)−1
∞ ), µ1(Rk(ϵ)−1

∞ ) > 1− ϵ
2 . Then we take l > k(ϵ) and repeat

he argument of the previous section on µl0 and µl1. We are also going to use the same notation, forgetting
or the moment the dependence on l. It is easy to realize that there exist two measures νk(ϵ)

0 and νk(ϵ)
1 with

upp(νk(ϵ)
0 ), supp(νk(ϵ)

1 ) ⊆ Rk(ϵ)−1
∞ and ν

k(ϵ)
0 (X∞), νk(ϵ)

1 (X∞) > 1 − ϵ, such that for r sufficiently large (and
hus for ϵ sufficiently small) µ(r)

0 ≥ ν
k(ϵ)
0 and µ(r)

1 ≥ ν
k(ϵ)
1 (in particular this tells us that νk(ϵ)

0 and νk(ϵ)
1 have

bounded density). Then we can apply Lemma 4.13 to the probability measures
1

ν
k(ϵ)
0 (X∞)

ν
k(ϵ)
0 and 1

ν
k(ϵ)
1 (X∞)

ν
k(ϵ)
1 ,

obtaining that for m sufficiently large (in particular such that n(εm) ≥ ñ) it holds that

µ0,n(εm)(Rk(ϵ)+1
n(εm) ), µ1,n(εm)(Rk(ϵ)+1

n(εm) ) ≥ (1 − ϵ)2 ≥ 1 − 2ϵ.

Consequently our uniform convexity assumption ensures that

µt,n(εm)(Rh
n(εm)) ≥ 1 − Ω(k(ϵ) + 1, h,M + 2, 2ϵ),

for every t ∈ [0, 1] and every h ∈ N. Proceeding as in Step 7 of the previous section (see in particular
Claim 2), we can actually conclude that

µlt(Rh+1
∞ ) ≥ 1 − Ω(k(ϵ) + 1, h− 1,M + 2, 2ϵ), (4.39)

for every t ∈ [0, 1] and every h ∈ N sufficiently large.
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Claim 4. For a fixed t > 0, the family (µlt)l∈N is tight.

Given a fixed δ > 0, we have to find a compact set Kδ, such that µlt(Kδ) ≥ 1 − δ for every l ∈ N. To this
im we take suitable ϵ and h such that (4.39) ensures that

µlt(Rh+1
∞ ) ≥ 1 − δ

2 . (4.40)

oreover, combining the result of Step 1 (that is (4.37)) with (4.36), we conclude that SN,m∞(µlt) is definitely
ounded. Then, since m∞|Rh+1

∞
is a finite Radon measure, we can argue as in the proof of Lemma 4.6 and

prove the tightness of the family of measures (µlt|Rh+1
∞

)l∈N. As a consequence, keeping in mind (4.40), there
xists a compact set Kδ such that

µlt(Kδ) ≥ µlt|Rh+1
∞

(Kδ) ≥ 1 − δ,

roving the claim.
Now, we can apply Lemma 4.12 and find a Wasserstein geodesic (µt)t∈[0,1] ⊂ P(X∞) connecting µ0 and

1 such that (up to subsequences)

µlt ⇀ µt ∈ P(X∞) as l → ∞ for every t ∈ [0, 1] ∩ Q

hen, since the bound (4.39) is uniform in l, we can conclude that

µt(Rh+1
∞ ) ≥ 1 − Ω(k(ϵ) + 1, h− 1,M + 2, 2ϵ), (4.41)

or every t ∈ [0, 1] ∩ Q and every h ∈ N sufficiently large. Moreover, by continuity we can deduce (4.41) for
very time t ∈ [0, 1] (and every h ∈ N sufficiently large). This is sufficient to conclude that µt gives no mass
o the set S of singular points, for every t ∈ [0, 1]. In fact, assume by contradiction that µt(S) = δ > 0, then
ondition (3.10) on Ω ensures that there exist ϵ and h ∈ N such that

Ω(k(ϵ) + 1, h− 1,M + 2, 2ϵ) < δ,

nd consequently

µt(Rh+1
∞ ) ≥ 1 − δ,

hich contradicts µt(S) = δ. At this point we know from Proposition 4.8 that

lim inf
l→∞

SN ′,m∞(µlt) ≥ SN ′,m∞(µt), (4.42)

or every t ∈ [0, 1] ∩ Q and N ′ ∈ [N, 0).
Finally, we can use (4.37) and (4.42) to pass to the limit as l → ∞ of the inequality (4.36) and deduce

hat

SN ′,m∞(µt) ≤ T
(t)
K,N ′(q|m∞) (4.43)

olds for every t ∈ [0, 1] ∩ Q and every N ′ ∈ I. Then the lower semicontinuity of SN ′,m∞ (granted by
4.41)) and the continuity of T (t)

K,N ′(q|m∞) in t (which is a straightforward consequence of the dominated

onvergence theorem), allow to conclude (4.43) for every t ∈ [0, 1], finishing the proof.
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