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Introduction. Causality is a cornerstone of relativistic quantum field theory (QFT), with
one of its most profound implications being the existence of anti-particles. Furthermore,
causality has important implications for properties of scattering amplitudes in flat space,
such as analyticity in the complex plane of Mandelstam variables. In combination with
unitarity, causality enforces non-trivial consistency conditions on effective field theories
(EFTs) that emerge at low-energy from underlying causal and unitary QFTs, often in the
form of “positivity constraints” on the EFT’s Wilson coefficients that enter in 4-point
scattering, see e.g. [1].
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Figure 1. Type of diagram contributing to the eikonal scattering and the resulting time delay
via the form factors Fi. Curly lines are graviton legs, wiggle lines represent photons, dashed
lines are the spectators, and Fi are the form factors defined in eq. (1.3) associated to the photon
energy-momentum tensor.

The notion of causality in the presence of gravity is certainly more subtle because the
spacetime metric that defines the causal structure is itself subject to quantum fluctuations.
Moreover, quantum fluctuations give rise to different light-cones for the various species
of particles.

A fundamental step in understanding the role of causality in gravity has been taken
in [2], where the properties of 3-point vertices involving at least one graviton have been
linked to the tree level classical corrections of the time delay that particles experience
in eikonal scattering. Requiring positive time delay over all range of impact parameters
provides thus non-trivial causality constraints on the 3-point functions.

In this work we are interested in gravitational causality beyond the classical limit and
study the first non-trivial quantum effects. The question that we have in mind is the
following: what notion of causality is respected — quantum-mechanically — once gravity
generates spacetime backgrounds? When quantum loops are taken into account, is the theory
causal with respect to a lightcone defined by graviton propagation (bulk causality), or rather
with respect to the asymptotic Minkowski metric (asymptotic causality) in the vacuum?

We address these questions by studying eikonal scattering around flat spacetime
perturbatively, where some spectator source weakly perturbs Minkowski space and generates
a non-trivial scattering phase shift, hence a time delay or advance, for photons that are sent
through such space. We focus in particular on the gauge 1-loop corrections o(g2/16π2) to
the time delay, while working to the lowest post-Minkowskian order o(1/m2

Pl), i.e. neglecting
gravitational loop contributions.

The causal response of photons in a perturbed Minkowski space is extracted by calcu-
lating the self-stress (energy-momentum tensor) of photon pairs at one loop. We consider
loops of charged states of massive scalars, fermions, and vectors, which is equivalent to the
full 1-loop correction to the 3-point function as predicted by the Standard Model. The
self-stress is parametrized by three gravitational form factors Fi(q2), for i = 1, 2, 3 with
q the momentum of the exchanged graviton, that correspond to 3-point functions with
off-shell gravitons having a non-trivial momentum dependence that in turn affects the time
delay in the eikonal scattering, see figure 1.

The detailed computation of the form factors is performed via on-shell methods (uni-
tarity cuts, massive spinor-helicity formalism, and dispersion relations), which are computa-
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tionally powerful and conceptually neat, avoiding the need to deal with gauge-dependent
quantities to extract physical observables. For wavelengths of the exchanged graviton larger
than the charged-particle Compton wavelength 1/m in the loop, we recover the classic
results of [3] (extended to include spin-1 loops), from which the study of causality in the
low-energy limit of quantum electrodynamics (QED) coupled to gravity originally started.
At shorter graviton wavelengths, virtual particles can probe larger regions of spacetime. As
a result, we show that the sign of the time delay at small impact parameters b� 1/m is
related to the sign of the QED β-function contribution from charged particles.

We find no asymptotic-causality violation for impact parameters larger than the length
scale associated to the Landau pole (below which our calculations no longer apply) in
spinorial and scalar QED. Loops of spin-1 W -bosons do not generate a Landau pole1 and
give in fact no asymptotic-causality violation because of Sudakov infrared (IR) divergences
which exponentiate and suppress the form factor at large momentum transfer. Instead,
and despite being classically valid, we find that bulk causality is not respected quantum
mechanically, within our setup.

The remainder of this paper is organized as follows. In section 1 we calculate the
energy-momentum tensor at one loop in the Standard Model and study its properties,
including the connection between the gravitational form factors, β-functions, and IR
divergences. We also study the Higgs/graviton mixing that contributes to the form factors.
In section 2, we calculate the phase shift by taking the eikonal limit of the amplitudes in the
relevant kinematic configuration and computing its Fourier transform to impact parameter
space. Different limits of the integration are studied analytically at large and small impact
parameter. Section 3 is devoted to studying the implications of the 1-loop self-stress on the
two notions of causality. Conclusions and future directions are discussed in section 4.

1 The photon self-stress

In this section we calculate the matrix element of a symmetric and conserved energy-
momentum tensor Tµν in flat spacetime

〈0|Tµν(x)|k′k〉 = e−i(k+k′)·x〈0|Tµν(0)|k′k〉 , Tµν = Tνµ ∂µT
µν = 0 (1.1)

between a pair of (identical) incoming massless spin-1 particle states, both taken on-shell,

k2 = k′ 2 = 0 , ε · k = ε′ · k′ = 0 , (1.2)

where the dot · indicates Lorentz contraction with the Minkowski metric (see appendix A for
conventions), and k2 ≡ k · k. The ε and ε′ are polarization vectors associated, up to a gauge
choice, to k and k′ respectively.2 In analogy with low-energy quantum electrodynamics,
we refer hereafter to these states as “photons,” although our analysis goes beyond real
world QED to any massless spin-1 minimally coupled to gravity. By crossing symmetry,

1We are including Higgs bosons to make the theory renormalizable in the absence of gravity.
2The little-group index that labels the helicity of the particles is sometime left understood to avoid

clutter of notation, but displayed whenever relevant.
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eq. (1.1) determines as well the 〈k′|Tµν(x)|k〉 matrix element by the replacement ε′ → ε′∗

and k′ → −k′ in eq. (1.3), which flips the helicity.
After Fourier transforming (1.1) and factoring out a (2π)4δ4(k+k′+q) from momentum

conservation, the matrix element can be written as the sum of three conserved and gauge-
invariant tensor structures multiplied by scalar form factors Fi(t), for i = 1, 2, 3,

〈0|Tµν(0)|k′k〉N = 〈0|Tµν(0)|k′k〉
∣∣treeN F1(t)

+ Pµν(q)
[
2(ε′ · k)(ε · k′)− q2(ε · ε′)

]
F2(t)

+ pµpν
[
2(ε′ · k)(ε · k′)− q2(ε · ε′)

]
F3(t)

(1.3)

where we have defined

p ≡ k′ − k , q = −(k + k′) , t = q2 = 2k · k′ , Pµν(q) = qµqν − ηµνq2 (1.4)

and N =
√

4|k0k′0| is the relativistic normalization factor. The basis of tensor structures is
chosen to isolate first the classical term

〈0|Tµν(0)|k′k〉
∣∣treeN =

(
k[µεα]k

′
[νε
′
β] + k[νεα]k

′
[µε
′
β]

)
ηαβ − 1

2ηµνk
[αεβ]k′[αε

′
β] (1.5)

associated to the free-photon T (γ)
µν in eq. (B.1), then the identically conserved terms Pµν(q)

associated to the so-called improvement terms, and finally the projector pµpν which is
orthogonal to qµ, and hence conserved, via the on-shell condition. Their physical meaning
is made manifest by the dependence on the helicities h and h′

〈0|Tµν(0)|k′h′kh〉N =
(

1
2〈k
′σµk]〈k′σνk]F1(t) −〈kk′〉2 (Pµν(q)F2(t)+pµpνF3(t))

−[kk′]2 (Pµν(q)F2(t)+pµpνF3(t)) 1
2〈kσ

µk′]〈kσνk′]F1(t)

)
(1.6)

where the diagonal entries correspond to h′ = −h = ± (here referred to as helicity-preserving,
in reference to the crossed process), while the off-diagonal entries correspond to h = h′ = ±
(helicity-flipping). Here, σν are the Pauli matrices, and the square and angle brackets
are the standard spinor helicity variables (see appendix A). One can recognize the three
covariant little-group structures: F1 parametrizes the helicity-preserving scattering against
an off-shell graviton — equivalently on-shell massive spin-2 —, while F2 and F3 control the
overlap between the helicity-flipping photon pair — hence having zero spin in the direction
of motion — and either the spin-0 or the spin-2 state found in Tµν |0〉, which can have such
a vanishing spin projection. There is no spin-1 state and only one spin-0 state because of
the conservation equation ∂µTµν = 0.

From the normalization limk′→k〈k′h|Tµν(0)|kh〉 = kµkν/k0 associated to the particle
4-momentum Pµ|k〉 =

∫
d3xT 0µ(x)|k〉 = kµ|k〉, the helicity-preserving entries of eq. (1.6)

are fixed at zero-momentum transfer

F1(t→ 0) = 1 . (1.7)

Once coupled to gravity, this corresponds to the universal helicity-preserving low-energy
coupling of gravity set by the reduced Planck mass mPl = (8πG)−1/2, where G is the
Newton constant.
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1.1 Self-stress at one loop

The energy-momentum tensor we consider is defined operationally as the covariant source of
a weak gravitational field. At tree-level F1 = 1 and F2,3 = 0 for all values of t, corresponding
to the photon matrix elements of the free Tµν reported in appendix B. At 1-loop, radiative
corrections modify these values via loops of charged states coupled to the photons,3 and
in the following we reconstruct the radiative self-stress matrix elements from tree-level
amplitudes using on-shell methods.

One simple and efficient way to extract the form factors Fi is calculating first their
discontinuities in the complex t-plane across the real line for t > 4m2, as shown in the loop
diagrams in figure 2, where m is the mass of any given charged state running in the loop.
Then one computes the real parts by a simple dispersive integral, see eq. (1.11). It turns out,
in fact, that the gravitational phase shift and the associated light-bending and time delays
can be extracted directly from the discontinuity alone (see for example eqs. (2.6), (2.7)
combined with (2.9)).

The discontinuity at one loop can be calculated by either explicit evaluation of the
(non-analytic part of the) triangle and bubble diagrams in figure 2 (with no cuts), or
equivalently by convoluting tree-level amplitudes via the Cutkosky rule. We follow the
latter approach and have found it convenient to build first an auxiliary 2-to-2 scattering
amplitude 1γ3γ → 2S4S for photons into some spectators S taken to be a real massless
scalar minimally coupled to gravity. The discontinuity of the energy-momentum tensor in
the Mandelstam variable s13 ≡ (k1 + k3)2 = t for s13 > 4m2 is promptly obtained from the
auxiliary amplitude multiplied by s13m

2
Pl

k
(µ
2 k

ν)
4 Disc 〈0|Tµν(0)|kh1

1 kh3
3 〉N = m2

PlDisc s13M(1γ3γ → 2S4S) (1.8)

by factoring out k(µ
2 k

ν)
4 . This is effectively the same as considering the s13-channel disconti-

nuity of 2-to-1 amplitudes associated to pairs of photons producing an off-shell graviton.
The right-hand side of eq. (1.8) can be calculated at one loop via the Cutkosky rule

DiscM(1γ3γ → 2S4S) = i

∫
dΠ56M(1γ3γ → 5X6X̄)M(5X6X̄ → 2S4S) (1.9)

using the tree-level amplitudesM(1γ3γ → 5X6X̄) andM(5X6X̄ → 2S4S) where (5X , 6X̄) is
any pair of charged particles/antiparticles of spin JX = 0, 1/2 or 1 in the Standard Model
(hereafter dubbed φ, ψ and W respectively), dΠ56 is their Lorentz invariant two-body phase
space, and the sum over the helicities of internal particles is left understood. All the relevant
amplitudes are summarized in table 1, and the diagrams contributing to the discontinuity
are shown in figure 2.

For X = φ, ψ, the 4-point functions M(1γ3γ → 5X6X̄) are the pair production
amplitudes in standard (scalar and spinorial) QED. They can either be obtained by
Feynman diagrams from the Lagrangians given in appendix E, or recovered from standard

3There are in general also loop corrections to F2 from the vacuum expectation value (VEV) of neutral
scalars non-minimally coupled to gravity, ∝ ξ

∫ √
|g|RH2 + . . ., so that a non-vanishing 〈H〉 = v generates

graviton/scalar mixing ∝ vξ. See section 1.2 and appendix C.
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Figure 2. Diagrams contributing to the 1-loop discontinuity of the 3-point function with k2 = k′ 2 = 0
and q2 > 4m2

X (1–3 crossed triangle diagrams omitted for simplicity). Curly lines are graviton legs,
wiggle lines represent photons, charged particles of spin 0, 1/2 and 1 in the loop are represented by
X = φ, ψ,W respectively, and dotted lines put legs that they cut on-shell.

on-shell techniques. With the latter approach, unitarity dictates the factorization of the
4-point amplitude into 3-point amplitudes which are completely fixed by little group scaling
and dimensional analysis, (for reviews see e.g. [4, 5]).

The case of the massive vector X = W is slightly more delicate because the high energy
limits involve extra 3-point vertices relative to the one of massless Yang-Mills, reflecting the
presence of the eaten Goldstone bosons. The minimal cubic coupling we consider is thus
fixed by its high energy behavior, requiring that the vertices match massless Yang-Mills for
the transverse polarizations, and minimally coupled massless scalars for the longitudinal
polarizations. This is simply the on-shell amplitude description of the Higgs mechanism [6],
i.e. the Goldstone equivalence theorem. Once again, this result is matched by the Lagrangian
formulation of appendix E. The last column of table 1 is the production of the neutral
spectator through the gravitational interaction. All X are taken to couple minimally to
gravity except for the non-minimal coupling present on table 1 for φ, parametrized by ξφ.
Such a contribution is discussed in section 1.2.

Comparing the tensor structures in eq. (1.3) or eq. (1.6) with the expressions we find
for eq. (1.8) using eq. (1.9) and the amplitudes in table 1, we extract the form factor
discontinuities DiscFi. For convenience, we list here DiscF1 for the three massive spinning
particles φ, ψ,W running in the loop, while the discontinuities of the other form factors are
reported in appendix D

DiscF1(t)φ = iα

6t2

t(t−10m2
)√

1− 4m2

t
+24m4 tanh−1

√
1− 4m2

t

θ(t−4m2)

DiscF1(t)ψ = 2iα
3t2

√1− 4m2

t

(
5m2+t

)
t−6m2

(
2m2+t

)
tanh−1

√
1− 4m2

t

θ(t−4m2)

DiscF1(t)W = −iα2t2

√1− 4m2

t
t
(
10m2+7t

)
−8
(
m2+t

)(
3m2+t

)
tanh−1

√
1− 4m2

t


×θ(t−4m2) (1.10)

where θ(x) is the Heaviside unit-step function and α = g2/4π is the fine structure constant.
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M(1−γ 3+
γ 5X6X̄) M(1−γ 3−γ 5X6X̄) M(5X6X̄2S4S)

φ g2〈1(k5−k6)3]2
2(s15−m2)(s16−m2)

2g2m2〈13〉2
(s15−m2)(s16−m2)

(s25−m2)(s45−m2)
m2

Pls24
−ξφ s24

6m2
Pl

ψ g2〈1(k6−k5)3]
(s15−m2)(s16−m2) (〈15〉[36]+〈16〉[35]) 2g2m〈13〉2〈65〉

(s15−m2)(s16−m2)
s25−s45
4m2

Pls24
(〈6(k2−k4)5]+〈5(k2−k4)6])

W 2g2

(s15−m2)(s16−m2) (〈15〉[36]+〈16〉[35])2 2g2〈13〉2〈65〉2
(s15−m2)(s16−m2)

−1
4m2

Pls24
(〈6(k2−k4)5]+〈5(k2−k4)6])2

Table 1. Amplitudes relevant in the determination of DiscFi, where g is the gauge coupling
(in the normalization of unit charge). Each row corresponds respectively to X =φ,ψ,W . Other
photon helicities are recovered by replacing holomorphic with anti-holomorphic configurations (and
vice-versa). Notice, that all amplitudes are given in terms of incoming states, and in order to be used
in (1.9) all legs on the r.h.s. of the arrows should be flipped by the map p→−p, and |p〉I→−|p〉I ,
|p]I→|p]I for massive legs. In this case, the overall effect of the flipping is just the lowering of the
SU(2) indices on the massive legs, and no effect on the scalar legs. The contact term proportional
to ξφ in the first line is the amplitude counterpart of the scalar non-minimal coupling to gravity, see
eq. (1.15). Other model dependent contributions, such as those due to Higgs bosons, are discussed
in section 1.2. See appendix A for conventions.

X DiscF1(t� m2) DiscF2(t� m2) DiscF3(t� m2)
φ iα

6
iα
12(5− 4ξφ)δ(t) − iα

12δ(t)

ψ 2iα
3

iα
6 δ(t)

iα
6 δ(t)

W − iα
2

(
7− 4 log t

m2

)
− i3α

4 δ(t) − iα
4 δ(t)

Table 2. Limiting behavior of DiscFi in the kinematical region t < 0 and |t|/m2 →∞. The Dirac’s
delta functions signal that the concerned discontinuities vanish pointwise in the massless limit but
not under integration.

The t� m2 limits of these expressions will be very useful in the following discussion and
therefore are listed in table 2.

While DiscF2,3(t/m2 →∞) vanish pointwise, as expected for the h = h′ = + helicities
of the photons that forbid any non-trivial products of 4-point amplitudes with exactly
massless particles which enter in the unitarity cut, they actually return Dirac δ-functions,
see table 2. A similar effect has been pointed out in [7] in the context of the Higgs boson
coupling to photons. The connection between these δ(t) and the IR-side of the trace anomaly
is discussed in section 1.3.

Notice, moreover, that the constant contribution to DiscF1(t� m2) is given by the
β-function of the corresponding particle in the loop, as detailed in section 1.3. Also, the
behavior of the massive spin-1 particle differs from the other contributions by the presence
of a log2 t/m which will be identified as the contribution of soft divergences in section 1.4.

The discontinuities can thus be integrated with the dispersion relations

F1(t) = 1 + t

2πi

∫ ∞
4m2

dt′

t′
DiscF1(t′)
t′ − t− i0+ , F2,3(t) = 1

2πi

∫ ∞
4m2

dt′
DiscF2,3(t′)
t′ − t− i0+ , (1.11)
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F1(t) F2(t) F3(t)
X m2�|t| m2�|t| m2�|t| m2�|t| m2�|t| m2�|t|

φ 1+ αt
180πm2 1+ α

72π

(
19−6log −t

m2

)
α(13−10ξφ)

720πm2 −α(5−4ξφ)
24πt − α

720πm2
α

24πt

ψ 1+ 11αt
360πm2 1+ α

π

(
35
36−

1
3 log −t

m2

)
α

180πm2 − α
12πt

α
360πm2 − α

12πt

W 1+ 7αt
20πm2 1− α

4π

(
125
6 −7log −t

m2 +2log2 −t
m2

)
− 7α

240πm2
3α
8πt − α

240πm2
α

8πt

Table 3. Large and small m limits of the form factors Fi. The EFT parameter α3 in eq. (1.12) is
given by α3 =−F3(|t|�m2).

determining Fi everywhere in the complex cut t-plane. The subtraction constant for F1
has been fixed by the normalization condition eq. (1.7), so that helicity-preserving low-
energy photons scatter gravitationally with strength 1/mPl. The full expressions of Fi(t)
are summarized in appendix D, while the important limits are collected in table 3 for
convenience. The earliest calculation of Fi in spinorial QED was performed in [8].

One particularly interesting limit of eq. (1.3) is at large masses of the particles running
in the loop. This limit is equivalent to integrating out such particles and can be matched
to effective irrelevant contributions4

L = −1
4FµνF

µν + α1RFµνF
µν + α2RµνF

µαF να + α3RµναβF
µνFαβ + . . . , (1.12)

of which we only display the off-shell 3-point vertices. Notice that only α3 contributes to
the on-shell 3-point function γγ − graviton, and the α1,2 correct instead low-energy on-shell
4-point amplitudes only, as is visible by using the equations of motion. We remark that the
form factor F3 reduces to the Wilson coefficient of FµνFαβRµναβ i.e. α3 = −F3(t � m2),
which give rise to on-shell helicity-violating 3-point vertex γγ − graviton, at low energy.
The electron and scalar Wilson coefficients for α3 nicely agree with the results present in
the literature, see e.g. [3, 8, 11] and references therein. The effective Wilson contribution to
α3 from massive vectors is new to the best of our knowledge.

1.2 Non-minimal couplings and Higgs/graviton mixing

The (ξφ-independent part of the) form factors we have calculated are generated at one loop
by charged states minimally coupled to photons and gravity. Within this setup neutral
particles contribute from 2-loop order only. With non-minimal couplings, instead, other
1-loop contribution are generated, even from neutral scalars.

In this subsection we discuss two illustrative cases of non-minimal gravitational coupling
for charged (φ) and neutral (H) scalars. The latter is actually relevant because of the Higgs
mechanism whenever charged spin-1 particles are considered, should the Higgs boson be
coupled to gravity non-minimally. We report the result for the Standard Model Higgs at
the end of this subsection.

4It is actually possible to match as well the form factor contributions in the massless limit but to a
non-local 1-loop effective action, using the covariant effective action approach of e.g. [9, 10].
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Let us consider non-minimal gravitational couplings given by

S ⊃
∫
d4x

√
|g|R6

(
ξφ|φ|2 + ξH

2 H2
)

=⇒ δTµν = −1
3 (∂µ∂ν − ηµν�)

(
ξφ|φ|2 + ξH

2 H2
)
,

(1.13)
where we extracted the energy-momentum tensor from the linear gravitational coupling
around Minkowski, that is δS =

∫
d4x

√
|g|Tµνδgµν/2. They clearly contribute to identically

conserved improvement terms of the energy-momentum tensor, hence changing the F2 form
factor in eq. (1.3). The case with ξφ = ξH = 1 and vanishing masses is known as conformally
coupled scalars because the two-derivative action becomes classically Weyl invariant.

One simple way to take the effect of ξφ,H into account, which makes also direct contact
with the on-shell method approach we have taken in the rest of this work, is by removing the
non-minimal couplings via a field redefinition that is effectively equivalent to plugging the
unperturbed equation of motion R = −Tµµ /m2

Pl in the action in eq. (1.13).5 This gives rise
to new contact-term interactions associated to the trace of the energy-momentum tensor

S ⊃
∫
d4x

√
|g| 1

6m2
Pl

(
ξφ|φ|2 + ξH

2 H2
) [

(∂S)2 + 2|∂φ|2 + (∂H)2 + . . .
]
. (1.14)

Therefore, the effect of non-minimal coupling associated to ξφ is nothing but changing the
on-shell data that enter in the calculation of the discontinuities, i.e.

δM(5φ6φ̄ → 2S4S) = −ξφ6
s24
m2

Pl
, (1.15)

as reported in the first row of table 1, the first row of table 3, and more generally in the F2
reported in appendix D.

On the other hand, ξH does not affect F2 at one loop (to O(1/m2
Pl)) unless H gets a VEV

〈H〉 = v and it couples to charged states running in the loop, both conditions being actually
satisfied for the neutral component for the Higgs boson field of the Standard Model. Indeed,
from the δTµν in eq. (1.13), after replacing the perturbations around the VEV, we have

〈0|δT (H)
µν (0)|γγ〉 = ξHv

3
(
qµqν − ηµνq2

) −1
s13 −m2

H

M(1γ3γ → H) (1.16)

where mH is the Higgs boson mass, and the amplitudeM(1γ3γ → H) is model dependent.
The latter depends on the trilinear Higgs boson coupling HXX̄ where X is running in the
loop. Eq. (1.16) produces as well a shift in the on-shell scattering data between the Higgs
and the spectator field

δM(1γ3γ → 2S4S) =M(1γ3γ → H)
(

s13
s13 −m2

H

)(
vξH
6m2

Pl

)
(1.17)

as one can also check directly from eq. (1.14).
Let’s put these expressions to good use and consider the example of SU(2) → U(1)

symmetry breaking pattern for a weakly coupled SU(2) gauge theory where a real triplet ~φ
5See appendix C for an equivalent discussion phrased in terms of Higgs/graviton mixing resolved by field

redefinitions.
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gets the VEV 〈φi〉 = δi3v. The low-energy physical spectrum contains a massless photon
and, since the theory is weakly coupled, it contains as well a pair of spin-1 bosons W± of
mass m2

W = (gv)2 and a neutral Higgs boson H in ~φ = (π1, π2, v +H). For convenience,
we now call H the fluctuation around the VEV. Everything we discussed in this subsection
applies directly to φ3 in the unitary gauge where

∫
d4xξHR~φ

2/12 =
∫
d4xξHR(v +H)2/12.

The amplitude in the s13 � m2
W and s13 � m2

W limits is extracted immediately via the
Goldstone equivalence theorem (see e.g. [12, 13]) and the Higgs low-energy theorem [14],
respectively,

M(1γ3γ → H)
[2(ε′ · k)(ε · k′)− q2(ε · ε′)]

∣∣
s13�m2

W
= −2

v

(
α

4π

)
,

M(1γ3γ → H)
[2(ε′ · k)(ε · k′)− q2(ε · ε′)]

∣∣
s13�m2

W
= −7

v

(
α

4π

) (1.18)

so that eq. (1.16) compared to eq. (1.3) returns

δF2(t)
∣∣
t�m2

W
= 2ξH

3

(
α

4π

) 1
t−m2

H

, δF2(t)
∣∣
t�m2

W
= 7ξH

3

(
α

4π

) 1
t−m2

H

, (1.19)

where we remind the reader that s13 = t. The t � m2
H,W limit of t δF2(t) in eq. (1.19)

enters directly in the trace anomaly equation we will discuss in section 1.3.
Next we move to the result for δF2 valid for all s13. Since this model contains the same

spectrum and couplings of the particles that generate the spin-1 contribution to the H → γγ

process in the Standard Model, we can directly use the W -boson contribution from the
Standard Model expression ofM(1γ3γ → H) which, incidentally can also be extracted by
dispersion relations and on-shell data [15] being careful with the subtraction constants that
can be fixed by matching to the Goldstone equivalence theorem and the Higgs low-energy
theorem results. From the Standard Model W -contribution toM(1γ3γ → H) we thus get

δF2(t) = 2ξH
3

(
α
4π
)

t−m2
H

1 + 6m
2
W

t
− 3m

2
W

t

(
1− 2m

2
W

t

)log
1 +

√
1− 4m2

W /t

1−
√

1− 4m2
W /t

− iπ

2 .

(1.20)
A similar contribution from the top-quark can easily be included as well in M(1γ3γ → H),
so that eq. (1.16) can be used to determine δF2 contribution from the Higgs boson of the
Standard Model.

1.3 Trace anomaly and the running coupling

The trace of the energy-momentum tensor is

〈0|Tµµ (0)|k′h′kh〉 = −t (3F2(t) + F3(t))
[
2(ε′ · k)(ε · k′)− q2(ε · ε′)

]
= t (3F2(t) + F3(t))

(
0 〈kk′〉2

[kk′]2 0

)
,

(1.21)

which depends only on the combination t(3F2 +F3) and is non-zero only for helicity-flipping
photons, as it should be for the overlap of photons with the spin-0 state 〈0|Tµµ (0).
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For t � 4m2 and t � m2
H , i.e. well above the pair production threshold of massive

charged particles and Higgs bosons, and setting ξφ = ξH = 1 for all conformal couplings in
eq. (1.14) such that the dilation current can be written as xνTµν , the QED trace anomaly

Tµµ = β

2gF
2
ρσ , (1.22)

implies 〈0|Tµµ |k′k〉N = β
g

[
2(ε′ · k)(ε · k′)− q2(ε · ε′)

]
. Therefore eq. (1.21) allows us to

express the β-function for the gauge coupling g = g(µ) in terms of the form factors

β = −g lim
t/m2→∞

t [3F2(t) + F3(t)]ξφ,H=1 . (1.23)

From the explicit expressions that we calculated, see table 3 and eq. (1.19), we can read off
the QED β-functions from loops of charged spin-0, spin-1/2 and spin-1 particles (for unit
charges) as

βφ = 1
3

(
g3

16π2

)
, βψ = 4

3

(
g3

16π2

)
, βW = −7

(
g3

16π2

)
(1.24)

In βW we included the contribution from the Higgs/graviton mixing, eq. (1.19).
It is a highly non-trivial result that from gravitational form factors we correctly

reproduce the non-abelian (negative) SU(2) β-function βW /(g3/16π2) = −11/3×2+1/6×2 =
−7, including the scalar matter in the adjoint representation, and using purely on-shell
data associated to scattering only physical polarizations. This connection between the
energy-momentum tensor, scattering data, and the β-functions is somewhat reminiscent of
the methods presented in [16].

We remark that the finite value at t/m2 →∞ of the β-functions as calculated by the
trace anomaly boils down to the presence of an IR-localized Dirac δ-function in DiscF2,3
that we have reported in table 2. These Dirac δ-functions represent the IR side of the trace
anomaly in full analogy with the chiral anomaly case, see [17, 18], as it was already pointed
out for spinorial QED in [19]. By contrast, we explore below the UV side associated to the
running coupling and expose its connection to the F1 form factor.

By putting the theory on a curved spacetime6

S =
∫
d4x

√
|g|
{
− 1

4g2(µ)FµνF
µν − m2

Pl
2 R+ . . .

}
(1.25)

we can as well establish an important connection between the β-function and the F1 form
factor which is directly connected to the asymptotic time delay at short impact parameter,
as we show in section 2. Expanding the action eq. (1.25) to first order in the metric
perturbations around Minkowski spacetime and Fourier-transforming the photon field (with
a slight abuse of notation) εµ(k) =

∫
d4xeikxAµ(x) we get

S ⊃ −
∫

d4q

(2π)4
d4k′

(2π)4
d4k

(2π)4 (2π)4δ4(q + k + k′)hµν(q) 1
2g2(µ)〈0|Tµν(0)|k′k〉

∣∣treeN + . . .

(1.26)
6The gauge coupling g = g(µ) should not be confused with the metric determinant in the volume

element
√
|g|d4x.
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The same running coupling g = g(µ) in front of the photon kinetic term is found as well in
the F1 form factor. That is, the counter-term needed to renormalize the photon kinetic
term also enters in the F1 form factor. Therefore, in the limit q2 � m2, rather then
defining g(µ) as the coupling of an off-shell Aµ to charged currents, as e.g. measured in the
Coulomb potential at a floating renormalization scale −q2 = µ2 (i.e. in a scattering process
mediated by a virtual photon), we can equally think of it as the coupling of two incoming
helicity-preserving on-shell photons scattering on an off-shell graviton with −t = µ2

d

d logµ
1

g2(µ) = d

d logµF1(t=−µ2)
∣∣
m�µ,g=1 =⇒β=−g2

d

d logµF1(t=−µ2)
∣∣
m�µ . (1.27)

In the right-most expression in eq. (1.27) we have restored to a canonically normalized
kinetic term −1/4F 2

µν in the lagrangian density. The formula in eq. (1.27) links directly the
sign of the log(−t) in the helicity-preserving form factor F1 to the sign of the β-function.7

Moreover, from the dispersion relations eq. (1.11) the log(−t) arises, in the case of spinorial
and scalar QED, by the constant limit of the discontinuity DiscF1(t→∞), hence

βφ, ψ = lim
t/m2→∞

g

π

DiscF1(t)φ,ψ
2i . (1.28)

This nice expression connects directly the β-function in spinorial and scalar QED to the
discontinuity of the helicity-preserving gravitational form factor F1, i.e. to on-shell-only
gravitational scattering amplitudes. From the first two rows of the first column of table 2
one indeed reproduces the βφ and βψ in eq. (1.24).

1.4 IR-divergences and Sudakov double-logarithms

The presence of a finite — but still large — log2 factor in the high energy limit of the
helicity-preserving form factor F1 generated at one loop by massive charged spin-1 W bosons

〈0|Tµν(0)|1−γ 3+
γ 〉(1-loop)

〈0|Tµν(0)|1−γ 3+
γ 〉tree −−−−−−→

t/m2
W→∞

1− α

4π

(
125
6 − 7 log −t

m2
W

+ 2 log2 −t
m2
W

)
(1.29)

can be understood as the IR divergences that we would encounter if the W mass were
vanishing. It arises in a way that is completely analogous to the presence of large double-
logarithms in the matrix elements of electroweak currents, see e.g. [20–22], which are usually
called electroweak Sudakov double-logarithms in analogy to the original QED Sudakov
factors that are associated to the vanishing photon mass.

We deal with these Sudakov factors in the self-energy by taking a renormalization group
approach to resum the leading double-log factors. We first regulate the most IR-singular
class of diagrams by cutting them with a floating mass mW → m = µ, which should be
taken not too far from the kinematical variables so that perturbation theory is reliable, and

7Trading the log µ2 dependence for the log q2 breaks down, however, if extra log q2/m2 factors survive in
the q2 � m2 limit, which signals the presence of IR divergences. They do not arise at one loop of spin-0
and spin-1/2 charged states, but are instead present for spin-1 particles for which, therefore, eq. (1.27) and
eq. (1.28) no longer apply. We study IR divergences in section 1.4.

– 12 –



J
H
E
P
0
5
(
2
0
2
2
)
1
5
4

then we evolve the form factor down with the resulting RG equation that we can thus write
as an evolution in the mass, namely

∂〈0|Tµν(0)|1−γ 3+
γ 〉

∂ log(m2/(−t)) = −4
(
α

4π

)
log

(
m2

−t

)
〈0|Tµν(0)|1−γ 3+

γ 〉 . (1.30)

Integrating this RG equation from µ = µ0 down to the W mass µ = mW we get the
exponentiation of the Sudakov double-logs in the form factor

F1(t) ' F1(µ2
0)Exp

[
−2
(
α

4π

)(
log2 m

2
W

−t
− log2 µ

2
0
−t

)]
(1.31)

and the associated exponential suppression for t� m2
W

|F1(t� m2
W )| ∝

(
|t|/m2

W

)−2(α/4π) log |t|/m2
W → 0 (1.32)

at high-energy.
We remark that, while we have obtained the evolution equation (1.30) within per-

turbation theory, it holds in fact non-perturbatively as shown in [21]. The exponential
suppression from the leading double logs is indeed completely fixed by the sum of the
quadratic Casimirs Si(Si+1) associated to the representations, carried by each i-th external
leg, of the SU(2) gauge group (as we are dealing with a non-abelian gauge theory with just
W± and γ = W 3 in the spectrum). The evolution equation of [21] is indeed nicely matched
by our perturbative derivation, eq. (1.30).

Notice that the same exponentiation of the IR Sudakov logs takes place for the helicity-
flipping matrix elements F2,3, but starting at two-loop order O(α2). It can be obtained
by adapting again the results of e.g. [21], something that we leave to future investigations,
limiting the present work to 1-loop accuracy.

While the exponential suppression we find is analogous to the vanishing of exclusive
processes in ordinary QED, here the W mass is finite and this makes the resummed form
factor and the associated exclusive amplitudes actually finite. Moreover, the finiteness
of the mass and charge of the W boson allows one to distinguish states with different
numbers of W particles in them, contrary to the case of photon emissions which can always
escape detections if sufficiently soft. For these reasons, we keep working in the following
with the exclusive 2-photon matrix elements of Tµν , which is thus IR finite since charged
particles are consistently excluded in the final or initial state, rather than with inclusive
cross-sections. Moreover, the effect of the exponential suppression is relevant only for
(α/2π) log2 (−t/m2

W

)
� 1, and it is therefore not important to the phase shift eq. (2.10)

in the region 1/m2
W exp(−

√
2π/α)� b2 � 1/m2

W , i.e. for impact parameters that can still
be taken exponentially smaller than 1/m2

W at weak coupling. In the following sections we
consistently include the impact of the exponentiation in the regime b2m2

W � exp(−
√

2π/α).
It would nevertheless be interesting to study in a future work the inclusive case where

the double-log contributions would cancel out so to become sensitive again to the single
logs and possibly to the sign of the beta-function, like it is the case for spinorial and scalar
QED when not embedded in Yang-Mills theory.
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2 The phase shift

Now that the form factors Fi(t) have been determined, we proceed to computing various
quantities of interest. We study the 4-point function (diagrammatically shown in figure 1) in
the eikonal limit s� t, where the center of mass energy is much larger than the exchanged
momentum, corresponding to the response of photons to the gravitational field generated
by the spectator fields.

In this limit, and scattering either at transplanckian center of mass energy or against
several spectators, the amplitude exponentiates in impact parameter space, S = e2iδ(s,b)

where δ(s, b) is referred to as the phase shift and b is the impact parameter. The large
phase in the eikonal transplanckian scattering against a single spectator is generated when
Gs� 1 and G

√
s� b, see e.g. [23–26], while with several N shock-waves each scattering

is subplanckian building up to NsG � 1 [2]. The phase shift is related to a number of
observables such as scattering angle and the time delay, as explicitly shown in section 3.1.
In this section we present the leading quantum corrections in the gauge coupling to the
phase shift in the eikonal regime.

The 1-loop quantum corrections from pure gravity, δ1 ∼ G2s/b2 [24], are always very
small in the transplankian eikonal regime, set in fact by the ratio of the Planck length over
the impact parameter b. They are also much smaller than the 2-loop gravitational corrections
Reδ2 ∼ Gs(Rs/b)2. The 1-loop gauge contribution scales instead as Gs(α/4π) log2(mXb)
for b < 1/mX and Gs(α/4π)/(mXb)2 for b > 1/mX , see eq. (2.18) and eq. (2.12), which
can be much larger than 1 and dominate over the gravitational δ2 for a suitable range of
s and b we restrict to. Similar scaling applies to the case of scattering against a coherent
spectator background.

2.1 Amplitudes in the eikonal limit

In this section, we present the eikonal limit of the 4-point amplitude, which will be used in
the evaluation of the time delay, following [2, 27]. For simplicity, we detail the construction
for a scalar spectator, but we have checked that in the eikonal limit, the same result is
obtained by scattering against spin-1 and spin-2 spectators minimally coupled to gravity.
In other words, the spin of the spectator is irrelevant in the computation of the time delay,
as long as it is characterized only by a minimal gravitational interaction.

When contracted with the scalar 3-point function, the full amplitude takes the form

M(1γ3γ→ 2S4S) =

 − 〈3k21]2
m2

Pls13
F1(t) 〈13〉2

2m2
Pl

(
s13F2(t)+ (s12−s14)2

s13
F3(t)

)
[13]2
2m2

Pl

(
s13F2(t)+ (s12−s14)2

s13
F3(t)

)
− 〈1k23]2
m2

Pls13
F1(t)

 ,
(2.1)

where we recall that the diagonal entries correspond to the helicity preserving amplitudes
with h′ = −h = ± while the off-diagonal entries correspond to the helicity-flipping h =
h′ = ±, and the Mandelstam variables sij are defined in appendix A. This amplitude is
evaluated on the following massless kinematic configuration

kµ1 = (ω,−~p+ ~q/2) , kµ3 = −(ω,−~p− ~q/2) ,
kµ2 = (ω, ~p− ~q/2) , kµ4 = −(ω, ~p+ ~q/2) ,

(2.2)
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where ~q is the exchanged momenta, ω =
√
~p 2 + ~q 2/4, and in the following we fix the

direction of ~p = pẑ, where ẑ is the unit vector in the z-direction. The Mandelstam variables
in this configuration are given by

s = s12 = 4ω2, t = s13 = −~q 2, u = s14 = −4~p 2 . (2.3)

By momentum conservation, the product ~p · ~q is zero, implying that the momentum transfer
~q lies in the xy-plane. With an abuse of notation, we will refer to ~q as a two-dimensional
vector with components ~q = (q1, q2).

We are interested in the eikonal approximation ω � |~q |, where the amplitude eq. (2.1)
in the kinematic configuration eq. (2.2) is given by

Meik(t) = s2

m2
Pl~q

2

 F1(t) −4q2
+F3(t)

−4q2
−F3(t) F1(t)

 , (2.4)

where q+ = 1√
2(q1 + iq2) and q− = 1√

2(q1− iq2), and we dropped the contribution from F2(t)
which is analytic in t, hence giving rise, once Fourier transformed to impact parameter space
b, only to local terms such as δ(b) or derivatives thereof. This means that the improvement
terms proportional to ξφ and ξH do not produce any measurable effect on the time delay.

2.2 Computation of the phase shift

The phase shift is obtained by Fourier transforming the 4-point amplitude in the eikonal
limit eq. (2.4) to impact parameter space

δ(s, b) = 1
4s

∫
d2q

(2π)2 e
i~b·~qMeik(t = −~q 2) , (2.5)

where b ≡ |~b|. The eigenvalues of this matrix are given by

δ±(s, b) = s

4m2
Pl

[
F̂1(b2)± 16b2F̂ ′′3 (b2)

]
, (2.6)

where we have defined
F̂i(b2) =

∫
d2q

(2π)2
Fi(−~q 2)
~q 2 ei

~b·~q , (2.7)

for i = 1, 3, and F̂ ′3 ≡ ∂F̂3/∂b
2.

The integrand in eq. (2.7) is discontinuous at the graviton pole or above threshold, i.e.
when q1 = ±iq2 or t = −~q 2 > 4m2. We can then compute eq. (2.7) by applying the Cauchy
theorem. The integration contour of q1 can be deformed in its complex plane so to express
the integral in terms of the discontinuities computed in table 2, see figure 3. Without loss
of generality, we can fix ~b = (b, 0) because of rotation invariance. After performing the
rotation q1 = iQ1 and changing the order of integration, eq. (2.7) takes the form

F̂i(b2) =−Fi(0)
2π logb/bIR+ 2i

(2π)2

∫ +∞

2m
dQ1

∫ √Q2
1−4m2

0
dq2

DiscFi(Q2
1−q2

2)
Q2

1−q2
2

e−Q1b , (2.8)
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iq2

i q22 + 4m2

Γ
[q1

Figure 3. Integral contour Γ in the upper complex q1-plane for F̂i. There are two contributions:
one from the graviton pole, and the second from the discontinuity above threshold t > 4m2.

where bIR is an infrared cutoff. The bIR has no physical impact as long as one considers
wave-packets with b < bIR. The integral in eq. (2.8) can be further simplified by changing
variables Q1 =

√
t cosh θ, q2 =

√
t sinh θ, in terms of which it becomes

F̂i(b2) = −Fi(0)
2π log b/bIR + i

(2π)2

∫ +∞

4m2
dt

DiscFi(t)
t

K0
(
b
√
t
)
, (2.9)

where K0 is the modified Bessel function of the second kind. Combining eq. (2.9) with
eq. (2.6), we obtain the final expression for the phase shift

δ±(s, b) = s

4m2
Pl

[
− 1

2π

(
F1(0) log b

bIR
∓ 8
b2
F3(0)

)

+ i

(2π)2

∫ +∞

4m2

dt

t

(
DiscF1(t)K0

(
b
√
t
)
± 4 tDiscF3(t)K2

(
b
√
t
)) ]

,

(2.10)

which makes manifest that the phase shift δ(s, b) depends just on the t→ 0 graviton pole
and the t-channel discontinuities of the self-energy form factors, i.e. on-shell data.

Before discussing the whole 1-loop calculation, we focus on the tree-level contribution,
which corresponds to F1(t) = 1 and F2(t) = F3(t) = 0. In this case, eq. (2.6) and eq. (2.9)
return the tree-level contribution to the phase shift as

δ0(s, b) = − s

8πm2
Pl

log b/bIR . (2.11)

Since the IR cutoff bIR is the largest length scale that we consider, eq. (2.11) always leads
to a positive contribution to the phase shift. At 1-loop, there are additional contributions
coming from Fi(0) and the discontinuity, see table 3. In the following two sections, we study
eq. (2.9) analytically in two opposite regimes in parameter space: b� 1/m and b� 1/m,
while the full solution is solved numerically and displayed in figure 4.

2.2.1 The large b limit

In the scenario b � 1/m, we can use the asymptotic behavior of the Bessel function
K0(b

√
t) ∼ e−b

√
t/
√
bt1/2 which shows that the contribution from the integral over the
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discontinuity is exponentially suppressed. Therefore, the only contribution comes from the
graviton pole, and the phase shift is given by

δ±(s, b� 1/m) = δ0(s, b)± sF3(0)
πm2

Plb
2 , (2.12)

where F3(0) is summarized in table 3 for different spins of the particle in the loop. This is
the result one would obtain by working in the EFT where the massive states have been
integrated out, and it reproduces the correction from the effective term FµνFαβR

µναβ

computed first in [2] and discussed at the end of section 1.1 around eq. (1.12). Notice that
the only contribution from F1(t) comes from the tree-level amplitude, as all corrections
vanish when evaluated on the pole.

2.2.2 The small b limit for scalar- and fermion-loops

We can write the integral in eq. (2.9) in terms of a dimensionless variable y = b
√
t

F̂i(b2) = −Fi(0)
2π log b/bIR + i

2π2

∫ +∞

2mb

dy

y
DiscFi(y2/b2)K0 (y) . (2.13)

Let us first focus on the helicity preserving contribution F1(t) to the phase shift in eq. (2.6).
In the small bm regime, the integrand DiscF1(y2/b2), which is actually a function of the
dimensionless ratio y2/b2m2, receives contribution mostly from the DiscFi(t→∞) region,
so that we can directly use

DiscF1(t� m2) ' 2iπβX
g

, (2.14)

see eq. (1.28), which nicely links the contribution to the time delay of the form factors
to the β-function. This approximation is valid for scalars βφ = 1

3

(
g3

16π2

)
and fermions

βψ = 4
3

(
g3

16π2

)
. The vector case is characterized by the presence of soft logs that can be

resummed and therefore needs a different treatment (see section 1.4).
For b� 1/m, we can cut the integral at some y = 2ȳ . O(1), obtaining then

F̂1(b2 � 1/m2) '− 1
2π log b/bIR −

βX
2πg log2 (bm/ȳ) . (2.15)

Notice that the sign of the quantum corrections is always negative for any value of b and ȳ.
This will play a major role in the discussion about causality in section 3.

For the helicity flipping contribution, by using the dispersive representation of F3(0)
(see eq. (1.11)) we can write

F̂ ′′3 (b2) = i

8π2b4

∫ +∞

2mb
dyDiscF3(y2/b2m2)

[
yK2 (y)− 2

y

]
, (2.16)

which gets the most important contribution from the region t� m2 where the discontinuity
converges to a delta function, DiscF3(t � m2) = iακXδ(t) for some constant κX (see
table 2). Therefore, we get

F̂ ′′3 (b2) ' − ακX
16π2b2

lim
y→0

[
K2(y)− 2

y2

]
= ακX

32π2b2
. (2.17)
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Figure 4. Quantum corrections to the phase shift as function of bm. Dotted lines for large bm
show the EFT result which, if allowed to continue to small bm, would eventually give a negative
total phase shift and thus time delay. See discussion in section 3.2. Left: we plot the scalar case (as
discussed, the spinorial case has similar features, so it is not shown here) that have two contributions
coming from the form factors F3(t), relevant at large impact parameters eq. (2.12), and F1(t), which
dominates as small bm eq. (2.18). The full numerical solutions eq. (2.6) is shown as solid lines,
and their limiting behaviors as dashed lines. We have taken ȳ = 0.27 to make the approximation
close to the exact answer on the scales shown in the plot. Right: we plot the vector-loop case,
i.e. QED embedded in a non-abelian gauge theory. The form factors are exponentially suppressed
by Sudakov resummation in the region bm � exp(−

√
π/2α), as discussed under eq. (1.32), but

this effect is not displayed here. The vertical blue line represents, for α = 1/100, the value of bm
below which Sudakov resummation can no longer be neglected. For larger values of the impact
parameter, exp(−

√
π/2α) � bm � 1, the fixed-order 1-loop approximation is instead accurate

without resummation. In this region, F1(t) gives the leading contribution to the phase shift eq. (2.22)
and it is plotted as a solid red line which interpolates the blue dots representing the exact numerical
solution. We have taken ȳ ' 1.12 and γ ' 0.12 in eq. (2.21).

The full phase shift is then given by

δ±(s, b� 1/m) = δ0(s, b)− sβX
8πgm2

Pl
log2 bm/ȳ ± α sκX

8π2m2
Pl
, (2.18)

where κφ = −1/12 for a scalar in the loop and κψ = 1/6 for a fermion. In particular,
for small enough impact parameter, the log correction proportional to the β-function will
dominate over the constant contribution of F3(t), as shown numerically in figure 4.

Notice, that the change in behavior of the F3(t) contribution at small impact parameter,
from 1/(mb)2 to a constant in b, is crucial in the causality discussion. If that was not the
case, we would observe causality violation even for the asymptotic definition (see section 3.2).
This is avoided thanks to the onset of new physics associated to the particles of mass m
before such a violation would become resolvable. We discuss the consequences in section 3.

The inclusion of more species is straightforward, with log2 bm term in (2.18) being just
replaced by the appropriate masses and rescaled by the squared charges q2

i , e.g. adding
charged spin-1/2 fermions results in βψ log2 bmψ → βψ

∑
i q

2
i log2 bmi, and analogously for

charged bosons. In this way, and for b smaller than the top-quark scale 1/mt, one can easily
include the full Standard Model contribution.
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2.2.3 The small b limit for vector-loops

The small b region for vector-loops is in principle more delicate because of the IR Sudakov
double-logs. However, in the region of small impact parameter where the resummation of
the double-logs is not yet important, i.e. for exp(−

√
2π/α)� b2m2 � 1, we can still work

with just the fixed-order 1-loop expressions for the form factors.
Let’s focus first on the contribution from DiscF1 in eq. (2.9) and eq. (2.10) by considering

the integral

I(b2) ≡ i

(2π)2

∫ +∞

4m2
dt

DiscF1(t)
t

K0
(
b
√
t
)

(2.19)

which can be more easily determined, up to some integration constants, by integrating its
second derivative I ′′(b2)

I ′′(b2) = i

(2π)22b4
∫ +∞

2mb
dy yK2 (y) DiscF1

(
y2/b2

)
, (2.20)

where we have changed variable y = b
√
t. For small bm, we can cut the integral at some

y =
√
e ȳ . O(1) and approximate the Bessel function as K2 (y) ∼ 2/y. After performing

the integral in eq. (2.20) and integrating back, we get

I(e−
√

2π/α � b2m2 � 1) ' αγ + α

48π2

(
137− 4π2

)
log (bm/ȳ)

− βW
2πg log2 (bm/ȳ) + α

3π2 log3 (bm/ȳ) (2.21)

where γ is an integration constant and we recall βW = −7g3/16π2 = −7gα/4π. The values
of γ and ȳ can be estimated by fitting the numeric solution of I(b2) for small values of b,
see figure 4.

The contribution from DiscF3 to δ± is more easily calculated from eq. (2.6) following
the same steps of the previous subsection, see eq. (2.17), where we can use the asymptotic
expression DiscF3(t� m2) = iακXδ(t) with κW = −1/4. Therefore, for exp(−

√
2π/α)�

b2m2 � 1 the phase shift can be approximated by

δ(s, b) ' δ0(s, b) + s

4m2
Pl
I(b2)± α sκW

8π2m2
Pl

(2.22)

where I(b) is approximated by eq. (2.21). Actually, the last term in eq. (2.22) can safely be
dropped because it is very much subleading to the second term.

For even smaller impact parameter, bm� Exp(−
√
π/2α), the IR Sudakov double-logs

become large and require a resummation as performed in section 1.4. In this regime, we
can numerically compute the contribution of F1(t) to the phase shift by exponentiating the
double-logs, that is by taking F 1loop

1 (t) → F Sudakov
1 (t) = eF

1loop
1 (t)−1 under the integral in

eq. (2.7). This expression for F Sudakov
1 (t) is a very good approximation of the exact form

factor in the two asymptotic regions of bm. Moreover, the contribution from F3 is always
subleading in this region at small α.
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Figure 5. Quantum corrections to the phase shift in the vector case with IR Sudakov double-logs
resummation as a function of bm, choosing for simplicity bIR = 1/m. The dots reproduce the full
numerical solution for α = 1/10 (blue), α = 1/100 (red), and α = 1/200 (black). The solid lines for
Exp(−

√
π/2α) < bm < 1 are the analytic approximation based on eq. (2.21). If extrapolated to the

region bm < Exp(−
√
π/2α), the phase shift would turn negative as displayed by the thin dotted

lines. In such a regime of small bm the eq. (2.21) is however no longer valid. After resumming the IR
Sudakov double-logs we find indeed a positive constant phase shift in the region bm < Exp(−

√
π/2α),

and no causality violation.

Repeating the same steps as in section 2.2, this integral can be computed numerically
for different values of the gauge coupling. We find that for bm� Exp(−

√
π/2α) the phase

shift approaches a positive constant (see figure 5), and it never turns negative. The constant
depends on the value of the gauge coupling, as it can be estimated by computing the
contribution to the integral eq. (2.7) for b2m2 � Exp(−

√
2π/α), so that we can drop the

b-dependence in the exponential without spoiling the convergence of the integral even in the
region ~q 2 � m2e

√
2π/α. Making the (crude) approximation F Sudakov

1 (t) ∼ e−α/2π log2 (−t/m2)

for ~q 2 & m2, and F Sudakov
1 ' 1 for ~q 2 . m2, the eq. (2.7) reduces to a gaussian integral

F̂1(b2) ' 1
2π

[∫ ∞
0

d log
( |~q|
m

)
e−2α/π log2 (|~q|/m) + 1

2

∫ m2

b−2
IR

dq2

q2

]
= 1√

32α
+ 1

4π logm2b2IR ,

(2.23)
where we have cut off the IR divergence at q = 1/bIR (and of course bIRm ≥ 1). Therefore,
the phase shift at exponentially small impact parameter with respect to the W ’s Compton
wavelength 1/m is

δ

(
s, bm� e−

√
π/2α

)
' s

4m2
Pl

[ 1√
32α

+ 1
4π logm2b2IR

]
, (2.24)

which matches the numerics in figure 5 pretty well at small α, and shows that neither δ nor
the time delay turn negative.
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3 Causality

In this section we discuss two notions of causality that are both seemingly justified at the
classical level, but we show that in fact only one is respected in the quantum theory. Both
notions are expressed through the time delay that particles experience relative to the free
time evolution in the eikonal scattering.

3.1 Time delay

We first generalize the time delay relation of [28, 29] to the more general case of non-negligible
inelasticity Im δ > 0, i.e. when other particles can be produced in the scattering.

The idea is to introduce a real parameter δT that labels a family |f〉δTout of time delayed
2-particle states,

|f〉δTout ≡ Exp(iδTH)|f〉out , |f〉in/out =
∫
dE

∑
J,λ

fJ,λ(E)|E, J, λ〉in/out (3.1)

with normalization in〈f |f〉in =out 〈f |f〉out =
∫ ∑

J,λ dE|fE,J,λ|2 = 1, and then search for a
δT = δT∗ that maximizes the transition probability |δTout〈f |f〉in|2,

δT
out〈f |f〉in =

∫
dE

∑
J,λ

|fJ,λ(E)|2ei(2δλ(J,E)−EδT ) , (3.2)

for some narrowly peaked wave-packet. Here E =
√
s is the total center of mass energy and

J and λ label the basis where the 2-body partial-wave S-matrix is diagonal. Without spin,
J and λ represent the angular momentum and possible other internal quantum numbers.
With spin, J is still the total angular momentum (or proportional to the impact parameter
b ' 2J/E in the eikonal limit) while λ is a proxy for a linear combination of the helicity
indices, λ = ± in the previous sections. Since |fJ,±(E)|2 > 0, and Im δ±(J,E) ≥ 0 by
unitarity, the transition probability for a localized wave-packet at E ' E0 is maximised at
the stationary phase

δT∗ = 2∂Re δ±(J,E)
∂E

, |δT∗out〈f |f〉in| ' e−2Im δ±(J,E0) (3.3)

where the transition amplitude is less than unity due to the opening of inelastic channels that
deplete the elastic amplitude. Notice that eq. (3.3) reduces to Wigner’s formula δT∗ = 2∂δ±∂E
when the phase shift is real. In the eikonal limit of large angular momentum we can replace
δ±(J,E) = δ±(s, b), and the notion of time delay becomes

δT∗ = 2∂Re δ±(s, b)
∂E

(3.4)

which again reduces to δT∗ = 2∂δ±(s,b)
∂E for real δ±(s, b). Since δ±(s, b) can be calculated in

terms of the discontinuities of the form factors that at one loop are given by products of
real tree-level vertices only, any imaginary part can only arise from two loops onward (to
the leading post-Minkowskian order). The 1-loop phase shift is therefore real, and we can
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safely omit the “Re” in the expression for the time delay to this order. In the following we
sometimes leave the index ± of the phase shift implicit.

In the eikonal limit the |f〉δTout can be visualised as the family of asymptotic outgoing
trajectories emerging from the scattering region and specified by — in addition to the
impact parameter and the energy which are preserved in the scattering — the time-shift δT
relative to the incoming asymptotic trajectory. The δT = δT∗ corresponds to the emergent
semiclassical asymptotic trajectory selected by quantum constructive interference.

The way we derived the time delay makes clear that the asymptotic causality condition
δT∗ ≥ 0 that we discuss next is meaningful only for δT∗ much larger than the quantum
mechanical uncertainty δTq.m. ∼ ~/E, which for the δ±(s, b) ∝ s in our gravitational setup
is just the requirement of large scattering phase shift.

Despite such a large phase shift, it is well known that δ remains reliably calculable in
the eikonal scattering at large impact parameter in the transplanckian regime, or against a
coherent state of spectators. The latter is nicely explained in detail in e.g. [2]: the fact that
the phase shift grows (at least) linearly with s, which is the case for e.g. eqs. (2.18), (2.22),
and (2.12), implies that perturbatively small phases δ � 1 of photons scattering against a
series of time-separated N � 1 spectator particles exponentiate thanks to factorization,
(1 + iδ)N → eiNδ, while keeping the wave-packet localized in the impact parameter space.8

Therefore, the sequence of scattering events returns δ̃ = Nδ � 1, i.e. a large scattering
phase produced by a coherent state of spectators. Since δ̃ and δ have the same dependence
on energy and impact parameter, in the following we keep referring to just δ, but it is left
understood that we actually consider scattering against a coherent state that gives rise to a
large phase shift.

Alternatively, we can resort to the reliable exponentiation of the large eikonal phase
when scattering against a particle in the transplanckian regime s� m2

Pl at small momentum
exchanged t� s, see e.g. [24–26] and references therein, where the theory admits as well a
semiclassical approximation for impact parameters much larger than the Schwarzschild radius
Rs ∼ G

√
s. Higher post-Minkowskian corrections correspond to including higher relative

o(Rs/b) corrections to δ, and they are made smaller than the gauge loop contributions we
calculated by a suitable choice of the kinematics within the transplankian eikonal scattering.
Post-Minkowskian corrections are instead clearly more important than gauge corrections
when scattering astrophysical bodies.

Transplanckian scattering can be interpreted, to lowest order, as 1-to-1 scattering in
a gravitational Aichelburg-Sexl shock-wave background at large impact parameter. Our
next-to leading order analysis treats gravity as fully dynamical and away from the probe
limit, not just as in a QFT at fixed external background that would otherwise break
spacetime symmetries (as e.g. it is the case for QED in a rigid shockwave background).
An effective metric can nevertheless be associated to the scattering by amending it order
by order. The O(G3)-corrected shockwave metric that gives rise to the same scattering
angle as obtained from the scattering amplitudes in pure gravity has been calculated e.g.

8For the opposite regime where factorization does not hold because the spectators are on top of each
other, see the interesting [30].
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in [31, 32]. It would be interesting to calculate the O(α) correction to Aichelburg-Sexl
shock-wave. The connection between scattering in a non-trivial background and causality is
reminiscent of the positivity conditions for scattering amplitudes of [1], and its connection
to the positivity of time delay has been made explicit in [29].

3.2 Asymptotic causality

By asymptotic causality we mean the following refinement of the Gao-Wald condition [33]
used in [2]: the time delay experienced by any particle scattering against a coherent source
of spectators, or in the eikonal transplankian regime, should be positive

δT∗ ≥ 0 (3.5)

for all b < bIR, whenever resolvable and calculable within the range of validity of the theory.9

The violation of asymptotic causality would imply that signals sent via massless particles
through the bulk of a spacetime perturbed by some spectator field (which could be the
graviton itself), would be recorded by a detector at future null infinity at earlier times
than if sent instead through an unperturbed empty Minkowski spacetime, provided the
impact parameter is chosen small enough. Notice that any violation of causality would be
associated to small regions of spacetime, far from the IR cutoff, b� bIR, and it is relative
to the flat Minkowski causal structure that is obtained by removing the massless spectator
field, e.g. by sending the center of mass energy to zero.

Turning the asymptotic causality condition around, forbidding its violation can be used
to determine the validity range of the theory, that is putting bounds on the cutoff and/or
couplings. For instance, [2] put bounds on the cutoff associated to certain EFTs under the
assumption that the higher-dimensional operators are generated at tree level so that the
resolution of apparent causality violation should also be resolved at tree level, as it happens in
string theory that provides infinitely many higher spin states exchanged at tree-level [2, 34]
to fix the issue with causality. Tree-level causality bounds are obtained along similar
reasoning in e.g. [35–38] and several other works. In this paper we are instead interested
in probing the notion of asymptotic causality quantum mechanically, and within QFT.

The results of the previous sections show that this asymptotic notion of causality
is in fact respected at one loop in gauge theories that are perturbatively renormalizable
(before turning on gravity) at all scales. The reason lies in the change of behavior of the
contribution to the phase shift of F3(t), which transitions from the unbounded 1/b2 in the
EFT regime, where charged particles are integrated out, to a constant (see figure 4 and
eq. (2.18)), without ever becoming of the size of the leading effect. Moreover, while the
F1(t) contribution to the time delay δT (F1)

∗ = −[4Eβ/(8πgm2
Pl)] log2 bm from eq. (2.18) and

eq. (3.4) does become indefinitely more negative as the impact parameter is decreased, the
condition δT∗ ≥ 0 in fact remains always satisfied as long as the impact parameter b is

9In fact, since δ(b, s) in D = 4 is defined only up to an overal shift δ(b, s)→ δ(b, s)+ s
8πm2

Pl
log λ (associated

to rescaling of the IR cutoff), which results in a b-independent shift of the time delay δT∗ → δT∗+const, a slight
refinement is demanding that δT∗ should be bounded below as b is decreased, or simply limb→0 δT∗ > −∞,
a condition insensitive to the rescaling of the IR cutoff.
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taken larger than the strong coupling scale bL of the Landau pole (if any)10

b > bL = 1
m
e−g/β for g/β > 0 . (3.6)

Here β > 0 is the β-function of the gauge coupling g of any spin-0 and spin-1/2 charged
particles running in the loop.

As for the quantum corrections generated by spin-1 particles, they satisfy automatically
the causality condition δT∗ ≥ 0 for any b < bIR since the Sudakov IR double-logs suppress
exponentially the form factor at the same scale where quantum corrections would otherwise
start dominating over the minimal gravitational contribution, see figure 5. This is nicely
consistent with the fact that the non-abelian gauge theories associated to charged spin-1
particles have negative β-functions and are therefore asymptotically free in the UV, needing
a priori no UV completion before meeting the Planck length 1/mPl.

In other words, no asymptotic-causality violation is therefore detectable, even at
the quantum level, at any length scale within the range of validity of our perturbative
calculations. Moreover, because of the connection we have established between the sign of
the β-function and the sign of the leading quantum corrections to the phase shift δ(s, b)
at small impact parameter, demanding that δT∗ ≥ 0 correctly infers the existence of new
dynamics at or before the scale of the Landau pole11 ΛL = 1/bL, if any. That is, in scalar and
spinorial QED either new physics in the form of strong coupling or weakly coupled particles
must appear at b > max{bL, 1/mPl}, while for QED embedded in a non-abelian gauge
theory with negative β-function the only consistency threshold associated to asymptotic
causality is set by the Planck length.

Our finding shows that asymptotic causality is therefore able to diagnose the presence
of a cutoff not only when the theory has strongly irrelevant operators like in [2], but even
when the cutoff is exponentially large because it is associated with marginally-irrelevant
deformations such as the gauge coupling in QED.

3.3 Bulk causality

Let’s turn now to another notion of causality which stems from the idea to race against
gravitons through a spacetime perturbed by some spectator field. The bulk (or local)
causality condition is the statement that any massless particle would lose the race to the
graviton by an amount that is resolvable and calculable within the range of validity of
the theory. That is, sending a massless particle and a graviton with the same energy

10Notice that we have also taken mbIR � 1 while respecting bLbIRm
2 � 1, that is bIR < 1/mExp(g/β)

which is exponentially larger than 1/m, hence a valid choice for the IR cutoff, for perturbative couplings.
Larger values of bIR are certainly valid, but there is no choice for which a violation of δT∗ > 0 can be found
in the domain bL < b < bIR. Alternatively, one can remove any bIR-dependence by looking for the scale b∗
where gravity would become repulsive, that is where the scattering angle would change sign and the photon
would be deflected away, as proxy for the scale of causality violation. This corresponds to demand gravity
always being attractive. The b∗ has the same parametric dependence on m and g than bL in eq. (3.6).

11We are tacitly considering the case where the scale of the Landau pole of the U(1) gauge theory at hand
is smaller than the Planck mass. For theories with α too small, the Landau pole would be found beyond the
Planck mass and the bound would trivialize to b > 1/mPl, where gravity becomes already strongly coupled.
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simultaneously through the bulk of a weakly perturbed spacetime, a detector at future null
infinity would always record the graviton first and then the other particle.

Sending photons for definiteness, bulk causality implies

δT
(γ)
∗ − δT (0)

∗ ≥ 0 , (3.7)

where δT (0)
∗ = 2∂δ0(s, b)/∂E is the time delay experienced by gravitons, which is the classic

Shapiro time delay. At the classical level the difference in the time delay vanishes, i.e.
massless particles travel along the same geodesic, classically, for large impact parameter.
The difference in eq. (3.7) removes the universal term which is also present in the photon
time delay as a manifestation of the classical equivalence principle. Therefore, bulk causality
eq. (3.7) is genuinely sensitive to quantum corrections generated by charged states running
in the loop.

As a matter of fact, the quantum corrections we calculated in the previous sections
violate the bulk-causality condition quantum mechanically, within the range of validity of
perturbation theory. Indeed, at small impact parameter for loops of spin-1/2 (X = ψ) and
spin-0 (X = φ) particles, b� 1/m, the difference in time delays is

(
δT

(γ)
∗ − δT (0)

∗
)
X
' − EβX

2πgm2
Pl

log2 bm/ȳ (3.8)

and it is negative even for impact parameters much larger than the Landau pole length-scale
bL, see figure 4. For spin-1 particles running in the loop (X = W ), the leading contribution
for b2m2 � Exp(−

√
2π/α) is given by eq. (2.24) and therefore

(
δT

(γ)
∗ − δT (0)

∗
)
W
' E

m2
Pl

( 1
2π log(bm) + 1√

32α

)
, (3.9)

which is also negative in this regime of small impact parameter. Note that these differences
are independent of the IR cut-off bIR.

All in all, bulk causality is violated at one loop:12 although light that scatters against
spectator particles is always slower than free gravitons in Minkowski spacetime (asymptotic
causality), it can win the race against gravitons that also bounce off the same spectators.13

We interpret this result as evidence against bulk causality, whereas asymptotic causality is
respected at one loop.

We emphasize that this conclusion is similar in spirit to the Drummond-Hathrell
“paradox” [3] where one is working directly with the velocity of the perturbations in certain
backgrounds and charged states have been integrated out. In that case, however, the alleged
violation of causality is not resolvable within the validity range of the EFT, see e.g. [39, 40],
whereas in our case bulk causality fails within the validity of the perturbative QED theory
with dynamical gravity (as opposed to fixed background), where the propagating charged

12A word of caution: one could try to restore it by adding more degrees of freedom that, however, should
be relatively light, with a mass M that is at best 1-loop factor away from the charged states we considered,
in order not to decouple again their contribution to δ at the rate 1/b2M2.

13This made the 2020/21 Tokyo Olympics much more challenging for light.
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particles remain in the spectrum and where the effect is resolvable as soon as s� m2
Pl4π/α,

that is at transplanckian energy (or scattering against several spectators).
We remark also that our analysis is entirely performed within perturbation theory of a

renormalizable gauge theory minimally (or conformally) coupled to gravity, i.e. with small
coupling g, large impact parameter b > max{bL, 1/mPl} but possibly b� 1/m, where m is
the mass of charged states, taking δ � 1 and small scattering angle θ2 � 1, from either
eikonal scattering against a coherent state or in the transplankian eikonal regime to the
leading post-Minkowskian order. We have nothing to say about scattering photons outside
this domain, in contrast to e.g. [41, 42] that find no bulk-causality violation but, as far as we
understand, in a different regime where photons propagate as a probe in a fixed shockwave
background which break null-coordinate translations, generate mPl- and s-independent
corrections to δ − δ0, and give rise to Imδ 6= 0 already at one gauge loop. A QFT in a fixed
curved spacetime cannot be sensitive, by construction, to bulk-causality violation, because
the front-wave velocity is at best 1. Our study is instead performed in a post-Minkowskian
expansion with dynamical gravity and away from the probe limit, where the background
is not fixed, and in fact the metric has to be reconstructed order by order, as it has been
already done in the literature, e.g. [31, 32], for purely gravitational corrections. Different
species — photons vs. gravitons — have different interactions and the effective metrics are
in general different except for b→∞, in particular b� 1/mX , where one indeed recovers
the equivalence principle as an emergent low-energy effect.

It is presently unclear what the physical consequences of bulk causality violation would
be. It appears that no fundamental principle is violated by having two particle species
that travel across a shockwave slower than in Minkowski space, despite one species being
relatively faster than the other one. On a practical side, however, and taking it at face value,
our finding teaches us that bulk causality should not be used to constrain EFT coefficients,
as is instead sometime advocated in the literature, see e.g. [40]. This should be contrasted
with the recent gravitational positivity bounds derived in [43] which are instead based on
asymptotic causality at all scales, as in the present work.

4 Conclusions

Causality is a fundamental concept in classical as well as in quantum physics in flat spacetime,
and it is at the core of relativistic QFT. Its implications — its precise incarnation — are
however presently not fully understood in dynamical gravity, once quantum matter effects
are taken into account or even when spacetime is itself subject to quantum fluctuations.

In this work we have studied causality in gravity to the first post-Minkowskian order
around flat spacetime, focusing on the leading quantum effects in a gauge theory. We
have in particular contrasted two notions of causality — “asymptotic” and “bulk” causality
— in a gauge theory where both are respected in the classical limit, but differ quantum
mechanically.

The causal and quantum response of photons to a weak spacetime perturbation is
captured by the photon energy-momentum tensor that we have calculated by exploiting
unitarity cuts and on-shell techniques, determining the 1-loop form factors generated by
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charged scalars, spinors, and vectors running in the loop. In analogy to the electroweak
currents, vector loops give rise to large IR Sudakov log-factors in the energy-momentum
tensor, that we have re-summed.

We have studied the eikonal phase shift of photons scattering against spectator particles
in the transplanckian regime (or with several subplanckian spectators building up a large
scattering phase). In the limit of large impact parameter, the theory is well approximated
by an EFT with higher dimensional operators, and we have reproduced the classic result
of [2] and its implication for causality. In particular, the would-be violation of asymptotic
causality in the EFT can be used to determine the shortest impact parameter where the
EFT must necessarily break down, to be replaced by a new theory where microscopic
degrees of freedom (the charged state and possibly Higgs bosons) are integrated-in.

Beyond the large impact-parameter limit, and studying the time delay all the way down
to the Landau-pole scale, we have explicitly established how asymptotic causality is actually
respected in the gauge theory coupled to gravity, even in the UV. The helicity-flipping
form factor that would have led to causality violation in the EFT changes behavior as the
impact parameter becomes comparable to the Compton wavelength of the particles running
in the loop. Its contribution to the phase shift transitions to a constant value in the impact
parameter b, subleading to the contribution from the helicity-preserving form factor which
becomes instead the leading correction to the classic Shapiro time delay. Moreover, we find
that the sign correction to the time delay, at small impact parameter, is opposite to the
sign of the β-function generated by the particles in the loop.

We have found that asymptotic causality, i.e. positivity of the time delay relative to a
photon travelling in unperturbed flat spacetime, is therefore respected up to the scale of
the Laudau pole (if any), where the perturbative regime breaks down and our calculation is
no longer valid. Conversely, the presence of the Landau pole can be correctly inferred by
demanding asymptotic causality in a gravitational scattering. For theories with a negative
β-function, we find that asymptotic causality holds up to the Planck length.

The fate of bulk causality, that is the notion that photons should travel locally slower
(or at the same speed) than gravitons in the bulk of the same dynamical spacetime, is
different. Bulk causality implies that the difference between photon and graviton time
delays should be non-negative, which is respected classically. We have found instead that
quantum-mechanically photons always display in the UV a smaller time delay than gravitons,
representing a violation of bulk causality at the quantum level. While not resolvable in
the IR (i.e. at length scales longer than the charged particles wavelengths), it is instead
resolvable in the UV for sufficiently large center of mass energy.

Looking at future directions, it would be interesting to understand the implication of
bulk-causality violation or, perhaps, how to recover it and why. In particular, it would be
interesting to include next orders in the post-Minkowskian expansion in Rs/b in the photon
and graviton time delays, and compare the competing contributions between the gauge and
gravitational couplings. We find intriguing the possibility of turning bulk causality into a
statement about the swampland versus the landscape in gravitational theories, in analogy
to the Weak-Gravity Conjecture [44]. Going to higher orders in the post-Minkowskian
expansion is also interesting in itself because of extra IR divergences, other than the ones
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we re-summed in this work, that can arise from loops and real emissions involving gravitons,
see e.g. [45]. Understanding IR divergences in gravity and extracting physical observables
and well defined S-matrix elements is a long-standing research program which has recently
become phenomenologically even more relevant because of its connection to the gravitational
waves emitted in black hole and/or neutron star mergers.

Finally, while we focused in this work on the quantum corrections to the 3-point
function and their implications for causality in gravity, there has been recent progress in
understanding how causality and unitarity are imprinted in the analytic structure and
positivity of 4-point functions [46, 47]. It would be extremely interesting to study causality
via 4-point functions including the IR quantum effects from loops of massless states.
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A Conventions

We are working in the mostly minus signature convention ηµν = diag(+,−,−,−), with
Riemann tensor Rµνρσ = ∂ρΓµσν + . . ., Ricci tensor Rνσ = Rµνµσ, Weyl tensor Wµνρσ =
Rµνρσ − traces. Symmetrization and antisimmetrization does not involve factorials, e.g.
A[ab] = Aab−Aba and A(ab) = Aab+Aba. The discontinuty across the real line of an analytic
function F (t) in the cut t-plane is defined as DiscF (t) = F (t + iε) − F (t − iε). The one
particle states are normalized relativistically, 〈k′h′ |kh〉 = δhh

′(2π)3δ(3)(~k − ~k′)2
√
~k2 +m2,

where ~k is a three-dimensional vector.
We work with the following spinor conventions. The momentum ki of a massless particle

i is rewritten as
(kiσ)αβ̇ = λi αλ̃i β̇ , (A.1)

where [σµ]αβ̇ = (1, ~σ). The objets λi and λ̃i are respectively holomorphic and anti-
holomorphic spinors, transforming as λi → t−1

i λi, λ̃i → tiλ̃i under a U(1) little group
transformation. The spinor-helicity angle (square) brackets with positive energy correspond
to negative (positive) 1/2-helicities.

A similar construction is done for massive momenta [6]

(kiσ)αβ̇ =
2∑

J=1
χ Ji αχ̃i β̇ J , (A.2)
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where the J = 1, 2 index is associated with the SU(2) little group, with εIJχJ = χI . For
each external state, a full symmetrization of these indices is necessary to reproduce different
polarizations. For clarity, the J index as well as the symmetrization is kept implicit in the
main text.

Lorentz-invariant spinor contractions are abbreviated using the bra-ket notation. For
massless spinors

〈ij〉 ≡ λαi λj α = εβαλi αλj β , [ij] ≡ λ̃i α̇λ̃α̇j = εα̇β̇λ̃i α̇λj β̇ , (A.3)

where ε is the anti-symmetric tensor. We use the notation 〈ipkj] ≡ λipkσλ̃j = 〈ik〉[kj].
Similarly, for massive spinors

〈ij〉 ≡ εβαχJi αχKj β , [ij] ≡ εα̇β̇χ̃Ji α̇χKj β̇ . (A.4)

The bold notation allows to differentiate between massive and massless states. Finally, the
Mandelstam variables are given by

sij = (ki + kj)2 = 〈ij〉[ji] . (A.5)

B Free energy-momentum tensors

The free energy-momentum tensor for photons γ, a minimally coupled massless neutral
(scalar) spectators S, and charged spinning particles with J ≤ 1

T (γ)
µν = −FµαF α

ν + 1
4ηµν(FαβFαβ)

T (S)
µν = ∂µS∂νS −

ηµν
2 (∂S)2

T (J=0)
µν (x) = ∂µφ

†∂νφ+ ∂µφ∂νφ
† − ηµν

(
|∂φ|2 −m2|φ|2

)
− ξ

3 (∂µ∂ν − ηµν�) |φ|2 (B.1)

T (J=1/2)
µν = 1

4 ψ̄γ(µi
←→
∂ ν)ψ − ηµνψ̄

i←→/∂2 −m
ψ

T (J=1)
µν (x) = −W †µαW α

ν −WµαW
†α
ν + 1

2gµν(W †αβW
αβ) +m2

W

(
W †µWν +WµW

†
ν

)
−m2

W ηµνW
†
αW

α ,

sum up to the total free energy-momentum tensor Tµν(x) = T
(γ)
µν (x)+T (S)

µν (x)+
∑
J≤1 T

(J)
µν (x).

Above, Wµν is the field strength related to the spin-1 field Wµ. The scalar contribution
T

(J=0)
µν (x) is defined only up to an improvement term controlled by ξ. It can be derived

from the action
∫
d4x

√
|g|
{
|∂φ|2 −m2|φ|2 + ξ

6 |φ|
2R
}
via

∫
d4x

√
|g|12Tµνδg

µν = δS, where
ξ = 0 corresponds to a minimally coupled scalar whereas for ξ = 1 the scalar is conformally
coupled, the action being classically scale invariant when m = 0. At the quantum level the
Tµν does not mix with other conserved operators for ξ = 1. For the scalar spectator field
we chose ξ = 0 for simplicity. The phase shift in the eikonal limit is insensitive to the F2
form factors and it is therefore independent of ξ.
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C Higgs/graviton mixing

In this appendix we show that eq. (1.14), which is the non-trivial Higgs boson contribution
to the scattering of photons against spectators — neither of which naïvely couples to the
Higgs — can be phrased in terms of Higgs/graviton mixing. After resolving the mixing the
Higgs couples to all fields with non-vanishing energy-momentum trace.

The the 3-point vertex −hµνTµν/mPl between gravitons and Higgs generates indeed a
kinetic mixing after shifting field around the VEV

− hµνδTµν/mPl =
(
vξH
3mPl

)
hµν (∂µ∂ν − ηµν�)H + . . . (C.1)

The mixing is removed at the linear order by the field redefinition (a linearized Weyl
transformation) hµν → hµν + ηµνH

(
vξH
6mPl

)
as one can check following the transformation

of the graviton kinetic term, namely −2hµν (∂µν − ηµν�)H
(
vξH
6mPl

)
. The transformation

generates as well a coupling between the Higgs and any particle the graviton was coupling
to, in particular to the trace Tµ(S)

µ = −(∂S)2 of the massless spectators S, namely

− 1
mPl

hµνT (S)
µν → −

1
mPl

(
vξH
6mPl

)
Tµ(S)
µ H (C.2)

so that the scattering of photons with spectators receives a contribution at 1-loop by the
Higgs boson exchange as reported in eq. (1.14).

D Explicit form factors at one loop

In this appendix we summarize the full results of the loop calculations for DiscFi(t) and
the full form factors Fi(t) integrated by the dispersion relations eq. (1.11). In the following,
we set τ = 1− 4m2/t for brevity.

In the case of fermion loops, we find perfect agreement with the results of [8, 48].
Comparing our results with refs. [49, 50] that discuss spin-1 and Higgs contributions we
find excellent but not perfect agreement. A small discrepancy is found for the F1 form
factor: rather than [5m2

W + 7s] in front to −1/2D0 in the first line of eq. (149) of ref. [49],
we have [5m2

W + 7
2s]. This discrepancy corresponds to a difference in the imaginary parts

by an amount Disc δF1 = 7
2 iα

√
1− 4m2

W
s13

. It is quite remarkable that the contribution of
tens of diagrams in [49] is reproduced in the present work by integrating the discontinuity
of just one or two diagrams.
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Electron loops (X =ψ).

DiscF1(t) = 2iα
3t2

(√
τ
(
5m2+t

)
t−6m2

(
2m2+t

)
tanh−1√τ

)
θ(t−4m2) (D.1a)

DiscF2(t) = i
2αm2

t3

(
t
√
τ−4m2 tanh−1√τ

)
θ(t−4m2) (D.1b)

DiscF3(t) = i
2αm2

t3

(
−3t
√
τ+2

(
2m2+t

)
tanh−1√τ

)
θ(t−4m2) . (D.1c)

F1(t) = 1+α

π

[
−13τ

12 + 3
16 log2

(
1− 2√

τ+1

)
+ 37

18 + τ−4
4 τ

(
coth−1√τ

)2

+ 5τ−9
6
√
τ coth−1√τ

]
(D.1d)

F2(t) = α

π

[
(τ−1)
192m2

(
36τ−3log2

(
1− 2√

τ+1

)
−32

)
−
√
τ(τ−1)2

8m2 coth−1√τ

−(τ−2)τ(τ−1)
16m2

(
coth−1√τ

)2
]

(D.1e)

F3(t) = α

π

(τ−1)

− 7τ
16m2 +

3log2
(
1− 2√

τ+1

)
64m2 + 11

24m2

+ 3
√
τ(τ−1)2 coth−1√τ

8m2

+
(τ−4)τ(τ−1)

(
coth−1√τ

)2

16m2

 (D.1f)

Scalar loops (X =φ).

DiscF1(t) = iα

6t2
(
t
(
t−10m2

)√
τ+24m4 tanh−1√τ

)
θ(t−4m2) (D.2a)

DiscF2(t) = iα

t3
m2
(
−t
√
τ+2

(
2m2+t

)
tanh−1√τ

)
θ(t−4m2) (D.2b)

− 4iαm2ξφ tanh−1√τ
3t2 θ(t−4m2)

DiscF3(t) = iαm2

t3

(
3t
√
τ−2

(
2m2+t

)
tanh−1√τ

)
θ(t−4m2) (D.2c)

F1(t) = 1+ α

8πt

[
−1

4 t log2
(√

τ−1√
τ+1

)
+
(
t− 16m4

t

)(
coth−1√τ

)2

−4
3
√
τ
(
t−10m2

)
coth−1√τ− 52m2

3 + 19t
9

]
(D.2d)

F2(t) =− 5α
24πt

[
1+ τ

(
(4ξφ−9)t−12m2)

5t
(
coth−1√τ

)2
+ 1

20(9−4ξφ) log2
(√

τ−1√
τ+1

)

+36m2

5t −
24m2√τ

5t coth−1√τ− 4ξφ
5

]
(D.2e)

F3(t) = α

24πt

[
1+
(

48m4

t2
+ 24m2

t
−9
)(

coth−1√τ
)2

+ 84m2

t

+9
4 log2

(√
τ−1√
τ+1

)
− 72m2√τ

t
coth−1√τ

]
(D.2f)
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Vector loops (X =W ).

DiscF1(t) = −iα2t2
(
t
√
τ
(
10m2+7t

)
−8
(
m2+t

)(
3m2+t

)
tanh−1√τ

)
θ(t−4m2) (D.3a)

DiscF2(t) =− iαm
2

t3

(
3t
√
τ+2

(
t−6m2

)
tanh−1√τ

)
θ(t−4m2) (D.3b)

DiscF3(t) =−3iαm2

t3

(
−3t
√
τ+2

(
2m2+t

)
tanh−1√τ

)
θ(t−4m2) (D.3c)

F1(t) = 1− α

2πt

[
35
16 t log2

√
τ−1√
τ+1 +

(
12m4

t
+16m2− 19t

4

)(
coth−1√τ

)2
(D.3d)

−
√
τ
(
10m2+7t

)
coth−1√τ+13m2+ 125t

12

]

F2(t) =− α

8πt

[
−τ

(
12m2+t

)
t

(
coth−1√τ

)2
+ 36m2

t
+ 1

4 log2
√
τ−1√
τ+1

−24m2√τ
t

coth−1 (√τ)−3
]

(D.3e)

F3(t) =− α
πt

[(
−6m4

t2
− 3m2

t
+ 9

8

)(
coth−1√τ

)2
− 84m2+t

8t − 9
32 log2

√
τ−1√
τ+1

+9m2√τ
t

coth−1 (√τ)] (D.3f)

Higgs boson contribution. The model-dependent Higgs boson contribution can be
found in eq. (1.17) that for a Higgs coupled to unit-charge spin-1 boson gives eq. (1.20).

E Off-shell vertices

All amplitudes presented in this paper can be recovered by Feynman diagrams starting
from the following Lagrangians. For scalars, the coupling to the gauge field is given by the
covariant kinetic term |Dµφ|2, which expanded leads to

LJ=0 =|∂µφ|2 −m2|φ|2 − ig(∂µφ+φ− − φ+∂µφ
−)Aµ + g2AµA

µ|φ|2 . (E.1)

In the same way the Lagrangian of spinors and massive vectors coupled to the gauge field
are given by

LJ=1/2 = iψ̄γµ∂µψ−mψ̄ψ−gψ̄γµAµψ , (E.2)

LJ=1 =−1
2W

†
µνW

µν+m2
WW

†
µW

µ

+igFµνWµW
†
ν−igAµ

(
WµνW

†
ν−W †µνWν

)
−g2

(
A2
µ|Wν |2−|AµWµ|2

)
. (E.3)

Additionally to the trilinear coupling of photons to the U(1) global current there is also a
non-minimal trilinear coupling FµνWµW

†
ν with a tuned coefficient (as set by embedding it

in a non-abelian theory) required to produce the gyromagnetic factor value of 2.
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