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ABSTRACT: We study causality in gravitational systems beyond the classical limit. Using
on-shell methods, we consider the 1-loop corrections from charged particles to the photon
energy-momentum tensor — the self-stress — that controls the quantum interaction between
two on-shell photons and one off-shell graviton. The self-stress determines in turn the
phase shift and time delay in the scattering of photons against a spectator particle of any
spin in the eikonal regime. We show that the sign of the S-function associated to the
running gauge coupling is related to the sign of time delay at small impact parameter. Our
results show that, at first post-Minkowskian order, asymptotic causality, where the time
delay experienced by any particle must be positive, is respected quantum mechanically.
Contrasted with asymptotic causality, we explore a local notion of causality, where the time
delay is longer than the one of gravitons, which is seemingly violated by quantum effects.
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Introduction. Causality is a cornerstone of relativistic quantum field theory (QFT), with

one of its most profound implications being the existence of anti-particles. Furthermore,

causality has important implications for properties of scattering amplitudes in flat space,

such as analyticity in the complex plane of Mandelstam variables. In combination with

unitarity, causality enforces non-trivial consistency conditions on effective field theories
(EFTs) that emerge at low-energy from underlying causal and unitary QFTs, often in the
form of “positivity constraints” on the EFT’s Wilson coefficients that enter in 4-point

scattering, see e.g. [1].



Figure 1. Type of diagram contributing to the eikonal scattering and the resulting time delay
via the form factors F;. Curly lines are graviton legs, wiggle lines represent photons, dashed
lines are the spectators, and F; are the form factors defined in eq. (1.3) associated to the photon
energy-momentum tensor.

The notion of causality in the presence of gravity is certainly more subtle because the
spacetime metric that defines the causal structure is itself subject to quantum fluctuations.
Moreover, quantum fluctuations give rise to different light-cones for the various species
of particles.

A fundamental step in understanding the role of causality in gravity has been taken
in [2], where the properties of 3-point vertices involving at least one graviton have been
linked to the tree level classical corrections of the time delay that particles experience
in eikonal scattering. Requiring positive time delay over all range of impact parameters
provides thus non-trivial causality constraints on the 3-point functions.

In this work we are interested in gravitational causality beyond the classical limit and
study the first non-trivial quantum effects. The question that we have in mind is the
following: what notion of causality is respected — quantum-mechanically — once gravity
generates spacetime backgrounds? When quantum loops are taken into account, is the theory
causal with respect to a lightcone defined by graviton propagation (bulk causality), or rather
with respect to the asymptotic Minkowski metric (asymptotic causality) in the vacuum?

We address these questions by studying eikonal scattering around flat spacetime
perturbatively, where some spectator source weakly perturbs Minkowski space and generates
a non-trivial scattering phase shift, hence a time delay or advance, for photons that are sent
through such space. We focus in particular on the gauge 1-loop corrections o(g?/1672) to
the time delay, while working to the lowest post-Minkowskian order o(1/ ml%l), i.e. neglecting
gravitational loop contributions.

The causal response of photons in a perturbed Minkowski space is extracted by calcu-
lating the self-stress (energy-momentum tensor) of photon pairs at one loop. We consider
loops of charged states of massive scalars, fermions, and vectors, which is equivalent to the
full 1-loop correction to the 3-point function as predicted by the Standard Model. The
self-stress is parametrized by three gravitational form factors Fj(q¢?), for i = 1,2,3 with
g the momentum of the exchanged graviton, that correspond to 3-point functions with
off-shell gravitons having a non-trivial momentum dependence that in turn affects the time
delay in the eikonal scattering, see figure 1.

The detailed computation of the form factors is performed via on-shell methods (uni-
tarity cuts, massive spinor-helicity formalism, and dispersion relations), which are computa-



tionally powerful and conceptually neat, avoiding the need to deal with gauge-dependent
quantities to extract physical observables. For wavelengths of the exchanged graviton larger
than the charged-particle Compton wavelength 1/m in the loop, we recover the classic
results of [3] (extended to include spin-1 loops), from which the study of causality in the
low-energy limit of quantum electrodynamics (QED) coupled to gravity originally started.
At shorter graviton wavelengths, virtual particles can probe larger regions of spacetime. As
a result, we show that the sign of the time delay at small impact parameters b < 1/m is
related to the sign of the QED S-function contribution from charged particles.

We find no asymptotic-causality violation for impact parameters larger than the length
scale associated to the Landau pole (below which our calculations no longer apply) in
spinorial and scalar QED. Loops of spin-1 W-bosons do not generate a Landau pole' and
give in fact no asymptotic-causality violation because of Sudakov infrared (IR) divergences
which exponentiate and suppress the form factor at large momentum transfer. Instead,
and despite being classically valid, we find that bulk causality is not respected quantum
mechanically, within our setup.

The remainder of this paper is organized as follows. In section 1 we calculate the
energy-momentum tensor at one loop in the Standard Model and study its properties,
including the connection between the gravitational form factors, g-functions, and IR
divergences. We also study the Higgs/graviton mixing that contributes to the form factors.
In section 2, we calculate the phase shift by taking the eikonal limit of the amplitudes in the
relevant kinematic configuration and computing its Fourier transform to impact parameter
space. Different limits of the integration are studied analytically at large and small impact
parameter. Section 3 is devoted to studying the implications of the 1-loop self-stress on the
two notions of causality. Conclusions and future directions are discussed in section 4.

1 The photon self-stress

In this section we calculate the matrix element of a symmetric and conserved energy-
momentum tensor T}, in flat spacetime

O T (@) KE) = EFI2OTLOE) . Tw=Ty  9T" =0 (L)
between a pair of (identical) incoming massless spin-1 particle states, both taken on-shell,
K =kK?=0, e k=¢ k=0, (1.2)

where the dot - indicates Lorentz contraction with the Minkowski metric (see appendix A for
conventions), and k% = k- k. The € and ¢ are polarization vectors associated, up to a gauge
choice, to k and k' respectively.? In analogy with low-energy quantum electrodynamics,

)

we refer hereafter to these states as “photons,” although our analysis goes beyond real

world QED to any massless spin-1 minimally coupled to gravity. By crossing symmetry,

"We are including Higgs bosons to make the theory renormalizable in the absence of gravity.
2The little-group index that labels the helicity of the particles is sometime left understood to avoid
clutter of notation, but displayed whenever relevant.



eq. (1.1) determines as well the (k’|T,, (z)|k) matrix element by the replacement ¢ — €™
and k' — —k’ in eq. (1.3), which flips the helicity.

After Fourier transforming (1.1) and factoring out a (27)*6*(k+ &'+ ¢) from momentum
conservation, the matrix element can be written as the sum of three conserved and gauge-
invariant tensor structures multiplied by scalar form factors F;(t), for i = 1,2, 3,

(01T, (0)[K )N = (O[T, (0) K k) [N Fi (1)
+ Pua) [2( - B)(e K) — *(e - €)] Pa(t) (1.3)
+pupy [2(€ - K)(e- K) = g*(e - )] Byt

~—

where we have defined
p=k—k, q=—-(k+k), t=¢=2k-k, Pulq=qw-—nwe (14

and N = \/4|kOk'0| is the relativistic normalization factor. The basis of tensor structures is
chosen to isolate first the classical term

I for 1 a
<0|TW(0)|]€/I€>|t “N = (kz[uea]k{yefg] + k[uﬁa]kfuﬁlm) nf — inuyk[ ¢’ faelm (1.5)

associated to the free-photon T,SZ) in eq. (B.1), then the identically conserved terms P,,(q)
associated to the so-called improvement terms, and finally the projector p,p, which is
orthogonal to g,, and hence conserved, via the on-shell condition. Their physical meaning
is made manifest by the dependence on the helicities h and A’

, /1.0 p ! v o /\2 uv oV
O Ky = ( FR O HIR S AR (k)2 (P ) Fft) " Fy (1)
—[kK']? (P (q) Fo(t)+pHp" F3(t)) 5(ko"k'[(ka” k'] F1(t)
(1.6)
where the diagonal entries correspond to i’ = —h = + (here referred to as helicity-preserving,

in reference to the crossed process), while the off-diagonal entries correspond to h = h' = +
(helicity-flipping). Here, o” are the Pauli matrices, and the square and angle brackets
are the standard spinor helicity variables (see appendix A). One can recognize the three
covariant little-group structures: F} parametrizes the helicity-preserving scattering against
an off-shell graviton — equivalently on-shell massive spin-2 —, while F5> and F3 control the
overlap between the helicity-flipping photon pair — hence having zero spin in the direction
of motion — and either the spin-0 or the spin-2 state found in 7},,|0), which can have such
a vanishing spin projection. There is no spin-1 state and only one spin-0 state because of
the conservation equation 9,7 = 0.

From the normalization limg .z (k™| TH(0)|k") = kHk¥ /k° associated to the particle
4-momentum PH|k) = [ d3x T(z)|k) = k*|k), the helicity-preserving entries of eq. (1.6)
are fixed at zero-momentum transfer

Fl(t—>0):1. (17)

Once coupled to gravity, this corresponds to the universal helicity-preserving low-energy
coupling of gravity set by the reduced Planck mass mp; = (87TG)_1/ 2 where G is the
Newton constant.



1.1 Self-stress at one loop

The energy-momentum tensor we consider is defined operationally as the covariant source of
a weak gravitational field. At tree-level F; = 1 and F5 3 = 0 for all values of ¢, corresponding
to the photon matrix elements of the free T}, reported in appendix B. At 1-loop, radiative

3 and

corrections modify these values via loops of charged states coupled to the photons,
in the following we reconstruct the radiative self-stress matrix elements from tree-level
amplitudes using on-shell methods.

One simple and efficient way to extract the form factors F; is calculating first their
discontinuities in the complex ¢-plane across the real line for ¢t > 4m?2, as shown in the loop
diagrams in figure 2, where m is the mass of any given charged state running in the loop.
Then one computes the real parts by a simple dispersive integral, see eq. (1.11). It turns out,
in fact, that the gravitational phase shift and the associated light-bending and time delays
can be extracted directly from the discontinuity alone (see for example egs. (2.6), (2.7)
combined with (2.9)).

The discontinuity at one loop can be calculated by either explicit evaluation of the
(non-analytic part of the) triangle and bubble diagrams in figure 2 (with no cuts), or
equivalently by convoluting tree-level amplitudes via the Cutkosky rule. We follow the
latter approach and have found it convenient to build first an auxiliary 2-to-2 scattering
amplitude 1,3, — 2g4¢ for photons into some spectators S taken to be a real massless
scalar minimally coupled to gravity. The discontinuity of the energy-momentum tensor in
the Mandelstam variable s13 = (ky + k3)? = t for s13 > 4m? is promptly obtained from the
auxiliary amplitude multiplied by s13m¥,

kS K2 Disc (0] T, (0) |k 2N = m?,Disc s13M (1,3, — 2545) (1.8)

by factoring out ké“ ki).

This is effectively the same as considering the s;3-channel disconti-
nuity of 2-to-1 amplitudes associated to pairs of photons producing an off-shell graviton.

The right-hand side of eq. (1.8) can be calculated at one loop via the Cutkosky rule
Disc M(1,3, — 2g54g) = i/ng,GM(lw&y — 5x65)M(5x65 — 254g) (1.9)

using the tree-level amplitudes M(1,3, = 5x65) and M(5x65 — 254s) where (5x,65) is
any pair of charged particles/antiparticles of spin Jx =0, 1/2 or 1 in the Standard Model
(hereafter dubbed ¢, 1) and W respectively), dIlsg is their Lorentz invariant two-body phase
space, and the sum over the helicities of internal particles is left understood. All the relevant
amplitudes are summarized in table 1, and the diagrams contributing to the discontinuity
are shown in figure 2.

For X = ¢, 4, the 4-point functions M(1,3, — 5x65) are the pair production
amplitudes in standard (scalar and spinorial) QED. They can either be obtained by
Feynman diagrams from the Lagrangians given in appendix E, or recovered from standard

3There are in general also loop corrections to F» from the vacuum expectation value (VEV) of neutral
scalars non-minimally coupled to gravity, o & f \/|g|RH 2 4 ..., so that a non-vanishing (H) = v generates
graviton/scalar mixing « v§. See section 1.2 and appendix C.



Figure 2. Diagrams contributing to the 1-loop discontinuity of the 3-point function with k? = k'2 = 0
and ¢ > 4m3 (1-3 crossed triangle diagrams omitted for simplicity). Curly lines are graviton legs,
wiggle lines represent photons, charged particles of spin 0, 1/2 and 1 in the loop are represented by
X = ¢,9, W respectively, and dotted lines put legs that they cut on-shell.

on-shell techniques. With the latter approach, unitarity dictates the factorization of the
4-point amplitude into 3-point amplitudes which are completely fixed by little group scaling
and dimensional analysis, (for reviews see e.g. [4, 5]).

The case of the massive vector X = W is slightly more delicate because the high energy
limits involve extra 3-point vertices relative to the one of massless Yang-Mills, reflecting the
presence of the eaten Goldstone bosons. The minimal cubic coupling we consider is thus
fixed by its high energy behavior, requiring that the vertices match massless Yang-Mills for
the transverse polarizations, and minimally coupled massless scalars for the longitudinal
polarizations. This is simply the on-shell amplitude description of the Higgs mechanism [6],
i.e. the Goldstone equivalence theorem. Once again, this result is matched by the Lagrangian
formulation of appendix E. The last column of table 1 is the production of the neutral
spectator through the gravitational interaction. All X are taken to couple minimally to
gravity except for the non-minimal coupling present on table 1 for ¢, parametrized by &g.
Such a contribution is discussed in section 1.2.

Comparing the tensor structures in eq. (1.3) or eq. (1.6) with the expressions we find
for eq. (1.8) using eq. (1.9) and the amplitudes in table 1, we extract the form factor
discontinuities Disc F;. For convenience, we list here Disc F for the three massive spinning
particles ¢, v, W running in the loop, while the discontinuities of the other form factors are
reported in appendix D

; [ am? [ am?
DiscFl(t)d):é% t(t—10m?) 1—%+24m4tanh_1 1—% 0(t—4m?)

2i Am? [ am?
DiscFl(t)¢:£ 1—%(5m2+t>t—6m2(2m2+t)tanh_1 1—% 0(t—4m?)

Disc i (t)w = ;—zj‘ Wt (10m?+7t) =8 (m?+1) (3m?+1) tanh ™! M

x O(t—4m?) (1.10)

where 6(x) is the Heaviside unit-step function and o = g2 /47 is the fine structure constant.



M(1;3f~y_5xﬁ5{) M(1;3;5x65() ./\/1(5)(65{2545)

¢ 9P {1(ks —ke)3)? 29%m?(13)? (sa5=m?) (sa5=m?) _ 0 ooy
2(s15—m?)(s16—m?) (s15—m?)(s16—m?) m 524 ¢6m%1

G | L eka)S] ((15)(36)+ (16)[35]) | 2L m{IISE5) | 20815 ((6(ky — ky)5)+ (5(ka — ka)6)])

(81571’n2)(81677n2) (515*77742)(516*7”2) 4m12:,1524

W 2 ((15)[36]+(16)[35])? | 237 (65) T ((6(ka—Fa)5]+ (5 (ko — ka)6])?

(81571’77,2)(5167771 ) (8157m2)(5167m2) 4m%1524

Table 1. Amplitudes relevant in the determination of Disc F;, where ¢ is the gauge coupling
(in the normalization of unit charge). Each row corresponds respectively to X =¢,¢,W. Other
photon helicities are recovered by replacing holomorphic with anti-holomorphic configurations (and
vice-versa). Notice, that all amplitudes are given in terms of incoming states, and in order to be used
in (1.9) all legs on the r.h.s. of the arrows should be flipped by the map p — —p, and |p)! — —|p)s,
Ip]? — |p] for massive legs. In this case, the overall effect of the flipping is just the lowering of the
SU(2) indices on the massive legs, and no effect on the scalar legs. The contact term proportional
to &g in the first line is the amplitude counterpart of the scalar non-minimal coupling to gravity, see
eq. (1.15). Other model dependent contributions, such as those due to Higgs bosons, are discussed
in section 1.2. See appendix A for conventions.

X | DiscFi(t>>m?) | Disc Fy(t > m?) | Disc F3(t > m?)
¢ % 13(5 — 485)d(t) —150(t)
(G e ga(t) ga(t)
W |~ (7 4log L) 0! 0

Table 2. Limiting behavior of Disc F; in the kinematical region ¢ < 0 and |t|/m? — co. The Dirac’s
delta functions signal that the concerned discontinuities vanish pointwise in the massless limit but
not under integration.

The t > m? limits of these expressions will be very useful in the following discussion and
therefore are listed in table 2.

While Disc F 3(t/m? — 0o) vanish pointwise, as expected for the h = h’ = + helicities
of the photons that forbid any non-trivial products of 4-point amplitudes with exactly
massless particles which enter in the unitarity cut, they actually return Dirac J-functions,
see table 2. A similar effect has been pointed out in [7] in the context of the Higgs boson
coupling to photons. The connection between these d(¢) and the IR-side of the trace anomaly
is discussed in section 1.3.

Notice, moreover, that the constant contribution to Disc Fy(t > m?) is given by the
B-function of the corresponding particle in the loop, as detailed in section 1.3. Also, the
behavior of the massive spin-1 particle differs from the other contributions by the presence
of a log® t/m which will be identified as the contribution of soft divergences in section 1.4.

The discontinuities can thus be integrated with the dispersion relations

Fi(t)=1+

t/oo dt’ Disc Fy (') 1 /°° g Pise Fa3(t') (1.11)
4 4

— [ === Byt = — A
27 Jame2 ¢t —t — Q0T 23 =55 T i ior



Fi(t) Fy(1) F3(t)
X |m?> |t m2< |t | m?2> |t mP<|t| | m?>|t] mP<|t|
O | 141 14+ (19-6log =t ) | Sl -2l ey oo
Y| 1+ gty L+2 (B-flogt) | e —we | wew T
Wl+gely 1-f (B -Togst+2108? ) | e 2% |—aew o

Table 3. Large and small m limits of the form factors F;. The EFT parameter aj in eq. (1.12) is
given by az=—F3(|t| <m?).

determining F; everywhere in the complex cut ¢-plane. The subtraction constant for F}
has been fixed by the normalization condition eq. (1.7), so that helicity-preserving low-
energy photons scatter gravitationally with strength 1/mp;. The full expressions of F;(t)
are summarized in appendix D, while the important limits are collected in table 3 for
convenience. The earliest calculation of F; in spinorial QED was performed in [§].

One particularly interesting limit of eq. (1.3) is at large masses of the particles running
in the loop. This limit is equivalent to integrating out such particles and can be matched

to effective irrelevant contributions?

1
L= _ZFNVF#V + OélRFw/F'uy + OZ2RMVFHQF5 + a3Rp,uaBFuyFaB oy (112)

of which we only display the off-shell 3-point vertices. Notice that only a3 contributes to
the on-shell 3-point function vy — graviton, and the aq 2 correct instead low-energy on-shell
4-point amplitudes only, as is visible by using the equations of motion. We remark that the
form factor F3 reduces to the Wilson coefficient of F,, Fi,g R* b ie. ag = —Fy (t < m?),
which give rise to on-shell helicity-violating 3-point vertex v+ — graviton, at low energy.
The electron and scalar Wilson coeflicients for as nicely agree with the results present in
the literature, see e.g. [3, 8, 11] and references therein. The effective Wilson contribution to

a3 from massive vectors is new to the best of our knowledge.

1.2 Non-minimal couplings and Higgs/graviton mixing

The (£4-independent part of the) form factors we have calculated are generated at one loop
by charged states minimally coupled to photons and gravity. Within this setup neutral
particles contribute from 2-loop order only. With non-minimal couplings, instead, other
1-loop contribution are generated, even from neutral scalars.

In this subsection we discuss two illustrative cases of non-minimal gravitational coupling
for charged (¢) and neutral (H) scalars. The latter is actually relevant because of the Higgs
mechanism whenever charged spin-1 particles are considered, should the Higgs boson be
coupled to gravity non-minimally. We report the result for the Standard Model Higgs at
the end of this subsection.

41t is actually possible to match as well the form factor contributions in the massless limit but to a
non-local 1-loop effective action, using the covariant effective action approach of e.g. [9, 10].



Let us consider non-minimal gravitational couplings given by

55 [aterfll g (&0 + L17) = 6T = —5 0,0, — 100 (calo? + L2
(1.13)
where we extracted the energy-momentum tensor from the linear gravitational coupling
around Minkowski, that is 6S = [ d*z+/[g[T,.,6g"" /2. They clearly contribute to identically
conserved improvement terms of the energy-momentum tensor, hence changing the F5 form
factor in eq. (1.3). The case with {4 = £z = 1 and vanishing masses is known as conformally
coupled scalars because the two-derivative action becomes classically Weyl invariant.

One simple way to take the effect of {4 f into account, which makes also direct contact
with the on-shell method approach we have taken in the rest of this work, is by removing the
non-minimal couplings via a field redefinition that is effectively equivalent to plugging the
unperturbed equation of motion R = —T}/ m3, in the action in eq. (1.13).> This gives rise
to new contact-term interactions associated to the trace of the energy-momentum tensor

1 §u
53/d4 < 2 H2> 9S)* +2|0¢* + (OH)? +...| . 1.14
o lolgoz (&olol” + 35 H? ) [(©5)° + 21001 + (OH) + .| (1.14)
Therefore, the effect of non-minimal coupling associated to {4 is nothing but changing the
on-shell data that enter in the calculation of the discontinuities, i.e.

§p S24
OM(5p67 — 254g) = — 2 ——, 1.15
(5465 — 254s) 6 ma (1.15)
as reported in the first row of table 1, the first row of table 3, and more generally in the F3
reported in appendix D.
On the other hand, £x does not affect F» at one loop (to O(1/m#,)) unless H gets a VEV
(H) = v and it couples to charged states running in the loop, both conditions being actually
satisfied for the neutral component for the Higgs boson field of the Standard Model. Indeed,
from the 67}, in eq. (1.13), after replacing the perturbations around the VEV, we have
(O[T (0) ) = SHY (40 — Ma?) ——— M(1,3, — H) (1.16)
7% 3 K M S13 — m12‘I Ty
where my is the Higgs boson mass, and the amplitude M(1,3, — H) is model dependent.
The latter depends on the trilinear Higgs boson coupling HX X where X is running in the
loop. Eq. (1.16) produces as well a shift in the on-shell scattering data between the Higgs
and the spectator field

$13 vén
oOM(1,3, — 2g45) = M(1,3, - H 1.17
a0 ()
as one can also check directly from eq. (1.14).
Let’s put these expressions to good use and consider the example of SU(2) — U(1)
symmetry breaking pattern for a weakly coupled SU(2) gauge theory where a real triplet qg

®See appendix C for an equivalent discussion phrased in terms of Higgs/graviton mixing resolved by field
redefinitions.



gets the VEV (¢!) = §%3v. The low-energy physical spectrum contains a massless photon
and, since the theory is weakly coupled, it contains as well a pair of spin-1 bosons W= of
mass m¥, = (gv)? and a neutral Higgs boson H in ¢ = (7', 72, v + H). For convenience,
we now call H the fluctuation around the VEV. Everything we discussed in this subsection
applies directly to ¢3 in the unitary gauge where [ d4x§HR$2/12 = [d*x¢yR(v + H)?/12.
The amplitude in the s13 > m%v and s13 < m%,[, limits is extracted immediately via the
Goldstone equivalence theorem (see e.g. [12, 13]) and the Higgs low-energy theorem [14],

respectively,
M@1,3, - H) | 2«
Tk)(e-K) —q2(e-€)]'s>miy, Ty \dn )
[2(¢" - k) (e k') = (1.18)
M(1,3, —>H) | __7(a> ‘
2(¢" - k) (e - k') — ¢2(e - €)] 's13<miy — y \4dmr
so that eq. (1.16) compared to eq. (1.3) returns
 2p [« 1 _TH ([« 1
6F2(t)|t>>m?/v 3 <47r> t—m3’ 6F2(t)|t<<m?/v 3 <47r> t—m3’ (1.19)

where we remind the reader that sj3 = t. The ¢t > m%jw limit of ¢t §F»(t) in eq. (1.19)
enters directly in the trace anomaly equation we will discuss in section 1.3.

Next we move to the result for 6 Fy valid for all s13. Since this model contains the same
spectrum and couplings of the particles that generate the spin-1 contribution to the H — v~
process in the Standard Model, we can directly use the W-boson contribution from the
Standard Model expression of M(1,3, — H) which, incidentally can also be extracted by
dispersion relations and on-shell data [15] being careful with the subtraction constants that
can be fixed by matching to the Goldstone equivalence theorem and the Higgs low-energy
theorem results. From the Standard Model W-contribution to M(1,3, — H) we thus get

2
_ 2
5F2(t):2§iﬁ 1+6m%V—3m%V<1—2m%V> 1og1+V1 i/t
3 t—my t t t 1— /1 —4m2, /t
(1.20)

A similar contribution from the top-quark can easily be included as well in M(1,3, — H),

so that eq. (1.16) can be used to determine 0 F» contribution from the Higgs boson of the
Standard Model.
1.3 Trace anomaly and the running coupling

The trace of the energy-momentum tensor is

OTL )K" K"y = ~t (3F(t) + Fy(t)) [2(¢' - k) (e - k) = ¢*(e - €)]

0 <k‘k‘/>2> (1.21)

=t (3F5(t) + F3(t)) <[kkl]g 0

which depends only on the combination ¢(3F» + F3) and is non-zero only for helicity-flipping
photons, as it should be for the overlap of photons with the spin-0 state (0|7/(0).
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For t > 4m? and t > ml%], i.e. well above the pair production threshold of massive
charged particles and Higgs bosons, and setting {4 = {y = 1 for all conformal couplings in
eq. (1.14) such that the dilation current can be written as z, 7", the QED trace anomaly

B

. %Fpg, (1.22)

implies (O[T} |k k)N = % [2(¢' - k)(e- k') — ¢*(e - €)]. Therefore eq. (1.21) allows us to
express the S-function for the gauge coupling g = g(p) in terms of the form factors

B=—g lm t[3F(t)+ F3(t)]

t/m2—o00

£y 1=l - (1.23)

From the explicit expressions that we calculated, see table 3 and eq. (1.19), we can read off
the QED S-functions from loops of charged spin-0, spin-1/2 and spin-1 particles (for unit

1 & 4 e B e
Po=3 (16772> - Pe=3 (167r2> ’ BW_7<167r2> (1.24)

In Sw we included the contribution from the Higgs/graviton mixing, eq. (1.19).

charges) as

It is a highly non-trivial result that from gravitational form factors we correctly
reproduce the non-abelian (negative) SU(2) B-function By /(g% /1672) = —11/3x2+1/6x2 =
—7, including the scalar matter in the adjoint representation, and using purely on-shell
data associated to scattering only physical polarizations. This connection between the
energy-momentum tensor, scattering data, and the S-functions is somewhat reminiscent of
the methods presented in [16].

We remark that the finite value at t/m? — oo of the S-functions as calculated by the
trace anomaly boils down to the presence of an IR-localized Dirac J-function in Disc F» 3
that we have reported in table 2. These Dirac é-functions represent the IR side of the trace
anomaly in full analogy with the chiral anomaly case, see [17, 18], as it was already pointed
out for spinorial QED in [19]. By contrast, we explore below the UV side associated to the
running coupling and expose its connection to the F} form factor.

By putting the theory on a curved spacetime®

1 2
S = /d4x\/|g| {—WFWFW - %R—F . } (1.25)

we can as well establish an important connection between the S-function and the F} form
factor which is directly connected to the asymptotic time delay at short impact parameter,
as we show in section 2. Expanding the action eq. (1.25) to first order in the metric
perturbations around Minkowski spacetime and Fourier-transforming the photon field (with
a slight abuse of notation) €, (k) = [ d*ze** A, (z) we get

1
292(1)

dtq & dk
S5 / : g _(@2m)*0M (g + K+ KR (g)

271')4 (27‘(‘)4 (271') <0‘Tuu(0)‘k/k>|tree/\/’ + ...

(1.26)

5The gauge coupling g = g(p) should not be confused with the metric determinant in the volume

element +/|g|d*z.
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The same running coupling g = ¢g(u) in front of the photon kinetic term is found as well in
the F; form factor. That is, the counter-term needed to renormalize the photon kinetic
term also enters in the F; form factor. Therefore, in the limit ¢> > m?, rather then
defining g(u) as the coupling of an off-shell A, to charged currents, as e.g. measured in the
Coulomb potential at a floating renormalization scale —g? = 12 (i.e. in a scattering process
mediated by a virtual photon), we can equally think of it as the coupling of two incoming

helicity-preserving on-shell photons scattering on an off-shell graviton with —t = 2
d 1 d g d
dlogp g*(n)  dlogp 1= g = =73 dlogp ==l (127)

In the right-most expression in eq. (1.27) we have restored to a canonically normalized
kinetic term —1/4F 31, in the lagrangian density. The formula in eq. (1.27) links directly the
sign of the log(—t) in the helicity-preserving form factor F; to the sign of the S-function.”
Moreover, from the dispersion relations eq. (1.11) the log(—t) arises, in the case of spinorial

and scalar QED, by the constant limit of the discontinuity Disc F (¢t — oo), hence

g Disc F1 (t)¢,¢

t/m2—o0 T 21

(1.28)

This nice expression connects directly the g-function in spinorial and scalar QED to the
discontinuity of the helicity-preserving gravitational form factor Fj, i.e. to on-shell-only
gravitational scattering amplitudes. From the first two rows of the first column of table 2
one indeed reproduces the 4 and 3y in eq. (1.24).

1.4 IR-divergences and Sudakov double-logarithms

The presence of a finite — but still large — log? factor in the high energy limit of the
helicity-preserving form factor I} generated at one loop by massive charged spin-1 W bosons

<O|THV(O)‘1;§¢>(HOO@ 1-— <125 — Tlog - + 2log? _t> (1.29)
Ol T (O)]15 350 mi, o 47 \ 6 mly iy

can be understood as the IR divergences that we would encounter if the W mass were

vanishing. It arises in a way that is completely analogous to the presence of large double-

logarithms in the matrix elements of electroweak currents, see e.g. [20-22], which are usually

called electroweak Sudakov double-logarithms in analogy to the original QED Sudakov

factors that are associated to the vanishing photon mass.

We deal with these Sudakov factors in the self-energy by taking a renormalization group
approach to resum the leading double-log factors. We first regulate the most IR-singular
class of diagrams by cutting them with a floating mass mys — m = u, which should be
taken not too far from the kinematical variables so that perturbation theory is reliable, and

"Trading the log u® dependence for the log ¢® breaks down, however, if extra log ¢?/m? factors survive in
the ¢ > m? limit, which signals the presence of IR divergences. They do not arise at one loop of spin-0
and spin-1/2 charged states, but are instead present for spin-1 particles for which, therefore, eq. (1.27) and
eq. (1.28) no longer apply. We study IR divergences in section 1.4.
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then we evolve the form factor down with the resulting RG equation that we can thus write
as an evolution in the mass, namely

(0T, (0)[153%) o m? _
alogu(m2/(—t)) = (47r) tog <—t> (01T (O)115,35) - (1.30)

Integrating this RG equation from g = pg down to the W mass u = myy we get the

exponentiation of the Sudakov double-logs in the form factor

2 2
Fi(t) ~ F (12)Exp [—2 (O‘) <1og2 W g2 “0> (1.31)
4 —t —t
and the associated exponential suppression for ¢ > m%v
—2(ar/4m) log |t|/m?
[Fa(t > miy)| o< ([t]/miy) V0 (1.32)

at high-energy.

We remark that, while we have obtained the evolution equation (1.30) within per-
turbation theory, it holds in fact non-perturbatively as shown in [21]. The exponential
suppression from the leading double logs is indeed completely fixed by the sum of the
quadratic Casimirs S;(S; + 1) associated to the representations, carried by each i-th external
leg, of the SU(2) gauge group (as we are dealing with a non-abelian gauge theory with just
W* and v = W? in the spectrum). The evolution equation of [21] is indeed nicely matched
by our perturbative derivation, eq. (1.30).

Notice that the same exponentiation of the IR Sudakov logs takes place for the helicity-
flipping matrix elements Fb 3, but starting at two-loop order O(a?). It can be obtained
by adapting again the results of e.g. [21], something that we leave to future investigations,
limiting the present work to 1-loop accuracy.

While the exponential suppression we find is analogous to the vanishing of exclusive
processes in ordinary QED, here the W mass is finite and this makes the resummed form
factor and the associated exclusive amplitudes actually finite. Moreover, the finiteness
of the mass and charge of the W boson allows one to distinguish states with different
numbers of W particles in them, contrary to the case of photon emissions which can always
escape detections if sufficiently soft. For these reasons, we keep working in the following
with the exclusive 2-photon matrix elements of 7}, which is thus IR finite since charged
particles are consistently excluded in the final or initial state, rather than with inclusive
cross-sections. Moreover, the effect of the exponential suppression is relevant only for
(a/27) log?® (—t/m?%,) > 1, and it is therefore not important to the phase shift eq. (2.10)
in the region 1/ m%,exp(—m) <1/ m%[,, i.e. for impact parameters that can still
be taken exponentially smaller than 1/ m%/v at weak coupling. In the following sections we
consistently include the impact of the exponentiation in the regime b*m?, < exp(—+/27/a).

It would nevertheless be interesting to study in a future work the inclusive case where
the double-log contributions would cancel out so to become sensitive again to the single
logs and possibly to the sign of the beta-function, like it is the case for spinorial and scalar
QED when not embedded in Yang-Mills theory.
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2 The phase shift

Now that the form factors F;(t) have been determined, we proceed to computing various
quantities of interest. We study the 4-point function (diagrammatically shown in figure 1) in
the eikonal limit s > ¢, where the center of mass energy is much larger than the exchanged
momentum, corresponding to the response of photons to the gravitational field generated
by the spectator fields.

In this limit, and scattering either at transplanckian center of mass energy or against
several spectators, the amplitude exponentiates in impact parameter space, S = ¢219(s:)
where 0(s,b) is referred to as the phase shift and b is the impact parameter. The large
phase in the eikonal transplanckian scattering against a single spectator is generated when
Gs > 1 and G/s < b, see e.g. [23-26], while with several N shock-waves each scattering
is subplanckian building up to NsG > 1 [2]. The phase shift is related to a number of
observables such as scattering angle and the time delay, as explicitly shown in section 3.1.
In this section we present the leading quantum corrections in the gauge coupling to the
phase shift in the eikonal regime.

The 1-loop quantum corrections from pure gravity, d; ~ G%s/b? [24], are always very
small in the transplankian eikonal regime, set in fact by the ratio of the Planck length over
the impact parameter b. They are also much smaller than the 2-loop gravitational corrections
Redy ~ Gs(Rs/b)%. The 1-loop gauge contribution scales instead as G's(a/47) log?(mxb)
for b < 1/myx and Gs(a/4m)/(mxb)? for b > 1/my, see eq. (2.18) and eq. (2.12), which
can be much larger than 1 and dominate over the gravitational do for a suitable range of
s and b we restrict to. Similar scaling applies to the case of scattering against a coherent
spectator background.

2.1 Amplitudes in the eikonal limit

In this section, we present the eikonal limit of the 4-point amplitude, which will be used in
the evaluation of the time delay, following [2, 27]. For simplicity, we detail the construction
for a scalar spectator, but we have checked that in the eikonal limit, the same result is
obtained by scattering against spin-1 and spin-2 spectators minimally coupled to gravity.
In other words, the spin of the spectator is irrelevant in the computation of the time delay,
as long as it is characterized only by a minimal gravitational interaction.

When contracted with the scalar 3-point function, the full amplitude takes the form

? 2 s12—514)2
M(l 3 a4 )_ _%Fl(t) éi%’l (313F2(t)+%F3(t))
13y 2548) = pgp o s k3P ,
22 513 2( )+ 513 5( ) 2 13 1( )
Pl Pl
(2.1)

where we recall that the diagonal entries correspond to the helicity preserving amplitudes
with h/ = —h = + while the off-diagonal entries correspond to the helicity-flipping h =
h' = £, and the Mandelstam variables s;; are defined in appendix A. This amplitude is
evaluated on the following massless kinematic configuration

k= (w,-p+7/2), ky = —(w,—p—q/2),
ku:(wvﬁ_i/Q)v kZ:_(w7ﬁ+§/2)v

(2.2)
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where ¢ is the exchanged momenta, w = /p? + ¢?/4, and in the following we fix the
direction of o = pZ, where 2 is the unit vector in the z-direction. The Mandelstam variables
in this configuration are given by

82812:4002, t2813:—§2, U= 814 = — ﬁ2. (23)

By momentum conservation, the product g ¢ is zero, implying that the momentum transfer
¢ lies in the xy-plane. With an abuse of notation, we will refer to ¢ as a two-dimensional
vector with components ¢ = (g1, ¢2).

We are interested in the eikonal approximation w > ||, where the amplitude eq. (2.1)
in the kinematic configuration eq. (2.2) is given by

52 ( Fi(t) —4ti3<t>)

Meik(t): _
mad® \_ag2 By(t)  Fy()

(2.4)

where ¢, = %(ql +iqe) and ¢ = %(ql —1iq2), and we dropped the contribution from Fj(t)
which is analytic in ¢, hence giving rise, once Fourier transformed to impact parameter space
b, only to local terms such as §(b) or derivatives thereof. This means that the improvement
terms proportional to {; and &y do not produce any measurable effect on the time delay.

2.2 Computation of the phase shift

The phase shift is obtained by Fourier transforming the 4-point amplitude in the eikonal
limit eq. (2.4) to impact parameter space

1 d2 ib-q \ qei —
30) = 35 [ Gy M= %), (2.5)

where b = |b|. The eigenvalues of this matrix are given by

51(s,0) = - [ (6%) + 1602 B5 (1) (2.6)
mMp
where we have defined ) )
- d°q Fi(—q°) i
2\ ib
Fi(b7) = / (27)?2 £ ¢ 1, (2.7)

for i = 1,3, and ﬁ’é = 8?3/(%2.

The integrand in eq. (2.7) is discontinuous at the graviton pole or above threshold, i.e.
when q; = #igo or t = —¢2 > 4m?. We can then compute eq. (2.7) by applying the Cauchy
theorem. The integration contour of ¢q; can be deformed in its complex plane so to express
the integral in terms of the discontinuities computed in table 2, see figure 3. Without loss
of generality, we can fix b= (b,0) because of rotation invariance. After performing the
rotation ¢ = i@Q); and changing the order of integration, eq. (2.7) takes the form

Disc Fi(Q1—63) _qub
Qi—a ’

F;(0)

. oo JE—am?
B === P logh/bm+ oz [ dQu [

(27:)2 dgs (2.8)
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[Q1

Figure 3. Integral contour I' in the upper complex ¢;-plane for F,. There are two contributions:
one from the graviton pole, and the second from the discontinuity above threshold ¢ > 4m?2.

where big is an infrared cutoff. The bg has no physical impact as long as one considers
wave-packets with b < big. The integral in eq. (2.8) can be further simplified by changing
variables Q1 = v/t cosh 6, g» = v/tsinh 6, in terms of which it becomes

B?) = L 2(7?) log b/bir, + (2;)2 A :;O dtDiSC:mKo (bv7) | (2.9)

where Kj is the modified Bessel function of the second kind. Combining eq. (2.9) with
eq. (2.6), we obtain the final expression for the phase shift

s 1 b 8
01(s,b) = Py l ~ 5 (FI(O) IOgE F b2F3(0)>

+ (2;)2 AT:OC? (Disc Fi(t)Ko (b\/f) + 4t Disc F3(t) K» (b\/g»] 7

(2.10)

which makes manifest that the phase shift §(s,b) depends just on the ¢ — 0 graviton pole
and the t-channel discontinuities of the self-energy form factors, i.e. on-shell data.

Before discussing the whole 1-loop calculation, we focus on the tree-level contribution,
which corresponds to Fi(t) =1 and F»(t) = F5(t) = 0. In this case, eq. (2.6) and eq. (2.9)
return the tree-level contribution to the phase shift as

S

50(8,1)) = _87rm2 log b/bIR . (2.11)
Pl

Since the IR cutoff big is the largest length scale that we consider, eq. (2.11) always leads
to a positive contribution to the phase shift. At 1-loop, there are additional contributions
coming from F;(0) and the discontinuity, see table 3. In the following two sections, we study
eq. (2.9) analytically in two opposite regimes in parameter space: b > 1/m and b < 1/m,
while the full solution is solved numerically and displayed in figure 4.

2.2.1 The large b limit

In the scenario b > 1/m, we can use the asymptotic behavior of the Bessel function
Ko(bv/t) ~ e V1 /v/bt1/2 which shows that the contribution from the integral over the

~16 —



discontinuity is exponentially suppressed. Therefore, the only contribution comes from the
graviton pole, and the phase shift is given by

5u(5,b > 1/m) = do(s, b) & w , (2.12)
where F3(0) is summarized in table 3 for different spins of the particle in the loop. This is
the result one would obtain by working in the EFT where the massive states have been
integrated out, and it reproduces the correction from the effective term F,, F,gRM" of
computed first in [2] and discussed at the end of section 1.1 around eq. (1.12). Notice that
the only contribution from Fj(¢) comes from the tree-level amplitude, as all corrections
vanish when evaluated on the pole.

2.2.2 The small b limit for scalar- and fermion-loops
We can write the integral in eq. (2.9) in terms of a dimensionless variable y = b\/t

7

X Fi(0
£7) = =T vog g+ L

+::dy 2 /1.2
—Disc F; b*) K . 2.1
o /Zmb , Dise (y~/b%) Ko (y) (2.13)

Let us first focus on the helicity preserving contribution Fj(t) to the phase shift in eq. (2.6).
In the small bm regime, the integrand Disc F} (y?/b?), which is actually a function of the
dimensionless ratio 32/b?>m?, receives contribution mostly from the Disc F(t — oo) region,
so that we can directly use

o
Disc Fi (t > m?) ~ 200X (2.14)

g

see eq. (1.28), which nicely links the contribution to the time delay of the form factors
3
to the p-function. This approximation is valid for scalars 34 = % (157) and fermions

By = % (%). The vector case is characterized by the presence of soft logs that can be

resummed and therefore needs a different treatment (see section 1.4).
For b < 1/m, we can cut the integral at some y = 2y < O(1), obtaining then

. 1 Bx _
2 2) ~ e
Fi(b* <1/m®) ~ 5 log b/bir o log” (bm/y) . (2.15)

Notice that the sign of the quantum corrections is always negative for any value of b and .
This will play a major role in the discussion about causality in section 3.

For the helicity flipping contribution, by using the dispersive representation of F3(0)
(see eq. (1.11)) we can write

. ] +oo 2
I (p?) = — / dy Disc F: 2b22[K —}, 2.16
307 = gz [, WP ElT/mmT) (9K (y) = (2.16)
which gets the most important contribution from the region ¢ > m? where the discontinuity
converges to a delta function, Disc F3(t > m?) = iarxd(t) for some constant rx (see
table 2). Therefore, we get

B2y~ _OFX _ 2] anx
Fs () = —qap limy {KZ(Q) yQ] T 32m22 (2.17)
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Figure 4. Quantum corrections to the phase shift as function of bm. Dotted lines for large bm
show the EFT result which, if allowed to continue to small bm, would eventually give a negative
total phase shift and thus time delay. See discussion in section 3.2. Left: we plot the scalar case (as
discussed, the spinorial case has similar features, so it is not shown here) that have two contributions
coming from the form factors F3(t), relevant at large impact parameters eq. (2.12), and F}(¢), which
dominates as small bm eq. (2.18). The full numerical solutions eq. (2.6) is shown as solid lines,
and their limiting behaviors as dashed lines. We have taken y = 0.27 to make the approximation
close to the exact answer on the scales shown in the plot. Right: we plot the vector-loop case,
i.e. QED embedded in a non-abelian gauge theory. The form factors are exponentially suppressed
by Sudakov resummation in the region bm < exp(—+/m/2a), as discussed under eq. (1.32), but
this effect is not displayed here. The vertical blue line represents, for « = 1/100, the value of bm
below which Sudakov resummation can no longer be neglected. For larger values of the impact
parameter, exp(—+/m/2a) < bm < 1, the fixed-order 1-loop approximation is instead accurate
without resummation. In this region, Fi(t) gives the leading contribution to the phase shift eq. (2.22)
and it is plotted as a solid red line which interpolates the blue dots representing the exact numerical
solution. We have taken gy ~ 1.12 and v ~ 0.12 in eq. (2.21).

The full phase shift is then given by

sBx

51 (s,b < 1/m) = bo(s,b) — log2 bm/§ + a—a X 2.18
:I:(sv < /m) 0(87 ) 87Tgm%1 0og m/y a87r2m%1 ) ( )
where k4 = —1/12 for a scalar in the loop and kg = 1/6 for a fermion. In particular,

for small enough impact parameter, the log correction proportional to the S-function will
dominate over the constant contribution of F5(t), as shown numerically in figure 4.

Notice, that the change in behavior of the F3(t) contribution at small impact parameter,
from 1/(mb)? to a constant in b, is crucial in the causality discussion. If that was not the
case, we would observe causality violation even for the asymptotic definition (see section 3.2).
This is avoided thanks to the onset of new physics associated to the particles of mass m
before such a violation would become resolvable. We discuss the consequences in section 3.

The inclusion of more species is straightforward, with log? bm term in (2.18) being just
replaced by the appropriate masses and rescaled by the squared charges qi2, e.g. adding
charged spin-1/2 fermions results in fy, log? by, — By 2 q? log? bm;, and analogously for
charged bosons. In this way, and for b smaller than the top-quark scale 1/my, one can easily
include the full Standard Model contribution.
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2.2.3 The small b limit for vector-loops

The small b region for vector-loops is in principle more delicate because of the IR Sudakov
double-logs. However, in the region of small impact parameter where the resummation of
the double-logs is not yet important, i.e. for exp(—+/27/a) < b?>m? < 1, we can still work
with just the fixed-order 1-loop expressions for the form factors.

Let’s focus first on the contribution from Disc F} in eq. (2.9) and eq. (2.10) by considering
the integral

i oo Disc Fi(t)
10*) = / dt—————=K, (bt 2.19

&) (27)2 Jam? 13 0( \/) (2:19)
which can be more easily determined, up to some integration constants, by integrating its
second derivative I"(b?)

“+o00

I” 2 — i /
(5% (2m)22b% Jamp

dy yK> (y) Disc Fy (y2 /b2> , (2.20)

where we have changed variable y = by/t. For small bm, we can cut the integral at some
y=+/ey < O(1) and approximate the Bessel function as Ko (y) ~ 2/y. After performing
the integral in eq. (2.20) and integrating back, we get

I(e Ve « ¥¥m? < 1) ~ ay + 4804 5 (137 - 47r2) log (bm/7y)
™
/BW 2 _ « 3 _
" ng log” (bm/y) + 3.2 log” (bm/y) (2.21)
where « is an integration constant and we recall By = —7¢%/167% = —7ga/4mw. The values

of v and ¢ can be estimated by fitting the numeric solution of I(b?) for small values of b,
see figure 4.

The contribution from Disc F3 to d+ is more easily calculated from eq. (2.6) following
the same steps of the previous subsection, see eq. (2.17), where we can use the asymptotic
expression Disc F3(t > m?) = iakxd(t) with Ky = —1/4. Therefore, for exp(—/27/a) <
b>m? < 1 the phase shift can be approximated by

S

SKW
IV £ a—"" (2.22)
4m?, 8m2m3,

5(s,b) >~ dp(s,b) +
where I(b) is approximated by eq. (2.21). Actually, the last term in eq. (2.22) can safely be
dropped because it is very much subleading to the second term.

For even smaller impact parameter, bm < Exp(—/7/2a), the IR Sudakov double-logs
become large and require a resummation as performed in section 1.4. In this regime, we
can numerically compute the contribution of Fi(t) to the phase shift by exponentiating the
double-logs, that is by taking F} loop 4y _y pudakov () — oF 7P ()-1 yunder the integral in
eq. (2.7). This expression for FPudakov (1) is a very good approximation of the exact form
factor in the two asymptotic regions of bm. Moreover, the contribution from Fj is always
subleading in this region at small a.
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Figure 5. Quantum corrections to the phase shift in the vector case with IR Sudakov double-logs
resummation as a function of bm, choosing for simplicity bijg = 1/m. The dots reproduce the full
numerical solution for « = 1/10 (blue), & = 1/100 (red), and o = 1/200 (black). The solid lines for
Exp(—+/7/2a) < bm < 1 are the analytic approximation based on eq. (2.21). If extrapolated to the
region bm < Exp(—+/7/2a), the phase shift would turn negative as displayed by the thin dotted
lines. In such a regime of small bm the eq. (2.21) is however no longer valid. After resumming the IR
Sudakov double-logs we find indeed a positive constant phase shift in the region bm < Exp(—+/7/2a),
and no causality violation.

Repeating the same steps as in section 2.2, this integral can be computed numerically
for different values of the gauge coupling. We find that for bm < Exp(—+/7/2a) the phase
shift approaches a positive constant (see figure 5), and it never turns negative. The constant
depends on the value of the gauge coupling, as it can be estimated by computing the
contribution to the integral eq. (2.7) for b¥*m? < Exp(—+/27/a), so that we can drop the
b-dependence in the exponential without spoiling the convergence of the integral even in the
region ¢? > m2eV2r/a, Making the (crude) approximation FpUdakov(t) ~ e=o/27 log? (—t/m?)
for §2 > m?, and FPUdakov ~ 1 for g2 < m?, the eq. (2.7) reduces to a gaussian integral

R 1 [ [ (7R 1 m* dg? 1 1
(b)) ~ — / dlog [ = a/mlog? (gl/m) 4 = = | = —— + — logm?b?
1(0%) 27[0 0g<m>e +2 - 7 32a+47r og m-big ,

(2.23)
where we have cut off the IR divergence at ¢ = 1/bir (and of course bjgm > 1). Therefore,
the phase shift at exponentially small impact parameter with respect to the W’s Compton
wavelength 1/m is

1 1
§(s.b —\/”/2'1) ~ 2 { — log m2b? 2.94
(s, m < e i, | V30 + Ay C8TVOR | (2.24)

which matches the numerics in figure 5 pretty well at small «, and shows that neither § nor
the time delay turn negative.
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3 Causality

In this section we discuss two notions of causality that are both seemingly justified at the
classical level, but we show that in fact only one is respected in the quantum theory. Both
notions are expressed through the time delay that particles experience relative to the free
time evolution in the eikonal scattering.

3.1 Time delay

We first generalize the time delay relation of [28, 29] to the more general case of non-negligible

inelasticity Im d > 0, i.e. when other particles can be produced in the scattering.

oT
out

The idea is to introduce a real parameter §7 that labels a family |f)27, of time delayed

2-particle states,

‘f>gr£t = EXp(iéTH)|f>out ) |f>in/out = /dE Z fJ,)\(E)|E> J, >‘>in/0ut (3'1)
JA

with normalization i (f|f)in =out (f|f)out = fZ(L)\ dE|fE’J’)\‘2 =1, and then search for a
6T = 0T, that maximizes the transition probability |97 (f|f)in|?,

S = [ AE Y |faa(B)Pei 4B, (32)
JA

for some narrowly peaked wa