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Abstract

Magnetic reconnection is a physical process in which a region with magnetic field
lines of opposite directions rearranges its topology into a lower energy configuration.
The process results in the conversion of the released energy to thermal and kinetic
plasma energy, with the development of non-thermal spectra of accelerated particles,
with possible important consequences for the emission processes from astrophysical
environments with high values of the magnetic field.
The work presented in the thesis aims at developing a method to address the multi-
scale problem of magnetic reconnection in large-scale relativistic magnetohydrody-
namic numerical simulations. A sub-grid model based on prescriptions from simula-
tions of the phenomenon at the kinetic level is presented.
I present a new algorithm for the identification and physical characterization of mag-
netic reconnection sites in 2D and 3D large scale relativistic magnetohydrodynamic
numerical simulations. This has been implemented in the PLUTO code and tested
in the cases of a single steady current sheet, a 2D jet and a 3D unstable plasma
column. Its main features are: a) a computational demand which allows its use in
large scale simulations; b) the capability to deal with complex 2D and 3D structures
of the reconnection sites. In the performed simulations the algorithm identifies the
computational cells that are part of a current sheet by a measure of the gradient of
the magnetic field along different directions. Lagrangian particles, ensemble of real
particles which follow the fluid and are described by their collective spectrum, are
used to sample plasma parameters before they enter the reconnection sites that form
during the evolution of the different configurations considered. Specifically, I perform
an analysis of the distributions of the values of the magnetization σ and the ther-
mal to magnetic pressure ratio β that according to particle-in-cell simulations control
the properties of particles acceleration in magnetic reconnection regions. Despite the
initial conditions of the simulations were not chosen “ad hoc”, the 3D simulation
returns results suitable for efficient particles acceleration to non-thermal particles
distributions.
Subsequently I present a new algorithm for the spectra update of the Lagrangian
particles that are found in a current sheet. The σ and β values sampled with the
method previously described are used to characterize the final spectrum. Two dif-
ferent strategies for the spectra update are introduced. First a simple method that
considers the energy of old spectra, the energy due to MR and update the spectra to
the power-law predicted by the sub-grid model is presented. A more refined method,
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able to consider additionally also the slope of the old spectra and the presence of
multiples Lagrangian particles in the same computational cell, is introduced. I per-
formed simulations of the 3D unstable plasma column with the second method, and
I studied the distributions of the various quantities necessary to determine the post
magnetic reconnection spectra: available energy and maximum energy. Then I fo-
cused on the temporal evolution of individual spectra, exploiting the full possibilities
of the sub-grid model of following with time and spatial resolution the consequences
on non-thermal particles of magnetic reconnection.
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1
Introduction

1.1 A background to motivate this work

1.1.1 Cosmic Rays

Cosmic rays (CRs) are defined as the radiation coming from outside the Earth’s

atmosphere. CRs are composed by ionized nuclei, about 90% of the observed flux is

composed by protons, 9% of them are alpha particles and the rest are heavy nuclei.

Electrons are also presents and they constitute ∼ 1% of the cosmic radiation. They

were discovered in 1909 and for long time they were thought to be originated from

the radioactivity of the Earth. Only years later it was possible to establish their

origin with experiments firstly from Victor Hess (Hess 1912) and then from Werner

Kolhörster.

The CRs are nowadays observed with both ground (Atkins et al. 2004; Aharonian

et al. 2007b; Archer et al. 2018; Abeysekara et al. 2019) and space (Adriani et al.

2011; Aguilar et al. 2015; Abdollahi et al. 2017; Aguilar et al. 2019) experiments. The

observed flux extends for many orders of magnitude in energy from a few undreds of

MeV to above 1020 eV, as shown in Fig. 1.1. The number flux can be described at

first order by a power-law of index p:

dN

dE
∝ E−p . (1.1)

The estimated mean value for the index p is p ≃ 2.7. If investigated in detail more

features characterize the number flux. At low energies, for E ≲ 109 eV, the number
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Figure 1.1: Number flux of CRs, weighted by E2 as function of particle energy. Data from
different CRs experiment are represented as shown in the legend.
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flux drops below the extended power-law. This is due to the solar wind, that with

his magnetic field is able to prevent the propagation of the low energy CRs. At high

energies the flux shows extra features. The power-law index describing it has two

majors changes of slope. A knee, at Eknee ≃ 3× 1015 eV, corresponds to a steepening

of the slope to p ≃ 3.1. An ankle, at Eankle ≃ 1018 eV, corresponds instead to an

hardening of the slope. Finally the GZK-limit (Greisen 1966) imposes an upper limit

at E ≃ 5×1019 eV to the CRs flux due to the interaction of protons with the Cosmic

Microwave Background (CMB).

The differences in energy magnitude of the particles are associated to different origins

of the CRs. An increment of the energy of a particle corresponds to an increment

of the gyroradius of the particle while interacting with a magnetic field. When the

energy is high enough to correspond to a gyroradius larger than the galactic halo

the particle is supposed to have an extra-galactic origin. This is thought to happen

around E ≃ 1017 − 1018 eV (Aloisio et al. 2012).

Galactic CRs are thought to be originated by Supernovae remnants (Ackermann et al.

2013), such as the Crab Nebula. In these objects particles acceleration is thought to

happen in shock waves generated by stellar explosions.

The identification of sources for extra-galactic CRs and the acceleration mechanisms

that can reach the energies over the ankle are still open problems. This is firstly due

to the lack of statistic, the flux for the extra-galactic CRs is in fact less than one

particle per km2 per year. Additionally being able to point back at the exact source

generating CRs is not trivial due to the interaction that these charged particles can

have along their path. For this reason γ−rays and more recently neutrinos (Aartsen

et al. 2020; Abbasi et al. 2022; Albert et al. 2022) has been studied with particular

interest, due to their ability, being neutral particles, to travel undeflected through the

space.

Active galactic nuclei (AGNs) are a possible source candidate for extra-galactic (CRs).

They are between the most energetic astrophysical objects in the universe, so their

energy is sufficient to accelerate particles to the required energies. Additionally AGNs

appear to be a possible source of neutrinos (Aartsen et al. 2018; Abbasi et al. 2022)

and as a consequence of non-thermal proton populations.

Other possible sources are Galaxy cluster and Gamma-ray bursts (GRBs), in which

the acceleration processes could lead particles energy up to 1020 eV and neutron stars,

in which heavy nuclei can be accelerated by electric fields to the required energies.
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Figure 1.2: Sketch of the structure of an AGN.

1.1.2 Extra-galactic sources

Answering the fundamental question about the origin of extra-galactic CRs requires

an efficient acceleration mechanism able to produce a power-law spectrum over many

magnitudes in energy. The open problems on specific extra-galactic sources, however,

contribute to answer the same question, but they may add additional requirements

able to distinguish between different acceleration mechanisms.

AGNs and GRBs are two examples of extra-galactic sources that can develop a jet and

candidate as CRs sources. There are strong theoretical motivations to consider their

jets as magnetically dominated at the base (Blandford & Znajek 1977; Blandford &

Payne 1982). If part of the magnetic energy is used to accelerate the flow to relativistic

speed, the jet is Poyting-dominated when reaches the dissipation distance. Diffusive

shock acceleration (DSA) is inefficient for the large plasma magnetization that is

expected at this distance (Kennel & Coroniti 1984). A more likely candidate for these

plasma conditions is magnetic reconnection (MR). Magnetically dominated jets can

undergo to different instabilities (e.g. current-driven kink instabilities) that generates

magnetic reconnection as common byproduct in particularly turbulent regions (Singh

et al. 2016; Medina-Torrejón et al. 2021).
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1.1.2.1 Active Galactic Nuclei

AGNs are, as described before, interesting extra-galactic CRs source candidates. It

is useful to look for open problems able to shed light on the acceleration mechanisms

and region in which the processes may happen.

AGNs are the nuclei of galaxies which show energetic phenomena that can not clearly

and directly be attributed to stars. Fig. 1.2 shows a sketch of the structure of an

AGN. At the center of the galaxy a Super Massive Black Hole (SMBH) is surrounded

by an accretion disk. The SMBHs masses can range from 106 to 1010M⊙ (Kormendy

& Richstone 1995). The friction of the material spiraling towards the SMBH in the

accretion disk produces radiation diffusing away. The integral of the different spectra

produced by the accretion disk at different radii generate the so called Multicolor BB

Spectrum in the Shakura-Sunyaev model (Shakura & Sunyaev 1973).

AGNs are characterized by some interesting properties as very high luminosities (up

to Lbol ∼ 1048 erg s−1) that make AGNs the most powerful non-explosive category

of sources in the Universe. They are observed up to very high redshift, currently

up to z ≃ 7.6 (Wang et al. 2021). Based on the rapid variability observed, they

are supposed to have small emitting regions (down to milliparsec) in most bands

(Ulrich et al. 1997) with high energy densities. Their emissions cover the whole

electromagnetic spectrum, as shown in Fig. 1.3.

Another important component that can be present in the AGNs morphology and of

particular interest in this thesis is a jet. They are highly collimated outflows emerging

on opposite direction near the disk. They can extent for extremely large scale in

comparison to the AGN. The relativistic particles in the jet produce synchrotron

emission (the first bump in Fig. 1.3), but they can emit also in the γ−ray band with

different processes (the second bump in Fig. 1.3). The two main models explaining

the γ-ray emissions in jets are the synchrotron self-Compton model (SSC), where the

particles generating the synchrotron radiation are the same able to up-scatter the

photons to higher energies, and the external radiation Compton model (EC), where

an external radiation, coming from outside the jet, undergone a Comptonization of

the original spectrum, populating the γ-ray band. The possible origins of the external

radiation include CMB, radiation from the accretion disk and emission from the dust

or the broad line region (See Fig. 1.2).

Some open problems that can shed light on the acceleration mechanisms in AGN jets

are introduced. Ultrafast variability in AGNs, with an enhancement of the spectral

energy density (SED) over less than 10 minutes timescale (Aharonian et al. 2007a)

imposes strong limits on the radius of the emission zone that are difficult to explain
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Figure 1.3: A schematic representation of an AGN spectral energy distribution (SED)
(Padovani et al. 2017). The black solid curve represents the total emission and the various
coloured curves (shifted down for clarity) represent the individual components. The jet SED
is also shown for a high synchrotron peaked blazar (HSP) and a low synchrotron peaked
blazar (LSP) as shown in the legend.
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Figure 1.4: Light curves of 3C 273 (black circles) in the γ-rays (upper panel) and optical
(lower panel) during an orphan γ−rays flare (MacDonald et al. 2017).

with DSA. On the other hand, strong MR events could happen in very localized

regions and produce a fast flare when their emission is aligned with the observer

(Giannios 2013; Petropoulou et al. 2016).

Orphan γ−ray flares in blazars, in which during a γ−rays flare in the optical coun-

terpart a similar enhancement is missing (MacDonald et al. 2017) (Fig. 1.4), have a

possible explanation with MR simulations at the kinetic level (Sobacchi et al. 2021)

and should be assessed with large scale simulations.

1.2 High energy particles acceleration mechanisms

The observed high-energy γ-rays from extra-galactic sources and CRs require efficient

acceleration mechanisms, able to convert the energy present in the extra-galactic

sources into non-thermal particles populations and to reach the energy of the extra-

galactic component of CRs (E ≳ 1017 − 1018 eV).

A possible mechanism was proposed initially by Fermi (Fermi 1949, 1954). It considers
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Figure 1.5: Sketch of the collision between a magnetic cloud and a particle in the Fermi
second order mechanism. Primed quantities are measured in the rest frame of the cloud.

a magnetized cloud moving at non-relativistic velocity U = βc, where c is the speed

of light, and a particle with relativistic velocity v. A sketch of a collision between a

magnetic cloud and a particle is shown in Fig. 1.5. During a collision the energy gain

is:

∆E

E
= β

(
cosθ

′

out − cosθin

)
+ β2

(
1− cosθincosθ

′

out

)
. (1.2)

where primed quantities are measured in the rest frame of the cloud and θin and θ
′
out

are represented in Fig. 1.5. When considering an head-on collision the energy gain

from Eq. (1.2) is ∆E/E = 2β(1 + β), while for a tail-on collision the rate gives

an energy loss ∆E/E = −2β(1 − β). The average energy gain from Eq. (1.2) is

evaluated. The hypothesis of isotropic distribution of particles in the cloud frame

cancels out the term ⟨cosθ′
out⟩. The only angle factor remaining is ⟨cosθin⟩ = −β/3,

so that the average energy gain is:

⟨∆E

E
⟩ ≃ 4

3
β2 . (1.3)

The mechanism, known as Fermi second order due to the index in Eq. (1.3), is

inefficient and too slow.

1.2.1 Diffusive Shock Acceleration

A simple idea to improve the efficiency of Fermi second order is to find a physical

situation in which the average is restricted to head-on collision, for which the max-

imum energy gain is achieved. Initially, acceleration of particles bouncing between

converging walls of magnetized clouds was proposed. By restricting the average to

head-on collision only in Eq. (1.2) it is possible to estimate the mean energy gain:
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Figure 1.6: Sketch of a discontinuity in presence of a shock. The region on the left represents
the up-stream region, while on the right it is represented the down-stream one.

⟨∆E

E
⟩ ≃ 4

3
β . (1.4)

The dependency of the average energy gain is linear under this additional hypothesis

and for this reason the mechanisms producing such an average energy gain are usually

known as Fermi first order.

Shocks were proposed as possible environment for the realization of Fermi first order

(Hoyle 1960). They are in fact waves that propagate in plasma are characterized by

an abrupt discontinuity in the plasma quantities, as represented in Fig. 1.6. The

quantities in the up-stream and down-stream regions (as described in Fig. 1.6) are

related by the Rankine–Hugoniot jump conditions, requiring along the shock, in a

frame comoving with the discontinuity, conservation of mass, momentum and energy.

It is additionally assumed that magnetic turbulence in the vicinity of the shock effi-

ciently scatters off the particles, so that they are effectively isotropized on each side

of the shock, meaning that their mean velocity follows the local flow velocity. Then

the particles injected in a region with a shock can repeatedly cross the shock back

and forth. Every time a particle crosses the shock, it undergoes an head-on collision

with the plasma moving at velocity u1 − u2. The configuration is then a possible

realization of the Fermi first order mechanism.

The Diffusive Shock Acceleration (DSA) is the name of the acceleration method and

it results in a power-law spectra distribution (Axford et al. 1977; Krymskii 1977;

Bell 1978; Blandford & Ostriker 1978; Drury 1983; Kirk et al. 2000; Achterberg et al.

2001). The final power-law depends on the strength of the magnetized shock (through

the compression ratio r, defined as the ratio of up-stream and down-stream velocities

in the shock rest frame) and the orientation of the magnetic field lines with respect

to the shock normal (Jokipii 1987; Ballard & Heavens 1991; Summerlin & Baring

2011). Analytical results for the expected power-law have also been found for parallel

relativistic shocks (Kirk et al. 2000; Keshet & Waxman 2005) and perpendicular ones

(Takamoto & Kirk 2015).
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Although DSA is an efficient acceleration mechanism, there are some plasma con-

ditions that can suppress its efficiency. Perpendicular shock are inefficient for high

magnetization values (Sironi et al. 2015; Plotnikov et al. 2018). AGN jets for ex-

ample are in the vicinity of the supermassive black hole (SMBH) considered highly

magnetized. The plasma is then magnetized until dissipative processes occur, reach-

ing then the equipartition between the magnetic and the kinetic energy densities (the

magnetization parameter) (Komissarov et al. 2007; Lyubarsky 2009). It is possible to

have in these astrophysical environments a competition with a different acceleration

method more efficient in higly magnetized plasma: magnetic reconnection.

1.2.2 Magnetic Reconnection

In the framework of high magnetized flows MR arises as an acceleration mechanism

to consider. MR is non-ideal phenomenon and a natural byproduct of instabilities

that are both observed and found in simulations in astrophysical jets.

The main consequences of MR are the transfer of magnetic field energy into ther-

mal and kinetic energy and particles acceleration to non-thermal energies through a

rearrangement of the magnetic field topology. MR aditionally lowers the magnetic

energy in systems towards the equipartition. Similarly to the DSA (Sec. 1.2.1) the

non-thermal spectra result of MR events can be described as a power-law depending

on the plasma parameters surrounding the MR region as it will be described in details

in Sec. 3.2.

With final spectra similar to the one obtained during DSA and a natural environment

in highly magnetized flows, MR is a promising candidate as a viable mechanisms in

many different astrophysical objects.

1.3 Outline

As seen in the introduction, when taking into account the problem of particles accel-

eration in astrophysical plasma, DSA and MR are the most likely mechanisms that

could take place. Both are capable to accelerate particles to power-law spectra match-

ing the observations from extra-galactic sources and they could be the responsible for

CRs acceleration to the highest energies. Additionally, both can be characterized by

the plasma surrounding the acceleration sites, allowing the implementation in large

scale MHD simulations through sub-grid models. They are more efficient in different

conditions, mainly due to the different plasma magnetization, in which MR is more

likely to be efficient than DSA when the value of the magnetization is high. MR has
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been in fact extensively studied with Particle-in-cell (PIC) simulations, being able

to follow the kinematics of individual particles through the development of MR. The

same approach is unfeasible in large scale (R)MHD simulations, where simulations of

astrophysical objects would reach scales that would make computationally impossible

to follow the individual particles.

The goal of the thesis is to implement a numerical framework in which both the

phenomena can be studied with R(MHD) simulations, through the implementation

of a sub-grid model for the MR in the PLUTO code (Mignone et al. 2007). In this code

a sub-grid model for DSA is already present (Vaidya et al. 2018) and the inclusion

of a similar approach for MR would make possible to follow spectra evolution due to

both the phenomena during space and time dependent (R)MHD simulations.

The thesis is organized as follow: in Chap. 2 magnetohydrodynamics (MHD) equa-

tions are derived together with their relativistic counterpart, in Chap. 3 the main

model and results on MR are analized in detail, in Chap. 4 a new algorithm to

identify MR regions in large scale (R)MHD simulation is introduced, in Chap. 5

the algorithm necessary to sample in (R)MHD main plasma parameters needed for

post-MR spectra update is presented and tested in 2D jet and in 3D unstable plasma

column simulations, in Chap. 6 the strategy to update the particles spectra using

the identification method and the sampling algorithm is introduced and tested in 3D

unstable plasma column simulations and finally in Chap. 7 conclusions are presented,

together with the future perspectives for the work presented in this thesis.
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2
Magnetohydrodynamics

Plasma can be considered the fourth state of matter. At high temperatures the gas

atoms split in electrons and positive ions, forming an ionised gas. In this regime

the dynamics is dominated by electromagnetic interactions. Plasma is common in

astrophysical environments and it is indeed the most abundant form in which the

ordinary matter organizes in the universe.

Different models may be used to describe a plasma at different scales, in particular the

MHD model is used for describing the large scale evolution of astrophysical plasmas

in extragalactic objects (e.g. astrophysical jets). In this chapter we introduce this

model and the relevant equations.

The Chapter is organized as follow: in Sec. 2.1 the standard description of plasma

is provided, in Sec. 2.2 the basis of the Kinetic theory are described, in Sec. 2.3 the

basic equations of MHD are presented and finally on Sec. 2.4 the relativistic extension

of the previous equation is provided.

2.1 Standard plasma description

The most complete description of a plasma entails following the trajectory of ev-

ery particle in the electromagnetic field self-consistently generated by the particle

distribution. The electromagnetic field is described by the Maxwell equations:
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∇×E = −1

c

∂B

∂t

∇×B =
1

c

∂E

∂t
+

4π

c
J

∇ ·E = 4πq

∇ ·B = 0 .

(2.1)

Eq. (2.1) describes the spatial and temporal behaviour of the magnetic and electric

fields E and B under the effect of the charge density q and the current density J

that are defined as:

q(r, t) =
N∑
i=1

eiδ [r − ri(t)]

J(r, t) =
N∑
i=1

eivi(t)δ [r − ri(t)] ,

(2.2)

where ei represents the charge of the i−th particle and ri and vi are respectively the

particle position and velocity. It is possible to consider in the definition of J and q

also the presence of external sources.

From the combination of the divergence of the 2nd equation and the third equation

in Eq. (2.1) it is possible to derive the so called equation of charge conservation:

∇ · J +
∂q

∂t
= 0 . (2.3)

Eqs. (2.1) and (2.2) represent 10 independent equations, while the system has 3N+10

unknowns ri, E, B, J and q. The remaining equations describe the motion of the

charged particles due to the magnetic and electric fields:

mi
∂2ri

∂t2
= ei

(
E +

1

c

∂ri

∂t
×B

)
. (2.4)

This approach can theoretically follow the trajectory of each individual particle

present in the system. Nevertheless the study of such a nonlinear system of equations

would be extremely complex, it would require the knowledge of the initial conditions

for each individual particle in the plasma and would give a number of informations

that would be impossible to compare with experimental results.
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2.2 Kinetic theory

The first step towards the definition of the MHD equations is to describe the system

introduced in Sec. 2.1 from a statistical point of view. It is first possible to define

a distribution function f(r,v, t), where the quantity dN = f(r,v, t)drdv represents

the average number of particles in the volume drdv in the phase space.

The equations describing such system can be determined by considering the conserved

quantities and by deriving the corresponding conservation equations.

∂f

∂t
+∇ · (fv) = 0 , (2.5)

where it has to be taken into account that the operator ∇ is applied in the phase

space volume so it will act as ∇+∇v.

Eq. (2.5) becomes then:

∂f

∂t
+ v · ∇f +

F

m
· ∇vf = 0 , (2.6)

where it has been taken into account that in the phase space r and v are independent

variables and that f∇v · (F /m) = 0.

Eq. (2.6) is the conservation equation for the integrated quantity N , defined as:

N =

∫
V

f(r,v, t)drdv , (2.7)

where the volume V is the phase space volume.

An additional hypothesis necessary to obtain Eq. (2.6) is that interactions involving

two particles at the time are not taken into account. This would induce an additional

collision term in the equation. If this hypothesis is reasonable we can then call our

system as a collisionless plasma.

In the case of a plasma the force F can be written explicitly as:

F = e0

(
E +

1

c
v ×B

)
, (2.8)

and by neglecting other collective type of forces that can be present in the system,

for example gravitational forces, it is obtained the Vlasov equation:

∂f

∂t
+ v · ∇f +

e0
m
(E +

1

c
v ×B) · ∇vf = 0 . (2.9)

Eq. (2.9) is, in the generic case, non-linear and a comparison of a solution with data

would require to define and study moments of the distribution f . It is possible for

example to define for any velocity-dependent quantity Φ:
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⟨Φ⟩ =
∫
Φ(v)f(r,v, t)dv∫

f(r,v, t)dv
=

1

n(r, t)

∫
Φ(v)f(r,v, t)dv , (2.10)

where n(r, t) =
∫
f(r,v, t)dv represents the numerical density of the system.

The general n−th order moment is defined as:∫
(vivj . . . vk)f(r,v, t)dv , (2.11)

where it has been defined Φ(v) = vivj . . . vk, product of n velocity components.

It is possible to study the time evolution of the moment by taking moments of Eq.

(2.9) and obtaining the general moment equation:

∂

∂t
(n⟨Φ⟩) +∇ · (n⟨vΦ⟩)− n

m
e0E · ⟨∇vΦ⟩ −

ne0
mc
⟨(v ×B) · ∇vΦ⟩ = 0 . (2.12)

2.2.1 One-fluid model

The following step in the statistical description of plasma properties is to use the

formalism introduced in Sec. 2.2 in order to derive equations that relate different

moments of the distribution function f . In this way we arrive at a fluid description

in term of macroscopic quantities and we do not require anymore a full knowledge of

f in order to study the system.

In general, for a plasma of protons and electrons, we will have two fluids. However, if

the two species are in thermodynamic equilibrium, we can reduce to a single species.

The main quantities describing this model are then defined as n = ne + np for the

numerical density, ρ = npmp + neme for the mass density, q = e(np − ne) for the

charge density and J = e(npu
p−neu

e) for the current density, where u represent the

bulk velocity and e represents the charge unit.

By studying the general moment equations, Eq. (2.12), under these assumptions it

is possible to derive the equations describing the system. The continuity equation

describing temporal evolution for the mass density ρ is:

∂ρ

∂t
+∇ · (ρU) = 0 , (2.13)

where U is the fluid velocity defined as:

U =
meneu

(e) +mpnpu
(p)

ρ
. (2.14)
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Likewise, it is possible to derive the charge conservation equation:

∂q

∂t
+∇ · J = 0 . (2.15)

The equation of motion can be described in terms of the definition of U from Eq.

(2.14):

ρ
dU

dt
= −∇ · P + qE +

1

c
(J ×B) , (2.16)

where we have defined a pressure tensor P and the respective components for the

two different species (indices (s) when refers to the generic one) as:

Pik = P
(e)
ik + P

(p)
ik

P
(s)
ik = nsms⟨w′

iw
′
k⟩ = Pδik +Πik .

(2.17)

The pressure tensor takes into account the displacements in velocity of the particles

in the system with the definition of this displacement in terms of the fluid velocity U

and reads as:

w′ = v −U . (2.18)

The energy equation of the one-fluid model is:

1

Γ− 1
ρΓ

d

dt

(
Pρ−Γ

)
= −Πik

∂Ui

∂xk

− ∂qk
∂xk

+ (qUk − Jk)

[
Ek +

1

c
(U ×B)k

]
, (2.19)

where Γ = 5/3 in the case of a mono-atomic gas and qk represent the k−th component

of the heat flux vector, defined as:

q = n⟨w(1/2mw2)⟩ . (2.20)

The system described so far consists of 12 scalar equation (Eq. 2.13, 2.15, 2.16 and

2.19 together with the Maxwell’s equation for ∇×E and ∇×B) and 21 unknowns.

In order to complete the system of equations we need to introduce another vectorial

equation and then to define a closure, an equation describing the relation between

Πik, P
(e)
ik and q. The additional required equation is the generalized Ohm’s equation

and can be obtained subtracting the equation of motion of the two particles species

that are considered in this model:

Ei +
1

c
(U ×B)i −

Ji
σec

=
me

e2ne

[
∂Ji
∂t

+
∂

∂xk

(JiUk + JkUi)

]
+

1

enec
(J ×B)i −

1

ene

∂P
(e)
ik

∂xk

,

(2.21)
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where the plasma electric conductivity has been introduced as:

σec =
e2ne

meνe,p
. (2.22)

and νe,p represents the average frequency for collision of electrons with protons species.

The only missing equation is the one describing the closure of the system. It is

possible to close the system without considering higher moment equations assuming

different hypothesis:

• Cold plasma model: all the thermal effects are neglected, so that all the com-

ponent of P ik and q vanishes. What is obtained is an ideal system in which all

the effects of particles collisions are neglected,

• Collisional plasma: the plasma is considered always in thermodynamical equilib-

rium, so that its distribution can be described as a Maxwellian. This assumption

requires that Π = 0, q = 0 while P ̸= 0

2.3 Magnetohydrodynamics

A possible approach that allows to study plasma properties is to focus on a specific

regime, defining characteristic spatial and time scales fundamental for the system in

exam and to neglect the terms that become unimportant when in this specific regime.

We can define characteristic timescales for the MHD regime, namely a spatial scale L
and a timescale τ over which the fields that we are going to consider have a significant

variation and a velocity U describing the fluid velocity of the plasma.

We define MHD regime as the one for which the speed of the electromagnetic phe-

nomena, that we can define as L/τ , is of the same order of the typical speed of the

hydrodynamical ones, which speed is defined as U . For the non-relativistic case we

also assume that these velocities are smaller than the speed of light, so that U ≪ c.

Starting from Maxwell equations of Eq. (2.1), together with the equations of the

one-fluid collisional model described in Sec. 2.2.1, we can carry out a dimensional

analysis, by defining characteristic values also for E , B, Q and J , respectively electric

and magnetic fields, charge and current density.

From the fist Maxwell equation it is possible to deduce that E/B ≪ 1:

∇×E = −1

c

∂B

∂t
⇒ E
L
≃ 1

c

B
τ
⇒ E
B
≪ 1 . (2.23)
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In the second Maxwell equation it is possible to show that the contribution of the term

due to the temporal variation of the electric field is negligible so that the equation

reduces to:

∇×B =
4π

c
J . (2.24)

The neglection of the displacement current clarify what we intend as MHD regime.

Neglecting the displacement current (which is typically related to high-frequency

phenomena) is consistent with the assumption of MHD being a low-frequency regime.

The consequence of Eq. (2.24) is that the charge conservation equation (Eq. 2.15)

reduces as follow:

∂q

∂t
+∇ · J = 0 ⇒ Q

τ
+
J
L

= 0 . (2.25)

Taking J from Eq. (2.24) we obtain that E
B

L
τ
≃

(U
c

)2 ≪ 1, so that the equation for

charge conservation can be written simply as:

∇ · J = 0 . (2.26)

In the momentum equation (Eq. 2.16) it is possible to show that the electric part of

the force can be neglected obtaining:

ρ
dU

dt
= −∇P +

1

c
J ×B . (2.27)

Ohm’s equation Eq. (2.21) requires some further work. We can define:

ω ≃ τ−1 cs ≃
(
P

ρ

)1/2

. (2.28)

Neglecting terms in the square bracket and proportional to J ×B requires respec-

tively:

ω/ωpe ≪ U/c ω/ωcp ≪ (U/ca)2 , (2.29)

where ca = B/
√

4πmpnp is the Alfven velocity, ωpe is the electron plasma frequency

and ωcp is the proton cyclotron frequency. In the low frequency regime these con-

ditions are typically satisfied and Ohm’s equation reduces to Ohm’s equation for

resistive plasma:

E +
1

c
U ×B =

J

σec

. (2.30)
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Under the condition:

ωνep/ω
2
pe ≪ (U/c)2 , (2.31)

where ωpe is the electron plasma frequency then also the right hand side can be

neglected and we obtain the Ohm’s equation for ideal plasma:

E +
1

c
U ×B = 0 . (2.32)

The energy equation describing the one-fluid model (Eq. 2.19) with the additional

hypothesis of the collisional regime has the term QU of the order (U/c)2 with respect

to J and the equation can be written as:

1

Γ− 1
ρΓ

d

dt

(
Pρ−Γ

)
=

J2

σec

. (2.33)

In addition to the previous equations we should consider also the equation that still

contains the electric field:

∇×E = −1

c

∂B

∂t
. (2.34)

This equation governs the dynamics of magnetic fields. Finally by taking the curl

of Ohm’s equation substituting ∇ × E from Eq. (2.34) we can obtain the so called

magnetic induction equation or Faraday’s equation:

∂B

∂t
= ∇× (U ×B) + η∇2B −∇η × (∇×B) , (2.35)

where we have introduced the magnetic diffusivity defined as:

η =
c2

4πσec

. (2.36)

Summarizing the MHD equations are:

∂ρ

∂t
+∇ · (ρU) = 0

ρ
dU

dt
= −∇P +

1

c
J ×B = −∇P +

1

4π
(∇×B)×B

1

Γ− 1
ρΓ

d

dt

(
Pρ−Γ

)
=

4π

c2
ηJ2

∂B

∂t
= ∇× (U ×B) + η∇2B −∇η × (∇×B) .

(2.37)

Equations for the ideal plasma are obtained by neglecting the magnetic diffusivity so

that η = 0 and they are:
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∂ρ

∂t
+∇ · (ρU) = 0

ρ
dU

dt
= −∇P +

1

c
J ×B = −∇P +

1

4π
(∇×B)×B

1

Γ− 1
ρΓ

d

dt

(
Pρ−Γ

)
= 0

∂B

∂t
= ∇× (U ×B) .

(2.38)

The system is closed and the other missing quantities can be deduced by:

J =
c

4π
(∇×B)

E = −1

c
U ×B +

J

σec

q =
1

4π
(∇ ·E) .

(2.39)

σec, if present, is assumed a known quantity and is often considered a constant value.

The MHD equations can be expressed in a conservation form:

∂ρ

∂t
+∇ · (ρU ) = 0

∂

∂t
(ρU ) +∇ ·

[
ρUU +

(
p+

1

2
B2

)
I−BB

]
= 0

∂

∂t

(
1

2
ρU2 + ρe+

1

2
B2

)
+∇ ·

[(
1

2
ρU2 + ρe+ p+B2

)
U −U ·BB

]
= 0

∂B

∂t
+∇ · (UB −BU ) = 0 ,

(2.40)

where I is a 3 × 3 unit tensor and e is provided by an additional equation ρe =

ρe(ρ, p)that guarantee the closure of the equation system.

2.3.1 Magnetic Pressure and β parameter

The MHD equations (Eq. 2.37) allow to introduce a quantity that easily let under-

stand the relative power of the hydrodynamical and magnetic effects in a system.

The momentum equation can be re-expressed as:

ρ
dU

dt
= −∇

(
P +

B2

8π

)
+

1

4π
(B∇)B . (2.41)

Considering the i-th component and remembering that we have ∇ · B = 0 we can

obtain:
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ρ
dUi

dt
= − ∂

∂xk

Tik , (2.42)

where we have introduced a new tensor:

Tik =

(
P +

B2

8π

)
δik −

1

4π
BiBk . (2.43)

By assuming that the z−axis of the reference system is aligned (at least locally) to

the magnetic field the tensor can be expressed as: P + B2

8π
0 0

0 P + B2

8π
0

0 0 P − B2

8π

 . (2.44)

The magnetic field introduces an extra isotropic pressure termB2/8π and a anisotropic

negative pressure −B2/4π along the field. The interpretation of this expression can be

understood thinking the field lines like an elastic material, in which any deformation

induces a tension that tends to restore the configuration of straight lines.

A quantity to define the relative importance of the two pressure terms naturally arise

as β parameter, defined as:

β =
P

B2/8π
. (2.45)

If β ≫ 1 the system is then dominated by hydrodynamical effects, otherwise if β ≪ 1

magnetic effects are dominating. In the case of magnetic reconnection the sites with

β ≪ 1 are of particolar interest, having more energy available to be converted in

plasma heating and acceleration of particles to non-thermal energies.

2.3.2 The evolution of magnetic fields

It is possible to define a quantity comparing the timescale of the different terms

describing the time evolution of the magnetic field B in the Faraday equation (Eq.

2.35).

By considering the case in which η is a constant value Eq. (2.35) reduces to:

∂B

∂t
= ∇× (U ×B) + η∇2B . (2.46)

By taking U as a known quantity the equation is closed. There are two terms de-

scribing different effects that can produce a time variation of the magnetic field in

the right-hand side of the equation. The first term is the convective term, containing
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the velocity U and describing how spatial changes on the velocity field can give rise

to temporal changes of the magnetic field. The second term is the diffusive term.

It is possible to define typical timescales for the two phenomena using again a dimen-

sional analysis as in Sec. 2.3 of Eq. (2.46):

τf = L/U τd = L2/η . (2.47)

The ratio of the two timescales is called the magnetic Reynolds number:

R =
τd
τf

=
UL
η

. (2.48)

If the typical convection speed is of the same order of the Alfven speed (which we

have defined in Sec. 2.3) then the number is called Lundquist number:

S =
τd
τf

=
vaL
η

. (2.49)

If R ≪ 1 Eq. (2.46) reduces to:

∂B

∂t
= η∇2B . (2.50)

The resistivity η has the effect of generating a magnetic diffusion, in which the mag-

netic energy decreases and it is converted to thermal and kinetic energy. It is the

regime in which magnetic reconnection take place, with the release of magnetic energy

that can give rise to particles acceleration.

If R ≫ 1 instead Eq. (2.46) reduces to:

∂B

∂t
= ∇× (U ×B) . (2.51)

The main consequence is the so called Alfven’s theorem, stating that in this regime

the magnetic flux through any closed line that is anchored to the fluid is constant in

time. By shrinking the closed line down to reach a single field line the theorem has as

effect that field lines can be considered frozen in the fluid. Since the fluid motion is

described by a continuous function, the magnetic field lines can be bent and deformed,

but not broken. This is an assumption adopted when we describe the system as ideal

plasma. In many astrophysical environments this is a good approximation, but we

have to be careful about systems in which the ideal plasma condition can be locally

invalid and the diffusive term can then play an important role. This is particularly

obvious in the case of magnetic reconnection, in which the release of energy is the

result of the rearrangement of the magnetic field topology, requiring that the magnetic
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field lines are broken and reconnected in a state with lower magnetic energy. These

concepts are elaborated more in details in Chap. 3, where MR phenomenon is treated

and the main results on particles acceleration due to MR are introduced.

2.4 Relativistic Magnetohydrodynamics

MHD formalism developed in Sec. 2.3 can be adapted to the relativistic case. In this

case, the hypothesis that U ≪ c is not valid anymore. The RMHD equations are:

∂t (γρ) +∇ · (γρv) = 0

∂tm+∇ ·
[
γ2wvv − EE−BB+ (p+ uem)I

]
= 0

∂t
(
γ2w − p+ uem

)
+∇ ·

(
γ2wv + E×B

)
= 0

∂tB+∇× E = 0 ,

(2.52)

where ρ is the rest-mass density, m = γ2wv + E × B the momentum density, p the

gas pressure, w the relativistic enthalpy and γ the Lorentz factor. E, B and v are,

respectively, the three–vectors representing the electric field, the magnetic field and

the velocity, uem = (E2 + B2)/2 and I is a 3 × 3 unit tensor. The electric field is

determined by the ideal condition E+ v×B = 0. We use an ideal equation of state,

so that w = ρ + Γ/(Γ − 1)p. The units are chosen so that the speed of light c = 1

and a factor
√
4π is reabsorbed in the definition of E and B.
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3
Magnetic Reconnection

Magnetic reconnection is a non-ideal phenomenon that occurs when two magnetic

fluxes of opposite polarity encounter each other. The converging magnetic field lines

annihilate at the discontinuity surface. The process dissipates the energy stored in

magnetic field into plasma kinetic and thermal energy, through a rearrangement of

magnetic field topology, resulting in particles heating and acceleration. MR is a

natural tendency in a conductive fluid, a natural way to lower the magnetic energy

stored in a system.

Historically MR studies have focused on laboratory experiments (Ji et al. 1998; Egedal

et al. 2011, e.g.) and observations of the solar corona (e.g. Krucker & Battaglia 2013;

Gary et al. 2018; Pontin & Priest 2022).

It is thought to play an important role in several different astrophysical sources,

including pulsar wind nebulae (PWNe; Kirk & Skjæraasen 2003; Cerutti et al. 2014,

2020), GRBs (Zhang & Yan 2010; McKinney & Uzdensky 2011; Kumar & Zhang

2015) and coronae and jets in AGNs (Giannios et al. 2009; Nalewajko et al. 2011;

Sironi et al. 2015; Davelaar et al. 2020; Nishikawa et al. 2020).

The phenomenon has been studied through theoretical models and Particles-in-a-cell

(PIC) simulations, in which it is possible to follow the kinematics of all the particles

and the development of the non-thermal spectra can be studied from first principles.

The Chapter is organized as follow: in Sec. 3.1 the main theoretical models proposed

historically to explain the reconnection rate are presented together with the sponta-

neous reconnection, while in Sec. 3.2 the main results from PIC simulations, with the
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main focus on the plasma parameters necessary for the implementation of a sub-grid

model in the PLUTO code (Mignone et al. 2007), are presented.

3.1 Magnetic reconnection models

The first theoretical models of MR where historically studied to explain the flares

in the solar corona. The main quantity studied is the reconnection rate defined as

the ratio between the inflow and outflow speeds. The observed temporal and spatial

scales indicate a reconnection rate of the order 0.001−0.1 the Alfvén rate, the Alfvén

speed divided by the observed length scale. This corresponds to a Reynolds number

(Sec. 2.3.2) for large-scale structures in the corona of the order of 10 − 1000 (Dere

1996). The first reconnection models here presented had then as goal to estimate the

reconnection rate based on plasma conditions and inflow quantities.

3.1.1 Sweet-Parker magnetic reconnection model

The Sweet-Parker model (Sweet 1958; Parker 1957) represents the stationary model

describing MR. The model considers a two-dimensional, incompressible fluid. The

velocity v and the magnetic field B have non-vanishing components in the (x, z)

plane and an electric field E is directed along the y−axis. The magnetic field changes

polarity along the x−axis (see Fig. 3.1) and at the center of the model a current sheet

forms, where resistivity η (See Sec. 2.3.2 for a more detailed description of the role

of resistivity) has to be considered and the plasma is not ideal anymore. The current

sheet is described by its length L and thickness ∆, where L ≫ ∆, as shown in Fig.

3.1. Outside the resistive layer the plasma can be considered ideal as shown in Fig.

3.1 (effects of the η are negligible outside the current sheet). As a consequence the

magnetic field lines outside this region will be convected towards the current sheet

with the speed of the flowing plasma vin.

The achievement of a stationary state requires a perfect agreement between the en-

trance speed of the inflow plasma and the velocity of diffusion and annihilation of

the magnetic field lines in the current sheet. The requirement imposes a condition

on the inflow velocity vin. The diffusion velocity is instead dependent from the B

gradient, roughly approximated as Bin/∆, imposing limitations on the thickness ∆

of the current sheet.

The model is defined by the inflow quantities vin and Bin, the outflow ones Bout and

vout, where vout is the velocity of the plasma leaving the diffusive layer, the magnetic

diffusivity η and the characteristic dimensions of the current sheet L and ∆.
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Figure 3.1: Sketch of the Sweet-Parker model. At the center the current sheet is represented
as a grey box. The plasma moves toward the resistive layer with velocity vi along the x−axis,
while exits along the z−axis with velocity vout. From Marcowith et al. (2020).

If the values of η,Bin, L are fixed, it is possible to derive the dependence of the other

quantities using the equations for mass and flux conservation. The relations that are

obtained reads as:

vin =
η

∆
∆ = L

vin
vout

Bout = Bin
vin
vout

= Bin
∆

L
. (3.1)

All the quantities can be written as function of the outflow velocity vout. Using the

Lorentz force vout can be estimated as:

vout =
Bin√
4πρ
≡ cai , (3.2)

where cai is the Alfven speed of the incoming flux. As already mentioned, the ratio

between the inflow and outflow speed is know as reconnection rate Ri and for the

Sweet-Parker model is evaluated as:

Ri = vin/cai ∼ S−1/2 , (3.3)

where S is the Lundquist number (Sec. 2.3.2). Similarly, the reconnection velocity,

defined as the velocity vin of the inflow plasma, is vR ∼ caiS
−1/2.

The rate predicted by the Sweet Parker model is not fast enough when compared with

observations. It can lead to a reconnection event, but a stationary model is not able to
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Figure 3.2: Sketch of the Petschek model. At the center the current sheet is represented as
grey box. The plasma moves toward the resistive layer along the y−axis, while it exits along
the x−axis. Slow shocks are formed in the region surrounding the sides of the reconnection
region (Marcowith et al. 2020).

explain the reconnection rates that are observed in the solar corona. The total energy

released in a solar flare can release up to 1032 erg, in few hours, with reconnection rate

of the order 0.001−0.1 the Alfvén rate (Isobe et al. 2002). Observations indicate that

most of the energy is released during the initial phase of the flare (order of minutes)

and the only available source of this amount of energy is the magnetic field. Some

modifications in the geometry or in the stationary hypothesis of the Sweet-Parker

model is required to match the observations.

3.1.2 Petschek magnetic reconnection model

A different geometry of the reconnection site with respect to the Sweet-Parker model

introduced in Sec. 3.1.1 is the Petschek model. The Sweet-Parker model describes

only the region close to the diffusive layer. At the same time the quantities taken

into account to model the reconnection rate comes from a larger region surrounding

the layer. It is natural to extend the model to a larger portion of plasma around the

current sheet. The model assumes a 2D geometry in which the reconnection is now

supposed to happen in a region that can considered as a single point with respect
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Figure 3.3: Evolution of tearing instabilities in a current sheet.

to the macroscopic scale of the system (Fig. 3.2). The central idea is to observe

that we can have a plasma entering a diffusive region with a velocity larger than the

characteristic velocity of the system. This can produce slow shocks and the dissipation

can take place in the diffusive region as well as on the shock fronts, increasing the

efficiency of the energy conversion.

The configuration results in a faster reconnection speed:

vR ∼
π

8

vA
lnS

. (3.4)

S in the equation is determined with the external values far from the current sheet,

key point of this reconnection model. The main problem has been shown by numerical

simulation results: the geometry described is not stable and rapidly collapses to the

Sweet-Parker model.

3.1.3 Spontaneous reconnection

Both the Sweet Parker and the Petschek models suppose that somehow at the begin-

ning an initial plasma flow towards the resistive layer is present. Alternatively, it is

natural to ask whether reconnection can occur as a spontaneous process instead. An

initial homogeneous current sheet, in fact, will tend to evolve in a series of current

filaments. Resistive instabilities can develop, in particular the Tearing Mode insta-

bility (Furth et al. 1963; Rutherford 1973; Coppi et al. 1976). It is driven by the

non-uniformity of the magnetic field, that tries to relax to a lower energy state. This

instability can give rise to spontaneous reconnection events. Resistive instabilities

have timescales intermediate between the resistive diffusion (very slow) and the ideal
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MHD (very fast), τf ≪ τ ≪ τd (Sec. 2.3.2). In particular for the Tearing mode

instability:

τ ≃ τdS
2/5(kL)−2/5 , (3.5)

where L is the size of the system and k is the wave number. The resulting reconnection

rate is higher with respect to the Sweet Parker configuration (Sec. 3.1.1).

An unperturbed state is assumed with a magnetic field:

B0 = B0x(y)ex +B0zez , (3.6)

where B0x(0) = 0, B0x(±∞) = B0 and for simplicity B0z is constant. There is

no initial velocity field and the density value ρ is assumed constant. The tearing

instability develops when perturbing such a system with magnetic and velocity field

perturbations, given as:

B1 = B1x(x, y)ex +B1y(x, y)ey v1 = v1x(x, y)ex + v1y(x, y)ey . (3.7)

Due to the tearing instabilities a component B1y ̸= 0 rises, as expected during MR.

This magnetic field component drags the initial magnetic field B0 towards the dissi-

pative region at y = 0. The velocity flow due to the instability in the vy component

goes as well towards the same region. Additionally the magnetic field component B0z

has no influence in the development of the tearing instability.

A sketch of the evolution of the tearing instabilities is represented in Fig. 3.3. The

initial unperturbed magnetic field is represented in the upper panel. In the lower

panel the magnetic field lines, results of the instability, are represented. Due to the

perturbations, the current sheet fragments in islands (the region with closed magnetic

field lines at the side of the bottom panel) and x-points, region in which the magnetic

field lines annihilates. The process can further develop, with the current sheet that

can further fragment at smaller scales. As it will be shown soon, the development of

tearing instabilities is what is observed during PIC simulations. Current sheets in the

Sweet Parker configuration appear to be unstable to tearing instabilities (Loureiro

et al. 2005; Bárta et al. 2011).

3.2 Main results on particles acceleration

In order to study a phenomenon complex as the MR appears to be, simulations

starting from plausible initial conditions are required. The more consistent way to

29



Figure 3.4: Schematic view of a PIC solver.

study all the details of reconnection such as the final spectra of accelerated particles,

the energy that is released and the acceleration mechanism, is with PIC simulations.

They allow to follow the position and the energy of the particles in a consistent way

with the fluid evolution, with a kinetic approach to the MR problem. A sketch of

how PIC simulations work is shown in Fig. 3.4. In each step during the temporal

evolution of the system, the electric and magnetic fields are defined on a static spatial

grid and evolved with Maxwell equations (Eq. 2.1). The particles are instead able

to move freely on the domain and they evolve according to the Lorentz force, with

the quantities needed interpolated from the grid quantities at their positions. The

current from the particles is then deposited in the cell in which they are located and

the next step of evolution of magnetic and electric field can start again.

As PIC codes need to resolve the (temporal and spatial) dynamic scales of individual

particles, the physical size of the domains and the timescales in which the PIC can be

used is restricted by the plasma skin depth and the plasma frequency of the particle

species that the simulation wants to study. PIC simulations are then necessarily

focused on the microscopic scale of MR phenomenon and their temporal and spatial

domain are limited with respect to MHD simulations.

3.2.1 Development of a non-thermal spectrum

The energy released by the reconnection of the magnetic field lines can have many

effects on the system. The temperature of the fluid increases and, of main interest

for the astrophysical implications, a non-thermal spectrum can develop, in the shape

of a power-law governed by the initial plasma conditions around the current sheet.
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Figure 3.5: Reconnection layer from a 2D PIC simulation with initial value of σ = 10
from Sironi & Spitkovsky (2014) at ωpt = 3000. In the top panel the colormap represents
the density of the fluid, while the lines represent the magnetic field, of opposite polarity
along the y−axis. In the three bottom panels a zoom of the magnetic islands structure
x ∈ [0, 2500] c/ωp is presented. The three colormaps represent respectively the density
together with the magnetic field lines, the magnetic energy fraction ϵB = B2/8πmnc2 and
the mean kinetic energy per particle.

The particle spectrum resulting from MR has been indeed extensively studied in a

fully kinetic framework with PIC simulations, both in a pair plasma (Zenitani &

Hoshino 2001, 2005, 2008; Guo et al. 2014; Jaroschek et al. 2004; Sironi & Spitkovsky

2014; Guo et al. 2015; Sironi et al. 2016; Werner et al. 2015; Petropoulou & Sironi

2018; Werner & Uzdensky 2021; Zhang et al. 2021), in a ion-electron (Melzani et al.

2014; Guo et al. 2016; Werner et al. 2017; Ball et al. 2018; Li et al. 2019; Kilian et al.

2020) and in the pair-ion one (Petropoulou et al. 2019).

The main difficulty of considering ion and electrons in PIC simulations is due to the

different skin depth of the two species, that require very high spatial and temporal

resolutions to catch the details of both species.

The setup normally used in order to study MR in PIC simulations is the so called

Harris current sheet. In the 2D version of this setup the magnetic field is defined as

B = −B0tanh(y/∆)x̂, where B0 is the intensity of the reconnecting magnetic field

and ∆ represents the thickness of the current sheet.

A snapshot of the evolution of a current sheet layer is shown in Fig. 3.5 from Sironi &
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Figure 3.6: Time evolution of the electron spectrum (represented as ϵf(ϵ)) during a 2D
PIC simulation of a current sheet with initial ion-magnetization σi = 0.1 from Werner et al.
(2017). Different times during the simulation are shown with different colors as shown in
the legend. The black solid line represents a power-law with index p = 4 as developed by
the particles at the end of the simulation.

Spitkovsky (2014). During the time evolution the initial thin current sheet fragments

in the so called plasmoids, regions with higher density. An example is the big magnetic

island at x ∼ 400c/ωp in Fig. 3.5. Fig. 3.5 is a good representation of the realization

of tearing mode instabilities (3.1.3) in MR simulations. Looking at the top panel

a series of magnetic island (or plasmoids) is visible, with x-points between them,

similarly to the sketch of Fig. 3.3. Zooming in between two magnetic islands reveals

the small scale structure of the problem. The plasma between two magnetic islands is

fragmented in other smaller islands and x-points. The particles are accelerated both

by the electric field generated during the reconnection and by the fragmentation of

the current sheet and subsequent merging of magnetic islands (Guo et al. 2019). The

magnetic energy is released mainly in the magnetic islands, as it can be seen from the

panel (c) in Fig 3.5, where the magnetic energy fraction ϵB reaches the lowest values

and at the same time in panel (d) it is possible to observe that the same regions are

the ones on which the particles have achieved the highest values of kinetic energy.

A typical time evolution of a particles spectrum during a MR event is represented

in Fig. 3.6 from Werner et al. (2017). The particles are initially distributed fol-

lowing a thermal behaviour. While MR occurs, the temperature of the distribution

increases and a non-thermal component with a power-law tail starts to develop. The

final spectrum has clearly a non-thermal component with a power-law shape and

the acceleration saturates, with the maximum energy reaching a final value around

tωc ≃ 1300.
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The feasibility to study in details the different final spectra depending on the plasma

conditions with PIC simulations opens the possibility to develop a phenomenological

model of the final results of particles acceleration due to MR. The Harris setup is an

idealized version of what is expected to be found in astrophysical environments, where

current sheets generated by the evolution of the plasma may significantly change from

this picture, but it allows to define what are the initial conditions of the system and

to study the different final spectra in a wide range of plasma parameters. Having a

model based on PIC results would allow to implement in (R)MHD codes (see Chap.

2 for a description of the main characteristic of this methodology) a sub-grid model

based on the plasma conditions of the region surrounding the current sheets.

In the following section weare going to take into exams what are, according to PIC

results, the chief parameters required to have a full descriptions of the final accelerated

spectra.

3.2.2 Modeling the accelerated spectrum: the plasma chief parameters

3.2.2.1 Magnetization σ

The first parameter that immediately has been taken into account in the PIC studies

is the cold magnetization σ. For the species i it is defined as:

σi = B2/4πnimic
2 , (3.8)

quantifying the ratio between magnetic energy density and rest mass energy density

in the system.

The development of a MR event requires that the system is initially energetically

dominated by the magnetic energy. More powerful reconnection events can be then

naturally expected in current sheets where the surrounding medium has higher values

of σi.

The correlation of the maximum spectral energy and the power-law slope with dif-

ferent initial σi values has been observed in the final spectra by many PIC studies.

Various regimes of reconnection are usually defined for different ranges of σi. If σi ≪ 1

the regime is defined non-relativistic, since the magnetic energy is subdominant with

respect to the rest mass in the system. For σi ∼ 1 the transrelativistic regime is

reached. The magnetic energy in the system reaches similar values of the rest mass

and the system can be considered in equipartition. Finally for σi ≫ 1 the magnetic

energy is clearly the dominant energy of the system and this regime is called (ultra)
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Figure 3.7: Power-law index p of the electron distribution as a function of σi as found in
Werner et al. (2017). The dashed line represents the best fit for the blue points, results of
PIC simulations with different initial σi values.

relativistic reconnection, with the more powerful acceleration phenomenon happening

in this last regime.

In Werner et al. (2017) a systematic study of the dependency of the characteristic

of the final spectra of electron has been carried out, in a proton-electron plasma.

The σi here discussed refers to the proton species. The final power-law index shows

a dependency on σi as represented in Fig. 3.7. As expected in the non-relativistic

regime the index is very steep, while going towards higher values of σi the index

approaches a asymptotic value p ∼ 1.9. The relation found for the best fit obtained

with data from PIC simulation is expressed as:

p = 1.9 + 0.7/
√
σi . (3.9)

The σ
−1/2
i scaling of the electron power-law index p can be understood within the

framework of stochastic second-order Fermi acceleration of ultrarelativistic electrons

bouncing back and forth between plasmoids moving randomly along the reconnection

layer. λpl is the typical separation between plasmoids and vpl their typical speed, of

the order of ca Alfven velocity, ca ≪ c in the semirelativistic regime. The average

energy gain per bounce is:

∆ε ∼ (vpl/c)
2ε . (3.10)
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The time between bounces is ∆tb ∼ λlp/c and so the acceleration timescale is:

tacc = ε∆tb/∆ε ∝ cλpl/v
2
pl . (3.11)

The escape time can be extimated as the time necessary for two plasmoids to approach

each other:

tesc ∼ λpl/vpl . (3.12)

For a second-order Fermi acceleration process the power-law index should scale as:

p = 1 + tacc/tesc = 1 + const c/vpl . (3.13)

Having vlp ≃ ca ≃ cσ
1/2
i for σi ≪ 1 the general form that we obtain for the power-law

index is consistent with the numerical findings of Eq. (3.9).

The maximum energy ϵc (defined as cut-off energy of the power-law spectra) obtained

by the accelerated particles shows as well a dependency on σi that can be expressed

as:

ϵc = 4σemec
2 , (3.14)

where σe is the magnetization of the electron species that is related to the proton

one by σe = µσi, with µ = mp/me. This cut-off energy could eventually be overcome

by additional acceleration that has been recently observed in 3D PIC simulations

(Zhang et al. 2021) and the possibility to model an additional higher-energy tail of

the spectra has to be taken into consideration.

Werner et al. (2017) found as well that the fraction of energy, defined as qe, that in

MR is gained by the electron population has a dependency on σi. The dependency

can be expressed as:

qe =
1

4
+

1

4

√
σi/5

2 + σi/5
(3.15)

and the best fit and the comparison with results from PIC simulations is shown in Fig.

3.8. While in the non-relativistic to the transrelativistic regime we have qe < 0.5, with

the proton component taking the majority of the available energy, in the relativistic

regime qe ∼ 0.5. This equipartition between the two different species is reached

because in the relativistic limit the available magnetic energy is so high that the

difference in mass between the two species becomes negligible and the reconnection

can be considered happening in an similar way for electrons as well as protons.
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Figure 3.8: Fraction of energy gained by the electron population from the total energy
available in a reconnection event as function of the magnetization σi as found in Werner
et al. (2017). The blue symbols represent the energy fraction gained by the electrons as
found in the PIC simulations, while the green dots represent the fraction for the proton
population. The red dashed line is the best fit obtained for the electron fraction.

3.2.2.2 β parameter

In order to have a complete picture of the acceleration due to MR based on the

characteristics of the surrounding plasma to consider only σi is not enough. An

additional plasma parameter that PIC studies have taken into account is the plasma

βi, representing the proton β parameter, the thermal to magnetic pressure ratio (see

Sec. 2.3.1 for more details). By taking into account the dependency from both these

parameters, the phenomenological model describing the final spectra due to RM can

be described as follow.

The power-law index can be modelled as shown in Fig. 3.9 (Ball et al. 2018):

p(σi, βi) = Ap +Bp tanh (Cpβi) , (3.16)

where:

Ap = 1.8 + 0.7/
√
σi , Bp = 3.7σ−0.19

i , Cp = 23.4σ0.26
i . (3.17)

The expression for Ap has the dependency from σi as the one found in Werner et al.

(2017) and Bp and Cp become negligigle for the β range that has been considered in

Werner et al. (2017). This means that when considering βi low enough (βi < 3×10−3),

we recover the same results found when considering the σi parameter only. This fit
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Figure 3.9: Characterization of the power-law index of the final electron spectra as a function
of σi and βi. The dots represent different results from PIC simulation, while the solid lines
are the best fit obtained for different values of βi at fixed σi value (Ball et al. 2018).

is robust for βi < 0.1 and can be eventually pushed in modelling the final spectra up

to βi ∼ 0.5.

It is possible to quantify the efficiency of the non-thermal electron spectrum with

respect to the Maxwellian for γ > γpk normalized to the overall energy content of the

spectrum, by defining the acceleration efficiency ϵacc as:

ϵacc =

∫∞
γpk

(γ − 1)
[
dN
dγ
− fMB(γ)

]
dγ∫∞

γpk
(γ − 1)dN

dγ
dγ

, (3.18)

where fMB represents the Maxwell-Boltzmann distribution identified as the thermal

component of spectra. The acceleration efficiency ϵacc can be fitted, as shown in Fig.

3.10, by the empirical formula:

ϵacc = Aϵ +Bϵ tanh (Cϵβi) , (3.19)

where:

Aϵ = 1− 1

4.2σ0.55
i + 1

, Bϵ = 0.64σ0.07
i

Cϵ = −68σ0.13
i .

(3.20)

By considering both σi and βi around a reconnection site we have all the ingredients

that are needed to develop a sub-grid model able to describe the final spectra due to

MR in MHD simulations, in which a determination of the spectra would be otherwise
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Figure 3.10: Characterization of the acceleration efficiency ϵacc defined in Eq. (3.18) of the
final electron spectra as a function of σi and βi. The dots represent different results from
PIC simulation, while the solid lines are the best fit obtained for different values of βi at
fixed σi value (Ball et al. 2018).

impossible to achieve when the domains taken into account would be of astrophysical

scales.

3.2.2.3 Guide field

The power-law behaviour of spectra due to MR acceleration may depends on the

presence of a guide field. A guide field is defined as the component of magnetic

field that has no inversion trough the current sheet. Guide fields may be present in

astrophysical environments if a large scale magnetic field structure is present.

In Werner & Uzdensky (2017) the role of a guide field has been studied in 3D pair

plasma simulations. It results that strong guide field fraction Bg z/B0, where Bg z

is the guide field and B0 the total magnetic field, can significantly inhibit the non-

thermal particle acceleration. The effect of the guide field is to reduce the effective

hot magnetization (Werner & Uzdensky 2017):

σh,eff = B2
0/

(
4πh+B2

g z

)
. (3.21)

For modest values of the guide field Bg z ≲ B0/4 there is almost no effect, while strong

guide fields Bgz ≳ B0 can suppress particle acceleration, yielding to steeper spectra

as show in Fig. 3.11 (left panel).

An empirical fit for the role of the guide field, parameterized trough the effective of

magnetization of Eq. (3.21), is shown in Fig. 3.11 (right panel). The plot shows how

an ultra-relativistic reconnection event (σi = 2.74 × 104 in the plot) reaching, when
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Figure 3.11: Left: Power-law behaviour for different Bg z fraction. Right: empirical fit for
the dependency of the power-law index of accelerated spectra as function of the effective
hot magnetization (green line) Werner & Uzdensky (2017). The red and blue error bars
represent the power-law index found respectively in the 2D and 3D simulations.

no guide field is present, the asymptotic power-law index p ∼ 1.9 as predicted by Eq.

(3.16). By increasing the ratio of guide field with respect to the total magnetic field

the power-law index increases. The dependency of the power-law index as function

of σh eff (Eq. 3.21) is represented as green line.

Despite the big errors in the determination of the power-law index for high values of

σh eff , including the effects of the presence of a significative guide field in a sub-grid

model for MR appears to be important.
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4
Current sheet identification

The PIC results describing evolution or MR allow to develop a sub-grid model in

(R)MHD simulations able to model the post-MR spectra of non-thermal particles. In

this chapter I will describe the first step toward the description of the acceleration of

particles due to magnetic reconnection in large scale simulations: the identification

of the current sheet, sites in which the acceleration happens. I will introduce a new

algorithm able to determine on the fly during (R)MHD simulations if a cell can be

identified as reconnection site.

The chapter is organized as follows: in Section 4.1 the current sheet detector algorithm

and its validation are presented and in Section 4.2 the newly introduced method is

applied to a steady state current sheet setup.

4.1 Current-sheet detector

Magnetic reconnection is thought to take place in current sheets, thin layers with

high values of the current density, J = c/4π∇ × B (in the static case). Idealized

current sheet configurations have been extensively adopted by PIC and MHD studies,

typically in the form of a Harris current sheet (see Sec. 3.2.1 for its description).

However, when current sheets form dynamically as byproducts of plasma instabilities,

more irregular shapes can be expected that can significantly differ from the idealized

profile.
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For these reasons I now propose an algorithm to identify localized plasma region

where reconnection may take place. In particular, I aim at: i) improving the com-

putational speed to identify current sheets at runtime during large-scale simulations;

ii) tracing information on the physical parameters (to be subsequently employed in

particle spectral update) in complex structures. While other methods exist in lit-

erature, they are either complex to be extended to a 3D time-dependent simulation

because based on the vector potential A (Servidio et al. 2010) or they rely on the

definition of an average value of J on the domain (e.g. Zhdankin et al. 2013, 2015;

Kadowaki et al. 2018) that can be problematic when considering very inhomogeneous

situations, such as that of a jet propagating into an external environment with very

different properties. Besides, these methods additionally identify a current sheet by

clustering adjacent cells, part of the same acceleration site. This provides more infor-

mation about the global characteristic of the reconnection region, but requires extra

computational time to be performed.

The newly proposed algorithm follows from Mignone et al. (2012) (see, in particular,

Sec. 5.3 of their paper) and flags as reconnection sites cells that satisfy the following

condition (in the 2D Cartesian case):

χ =
|∆xBy −∆yBx|

|∆xBy|+ |∆yBx|+
√
ρ
> χmin , (4.1)

where ∆xBy and ∆yBx are undivided central differences and χmin is a free parameter.

The parameter χ gives a measure of the magnetic field gradient and it is here com-

puted by performing finite differences on adjacent cells, making it computationally

less expensive and more efficient in parallel computation with respect to the other

method already cited. Its computation also does not need the definition of a region

over which average quantities are evaluated as in Zhdankin et al. (2013), leaving χmin

as the only problem-dependent parameter.

Eq. (4.1) can be extended to the 3D Cartesian case. Numerator and denominator of

Eq. (4.1) become respectively, in this case,

|∆xBy −∆yBx|+ |∆xBz −∆zBx|+ |∆yBz −∆zBy| (4.2)

and

|∆xBy|+ |∆yBx|+ |∆xBz|+ |∆zBx|+ |∆yBz|+ |∆zBy|+
√
ρ , (4.3)

respectively.
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4.1.1 Method comparison and verification

In order to verify our method, I first compare my results with those obtained by

adopting the method proposed by Zhdankin et al. (2013). I remind the reader that

Zhdankin’s algorithm identifies current sheet regions in MHD snapshots through local

maxima of the current density J. After the evaluation of the average value of the

current density ⟨|J|⟩, cells with |J|ijk > n⟨|J|⟩ are selected as candidate current sheet

cells, where n is a free parameter of the algorithm.

To compare the two methods, I perform 2D MHD simulations of a Kelvin-Helmholtz

instability (KHI) naturally producing current sheets. The domain consists of a 2D

rectangular box of size L × L/2, where L = 2c/ωp, with a resolution of 512 × 256

grid points. The velocity has a profile vx = 0.5 v0sign(y), where v0 = 0.1 is the

shear velocity. The instability is triggered by perturbing the y-component of velocity,

vy = r v0 exp(−50 y/Ly), where Ly = L/2 is the vertical size of the computational box

and r is a random number in the range [−10−2, 10−2]. The initial density is ρ0 = 1

and the magnetic field is set as B0 = 0.1
√
ρ0c2s , where the sound speed cs = v0 = 0.1.

The magnetic field is at t = 0 along the x−axis, B = B0x̂. The pressure is set as

p = c2sρ0/Γ, where Γ = 5/3 is the adiabatic index. Boundary conditions are periodic

on the x direction and outflow elsewhere.

The comparison between the two methods has been carried out in post-processing

by varying χmin and n and computing the number of flagged zones common to both

algorithms. The average value of J, required in the method by Zhdankin et al. (2013),

is evaluated over the whole domain.

Fig. 4.1 shows the results of the best agreement (maximum overlapping, with ≈ 96%

of points found by the two algorithms), which is obtained at t = 1.2× 106ω−1
p when

χmin = 0.006 and n = 21.6, supporting the effectiveness of our algorithm. It has to

be noticed that the average value of J over the whole domain greatly changes during

the time evolution and the comparison with the method proposed by Zhdankin et al.

(2013) can be performed only for a specific time. At a previous time t = 106ω−1
p ,

for example, the maximum overlapping (≈ 95%) is achieved with χmin = 0.006 and

n = 16, due to the earlier development of the KHI.

As done in Zhdankin et al. (2013), I want to check in post-processing that the current

sheets found by the algorithm are regions in which an inversion of the magnetic field

components parallel to the sheet is actually present. To this end, I estimate the

direction normal to the current sheet by using ∇|J| as a proxy. I pick the value of

∇|J| in the cell in which |J| is largest among those of the same current sheet. The

42



Figure 4.1: Comparison of the results of the current sheet detection method described in
section 4.1 (top panel) and that described in Zhdankin et al. (2013) (bottom panel) at
t = 1.2 × 106ω−1

p . The color plots show the magnetic field B and the red dots represent
points flagged as current sheets regions.

Figure 4.2: Total and reconnecting magnetic field intensities in the KHI problem (zoom on
a smaller domain patch). From left to right: The 1st and 2nd panels represent, respectively,
the magnetic field |B| around a current sheet (identified via Eq. 4.1) and the reconnecting
magnetic field |Br| after the subtraction of the guide field. The 3rd and 4th panels show the
parallel |Br| and perpendicular components to ∇J , respectively.
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evaluation of the cell where to evaluate ∇|J| has been performed by using a similar

approach to what has been done in Zhdankin et al. (2013), where, after the selection

of the cells in which |J|ijk > n⟨|J|⟩, the local maximum is found as maximum in a

7 × 7 × 7 cube. This allows to have a reliable estimate of the vector perpendicular

to the current sheet in its most dissipative regions. I estimate the guide field Bg as

the average value of the magnetic field components in a box of 21 × 21 cells size.

This region has been defined “ad hoc” for this problem in order to include the entire

reconnection sites. A generalization, necessary for example to systematically estimate

the guide field, would require a local description of the perpendicular to the current

sheet and of the average value around the flagged cell. I then define a “reduced” field

Br as Br = B − Bg. It is then possible to evaluate the parallel component B∥ and

the perpendicular one B⊥ of Br with respect to ∇|J|.
Fig. 4.2 shows the result for a single current sheet found in the simulation. The

first and second panels show respectively the total magnetic field intensity B and

the reduced magnetic field Br, that can be considered a good approximation of the

reconnecting field after the guide field subtraction. The third and fourth panels show

B∥ and B⊥, i.e. the parallel and perpendicular components of Br with respect to

the current sheet perpendicular ∇|J|. It is possible to notice that Br results more

symmetric along the current sheet direction with respect to the total magnetic field

B and that B⊥ shows the inversion of polarity expected for a current sheet in which

magnetic reconnection takes place.

This method can be extended to a local analysis, where for any cell identified the

normal to the current sheet is evaluated and an estimate of the reconnecting magnetic

field can be evaluated on the fly, in order to be more precise about the amount of

magnetic energy available during the reconnection (See Sec. 6.2 for an application to

this problem).

4.2 Application to a steady state current sheet

I test the algorithm presented in Sec. 4.1 also in a 2D simulation with a setup

representing a current sheet of known values of σ and β of the fluid. Following

Chiuderi & Velli (2014) we describe a stationary reconnection state.

The velocity field is described by:

v ≡
[v0
a
x,−v0

a
y, 0

]
, (4.4)

where v0 and a are constant values.
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The electric field is directed along the z direction, E = Eêz, where E is the con-

stant field strength. The magnetic field is assumed to lie in the x-direction, that is

B ≡ [B(y), 0, 0] where the exact form of B(y) can be recovered from the stationary

condition (∂/∂t = 0) and the Ohm’s law for a resistive plasma. This yields

B(y) = B0 e
−(y/∆)2

∫ y/∆

0

eu
2

du , (4.5)

where B0 = 2Eca/v0∆, ∆ =
√

2ηa/v0 and η is the magnetic diffusivity. I set c = 1.

I assume as pressure profile:

p = c0 + f(y) + cxx
2 + cyy

2 . (4.6)

In order to have a stationary solution we obtain the following conditions:

cx = cy = −
ρv20
2a2

f(y) = − 1

8π
B2(y) , (4.7)

while the choice of c0 has to guarantee that p > 0 over the whole domain.

The setup consists of a 2D square domain of size L× L, with x/∆, y/∆ ∈ [−10, 10].
The resolution is kept deliberately low in all the simulations, in order to have the

resolution of only a few cells on the vertical of the current sheet, similarly to what is

expected in large scale simulations representing astrophysical object in which many

reconnection sites may be present. The boundary conditions are outflow everywhere. I

set v0/a = 0.1, η = 0.05, ρ = 10−2 to be constant over the whole domain. Macroparti-

cles are injected at t = 0 in the region |y/∆| > 3, so that all of them can be considered

far away from the current sheet. The fluid is kept frozen in the initial configuration,

while the macroparticles evolve according to Eq. (5.2).

I study the dependence of the threshold χmin on the numerical resolution of a current

sheet and on the values of σ which can be detected, and thus sampled, by the algo-

rithm (see Eq. 4.1). χmin has been determined as χmin ≡ χ (y/∆ = ±0.5), where χ

is defined in Eq. (4.1). The resolution is indicated by the number of cells across the

current sheet. I expect indicatively, in the simulations of an astrophysical jet, that

the resolution, constrained by the computational demand, corresponds to a few cells

in a single current sheet.

Fig. 4.3 shows the results. Clearly, for a given number of cells, lower values of

threshold are required to sample lower values of σ. For a given σ, an increase in the

number of cells requires a lower χmin for the algorithm to detect a reconnection site

(by the definition of χ).
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Figure 4.3: Values of the threshold χmin (Eq. 4.1) required to sample different values of σ
as a function of the resolution, given by the number of zones contained in the current sheet
width. Different colours refer to different values of σ, as indicated.

While the results can not be simply extended to more complex situations, they can

be indicative for the choice of the threshold for a given resolution and “required”

minimum σ to be sampled.

4.3 Conclusions

In this chapter I have presented a new method to identify and characterize the phys-

ical properties of current sheets and reconnection regions in (R)MHD simulations,

implemented in the PLUTO code (Mignone et al. 2007).

With respect to previous investigations, the novelty of our algorithm, for the identi-

fication of reconnection sites, is the improved computational efficiency in large scale

simulations, and its capability of recognizing current sheets in complex 2D and 3D

geometries.
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5
Current sheet characterization

In Chap. 4 a new algorithm for the identification of the reconnection sites in large

scale simulations has been proposed. The natural development of a complete sub-

grid model able to estimate the post reconnection spectra is to recognize what are

the main plasma parameters describing the phenomenon and to develop an algorithm

that can follow these quantities during the (R)MHD simulations.

Following the PIC result firstly introduced in Sec. 3.2 I now propose an algorithm

able to sample these parameters.

The chapter is organized as follow: in Sec. 5.1 are described the main plasma param-

eter essential to the full characterization of the particles accelerated spectra and the

validation done with the steady state reconnection setup already introduced in Sec.

4.2, then in Sec. 5.2 the newly developed algorithm is applied to a 2D injected jet

setup and to a 3D unstable plasma column, in order to study in a complex and more

realistic setup what are the expected sampled values for these parameters.

5.1 Characterization of Magnetic Reconnection properties

In order to estimate the efficiency of particle acceleration and the particle spectra

resulting from our simulations, it is necessary to determine the physical properties of

the identified reconnection sites. As shown in Sec. 3.2, PIC studies (Werner et al.

2017; Ball et al. 2018) have shown that the plasma quantities that play a major role
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in this respect are the cold ion (proton) magnetization σ and β (the ratio between

proton thermal pressure and magnetic pressure) defined as:

σ ≡ σi ≡ B2/4πnimic
2 β ≡ βi ≡ 8πnikTi/B

2 , (5.1)

where B refers to the magnetic field that undergoes reconnection and ni is the ion

density. Both quantities refer to the plasma region surrounding the reconnection site.

In the following I will use the symbols σ and β to refer to the fluid quantities of Eq.

(5.1).

The spectrum is described as a power-law distribution in particle energy, f(ϵ) ∝ ϵ−p

with a high-energy cut–off. ϵ is ϵ = (γp − 1)mc2, where γp is the macroparticle’s

Lorentz factor. In particular in Werner et al. (2017) the particles spectrum has been

studied in the semi-relativistic regime (10−3 < σ < 1) and up to the relativistic one

(σ ≫ 1). Their work has shown that the expected power-law index p and cut-off

energy (Eq. 3.14) can be approximated as a function of σ. Their results are in

agreement with those by Ball et al. (2018). While this holds for β × 3 · 10−3, Ball

et al. (2018) found that at higher values the power-law steepens and the final index

p depends also on the value of β (Eq. 3.16).

The other two parameters needed for the description of the post-reconnection spec-

trum, i.e. the fraction of energy gained by the electrons and the acceleration efficiency,

also depend on the same fluid parameters σ and β (Werner et al. 2017; Ball et al. 2018,

Eqs. 3.15 and 3.19). With the sampling of these two quantities it is thus possible to

reasonably approximate the particle spectra. In Chap. 6 I will focus on results for an

ion-electron plasma and the electrons acceleration through the use of macroparticles

and a sub-grid model based on PIC simulations results.

The values usually assumed in PIC studies in order to determine the initial con-

figuration of the current sheet are the asymptotic values of σ and β, far from the

reconnecting region. In the following corresponding σ and β will be identified with

the respective fluid quantities around the region recognized as current sheet in the

MHD simulations. In presence of complex structures and magnetic field configura-

tions evolving with time a dynamic sampling of the fluid quantities is required.

Thus I develop an algorithm able to estimate their values at simulation runtime and

keep track of them. This make use of macroparticle, comoving with the fluid, which

sample σ and β.

The algorithm is implemented in the Lagrangian Particle module (Vaidya et al.

2018) in the PLUTO code (Mignone et al. 2007). In this module the spatial motion

of macroparticles is described by:
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dxp

dt
= v(xp) , (5.2)

where v represents the fluid velocity interpolated at the macroparticle’s position and

the subscript “p” labels the individual macroparticle.

While the macroparticles move in the domain according to Eq. (5.2), σ and β at the

particle’s position are sampled at each step and their value is stored in the variables

σp and βp and updated according to the following algorithm:

1. The first time a macroparticle exits a reconnection region or it is injected in the

simulation domain, the corresponding values of σ and β are sampled by inter-

polating the fluid values at the macroparticle’s position and stored as current

σp and βp. The variable N , describing the number of steps from the reset of σp

and βp values, is set to N = 1.

2. At each time step, while the macroparticle is in a cell that has not been tagged

as current sheet region, the stored values are updated with the sampled ones if

a new σ peak is detected.

3. In case σ does not represent a new peak, the stored values are updated through

a weighted average, namely:

σp ← σp,N−1 +
1

N
(σ − σp,N−1)

βp ← βp,N−1 +
1

N
(β − βp,N−1) ,

(5.3)

where σp,N−1 and βp,N−1 represent the values previously associated to the macropar-

ticle and N is the number of steps from the last reset of the sampled quantities.

4. If the macroparticle is in a cell tagged as current sheet region the values σp and

βp are not updated. These values are describing the asymptotic values with

which the macroparticle has entered the current sheet.

With the average of the sampled σ and β we ensure that σp and βp remain good

estimates of the values surrounding the current sheets, independently of possible

peculiar behaviours of the plasma during its evolution far away from the reconnection

sites.
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Figure 5.1: Results of the sampling of σp and βp for the analytical setup (§5.1.1). The
top and bottom left-hand panels represent, respectively, σ and β (in logarithmic scale)
at t = 30∆/c. The right-hand panels show the corresponding distributions of σp and βp
sampled by the macroparticles located inside the reconnection region at that time.

50



5.1.1 Steady state current sheet: Numerical setup

I test the algorithm by determining σp and βp in a 2D simulation with a setup

representing a current sheet of known values of σ and β of the fluid. The setup is the

same used to test the behaviour of the identification algorithm in Sec. 4.2, following

the setup proposed in Chiuderi & Velli (2014).

I briefly remind that for this setup the velocity field is described by:

v ≡
[v0
a
x,−v0

a
y, 0

]
, (5.4)

where v0 and a are constant values.

The electric field is directed along the z direction, E = Eêz, where E is the constant

field strength. The magnetic field is assumed to lie in the x-direction, that is B ≡
[B(y), 0, 0] where the exact form of B(y) is:

B(y) = B0 e
−(y/∆)2

∫ y/∆

0

eu
2

du , (5.5)

where B0 = 2Eca/v0∆, ∆ =
√

2ηa/v0 and η is the magnetic diffusivity. We set c = 1.

I assume as pressure profile:

p = c0 + f(y) + cxx
2 + cyy

2 . (5.6)

I remind that the stationary solution require:

cx = cy = −
ρv20
2a2

f(y) = − 1

8π
B2(y) , (5.7)

while the choice of c0 has to guarantee that p > 0 over the whole domain. Notice that

the pressure profile contains a component ∝ x2, y2, introducing a dependence on β,

which is a function of the horizontal distance from the center of the simulation. This

dependence is expected to be reflected in the distribution of the βp sampled by the

macroparticles.

This setup, with the B(y) and p(y) profiles showing respectively a peak and a mini-

mum for y/∆ = ±1, is particularly suited to verify our sampling algorithm. In fact,

the macroparticles with initial position |y/∆| > 1 start with σp and βp values that

are reset when they encounter the peak of σ at y/∆ = ±1, allowing us to verify both

the condition of reset of the algorithm and the agreement between the sampled σp

and the βp and the fluid ones as defined in Eq. (5.1).

The setup consists of a 2D square domain of size L× L, with x/∆, y/∆ ∈ [−10, 10].
The resolution is kept deliberately low (64×64 cells), in order to have the resolution of
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only a few cells on the vertical of the current sheet, similarly to what expected in the

simulations of Sec. 5.2. The boundary conditions are outflow everywhere. I set v0/a =

0.1, η = 0.05, ρ = 10−2 to be constant over the whole domain, σpeak ≡ σ(y/∆ = ±1) =
10. Macroparticles are injected at t = 0 in the region |y/∆| > 3, so that their initial

sampled value is far from the reconnection region and from the expected maximum

values of σ and β. The fluid is kept frozen in the initial configuration, while the

macroparticles evolve according to Eq. (5.2). I set χmin = 0.4 as the threshold to

identify the reconnection region, defined in Eq. (4.1) and according to the findings of

Sec. 4.2 for the value of σ set for the initial conditions.

5.1.1.1 Results on MR characterization

The results of the sampling of σp and βp are shown in Fig. 5.1. The top and bottom

panels on left–hand side represent the plasma values of σ and β (in logarithmic scale),

respectively. As expected σ peaks in a region along the entire x−axis at y/∆ = ±1,
with σmax = 10. A similar profile is found for β, where at y/∆ = ±1 a minimum of

βmin ∼ 0.34 is found. The right–hand panels show the results of the sampling of σp and

βp for the macroparticles that are inside the reconnection region at time t = 30∆/c.

The algorithm correctly resets their values at y/∆ = ±1. The distributions found

for σp and βp are narrowly peaked at values close to the fluid σmax and βmin. More

precisely, the sampled σp are systematically lower with respect to the peak value: this

can be ascribed to the number of averaging operations (N ∼ 9 − 10 in this setup)

that the sampling method performs before the macroparticles enter the reconnection

region. The larger spread of the distribution of βp with respect to that of σp is due

to the pressure profile of Eq. (5.6), as mentioned above.

5.2 Jet simulations

I now wish to assess the validity of the method on more complex configurations like

those typically found in magnetically dominated jets.

5.2.1 Slab Jet

5.2.1.1 Numerical setup

The setup consists of a 2D rectangular domain of size L × L/2, with a resolution of

2048× 1024 grid points. The ambient medium has constant pressure p0 = 2× 10−3,

density ρ0 = 1 and a magnetic field along the x–axis with constant magnitude B0 =
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√
2σhp0, where σh is the hot magnetization, different from the cold one sampled by

the macroparticles in the algorithm and defined as σh = B2/ρ0wc
2, where w is the

enthalphy. The jet enters the domain from a nozzle of radius rj = 1 along the x–

direction, with speed vj = 0.95c. The domain size can be defined based on rj so

that L = 40rj. The jet pressure is assumed to be the same of the ambient medium,

pj = p0, while its density is ρj = λρ0, where λ = 10−2 represents the density ratio.

The macroparticles are injected at a fixed time interval ∆tinj = 1 at the jet base, in

a region x ∈ [0, rj] and y ∈ [−rj, rj] with one macro-particle per cell. The boundary

conditions are outflow everywhere except for the injection region.

Values of p and ρ in the ambient medium have been chosen so that the ensuing jet is

not ballistic. I consider different values of σh in order to determine the expected sam-

pled values of σp and βp. Specifically, I set the initial jet and ambient magnetization

to be equal and study two cases with σh = 2 and σh = 6.

I run the simulations with different values of χmin = 0.3, 0.2, 0.1 and for χmin = 0.1

also at a lower resolution of 1024× 512 grid points. With the high and low resolution

rj results resolved respectively by ∼ 51 and ∼ 25 cells.

5.2.1.2 Results

The results obtained from the simulation with σh = 2 are shown in Fig. 5.2 at t = 112.

In the top and bottom left–hand panels the values of (cold) σ and β (defined in Eq.

5.1) are plotted, respectively (in logarithmic scale for β). As expected, nearby the

injection region, the values of σ and β remain similar to the initial values (for these

initial conditions we have σh ∼ σ) while, when interacting with the external medium,

the values of σ (β) tend to decrease (increase). The distributions of the corresponding

quantities σp and βp sampled by the macroparticles that entered a reconnection region

at times t = 112 ± 10 are shown in the right-hand panels. The different histograms

refer to different threshold values (χmin) and grid resolutions. The corresponding

macroparticles positions are marked in the top left–hand panel using green dots.

The σp distribution is not monotonic: most of the reconnection sites have very low

values of σp, but another peak is observed at σp ≈ 2. The distribution of σp around

this peak is shown in the inset of the histogram. Such a behaviour reflects the fact that

the sampling macroparticles can enter reconnection sites lying in strongly magnetized

regions (near the jet beam) as well as in the cocoon. The values of β span a broad

range with only a small fraction achieving β ≲ 1. The distribution of βp has two peaks

(around βp ≈ 0.3 and a broad one around ∼ 10) in correspondence of the two maxima

of σp. For the sake of clarity the main plot shows the distribution for βp < 1, while
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Figure 5.2: Results for the 2D MHD jet simulation with continuous injection, initial σh = 2,
χmin = 0.1 at the largest resolution. The left-hand panels show σ and β (in logarithmic scale)
of the fluid at t = 112. In the upper left panel the macroparticles lying inside a reconnection
region at t = 112 are represented as green dots. The right-hand panels represent the
distributions of σp and βp sampled by the macroparticles that entered a reconnection region
in the time interval t = 112 ± 10. The distributions for different thresholds χmin and
resolutions are also plotted. For the sake of clarity the histogram of σp around σp ∼ 2 is
plotted in the inset of the σp distribution. For βp the main distribution plot is limited to
βp < 1, while the whole distribution is shown in the inset.
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Figure 5.3: Same as Fig. 5.2 but for σh = 6. For the sake of clarity the histogram of σp
around σp ∼ 6 is plotted in the inset of the σp distribution. For βp the main distribution
plot is limited to βp < 1, while the whole distribution is shown in the inset.
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the whole range spanned is plotted in the inset. Fig. 5.3 reports the same quantities

for the case with σh = 6: consistently, the second peak of the σp distribution for this

case is located around σp ≈ 6, in agreement with the value injected at the base of

the jet. These results confirm that the method can correctly sample the reconnection

sites as well as the magnetization and plasma β values.

Regarding the choice of χmin (which determines the total number of samples sites), I

observe the peaks in the distribution start to become significant for χmin ∼ 0.2 and

are better sampled for χmin = 0.1. This is even more clear for the setup with initial

σh = 6 due to the dependence of the value of χmin on the value of the minimum σp

that the algorithm can sample (see Sec. 5.1.1.1).

Finally, in both simulations I compare the results obtained with a lower resolution:

no dramatic differences are found, with some differences in the number of sampling

particles and distribution of σp and βp that can be ascribed to the different simulations

that have been performed to obtain these results.

For a better understanding of the behaviours of field and macroparticles in these large

scale setups a zoom on a reconnection region of the simulation of Fig. 5.3 around

x ≈ 10 and y ≈ 2 is reported in Fig. 5.4. The region at the center of the plot is

identified by the algorithm as a reconnection site, with many other smaller current

sheets around it. The top panel shows the values of χ (for χ ≥ 0.1) together with the

positions of the macroparticles, represented as green dots. Many macroparticles are

inside this reconnection site at the time of the snapshot, after they sampled σp and

βp while entering it. The values of σ are plotted in the central panel together with

the magnetic field topology indicated by arrows whose length is proportional to its

strength. Around the reconnection site σ is higher with respect to its center, with

σ ≳ 1. Its values are not symmetric on the two sides of the current sheet, reflecting

the asymmetry of the configuration. Asymmetric configurations with different values

of σ around the reconnection site have also been recently investigated with PIC simu-

lations by Mbarek et al. (2022) showing that relativitic asymmetric reconnection still

produce power-law distributions and the slope depends on the magnetization of both

inflowing plasmas. The same behaviour can be taken into account by our method,

with macroparticles entering from both sides.

The magnetic field lines show inversion of the direction along the perpendicular to

the current sheet, as we expect in reconnection events.

In the bottom panel the values of β are shown together with the velocity field of the

particles. Although the σ values for this current sheet are typically high, most of the

plasma has values β ≳ 1 and only the sides of the most powerful reconnection region
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in the figure has β ≲ 1. The velocity field follows a behaviour similar to the magnetic

field lines, as we expect in ideal RMHD.

Although I will amply discuss the following point in Chap. 6, it is worth noticing

that the majority of the reconnection sites that these setups generate have values of

βp that are too large for efficient acceleration of particles to relativistic energies: in

this case the dissipated energy may increase the temperature of the fluid. This can be

more clearly seen in Fig. 5.5, a 2D histogram of the values of σp and βp for the case

with injected σh = 6 (corresponding to Fig. 5.3 and χmin = 0.1). The color bar in the

2D histogram describes the number of particles with specific σp and βp values. The

corresponding 1D histograms show their probability distributions function. Most of

the sites with the lowest values of σp are associated to the tail of the βp distribution at

high values. A population of particles with favourable acceleration condition is present

at high values of σp and βp ≃ 10−1. I stress however that in this configuration these

values depend on the fluid properties set for the simulations.

5.2.2 3D unstable plasma column

5.2.2.1 Numerical setup

I now study a 3D plasma column threaded by an helical magnetic field and unstable

to current–driven kink mode. Both MHD and PIC numerical simulations have shown,

indeed, that such configurations may naturally generate reconnection regions which

can accelerate particles to non-thermal energies (Striani et al. 2016; Alves et al. 2018;

Bromberg et al. 2019; Davelaar et al. 2020; Ortuño-Maćıas et al. 2022). Bodo et al.

(2013) performed an in-depth linear analysis of the instabilities and studied the de-

velopment of kink instabilities that may form reconnecting regions (Bodo et al. 2021;

Bodo et al. 2021).

Following Bodo et al. (2013), the 3D initial configuration of the force-free magnetic

field of the magnetically dominated jet is described, in cylindrical coordinates, by:

Br = 0

Bφ = − Bφc

(r/a)

√[
1− exp

(
−r4

a4

)]

Bz = Bφc

√[
P 2
c −
√
π

a2
erf

(
r2

a2

)]
,

(5.8)

where erf() is the error function, a = 0.6rj is the magnetization radius (the radius

within the magnetic field is concentrated), rj = 1 is the jet radius and Bφc is the
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Figure 5.4: Closeup view of the region x ∈ [8, 11] and y ∈ [15, 2.5] for the 2D RMHD jet
simulation, shown in Fig. 5.3. Upper panel: colormap of χ used to identify reconnection
regions (Eq. 4.1). The minimum value has been set to the chosen threshold χmin = 0.1.
Macroparticles located inside the identified sites are shown as by green points. Central
and bottom panels: colormaps of σ and β with arrows representing the magnetic field
(central) and velocity field (bottom). Arrow length is proportional to magnitude.
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Figure 5.5: Values of σp and βp for the 2D RMHD jet simulation with injected σh = 6 at t =
112±10 (corresponding to Fig. 5.3). The left and bottom plots show the 1D histogram of the
probability distribution funtion, while the combined probability distribution is represented
in the 2D plot, where the color gives the number of particles. The probabilities represented
refer to the whole 3D domain.
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maximum azimuthal field. The configuration is thus characterized by the pitch angle

Pc and the average hot magnetization σh. More precisely, Pc is the value of the pitch

of the magnetic field on the jet axis, defined as:

Pc =

∣∣∣∣rBz

Bφ

∣∣∣∣ , (5.9)

and the hot average magnetization σh is:

σh =
⟨B2⟩
ρ0hc2

, (5.10)

where ⟨B2⟩ =
∫ a

0
(B2

z + B2
φ)rdr/

∫ a

0
rdr and σh = 10. The initial values of density ρ0

and pressure p0 are uniform, with p0 = 0.01ρ0c
2 in order to have a cold jet. Following

Bodo et al. (2021) I choose Pc/a = 1.332 to guarantee a fast growth of the instabilities

and efficient dissipation. For simplicity, the numerical simulations are performed in a

frame in which the jet plasma is not moving (vz = 0). As the jet is highly magnetized,

it is necessary to solve the relativistic MHD equations.

The macroparticles are initially located in the jet volume (r < rj) and, as in the

2D case, during the evolution of the simulation they can move across reconnecting

regions, providing a sampling of the fluid quantities around them.

The computational box is the cube L× L× Lz discretized with 700× 700× 250 grid

zones, where L = 60rj and Lz = 10rj. The grid is uniform for |x|, |y| < 8 (x = y = 0

are on the jet axis) and geometrically stretched elsewhere in order to have a box large

enough to avoid spurious effects from the lateral boundaries. The stretched grid is

generated as follow. A stretching ratio r is computed as:

δx = (r + r2 + . . .+ rN) = xR − xL ⇒ r
1− rN

1− r
=

xR − xL

∆x
, (5.11)

where ∆x comes from the uniform grid, N is the number of points of the stretched

grid patch and xL and xR are respectively the leftmost and rightmost points of the

patch. The boundary conditions are periodic in the z direction and outflow elsewhere.

5.2.2.2 Results

The results of the simulation are reported in Fig. 5.6, where σ and β isosurfaces are

shown together with slice cuts. I analyze 3 different simulation times t = 50, 100, 140

representative of different phases of the evolution of the plasma column, respectively:

the linear phase, the full onset of the kink instabilities and the final phase when the

column gets disrupted.
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Figure 5.6: Results for the 3D RMHD jet simulation for an initial σh = 10 and a threshold
χmin = 0.1. Three different times (t = 50, 100, 140) are shown. The domain is restricted
to x, y ∈ [−6,+6] for t = 50 and x, y ∈ [−15,+15] for t = 100, 140. For each panel the
jet values of σ and β (in logarithmic scale) are shown, with a 3D slice and an isosurface
plot. The right-hand panels represent (in blue) the distributions of σp and βp sampled by
the macroparticles that entered a reconnection region in the time interval of the respective
plot time ±10. The distributions coloured in orange refer to the results with a threshold
χmin = 0.05.
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Figure 5.7: Same as Fig. 5.5 but for the 3D RMHD jet simulation, with initial σh = 10 at
t = 100± 10 (corresponding to t = 100 in Fig. 5.6).

A threshold χmin = 0.1 has been set for the identification of the reconnection sites.

Similarly to the 2D case (Sec. 5.2.1), the right–hand panels of the figures report the

distributions (in blue color) of the sampled quantities σp and βp over the whole 3D

domain.

During the linear phase (t = 50) the reconnection sites are located at the borders

of the column (its external parts), where σ and β achieve, respectively, large and

small values. The values of σp sampled by the macroparticles are as large as 20.

As expected, the instability leads to the formation of increasingly complex spatial

structures (corresponding to the growth of different azimuthal modes, on top of the

|m| = 1 mode) with a systematic decrease of the magnetization (t = 100, 140) and

reconnection sites occupying the whole column volume. The distributions of σp and

βp at t = 50 are still similar to the initial values and, at later times of the evolution,

their values reach quasi-equipartition, with the distributions becoming more peaked

around σp ∼ a few and βp ∼ 10−1.

In order to check the effect of the threshold, I also consider the case χmin = 0.05. The

resulting distributions of σp and βp are shown in the right–hand panels of the figures

using orange color. While during the initial phase, the distributions of σp are sensitive

to the value of χmin, at later times the distributions are basically indistinguishable,
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indicating that the chosen value of threshold χmin = 0.1 could be adequate in the long-

term evolution of the reconnection regions. I notice that a lower threshold does not

increase the number of sampled particles: this is due to the fact that macroparticles

tend to concentrate in the regions around reconnection sites.

I stress that in the resulting 3D structure of the reconnection regions, with very

asymmetric and complex geometry of the reconnection sites, the algorithm I developed

shows its full potential for the sampling of the relevant physical parameters.

Finally, in Fig. 5.7, I show again a 2D representation of the probability distributions

function of σp and βp at t = 100. The color bar in the 2D histogram describes

the number of particles with specific σp and βp values. The vast majority of the

reconnection regions are characterized by σp ∼ 2.5 and βp ∼ 10−1. PIC simulations

indicate that these values are suited for efficient acceleration of a non-thermal particle

distribution with typical power-law indices broadly consistent with observations. I

notice that this differs from the results of the 2D case with the continuous injection

(see above). Plausibly this is due to the greater dependence of the values sampled

on the initial (and border) conditions in the slab jet with respect to the case of the

evolving plasma column. Such (promising) findings are explored in Chap. 6.

5.3 Conclusions

As my aim is to determine the effectiveness of MR events occurring in large scale

simulations to accelerate particles to a non-thermal distribution, we have developed

an algorithm which, using macroparticles in the fluid, sample the plasma properties.

According to PIC simulations (see Sec. 3.2) the magnetization σ and the β are

the chief parameters which determine the efficiency, energetics and resulting particle

spectra. Such a sampling has been performed in both the 2D and 3D simulations and

the statistical properties of such parameters have been inferred.

A limitation of the presented method is that the estimate of the magnetization does

not take into account the possible presence of a guide field. I will present a way to

overcome this limitation in Sec. 6.2 by using the method presented in Sec. 4.1.1 to

estimate the guide field and subtracting to the sampled σp the component of magnetic

field along the direction perpendicular to the current sheet. However a study of the

dependence of the final spectra depending on both σp and βp is needed.

Finally, a more fundamental limit could be given by the lack of energetic feedback

between the fluid and the macroparticles. In Chap. 6 I will analyze how often the

amount of energy given to the macroparticles is limited by the lack of feedback and
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numerical limitation, in order to understand the importance of the implementation

of the feedback in our sub-grid model.
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6
Accelerated spectra update

The algorithm for the identification of reconnection sites introduced in Chap. 4 and

the characterization of the plasma quantities around a current sheet as presented in

Chap. 5 enable the implementation in the Lagrangian particles module of PLUTO

code (Vaidya et al. 2018) a model for electrons the post-reconnection update. In this

numerical framework the spectra of the macroparticles is evolved with the use of the

CRs transport equation.

The Chapter is organized as follow: in Sec. 6.1 I will briefly describe the Lagrangian

particle module, responsible for the macroparticles spectra evolution. In Sec. 6.2 I

will describe how it is possible to quantify the fraction of energy that goes from the

reconnecting field to the non-thermal electron population. This novel sub-grid method

will be presented with two different update techniques. In Sec. 6.3 is introduced a

brute-force approach where the macroparticles spectra are reset to a power-law based

on σp and βp. In Sec. 6.4 a convoluted method is proposed, where the spectral update

of the macroparticles considers the history of the spectra and accounts for multiple

macroparticles within the same computational cell. Finally in Sec. 6.5 the convoluted

method is applied to RMHD simulations of a 3D unstable plasma column, studying

spectra evolution in a complex setup.
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6.1 Lagrangian particles: a module for non-thermal emis-
sions

The Lagrangian particles module in the PLUTO code (Vaidya et al. 2018) has been

developed to study radiative emissions due to non-thermal populations in large scale

(R)MHD simulations. A macroparticle, the fundamental element of this module, is

defined as an ensemble of real particles that can be considered close in space and

described by their collective spectrum. Differently from the particles that are part of

the plasma description, macroparticles have non-thermal spectra, for example due to

MR acceleration. In Chap. 5 I extensively used the macroparticles to sample the σ

and β parameters while they were approaching a current sheet, but I did not make

use of the full capabilities of the spectral evolution present in the Lagrangian particles

module. Now, with a method for the identification of MR regions and a sampling

algorithm, it is possible to finally implement in this framework a spectral update due

to MR acceleration.

The isotropic distribution function of the non-thermal particles in phase space for the

relativistic case is defined as:

f0(x
µ, p) , (6.1)

where xµ represents the position four-vector and p the momentum magnitude.

The distribution is evolved in space and time with the relativistic CRs transport

equation, as found in Webb (1989):

∇µ(u
µf0 + qµ)+

+
1

p2
∂

∂p

[
−p3

3
f0∇µu

µ + ⟨ṗ⟩lf0 − Γviscp
4τ

∂f0
∂p
− p2Dpp

∂f0
∂p
− p(p0)2u̇µq

µ

]
= 0 .

(6.2)

The terms in the round brackets describe respectively the transport by convection

and by diffusion, where uµ is the bulk four-velocity of the fluid and qµ is the spatial

diffusion flux. The terms in the square brackets describe instead respectively the

adiabatic expansion, the losses due to synchrotron and inverse Compton emissions,

where ⟨ṗ⟩l is the average momentum change due to non-thermal radiation, the accel-

eration due to fluid shear, where Γvisc is the shear viscosity coefficient, second order

Fermi process, described by the diffusion coefficient in the momentum space Dpp and

lastly non-inertial energy changes due to the measurement of the momentum p in a

frame moving with the fluid.
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The equation can be implemented together with a RMHD solver to evolve concur-

rently the plasma and the distribution describing the non-thermal population. This

has been done with the PLUTO code (Vaidya et al. 2018). In the implementation,

some assumptions have been taken into account. Specifically it has been neglected

the spatial diffusion (qµ = 0), the energization due to shear (Γvisc = 0), second order

Fermi process (Dpp = 0) and non-inertial energy changes. Eq. (6.2) reduces then to:

∇µ(u
µf0) +

1

p2
∂

∂p

[
−p3

3
f0∇µu

µ + ⟨ṗ⟩lf0
]
= 0 . (6.3)

To further simplify the equation it is possible to define:

N (p, τ) =

∫
dΩp2f0 ≈ 4πp2f0 , (6.4)

where N represents the number of particles per unit volume lying in the range from

p to p+ dp at a given time τ . In the relativistic case the energy of a particle can be

express as ϵ ≈ pc and so N (ϵ, τ)dϵ = N (p, τ)dp.

Eq. (6.3) can be expressed for the quantity N (p, τ) as:

dN
dτ

+
∂

∂ϵ

[(
− ϵ

3
∇µu

µ + ϵ̇l

)
N
]
= −N∇µu

µ , (6.5)

where it has been defined ϵ̇l = ⟨ṗ⟩l/p2.
Finally for computational reason the quantity to be evolved in the code is redefined

as:

χ(ϵ) = N (ϵ)/n , (6.6)

where n is the fluid number density. χ(ϵ) represents the number of particles in the

non-thermal component normalized to the fluid number density for the energy ϵ. In

the following the macroparticles will describe the electron population.

Eq. (6.5) becomes for the quantity χ:

dχ

dτ
+

∂

∂ϵ

[(
− ϵ

3
∇µu

µ + ϵ̇l

)
χ
]
= 0 . (6.7)

The macroparticles are spatially evolved as described in Sec. 5.1, being carried along

with the fluid.

The energy is discretized in Nϵ energy bins of width, for the p−th macroparticle,

∆ϵpi = ϵp
i+ 1

2

− ϵp
i− 1

2

, spanning from ϵpmin to ϵpmax, specific of the individual macroparticle

and evolving dinamically during the simulation.
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The maximum energy ϵpmax is numerically limited by the assumption of having the

particles close in space. The particles can not be considered as part of the same

macroparticle if their Larmor radius exceed the computational cell size, so that the

limit on ϵpmax is:

ϵpmax ≤ ϵLarmor = γcf
L mec

2 =
eBrcfL
β⊥

, (6.8)

where rcfL = 0.5min(∆x,∆y,∆z) at the macroparticle’s position, B is the magnetic

field and e is the electron charge. Everything is expressed in c.g.s. units. In the

macroparticles limit the individual particles can be assumes as highly relativistic and

β⊥, representing the ratio of velocity perpendicular to the magnetic field of a single

particle with the speed of light can be assumed as β⊥ ≈ 1. Despite this possible

computational limitation, in the results presented in this chapter the limitation in

maximum energy has never been reached.

Radiative losses are threated as follow. For the Inverse Compton (IC) only the inter-

action with the isotropic Cosmic Microwave Background (CMB) is considered. The

scattering is assumed to happen in the Thompson regime in the relativistic particles

rest frame, so that the cross section σT is independent of the incident photon energy

Eph. The energy loss term for IC and Synchrotron is then given by:

ϵ̇l = −crϵ2 , (6.9)

where:

cr =
4

3

σT cβ
2

m2
ec

4
[UB(t) + Urad(Eph, t)] . (6.10)

UB and Urad are the magnetic and the radiation field energy densities. In the black

body approximation Urad is expressed as:

Urad = aradT
4
CMB = aradT

4
0 (1 + z)4 , (6.11)

where arad is the radiation constant, z is the red-shift and T0 = 2.782K is the CMB

temperature at the present epoch.

6.2 Evaluation of available energy

The identification and characterization algorithms introduced respectively in Chaps.

4 and 5 allow to implement a sub-grid model for the post-MR acceleration spectra.
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All the quantities necessary to the sub-grid model can be determined based on σp and

βp as described in Sec. 5.1.

The first quantity to be evaluated in both the spectra update methods that we present

in this chapter is the energy available to the non-thermal electron population from the

reconnection event. I define δϵ as the energy gained by the accelerated macroparticles

due to MR. This energy is directly related to the intensity of the magnetic field that

is reconnecting around the current sheet and can be expressed as:

δϵ = frec qe ϵaccEB,r . (6.12)

The terms present in Eq. 6.12 can be defined and evaluated as follow:

• frec describes the fraction of the available magnetic energy that is released during

a reconnection event. As shown in Werner et al. (2017), this fraction is ∼ 40%

of the total magnetic energy and it’s only mildly dependent from σ in the trans-

relativistic regime, while in the relativistic regime no dependency is observed.

The factor frec is set to frec = 0.4.

• qe is the fraction of the available energy that goes to the electron population

(Eq. 3.15).

• ϵacc represents the fraction of the available energy that goes to the non-thermal

component (Eq. 3.19).

• EB,r is the magnetic energy, evaluated using B⊥, component of the magnetic

field surrounding the reconnection site that is locally parallel to the current sheet

(and as a consequence perpendicular to the normal to the current sheet). In

order to evaluate B⊥, while the macroparticle is moving outside a reconnection

region, the magnetic field is sampled, individually for each component, with

the same method described for σp and βp (Sec. 5.1). The component of this

field parallel to the current sheet is then evaluated with the same algorithm

introduced in Sec. 4.1.1.

Since the feedback between the macroparticles and the fluid is not implemented in the

code, a comparison between the energy given to the macroparticles and the internal

energy at macroparticle’s position has been implemented. A similar comparison has

been introduced also for the number density. Two fractions fE and fN , representing

respectively the fraction of the internal energy and of number density that I want to
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check are not overcome, are introduced. We set for the simulations in this chapter

fE = fN = 0.1.

In order to perform the energy comparison, during the spectral update the fuild

internal energy at macroparticle’s position is computed as:

ρϵ =
p

Γ− 1
Ideal EOS

ρϵ =
3

2
p− ρc2 +

√
9

4
p2 + ρ2c4 T−M EOS ,

(6.13)

where the second equation is valid for the Taub-Mathews (T-M) equation of state

(Taub 1948; Mignone & McKinney 2007).

In the following simulation I keep track of how often the energy available overcome

this fraction as indication of the importance of an introduction of a feedback.

6.3 Update without convolution with previous spectra

A simple implementation of the spectra update in the Lagrangian Particle module

is to impose the new developed power-law as new spectrum for the macroparticles

that are inside a reconnection sites, taking into account the previous energy of the

macroparticle, but not considering the previous shape of the pre-acceleration spec-

trum.

In the current sheet the spectrum is updated to the power-law predicted by the theory:

Nmr (ϵ, t) = N (ϵmin) (ϵ/ϵmin)
−p+2 , (6.14)

where the +2 in the power-law index is due to the definition of N (Eq. 6.4).

The value ϵmin is determined as the peak of the Maxwellian distribution that describes

the thermal component at the macroparticle’s position.

The normalization of the final spectrum is obtained by imposing the total energy of

the spectrum as the sum of the energy in the pre-acceleration spectrum ϵold and the

energy gained by the reconnection event δϵ. The equation necessary to normalize the

spectrum is then:

N (ϵmin)

∫ ϵmax

ϵmin

(
ϵ

ϵmin

)−p+2 ϵdϵ = δϵ + ϵold . (6.15)

where ϵmax is determined as described in Sec. 5.1.

The spectra update happens only if the maximum energy ϵmax is higher than the one

of the pre-acceleration spectrum.
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Figure 6.1: Result of the acceleration of a single macroparticle’s spectrum due to magnetic
reconnection without convolution, as described in Sec. 6.3.

In order to test the post-reconnection update I use the steady state current sheet

configuration, already exploited to test the sampling method in Sec. 5.1.1. As in the

previous test, the setup has a σmax = 10 and the distribution of the sampled βp values

peaks around βp ∼ 0.35. With these sampled values a power-law index is expected

p ∼ 4.5, a non-thermal efficiency ϵeff ∼ 0.2 and a qe ∼ 0.4. The macroparticles are

created at the beginning of the simulation with an initial steep power-law spectra

with index p = 7, with γmin = 102 and γmax = 103.

The post acceleration spectrum, plot together with the initial injected spectrum is

shown in Fig. 6.1.

As a result of the acceleration in the current sheet, the initial steep power-law is reset

to the new index predicted by the sub-grid model. The old spectrum is taken into

account when evaluating the energy previously present in the spectrum and only the

minimum and maximum energy are reset and any previous slope is not considered.

In this test all the macroparticles never overcame the limits of internal energy and

number density fractions defined by fE and fN .

A possible limitation for this method is the presence of more than one macroparticle

in the same computational cell at the moment of the spectra update. The same

limit applies for the evaluation of δϵ, where the quantity is determined for the single

macroparticle irrespectively of the others. Eq. (6.15) takes into account the previous

energy of the individual macroparticle and the resulting energy that is assigned to
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the macroparticle is independent from how many other macroparticles are present in

the same cell, resulting, in the case of numerous macroparticles accumulated in the

same cell, in a overestimation of the energy that can be individually assigned to the

macroparticles.

6.4 Update with convolution with previous spectra

For these reasons I developed a more refined model that is able to take into account

not only the energy but also the pre-acceleration spectral shape and can correctly

distribute the right amount of energy to each macroparticle when more than one is

present in the same computational cell during the spectral update.

6.4.1 Convolution strategy

A macroparticle enters a reconnection region with a spectrum N0(ϵ). The final spec-

tra N (ϵ), obtained taking into account both the existing spectrum N0(ϵ) and the

power-law generated by the reconnection acceleration Nmr, can be defined through a

convoluted method, as firstly described for DSA in Mukherjee et al. (2021):

N (ϵ) = C
∫ ϵ

ϵmin

N0(ϵ
′)Nmr(ϵ, ϵ

′)
dϵ′

ϵ′

= C
∫ ϵ

ϵmin

N0(ϵ
′)
( ϵ

ϵ′

)−p+2 dϵ′

ϵ′
.

(6.16)

The initial spectrum is convoluted with the power-law Nmr obtained by PIC prescrip-

tions described in Sec. 5.1 and the integral is evaluated considering ϵ ∈ [ϵmin, ϵmax].

ϵmin is the same of the initial spectrum N0(ϵ), while ϵmax is evaluated as described

in Sec. 5.1. Similarly to the case without convolution (Sec. 6.3) the spectra update

happens only if the newly found ϵmax is higher than the maximum energy of the

pre-acceleration spectra N0(ϵ).

6.4.2 Normalization of spectra

The normalization factor C in Eq. (6.16) is set in two steps. First the normalization

due to the available energy δϵ is evaluated. Then, if the macroparticle number density

is greater than the fraction fN , the normalization is reset in order to match this

fraction.
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6.4.2.1 Energy normalization

In the first step I impose that the total energy of all the macroparticles undergoing MR

in a single computational cell is the fraction of magnetic energy of the reconnecting

field that is suppose to go to the non-thermal electron component δϵ as described in

Sec. 6.2. In presence of multiple macroparticles in the same cell the quantity EB,r

necessary for the determination of δϵ (Eq. 6.12) is evaluated as the average of this

individual quantity for each macroparticle.

The energy available for all the macroparticles that have to be updated in the same

cell is:

∆ϵ = min(δϵ, fEρϵ)−
∑
i

ϵi , (6.17)

where
∑

i ϵi takes into account macroparticles that are in the computational cell but

have been already updated with post-reconnection spectra or lie in the flagged region

with βp values that are not suitable for an efficient particle acceleration (βp > 0.5).

The energy of the single spectrum of these macroparticles is evaluated as:

ϵi =

∫ ϵmax

ϵmin

ϵN (ϵ)dϵ . (6.18)

Their energy is so removed from the total energy available for the macroparticles that

are undergoing reconnection in Eq. (6.17).

If the resulting available energy is ∆ϵ > 0, the energy so obtained is distributed among

all the macroparticles that have to be updated in the computational cell, obtaining

for each of them the normalization C. If ∆ϵ ≤ 0 no macroparticle is updated, since

they have already reached the threshold of energy available and there is no more

energy that can be provided from the fluid.

6.4.2.2 Number density normalization

In the second step I check that the normalization C found in the first step (Sec.

6.4.2.1) does not saturate the fraction of the fluid number density fN that is imposed

to the macroparticles. I compute:

∆N = fN
ρ

µma

−
∑
i

Ni , (6.19)

where ρ is the fluid density interpolated at the macroparticle’s position, µ = 0.6 is

the the mean molecular weight for ionised gas and ma is the atomic mass unit.
∑

i Ni
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Figure 6.2: Results of the acceleration of a single macroparticle spectrum due to magnetic
reconnection with the convoluted method (Sec. 6.4) an an initial steep spectrum.

takes into account the number density of the macroparticles in the computational cell

that are excluded from the spectra update for the same reasons of Sec. 6.4.2.1.

The number density for a single macroparticle is obtained as:

Ni =

∫ ϵmax

ϵmin

N (ϵ)dϵ . (6.20)

If the result is ∆N > 0 the macroparticles do not saturated the fraction of the

number density available in the cell and the spectra is not further normalized. If

instead ∆N < 0 a new normalization based on the number density requirement is

imposed, in order to ensure the maximum fraction fN of the fluid number density.

6.4.3 Numerical validation

The same setup as in Sec. 6.3 has been used to test for the convoluted method.

Initially the same initial spectra has been considered.

The results of the method, for a single macroparticle spectrum, are shown in Fig. 6.2.

Differently from the result from the method without convolution shown in Fig. 6.1,

in this case the minimum energy is the same of the pre-reconnection spectrum. The

normalization of the macroparticle spectrum is ensured by the energy normalization

as in Sec. 6.4.2.1 and the fration fE is not overcome.
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Figure 6.3: Result of the acceleration of a single macroparticle’s spectrum due to magnetic
reconnection with the convolution method, as described in Sec. 6.4. Case of a convolution
with the result of a previous reconnection event, with the creation of a broken power-law
spectrum.

The method has been tested also with an initial spectra of macroparticles with power-

law index p = 2, with γmin = 102 and γmax = 104. This setup wants to mimic an

initial spectrum that has previously developed some power-law behaviour in a MR

event and, due to following radiative losses, has decreased its maximum energy.

The result for this second setup is shown in Fig. 6.3. It is possible to see that in this

case, due to the different power-law behaviour of the initial spectrum, the result of the

convolution is a spectrum with a broken-law behaviour. Differently from the previous

proposed method this one is able to keep track of the shape of the pre-acceleration

spectrum.

6.5 3D unstable plasma column

6.5.1 Numerical setup

I now study a 3D plasma column threaded by an helical magnetic field and unstable to

current–driven kink mode. I have already studied this setup in Sec. 5.2.2, motivated

by the instabilities analysis done in Bodo et al. (2013) that found the parameter space

that lead to the development of kink instabilities.

The investigation of Sec. 5.2.2 was focused on sampling σp and βp values. In the early
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phase of development of the instabilities I found high values of σp ≥ 10 and low of

βp ≲ 10−3. Such values are compatible with a regime of ultra-relativistic reconnection,

when the power-law index evaluated with the sampled values and Eq. (3.16) reaches

the asymptotic values p ∼ 1.9 and the reconnection is more powerful. When the

kink instabilities is finally developed, the plasma column approaches a condition of

equipartition, with lower σp values ∼ 1−2 and higher βp ∼ 10−2. In this second time

the plasma conditions still allow an efficient reconnection and eventually accelerate

again the particles in the system.

I chose similarly to the previous chapter σh = 10. The initial values of density ρ0 and

pressure p0 are uniform, with p0 = 0.01ρ0c
2 in order to have a cold jet. Following Bodo

et al. (2021) we choose Pc/a = 1.332 to guarantee a fast growth of the instabilities

and efficient dissipation. For simplicity, the numerical simulations are performed in a

frame in which the jet plasma is not moving (vz = 0). As the jet is highly magnetized,

it is necessary to solve the relativistic MHD equations (Sec. 2.4).

The macroparticles are located at t = 0 as described in Sec. 5.2.2. In order to be able

to identify at any time during the simulation which macroparticles can be considered

inside the plasma column, a tracer quantity has been initialized as tr = 1 for r < rj

at t = 0 and tr = 0 elsewhere. Additionally, for this setup and in order to study

the spectra evolution during magnetic reconnection, I have to initialize the spectra

of macroparticles. Each macroparticle is generated at t = 0 with a steep power-law

with index p = 7 and spanning from γmin = 5× 102 to γmax = 5× 103. These initial

spectra inject energy in the macroparticles that can be increased by the acceleration

processes during the reconnection and have a steep power-law that is going to be

negligible with respect to the spectra generated by acceleration, similarly to what has

been done in Sec. 6.3 and 6.4.

The computational box and boundary conditions are defined as in Sec. 5.2.2.

The normalization units are chosen as follow. The unit of length is set to l̂ = 100 pc,

the velocity is set to v̂ = c speed of light and as a consequence the unit of time in the

simulation is t̂ ≃ 236 yrs. The unit for magnetic field results as B̂ ≃ 1.37mG.

6.5.2 Results for the convolution method

Results for the 3D unstable plasma column setup are presented for two different times,

t = 50 and t = 100, that I have already analyzed for this setup in Sec. 5.2.2 when

presenting the sampling algorithm. They correspond respectively to the first stages

of the development of the instabilities, when σp sampled values are still in the ultra-

relativistic regime and to a situation more close to equipartition, with σp peak of the
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Figure 6.4: Distributions of the fraction of energy going to the electron population qe (Eq.
3.15, left panel) and acceleration efficiency ϵacc (Eq. 3.19, right panel) at t = 50 ± 10 for
the 3D unstable plasma column.

sampled distribution approaching ∼ 1 − 2. The data analyzed refers respectively to

t = 50 ± 10 and t = 100 ± 10, taking into account macroparticles that entered a

reconnection site during these time intervals of the simulation.

6.5.2.1 Electron energy gained ratio and acceleration efficiency distribu-
tions

I study the fraction of available energy going to the electron population qe (Eq.

3.15) and the acceleration efficiency ϵacc (Eq. 3.19). These two parameters allow to

have an indication of the amount of the available energy that effectively goes to the

macroparticles. Additionally, if qe ≃ 0.5, this could be interpreted as an hint that at

that time in the simulation also the proton population could be accelerated efficiently

by MR.

The distributions at t = 50±10 are shown in Fig. 6.4. As consequence of the sampled

σp and βp values both qe and ϵacc approach their saturation values. qe shows a peak

around qe ∼ 0.45, meaning that the energy is almost perfectly distributed between

electron and proton populations. Similarly the ϵacc distribution peaks at ϵacc ∼ 0.9.

Almost all the energy available to the electron population goes into the non-thermal

component, contributing to the development of the power-law.

The distributions for t = 100±10 are shown in Fig. 6.5. As described the reconnection

regions that I find at this second time are less powerful (meaning that σp values are
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Figure 6.5: Same distributions as in Fig. 6.4 for t = 100± 10

lower and βp are higher). This is reflected in the qe and ϵacc distributions. While

qe shifts towards only slightly lower values, with the majority of the values around

qe ∼ 0.4, ϵacc is greatly sensitive when the values of βp increase over βp ≫ 3 × 10−3.

With most of the sampled values βp ≫ 3×10−3 the peak of the distribution drastically

shifts to lower value of acceleration efficiency, with the peak found at ϵacc ∼ 0.2. For

this second time, due to the higher values of βp distribution, while the percentage

of energy available for the electron population qe does not drastically decrease, the

energy goes mostly to the thermal component, determining as a result of a MR event

mostly an increase of temperature and reducing the amount of energy that can form

a power-law spectrum in the non-thermal population.

6.5.2.2 Reconnecting magnetic energy EB,r

In order to better understand the behaviour of all the components that participate

to the computation of the available energy for the macroparticles spectra update δϵ

I analyze how the evaluation of the magnetic field component locally parallel to the

current sheet, described in Sec. 6.2, impacts the amount of magnetic energy available.

I compute the percentage of magnetic field energy that is used in the evaluation of the

available energy with respect to the magnetic energy evaluated with the magnetic field

before the subtraction of the component perpendicular to the current sheet locally.

The results for t = 50 ± 10 and t = 100 ± 10 are shown in Figs. 6.6 and 6.7

respectively. Both the distributions are similar. The peaks of the distributions are
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Figure 6.6: Distribution of the percentage EB, magnetic energy evaluated with the magnetic
field sampled by macroparticles (Sec. 6.2), with respect to EB,r, estimated with only
the component of the sampled magnetic field locally parallel to the current sheet. The
distribution shows the results at t = 50± 10

Figure 6.7: Same distribution as in Fig. 6.6 for t = 100± 10.
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Figure 6.8: Distribution of the number of reconnection events experienced by the macropar-
ticles in the 3D unstable plasma column simulation at t = 50.

close to 100%, meaning that in most of the cases the structure of the magnetic field

around the reconnection regions is parallel to the current sheet and only a small

fraction is subtracted from the sampled magnetic field. This behaviour appear the

same for both times despite at t = 100 the structure of the plasma column is heavily

disrupted by the development of the instabilities (see Fig. 5.6).

6.5.2.3 Number of reconnection events and energy comparison

I then analyze how many times the macroparticles experience an acceleration event

due to magnetic reconnection and how are normalized the resulting spectra.

The results for the number of reconnection events, nrec, are shown in Figs. 6.8 for

t = 50 and 6.9 for t = 100.

At t = 50 most of the macroparticles did not experience any acceleration event and

only a small fraction of them has been accelerated due to MR. The distribution has

a peak at nrec = 0 and a long tail. Even if the macroparticles that experienced one or

more acceleration events are a small fraction, a population of them that undergone

to numerous reconnection events is present.

The situation drastically change at later times. At t = 100 the distribution shown

in Fig. 6.9 has a peak at nrec ∼ 5. A small fraction of particles did not enter any
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Figure 6.9: Same distribution as in Fig. 6.8 for t = 100.

reconnection region, but most of the macroparticles present in the system experienced

multiple reconnection events. The long tail present in the distribution shows that a

fraction of macroparticles has repetitively enter and exited a reconnection region.

I then compare the energy assigned to the macroparticles δϵ (Eq. 6.12) with the

fraction of the internal fluid energy determined by fE. The comparison is useful to

know in how many MR events the macroparticles have a significant fraction (fE > 0.1)

with respect to the thermal component represented by the fluid.

The results as function of time along the simulation are shown in Fig. 6.10. The blue

line represents the number of events in which δϵ < fEρϵ, while the orange line the

opposite case, δϵ ≥ fEρϵ.

Around t ≃ 40 macroparticles start to experience the first reconnection events. The

values of σp and βp in the simulation are in the regime of ultra-relativistic reconnection

and the magnetic energy available for the macroparticles is the highest one along the

simulation. For this reason until t ≃ 60 all the events have δϵ ≥ fEρϵ. While the

instability evolves, the sampled values σp decrease going towards the equipartition

of the system, as studied in detail in Sec. 5.2.2. From t ≃ 60 a fraction of the

total reconnection events starts to have δϵ < fEρϵ. This fraction increases with time,

caused by the diminution of σp during the development of the instability, but remains

a small fraction for the entire simulation.
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Figure 6.10: Comparison between the number of MR events in which δϵ < fEρϵ (blue
line) and δϵ ≥ fEρϵ (orange line) as a function of time in the 3D unstable plasma column
simulation.

During all the simulation no event was normalized using the restriction on the fraction

of particles number density with respect to the fluid one (Sec. 6.4.2.2). This would

have been imposed a restriction on obtaining realistic normalizations for the final

spectra.

6.5.2.4 Individual macroparticles properties

I then focus on how single macroparticles evolve during the entire simulation.

Fig. 6.11 shows the temporal evolution of the spectrum of a single macroparticle

with nrec = 2, where nrec represents the number of reconnection events that the

macroparticles experienced at the end of the simulation at t = 150. The red line in

the plot represents as a reference a power-law f(γ) ∝ γ−p with p = 2. At t ≃ 80

the macroparticle undergoes the first strong reconnection event. The spectra reaches

γmax ∼ 105 and shows a power-law index p ≃ 2. At t = 110 it is possible to notice

that the spectrum, of which the high energy component is decreased due to radiative

losses that happened outside the current sheet, is expressed now as a broken power-

law, with a clear break at γ ≃ 104. Due to the evolution of the σp and βp distributions

during the development of the instabilities, the second reconnection event produces
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Figure 6.11: Temporal evolution of a single macroparticle spectrum with nrec = 2 in the
3D unstable plasma column simulation. Different times during the simulation are labeled
in the legend. As a reference a power-law f(γ) ∝ γ−p with p = 2 is represented as red line.

Figure 6.12: Temporal evolution of a single macroparticle spectrum with with nrec = 5
in the 3D unstable plasma column simulation. Different times during the simulation are
labeled in the legend. As a reference a power-law f(γ) ∝ γ−p with p = 2 is represented as
red line.
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Figure 6.13: Trajectories of three representative macroparticles during the simulation, ex-
periencing different number of reconnection events, as represented in the legend. Arrows
in each different lines represent the direction of the temporal evolution of their trajectory.
Points on the same trajectory represent the macroparticles position from t = 0 to t = 150,
with time steps ∆t = 10.

a much steeper power-law, reaching at the same time lower maximum energies with

respect to the first acceleration. Finally at t = 130 the spectrum, without any further

acceleration, keep decreasing its maximum energy through radiation processes.

In Fig. 6.11 another macroparticle with nrec = 5 at t = 150, close to the peak of

the nrec distribution of Fig. 6.9, is represented. It is possible to observe that the

spectrum after the first acceleration happened at t ≃ 80 is quite similar to the result

obtained for the first macroparticle analyzed (Fig. 6.11), while a second subsequent

acceleration at t ≃ 90 keeps a similar power-law behaviour, but the diminution of σp

does not allow the macroparticle to reach the same maximum energy as the previous

acceleration event. Similarly to the first case, the further accelerations are not as

powerful as the first one and the maximum energy keep decreasing.
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It is possible to follow also the position of the macroparticles during the temporal

evolution of the unstable plasma column. This can be particularly interesting for

macroparticles that experience the higher numbers of reconnection events at that

eventually could have been trapped in some specific region of the column. To check if

this is the case in Fig. 6.13 I present the trajectory for three representative macropar-

ticles respectively with nrec = 2, 5 and 20. The macroparticles with nrec = 2 and 5

are the same for which the spectral evolution is represented respectively in Figs. 6.11

and 6.12. The points on the same trajectory represent the macroparticles position

with time steps ∆t = 10. The arrows in each trajectory represent the direction of the

temporal evolution, from t = 0 to t = 150.

Despite of the different nrec for the three macroparticles their trajectories follow a

similar pattern. Despite of my initial concern, this constitutes an evidence that

macroparticles experiencing more reconnection events do not remain trapped in the

same region of the plasma column. In the first few points t ≲ 50 the macroparticles

are still located at small radii, due to the instabilities still not being able to strongly

deform the plasma column. At t ≃ 50, due to the development of the instabilities, the

macroparticles are moved towards higher radii along with the deformed column. This

is the moment in which the macroparticles with nrec = 2 and 5 experiences their first

reconnection event (see Figs. 6.11 and 6.12). Finally at the end of the simulation,

while the plasma column is heavily deformed, the particles are scattered by these

deformations and they can eventually incur on further reconnection events.

6.5.2.5 Collective macroparticles properties

I finally study the collective behaviour of macroparticles spectra at t = 50 and t = 100.

I consider for both the cases all the macroparticles that are located in computational

cells part of the plasma column. I use the tracer defined in the setup (Sec. 6.5) to

select macroparticles that are located at values tr ≥ 0.4. The lower value of the tracer

with respect to the initial one defined at t = 0, when for r < rj the tracer value has

been set as tr = 1, is due to the development of instabilities. The values of the tracer

lower while the plasma column is deformed, as shown in Bodo et al. (2021). I also

excluded macroparticles that did not experience any reconnection event, in order to

minimize the impact of the choice of their initial spectra at t = 0.

The cumulative spectrum of the selected macroparticles for t = 50 is shown in Fig.

6.14. Similarly to the behaviour of the individual macroparticles I have previously

analyzed (Figs. 6.11 and 6.12) also in the cumulative spectrum a power-law with

index p ≃ 2 is observed (the orange line in Fig. 6.14 represents as a reference a
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Figure 6.14: Cumulative spectrum of macroparticles in computational cells with values of
the column tracer tr ≥ 0.4 (see description in Sec. 6.5) at t = 50. As a reference, power-laws
with different indices are plot as shown in the legend.

Figure 6.15: Cumulative spectrum of macroparticles selected as in Fig. 6.14 at t = 100. As
a reference, power-laws with different indices are plot as shown in the legend.
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power-law with p = 2). An high-energy cut-off is present at energies γ ≳ 105 that

seems well represented by a power-law with index p ≃ 7 (green line as a reference for

a power-law with p = 7).

The cumulative spectrum at t = 100 is shown in Fig. 6.15. With respect to t = 50

up to γ ≃ 105 the spectrum is steeper, with a power-law of p ≃ 2.5 (the orange line

represents as a reference a power-law with p = 2.5), mainly due to the lower σp and

higher βp values sampled at this time.

6.6 Conclusions

In this Chapter two new strategies to update post-MR spectra in R(MHD) simulation

are introduced. Based on the algorithms to identify current sheets of Chap. 4 and

to sample of the chief parameters for MR of Chap. 5 it has been possible firstly to

describe a simple model to evaluate the post-MR spectra based on the previous energy

of the macroparticles, but insensitive to the previous shape of spectra. The update

strategy has then been refined with a second algorithm able to take into account

multiple macroparticles in the same cell at the time of the update and the previous

shape of the spectra entering in the reconnection region.

The new algorithms have been tested in a steady state reconnection region to validate

them and then applied to the case of a 3D unstable plasma column undergoing the

development of Kink instabilities. Motivated by the promising results on the σp

and βp distributions found in Sec. 5.2.2, I found that during the development of the

instabilities the macroparticles are able to be accelerated by ultra-relativistic episodes

of MR and further acceleration can take place at later time, even with the development

of broken power-law spectra. The spectra update allows to study individually how

single macroparticles spectra evolves in astrophysical setups in which MR is present

as well as their collective properties.
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7
Conclusions

7.1 Summary

Understanding how particles are accelerated to non-thermal energies in astrophysical

environments is an important challenge in modern astrophysics. Many progresses

have been done in the studies of the acceleration processes with numerical simulations

at the kinetic level (PIC simulations). In particular, due to the power-law spectra

obtained as a result of the MR, it has been extensively investigated and it appears to

be a promising phenomenon able to explain open problems coming from observations

(Sec. 1.1.2).

After a general introduction presenting the main motivations to study MR in large

scale simulations (Chap. 1) I summarized the main achievements of theoretical and

numerical works on MR (Chap. 3), with particular focus on the results concerning

the description of the non-thermal particle acceleration. The main plasma parame-

ters required to model the post-MR electrons spectra have been introduced. With

the prescriptions obtained from PIC results, it is possible to build a sub-grid model

to overcome the multiscale problem. First I have presented a new method to identify

current sheets in (R)MHD simulations (Chap. 4), implemented in the PLUTO code

(Mignone et al. 2007). With respect to previous investigations, the novelty of the

algorithm, for the identification of reconnection sites, is the improved computational

efficiency in large scale simulations, and its capability of recognizing current sheets

in complex 2D and 3D geometries. I have tested the method in the cases of a single
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current sheet, a slab jet and a 3D unstable plasma column, demonstrating the effec-

tiveness of the proposed method. With respect to the particle acceleration process, a

limitation of the algorithm for the identification of current sheets is that, in this form,

it does not directly provide a way to determine the spatial extension of the current

sheets, contrary to the method proposed by Zhdankin et al. (2013). This could be

particularly critical if the dimensions of the reconnection sites prove to be a relevant

parameter for the acceleration process (see e.g. Sironi et al. 2016).

Then I have presented a new algorithm able to sample, for macroparticles that enter

the MR sites identified with the previous method, the main parameters of the sub-

grid model, the magnetization σ and the β plasma parameter (Chap. 5). Such a

sampling has been performed in both the 2D and 3D simulations introduced before

and the distributions of such parameters have been inferred. A limitation of the

sampling algorithm presented is that the estimate of the magnetization does not take

into account the possible presence of a guide field. A strong guide field can have a

disrupting effect on the efficiency of the acceleration and the final spectrum of non-

thermal particles (see e.g. Werner & Uzdensky 2017, and Sec. 3.2.2.3). It is possible

to overcome this limitation by using the method that has been introduced in Sec.

4.1.1 to estimate the guide field. However a study of the dependence of the final

spectra depending on both σ and β is needed, since a guide field can also affect the

predicted power-law index (Werner & Uzdensky 2017).

Finally the complete sub-grid model for the spectra update due to acceleration in

a current sheet has been presented (Chap. 6). Two different strategies for the up-

date are introduced, with the second one, a convoluted method taking into account

energy of the previous spectrum and the energy gained through MR, together with

the shape of the pre-reconnection spectrum and the presence of multiple macropar-

ticles in the same cell, promising to study the impact of MR and the energetic in

(R)MHD simulations. The method has been applied to the simulation of a 3D un-

stable plasma column, studying the distributions of the main quantities derived from

the sampled σ and β parameters and studying the individual and collective behaviour

of macroparticles spectra.

7.2 Future work

Understanding the complex physics of high-energy astrophysics is one of the most

compelling challenges in astrophysics.
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I have developed a modular framework in (R)MHD simulations that is both versatile

and expansible with new features. Such framework has been developed with an eye

to the comparison between MR and DSA, made possible by the implementation,

with a similar phylosophy of a sub-grid model also for DSA (Vaidya et al. 2018;

Mukherjee et al. 2021). It can be applied to study MR impact in different (R)MHD

simulations of extra-galactic sources. Furthermore, there is still space for expanding

the functionalities and for optimizating the module.

Some of the foreseen directions in which the work can be extended are the following:

− Implementation of the feedback - Feedback between the thermal component

described by MHD equations and the non-thermal population represented by

the macroparticles can be added to the module, allowing a proper comparison

between energy gained by the non-thermal population during DSA and MR

acceleration processes. In Chap. 6 the energy gain associated to the macropar-

ticles in the convoluted method is used to normalize the final spectra. A possible

limitation on the energy injected in the post-MR spectra is given by the defini-

tion of a fraction fN of the fluid number density at macroparticle’s position that

macroparticles spectra can not overcome. Additionally, with ultra-relativistic

reconnection events, the amount of magnetic energy that is converted can have

a significant impact on the subsequent plasma evolution when adding the feed-

back. The implementation of a feedback would require to understand, for each

macroparticle undergoing MR, in which computational cell the energy injected

in post-MR spectra has to be subtracted from the fluid magnetic energy. Fur-

thermore the method described for the convoluted method estimates the mag-

netic energy available for all the macroparticles present in the same computa-

tional cell, careless of the possible different paths with which the macroparticles

entered the reconnection region. The evaluation of the feedback would require

a refinement of this strategy, requiring a more sophisticated treatment for the

estimate of the available energy in presence of multiple macroparticles.

− Application to blazar variability - Using the module on MHD jet simulations

it is possible to study the temporal evolution of MR, its generated spectra

(as presented in Chap. 6), relevance and the appearance of powerful regions

in simulations that may generate powerful fast flares observed in blazars. A

possible limitation can be posed by the computational timestep considered in

the simulations presented in this thesis, that can be comparable or even bigger

with respect to the timescale of typical variability. The problem is more evident
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when considering fast flares. A possible treatment for this problem is to let the

setup develop up to a desired time (e.g. full development of instabilities for the

unstable plasma column) as already done in this work and then to study with

higher time resolution the plasma conditions in which fast flares may happen.

The combination of time and spatial resolution may allow to investigate σ and

β parameters during this phase and to focus on regions with conditions more

favorable to ultra-relativistic reconnection where it is then possible to explore

the possibility to have macroparticles populations freshly accelerated by this

reconnection events.

− Comparison between shocks and magnetic reconnection - Comparison between

DSA and MR acceleration can be performed with spatial and time resolution,

comparing final spectra for the two acceleration methods. Making the compari-

son feasible requires to solve the problem of what happens when a computational

cell is identified both as a reconnection site and as a shock. Shocks due to the

interaction between a jet and the external medium, for example, may deform

the magnetic field and generate reconnection region. Additionally large simula-

tions focused on DSA and on MR consider often different initial condition more

favorable to one of the two acceleration methods (e.g. high σ for MR).

− Magnetic reconnection applied to protons - In order to investigate the role of

the most powerful MR regions in accelerating protons to non-thermal energies

the implementation of macroparticles can be extended to protons population.

For high-σ regions the differences on the details on the final spectra between

electrons and protons become negligible and with the implementation of the

transport equation for protons a similar approach to study proton spectra pro-

duced by MR can be applied. The algorithm implemented in order to identify

the MR regions (Chap. 4) and to sample σ and β (Chap. 5) can be naturally ex-

tended to a second non-thermal population made of protons. The introduction

of the non-thermal proton population would require to duplicate the structure

describing the electron population and to adapt the coefficients regarding the

radiative losses for protons. The spectral update can be achieved with a similar

strategy and applied only for the most powerful reconnection region.

− Magnetic reconnection in GRBs - GRBs may have a Poyting-flux dominated

jet, with high values of σ. MR in moderate to high σ regime may be in this case

the mechanism that accelerate particles. Different models for MR production of
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the prompt emission in GRBs are proposed (Beniamini & Giannios 2017; Zhang

& Yan 2010). The GRB central engine launches an intermittent magnetically

dominated wind. It is expected that in the GRB emission region the plasma

is moderately magnetized, with σ values (1 ≲ σ ≲ 100) that could produce

powerful MR events. Internal collision between different shells in the ejecta

may distort the ordered magnetic field. MHD simulations of such a situation

have been performed (Deng et al. 2015) and the Lagrangian particles module

could study in details the spectra produced in such configuration.
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