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Abstract
The maturity of experimental probes of the strong field regime of gravity, both
in terms of sensitivity and number of observations, offers hope in discriminating
General Relativity (GR) from alternative theories of gravity in the near future. At
present, such probes include gravitational-wave observations with ground-based
interferometers, 1.3mm electromagnetic observations with Very-Large-Baseline
Interferometry (VLBI) and binary pulsar observations. For these, a prominent
role is played by compact objects, which source strong (and in some cases highly
dynamical) gravitational fields, and therefore make up the main target of such
observations. Most efforts so far have focused on computing strong field pre-
dictions for compact objects in GR. However, if one aims to fairly discriminate
among them, the same predictions need to be obtained for theories beyond GR.

The purpose of this Thesis is to explore various aspects of compact objects in
theories beyond GR where strong gravitational fields are relevant.

We begin by studying k-essence, a scalar-tensor theory motivated as a vi-
able dynamical explanation for Dark Energy. Derivative self-interactions provide
(through a kinetic screening mechanism) the suppression of the extra scalar force
needed to satisfy local gravitational constraints. We first explore ways to ensure
that the theory admits a well-posed initial-value problem, a mathematical prop-
erty that is essential for obtaining predictions in the strong field with numerical
relativity. We then show how some of the lessons learned for k-essence can also
be applied to self-interacting massive vector theories. In addition, we explore the
resilience of kinetic screening with different possibilities in which the scalar can
couple to the matter sector.

We then turn our attention to the question of whether gravity can be con-
strained with black hole images from VLBI, and whether this can be done in
spite of uncertainties in the astrophysical modelling of the system. We present
a proof-of-principle demonstration of a theory-agnostic framework to reconstruct
simultaneously both the underlying geometry and accretion behind these images.
Our framework makes use of a general parametrization for these properties and
of a Principal Component Analysis to mitigate the degeneracies linked to the
presence of a large number of parameters.

Finally, we consider the question of whether quantum gravity can provide
a resolution to the issue of singularities inside black holes. We do so in the
context of (2+1) projectable Hořava gravity, a Lorentz-violating quantum gravity
candidate that has been shown to be renormalizable (beyond power counting) and
ultraviolet complete. We obtain all circularly-symmetric stationary solutions and
show that, in spite of naive expectations, solutions that reduce to BHs at low-
energies remain singular in the interior.
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Preface

The year 2015 saw a landmark achievement in experimental physics and astron-
omy. Gravitational waves (GWs), originating from the cataclysmic coalescence of
two black holes (BHs) roughly 1.4 billion light years away from Earth, were de-
tected for the first time by ground-based GW interferometers of the LIGO-Virgo
Collaboration [1]. Although General Relativity (GR) had long predicted that the
merger of stellar-mass compact objects would produce such ripples in the fabric
of spacetime, a massive theoretical and experimental effort (spanning almost a
century), was needed to provide the final confirmation of their existence –the first
indirect evidence was observed in the Hulse-Taylor binary pulsar system [2, 3].
Since then, GW observations have become routine in the newborn field of GW as-
tronomy, allowing for unprecedented tests of strong and highly dynamical gravity,
as well as on the astrophysics of compact objects –see e.g. Refs. [4–8].

Meanwhile, another experimental breakthrough occurred in the field of radio
astronomy. During the spring of 2017, a global observation campaign by eight
radio observatories scattered across the Earth, grouped under the Event Hori-
zon Telescope (EHT) Collaboration, led to the first high-resolution images of the
supermassive black hole (SMBH) at the center of the neighbouring galaxy M87,
and of our own galaxy, the Milky Way [9, 10]. These new electromagnetic ob-
servations open up the possibility to test the strong lensing predictions of GR,
astrophysical BH environment models, and possibly, the nature of the underlying
compact objects behind these images –see e.g. Refs. [11–13].

Although these novel observations can (so far) all be explained within the
framework of GR, there are a number of reasons to look beyond. From the ex-
perimental side, cosmological observations have uncovered the existence of a new
dark sector. Dark Matter accounts for the missing matter content of the Uni-
verse, whereas Dark Energy is responsible for the accelerated expansion of the
Universe. In particular, efforts to provide a dynamical explanation for the latter
have led to the development of a large family of new theories beyond GR, among
which are scalar-tensor theories.

From the theoretical side, the quantum revolution that happened in paral-
lel to the development of modern gravitational physics supports the view that

vii



GR may only be the leading-order approximation to a (yet unknown) full the-
ory of Quantum Gravity (QG). Among prominent candidates (such as String
Theory), a relatively recent proposal is Hořava gravity [14], a theory that aims
to enforce renormalizability by introducing higher order spatial-derivative terms,
which break Local Lorentz Invariance.

In order to fully exploit the potential to uncover new fundamental physics
from these new kinds of gravitational and electromagnetic observations, accurate
theoretical predictions for the strong (and highly-dynamical) gravitational fields
around compact objects are needed. For General Relativity, a half-century-long
effort to compute these predictions has led, for instance, to the development of
sophisticated tools in Numerical Relativity and Magneto-hydrodynamics –both
of which have become ubiquitous in the analysis of current experimental data.
However, the strong, highly-dynamical and nonlinear regime in alternatives to GR
remains vastly unexplored. New phenomena waiting to be fully studied include
new scalarized compact objects, new gravitational polarizations and nonlinear
screening mechanisms.

Indeed there is a pressing need to do so. For GW astronomy, the foreseeable
future promises it to become a data-rich field. For instance, after major upgrades,
the next observation run (O4) of the LIGO, Virgo and Kagra detectors will start
next year (2023). Third-generation GW observatories, such as the Einstein Tele-
scope 1 and Cosmic Explorer 2, have also been planned for the future. And
the Laser Interferometer Space Antenna (LISA) 3 [15], a space-borne GW obser-
vatory, which will be sensitive to an almost entirely different range of sources,
will be commissioned in about a decade. For electromagnetic observations with
VLBI, improved observation campaigns are planned under the next-generation
Event Horizon Telescope (ngEHT) 4. Finally, binary pulsar observations continue
delivering measurements with increasing precision [16].

So, which theories should one study in the strong field regime? There are
a number of guides, both experimental and theoretical, one could use to focus
efforts. One example of an experimental guide is the observation of the coincident
arrival of the GW signal and short gamma-ray burst originating from the neutron
star binary merger GW170817 [17], which allowed to determine that GWs travel
at the speed of light to an astounding precision [18]. We will see in Part I that the
number of Dark Energy models consistent with this observation has already been
greatly reduced. As for the theoretical guides, one could use requirements on the
mathematical/physical consistency of the theory. For instance, one could seek for

1http://www.et-gw.eu/
2http://cosmicexplorer.org/
3https://www.elisascience.org/
4https://www.ngeht.org/

http://www.et-gw.eu/
http://cosmicexplorer.org/
https://www.elisascience.org/
https://www.ngeht.org/


compatibility at multiple scales (e.g. Dark Energy models or QG theories should
also be compatible with Solar System scale physics), or require that the theory
admits a well-posed initial-value problem [19] (such that solutions are unique
and smooth with respect the boundary conditions). In this Thesis we explore a
number of alternative theories of GR guided by some of these requirements.

This Thesis is organized as follows. We begin in Part I with some brief con-
textual background for the rest of the Thesis. In Part II, we focus on k-essence, a
self-interacting scalar tensor theory motivated as a dynamical explanation to Dark
Energy. In particular, in Chapter 2 we investigate ways to obtain a well-posed
initial value problem in this theory. In Chapter 3, we comment on the appli-
cations of the tools developed for k-essence to theories involving massive vector
fields. Towards the end of this Part, in Chapter 4, we investigate whether the
mechanism necessary to shield local scales from additional scalar forces (known as
kinetic screening) prevails when the coupling to matter is generalized. In Part III,
we look at the inverse problem of BH imaging, and how to mitigate the impact of
uncertainty in the details of the astrophysical environment. Finally, in Part IV,
we explore whether projectable Hořava gravity, a candidate for a full theory of
QG, can help resolve singularities inside BHs. We conclude in Part V. Additional
technical details are provided in Appendices A, B, C, D and E.
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Chapter 1

The nature of gravity

In this Chapter we give an overview of different possible descriptions of gravity.
Various classifications of alternative theories of gravity have been given in the
literature, e.g. in terms of the fundamental assumptions that they break (with
respect to uniqueness theorems such as Lovelock’s theorem [20, 21]), or depending
on the number and type of additional fields they include (with respect to the spin-
2 field describing the metric) –see e.g. Refs. [22, 23]. In the following we will not
attempt to describe all of them and will mainly discuss those that are of direct
relevance for this Thesis.

We start off this Chapter with GR and list few of its most important con-
sequences, from the existence of BHs to the prediction of GWs. We then, in
Sec. 1.2, we turn our attention to scalar-tensor theories, with particular emphasis
on those that provide a dynamical explanation to Dark Energy, and among which
we highlight k-essence. Next, in Sec. 1.3, we briefly present theories that break
Local Lorentz Invariance by incorporating a preferred frame. In particular, a sub-
set of these theories can be understood as the low-energy limit of a theory of QG
known as Hořava gravity. In Sec. 1.4, we briefly describe how to capture the ef-
fects of many different possible descriptions all at once with theory-independent
parametrizations of gravity. Finally, at the end of this Chapter (Sec. 1.5), we
briefly summarize current tests of gravity. Throughout this Chapter, and unless
otherwise stated, we use units in which c = 1 and −+++ metric signature.

1.1 The standard theory of gravitation

The General Theory of Relativity [24] (or General Relativity for short) was de-
vised by Albert Einstein between the years 1905 and 1915, as a generalization of
Special Relativity [25] and in an attempt to reconcile the Equivalence Principle
with gravitational phenomena. The Equivalence Principle can be formulated in
many different flavors and forms. In particular, the Einstein Equivalence Principle

2



1.1. The standard theory of gravitation

(EEP) encompasses the universality of free fall (also called the Weak Equivalence
Principle) and the requirement that the non-gravitational laws of physics are the
same in any (freely falling) frame of reference used to describe them. Whereas,
the Strong Equivalence Principle essentially generalizes the EEP to include also
gravitational interactions. When describing gravity in terms of an action, some
of these properties can be included through diffeomorphism-invariance [i.e. in-
variance under arbitrary changes of coordinates xµ → x̃µ ≡ fµ(xα)], and through
the “universal coupling” of the metric gµν with the additional matter and gauge
fields Ψm in the Standard Model of Particle Physics –see Ref. [26] for a more
detailed discussion of the formulations of the Equivalence Principle.

General Relativity can be summarized in the Einstein-Hilbert action 1 [27]

S [gµν ,Ψm] =

∫
d4x

√−g
2κ

R + Sm [gµν ,Ψm] , (1.1)

where κ = 8πG, G is the Newton constant, Rµν is the Ricci tensor with trace
R ≡ gµνRµν , and g ≡ det(gµν). Variation of action (1.1) with respect to the
metric yields Einstein field equations,

Gµν = κTµν , (1.2)

where Gµν ≡ Rµν − (R/2)gµν is the Einstein tensor, and

T µν ≡ 2√−g
δSm

δgµν
, (1.3)

is the stress-energy tensor of matter. While the (contracted) Bianchi Identity
yields ∇µT

µν = 0, i.e. the conservation of the stress-energy tensor.
Among the early achievements of General Relativity are the recovery of the

known results by the Newtonian theory of gravitation [28], for instance, the recon-
cilement of the perihelion advance of Mercury and the prediction of the bending
of light by massive bodies such as the Sun [26]. In the following, we highlight a
few of the most relevant concepts and results for this Thesis.

1.1.1 Black holes and the Kerr hypothesis

One of the most startling consequences of GR is the prediction of the existence of
black holes. These are regions of warped spacetime characterized by the presence
of an event horizon 2, which is a causal barrier separating a region of spacetime

1We take the view that the cosmological constant enters the right-hand-side of Einstein
field equations (1.2) as Tµν = −Λgµν + · · ·.

2Several definitions of black hole horizons find utility in different applications, among them
are apparent horizons, which are defined as the boundary of the trapped region of outgoing null

3



1.1. The standard theory of gravitation

(the interior of the BH) from the future of all outgoing null rays –see e.g. Ref. [30].
This for instance would make it impossible for a space probe entering a BH to
transmit any information about potential measurements to physicists on Earth.

After decades of debate, today it is established that BHs are physical and that
they are commonly present throughout the Universe. For instance, stellar-mass
BHs can form directly from the core collapse of massive stars once they have
exhausted their nuclear fuel, whereas binary BHs can form by evolving through
a common envelope phase or through dynamical encounters [31]. Supermassive
BHs (SMBHs), on the other hand, are thought to reside at the core of most
galaxies [32], and have achieved their large masses mainly through accretion, with
several possible mechanisms behind their original seeds [33]. The radiation from
hot accretion gas in their environments and the gravitational effects on nearby
stars make it possible to study them with electromagnetic probes, from the radio
band to X-rays [31]. And since 2015, stellar-mass BH binaries are commonly
observed with gravitational wave observations [34].

Form the theoretical point of view, BHs also provide rich playgrounds. During
the ’70s, it was realized that there is a deep connection between BH horizons and
the laws of thermodynamics, and that BHs should posses both temperature and
entropy [35, 36]. Moreover, it was realized that they should radiate (thermally)
by emitting Hawking radiation [37]. In the interior of BHs, it has been shown
that the formation of curvature singularities, and thus the breakdown of GR,
is an inevitable consequence of Einstein equations –and a number of reasonable
assumptions [38].

BH (vacuum) spacetimes can be found by solving Einstein field equations
[Eq. (1.2)] with Tµν ≡ 0. Despite the highly nonlinear nature of these equa-
tions, analytical solutions have been obtained with the aid of symmetry assump-
tions. The first solution for a nonrotating BH spacetime was found in 1916 by
Karl Schwarzschild [39], merely a year after Einstein arrived to the final form
of Eq. (1.2). The solution for a rotating BH spacetime was found by Kerr in
1963 [40]. In Boyer-Lindquist coordinates (t, r, θ, ϕ) (and in G = 1 units), the
Kerr metric is given by [41]

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2 + ρ2dθ2

+
(
r2 + a2 +

2a2Mr sin2 θ

ρ2

)
sin2 θdϕ2 , (1.4)

where M is the mass of the BH, a is the spin parameter, ∆ ≡ r2 − 2Mr + a2,
and ρ2 ≡ r2+a2 cos2 θ. The Schwarzschild metric can be obtained as a particular

rays –see e.g. Ref. [29] for more details. We will encounter the latter in Ch. 2.

4



1.1. The standard theory of gravitation

solution of Eq. (1.4) when a = 0.
The exterior spacetime of astrophysical BHs, in vacuum and at a sufficiently

long time after formation, are believed to be described by the Kerr metric 3

[Eq. (1.4)]. This expectation is usually called the Kerr hypothesis, and is based
upon a series of results demonstrating the uniqueness and robustness of the Kerr
metric [43–45]. It paints BHs as remarkably simple objects, described only by
their mass M and spin a. Moreover, the oscillation frequencies of small perturba-
tions of this spacetime, known as quasinormal modes (QNMs), are also described
by these two parameters [46].

1.1.2 Neutron stars

Towards the end of their lifetime, the most massive stars 4 usually leave behind BH
remnants, whereas for stars with more moderate masses, other possible endpoints
are the formation of neutron star (NS) and white dwarf (WD) remnants.

First proposed by Baade and Zwicky in 1934 [47], NSs are among the most
compact objects thought to exist within the physics of action (1.1). If we define
the compactness C ≡ GM/R [48, 49], where M is the mass of the star and R is
its radius, neutron stars have C ∼ 0.3 –for comparison, a non-rotating BH has
compactness C = 1/2, whereas a main-sequence star like the Sun has C ∼ 10−6.

Moreover, strongly magnetized NSs may emit electromagnetic radiation along
jets which may not be aligned with the rotation axis, as thus it would appear to
an observer as a source of pulsating bursts of radiation. In this way, pulsars can
act as cosmic “lighthouses”. The first known pulsar was discovered in 1967 by
J. Bell-Burnell, working with A. Hewish, and the connection with NSs was made
until further pulsars were observed [50, 51]. Today, the fastest known millisecond
pulsar has an observed frequency of ∼ 0.7 kHz [52].

For our purposes, NSs can be approximately described as a perfect fluid,

Tµν ≡ [ρ0 (1 + ϵ) + P ]uµuν + Pgµν , (1.5)

where uµ is the 4-velocity of the fluid, and {ρ0, ϵ, P} are macroscopic thermo-
dynamic variables: the rest-mass density, internal energy density, and pressure,
respectively. In this way, the nuclear physics processes describing the interior of
these objects are parameterized in terms of an equation of state (EOS) relating
the different thermodynamical variables. Many models have been proposed to

3Although the Kerr-Newman spacetime [42] generalizes the Kerr metric to BHs with electric
charge, it is widely believed that astrophysical BHs are mostly neutral.

4For stars with 50M⊙ ≲ M ≲ 120M⊙, the formation antimatter inside the star and which
may lead to a catastrophic destruction of the star (through a pair-instability supernova) before
it fully collapses. This process may thus give rise to a pair-instability mass gap [31].
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1.1. The standard theory of gravitation

describe the EOS, with varying levels of detail, and each of them can provide
different predictions for the observables, e.g. mass-radius relations, tidal Love
numbers, oscillation modes, etc. –however, universal relations among them may
be found, see e.g. Ref. [53]. Among the simplest of these is the family of polytropic
EOS, for which a simple relation is assumed to hold between the thermodynamic
variables. Namely, P ∝ ρΓ0 , where Γ is called the adiabatic index. Due to their
simplicity, we will use this type of EOS in Ch. 4 to study neutron stars in gravity
beyond GR.

Once neutron star matter is modelled in this way, stationary solutions in
spherical symmetry can be obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations [54]. The latter are a set of ordinary-differential-equations,
written in schematic form as ∂rU = V [U , r], where U is a vector containing
the relevant gravitational and thermodynamical variables –e.g. the pressure and
(derivatives of) the metric functions. Different properties may be studied with
the solutions of these equations. For instance, both stable and unstable families
of NSs with different mass-radius relations can be constructed. Stable stars are
robust under small perturbations of the energy density, whereas unstable stars
migrate to a stable solution or collapse to a BH. Furthermore, EOS-dependent
predictions for the maximum mass of (non-rotating) NS can be obtained in this
way –see e.g. Ref. [55]. Away from spherical symmetry, generalizations to spinning
NSs in axisymmetry and NS binary mergers, with their associated observables,
have also been studied –see e.g. Ref. [51].

1.1.3 The standard model of Cosmology

Another great success of GR has been the description of the Universe on its largest
scales. Guided by the observation of the homogeneous and isotropic nature of
the Universe and the recession of faraway galaxies, the spacetime of the Universe
(as a whole) can be approximated by the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric 5

ds2 = −dt2 + a (t)2 δijdx
idxj , (1.6)

where xi are the spatial coordinates, δij is the Kronecker delta, and the dynamics
of expansion parameter a(t) can be found by solving Einstein field equations (1.2),
with Tµν being replaced by a homogeneous and isotropic mix of the contents of
the Universe. The rate of the expansion of the Universe is described by the Hubble

5We write for simplicity the flat FLRW metric, as curvature makes less than one percent
of the energy budget of the Universe [56].
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1.1. The standard theory of gravitation

parameter, H ≡ d log a/dt, and its present value is 6 H0 = 67.32 km s−1Mpc−1

[58].
In brief, the current standard paradigm in Cosmology is the ΛCDM model

(where CDM stands for Cold Dark Matter), which makes use of Eq. (1.6) (and
perturbations around it) and identifies, in addition to neutral baryonic matter
(nuclei and electrons) and radiation (photons and neutrinos), a non-zero contri-
bution of cold Dark Matter (up to ∼ 27% of the energy budget of the Universe)
and Dark Energy (up to ∼ 68% of the energy budget of the Universe) [56]. In
particular, the latter describes the current phase of accelerated expansion of the
Universe (first observed in supenovae Type IA measurements [59, 60]) and is a
component that behaves like the energy density of the vacuum (with EOS given
by P = −ρ), e.g. the behavior of the Cosmological Constant Λ. Precise mea-
surements of the Cosmic Microwave Background (CMB) radiation, the afterglow
radiation of the Big Bang formed when photons decoupled from the primordial
plasma, have played a key role in determining this composition of the Universe.

The cosmological evolution of the Universe also provides an interesting play-
ground for theoretical physics, and the puzzles it poses may yield a window to
new fundamental physics. As the history of the Universe is rewinded back in time,
and as the Universe becomes increasingly dense, GR predicts inevitably (under
certain assumptions) a singularity at the beginning of time [61]. As with the sin-
gularities inside BHs, the description given by GR breaks down and QG effects
are expected to become important [61]. Furthermore, it is widely believed that
the peculiar initial conditions of the ΛCDM model, in particular homogeneity,
are a consequence of an early epoch of accelerated expansion called inflation [62].
Moreover, this epoch predicts a signature imprinted in the GW background radia-
tion [63]. Finally, as we will see in Sec. 1.2, the search for a dynamical explanation
for Dark Energy has prompted the development of a large family of scalar-theories
of gravity.

1.1.4 Gravitational waves

Gravitational waves (GWs) are ripples in the fabric of spacetime, first predicted
by Einstein in 1916 [64, 65]. For a long time, however, physicists were confused
on whether these type of waves were actually physical [66].

In vacuum flat space, (the linearized) Einstein field equations (1.2) imply that
GWs, follow the wave equation

□hTT
µν = 0 , (1.7)

6There is, however, and ongoing debate over a tension (∼ 4σ − 6σ disagreement) between
the early and late time measurements of H0 –for a review, see Ref. [57].
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1.1. The standard theory of gravitation

Figure 1.1: Gravitational wave polarizations. The effect of the two GW polarizations,
+ (“plus”) on panel (a) and × (“cross”) on panel (b), is illustrated on the effect it
produces on a ring of test particles. Here, the plane GW travels in the z-direction,
perpendicular to the plane of the Figure. In the Newman-Penrose formalism [68] each
polarization is associated to the real and imaginary parts of the Ψ4 projection of the
Riemann tensor. Taken from Eardley, et al [69].

where hTT
µν is the metric perturbation hµν ≡ gµν − ηµν written in the transverse-

traceless (TT) gauge (defined by h0µ = hii = ∂ihij = 0), the (background)
Minkowski space metric is ηµν , and □ ≡ ηµν∂µ∂ν is the wave operator in flat
space. GWs come in two polarizations, + (“plus”) and × (“cross”), corresponding
to the two propagating degrees of freedom of GR. Each of these polarizations
exhibits a compress and stretch pattern in the spacetime between test masses [67]
–see Fig. 1.1. For an L-shaped gravitational wave (Michelson) interferometer, the
compress and stretch pattern translates into difference in the optical path followed
by laser beams in each arm. When the beams are recombined, the resulting phase
difference between the beams produces an interference pattern and a measurable
EM power variation at a photodetector. Among different detection pipelines, the
GW signal can be compared with theoretical templates through match filtering
–and offline for parameter estimation [67].

The earliest experimental indication of the existence of GWs came in 1974
from the observation of orbital variation, due to energy lost in GWs, of the Hulse-
Taylor binary pulsar system [26]. However, it took nearly a century until GWs,
originating from a binary black hole merger (GW150914), were first detected
directly by the LIGO-Virgo Collaboration [1].

Currently observed sources include merging compact binary BH systems with
masses up to ∼ 100M⊙, binary NS systems, and mixed BN-NS systems, with
gravitational wave frequencies ∼ 100Hz [70]. Nevertheless, there exist many other
potential sources waiting to be discovered such as supernovae [71] and continuous
sources from neutron stars [72]. In the LISA band (∼ 10−3Hz), expected sources
include massive BH binaries (with component masses ∼ (103 − 107)M⊙) and
extreme-mass-ratio inspirals (EMRIs) –where the latter correspond to compact
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1.2. Scalar-tensor theories

Figure 1.2: Gravitational wave sources and detectability. Solid color regions illustrate
sources of GWs with their characteristic strain and frequency ranges. For comparison,
the sensitivity curves for various current and future observatories are included. From
left to right, the International Pulsar Timing Array (IPTA), the Laser Interferometer
Space Antenna (LISA), Einstein Telescope (ET) and the Advanced LIGO observatories.
Produced with the software in Ref. [76].

object binaries with mass ratios q ∼ 10−7 − 10−5 [73, 74]. And finally, in the
pulsar timing-array (PTA) band (∼ 10−9Hz), a potential source is the stochastic
GW background [75]. Further sources are illustrated in Fig. 1.2.

1.2 Scalar-tensor theories

Scalar-tensor theories postulate the existence of a dynamical scalar degree of
freedom in addition to the tensor degrees of freedom of the metric, the latter
corresponding to the two GW polarizations. They are useful in providing a dy-
namical explanation to Dark Energy, and thus to the accelerated expansion of
the Universe. Such scalar fields have proven to be useful in other areas. For
instance, the inflationary period in Cosmology is driven by the dynamics of the
inflaton [56], and in particle physics, the Higgs boson is associated to the mech-
anism that provides the masses to quarks and leptons [77].

1.2.1 Horndeski theory

The most general scalar-tensor theory with second-order equations of motion
(as to avoid Ostrogradski instabilities [78]), is known as Horndeski theory [79].
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1.2. Scalar-tensor theories

However, since we are interested in cosmological applications, we will consider
the shift-symmetric 7 (φ → φ + c) version of the theory, capable of describing
Dark Energy with a massless scalar. The action is given by

SH [gµν , φ,Ψm] =

∫
d4x

√−g
5∑

i=2

Li + Sm[Φ
−1gµν ,Ψm] , (1.8)

where we have defined

L2 ≡ G2 (X) ,

L3 ≡ G3 (X) [Θ] ,

L4 ≡ G4 (X)R− 2∂XG4 (X)
(
[Θ]2 −

[
Θ2

])
,

L5 ≡ G5 (X)GµνΘ
µν +

1

3
∂XG5 (X)

(
[Θ]3 − 3 [Θ]

[
Θ2

]
+ 2

[
Θ2

])
, (1.9)

X ≡ ∇µφ∇µφ, and Θµν ≡ ∇µ∇ν φ, the bracket notation indicates traces of these
objects (e.g. [Θ] = □φ), and Φ is a function on the scalar field that allows for the
metric to couple non-minimally to matter. The approximate 8 Galilean symmetry
(φ→ φ+ bµx

µ+ c) ensures a good behavior against radiative corrections [80, 81].
This theory can be further generalized to include beyond Horndeski opera-

tors [82–84] and to degenerate-higher-order scalar-tensor (DHOST) theories [82,
85–87], which propagate the right number of degrees of freedom (two tensor and
one scalar).

As a side-note, an interesting subset of Eqs. (1.8)-(1.9) that has attracted
interest in recent years is defined by the quintic Horndeski operator G5(X) =

log(X) [88]. The theory defined by this operator has been shown to be equivalent
to (linear) scalar Gauss-Bonnet theory,

SsGB [gµν , φ,Ψm] =

∫
d4x

√−g
[ R
2κ

− X

2
+ f (φ)GGB

]
+ Sm [Ψm] , (1.10)

where GGB ≡ RµνρσR
µνρσ − 4RµνR

µν +R2 is the Gauss-Bonnet invariant, f(φ) =
λφ, and λ a dimensionful coupling constant. Generalizations of f(φ) to non-
shift symmetric forms have also been widely studied, most recently to study
BH solutions with scalar hair as well as dynamical evolutions beyond GR –see
e.g. Refs. [89–94].

7Except possibly for a weak breaking of this symmetry in the coupling to matter.
8Exact in Minkowski space.
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1.2. Scalar-tensor theories

1.2.2 Constraints from gravitational wave propagation

Scalar-tensor theories generically alter the propagation speed of GWs, with such
modifications depending on the coupling constants and particular details of the
theory. Thus, any constraints on the deviation of the speed of GWs from the
speed of light c (which we make explicit in this section), the GR prediction,
can be turned into bounds on such theories [95]. For instance, the difference
in time of arrival of the GW signal between the two Advanced LIGO detectors
can be used to constrain the speed of tensor modes to 0 ≲ cT/c − 1 ≲ 0.7 [96].
Other constrains come from observations of the Hulse-Taylor binary pulsar –under
certain assumptions on how a different GW speed might alter the quadrupole
formula [97]. And a lower bound, −10−15 ≲ cT/c − 1 < 0 (for the case cT < c),
for high-frequency GWs (∼ 1025Hz), comes from the absence of gravitational
Cherenkov radiation in high-energy cosmic rays [98].

A remarkable improvement was achieved with the first multimessenger obser-
vation in 2017 of the gravitational wave signal from a binary NS merger event
(GW170817) [17] –see Fig. 1.3 for more details on this observation. The identi-
fication of an electromagnetic follow-up, consisting of a short Gamma-ray Burst
(GRB 170817A), allowed to cast the strongest bounds yet on the speed of tensor
modes, −3× 10−15 ≲ cT/c− 1 ≲ 7× 10−16 [18].

The bounds from GW170817 have been used to cast stringent 9 constraints
for large part of DE models described by action (1.8) [102–105]. In particular,
the analysis carried out in Refs. [102] set these constraints by exploiting the map-
ping of shift-symmetric Horndeski theories (and their generalizations) into the
effective field theory of Dark Energy (EFT of DE) [106, 107]. Further theoretical
constraints can be imposed by ruling out the interactions of the tensor modes
with the scalar which might lead to GWs decaying into Dark Energy [108, 109] or
to instabilities for Dark Energy perturbations due to the presence of GWs [110].

In summary, the situation when all of the above constraints are combined
leaves essentially only the L2 term in Eq. (1.8) (also known as k-essence) as the
viable theory, as well as theories related to k-essence by the conformal transfor-
mations [110]. Therefore, in the remainder of this section we will concentrate on
k-essence.

9However, a potential caveat to these bounds is that, due to the strong coupling scale of
Dark Energy lying close to the scale of the GW170817 observations, the speed of GWs may be
luminal (cT = 1) at short scales while remaining subluminal (cT < 1) at long (or cosmological)
scales [101].
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1.2. Scalar-tensor theories

Figure 1.3: Multimessenger observation of GW170817. Top left, inset. Combined GW
chirp signal from the Advanced LIGO detectors, produced by the merger of two neutron
stars (with component masses m1 ≈ (1.36−2.26)M⊙ and m2 ≈ (0.86−1.36)M⊙) in the
NGC4993 galaxy –see also Ref. [99]. The GW signal is followed, 1.7 s later, by short
Gamma-Ray Bursts observed by Fermi-GBM (top) and INTEGRAL (down). Top right
panel. Representative early spectra indicative of a possible kilonova. Middle panel.
Timeline of multimessenger observations in GW and all across the EM spectrum, with
respect to the GW observation time tc. Lower left inset. Optical transient observations.
Lower right, first X-ray and radio observations. Taken from LIGO Scientific Collabora-
tion and Virgo Collaboration, et al [100]. See original source for more details.
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1.2. Scalar-tensor theories

1.2.3 Kinetic screening in k-essence

The action of k-essence [111, 112] is given by

SK [gµν , φ,Ψm] =

∫
d4x

√−g
[
R

2κ
+K (X)

]
+ Sm

[
Φ−1gµν ,Ψm

]
, (1.11)

where K(X) is a function of the kinetic term X, and it determines the nonlinear
derivative self-interactions of the scalar field. Its particular form is not restricted
by the constraints of Sec. 1.2.2. The lowest order terms can be obtained from the
expansion

K (X) = −1

2
X +

β

4Λ4
X2 − γ

8Λ8
X3 +O

(
X4Λ−12

)
, (1.12)

where β, γ ∼ O(1) and Λ is the strong-coupling scale of the theory. In the litera-
ture, this theory is also known in flat space as P (X) theory and has been studied
extensively as a dynamical explanation for DE, for which Λ4 ∼ (H0MPl)

2cℏ−1 ∼
(5meV)4, where MPl is the (reduced) Planck mass [113]. Historically one of the
first scalar tensor theories to be considered is Fierz-Jordan-Brans-Dicke (FJBD)
theory [114–116], which corresponds to the case when no derivative self-interactions
(besides the standard kinetic term) are included –i.e. this theory corresponds to
K(X) = −X/2.

Although it is desirable that the predictions of k-essence depart from GR at
the largest scales (as to explain Dark Energy), at astrophysical scales (e.g. the
scales the Solar System), the theory must be consistent with known gravitational
measurements –see Sec. 1.5. In vacuum, no-hair theorems constrain BH solutions
to be the same as in GR [117, 118]. On the other hand, for matter spacetimes, this
consistency is achieved due to the nonlinear (derivative) interactions of k-essence,
via the kinetic screening mechanism 10 (also known as k-mouflage).

In analogy to Newtonian gravity, where the gravitational potential force is the
gradient ∂iψ of the gravitational potential ψ (obeying Poisson equation ∇2ψ =

4πGρ, with ρ the mass density), the scalar fifth force can be identified with the
gradient of the k-essence scalar. The role of the screening mechanism is then to
ensure the suppression (through nonlinear self-interactions) of such a scalar fifth
force in presence of matter, e.g. in the vicinity of the Sun or a NS [120] –see
Fig. 1.4.

In Fig. 1.5, we focus on a specific choice of K(X) defined by β = 0 and γ > 0,
which guarantees the presence of kinetic screening [113] –although screening can
be achieved with more general forms of K(X). We can observe that radial profile

10For scalar tensor theories, there might exist other types of screening mechanisms, such as
Vainshtein screening and chameleon screening. See Ref. [119] for a review on the subject.
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1.3. Lorentz-violating theories

Figure 1.4: Kinetic screening sketch. When kinetic screening is active, the scalar force
is suppressed in the vicinity of matter distributions, e.g. a neutron star (NS). Outside
the Vainshtein radius (black circle, not to scale), the scalar force is not suppressed and
the scalar behaves as Dark Energy.

of the scalar gradient (the fifth force) in k-essence (solid red) is suppressed in
comparison with FJBD theory (dashed green) in the region r/M⊙ ∼ 10−18−1011.
Nonlinear scalar effects produce the observed changes in slope or “knees” for k-
essence: one near the center of the star (r/M⊙ ∼ 0), another at the star surface
(r/M⊙ ∼ 10), and the last one is located at the so-called Vainshtein radius
(r/M⊙ ∼ 1011).

1.3 Lorentz-violating theories

Alternative theories of gravity can also be obtained by relaxing the fundamental
symmetries upon which GR is built. Namely, diffeomorphism invariance. In
this section, we briefly review theories that introduce a preferred direction or
a preferred frame (given, for instance, by a timelike aether) that locally breaks
the symmetry under boosts. Among these theories, Hořava gravity provides a
candidate for a renormalizable theory of QG [14].

1.3.1 Einstein-aether and the low-energy limit of Hořava

gravity

In order to break Lorentz invariance, we introduce a timelike aether vector field
uµ in the action

SÆ [gµν , u
µ,Ψm] =

1

2κ

∫
d4x

√−g
[
R +Mµρνσ∇µuν∇ρuσ + λ (uµu

µ + 1)
]
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1.3. Lorentz-violating theories

Figure 1.5: Kinetic Screening Example. The normalized scalar gradient for k-essence
(solid red), with β = 0 and γ > 0, and FJBD theory (dashed green) are shown. Suppres-
sion of the scalar fifth force (proportional to the scalar gradient) due kinetic screening
is evident. For k-essence, the Vainshtein radius is located near the last “knee”. Taken
from ter Haar, et al [113].

+ Sm[gµν ,Ψm] , (1.13)

where Mµρνσ ≡ c1gµρgνσ + c2gµνgρσ + c3gµσgνρ + c4gνσuµuρ, ci are coupling con-
stants, and λ is a Lagrange multiplier that imposes the constraint uµuµ = −1.
The theory described by action (1.13) is called Einstein-aether theory [121, 122].

A particular version of this theory, known as khronometric theory is obtained if
one makes the extra assumption that the aether field is hypersurface-orthogonal.
In other words, this condition means that the aether given by the gradient of
a scalar function (i.e. uµ ∝ ∂µt, for t a scalar function), which also induces
relations between the couplings ci. The latter can be seen to arise as the low-
energy limit [123] of a renormalizable 11 quantum theory of gravity known as 12

Hořava gravity [14].
The reduced symmetry in Hořava gravity is that of foliation-preserving dif-

feomorphisms (FDiff), given by

t→ t̃(t), xi → x̃i(t, x), (1.14)

where t is the preferred time direction defining the preferred foliation. Schemat-

11Although power counting renormalizability is encouraging, formal renormalizability has
been proven only for the so-called projectable version [124].

12More precisely, from the non-projectable version [125] of the theory.
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ically, the action of Hořava gravity (in vacuum) can be written as [126]

SHL
[
N,N i, γij, ai

]
=

1

2κ

∫
dt d3xN

√
det γij

[
L2 +

1

Λ2
⋆

L4 +
1

Λ4
⋆

L6

]
, (1.15)

where we have performed an Arnowitt-Deser-Misner (ADM) decomposition of
the metric [127], ds2 = −N2dt2 + γij(dx

i +N idt)(dxj +N jdt), for which N and
N i are respectively the lapse function and shift vector, and γij is the metric of
the spatial hypersurfaces. In action (1.15), the L2 term represents khronometric
theory written in the 3+1 decomposition. On the other hand, L4 and L6 repre-
sent terms containing fourth and sixth spatial derivatives of the metric and the
acceleration ai ≡ ∂i logN , and are suppressed by a new physical scale Λ⋆. A vi-
able range of values for Λ⋆ has been identified to be roughly (1010−1016)GeV (in
natural ℏ = 1 units), where strong coupling at low energies is avoided, and where
the theory satisfies both gravitational constraints from Solar System tests and
Cosmology, as well as constraints from Lorentz-violations in matter [128]. At the
quantum level, the higher-derivative terms are responsible for the power-counting
renormalizability properties of action (1.15) –see Ref. [129] for an argument of
how this argument works out in the simplified setting of a Lifshitz scalar.

1.3.2 Black hole phenomenology

The concept of a BH is subtle in Einstein-aether theory [Eq. (1.13)], and the main
reason for this is the fact that the theory propagates spin-0 and spin-1 degrees of
freedom in addition to the usual spin-2 modes, and each of these may propagate
with a different (but finite) speed [126]. However, in order to avoid gravitational
Cherenkov radiation from cosmic rays, these speeds must be larger than the speed
of light [130]. This in turn results in the possibility of defining different (Killing)
horizons for each mode. However, the BH horizon which constitutes a causal
barrier of spacetime (for all of these modes) corresponds to the innermost of
these horizons –i.e. the horizon defined by the modes with the largest speed.

Although we can define Einstein-aether BHs in such a way, a more peculiar
causal barrier for modes of arbitrarily high speeds, called the universal horizon 13,
has been identified [126, 132]. Such modes arise naturally in Hořava gravity,
where higher-order spatial derivative operators in the action give rise to high
energy modes (with frequency ω and spatial momentum k) propagating according
to a dispersion relations of the form ω2 ≈ α2|k|2p/Λ2p−2

⋆ , with p > 1 [133].
Therefore, the universal horizon aids in defining the concept of a BH in the

13A formal definition of the universal horizon has been given in Ref. [131]. For stationary
solutions with associated Killing field χµ, the universal horizon is defined by the location where
uµχ

µ = 0 and aµχ
µ ̸= 0, where we have defined the 4-acceleration aµ ≡ uσ∇σu

µ.
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presence of modes that travel with arbitrarily large (as |k| → ∞) group velocities
v2 ≡ |dω/dk|2 ≈ α2(|k|/Λ⋆)

2p−2.
Non-spinning and slowly-rotating BHs in Einstein-aether/khronometric the-

ory have been studied e.g. in Refs. [126, 134, 135]. Most recently, fully rotating
solutions, mildly departing from the Kerr metric (1.4), have been obtained in
Ref. [136], in the unconstrained regions of the parameter space –although in the
latter study no universal horizons where identified.

1.4 Theory-independent parameterizations

Given the vast array of possible modifications to gravity, computing the observ-
ables for each theory individually, with the aim of constraining its couplings and
charges, may become a tedious task. A useful alternative to such a program is to
compute the observables for a general parametrization capable of capturing the
effects of many of these theories. Once experimental bounds are cast on these gen-
eralized parameters, such constrains are mapped to the couplings and charges of
each theory. In the following, we review a few examples of this approach. We con-
centrate on stationary BH spacetimes and on the EFT approach. Other possible
ways to give theory-independent parameterizations of gravitational observables
include: the Parameterized Post-Newtonian framework (for Solar System appli-
cations up to 1 Post-Newtonian order) [26] and template-free reconstructions of
GW signals [137].

1.4.1 Stationary black hole spacetimes

Given that alternative theories often break symmetries or introduce additional
fields, one might generically expect that the solutions for BH spacetimes are dif-
ferent from the Kerr/Schwarzschild metric. Since EM and GW probes (e.g. light
emitted by an accretion disk or GWs from an EMRI) may provide information
about the spacetime geometry of a BH, one would like to find a way to describe
the metric in a general way. In this section, we look at how this can be done for
stationary BH solutions in spherical symmetry.

In polar coordinates, the metric can be written as

ds2 = −N2(r) dt2 +
B2(r)

N2(r)
dr2 + r2 dΩ2, (1.16)

where dΩ2 = dθ2 + sin2(θ) dϕ2. For a Schwarzschild BH in GR, these functions
take the form N2(r) = 1− 2M/r and B(r) = 1, where M is the BH mass.

In order to describe BHs in an unspecified theory, one must first choose a
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1.4. Theory-independent parameterizations

way to parameterize the metric functions N(r) and B(r). This choice may be
motivated by different arguments. For instance, one possibility, if one wishes to
ensure that any arbitrary smooth solution be captured (i.e. one wishes to ensure
completeness), one may choose a Fourier basis, with parameters ak as defined by
the Fourier transform f̃(k) ≡ ∑

k ake
ikr. However, a disadvantage of such a choice

may be that a large (possibly infinite) number of parameters may be required. In
Part III, we employ data analysis techniques to mitigate the problems due to the
inclusion of a large number of parameters and apply it to compute BH images.

Another approach is to write the parametrization guided by physical argu-
ments or empirical expectations, for instance, to ensure that only few parameters
are needed to describe the most interesting spacetimes or that at large distances
one does not require extreme fine tuning to recover the GR asymptotics. One
may also wish to ensure a BH horizon is present.

An example of the latter description is given by the Rezzolla-Zhidenko (RZ)
parametrization [138], which has been shown to reproduce a wide family of BH
solutions –see e.g. [139] and see also Ref. [140] for a generalization to rotating
spacetimes. In this parametrization, one first introduces a compactified coordi-
nate x ≡ 1−r0/r, with r0 the location of the event horizon. Then, the parameters
{ε, a0, b0}, which mainly describe the large distance behavior are defined by

A(x) = 1− ε(1− x) + (a0 − ε)(1− x)2 + Ã(x)(1− x)3,

B(x) = 1 + b0(1− x) + B̃(x)(1− x)2, (1.17)

where xA2(x) = N2(r), A(x) > 0 for 0 < x < 1. Finally, the rest of the param-
eters {ai, bi}∞i=2 are defined in terms of Padé approximants (see e.g. Ref. [141])
as

Ã(x) =
a1

1 + a2x
1+

a3x
1+...

, B̃(x) =
b1

1 + b2x

1+
b3x
1+...

. (1.18)

Applications of this parametrization include the computation of BH shadows [142–
144], BH QNMs [145, 146] and X-rays [146, 147].

1.4.2 Effective field theory approach

Consider an action SIR describing physics below a certain energy scale E ≪ Λcut

(or for length scales L ≫ 1/Λcut) and involving fields with masses much smaller
than Λcut –in this section we set ℏ = 1. The idea of EFT is to complete the
action SIR with all possible local operators (interactions) compatible with a given
set of the fundamental symmetries and fields, and which we denote ∆SIR. On
dimensional grounds, the coupling constants associated with higher-dimensional
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1.4. Theory-independent parameterizations

operators (i.e. those with increasing number of fields or derivatives) can be written
in terms of dimensionless parameters suppressed by powers of energy/length scales
of order Λcut. Thus, they are expected to provide small corrections to the leading-
order operators, provided E ≪ Λcut. In this way, one obtains the effective field
theory SEFT = SIR +∆SIR, valid for E ≪ Λcut.

Outside this range, at scales E ≳ Λcut (or L ≲ 1/Λcut), perturbative control
may be lost, and SEFT can no longer be trusted. Instead, it should be replaced
with the action of a more fundamental theory, or a UV completion SUV, that is
able to describe physics at such scales –and from which the low-energy EFT can
be derived. A classic example of an EFT in Particle Physics is the Fermi theory
of weak interactions, which can be UV-completed by the electroweak sector of
the Standard Model of Particle Physics –see e.g. Ref. [77]. To make an analogy
with Sec. 1.4.1, one can think that all of the coefficients of a general metric
parametrization could be computed from the exact solution for the metric in a
given theory of gravity. However, it is often the case that for many theories of
interest such a UV completion may not be available.

In brief, the EFT approach provides a way to parameterize the unknown in a
way that allows us to make predictions with incomplete information. Indeed, this
approach has found utility in a number of applications in gravity and Cosmology,
including Dark Energy [106, 107], inflation [148], BHs [149, 150] and GWs [151].

Another relevant example is the EFT extension of GR in vacuum given in
Ref. [152]. Including up to eight-derivative corrections, the action is given by

SEFT of GR [gµν ] =
1

2κ

∫
d4x

√−g
[
R− C2

Λ6
⋆

− C̃2

Λ̃6
− CC̃

Λ6
−
+ · · ·

]
, (1.19)

where C ≡ RµνσρR
µνσρ and C̃ ≡ RµνσρR̃

µνσρ. Notice that the higher-order oper-
ators 14 depend only the contractions of products of the Riemann tensor and its
dual R̃µνσρ ≡ ϵµναβR

αβρσ, and are suppressed by new energy scales Λ⋆, Λ̃ and
Λ− –where the latter are unknown parameters that need not coincide with the
Planck mass MPl.

And advantage of the EFT approach, with respect to the one of section 1.4.1,
is that it also parameterizes deviations in the dynamics of the metric, and not just
deviations of the stationary solutions. Indeed, bounds on the new energy scales
of action (1.19) have been found in Ref. [153] by computing deviations GW phase
during the early inspiral of BH binaries and comparing with LIGO-Virgo events.
Furthermore, the new terms in action (1.19) may also lead to modifications of
the QNMs and horizon properties of BHs [154].

14In principle, operators suppressed by powers of Λ−4 may also be present. However,
Ref. [152] omits them based on subtle theoretical assumptions.

19



1.5. Summary of current tests of gravity

Figure 1.6: Chart of gravitational regimes. In the horizontal plane, the binding energy
of the system U and representative speed v, normalized by powers of c. In color code,
the representative size of the system, and (inversely) proportional to the latter are
the density (acceleration). The weak and non-relativistic regime is located towards
the lower left corner, whereas the strong and relativistic regime towards the top right
corner. Markers indicate example probes of different parts of this chart. The triangular
markers correspond to: (1) binary BH systems with LIGO-Virgo, (2) binary NS systems
with LIGO-Virgo, (3) binary BH systems with LISA, and (4) binary BH systems with
Pulsar-Timing Arrays (PTA). Courtesy of Enrico Barausse.

1.5 Summary of current tests of gravity

In the previous sections, we provided a brief overview of a number of different
descriptions of gravity. In this section, we summarize both classical (mainly weak
field) and modern (mainly strong field) tests of gravity. Until recently, GR had
been extensively tested mostly in the weak and mildly relativistic regime, or in
cosmological settings. With the maturity of GW interferometers and Very Large
Baseline Interferometry, a new campaign to test the strong field of gravity has
just begun.

A map of the different regimes of gravity is provided in Fig. 1.6, where gravita-
tional systems are characterized by some representative speed v (horizontal axis),
their (binding) energy content U (vertical axis), and a representative length/size
(color bar). Marks indicate examples of probes for different parts of this parame-
ter space, from Solar System scales (lower left) to compact object binaries (upper
right). In Fig. 1.6, the weak field and non- (or mildly) relativistic regime can
be identified as the lower left corner, whereas the strong and highly dynamical
(relativistic) is identified as the upper right corner. Solar System probes, for in-
stance, clearly belong to the former, as GWs from binary BH mergers belong to
the latter.
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1.5. Summary of current tests of gravity

1.5.1 Weak field tests

Here we summarize the “classical” weak field tests following Will [26]. Predictions
for the observables in the weak and mildly relativistic regime are often computed
by means of the Post-Newtonian (PN) framework which relies on an expansion
in v/c, with terms of order (v/c)2n referred to as being of nPN order [26, 155].

The first kind of tests probe the gravitational deflection of light. In Solar
System, category includes the classical Eddington experiment where the deflec-
tion of background starlight caused by the Sun was measured, and subsequent
improvements of these type of observations –see Fig. 7.2 of Will [26] for a plot
comparing Eddington’s results with modern measurements.

The second type of tests probe the relativistic delay (with respect to Newto-
nian gravity) in the arrival time of light signals moving across a gravitational field
–often called Shapiro time delay in honor of Irwin Shapiro, who first predicted it
in 1964 [156]. For example, this delay occurs for a radar signal travelling across
the gravitational field of the Sun, and bouncing off a third body, such as a planet
or a spacecraft. Indeed, the most accurate measurements of these effects have
been made with radar-ranging measurements of the Cassini spacecraft [26, 157].

Finally, the third classical test probes the perihelion advance of an orbiting
body such as Mercury. This effect is of great historical relevance as it evidenced
the shortcomings of Newtonian gravity [158] and became one of the first pre-
dictions Einstein computed using GR [159]. The perihelion advance is naturally
included in the PN equations of motion, and is generically present in orbiting
systems. For instance, this effect has been identified by the GRAVITY Collabo-
ration for the orbits of stars around the SMBH at the center of the Milky Way,
Sag A* [160].

Other weak field probes include the Nordtvedt effect [161, 162], which can be
used to test the validity of the Strong Equivalence Principle, the Lense-Thirring
effect [163, 164], which probes the frame-dragging effect [26].

1.5.2 Strong field tests

In the mildly relativistic strong field regime (upper center part in Fig. 1.6), the
first indirect evidence of the existence of GWs was provided by measurements of
the change in the orbital period (due to GW damping) in the Hulse-Taylor binary
pulsar system [2, 3]. Today, the double pulsar system PSR J0737–3039A/B allows
for very precise tests of strong field effects of GR. For instance, Kramer, et al. [16]
measure the change in the orbital period due GW damping to be ṖGW/ṖGW, GR =

0.999963(63), with respect to the orbital change ṖGW, GR predicted in GR using
the quadrupole formula. This measurement is a factor of 25 more precise than
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1.5. Summary of current tests of gravity

that for the Hulse-Taylor pulsar [165] –see Fig. 1.7.
With regards to theories beyond-GR, this system can also be used to cast

bounds on the parameters of Damour-Esposito-Farèse (DEF) theory –a FJBD
theory in the terminology of Sec. 1.2.3 [16]. However, systems where one pulsar
companion is a white dwarf (WD), cast the stringier bounds for most of the
parameter space of DEF theory –see e.g. Refs. [16, 166, 167].

Figure 1.7: Gravitational wave damping in the double pulsar system PSR
J0737–3039A/B . Top panel. Cumulative shift of the times of periastron passage rela-
tive to a model with no GW damping. Each data point represents 60 days of data to
which a Keplerian orbit is fitted. In solid red, the GR prediction based on measurements
of the masses reported in Kramer, et al [16]. Bottom panel. Residuals of the deviation
with respect to the GR prediction. See original source for more details. Taken from
Kramer et al [16].

In recent years, the increasing number of GW events in the LIGO-Virgo cat-
alogues have already allowed for numerous novel tests of the strong and highly
dynamical regime of gravity –see Refs. [4–8]. Such kinds of tests are referred to
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1.5. Summary of current tests of gravity

as null tests of GR and make no use of high-accuracy waveforms in alternative
theories of gravity –we will describe efforts in this direction in Part II. Instead,
the latter look for deviations from GR with different consistency and parameter-
ized tests. Among them: consistency tests between the low- and high-frequency
parts of the signal (also known as Inspiral-Merger-Ringdown tests), probes of
additional GW polarizations, ringdown tests, and constraints on PN parameters.
No evidence for physics beyond GR has been reported so far [8].
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Figure 1.8: Bounds on parameterized PN coefficients of the GW phase. See main text
for the definition of the coefficients δφi. Blue and gray diamonds indicate bounds ob-
tained using the SEOBNRv4_ROM with the GWTC-3 [8] and GWTC-2 [7] catalogues,
respectively. White diamonds used the IMRPhenomPv2 model for GWTC-2 data. The
diamond markers are the combined bounds for the eligible GW events, and assume that
the deviations take the same values for events. Horizontal colored bars indicate bounds
from individual events labeled by their redshifted total mass. See main source for more
details. Taken from Ref. et al [8].

As an example of the latter family of tests, constraints from GW observations
on PN parameters are reported [8] as fractional deviation terms applied to the
GW phase φPN(f) described by the 3.5PN TaylorF2 approximant [168],

φPN(f) = 2π f tc − φc −
π

4
+

3

128η

(
πf̃

)−5/3
7∑

i=0

[
φi + φi l log(πf̃)

] (
πf̃

)i/3

,

(1.20)

where f̃ = GM(1 + z)f/c3, M(1 + z) is the redshifted total mass of the bi-
nary, φc, tc are the coalescence phase and time, and η the symmetric mass ratio.
In GR, the coefficients {φi} are uniquely determined, and their values are re-
ported in Ref. [168]. In Fig. 1.8, upper bounds are reported on the fractional
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1.5. Summary of current tests of gravity

deviation terms δφi, when they are varied one at a time, obtained through 15

φi → (1 + δφi)φi [5]. In particular, Fig. 1.8 shows stringent constraints on the
δφ−2, which in GR its value is identically zero –and therefore represents and
absolute (normalized) deviation. Physically, the δφ−2 term represents the con-
tribution to the GW phase of dipolar radiation, which is not present in GR, but
is generically predicted in many alternative theories of gravity –such as FJBD
theory-like theories, see e.g. Ref. [169].

For electromagnetic probes, recent observations in the radio band have yielded
the first horizon-scale images of the SMBH Sag A* and M87*. Based on these
measurements, the EHT Collaboration has recently performed tests of GR [10,
12, 170]. One example of the tests reported in Ref. [12] is shown in Fig. 1.9, where
a comparison of the inferred shadow size is performed against various non-Kerr
metrics 16. This comparison is done in terms of the fractional diameter deviation
δ ≡ (dsh/dsh,Sch)− 1, where dsh is the inferred diameter of the shadow and dsh,Sch

is its value for the Schwarzschild metric. White regions indicate sizes consistent
at 68% CL with the inferred size of Sag A*. From this plot it can be seen that
large values of the (normalized) charges in the various examples (solid lines) are
disfavoured. Although this plot concerns non-rotating BH spacetimes, it is argued
that spin introduces minor corrections.

15In the analysis of Ref. [5], these deviations are turned off at a maximum cutoff frequency
–see the original reference for more details.

16See also Volkel, et al. [171], for a comparison of the shadow size of M87* against predictions
made with the RZ parametrization [138] of Sec. 1.4.1.
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1.5. Summary of current tests of gravity

Figure 1.9: Bounds on charges for non-rotating metrics. Comparison of the shadow
sizes consistent the the measurement of Sag A*. White regions (using two differ-
ent values for the distance to Sag A*, labelled Keck and VLTI) indicate consistency
at 68% CL with the inferred value of the shadow. The latter is described by the
fractional diameter deviation δ. In dashed black, the value of the shadow for the
Schwarzschild metric. In solid lines, the shadow size as a function of the a single
charge (normalized to its maximum value) parameterizing various nonrotating BH
metrics: Reissner–Nordström (RN), Bardeen, Hayward, Frolov, the Kazakov & Solo-
dukhin (KS) and the Gibbons–Maeda–Garfinkle–Horowitz–Strominger solution for Ein-
stein–Maxwell–dilaton–axion theory (EMd–1). See original source for more details.
Taken from Ref. et al [12].
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Part II

The strong field regime in k-essence
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Chapter 2

UV completions, fixing the
equations and nonlinearities in
k-essence

In Sec. 1.2.3, we have introduced k-essence, a scalar-tensor theory with first-
derivative self interactions and which may provide interesting phenomenology on
cosmological scales. On smaller scales, however, initial value evolutions (which
are crucial for predicting the behavior of astrophysical systems, such as binaries
of compact objects) may run into instabilities related to the Cauchy problem
becoming potentially ill-posed. Moreover, on local scales the dynamics may enter
in the nonlinear regime, which may lie beyond the range of validity of the infrared
theory. Completions of k-essence in the ultraviolet, when they are known to exist,
mitigate these problems, as they both render Cauchy evolutions well-posed at all
times, and allow for checking the relation between nonlinearities and the low
energy theory’s range of validity.

In this Chapter, we explore these issues explicitly by considering an ultraviolet
completion to k-essence and performing vacuum 1+1 dynamical evolutions within
it. The results are compared to those obtained with the low-energy theory, and
with the low-energy theory suitably deformed with a phenomenological “fixing
the equations” approach. We confirm that the ultraviolet completion does not
incur in any breakdown of the Cauchy problem’s well-posedness, and we find
that evolutions agree with the results of the low-energy theory, when the system
is within the regime of validity of the latter. However, we also find that the
nonlinear behavior of k-essence lies (for the most part) outside this regime.

Throughout this Chapter, and for the rest of Part II (unless otherwise stated),
we use the metric signature −+++ and work in units where c = 1. Greek letters
µ, ν, . . . denote spacetime indices ranging from 0 to 3, while Roman letters near
the middle i, j, . . . range from 1 to 3, denoting spatial indices.

27



2.1. Motivation and outline

2.1 Motivation and outline

As we have seen in Sec. 1.2.2, k-essence theories [111, 112] are among the very few
terms in the DHOST class that remain experimentally viable despite constraints
from GW propagation [108, 110, 172–178]. Potentially even tighter constraints
may come from the generation (rather than just the propagation) of GWs [179,
180]. However, obtaining predictions for GW generation is far more difficult
than for propagation, as the nonlinear self interactions of the k-essence scalar are
believed to dominate the dynamics on the small scales characterizing compact
binary systems. In fact, this expectation comes from calculations of static and
quasi-static systems (such as stars), on whose scales the scalar self interactions
are important and tend to suppress deviations from GR [113, 120]. This nonlinear
mechanism, known as “screening” (of local scales from GR deviations), is common
to other theories in the DHOST class (see e.g. Refs. [181–184]) and is both a
blessing and a curse. On the one hand it allows k-essence to pass solar-system
tests of gravity [113, 179], but on the other hand it renders the calculation of GW
generation conceptually and practically involved [113, 179, 180, 185, 186].

In fact, because of the nonlinear scalar derivative self-interactions, evolutions
to the future of initial configurations of interest (on which calculations of GW
generation in the highly relativistic and strong-field regime of compact binaries
are based) may become “unstable”, i.e. they may depend “discontinuously” on
the initial data and/or exhibit fast exponential growth. (See e.g. Refs. [185,
187–189].) In mathematical jargon, this corresponds to the Cauchy (i.e. initial
value) problem becoming ill-posed [19]. While for astrophysically relevant initial
conditions (such as neutron star binaries or gravitational collapse) this breakdown
of the Cauchy problem can be avoided by a judicious choice of gauge [180] (at
least in specific k-essence theories), for general theories/configurations this may
not always be possible. In fact, a more robust approach to “fixing” the Cauchy
problem is to complete k-essence to the ultraviolet (UV) [190] (when that is
allowed by positivity bounds [191]) or to “deform” the evolution (by adding an
auxiliary field that drives the dynamics to the “real” one on long timescales).
This second approach to “fix the equations” was proposed by Cayuso, Ortiz and
Lehner in Ref. [192] (see also Refs. [154, 193]), partly inspired by dissipative
hydrodynamics, and was successfully applied to gravitational collapse in k-essence
by Refs. [179, 180] (where it was shown to reproduce the results obtained in a
gauge where breakdowns of the Cauchy problem are avoided). On a similar note,
shocks/caustics in k-essence [185, 194, 195] may also be resolved by resorting to a
UV completion. In Ref. [196], it was illustrated that the transfer of energy to an
additional (UV) degree of freedom may allow for the smoothening of shock/caustic
fronts in k-essence.
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In this Chapter, we take a step back and investigate in depth the relation be-
tween first-derivative self interactions of the scalar, well-posedness of the Cauchy
problem and UV completions (in both the standard and “fixing the equations”
approaches). To this purpose, we consider a k-essence model that potentially
suffers from both Tricomi-type and Keldysh-type breakdowns of initial-data evo-
lutions [185, 186]. In more detail, the former corresponds to the equations becom-
ing parabolic (and then elliptic) along the evolution, while the latter are caused
by diverging (coordinate) characteristic speeds for the scalar mode. By suitably
choosing the sign of the coupling of the first-derivative scalar self interactions in
the action, we can then extend the k-essence model to a standard U(1) symmetric
UV completion [190]. Solutions in the UV-complete theory are compared to ones
in the low-energy k-essence theory (as long as the Cauchy problem in the latter
remains well-posed) and to ones in a “fixing the equations” completion. We also
explore the relation between the regime in which the scalar self-interactions be-
come important and the domain of validity of the low-energy EFT, finding that
the two are closely connected for the example that we study.

In more detail, this Chapter is organized as follows. First, in Sec. 2.2 we
review the k-essence model that we adopt as our case study. We then introduce its
standard UV-completion in Sec. 2.2.1, while our “fixing the equations” approach is
introduced and applied in Sec. 2.2.2. We describe our numerical implementation
in Sec. 2.3 and present our results in Sec. 4.4. Our findings are discussed and
conclusions drawn in Sec.2.5. In Appendix B.1, we present an additional example,
and in Appendix B.2 we elaborate on details regarding the constraint propagation
in the “fixed" theory. For convenience in the notation, in contrast to Part I, and
only for this Chapter, we will denote the k-essence scalar field as π(x).

2.2 Quadratic k-essence

The action of k-essence in vacuum is given by [cf. (1.11)]

SK [gµν , π] =

∫
d4x

√−g
[
R

2κ
+K (X)

]
, (2.1)

where K (X) is a function of the standard kinetic term of the scalar field π(x),
given by X = ∇µπ∇µπ. The quadratic model is defined by keeping only the
leading first derivative self interaction, i.e.

K(X) = −1

2
X +

β

4Λ4
X2 +O

(
Λ−8X3

)
, (2.2)
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with β ∼ O(1) a dimensionless coupling constant and Λ the EFT strong coupling
scale. Note that in the presence of matter, screening is present only in the β < 0

branch [113, 120, 186]. However, positivity bounds select the branch with β > 0

as the one consistent with embedding in a UV theory [191].
The vacuum field equations derived from action (2.1) are given by

Gµν = κT (π)
µν , (2.3)

where Gµν is the Einstein tensor and

T (π)
µν = K (X) gµν − 2K ′ (X)∇µπ∇νπ , (2.4)

is the energy-momentum tensor of the k-essence field. The equation for the scalar
field can be written as

γµν∇µ∇νπ = 0 , (2.5)

where

γµν = gµν +
2K ′′(X)

K ′(X)
∇µπ∇νπ , (2.6)

is an effective metric for the scalar field. From Eq. (2.6), it is evident that the
scalar equation (2.5) may develop shocks/caustics (e.g. discontinuities) if the
scalar gradients become large, even in situations when the initial data for the
scalar field is smooth [185, 194, 195]. Additionally, other pathologies may arise if
K ′ (X) approaches zero [188].

In order to study the non-linear dynamical regime, the well-posedness of the
Cauchy problem must first be assessed. According to Hadamard’s criteria [19],
the Cauchy initial value problem governed by Eqs. (2.3) and (2.5) is well-posed
if a unique solution exists and depends continuously on the initial data. This
can be shown to occur if the associated system of equations is strongly hyperbolic
[197, 198], i.e. if the system of equations can be written as a quasilinear first-
order system and its principal part (consisting of the terms with the highest
derivatives) has real eigenvalues and a complete set of eigenvectors [199, 200].
In our case, one can restrict the analysis to the scalar equation (2.5), since the
evolution equations for the metric variables [Eq. (2.3)] take the same form as in
GR (which is well-posed [201]) and the source terms involve only derivatives that
are lower-order than the principal part.

In the following, we will restrict to spherical symmetry, where the metric can
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be written in the form

ds2 = −α2(t, r) dt2 + grr(t, r) dr
2 + r2gθθ(t, r) dΩ

2 , (2.7)

where α(t, r) is the lapse function, and grr(t, r) and gθθ(t, r) are the spatial com-
ponents of the metric and dΩ2 = dθ2+sin2 (θ) dϕ2. The scalar equation (2.5) can
be written as a first-order system of equations of the form

∂tU + V ∂rU = S (U) , (2.8)

where U = (∂tπ, ∂rπ), S (U) is a source term, and we have made use of the
consistency equation ∂t∂rπ = ∂r∂tπ. The characteristic speeds, corresponding to
the eigenvalues of the characteristic matrix V, are given by

V± = −γ
tr

γtt
±
√

−det (γµν)

(γtt)2
, (2.9)

where det (γµν) should be understood as the determinant of the effective metric
in the (t, r) subspace, i.e.

det (γµν) = γttγrr −
(
γtr

)2
. (2.10)

If these speeds are real and distinct, the corresponding eigenvectors form a com-
plete set, and thus the scalar sector is strongly hyperbolic.

Since the characteristic speeds (2.9) depend on the effective metric (which
differs in general from the spacetime metric gµν), two situations may arise that
can cause a breakdown of strong hyperbolicity. The first problem occurs when the
scalar equation (2.5) changes character from hyperbolic to parabolic, i.e. when
one of the eigenvalues of the effective metric [Eq. (2.6)],

λ± =
1

2

(
γtt + γrr ±

√
(γtt − γrr)2 − (2γtr)2

)
, (2.11)

vanishes, implying det (γµν) → 0. This referred to as a Tricomi-type breakdown
[202] (see also Ref. [185]) due to its resemblance to the behavior of the Tricomi
equation,

∂2t u(t, r) + t ∂2ru(t, r) = 0 , (2.12)

which is hyperbolic for t < 0 (as it has characteristic speeds ± (−t)1/2) and elliptic
for t > 0. The system of evolution equations, including those for the metric, then
becomes of mixed-type, with parabolic and hyperbolic sectors [203]. The second
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problem occurs when the characteristic speeds diverge. This referred to as a
Keldyish-type breakdown [202] (see also Ref. [185]), in analogy with the Keldyish
equation,

t ∂2t u(t, r) + ∂2ru(t, r) = 0 . (2.13)

which has characteristic speeds ± (−t)−1/2 diverging as t→ 0−.
Both problems may be solved by a suitable UV completion of the EFT. In fact,

in the following we will review a UV completion of the quadratic k-essence model
given by (2.2) (for β > 0), and show that it allows for avoiding both Keldysh and
Tricomi breakdowns of the Cauchy problem. Similarly, the “fixing the equations”
approach [192] may also improve the behavior of initial-value evolutions in the
branch β < 0.

2.2.1 U(1) UV completion

The positive branch (β > 0) of quadratic k-essence can be obtained as the low-
energy description of a UV completion given by the U(1)-symmetric action1

SUV [gµν , ϕ] =

∫
d4x

√−g
[
R

2κ
− ∂µϕ

⋆∂µϕ− V (ϕ⋆ϕ)

]
, (2.14)

with a potential

V (ϕ⋆ϕ) =
λ

2

(
ϕ⋆ϕ− v2

2

)2

, (2.15)

where ϕ is a complex scalar field (with ϕ⋆ its complex conjugate), λ > 0 is
a dimensionful coupling constant and v can be interpreted as the scale of the
vacuum expectation value of ϕ, i.e. the magnitude of ϕ that minimizes V (ϕ⋆ϕ).

In Minkowski space, quadratic k-essence is recovered at low energies when the
U(1) symmetry of action (2.14) is broken spontaneously [190]. When gravity is
considered the same result holds at leading order. Indeed, by expanding ϕ around
the degenerate vacuum of the potential,

ϕ(x) =
v√
2
[1 + ρ(x)] eiθ(x) , (2.16)

it can be seen, by substituting in action (2.14), that the radial field ρ(x) acquires a
“mass” 2 Mρ =

√
λ v, while the phase field θ(x) (i.e. the “Goldstone boson” [204])

1To be precise, this is a partial UV completion as it only describes the scalar degree of
freedom at higher energies. A full UV completion would also describe the gravitational degrees
of freedom, e.g. in a full theory of quantum gravity.

2In our units c = 1, the “mass” Mρ is actually the inverse of the Compton wavelength, i.e.
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2.2. Quadratic k-essence

remains massless. At energies much lower than Mρ, one can use the equation of
motion of the radial field, −□ρ+ (1 + ρ) ∂µθ∂

µθ + v−2∂V/∂ρ = 0, to integrate it
out of action (2.14). More precisely, one can solve perturbatively for ρ as

ρ = − 1

M2
ρ

∂µθ∂
µθ +O

(
M−4

ρ

)
, (2.17)

and substitute in the action (2.14) to obtain the effective action for the phase
field θ(x). The latter takes the same form as Eq. (2.1), i.e.

Seff [gµν , θ] =

∫
d4x

√−g
[
R

2κ
+ v2

(
−1

2
∂µθ∂

µθ +
1

2M2
ρ

(∂µθ∂
µθ)2

)]
+O(v2M−4

ρ ∇6) , (2.18)

where O(v2M−4
ρ ∇6) denotes higher order terms (in M−2

ρ ) with at least six deriva-
tives. Therefore, this UV completion reproduces the dynamics of quadratic k-
essence at leading order, and the k-essence field is interpreted as given by the
dimensionful “phase” field

π(UV)(x) = v θ(x) . (2.19)

Direct comparison between the actions (2.1) and (2.18) yields the relation between
the coupling constants in the two theories,

β

2Λ4
=

1

M2
ρv

2
≥ 0 , (2.20)

and selects the positive branch of quadratic k-essence (for which there is no
screening mechanism in the presence of matter), consistently with positivity
bounds [191]. At next-to-leading order, the higher order terms do not repro-
duce k-essence, since the UV completion introduces other six-derivative terms in
addition to the cubic term appearing in Eq. (2.2) – see e.g. Ref. [190].

We now turn to the question of whether this UV completion admits a well-
posed Cauchy problem. Since the scalar field ϕ is minimally coupled to the metric,
the evolution equations for the metric are

Gµν = κT (ϕ)
µν , (2.21)

where now

T (ϕ)
µν = ∇µϕ

⋆∇νϕ+∇µϕ∇νϕ
⋆ − gµν [∇σϕ∇σϕ+ V (ϕ⋆ϕ)] . (2.22)

the real mass is mρ = Mρℏ.
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2.2. Quadratic k-essence

As before, it can be shown that the system is strongly hyperbolic [205]. The
scalar equation,

□ϕ− ∂V

∂|ϕ|2ϕ = 0 , (2.23)

is also manifestly strongly hyperbolic since it is a wave equation. We split the
complex scalar

ϕ = ϕR + i ϕI (2.24)

in its real and imaginary parts, ϕR and ϕI . Then the associated characteristic
speeds are given by

V
(ϕR)
± = V

(ϕI)
± = ± α√

grr
, (2.25)

which are always real and distinct (hence implying the existence of a complete
set of eigenvectors).

2.2.2 Fixing the equations

The “fixing the equations” approach [192] (see also Refs. [154, 193]) provides a
prescription to control the high frequency behavior of an EFT, which may be
the cause of ill-posedness of the Cauchy problem. In the following, we will apply
this prescription to k-essence. Unlike for the case of the U(1) UV completion
presented in the previous section, we do not make here any assumptions on the
sign of β.

In order to deal with shocks (c.f. Sec. 2.3), it is convenient to rewrite the scalar
equation (2.5) in conservative form (as made possible by the shift-symmetry of
the theory):

∇µ (K
′(X)∇µπ) = 0 . (2.26)

Since large gradients may occur due to the K ′(X) factor, triggering a breakdown
of the Cauchy problem, we “fix” the scalar equation (2.26) by replacing K ′(X)

with a new dynamical field Σ, which in turn is prescribed to approach K ′(X) by a
“driver” equation. The system of equations that we adopt (see also Ref. [179, 180])
is therefore

∇µ(Σ∇µπ) = 0 , (2.27)

τ ∂tΣ = − [Σ−K ′ (X)] , (2.28)

34
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where τ is a constant timescale, whose precise value controls the rate of approach
of Σ toK ′ (X) and which damps frequencies ω in the range τ−1 ≲ ω [192, 206]. For
the metric, the evolution equations remain unaltered and are given by Eq. (2.3).

The characteristic speeds of the “fixed” theory, for Σ ̸= 0, are

V
(FE)
± = ± α√

grr
, (2.29)

with an additional speed V
(FE)
3 = 0 due to the presence of the new variable

Σ. These speeds are always real and distinct (hence implying the existence of
a complete set of eigenvectors). Therefore, as long as Σ ̸= 0, the system of
equations of the “fixed” theory is strongly hyperbolic.

However, if Σ approaches zero during the evolution, a pathological situation
occurs. This can be seen as follows: rewriting Eq. (2.27) as Σ□π+∇µΣ∇µπ = 0,
it is evident that when Σ → 0 the principal part of this equation (i.e. the part con-
sisting of the highest derivative terms) vanishes, and therefore the system (2.27)-
(2.28) changes from second order to first order.

Finally, in contrast with the UV completion of Sec. 2.2.1, there are no restric-
tions on the sign of the quadratic k-essence coupling constant β, and the “fixing
the equations” prescription can also be applied to the branch with screening
(β < 0).

2.3 Methodology

In order to explore the well-posedness of the Cauchy problem and the nonlinear
dynamics in k-essence, in its U(1) UV completion and in the “fixing the equations”
approach, the fully nonlinear equations must be considered. In the following, we
present the evolution equations in a 1+1 decomposition of the spacetime restricted
to spherical symmetry and describe the details of our numerical implementation.
First, in Sec. 2.3.1 we present the evolution equations for the scalar sector in a
first-order conservative form. We specify our working units in Sec. 2.3.3 and then,
in Sec. 2.3.2 we describe in detail the procedure used to construct initial data.
In Sec. 2.3.4, we describe the numerical evolution scheme and code. Finally, in
Sec. 2.3.5, we describe additional diagnostic tools needed to compare and interpret
our numerical simulations.

2.3.1 Evolution equations

We decompose the metric into space and time components by using the line
element in spherical symmetry given by Eq. (A.2). In the 1+1 decomposition, the
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2.3. Methodology

Einstein equations [Eq. (2.3) for k-essence and the “fixed” theory and Eq. (2.21)
for the U(1) UV completion] can be written in first-order form [analogous to
Eq. (2.33)] by using the Z3 formulation, which is strongly hyperbolic [207–209] –
see Appendix A for more details. We write the evolution equations for the metric
as a first order system by defining the variables

Ar =
1

α
∂rα , Drr

r =
1

2grr
∂rgrr , Drθ

θ =
1

2gθθ
∂rgθθ , (2.30)

and the extrinsic curvature

Kij = −1

2
Lngij , (2.31)

where gij is the spatial metric and nµ = (−α, 0) is the normal vector to the
foliation. We close the evolution system by prescribing the singularity-avoidance
1+log slicing condition, ∂tlogα = −2K, where the trace of the extrinsic curvature
is K = Kr

r + 2Kθ
θ [210]. The final set of evolution fields for the Z3 formulation

in spherical symmetry can be found in Appendix A.
In the following, we will also describe the scalar equation in k-essence, in its

U(1) UV completion and in the “fixing the equations” approach, and write it in
first-order form.

2.3.1.1 Quadratic k-essence

Defining the following first-order variables

Φ = ∂rπ , Π = − 1

α
∂tπ , (2.32)

one can write the scalar equation (2.5) in first-order conservative form as

∂tπ + αΠ = 0 ,

∂tΦ + ∂r[αΠ] = 0 ,

∂tΨ+ ∂rFΨ = −2

r
FΨ , (2.33)

where

Ψ =
√
grrgθθK

′ (X)Π , (2.34)

FΨ =
αgθθ√
grr

K ′ (X) Φ . (2.35)

At each time step, Π is obtained (numerically) by solving the non-linear equa-
tion (2.34).
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2.3.1.2 U(1) UV completion

For the U(1) UV completion, the scalar equation (2.23) defines two real systems
of equations for the real ϕR and imaginary ϕI parts. As before, we define the
first-order scalar variables

ΦR,I = ∂rϕR,I , ΠR,I = − 1

α
∂tϕR,I . (2.36)

Then, the real scalar system for ϕR,I can be written as

∂tϕR,I + αΠR,I = 0 ,

∂tΦR,I + ∂r[αΠR,I ] = 0 ,

∂tΠR,I + ∂r

[
α

grr
ΦR,I

]
= SΠR,I

, (2.37)

with source term

SΠR,I
= α

[ (
Kr

r + 2Kθ
θ
)
ΠR,I +

− 1

grr

(
2

r
+Drr

r + 2Drθ
θ

)
ΦR,I +

∂V

∂|ϕ|2ϕR,I

]
. (2.38)

2.3.1.3 Fixing the equations

Finally, for the “fixed" theory, the first order system of equations can be written
in the same form as in k-essence (Sec. 2.3.1.1), but replacing K ′(X) → Σ and
including the “driver" equation (2.28).

2.3.2 Initial data

We will now describe in detail the construction of initial data in isotropic coordi-
nates, corresponding to an initially stationary scalar “shell” in k-essence (Sec. 2.3.2.1).
We will then comment on how this procedure can be generalized to the U(1) UV
completion (Sec. 2.3.2.2) and the “fixed” theory (Sec. 2.3.2.3).

2.3.2.1 Quadratic k-essence

On the initial slice at time t = 0, we adopt isotropic coordinates given by

ds2 = −α2(r) dt2 + ψ4(r)
(
dr2 + r2 dΩ2

)
, (2.39)

and prescribe the initial profile of the lapse function to be constant and equal to
unity – i.e. α(r)|t=0 = 1.
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2.3. Methodology

In these coordinates, the Hamiltonian and momentum constraints for k-essence
take the form

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
=

1

4
ψ5Kθ

θ
(
2Kr

r +Kθ
θ
)
+ P [α, ψ, ∂tπ, ∂rπ, π] , (2.40)

∂Kθ
θ

∂r
=

1

rψ

(
Kr

r −Kθ
θ
)(

ψ + 2r
∂ψ

∂r

)
+Q [α, ψ, ∂tπ, ∂rπ, π] , (2.41)

respectively, where

P [α, ψ, ∂tπ, ∂rπ, π] =
1

4
κψ5

[
K (X) + 2Π2K ′ (X)

]
,

Q[α, ψ, ∂tπ, ∂rπ, π] = κΠΦK ′ (X) . (2.42)

We will consider initially stationary configurations by imposing ∂tπ = Kθ
θ =

K = 0 for which Kr
r and Q ≡ 0. Therefore, Eq. (2.41) is trivially satisfied and

we only need to solve Eq. (2.40) for ψ.
The initial profile for the k-essence field [the free data in Eqs. (2.40)-(2.41)]

is specified as

∂rπ|t=0 = A exp

[
−(r − rc)

2

σ2

]
cos

( π
10
r
)
,

∂tπ|t=0 = 0 , (2.43)

where A is the amplitude of the pulse, and rc and σ are parameters specifying
the location and root-mean-square width of the Gaussian envelope of the pulse.
Note that this form resembles the initial data used in Ref. [185].

We implement our initial data solver in Mathematica [211]. First, regularity
at the origin is imposed by solving Eq. (2.40) perturbatively near the origin. The
perturbative solution for ψ(r), which depends on one integration constant ψ(0),
is then used as initial data in an outward-bound integration (in radius) starting
from a small non-zero radius. Finally, using a shooting method, we fix ψ(0) by
requiring that the exterior Robin boundary condition

−1 + ψ + r
∂ψ

∂r

∣∣∣∣∣
r→∞

= 0 (2.44)

is satisfied. Note that this boundary condition corresponds to imposing that ψ
reduces to the asymptotically flat solution of Eq. (2.40) (c.f. Birkhoff’s Theorem
[30]), ψ (r → ∞) ≈ 1 + m0/ (2r), where m0 is the (unknown) Arnowitt-Deser-
Misner (ADM) mass.
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2.3.2.2 U(1) UV-completion

The construction of the initial data for the metric variables proceeds as in Sec. 2.3.2.1.
In this case, the P and Q terms in Eqs. (2.40)-(2.41) are replaced by

P [α, ψ, ∂tϕR,I , ∂rϕR,I , ϕR,I ] = −1

8
κψ

[
ψ4

(
Π2

R +Π2
I

)
+ Φ2

R + Φ2
I + ψ4V (ϕ⋆ϕ)

]
,

Q[α, ψ, ∂tϕR,I , ∂rϕR,I , ϕR,I ] = −1

2
κ (ΠRΦR +ΠIΦI) . (2.45)

From the initial profile of the k-essence (phase) field [Eqs. (2.43)], we can
construct the initial configurations for the fields ϕR,I by direct application of
Eqs. (2.16) and (2.17).

Finally, let us comment on a subtlety regarding the initial profile for the com-
plex scalar field. When specifying the initial configuration of the radial field ρ

[Eq. (2.17)], one needs to provide also information on the configuration of the met-
ric function ψ(r) in k-essence, which we denote by ψK(r). The latter is obtained
from the solution of the Hamiltonian constraint [Eq. (2.40)]. This complicates
the solution of Eq. (2.40) for the U(1) UV completion, since it would require the
use of an interpolated function for ψK(r). For the cases that we consider below,
ψK(r) ≈ 1. Thus, we avoid this problem by using the approximation ψK(r) ≡ 1

in Eq. (2.17). We stress that the Hamiltonian constraint [Eq. (2.40)] in this UV
completion should not be solved by considering ψK(r) = ψ(r).

2.3.2.3 Fixing the equations

The initial data in the “fixing the equations” approach is prescribed in exactly
the same way as in Sec. 2.3.2.1. The only additional information that we need to
include is the initial profile of the Σ field, which we specify to be

Σ|t=0 = K ′(X)|t=0 . (2.46)

2.3.3 Units

For convenience in the numerical implementation, we will measure physical quan-
tities with respect to the following energy, length and time units EΛ ≡ Λ−2κ−3/2,
LΛ ≡ Λ−2κ−1/2, and TΛ ≡ LΛ, respectively.

2.3.4 Evolution scheme

For this Chapter, we extend the code of Ref. [209], which was initially writ-
ten for one dimensional black hole simulations, but which was later adapted
in Refs. [212] to perform dynamical evolutions of boson stars, fermion-boson
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stars [213], anisotropic stars [214], and also in Refs. [113, 179, 186] and in Ref. [215]
for neutron stars in k-essence and chameleon screening, respectively. The met-
ric equations are evolved using a high-resolution shock-capturing finite-difference
(HRSC) scheme, described in Ref. [209, 216], to discretize the spacetime vari-
ables. This method can be interpreted as a fourth-order finite difference scheme
plus third-order adaptive dissipation, where the dissipation coefficient is given by
the maximum propagation speed at each grid point. For the scalar field sector, a
more robust HRSC second-order method is employed, which is based on the Local-
Lax-Friedrichs flux formula with a monotonic-centred limiter [217]. Integrations
in time are carried out through the method of lines, by using a third-order accu-
rate strong stability preserving Runge-Kutta integration scheme, with a Courant
factor of ∆t/∆r = 0.25TΛ/LΛ, such that the Courant-Friedrichs-Levy condition
is satisfied.

We have used a spatial resolution of ∆r = 0.01LΛ and a spatial domain with
outer boundary located at r = 480LΛ. We have checked that the results do
not vary significantly with the position of the outer boundary or with resolution.
For the spacetime variables, we use maximally dissipative boundary conditions,
whereas for the scalar fields we use outgoing boundary conditions.

2.3.5 Diagnostic quantities

In the U(1) UV completion, the phase field derivatives can be computed at each
time step from

∂rπ = v

(
ϕR∂rϕI − ϕI∂rϕR

ϕ2
R + ϕ2

I

)
, (2.47a)

∂tπ = v

(
ϕR∂tϕI − ϕI∂tϕR

ϕ2
R + ϕ2

I

)
. (2.47b)

The phase field π(t, r) itself, which at low energies is expected to reduce to the k-
essence field, can be obtained by integrating Eq. (2.47b) along with the evolution
equations. In the “fixing the equations” approach, this procedure is instead not
needed.

Once the phase field and its derivatives are known, one can compute the k-
essence “characteristic speeds” from Eq. (2.9). We emphasize, however, that the
true characteristic speeds in the U(1) UV completion and in the “fixed” theory
are given by Eqs. (2.25) and (2.29), respectively.

If an apparent horizon (defined as the outermost trapped surface) is present,
its location rAH is given by the zeros of the expansion of outgoing null rays
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[Eq. (4.4) of Ref. [186]] 3

Θ =
1√
grr

(
2Drθ

θ +
2

r

)
− 2Kθ

θ . (2.48)

Similarly, for the k-essence field, we find the location of a sound horizon (if
present) by looking for the zeros of the expansion of outgoing null rays with
respect to the effective metric γµν [Eq. (4.5) of Ref. [186]],

S = r2gθθ

[
(rDrθ

θ + 2)2γrr + rKθ
θα

(
rγttKθ

θα− 2
(
rDrθ

θ + 2
)
γtr

) ]
. (2.49)

Finally, we compare the evolutions in two theories A and B by calculating a
discrepancy measure for a given field χ as

EA,B [χ] (t) =

∥∥χ(A) − χ(B)
∥∥

AH

∥χ(B)∥AH
, (2.50)

where the L2-norm of a function ξ is defined as

∥ξ∥2AH =

∫ ∞

maxA,B(rAH)

|ξ(t, r)|2 dr , (2.51)

with integration domain only covering the exterior of the apparent horizons rAH of
both theories A and B. This measure is inspired in a similar measure introduced
for Minkowski space in Ref. [193].

2.4 Results

In this section, we will compare the dynamics of quadratic k-essence, the U(1)
UV completion and the “fixed” theory during the gravitational collapse of a scalar
“shell”. We will first study in Sec. 2.4.1 the initial stage of gravitational collapse,
when the Cauchy problem in k-essence is well-posed, and confirm that the U(1)
UV and the “fixed” theory reproduce the same dynamics of quadratic k-essence.
After a Tricomi-type breakdown of k-essence, we will continue the evolution with
the U(1) UV completion and the “fixed” theory to determine in Sec. 2.4.2 that the
endstate of the system corresponds to that of a black hole. Finally, in Sec. 2.4.3,
we will show that the system enters the nonlinear regime and compare the dynam-
ics of the U(1) UV completion and the “fixed” theory within it. This will serve
as a “validation” test of the “fixing the equations” approach in a setting where we
have access to the UV physics, and it will also allow us to explore the relation
between the nonlinear regime and the range of validity of the EFT. Additional

3We correct here a typo in Eq. (4.4) in Ref. [186].
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comments for the case of a large coupling constant β are given in Sec. 2.4.4. In
the following, we will explore the case corresponding to initial data [Eq. (2.43)]
generated with parameters rc = 55LΛ, σ = 1.5LΛ, and A = 0.14LΛ and coupling
constants β = 1, M2

ρ = 2L−2
Λ , v2E−1

Λ LΛ = 1 and τ T−1
Λ = 1. In Appendix B.1,

we present an additional example with weak initial data, where no breakdown of
the Cauchy problem or black hole formation occurs.

2.4.1 EFT evolution and Tricomi-type breakdown

By construction, the initial radial profile of the k-essence field π|t=0 agrees with
the profiles from the U(1) UV completion phase field π(UV)|t=0 and from the π-
field of the “fixed” theory. [Recall that in the U(1) UV completion, the k-essence
field is described at low energies by the (dimensionful) phase mode [Eqs. (2.16)]
and (2.19) of the complex scalar ϕ and needs to be computed from Eqs. (2.47).]
The initial data for the metric variables, obtained after solving the constraint
equations, is also in agreement. In particular, for the U(1) UV completion, this is
not a trivial statement, as the agreement in the metric occurs because the extra
degree of freedom (the radial mode of the complex scalar [Eq. (2.16)]) contains a
negligible fraction of the scalar energy content. Thus, we can say that the initial
data is in the regime of validity of the EFT description of k-essence.

In the early stage of collapse in k-essence, from t = 0 to t ∼ 55TΛ, the scalar
pulse splits into an in-going (collapsing) pulse travelling towards the origin, and
into an out-going (radiated) pulse moving towards the outer boundary of the
numerical grid. In the following, we will concentrate on the former. This stage
is reproduced by the U(1) UV completion and the “fixed” theory. In Fig. 2.1,
in the first panel, we can observe that the k-essence scalar field at t ∼ 50TΛ

and r ∼ 7 LΛ is almost indistinguishable in the U(1) UV completion and in the
“fixed” theory. We quantify this agreement by plotting the absolute difference of
these profiles in the second panel. In the third and fourth panels, we also plot
the relative difference of grr and gθθ, respectively, showing that the metric is also
very well recovered, with a relative error of ≲ 0.01%.

As the pulse approaches the origin, the k-essence scalar gradients increase. At
t ∼ 56.5TΛ, large gradients trigger a Tricomi-type breakdown, by which the scalar
equation (2.5) transitions from hyperbolic to parabolic and then elliptic. From
the discussion in Sec. 2.2, this occurs when, at any point of the spatial grid, the
determinant of the effective metric (2.6) vanishes, or equivalently, when at least
one eigenvalue of the latter becomes zero. We can gain some insight by tracking
the spatial maximum and minimum of the eigenvalues of the effective metric
[Eq. (2.11)] as a function of time, as can be seen in the first panel of Fig. 2.2.
Note that for the U(1) UV completion and the “fixed” theory, the effective metric
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Figure 2.1: EFT evolution. First panel: The radial profile of the k-essence field
multiplied by r, at time t = 50TΛ (red solid line) compared with the phase field of the
U(1) UV completion (green dashed line) and the π-scalar of “fixed" theory (blue dotted
line), showing that they are indistinguishable from each other. Second panel: Absolute
differences ∆π ≡ π(A)−π(B) for theories A vs. B; namely, k-essence vs. UV (orange solid
lines), k-essence vs. “fixed" (light green dashed lines) and “fixed" vs. UV (black dotted
lines). Third and fourth panels: relative differences, R [g] ≡

∣∣(g(A) − g(B)
)
/g(B)

∣∣, of
the metric functions g = grr, gθθ for theories A vs. B.
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Figure 2.2: Character of the k-essence scalar equation. First panel: the minimum
and maximum values of the eigenvalues of the effective metric in k-essence (red solid
line), U(1) UV completion (green dashed line) and the “fixed" theory (blue dotted line).
For the last two, the effective metric is not a fundamental quantity but “emergent"
at low energies. From top to bottom: max (λ+), min (λ+), max (λ−), min (λ−). The
Tricomi-type breakdown is signaled by minλ+ → 0 at t ∼ 56.5TΛ. Second panel:
the minimum and maximum values of the characteristic speeds. In this panel, from
top to bottom: max (V+), min (V+), max (V−), min (V−). Notice that, at t ∼ 56.5TΛ,
|min (V+)−max (V−)| → 0, signaling a Tricomi-type breakdown.

is not a fundamental but an “emergent” quantity, therefore, these eigenvalues
have been computed from Eqs. (2.11) and (2.47). Initially, λ± ≈ ±1. As the
evolution progresses, the Tricomi-type breakdown is signaled in this plot by one
of the eigenvalues approaching zero. Specifically, we observe that min(λ+) →
0. In the second panel, we plot the spatial maximum and minimum values of
the characteristic speeds of k-essence [Eq. (2.9)] as a function of time. In the
early evolution, the system is clearly strongly hyperbolic since V± are real and
distinct. As the pulse approaches the origin, first, we observe the formation of a
sound horizon (roughly when max (V−) ≈ 04). Then, the Tricomi-type breakdown
occurs when the characteristic speeds become equal. Indeed, we observe that
|min (V+)−max (V−)| → 0, indicating that strong hyperbolicity is lost5. Note
that, as before, for the U(1) UV completion and the “fixed” theory, the values of
V± have been computed using Eqs. (2.9) and (2.47).

4As mentioned earlier, we define the location of the (apparent) sound horizon as the zero of
the effective metric’s null ray expansion (2.49). In areal coordinates, that condition is exactly
equivalent to V− = 0, and this equivalence carries on (albeit approximately) also in the isotropic
coordinates that we utilize.

5This is actually a necessary and not sufficient condition for the loss of hyperbolicity, but
we have checked that the effective metric also becomes degenerate when V+ = V−.
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Figure 2.3: Gravitational collapse of the pulse. Radial profiles of the lapse α at times
t/TΛ = 30, 55, 80 in k-essence (red solid lines), U(1) UV completion (green dashed lines)
and the “fixed” theory (blue dotted lines). Increasing times are denoted by increasing
intensity of the color. The lapse approaching zero near the origin is a typical effect
signaling the formation of a black hole. Note that k-essence experiences a Tricomi
breakdown at t ∼ 55.6TΛ, much before any apparent horizon formation.

We argue that the change of character of the scalar equation (2.5) occurs
within the EFT regime since all three theories predict that the effective met-
ric becomes degenerate (corresponding to a Tricomi transition in the low energy
k-essence theory) at similar times. Past this point, only with the U(1) UV com-
pletion and the “fixed” theory, for which the Cauchy problem remains well-posed,
can the scalar and metric be evolved smoothly and the final fate of the system
be predicted.

2.4.2 Endstate

In both the U(1) UV completion and the “fixed” theory, the system collapses to
form a black hole. In Fig. 2.3, we show the lapse function approaching zero near
the origin at different representative times, a typical behavior leading up to the
formation of a black hole [205]. We confirm this conclusion by identifying the
appearance of an apparent horizon, which we indicate with solid vertical lines
in Fig. 2.6. For the “fixed” theory, we have checked that the final state is a
black hole when varying τ/TΛ ∈ [1, 10]. This endstate remains inaccessible with
the low-energy k-essence model, where the Tricomi-type breakdown occurs well
before the lapse gets close to zero.

With our numerical implementation (Sec. 2.3.4), we can only track the evo-
lution of the black hole horizon for some time after formation. This is due to
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the formation of steep gradients in the collapse front of the lapse [209]. Finally,
in the U(1) UV completion, the final area is ABH = 4πR2

AH ∼ 5.2L2
Λ, where

RAH ∼ 0.64LΛ is the polar radius of the apparent horizon. In the “fixed” the-
ory, the initial value of the black hole area is ABH ∼ 7.1L2

Λ (37% larger) with
RAH ∼ 0.75LΛ (17% larger). However, we cannot accurately determine the final
value of the area due to additional constraint violation contributions with respect
to the U(1) UV completion: in the “fixed” theory the stress-energy tensor is only
strictly conserved in the limit Σ → K ′ (X), thus, the Hamiltonian constraint time
derivative is only strictly vanishing in the limit Σ → K ′ (X). We will elaborate
on this point in Appendix B.2.

2.4.3 Nonlinear vs. UV regime

Having confirmed that the k-essence dynamics is recovered at early times (Sec. 2.4.1)
and that the evolution can be continued past the Tricomi transition to determine
the final fate of the system (Sec. 2.4.2), we will now proceed to compare the
U(1) UV completion and the “fixed” theory in the nonlinear regime. This will
allow us to explore the relation between the latter and the range of validity of the
EFT (defined by the difference between the U(1) UV completion and quadratic
k-essence evolved within the “fixing the equations” approach).

To establish whether the dynamics enters the nonlinear regime, we monitor
the ratio of the first k-essence self-interaction operator to the kinetic term, i.e.
NL ≡ |βΛ−4X| =

∣∣2M−2
ρ v−2X

∣∣. As can be seen, this can be rewritten, using
Eqs. (2.1) and (2.17), as simply NL = 2 |ρ|. One therefore expects the nonlinear
regime [i.e. NL ∼ O (1)] to be closely related, if not equivalent, to the range of
validity of the low energy theory, to which the U(1) UV completion only reduces
when ρ becomes non-dynamical and can be integrated out (thus implying that
NL = 2 |ρ| is small). We will verify this conjecture with our numerical simulations
in the following.

Let us first analyze when the nonlinear regime is attained. In Fig. 2.4, we
plot the spatial maximum of NL as a function of time in the region outside the
apparent horizon (if present). We denote this quantity as maxAH (NL). During
the early evolution, this ratio is small, signaling that the dynamics is linear.
However, as the pulse approaches the origin and scalar gradients grow, both
the U(1) UV completion and the “fixed” theory enter the nonlinear regime. In
particular, for the “fixed” theory, the growth of the gradients within the nonlinear
regime is damped in comparison to the U(1) UV completion, and we observe a
milder growth in maxAH (NL). Recall that in the “fixed” theory, high frequency
modes are suppressed by construction. Finally, once the black hole forms, the
nonlinear regions become hidden behind the apparent horizon, and we observe a
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Figure 2.4: Nonlinear regime assessment. The spatial maximum of the ratio of the
self-interaction term to the kinetic term for k-essence (red solid line), the U(1) UV com-
pletion (green dashed line) and the “fixed” theory (blue dotted line). The maximum is
taken in the region outside the apparent horizon, if present. During the early evolu-
tion, this measure is small (≲ 10−2). As the pulse approaches the origin, the system
enters the nonlinear regime maxAH (NL) ∼ O(1), shortly after the Tricomi transition
at t ∼ 56.5TΛ. This measure decreases in the later stage once the black hole is formed
and nonlinearities are hidden behind the apparent horizon.

decrease in maxAH (NL).
We now proceed to compare the k-essence (phase) field profiles in the non-

linear regime. In Fig. 2.5, we plot the discrepancy measure EAB [π], between the
k-essence scalar profiles of theories A and B, as defined in Eq. (2.50). (Note
that the plot for the discrepancy of the kinetic energy X would look qualitatively
similar and lead to the same conclusions.) We denote in colored diamonds the
approximate time of formation of sound horizons, and in colored squares the ap-
proximate time of formation of apparent horizons in each theory. We focus on the
discrepancy between the “fixed” theory (theory A) and the U(1) UV completion
(theory B), plotted in blue dotted lines. This provides a measure of how much the
EFT and UV dynamics differ, i.e. it allows for understanding the range of validity
of the EFT. During the early evolution the agreement is clear (EAB [π] < 10−3),
i.e. the EFT is a good description of the full dynamics. As the system enters the
nonlinear regime, indicated with a black star, the discrepancy increases to O (1),
which would seem to indicate that the dynamics exits the range of validity of the
(fixed) low energy EFT. However, the comparison of the scalar profiles is subtle
and we should examine them in more detail.

In Fig. 2.6, in the left panels, we show snapshots of the scalar profiles of the
k-essence (phase) field close to when the nonlinear regime is reached, as well as
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Figure 2.5: Discrepancy of the k-essence scalar. The discrepancy measure EAB of the
k-essence scalar π of theories A vs. B, defined in Eq. (2.50); namely, k-essence vs. U(1)
UV completion (red solid line), k-essence vs. “fixed” theory (green dashed line), and
“fixed” theory vs. U(1) UV completion (blue dot-dashed line). The discrepancy measures
involving k-essence stop at the Cauchy breakdown of the theory. The colored diamonds
and square markers, denote the (approximate) time of formation of the sound horizon
(SH) and apparent horizon (AH) in each theory, respectively. Note that, the diamonds
are superposed since both theories agree in the EFT regime. The black star marker
denotes the approximate time where maxAH (NL) ≈ 1 in the U(1) UV theory –see also
Fig. 2.4.

at later times. In the top left panel, at t = 55TΛ, and right before the Tricomi
transition, we observe that the scalar field is indistinguishable in k-essence, in
the U(1) UV theory and in the “fixed” theory. In the following panels, only
the profiles of the last two theories are shown, as k-essence undergoes a Cauchy
(Tricomi) breakdown, as mentioned earlier. We notice that the scalar profile of
the “fixed” theory exhibits a qualitatively similar behavior of that of the U(1)
UV theory. From this figure, the O(1) discrepancies in Fig. 2.5 are then seen to
originate mostly as a consequence of a “lag” between the scalar profiles. Once
the black hole forms, the largest sources of discrepancy are hidden behind the
apparent horizon, as can be seen for times t ≳ 61TΛ in Fig. 2.5. From the right
panels of Fig. 2.6, we notice that the “fixed” theory also qualitatively follows
the radiated (outgoing) scalar field of the U(1) UV completion. Note that the
observed difference in amplitude is small but is magnified by the factor r. In
Fig. 2.5 it can be seen that the discrepancy is approximately O (10−1).

The observed “lag” in Fig. 2.6 can be traced, at least partly, to the form of the
“driver” equation [Eq. (2.28)] and its associated timescale τ , which controls how
fast the field Σ relaxes to K ′ (X). By decreasing (increasing) the value of τ , we
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can partly reduce (increase) the “lag” in scalar profiles. Other sources of “delay”
may be due to the slightly different evolution of the lapse in the two theories –
see Fig. 2.3. The latter observation illustrates that one must be careful when
comparing fixed time scalar profiles from different evolutions. To overcome these
ambiguities, better measures of comparison may be defined from observables such
as the scalar radiation detected by an asymptotic observer –see e.g. Ref. [180].

Finally, we briefly comment on the low-energy sound horizons, which form
prior to the formation of the black hole. Since physical modes in the U(1) UV
completion move along null geodesics [c.f. Eq. (2.23)] and are no longer (at least
in principle) well described by the k-essence scalar equation (2.5), the sound
horizons may lose physical meaning. This causes a strange behavior of the sound
horizon in our simulations, as illustrated e.g. in Fig. 2.6. At t = 57TΛ, the sound
horizon has already formed in the U(1) UV theory, and is marked by a green
dashed vertical line. This horizon disappears shortly after and is not shown in
subsequent frames. At t = 65TΛ, the sound horizon instead reappears. Again,
we stress that this is probably due to the sound horizon losing physical meaning
in the UV regime.

2.4.4 Large coupling

In astrophysical settings, where masses and lengths are respectively of order M⊙

and km (or larger), one typically has to employ units adapted to the system
under scrutiny to simulate it, e.g. ones in which G = c =M⊙ = 1. In these units,
the numerical value of the coupling constant βΛ−4 is extremely large [113, 179,
180]. This coefficient is intimately connected to the scales Mρ and v in the U(1)
UV completion by Eq. (2.20). Fixing v2 = EΛ/LΛ to avoid short wavelength
oscillations in the complex scalar ϕ ∝ exp

[
iπ(UV)/v

]
[Eqs. (2.16) and (2.19)],

larger values of βΛ−4 correspond to smaller values of Mρ. This, in turn, means
a weaker suppression of higher-order terms, suppressed by powers of M−2

ρ v−2.
Therefore, for fixed initial data parameters {A, σ, rc} [Eq. (2.43)], larger values of
βΛ−4 will push the initial data out of the linear regime and potentially also out of
the EFT’s regime of validity. One symptom of this is an increased disagreement by
the metric coefficients obtained by solving the Hamiltonian constraint [Eq. (2.40)]
at t = 0. This is due to the radial ρ field [in Eq. (2.16)] containing an increasing
fraction of the scalar energy content in the U(1) UV theory, which is not accounted
for in k-essence (nor in the “fixed” theory), and resulting in “deeper” gravitational
“potential wells”. One way to return to the linear regime and to the EFT regime is
to weaken the initial data by decreasing the amplitude A and/or choosing milder
initial scalar gradients by increasing the root-mean-square width σ.

Finally, in Sec. 2.2.2, we highlighted a caveat with the strongly hyperbolic
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nature of the “fixed” theory’s scalar system of equations (2.27)-(2.28). Namely,
when Σ → 0, the system becomes pathological. We have performed numerical
evolutions with larger values of β (and correspondingly smaller values of Mρ) and
observe that the U(1) UV completion evolution may drive the reconstructed value
of K ′ (X) to zero. In the “fixed” theory, K ′ (X) may also vanish dynamically,
driving Σ to zero with it, and causing the code to crash. Moreover, this may
happen in regions not censored by an apparent horizon (see also Ref. [188]). This
problem may be avoided in other versions of k-essence. For instance, in cubic
k-essence the particular functional form of K (X) may keep |K ′ (X)| ≥ q2 > 0,
where q is a constant –see e.g. Refs. [113, 179, 180, 186]. Alternatively, one may
look for a different way to implement the “fixing the equations” approach.

2.5 Final comments

In this Chapter, we have studied two general strategies to deal with the breakdown
of the Cauchy problem in k-essence. The first was to resort to a UV completion
of the theory, which allows for an initial-value problem that remains well-posed
at all times. Unfortunately, while this was possible for the k-essence model con-
sidered in this paper, it is not possible for generic ones, e.g. for those that possess
screening mechanisms, for which such UV completions remain unknown (if ex-
isting at all [191]). The second strategy consisted in “fixing the equations” [192]
of k-essence to control the high frequency behavior suspected of leading to the
Cauchy breakdown. Both strategies were studied before in Minkowski space by
Allwright and Lehner [193] to demonstrate their technical viability.6 Here we
have generalized them to include gravity.

By considering the specific case of quadratic k-essence, we have shown that
both approaches reproduce the EFT dynamics of k-essence up to a “Tricomi-type”
breakdown of the Cauchy problem, where the scalar equation changes character
from hyperbolic to parabolic and then elliptic. Furthermore, both the UV com-
pletion and the “fixing the equations” approach allow for evolving the dynamics
past the Cauchy breakdown to the physical end state of the evolution (in our
example, the formation of a black hole). This should be contrasted with previ-
ous efforts to “chart” the space of initial data in k-essence, in order to rule out
regions leading to ill-posed problems –see e.g. Ref. [185, 186, 220, 221]. With
the two strategies described above, (most of) these regions need not be excluded.
In the context of compact binaries, in particular, this opens up the possibility of
simulating their coalescence, allowing the study of the entire dynamics and the

6See also Refs. [218, 219] where this UV theory and its corresponding EFT description
were studied without considering the coupling to gravity, and Ref. [196], where it is shown that
shocks/caustics in k-essence may be smoothed by a suitable UV completion.
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emission of gravitational/scalar radiation in more generic k-essence models than
currently possible [180].

Moreover, since we have access to the high-energy regime of k-essence thanks
to its UV completion, our results for the scalar evolution provide a validation test
of the “fixing the equations” approach. It is important to stress that this approach,
albeit agnostic of the details of the UV completion, qualitatively agrees with the
dynamics of the latter well into the nonlinear regime of k-essence. One can there-
fore argue that this nonlinear regime can be at least qualitatively captured by the
low-energy EFT. In fact, we find that only in the high curvature/gradient region
inside the black hole apparent horizon does the “fixing the equations” approach
significantly deviate from the UV completion evolution. This is expected, as it is
in those regions that the key assumption of the “fixing the equations” approach,
i.e. the requirement that energy does not cascade into high energy modes [192], is
violated. This provides hope that even the screening mechanism, which depends
crucially on the non-linear dynamics of k-essence, may be within reach of the
low-energy EFT, at least qualitatively.
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Chapter 3

The well-posedness of the Cauchy
problem for self-interacting vector
fields

Massive vector fields are ubiquitous in physics, e.g. as mediators of the weak
interaction, dark matter candidates and superconductivity. Recently, consider-
able interest has grown around possible pathologies that allegedly arise when
self-interactions are considered for these fields. In more detail, in the presence of
gravity, the action for a real vector field Aµ with mass m is given by

S [gµν , Aµ] =

∫
d4x

√−g
[
R

2κ
− 1

4
FµνF

µν − 1

2
m2AµA

µ + λ (AµA
µ)2 + · · ·

]
,

(3.1)

where Fµν ≡ ∇µAν−∇νAµ and we have introduced the coupling constant λ for the
lowest order self-interaction (the dots denote higher-order operators). Ref. [222]
has shown that numerical initial-value (Cauchy) evolutions of such a vector field
on a black hole background break down, and attributes this feature to the ap-
pearance of ghost (or tachyonic) instabilities. Soon afterwards, Ref. [223] and
[224] have identified the same problem, although in a simplified set-up.

In this short Chapter, we wish to stress that those pathologies are not sur-
prising when the action is rewritten in the Stueckelberg language, and that they
are actually related to the (breakdown of the) well-posedness of the Cauchy prob-
lem in the set-up considered by these works. 1 Indeed, introducing a new scalar
field φ, we can restore the U(1) gauge symmetry of the action by performing the
transformation

Aµ → Aµ +
1

m
∇µφ , (3.2)

1See also Ref. [225] where the Stueckelberg formulation for self-interacting vector fields is
presented in the context of stationary Proca stars.
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which renders the longitudinal mode of the massive vector field explicit. We can
now choose the “unitary” gauge φ = 0 and get back the original Lagrangian given
by Eq. (3.1), or we can choose a different gauge, e.g. the Lorentz gauge ∇µA

µ = 0.
The latter is particularly useful when one focuses on the relatively high-energy
limit of the theory (where one retains only the highest derivative terms in the
action), since it decouples the scalar from the vector field and gives

S [gµν , Aµ, φ] =

∫
d4x

√−g
[
R

2κ
− 1

4
FµνF

µν − 1

2
∇µφ∇µφ

+
λ

m4
(∇µφ∇µφ)2 +O

(∇
m

)3
]
. (3.3)

In this form, it is straightforward to realize that the (seemingly innocuous) self-
interactions of the original vector field actually hide derivative self-interactions,
which modify the principal part of the evolution system. In particular, the Stueck-
elberg field presents first-order derivative self-interactions, which have been ex-
tensively studied in the literature (where they are often referred to as k-essence)
and shown [113, 179, 180, 185, 186, 220, 226] to cause problems akin to those
encountered in [222–224].

These problems arise from the breakdown of strong hyperbolicity (and thus
of the well-posedness of the Cauchy problem) for the Stueckelberg field equa-
tions. A system of partial differential equations is strongly hyperbolic if the
characteristic matrix of the principal part has real eigenvalues and a complete
set of eigenvectors; a sufficient requirement for this is that the eigenvalues (i.e.
the characteristic speeds) are real and distinct. Because of the derivative self-
interactions in Eq. (3.3), the characteristic speeds depend on the scalar field
gradients [113, 185, 186], potentially leading to several issues.

As we have seen in Chapter 2, if the characteristic speeds cease to be real
and distinct along an initial value evolution, the system may become parabolic
or elliptic. An example of this kind [203] is provided by the Tricomi equation
[cf. Eq. (2.12)] [185, 220, 226]

∂2t φ(t, r) + t ∂2rφ(t, r) = 0 , (3.4)

which is hyperbolic for t < 0 (as it has characteristic speeds ± (−t)1/2) and elliptic
for t > 0. Furthermore, the characteristic speeds may even diverge. An example
is given by the Keldysh equation [cf. Eq. (2.13)] [185, 220, 226]

t ∂2t φ(t, r) + ∂2rφ(t, r) = 0 , (3.5)
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which has characteristic speeds ± (−t)−1/2 diverging as t → 0−. Finally, it has
been shown that derivative self-interactions can lead to the formation of shock-
s/microshocks even when starting from smooth initial data, potentially leading
to non-unique solutions and therefore to an ill-posed Cauchy problem [227, 228].

Solutions to these issues, however, have been put forward in recent years.
Ref. [186] has shown that the Tricomi-type evolution system arising from the
action of Eq. (3.3) can be avoided altogether if the coefficients of the derivative
self-interactions satisfy suitable conditions. For example, accounting for a cubic
term (∇µφ∇µφ)3 is sufficient to avoid the loss of hyperbolicity.

Moreover, Ref. [186] and [113] have shown that for theories with this cubic
term, a Keldysh-type breakdown of the Cauchy evolution typically occurs only
during black hole collapse, for realistic initial data. However, the diverging char-
acteristic speeds that define the Keldysh behavior are not pathological per se, but
are simply due to a poor choice of gauge. Indeed, Ref. [180] has found a gauge
(with non-vanishing shift) that maintains the characteristic speeds finite in stel-
lar oscillations, during gravitational collapse and in binary neutron star mergers.
Finally, the problem of shock formation can be avoided by writing the evolution
equations as a hyperbolic conservation system, and by solving the latter using
high-resolution shock capturing techniques [113, 180, 186].

The discriminant choice to perform numerical evolutions in self-interacting
vector theories is therefore a careful selection of the coupling constants, so as to
satisfy the conditions avoiding Tricomi type breakdowns of well-posedness [186].
If such conditions are not satisfied (as for the cases studied in [222–224]) an al-
ternative possibility is to employ a “fixing-equation” [229] approach inspired by
the Müller–Israel–Stewart formulation of viscous relativistic hydrodynamics [230–
232]. These approaches have been successfully applied in [92, 154, 179, 193, 229,
233, 234] to ameliorate the stability of the fully numerical evolutions in theories
with either changes of character of the Cauchy problem, higher-order derivatives,
or derivative self-interactions. This method consists of modifying the field equa-
tions by introducing extra fields and “fixing equations” (i.e. drivers) for them.
The fixing equations are devised such that on long timescales the evolution ap-
proximately matches that of the original effective field theory. Another possibility
is to rely on the ultraviolet (UV) completion of the theory (when that is known)
to continue the evolution past the Tricomi or Keldysh breakdown –as we did in
Chapter 2. Unfortunately, for the most interesting cases (e.g. derivative self-
interactions yielding screening mechanisms) a UV completion is not generally
known.
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Chapter 4

Robustness of kinetic screening
against matter coupling

In this Chapter, we investigate static neutron star solutions in k-essence and
allow for scalar first-order derivative self-interactions in the matter coupling. We
assess the robustness of the kinetic screening mechanism present in these theories
against general conformal couplings to matter. The latter include ones leading to
the classical Damour-Esposito-Farèse scalarization, as well as ones depending on
the kinetic term of the scalar field. We find that kinetic screening always prevails
over scalarization, and that kinetic couplings with matter enhance the suppression
of scalar gradients inside the star even more, without relying on the non-linear
regime. Fine tuning the kinetic coupling with the derivative self-interactions in
the action allows one to partially cancel the latter, resulting in a weakening of
kinetic screening inside the star. This effect represents a novel way to break
screening mechanisms inside matter sources, and provides new signatures that
might be testable with astrophysical observations.

4.1 Motivation and outline

In Sec. 1.2.2, we have seen that the the observation of the binary NS merger
GW170817, has placed stringent constraints on the theory space for scalar-tensor
theories. Indeed, starting from the most general DHOST theories [85–87], con-
sistency with the speed of GWs measured by GW170817 [172, 173], absence of
GW decay into Dark Energy (DE) [108, 109], and non-linear stability of the
propagating scalar mode [110] reduce the viable Lagrangian to the following form

S [gµν , φ,Ψm] =

∫
d4x

√−g
[
ΦR +K(φ,X)
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4.1. Motivation and outline

+
6

Φ
(∂XΦ)

2∇µφ∇µ∇ρφ∇ρ∇νφ∇νφ

]
+ Sm[gµν ,Ψm] , (4.1)

where R and g are the Ricci scalar and metric determinant, φ is the scalar field
(with X ≡ ∇µφ∇µφ), and Ψm collectively describes the matter degrees of free-
dom. In the above expression, Φ and K are generic free functions of φ and X,
and we have set ℏ = 1. Performing a conformal transformation gµν → Φ−1 gµν

from the Jordan frame to the Einstein frame, together with a redefinition of the
free function K, the action can be written as [cf. (1.11)]

S [gµν , φ,Ψm] =

∫
d4x

√−g
[
M2

Pl

2
R +K(φ,X)

]
+ Sm

[
gµν

Φ(φ,X)
,Ψm

]
, (4.2)

where we have introduced the (reduced) Planck mass M−2
Pl = κ = 8πG. The

corresponding theory is usually referred to as k-essence [111, 112]. For the rest
of this Chapter we will work in the Einstein frame and will denote quantities in
the Jordan frame with a tilde hat (e.g. g̃).

We assume that there are only two energy scales involved in the action, one
associated with the metric and the scalar field (MPl) and the other with the
derivatives of the scalar field (Λ). Moreover, as we did in Sec. 1.2, we will assume
a shift symmetry for the action (φ→ φ + const.) which is only softly broken by
a Planck suppressed scalar-matter interaction. Under these assumptions, we will
only consider the lowest order non-linear terms in the free functions K and Φ,
which read

K (X) = −1

2
X + β

X2

4Λ4
, (4.3)

log Φ (φ,X) = α1
φ

MPl
+ α2

φ2

M2
Pl

+ λ1
X

2Λ4
+ λ2

X2

4Λ8
, (4.4)

where β, αi, λi are O (1) dimensionless constants and the log function ensures
Φ > 0 and thus the same metric signature in the Einstein and Jordan frames. In
particular, recall that FJBD theory [114–116] is recovered in the case1 β = 0.

It is well known that when β < 0 and log Φ depends only linearly on φ, a
screening mechanism referred to as k-mouflage (or kinetic screening) [120] sup-
presses the scalar force in the vicinity of a massive body, allowing for passing
Solar System tests without imposing any bound on α1 [113, 120, 179, 235]. Fur-
thermore, time evolutions for (cubic) k-essence have been shown to be well-posed
[179, 186] and numerical simulations of merging binary neutron stars with screen-
ing have been performed in Ref. [180].

1Strictly speaking, FJBD theory corresponds to β = λ1,2 = 0. However, in this Chapter we
use this terminology also for cases where λ1,2 ̸= 0.
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4.2. Field equations

On the contrary, in the absence of screening (i.e. β ≥ 0), the same local tests
constrain |α1| < 5 × 10−3 [157, 236]. This bound has led to investigating the
effect of quadratic corrections in φ in the matter coupling, and to the discovery
of spontaneous scalarization when α2 ≳ 2 [237, 238].

It is however unknown what the effect of this term is in the presence of screen-
ing. In principle, scalarization may still occur – as the quadratic term in φ in the
matter coupling still tends to render the scalar tachyonically unstable [237–239] –
and spoil the suppression of the scalar force. Likewise, the effect of X-dependent
couplings with matter [c.f. Eq. (4.4)] on screened solutions is currently unknown.
The aim of this work is to investigate these questions and assess the robustness
of kinetic screening against matter couplings.

This Chapter is organized as follows. In Sec. 4.2, we present the covariant
equations of motion for the class of models described by Eqs. (4.3) and (4.4). In
Sec. 4.3.1, we describe our methodology to obtain fully relativistic static solutions
through numerical integration of the equations of motion in spherical symmetry.
In addition, in Sec. 4.3.2, we introduce an analytic model that captures the main
features of the scalar configurations. Our main results are presented in Sec. 4.4.
Finally, in Sec. 4.5, we summarize our findings and draw our conclusions. Details
regarding the derivation of the equations of motion are relegated to Appendix C.1.

4.2 Field equations

Variation of action (4.2) with respect to gµν gives the equations of motion for the
metric,

M2
PlGµν = T (φ)

µν + Tµν , (4.5)

where Gµν is the Einstein tensor, the stress-energy tensor of the scalar field is
given by

T (φ)
µν = K(X) gµν − 2K ′(X)∇µφ∇νφ , (4.6)

and the matter stress-energy tensor is defined by [cf. (1.3)]

T µν ≡ 2√−g
δSm

δgµν
, (4.7)

with trace T ≡ gµνT
µν .

Variation with respect to φ and the contracted Bianchi identity applied to
Eq. (4.5) give rise to the scalar and matter equations of motion (see Appendix
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4.3. Methodology

C.1 for more details),

∇µ (K∇µφ) =
1

2
AT , (4.8)

∇µT µν = − T
2Φ

∇νΦ , (4.9)

where we have defined

K ≡ K ′(X) + BT , (4.10)

T µν ≡ Φ−3T̃ µν = T µν + 2BT∇µφ∇νφ , (4.11)

with trace T ≡ gµνT µν ,

A ≡ ∂φΦ

C , B ≡ ∂XΦ

C , C ≡ −2Φ

(
1 +

X ∂XΦ

Φ

)
, (4.12)

and the Jordan-frame tensor is defined by

T̃ µν ≡ 2√−g̃
δSm

δg̃µν
. (4.13)

Notice in particular that the dependence of Φ on X produces a matter re-
dressing of K ′(X) in the scalar field equation and a disformal modification of the
matter stress-energy tensor.

4.3 Methodology

4.3.1 Numerical integration

We describe matter as a perfect fluid in the Jordan frame by

T̃ µν =
(
ρ̃+ P̃

)
ũµũν + P̃ g̃µν , (4.14)

with trace T̃ ≡ g̃µνT̃
µν , where ũµ is the 4-velocity of the fluid (normalized to −1)

and the energy density ρ̃ = ρ̃0 (1 + ϵ̃) is given in terms of the rest-mass density
ρ̃0 and the internal energy ϵ̃.

We restrict to static solutions in spherical symmetry and write the line element
in polar coordinates as

ds2 = −N2(r) dt2 + a2(r) dr2 + r2dΩ2 , (4.15)

where dΩ2 = dθ2 + sin2 θdϕ2. In addition to the scalar and matter equations, we
use the tt- and rr-components of the Einstein equations (4.5). We will mainly
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4.3. Methodology

focus on neutron star matter, and thus we close the system by specifying a poly-
tropic equation of state (EOS) P̃ = K̃ρ̃Γ̃0 and P̃ = (Γ̃ − 1)ρ̃0ϵ̃, with adiabatic
index Γ̃ = 2 and K̃ = 123G3M2

⊙ in the Jordan frame.
The final Tolman–Oppenheimer–Volkoff (TOV) equations are a set of ordinary

differential equations with schematic form

U ′ = V [U , r] , (4.16)

where U = (φ, φ′, P̃ , N, a) and the prime denotes the radial derivative. We do
not write explicitly these equations as they are cumbersome and not particularly
illuminating.

Regularity at the center of the star is imposed by solving the equations per-
turbatively around r = 0. In this way, the resulting independent integration
constants are found to be {N(0), φ(0), P̃ (0)}. The numerical integration is car-
ried out outwards starting from a small but finite radius r0 > 0. The lapse is
initially chosen to be N(0) = 1 and is rescaled after the integration so that it
approaches N = 1 at spatial infinity (this is possible by rescaling the time co-
ordinate by a constant factor). Given a central pressure P̃ (0), the integration
constant φ0 is fixed by a shooting method so that φ asymptotes to zero at infin-
ity. The location r⋆ of the surface of the star is determined by P̃ (r⋆) = 0. The
baryon mass in the Jordan frame is calculated as

M̃b ≡
∫
d3x̃

√
−g̃ρ̃0ũ0 (4.17)

whereas the scalar charge is calculated as [179, 237, 240]

αc ≡
√

4π

G

φ1

M∞
, (4.18)

where φ1 appears in the asymptotic expansion φ(r) = φ∞+φ1r
−1+O(r−2), and

M∞ is the gravitational mass in the Einstein frame appearing in the asymptotic
expansion N2(r) = 1− 2GM∞r

−1 +O(r−2).

4.3.2 Simplified analytic model

We complement our numerical analysis by introducing an analytical toy model
for the scalar equation of motion, which, we anticipate, will allow us to reach
values for the strong coupling scale relevant for Dark Energy, i.e. ΛDE ∼ 1meV

(these values are hard to simulate numerically due to the hierarchy of scales in-
volved [113, 179]). Moreover, our model will allow us to cross check and interpret
certain features of the numerical scalar profiles presented in the next Section.
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4.3. Methodology

This model can be applied to all matter couplings in Eq. (4.4) but φ2, because in
the latter case the source of the scalar equation is a function of φ. Therefore, in
that case the solution can only be obtained numerically as described in Sec. 4.3.1.

In more detail, we approximate the spacetime to be Minkoswki and consider
a star described by the Tolman VII EOS [241],

ρ̃ (r) ≡ ρ̃c

[
1−

(
r

r⋆

)2
]
, (4.19)

where r⋆ is the star surface location and ρ̃c is a parameter specifying the central
energy density. We then define2

∂µχ ≡ K (φ,X) ∂µφ , (4.20)

so that the scalar equation becomes

∇2χ = −α̂T̃ , (4.21)

where α̂ ≡ α1/(4Φ
2MPl). Approximating T̃ ≈ −ρ̃ and Φ ≈ 1, one can solve

Eq. (4.21) by making use of the Green function G(x,x′) ≡ −1/(4π|x− x′|) and
obtain

χ′ =


α̂ρ̃c

(
r

3
− r3

5r2⋆

)
, r ≤ r⋆ ,

2α̂ρ̃cr
3
⋆

15r2
, r⋆ < r .

(4.22)

Finally, we invert Eq. (4.20) to obtain φ′.
As an illustration, and for the sake of simplicity of the analytic expressions,

we present here the case where β = λ1 = 0 and λ2 < 0 in Eqs. (4.3)-(4.4). The
extension to more general cases is straightforward. For this case, K can be written
as

K = −1

2

(
1 + λ̂T̃X

)
, (4.23)

where λ̂ ≡ 2λ2/(Φ
2Λ8), and the solution for φ′ is given by the analytic inversion

of Eq. (4.20), which corresponds to the real root y ≡ φ′2 of the third-order
polynomial (

1− λ̂ρ̃y
)2

y − 4χ′2 = 0 . (4.24)

2Since we are looking at static solutions in spherical symmetry, the decomposition of
K (φ,X) ∂µφ in only the gradient part is complete.
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4.4. Results

The full solution is not particularly illuminating, however, it is instructive to
examine separately the linear and non-linear regimes. The linear solution is
relevant near the center of the star (φ′ ∝ r) and in the exterior (φ′ ∝ r−2). In
the not-so-deep interior of the star, however, the nonlinear term dominates and,
if the density gradients are small, gives φ′ ∝ r1/3.

4.4 Results

In this Section we illustrate neutron star solutions for the different terms in the
conformal coupling (4.4). First, in Sec. 4.4.1, we consider the effect of a quadratic
coupling in φ on screened solutions in k-essence, and we investigate whether
scalarization can take place even in this scenario. Then, in Sec. 4.4.2, we study
the effect of X-dependent couplings on FJBD theory and finally, in Sec. 4.4.3,
we show the effect of the same kinetic couplings on k-essence theories that have
screening.

4.4.1 Couplings to matter dependent on φ

We restrict to the part of Eq. (4.4) depending only on the scalar field and not on its
derivatives, i.e. λ1 = λ2 = 0. In Fig. 4.1, we illustrate this case with an example
of a generic solution with |α1,2| ∼ O(1). We show the scalar gradient profile for
FJBD theory with a linear coupling to matter (light-blue dashed) and with a
quadratic one (purple dotdashed). The former is only shown for comparison as
this case is ruled out by solar system constraints. The latter is usually referred to
as the Damour-Esposito-Farèse (DEF) model, which leads to scalarized neutron
stars. We also show, as a reference, the standard screened solution of k-essence
[113], where only the linear coupling is present (red solid line). In this case, we
observe the presence of a screening region (i.e. a change in slope which results
in a suppression of the scalar force) between the first and last knee of the scalar
gradient, with the location of the last knee (counting from the left) corresponding
to the screening radius.

When we turn on a quadratic coupling in φ (orange dotted line), we observe
no apparent difference with respect to the screened solution described above (red
solid line). This is not surprising since higher-order couplings in φ are suppressed
by the corresponding power of MPl, which makes them irrelevant unless one hits
the Planck scale. Note that this would be the case even in FJBD theory, unless
one were to set α1 = 0 like in the example above, or to a very small value
compatible with solar system constraints. In FJBD theory, the latter do indeed
bound |α1| < 5× 10−3, thus making the quadratic coupling dominant.
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4.4. Results

Although there is no need for a small α1 coupling in k-essence (due to screen-
ing), it is nevertheless intriguing to investigate such possibility and address the
question of whether scalarization can still take place. Setting α1 = 0 and leaving
only the quadratic coupling active (in analogy to the DEF model), we find that
the magnitude of the scalar gradient is uniformly suppressed (blue dashed line).
The scalar field remains always in the linear regime [i.e. φ′/Λ2 ≲ O(1)] and, as a
consequence, when imposing a vanishing scalar field at infinity, the maximum of
φ′ can never exceed the value of Λ2.

We empirically observe a uniform suppression that scales roughly as φ′ ∝ Λ2,
which in turn leads to a suppression of the scalar charge as αc ∝ Λ2 with respect
to the DEF model. Therefore, we can conclude that, even if the non-linear regime
of k-essence never kicks in when only a quadratic coupling with matter is present,
there is still an overall suppression of the scalar force which depends on Λ. This
implies a suppression of the scalar charge, which makes scalarization impossible
in the presence of k-essence.

Let us now further investigate the origin of this uniform suppression and how
it is affected by the boundary conditions. In Fig. 4.2, we plot the same cases as
in Fig. 4.1, but instead of imposing a vanishing scalar field at infinity, we fix the
central scalar field to the same constant value in all cases. We choose the value
that was previously obtained for the k-essence profile with linear matter coupling
(red solid line). Since the perturbative expansion around r = 0 is the same in
FJBD theory and k-essence, we obtain two classes of solutions corresponding to
the different matter couplings. Despite the same central scalar field, the value of
the scalar field at infinity is now different for the two classes (due to the different
field equations), and in the quadratic coupling case it does not vanish. This
translates into larger scalar gradients, which make the k-essence solution with
quadratic coupling enter the non-linear regime. Therefore, in order to excite
k-essence non-linearities even with a quadratic coupling to matter, one would
need a non-trivial scalar field boundary condition at infinity enhancing the scalar
gradient.

4.4.2 FJBD and kinetic coupling with matter

We now study FJBD theory with a coupling to matter depending on the kinetic
term X. Note that, in order to break the shift symmetry of the theory and avoid
no-hair theorems (see e.g. Ref. [242]), we also need to maintain a dependence on
φ, which we assume to be linear.

As an illustrative example, and to validate our analytic model, we begin by
considering the case of only including the X2 term in Φ. In Fig. 4.3, we show
the numerical solution for the scalar gradient profile (blue dashed line) for λ2 =
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Figure 4.1: Scalar profile for φ-dependent matter couplings. Dashed cyan: Stan-
dard FJBD solution with parameters (β, α1, α2) = (0, 1, 0). Dot dashed purple: DEF
model with parameters (β, α1, α2) = (0, 0, 9/4). Solid red: k-essence with (β, α1, α2) =
(−1, 1, 0). Dotted orange: k-essence with (β, α1, α2) = (−1, 1, 9/4). Dashed blue: k-
essence with (β, α1, α2) = (−1, 0, 9/4). We choose stars with M̃b = 1.87M⊙, near the
top of the β = α1 = 0 charge-mass curve. In all cases we use Λ = 1keV.
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Figure 4.2: Scalar profile for φ-dependent matter couplings with equal φ(0). Same
cases as in Fig. 4.1. Here, however, we fix the boundary condition at the center to the
same constant value φ(0)/Λ = 1.709× 10−3.

−1 and Λ ≈ 10.3MeV. We observe a behavior similar to kinetic screening in
the interior of the star, whereas in the exterior the scalar behaves linearly. For
comparison, we show the solution in k-essence (green solid line) for β = −1

and Λ = 0.38MeV, which comes from the matter redressing of the above energy
scale, i.e. Λ4

eff = Λ8/[2ρ̃ (0)]. In more detail, this effect can be understood by
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noting that the quadratic term in the conformal coupling and in k-essence enter
in the same way in the scalar equation (4.8), namely 2K + 1 ∝ λ2ρ̃X/Λ

8 and
2K + 1 ∝ βX/Λ4, respectively. The presence of ρ̃ in the first case is responsible
for the different energy scale at which screening takes place. Moreover, since this
effect is proportional to the density distribution, it fades away as the star surface
is approached (as ρ̃→ 0), and thus it is not present in the exterior.

In Fig. 4.3 we also note the appearance of a “cusp” at the star surface, r⋆ ≈
14 km, which arises from the connection between the non-linear (interior) and
linear (exterior) behavior. Despite this feature, we have checked that all quantities
(including the curvature invariants R, RµνR

µν , and RµνρσR
µνρσ) remain regular at

r⋆. From a practical point of view, numerically integrating this cusp is challenging,
as one must make sure that the scalar gradient is resolved, and for lower values
of Λ this becomes increasingly difficult to achieve.

In order to more easily capture the behavior at the star surface, and to cross-
check our numerical scalar profiles, we resort to the analytical model introduced
in Sec. 4.3.2. In Fig. 4.3, we show the scalar gradient profile (red dot dashed
line) generated with the analytic model, where the parameters of the equation of
state (4.19) are chosen to closely match the stellar radius and central density of
the numerical integration profile. We observe that the scalar gradient predicted
by this model is qualitatively similar to the numerical one (blue dashed line), with
differences mainly due to the details of the EOS. Moreover, in the analytic model
we can perform an expansion near the surface of the star to confirm that the
scalar gradient approaches a finite value at the cusp. Expanding in ∆r ≡ r − r⋆,
as ∆r → 0−, we obtain

±φ′ = ±√
y =

4

15
α̂ρ̃cr⋆ +

8

3375
α̂ρ̃c

(
225 + 16λ̂α̂2ρ̃3cr

2
⋆

)
∆r +O

[
(∆r)2

]
, (4.25)

where the overall sign can be fixed by comparing with the interior solution.
Having validated our analytic model, we can now employ it to study scales

relevant for Dark Energy. In Fig. 4.4, we show the scalar gradient profile (green
solid line) for λ1 = λ2 = −1 in Eq. (4.4) and energy scale Λ ∼ ΛDE ∼ 1meV. For
comparison, we also plot (orange dashed line) the case studied above (i.e. λ1 = 0

and λ2 = −1), and (blue dotted line) the profile in k-essence (β = −1) with an
equivalent strong-coupling scale Λ ≈ 3 × 10−12meV. In particular, we observe
that the scalar field is always in the linear regime, with a different magnitude of
the gradient inside and outside the star. The value inside is greatly suppressed,
as compared to the value outside, due to the redressing of the linear term in the
scalar equation inside matter.

To conclude this Section, and for completeness, we briefly summarize the
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Figure 4.3: FJBD theory with X2-coupling to matter. Dashed blue: scalar gradi-
ent profile for (β, α1, λ1, λ2) = (0, 10−3, 0,−1) and Λ = 10.3MeV. Solid green: ki-
netic screening in k-essence with parameters (β, α1, λ1, λ2) = (−1, 10−3, 0, 0) – for
the purposes of comparison we have used an energy scale Λ = 0.38MeV. Red dash
dot: scalar gradient profile obtained with the analytic model (A. M.) with parameters
(β, α1, λ1, λ2) = (0, 10−3, 0,−1) and Λ = 10.3MeV. We choose ρ̃c = ρ̃ (0) and r⋆ as
given by the integration in k-essence.
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Figure 4.4: FJBD theory with generic kinetic coupling to matter at DE scales. Solid
green: scalar gradient profile for (β, α1, λ1, λ2) = (0, 1,−1,−1). Dashed orange: scalar
gradient profile for (β, α1, λ1, λ2) = (0, 10−3, 0,−1). In both solutions, the energy scale
is Λ = 1meV. Dotted blue: for comparison, the k-essence screened solution with
(β, α1, λ1, λ2) = (−1, 10−3, 0, 0) and Λ = 3.6× 10−12meV. The vertical axis is rescaled
with respect to the latter value for Λ and, in all cases, we use the analytic model.

behavior for the positive signs of the kinetic couplings in Eq. (4.4). For λ1 > 0,
there is a location inside the star where K = 0 and where the scalar gradient
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diverges and changes sign. This is a pathological solution. Finally, for λ1 =

0, λ2 > 0, the solutions become pathological at the origin as the scalar field
ceases to be regular (i.e. φ′(0) ̸= 0). For the parameters of Fig. 4.4, but with
λ2 = 1, this occurs for Λ ≲ 100MeV.

4.4.3 k-essence and kinetic coupling with matter

In this Section, we rely on our analytic model to study the effects of kinetic
coupling with matter in k-essence, for DE scales.

For λ1 < 0, and regardless of the sign of λ2, we observe an enhancement of the
scalar suppression inside the star, in line with the previous discussion. In fact, as
shown in Fig. 4.5 (solid blue), inside the star the scalar field remains always in
the linear regime with a gradient uniformly suppressed as in the previous Section,
while kinetic screening remains unchanged in the exterior of the star.

More interesting phenomenology occurs when λ1 = 0 and λ2 > 0. Indeed, in
this case, the scalar gradient profile features a weakening of the kinetic screening
inside the star, due to the partial cancellation of the non-linear terms coming
from k-essence and from the matter coupling. In Fig. 4.5, we show this effect
(green dashed line). For demonstrative purposes, and in order to maximize this
effect, we chose a different energy scale for the matter coupling given by Λ8

eff ≈
2Λ4ρ̃c ≈ (0.52 keV)8. This effect is similar, although different in nature, to the
partial breaking of the Vainshtein screening inside matter for beyond Horndeski
[243, 244] and DHOST theories [174, 176, 177, 245]. Finally, for comparison, we
also show (red dot dashed) the profile for a screened star in k-essence without
kinetic coupling to matter.

4.5 Final comments

In this Chapter, we have investigated the effect of general matter couplings for
k-essence scalar-tensor theories featuring kinetic screening of local scales. In
Refs. [113, 179, 180], the standard linear coupling in φ was considered in studies
of neutron star oscillations and mergers. We find here that this choice is ro-
bust against more general matter couplings, at least for the static configurations
chosen as initial data. Indeed, we have explicitly shown that the inclusion of a
quadratic term in φ does not affect significantly the solution. Moreover, even in
a configuration à la DEF (i.e. with a matter coupling including only a quadratic
term in φ), scalarization becomes negligible as the scalar gradient profile becomes
even more suppressed (although always in the linear regime).

We have also explored couplings to matter depending explicitly on the kinetic
term of the scalar field. Such terms arise from X-dependent conformal trans-
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Figure 4.5: k-essence and kinetic coupling with matter. Solid blue: With parameters
(β, α1, λ1, λ2) = (−1, 10−3,−1, 1). Dashed green: With parameters (β, α1, λ1, λ2) =
(−1, 10−3, 0, 1) and Λ = 1meV for the function K(X), however, we choose a different
energy scale Λ ≈ 0.52 keV in Φ for illustrative purposes, such that the cancellation
effect is maximized. Dash dot red: (β, α1, λ1, λ2) = (−1, 10−3, 0, 0) and Λ = 1meV.
The parameters used for the equation of state {ρ̃c, r⋆} are taken to be the same as in
Fig. 4.3.

formations of viable DHOST theories in the Jordan frame. We have identified
healthy sectors of the parameter space, where the suppression of the scalar gradi-
ent inside the star is enhanced, while the theory is still in the linear regime. This
in turn produces a sharp transition between the linear and non-linear regimes at
the star surface, which is however devoid of pathologies.

Finally, interesting phenomenology arises when only a quadratic kinetic term
is present in the matter coupling (together with the usual linear term in φ). In
this case, there is a weakening of the kinetic screening inside stars, due to the
partial cancellation of the non-linear terms coming from k-essence and from the
matter coupling.

This new partial breaking of the screening mechanism inside matter has sev-
eral consequences for stellar astrophysics, which can be used to test the model.
For example, the Chandrasekhar mass limit [246], the burning process in brown
and red dwarfs [247] and the mass-radius relation of white dwarfs [248] are all
quantities sensitive to the gravitational force inside bodies. These observables
have been used to place constraints on models which, like ours, break the screen-
ing inside matter. We plan to explore these effects and use them to constrain
kinetic couplings in future work.
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Part III

Constraining gravity with black
hole images
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Chapter 5

Separating astrophysics and
geometry in black hole images

The observation of the shadow of the supermassive black hole M87∗ by the EHT
is sensitive to the spacetime geometry near the circular photon orbit and beyond,
and it thus has the potential to test GR in the strong field regime. Obstacles
to this program, however, include degeneracies between putative deviations from
GR and both the description of the accretion flow and the uncertainties on “cal-
ibration parameters”, such as e.g. the mass and spin of the black hole. In this
Chapter, we introduce a formalism, based on a principal component analysis,
capable of reconstructing the black hole metric (i.e. the “signal”) in an agnostic
way, while subtracting the “foreground” due to the uncertainties in the calibra-
tion parameters and the modelling of the accretion flow. We apply our technique
to simulated mock data for spherically symmetric black holes surrounded by a
thick accretion disk. We show that separation of signal and foreground may be
possible with next generation EHT-like experiments. Throughout this Chapter
we set G = c = 1.

5.1 Motivation and outline

One possible way to look for deviations from GR is to test the Kerr hypothesis
[43, 44, 249] –see Sec. 1.1.1. The recent measurement of the shadow of M87∗

is therefore particularly interesting to test the Kerr hypothesis and constrain
possible deviations from it. Several theoretical works have connected the bright
emission ring that is present in the reconstructed image with the impact param-
eter of the circular photon orbit [142, 250–262]. This feature in the image may
therefore be used to connect the underlying BH spacetime with the observed
image and therefore test the Kerr hypothesis.

Despite this large amount of existing theoretical work on the topic, a lively
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discussion about the interpretation of BH shadow images is currently ongoing.
More precisely, one question is how suited the shadow size alone (as opposed to
the full image) is for testing deviations from the Kerr metric [Eq. (1.4)]. In Psaltis
et al. [263], it was claimed that the 17% constraint on the shadow size of M87∗, as
reported earlier by the EHT Collaboration in Refs. [264, 265], can be used to place
constraints beyond the first post-Newtonian order of the BH metric. However,
the basis and robustness of this conclusion have been critically discussed since
then. Gralla [266] argued that uncertainties in the underlying astrophysics make
tests of GR with the current observations not possible. Völkel et al. [144] showed
that even if some underlying assumptions questioned by Gralla [266] and adopted
in Psaltis et al. [263] are true, the bounds of Ref. [263] do not hold when higher
order post-Newtonian orders are included in the analysis. Nevertheless, Völkel et
al. [144], as well as Kocherlakota et al. [267], demonstrate that theory specific tests
can be performed and allow for gaining information on the gravitational theory.
The role of dimensional coupling constants in alternative theories of gravity has
been studied by Glampedakis and Pappas [268].

Since the shadow size, as used in most previous works1, is only a single number,
it represents an immense reduction of the information that is encoded in the full
image. For this reason, and because it is based on the connection between the
impact parameter of the circular photon orbit and the image brightness, more
advanced studies are needed.

Improvements of several aspects of the analysis have already been partially
carried out in recent works. For instance, a multiple ring structure seems to
appear in the shadow image at high angular resolution, although its observation
would require measurements beyond current EHT capabilities, see e.g. Refs. [270–
272]. Medeiros et al. [262] have also investigated deviations from circularity in
non-Kerr spacetimes using a principal component analysis (PCA). Formal ques-
tions regarding the uniqueness of shadow images and the underlying BH geometry,
from the point of view of geodesics, have been recently studied in Ref. [273].

Ideally, however, an analysis should take into account the whole image and
simulate both the astrophysics and the background geometry at the same time.
Treating this problem in its full complexity is far beyond of what is currently possi-
ble. State-of-the-art calculations combine general relativistic magneto-hydrodynamic
(GRMHD) simulations of the matter with ray-tracing codes to construct images
–see Ref. [11, 265]. However, even in the context of GR, the large computational
cost associated to these calculations allows one to vary (at the same time) at
most a few parameters describing the accretion flow physics and the geometry
[11, 274]. Therefore, repeating these simulations for non-Kerr spacetimes is al-

1See Nampalliwar et al. [269] for a recent work including also the deviations from circularity.
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ready challenging, even when backreaction on the geometry is neglected –see e.g.
Refs. [275, 276]. Nevertheless, varying the accretion flow physics and allowing
for non-Kerr geometries at the same time has been attempted before, although
restricting to particular deformations of the metric [277].

In this Chapter, we present a framework that allows one to deal with de-
viations of both the accretion flow and the spacetime geometry from standard
scenarios, showing that under suitable assumptions they can be both recovered/-
constrained from the shadow image. In more detail, we perform a PCA, which
allows us to probe small but very general (i.e. theory “agnostic”) deviations from
the Schwarzschild metric, while at the same time reconstructing the astrophysical
accretion flow (which we assume to be spherical and with a simple emissivity pro-
file). The PCA allows for working in a rather general set of basis functions, e.g.
Gaussians or power laws. Although our matter description is not as sophisticated
as current GRMHD simulations, we show for the first time how the background
metric and simple astrophysical scenarios can be disentangled from one another
and reconstructed singularly in an inverse problem for the whole shadow image.
Our work is therefore extensible to incorporate more realistic models in the future.

Our main findings can be summarized as follows. We provide different mock
images produced by our model as hypothetically observed data. These images
have been produced by varying the emissivity profile and/or the BH metric. We
have first demonstrated that the PCA reconstruction allows one to constrain the
emissivity profile when the background is assumed to be Schwarzschild. Then
we have also demonstrated that general deviations of the metric away from
Schwarzschild can be recovered when the emissivity profile is well understood.
In the final and most important application, we have demonstrated that when
the functional form of the emissivity profile is assumed to be of a simple form, but
with unknown parameters, it is possible to recover both the spacetime geometry
(the “signal”) in an agnostic way, as well as the emissivity profile (the “matter
foreground”).

This Chapter is organized as follows. In Sec. 5.2 we summarize our accretion
model and the ray-tracing algorithm. In Sec. 5.3 we outline our numerical method
to compute BH images and the PCA. Applications and results are reported in
Sec. 5.4. A discussion of our findings is presented in Sec. 5.5, while our final
conclusions are provided in Sec. 5.6.

5.2 Theory

In the following, we will give a brief overview of our modelling of accretion flows
(in Sec. 5.2.1) and of ray-tracing around supermassive BHs (in Sec. 5.2.2).
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5.2.1 Accretion model

Being a bright source for terrestrial and space observatories across different parts
of the electromagnetic spectrum, M87∗ has been extensively observed in a variety
of wavelengths [278]. The central BH mass can be estimated by modeling the
dynamics of nearby gas [279] or stars [280]. Note that these methods give different
BH mass values, but the recent EHT measurement of MBH = (6.5±0.7)×109M⊙

only agrees with the stellar dynamics measurement [265]. The environment of
M87∗ is believed to be a geometrically thick and optically thin accretion disk [11],
rather than a geometrically thin and optically thick one (such as e.g. the classic
Novikov-Thorne model [281]). The photons observed by the EHT at 1.3mm are
thought to be produced by synchrotron radiation from the relativistic electrons
in the hot accretion plasma [11, 264]. Moreover, M87∗ exhibits a visible jet,
observable at all wavelengths, whose power has been used to disfavor zero-spin
models [11, 282].

For our purposes, we employ a simplified toy model for the accretion flow. We
assume a spherically symmetric and optically thin disk surrounding a spherically
symmetric (i.e. non-rotating) BH with metric

ds2 = gtt(r) dt
2 + grr(r) dr

2 + r2dθ2 + r2 sin2 (θ) dϕ2, (5.1)

where gtt(r) grr(r) = −B(r)2, with B(r) being a free function. The power radiated
by the disk can be characterized by the emissivity [283],

jν(r) =
dE

dV dt dν
, (5.2)

which we assume to be independent of the frequency ν. Motivated by radiatively
inefficient accretion flow (RIAF) models [277, 284], we assume that the spatial
distribution of the emissivity is well-described by a power law jν(r) ∝ r−n, with
n ≈ 1.

We assume that the BH image is detected by a distant observer. Hence,
the image can be described by the intensity Iν(b), as a function of the impact
parameter b of the null geodesics along which photons propagate. The intensity
can be obtained by integrating the radiative transfer equations (here presented
in the form of Ref. [285, 286]),

d

dλ

(
Iν,obs

ν3obs

)
=
jν
ν2
e−τν,obs , (5.3)

dτν,obs

dλ
= ανν, (5.4)

where ν = −κµuµ, with κµ the photon’s linear momentum and uµ the 4-velocity
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of the disk’s fluid, is the photon’s frequency as measured in the fluid’s rest frame.
The subscript “obs” denotes quantities in the observer’s frame.

These equations are integrated from the matter source to the far away observer
along null geodesics parametrized by the affine parameter λ. Since we make the
assumption of a disk that is (perfectly) optically thin, we choose an absorption
coefficient αν = 0, and we also neglect the Doppler shift due to the motion of the
disk’s fluid, i.e. we assume uµ = (1/

√−gtt, 0, 0, 0). Furthermore, we assume that
the observer measures Iν,obs(b) at a single frequency.2 Hereinafter, for simplicity,
we will drop the labels ν and “obs” in both the intensity and the emissivity.

5.2.2 Ray-tracing

The photons contributing to the BH image probe the spacetime along null geodesics.
In the vicinity of a Schwarzschild BH, these photons are strongly lensed. For a
critical impact parameter bph = 3

√
3MBH, where MBH is the mass of the BH, pho-

tons follow unstable circular orbits at a surface called the photon sphere. If no
matter is present within this surface, this critical value of bph can be interpreted
as the size of the BH shadow. [287]

In practice, although photons follow trajectories from the source to the ob-
server, ray-tracing algorithms often integrate the geodesics and radiative transfer
equations in the opposite direction – see e.g. Ref. [286]. In addition, although
the geodesics equations are integrable in spherical symmetry (and in the Kerr
spacetime), it is convenient to consider the standard second-order equations

d2κµ

dλ2
+ Γµ

ρσ

dκρ

dλ

dκσ

dλ
= 0, (5.5)

where Γµ
ρσ are the Christoffel symbols. The advantages of this choice are that

one avoids a special treatment at the turning points of the geodesics, and (as we
will describe below) one can linearly perturb these equations in a straightforward
way.

5.3 Methods

In this Section, we outline our PCA method. In more detail, in Sec. 5.3.1 we
introduce the basis functions on which we decompose the accretion model and
the deviations of the BH metric away from Schwarzschild. In Sec. 5.3.2, we
present our (linearized) likelihood, and apply the PCA to it in Sec. 5.3.3. The
role of priors is discussed in Sec. 5.3.4.

2In practice, the EHT measures visibilities, which correspond to the Fourier transform
coefficients of the Stokes parameters of the image.
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5.3.1 Choice of basis

Recalling the discussion in Sec. 1.4.1, a useful way to describe and test the multi-
ple possible modified gravity solutions for BH geometries is to employ physically
motivated parametrizations of the metric. In spherical symmetry, these can take
the form of series of r−n terms, with n ̸= 0, like in the post-Newtonian (PN) series,
or more complicated expressions, like in the Rezzolla-Zhidenko parametrization,
where the metric coefficients are described by Padé approximants [138, 140]. One
must be careful, however, that any particular parametrization may not be able to
describe all possible arbitrary departures from GR, especially if only few param-
eters are left free to vary.3 For instance, the PN expansion is valid only for mild
gravitational fields, c.f. for instance Ref. [144], and an infinite number of terms
would be needed to describe all possible conceivable BH metrics in the strong
field region.

In the following, we therefore allow the deviations of the metric from the
Schwarzschild solution to have an arbitrary form. Focusing on gtt(r) and assuming
for simplicity a toy model where B(r) ≡ 1 (and hence gtt(r) grr(r) = −1), one
can write

gtt(r) = g
(0)
tt (r) +

∑
i

α
(tt)
i δg

(i)
tt (r), (5.6)

where α
(tt)
i are free coefficients, g(0)tt (r) is the Schwarzschild solution, and the

functions δg(i)tt (r) form a suitable basis on which any smooth function defined on
the (positive) real axis can be decomposed. The basis is sometimes referred to also
as frame. A familiar example of basis functions is given by sines and cosines in
Fourier analysis. Another example is provided by the Morlet-Gabor wavelets used
in gravitational wave analysis pipelines [137]. This basis need not be orthogonal.
For instance, in some of the applications described in the following, we choose the
basis to consist of Gaussians (centered on different points on the real axis, labelled
by a discrete index i, but with a non-vanishing overlap to enforce continuity of
the reconstructed function).

In order to account for uncertainties in the astrophysical model, we can write
a similar expression for the emissivity of the disk:

j(r) = j(0)(r) +
∑
i

α
(J)
i δj(i)(r), (5.7)

3Note however that the Rezzolla-Zhidenko parametrization has proven very flexible in this
respect, as it is capable of reproducing BH geometries in entire classes of theories [139] with
relatively few parameters. However, those theories are not necessarily comprehensive of all
possible deviations from GR that one can conceive.
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where α(J)
i are again free coefficients, and δj(i)(r) may be different from the metric

basis functions.

5.3.2 Linearized model and likelihood

We approach the inverse problem of reconstructing the spacetime metric from the
observed BH image within a Bayesian perspective. The expressions in Eqs. (5.6)
and (5.7) will be the backbone of our model IM(α, b) for the BH image. We will
then seek to estimate the parameters α =

(
α
(tt)
l , α

(J)
m

)
that best describe the

BH image data ID(b). When the posterior probability can be approximated as
Gaussian, one can further “clean” the reconstructed metric by means of a PCA.

We begin by describing our model for the BH image in more detail. We
assume that the image consists of a finite number of data points at locations
b1, . . . , bN , where the associated intensity ID = (ID,1, . . . , ID,N) is measured. We
also assume that the data are subject to Gaussian measurement errors, which
we assume to be constant and given by σ. As for our model, which we denote
by IM (α) = (IM(α, b1), . . . , IM(α, bN)), we integrate numerically the radiative
transfer and geodesic equations [Eqs. (5.3) and (5.5)] assuming Eqs. (5.6) and
(5.7). In particular, in order to render the posterior probability function Gaussian
(i.e. quadratic in the parameters α) and apply the PCA technique, we linearize
Eqs. (5.3) and (5.5) in α.

Physically, this amounts to assuming that the deviations from Schwarzschild
and from our default emissivity model are small. (We do not report these lin-
earized equations here as they are cumbersome and not particularly illuminating
– see e.g. Appendix A of Ref. [288] for the linear perturbations of the geodesic
equations.) In practice, the 14 first-order linearized equations for the variables

{t, r, ϕ, ṫ, ṙ, ϕ̇, δt, δr, δϕ, δṫ, δṙ, δϕ̇, I(0), δI}, (5.8)

where Ẋ ≡ dX/dλ, are integrated with a custom-made ray-tracing code written
in C++ and employing an adaptive stepsize fourth order Runge-Kutta algorithm
[289]. Therefore, the model can be written as

IM (α) = I(0) +
M∑
i=1

αiδI, (5.9)

where M is the total number of αi parameters and δI are the image deviations
corresponding to each of the individual basis functions.4

4Notice that the basis functions (dependent on the coordinate variable r) are mapped into
an image space (dependent on the impact parameter variable b) by a nonlinear transformation
or “transfer function". In many applications of the PCA (e.g. Ref. [290]) there is no such
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In the Bayesian framework, the solution to the inverse problem, up to a nor-
malization factor, is encoded in the posterior probability distribution, given by

p (α|ID) ∝ p (ID|α) p (α) , (5.10)

where the likelihood follows from the assumption of Gaussian measurement errors
and is given by

log p (ID|α) = −χ
2

2
, (5.11)

with

χ2 =
1

σ2
(ID − IM (α))T (ID − IM (α)) . (5.12)

In addition, as explained below, we will assume Gaussian priors p (α). This
choice, coupled with the likelihood Eq. (5.12), yields Gaussian posteriors, which
are suitable for PCA.

5.3.3 Principal Component Analysis

Since the model is linear in the parameters and the posterior probability is Gaus-
sian, the maximum of the latter (i.e. the “most likely” parameters α⋆) can be
obtained by solving a (possibly degenerate) linear system of equations of the form
Fα + q = 0, where the M ×M matrix F (defined below) and the M -vector q

are computed numerically with our ray-tracing code. (This is the most computa-
tionally expensive part of the framework since it involves computing a perturbed
image for every basis function.) The errors associated with the parameters are in
general correlated and are encoded in the Fisher (Hessian) matrix

Flm = −1

2

∂2

∂αl∂αm

log p (α|ID) , (5.13)

which, with our assumptions, becomes a constant matrix. Linear combinations
of the parameters corresponding to the Fisher matrix orthonormal eigenvectors
e(i), however, have uncorrelated errors σ(i) = 1/

√
2λ(i), where λ(i) are the corre-

sponding eigenvalues.
The main idea behind the PCA is to clean the reconstruction of the model by

keeping only the “largest” coefficients βi = α⋆ ·e(i). This is akin to the procedure
of cleaning a time series from noise by performing a Fourier transform, and then
keeping only the Fourier terms with coefficients significantly different from zero.

mapping.
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More precisely, we prescribe the selection criterion [290]

|βi| ≥ Nthσ
(i), (5.14)

whereby we only retain the coefficients βi that are inconsistent with zero at Nth-th
sigma level, with Nth ≈ 1-3. The final estimate of the parameters is then given
by

αPCA ≡
∑

|βi|≥Nthσ(i)

(
βi ± σ(i)

)
e(i). (5.15)

Explicitly, the reconstructed metric and emissivity are then given by

gPCA
tt (r) ≡ g

(0)
tt (r) +

∑
|βi|≥Nthσ(i)

(
βi ± σ(i)

)
η(i),(tt)(r), (5.16)

jPCA(r) ≡ j(0)(r) +
∑

|βi|≥Nthσ(i)

(
βi ± σ(i)

)
η(i),(J)(r), (5.17)

where

η(i),(tt)(r) ≡
∑
k

e
(i),(tt)
k δg

(k)
tt (r), (5.18)

η(i),(J)(r) ≡
∑
k

e
(i),(J)
k δj(k)(r), (5.19)

are the corresponding eigenfunctions. Here we have separated the eigenvectors
e(i) =

(
e
(i),(tt)
l , e

(i),(J)
m

)
according to their corresponding metric and emissivity

indices. Note that because the coefficients βi are uncorrelated Gaussian variables,
the errors on the reconstructed metric and emissivity at a given location can be
computed by propagating the errors σ(i) in quadrature. These errors will be
reported in Sec. 5.4.

5.3.4 Priors

The use of priors in the reconstruction can enhance it by mitigating some of the
degeneracies that may be present. First, the linear system needed to solve for α⋆,
and thus to obtain αPCA, is in general degenerate. One way to tame this issue
is by conditioning the Fisher matrix Flm, i.e. by replacing Flm → Flm + ϵ δlm,
where δlm is the Kronecker delta and ϵ is suitably small [290]. From the Bayesian
perspective, this can be interpreted as prescribing loose Gaussian priors for α

centered at zero. At least in the case of the metric, this is in line with the
theoretical expectation that the parameters α(tt)

i , which describe the deviations
from GR, should be small.
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Proper priors on the coefficients of neighboring basis functions can also be
used to enforce continuity [291]. More importantly, from a physical point of
view, priors can be used to enforce the expectation that the metric deviations are
well constrained at large distances, where the Newtonian limit of GR (but not
necessarily its 1PN dynamics [144]) should be recovered. For the Gaussian basis
functions uniformly distributed in radius that we will use below, we therefore
include a prior of the form

p (α) ∝ exp

[
−
(
r(i)
MBH

)n∑
i

α
(tt) 2
i

2σ2
r

]
, (5.20)

with n = 4, constant σr and r(i) the location of the Gaussian basis function
associated to α

(tt)
i . Equivalently, this corresponds to the expectation that the

deviations from GR enter at 1PN order or higher [144]. This prior has also the
advantage that it stabilizes the reconstruction against fluctuations from different
noise realizations. Finally, the choice of the reference functions g(0)tt (r) and j(0)(r)
constitutes an additional “theoretical prior”.

5.4 Applications and results

We apply our framework to the following cases. First, in Sec. 5.4.1 we assume
that the spacetime geometry is known and only the accretion flow, described by
the emissivity, needs to be reconstructed. Second, in Sec. 5.4.2 we consider the
opposite case in which the emissivity is assumed to be known, but the spacetime
geometry needs to be reconstructed. Finally, in Sec. 5.4.3 we let both the space-
time geometry and the accretion flow model undetermined at the same time. In
order to directly compare the results obtained in these three ways, we show the
corresponding reconstructions in the same figures at the end of this Section. Since
we do not realistically model the details of the noise in the simulated observations,
in the following we will focus on injections in the noiseless approximation. This for
instance standard when designing gravitational wave data analysis pipelines [292].
However, we have checked that the results are similar for explicit realizations of
the Gaussian noise.

In the following, we also introduce the scales j∗ and I∗, with units [j∗] =

[energy] [length]−3 and [I∗] = [length] [j∗], as a normalizing scales for the emissiv-
ity and observed intensity.
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5.4.1 Reconstructing the accretion flow

We fix the reference metric function to be that of the Schwarzschild geometry,
g
(0)
tt (r) = −(1 − 2MBH/r), without allowing for any deviations from it –i.e. only

the astrophysical parameters α(J)
i are allowed to vary. As for the reference emis-

sivity, we choose it to be j(0)(r) = 0 (i.e. we assume no prior knowledge of the
emissivity). We produce the injection (i.e. the data) ID from

gtt,D(r) = g
(0)
tt (r), jD(r) = 2j∗

MBH

r
. (5.21)

We assume an optimistic resolution of 0.15MBH (potentially achievable with fu-
ture space-based interferometers [293]). More precisely, we generate N = 100

data points uniformly distributed in the interval of impact parameters [0, 15MBH],
and assume an (uncorrelated) measurement error of σ = 0.1 I∗. The basis is com-
posed of 161 (unnormalized) Gaussians uniformly distributed in the interval of
radii [0, 100MBH], with root mean square (RMS) width of 1MBH. We condition
the Fisher matrix with ϵ = 1, which can also be interpreted as a Gaussian prior,
as discussed in Sec. 5.3.4.

In the upper panel of Fig. 5.1, in blue, we show the intensity profile for the
injection Eq. (5.21), as a function of the impact parameter. One can clearly
observe the effect of the photon sphere at b ≈ 5.2MBH. In Fig. 5.2, with blue
contours, we show the 2σ bands of the reconstructed emissivity profile for a PCA
criterion parameter Nth = 1. We observe good agreement with the injection (gray
dashed lines) for most radii. The reconstruction, however, does not accurately
reproduce the emissivity profile near the BH horizon at r = 2MBH. This disagree-
ment is most likely due to the effect of gravitational redshift, which suppresses
the intensity of the near-horizon Gaussian components. The widening of the re-
construction bands at r ≈ 14MBH occurs instead because the image data were
provided in a finite interval –i.e. it is an “edge effect”.

5.4.2 Reconstructing the geometry

In the following, we present the results of our framework when the accretion flow
is assumed to be known and only the background metric is reconstructed –i.e.
when only the parameters α(tt)

i are allowed to vary.
For this example, the injection includes a deviation from GR in the metric,

which is given by

gtt,D(r) = g
(0)
tt (r)− 0.02 exp

[
−(r − 7MBH)

2

M2
BH

]
− 0.8

(
MBH

r

)3

,
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Figure 5.1: Intensity profile for a deformed Schwarzschild metric. Upper panel: Com-
puted intensity profiles I(b) used as “observations”, as a function of the impact parame-
ter b for the Schwarzschild metric (blue) and the deformed Schwarzschild metric (gray),
with corresponding “measurement” error bars of ±0.1 I∗. The scale I∗ is used to nor-
malize the intensity profile, and its units are given in the main text. The Schwarzschild
intensity profile is used as input data for the example of Sec. 5.4.1, while the deformed
Schwarzschild one is used in the examples of Secs. 5.4.2 and 5.4.3. Lower panel: Rela-
tive difference RI = (ISch − Idef-Sch) /ISch of the images in the upper panel.

jD(r) = j(0)(r) = 2j∗
MBH

r
, (5.22)

where g
(0)
tt (r) = −(1 − 2MBH/r). For the sake of simplicity, we also set the

reference function for the emissivity to be the same as the injection –although
we could have chosen a slightly different profile without strongly affecting our
results. The resolution and measurement errors are the same as in the previous
example. We choose a basis of 161 Gaussians uniformly distributed in the interval
[0, 25MBH] and with RMS width of 0.5MBH, supplemented by additional power
law components r−n, with n = 1, 2, . . . , 15. To improve the conditioning of the
Fisher matrix, we also rescale the coefficients α so that the different entries in
that matrix are roughly of the same order of magnitude. The r−1 power law
accounts for the uncertainty in our knowledge of the mass, for which we assume a
small prior measurement error of σMBH = 0.01MBH. Finally, we take ϵ = 10−3 for
the conditioning of the Fisher matrix, and σ2

r = 105 for the large distance prior
of Eq. (5.20).
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The intensity profile used as data and produced from Eq. (5.22) is shown in
the upper panel of Fig. 5.1, in gray. Here, one can observe the breakdown of the
linear approximation to the full geodesics equation at b ≈ 5.2MBH, where the
linear approximation fails to reproduce the shift in the photon sphere projection
away from the Schwarzschild solution, shown in blue. We will not worry about
this spurious effect for the moment (as it concerns only few data points) and
postpone a more thorough discussion of it to Sec. 5.5.1.

Let us also briefly comment about the features of the resulting image. In the
lower panel of Fig. 5.1, we show the relative difference between the images of the
upper panel of Fig. 5.1. Since the injected metric deformation [Eq. (5.22)] has
a local minimum around r ≈ 7MBH, one could naively expect that the absolute
value of the relative difference should also have a local maximum there. However,
a more involved structure is evident. The appearance of a hill and a trough
in the intensity is mostly due to the derivatives of the metric deviation from
Schwarzschild becoming larger and dominant at the location of the bump – indeed,
this pattern resembles the shape of the derivative of a Gaussian function.

In Fig. 5.3, in blue, we show the 2σ reconstruction contours for the devi-
ation of the metric from Schwarzschild. As before, we observe generally good
agreement with the injection (gray dashed lines) for the Nth = 1 PCA criterion.
The reconstructed bump is clearly distinguishable from the power law compo-
nent. The narrower error bands near the photon sphere at r ≈ 3MBH indicate
greater sensitivity of the method to features in that region. As in the previous
example, the goodness of the reconstruction deteriorates near the BH horizon
(r ≈ 2MBH) presumably due to the effect of gravitational redshift. Finally, we
observe a slight oscillatory behavior around r ≈ 11MBH. This happens because
many of the eigenvectors (and consequently the eigenfunctions) of the Fisher ma-
trix present oscillatory features. By including more components (i.e. lower Nth

or smaller measurement error), these oscillatory components interfere and cancel
out to give a better overall reconstruction.

5.4.3 Reconstructing astrophysics and geometry

Finally, we will now present the most interesting results of our framework. These
correspond to cases in which both the spacetime and accretion flow are recon-
structed at the same time –i.e. all of the parameters α are allowed to vary. Since
both aspects play an important role in the details of BH images, one might ar-
gue that it is not possible to constrain deviations in the metric when the exact
details of the astrophysical model are not known –see for example Gralla [266].
In this section, we will show that if our “theoretical priors" are strong enough, it
is in principle possible to disentangle the two types of contributions. Such strong
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priors can be achieved by sufficient understanding of the underlying astrophysics
and by reasonable constraints on the long distance behavior of the metric.

For this example, the injection and reference functions are the same as in
Sec. 5.4.2. In this case, as expected, we find that there are degeneracies between
the metric and the emissivity, when one considers a Gaussian basis for both func-
tions. Indeed, one generically obtains degenerate reconstructions – i.e. profiles
for the metric and emissivity that reproduce the data but do not correspond to
the injection. Since these are “failed” reconstructions, we do not present them
here.

In order to tighten our priors and mitigate this degeneracy, we assume that the
radial distribution of the emissivity is well described by a power law (as in RIAF
models), and thus allow only the amplitude and exponent to vary. Moreover, we
linearize the emissivity in the deviation of the exponent away from the default
reference value [which is set as in Eq. (5.22) for this example], so as to reduce to
Eq. (5.7). We take the metric basis and priors to be the same as in the previous
example, and perform the reconstruction with a PCA criterion Nth = 1 as before.

In Fig. 5.2, we show the 2σ reconstruction contours of the emissivity in orange.
Because of the tight “theoretical priors” that we assumed on the functional form
of the the emissivity, the reconstruction is much better than the “agnostic” one.
However, upon closer inspection, as can be seen from the inset, a slight bias is no-
ticeable in the reconstruction. Part of it is due to the missing information weeded
out by the PCA criterion. We have verified this by comparing reconstructions
with different values of Nth.

In Fig. 5.3, one can observe that the reconstruction of the metric deviation (in
orange) recovers the injection as in the previous example. It also exhibits the nar-
rower contour bands near r ≈ 3MBH, and the slightly inaccurate reconstruction
near the BH horizon at r ≈ 2MBH, like before.

This example illustrates that a good, but not necessarily complete, under-
standing of the astrophysics may be sufficient to extract possible deviations from
GR from the BH image. Although constraining the emissivity to follow a par-
ticular parametrization – here a power law – may seem rather restrictive, this is
not necessarily the only way to mitigate the degeneracy. Alternative possibilities
may include judiciously prescribing the priors of the astrophysical parameters –in
the spirit of the metric prior of Eq. (5.20)–, or reducing the number of parame-
ters in the metric by employing a particular ansatz – e.g. the Rezzolla-Zhidenko
parametrization [138]. This second possibility, however, comes at the cost of be-
ing less general, however. We leave these possibilities to future extensions of this
work.
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Figure 5.2: Reconstruction of the emissivity. Individual reconstruction of the emis-
sivity when the metric is fixed (blue), and joint reconstruction (orange) when it is
constrained to be a power law, corresponding respectively to the examples of Sec. 5.4.1
and 5.4.3. The scale j∗ is used to normalize the emissivity and its units are given in the
main text.

Figure 5.3: Reconstruction of the metric deviation. Individual reconstruction of the
metric deviation from Schwarzschild, δgtt(r) = gtt(r) − g

(0)
tt (r), when the emissivity is

fixed (blue) and joint reconstruction (orange), corresponding respectively to the exam-
ples of Sec. 5.4.1 and 5.4.3.
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5.5 Discussion

In this Section, we briefly comment about the relation between our framework and
other existing approaches (Sec. 5.5.1). Some limitations and possible extensions
of this work are discussed in Sec. 5.5.2. Finally, possible connections to the inverse
problem in gravitational wave astronomy are mentioned in Sec. 5.5.3.

5.5.1 Comparison to other approaches

Many previous works on modified gravity constraints using the EHT measure-
ments utilize only the size of the critical curve corresponding to the projection
at infinity of the photon sphere [142, 250–262]. This is justified, because it has
been argued that the size of the bright ring is a robust feature in the BH im-
age [11, 263, 267]. However, whether the approach is to constrain the charges
and coupling constants of particular solutions in modified theories of gravity (e.g.
“exotic” Reissner–Nordström solutions [294, 295]), or to constrain the parameters
in phenomenological parametrizations of the metric (e.g. the Rezzolla-Zhidenko
parametrization [138]), the bounds that are obtained are generically degenerate
and loose when many parameters are at play [144]. This is not surprising since
the shadow size amounts to the measurement of a single number. Indeed, if our
PCA framework is applied to the shadow size alone (see Appendix D.1), the only
combination of parameters that can be constrained [c.f. Eq. (11) of Ref. [144]] is

M∑
i=1

αiδg
(i)
tt (3MBH) . (5.23)

In this Chapter, we have on the one hand exploited the whole intensity pro-
file of the EHT BH image (although in a toy model and with mock data). On
the other hand, to allow for generic deviations away from GR BHs, we have
parametrized the metric in terms of a completely general superposition of basis
functions. We have then performed a PCA analysis to obtain a smooth metric
reconstruction, filtering out the components that cannot be significantly con-
strained. This technique has been applied before to describe the shape of the
shadow of spinning BHs in non-Kerr metrics in Ref. [262]. However, unlike in
previous applications, here it is used to reconstruct the spacetime geometry and
the disk’s emissivity using the whole intensity profile of the BH image.

5.5.2 Limitations and possible extensions

Although astrophysical BHs are believed to be simple (i.e. describable only by
their mass and angular momentum [43, 44, 249, 296]), the modelling of their en-
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vironments is fairly complex. In this Chapter, we have made a large number of
simplifications (no spin, static and spherical accretion flow, etc.). Nevertheless,
the inclusion of many of these environmental aspects is conceptually straightfor-
ward, although it would lead to computationally more intensive analyses.

We have made further simplifications regarding the observational data. In
particular, we have assumed that the intensity profile is measured directly and
that the associated errors are Gaussian and uncorrelated. The inclusion of visi-
bilities – the observables that the EHT actually measures and which correspond
to the Fourier transform coefficients of the image – is also possible in future ex-
tensions of the work presented in this Chapter. However, one would have to
deal with additional errors due to the incomplete observational coverage of the
visibility parameter space – see e.g. Fig. 2 of Ref. [264].

Regarding the actual calculation of the BH image, we have linearized the
radiative transfer and geodesic equations [Eqs. (5.5) and (5.3)]. This step was
essential in order to make the likelihood a Gaussian function and to allow us to
apply the PCA technique (which relies on the Fisher matrix being constant). For
the case of the metric, this is justified by the expectation that deviations from the
GR solution are small. Similarly, the linearization is reasonable for the accretion
parameters, provided that one has good prior knowledge of the astrophysical
model.

Even in this case, however, some non-perturbative effects may be important.
In particular, the linearization does not capture the shift in the position of the
photon sphere or the BH horizon. Future work in this direction may include
integration of the full non-linear equations and reconstruction with Markov Chain
Monte Carlo (MCMC) techniques, along the line of Refs. [277, 297].

Finally, we also recall that we have considered a metric ansatz [Eq. (5.1)]
satisfying gtt(r) grr(r) = −1. It is well known that this condition does not hold
in general [298]. Moreover, it is expected that BHs have spin – e.g. to power
the jet seen in M87∗ [11, 282]. Therefore, a more rigorous analysis should nec-
essarily include more than one independent metric function, leading to further
degeneracy between them. A first step in this direction would be to consider
the slowly rotating case, by assuming a fixed form of the mixed terms in the
metric, i.e. gtϕ(r) = gϕt(r) = −M2

BHa/r, and linearizing Eqs. (5.3) and (5.5) in
the dimensionless spin parameter a. In this case (even if the accretion flow is
spherical) the radial symmetry of the BH image is broken and we expect that the
angle of observation will become important in our ability to extract a with our
PCA approach. In the most general case, once rotation and realistic accretion are
considered, we expect that a good modelling of the astrophysical component, as
well as appropriate priors that reflect our knowledge in the weak gravity regime,
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will continue to be key in allowing to extract possible deviations of the spacetime
geometry. Moreover, although more information in the BH image could poten-
tially be extracted, additional strategies may be needed handle degeneracy in the
parameter space. We leave this more challenging setup for future work.

5.5.3 Possible connections to gravitational waves

It is well known in the literature that BH quasi-normal modes in the eikonal
approximation are closely related to the impact parameter of the BH shadow
[299, 300]. An interesting question is therefore whether there is a gravitational
wave analog to the BH image. Unlike the image, which depends strongly on the
surrounding matter, gravitational waves couple only very weakly to the environ-
ment, which would allow for a much cleaner test of BH geometries.

One possibility would be to use the full, infinite set of BH quasi-normal modes
[301–303]. However, the eikonal approximation only probes the spacetime near
the maximum of the potential. Moreover, in general one cannot expect that the
inverse spectrum problem is uniquely solvable, e.g., in GR axial and polar pertur-
bations are isospectral, but the underlying Regge-Wheeler and Zerilli potentials
are not the same (and other isospectral, and thus equivalent, potentials can be
built with suitable transformations [304, 305]). While degeneracies remain, how-
ever, it is possible to put some constraints on the BH metric or the potential for
quasi-normal modes, given a finite set of quasi-normal mode measurements (see
e.g. [145, 306]).

Closely related to the quasi-normal mode spectrum are the transmission and
reflection coefficients, which describe the frequency dependent wave propagation
in the spacetime. These coefficients are computed over the whole exterior BH
spacetime. In the Wentzel–Kramers–Brillouin (WKB) approximation [307] this
can be done via integral equations, which one can attempt to invert to constrain
the properties of the potentials [308–310]. This can also be connected to Hawking
radiation [171]. Like for the quasi-normal modes, however, the problem is not
uniquely invertible.

5.6 Final comments

In this Chapter, we have demonstrated that BH spacetimes and simple accretion
models can be constrained at the same time from BH images. The general inverse
problem of BH imaging involves the reconstruction of the astrophysical properties
of the accretion disk, as well as possible deviations of the spacetime geometry from
GR. Our analysis is a proof of principle, because it is only valid (strictly speaking)
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for spherically symmetric spacetimes and it makes considerable simplifications for
the accretion model and for the mock data. It is clear that realistic modelling
of astrophysical processes, as well as of the EHT data analysis pipeline, exceed
what can be described by our simple current framework. However, the detailed
study of a simplified toy models is still of great value and interest, since it allows
one to understand the fundamental aspects of the problem. This is also well
demonstrated by the ongoing discussion about the interpretation of the bright
emission ring observed by the EHT collaboration, and namely about whether
that can be robustly identified with the impact parameter of the photon orbit,
and thus be used to test the Kerr hypothesis [144, 263, 266–268].

In summary, our framework addresses the fundamental question of whether
astrophysical uncertainties and degeneracies jeopardize tests of the Kerr hypoth-
esis with EHT BH images. By deriving a linear model that describes the BH
geometry in terms of a general superposition of basis functions (Gaussians and
power laws), we have demonstrated that a PCA technique allows for reconstruct-
ing the spacetime geometry and the accretion model simultaneously, provided
that sufficient theoretical priors are available on the latter.
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Part IV

Black holes in the ultraviolet
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Chapter 6

Black holes in ultraviolet-complete
Hořava gravity

As we have hinted in Sec. 1.3, Hořava gravity is a proposal for completing general
relativity in the ultraviolet by interactions that violate Lorentz invariance at very
high energies. In this Chapter, we focus on (2+1)-dimensional projectable Hořava
gravity, a theory which is renormalizable and perturbatively ultraviolet-complete,
enjoying an asymptotically free ultraviolet fixed point. Adding a small cosmo-
logical constant to regulate the long distance behavior of the metric, we search
for all circularly symmetric stationary vacuum solutions with vanishing angular
momentum and approaching the de Sitter metric with a possible angle deficit
at infinity. We find a two-parameter family of such geometries. Apart from the
cosmological de Sitter horizon, these solutions generally contain another Killing
horizon and should therefore be interpreted as black holes from the viewpoint of
the low-energy theory. Contrary to naive expectations, their central singularity is
not resolved by the higher derivative terms present in the action. It is unknown
at present if these solutions form as a result of gravitational collapse. The only
solution regular everywhere is just the de Sitter metric devoid of any black hole
horizon. Throughout this Chapter, we use units in which ℏ = c = 1, and metric
signature −++.

6.1 Motivation and outline

Despite huge efforts in the last few decades, the formulation of a quantum theory
of gravitation remains elusive. In particular, there lingers the open question of
how to put together a theory that reproduces the well-known and tested infrared
(IR) behavior of GR at the scales of the solar system and cosmology, while having
a consistent ultraviolet (UV) limit. While to describe many low-energy systems
it is often enough to consider GR as an EFT, as we have described in Sec. 1.4.2,
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where the low-energy Lagrangian is complemented with an infinite series of higher
dimensional operators encoding the effect of UV physics, there are situations in
which a full description (valid for all ranges of energies) is needed.

The most prominent of such situations is provided by the existence of sin-
gularities within GR. The latter are regions of divergent spacetime curvature,
where strong quantum gravitational effects cannot be neglected. The most wor-
risome singularities are cosmological and those occurring in the interior of BHs.
In this Chapter, we focus on the latter. Although there are reasons to believe
that BH singularities may always be hidden behind a horizon [217], thus remain-
ing inaccessible to exterior observers, they are nevertheless the endpoint of any
world-line crossing the event horizon of a BH. Any observer falling into the BH
will unavoidably hit the singularity, thus quitting the range of validity of any
EFT of gravity. Resolving the dynamics of the spacetime in the high-curvature
region near singularities will therefore require a theory of quantum gravity.

At present, we still do not have such a theory at our disposal. A possible
candidate, which has attracted much interest in recent years, is quadratic grav-
ity [311, 312], where the Einstein-Hilbert Lagrangian is complemented by adding
terms quadratic in the Riemann tensor, which make it renormalizable [313–315].
However, this theory contains a ghost in the spectrum, as a consequence of the
presence of four time derivatives in the action, leading to violation of unitarity or
catastrophic instabilities at high energies. Moreover, BH solutions in quadratic
gravity – such as the Schwarzschild metric, which is still a solution of the field
equations [316, 317]– are not free of singularities. Therefore, resolution of curva-
ture singularities within quadratic gravity would require a separate mechanism,
unrelated to renormalizability.

A compelling workaround to the ghost problem was proposed in 2009 by Petr
Hořava [14]. If the spacetime is endowed with a preferred time foliation, then
one can construct a theory that has only higher order spatial derivatives thus
avoiding the presence of a ghost. By including in the action all marginal and
relevant operators under an anisotropic (Lifshitz) scaling1

t→ bd t, xi → b xi, (6.1)

where b is constant and d is the number of spatial dimensions, one can make the
theory power-counting renormalizable.

The presence of a time foliation, and thus that of a privileged time direc-
tion, make it natural to formulate the theory by using the Arnowitt-Deser-Misner

1Latin indices run over space dimensions only (i = 1, ..., d), while Greek indices include
time.
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(ADM) decomposition of the metric [127]

ds2 = −N2dt2 + γij(dx
i +N idt)(dxj +N jdt), (6.2)

where N and N i are respectively the lapse function and shift vector, and γij

is the metric of the spatial hypersurfaces. The presence of a preferred foliation
also breaks the full diffeomorphism invariance of GR. The gauge group of the
theory reduces to foliation preserving diffeomorphisms (FDiff), i.e. it consists
of the direct product of time-dependent spatial diffeomorphisms and time re-
parametrizations

t→ t̃(t), xi → x̃i(t, x), (6.3)

where t̃(t) is a monotonic function.
Locally, the presence of the preferred foliation breaks Lorentz invariance by

allowing for dispersion relations with higher powers of the spatial momentum, i.e.
ω2 = c21k

2+c22k
4+...+c22dk

2d, with constant coefficients cI . Lorentz invariance may
only be recovered as an accidental symmetry in the IR, when higher derivatives
are neglected and if the low-energy velocities c1 flow to the same value for all
particle species.

The splitting of FDiff into two distinct symmetries allows for formulating two
versions of the theory, depending on how one deals with time re-parametrization
invariance. In the projectable theory, one assumes that the lapse is independent
of the spatial coordinates, i.e. a function N(t) of time only. In that case, one
can set its value to a constant, which can be chosen to be unity for convenience
[N(t) = 1], gauge fixing time re-parametrization invariance away.

After Hořava’s seminal paper, there was a surge of activity in understanding
the consequences of the theory, and its soundness as a proposal for quantum
gravity. Soon, it was realized that the extra propagating scalar mode of the
theory – present alongside the transverse-traceless graviton – was problematic.
Although stable at high energies, in all dimensions higher than d = 2 it behaves as
a tachyon in the IR, signaling that flat space is not a stable vacuum of the theory
[128]. This can be solved by abandoning projectability and allowing the lapse
N(t, xi) to be a function of all spacetime coordinates. This choice gives rise to a
version of the theory known as non-projectable Hořava gravity. In this case, new
terms are allowed in the Lagrangian, preventing the instability in the IR [125].
However, it comes at the cost of reintroducing time re-parametrization invariance
as a full-fledged gauge symmetry. This causes the presence of an instantaneous
propagating mode [128, 132] and complicates quantization of the model [318],
although efforts to pursue this endeavor have not been spared [319–322].
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On the other hand, the projectable model has been proven to be fully renor-
malizable in any spacetime dimension [124], preserving gauge invariance to all
orders in the loop expansion [315]. Moreover, in 2 + 1 dimensions it has been
shown to be UV-complete [323], while propagating a stable non-trivial degree of
freedom, thus representing a bona fide theory of quantum gravity in this dimen-
sionality. There are also some hints that UV-completeness could hold in 3 + 1

dimensions [324], although a proof is not yet available.
The existence of BHs has been extensively studied in the IR limit of non-

projectable Hořava gravity, where the theory can be shown to be related to
Einstein-Aether theory [134, 325, 326]. IR BH solutions have a structure sim-
ilar to those of GR BHs, with a Killing horizon hiding a central singularity where
every in-falling world-line ends [132, 327–330]. Additionally, they also possess a
“universal horizon” [132, 327], i.e. a compact hypersurface of constant preferred
time that surrounds the central singularity and from which no modes (even in-
stantaneous ones) can escape. Its behavior mimics that of an event horizon in
GR [331–333]. However, as mentioned, these are low-energy solutions, obtained
by disregarding the higher derivative terms that should be important when an
observer gets close to the singularity. A complete understanding of the interior
of BHs and of the fate of the universal horizon would require to consider the
full Lagrangian of the theory, carefully studying the effect of the UV-completing
terms.

In this Chapter, we tie together all these issues, and study the effect of renor-
malizability on the resolution of curvature singularities in a controllable play-
ground, that of projectable Hořava gravity in 2 + 1 spacetime dimensions. As
previously mentioned, this is a perturbative UV-complete theory, meaning that
it completely describes gravity, at any energy.2 The Lagrangian functional form
of the theory should be valid up to arbitrary high energies – albeit with varying
values for the coupling constants, as predicted by the renormalization group flow.
If the solution to BH singularities is linked to the renormalizable character of the
theory, without the need for any additional mechanism, it must then be contained
within the dynamics dictated by the action. In other words, we use this model
to address the following question: does a UV-complete gravity theory resolve BH
singularities?

In this Chapter, we make the first steps in this direction and analyze all circu-
larly symmetric vacuum solutions of the theory with vanishing angular momen-
tum. Recall that GR in (2+1) dimensions does not have any BH solutions with
flat or de Sitter asymptotics.3 By contrast, we find that projectable Hořava grav-

2Up to, perhaps, presently unknown non-perturbative obstructions.
3BHs with anti-de Sitter (AdS) asymptotics do exist in the presence of a negative cosmo-

logical constant [334]. We do not consider this case in the context of projectable Hořava gravity
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ity admits solutions that can be legitimately called BHs. We start by considering
the low-energy limit of the theory and solve the equations of motion analytically
when higher derivatives are neglected. The solutions present a Killing horizon
and a curvature singularity at the origin of the coordinates. They therefore phys-
ically represent BHs, and one can use them as asymptotic solutions far from the
center, where the curvature is small and neglecting higher-derivatives is a good
approximation.

We will then attempt to extend our solutions numerically to the higher cur-
vature region of the spacetime, including all the terms in the Lagrangian. By
numerical investigation and analytic arguments, we show that there exist no vac-
uum solutions that are free of central curvature singularities and which reduce
far from the center to the BH solutions found in the IR limit of the theory. In
other words, we show that the higher-order derivatives, although they make the
theory UV-complete and renormalizable, do not resolve the central singularity,
at least classically. We will comment on the implications of this finding.

This Chapter is organized as follows. In Sec. 6.2 we review projectable Hořava
gravity. In Sec. 6.3, we introduce our circularly symmetric and stationary ansatz,
which we use to obtain BH solutions in the IR limit of the theory in Sec. 6.4. The
embedding of these BH solutions into the full UV theory is discussed in Sec. 6.5,
where we argue that such UV BH solutions necessarily present a curvature sin-
gularity at the center. This is further substantiated in Sec. 6.6 by utilizing a
boundary-layer expansion. We discuss our findings and the mass of our BH solu-
tions in Sec. 6.7.

6.2 Projectable Hořava gravity

We formulate Hořava gravity in terms of the ADM variables in Eq. (6.2). Under
FDiff transformations the components of the metric behave as

N → N
dt

dt′
,

N i →
(
N j ∂x

′i

∂xj
− ∂x′i

∂t

)
dt

dt′
,

γij → γkl
∂xk

∂x′i
∂xl

∂x′j
. (6.4)

Their anisotropic scaling dimension under Eq. (6.1) is

[N ] = [γij] = 0, [N i] = d− 1. (6.5)

as the constant-lapse condition forces the AdS metric to be time dependent.
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The requirement of FDiff invariance, time-reversal invariance, parity, power-
counting renormalizability under Eq. (6.1) and absence of ghosts fixes the action
to be

S =
1

κ

∫
dt ddx

√
γ N

(
KijK

ij − λK2 − V
)
, (6.6)

where κ = 16πG (notice that this convention is different that in Parts I-III) and
λ are dimensionless coupling constants in the sense of Eq. (6.1) (i.e. they are
invariant under that rescaling), and V contains all possible marginal and rele-
vant operators with respect to the anisotropic scaling. Here, Kij is the extrinsic
curvature of the slices,

Kij =
1

2N
(∂tγij −∇iNj −∇jNi) , (6.7)

with ∇i the covariant derivative compatible with γij.
Hereinafter we will focus on the projectable model, thus from now on we will

assume that N(t) is independent of the spatial coordinates. We can therefore
set it to N(t) = 1 by exploiting time reparametrization invariance, leaving time-
dependent spatial diffeomorphisms as the only remaining gauge symmetry.4 The
potential V will thus be built exclusively out of FDiff invariants, constructed
with the spatial metric and covariant derivatives. Its form in d = 2 is

V = 2Λ + µR2 , (6.8)

where R is the scalar curvature constructed from Rijkl, the Riemann tensor of the
spatial slices. Note that we are omitting a linear term in R, since it corresponds
to the Gauss-Bonnet density in d = 2, thus being a total derivative. Here Λ is
the cosmological constant which will serve as a regulator for the long-distance
behavior of the BH solutions. The total action that we consider then takes the
form

S =
1

κ

∫
dt d2x

√
γ

(
KijK

ij − λK2 − µR2 − 2Λ
)
. (6.9)

Although in 2+1 dimensions GR propagates no local degrees of freedom, this
is not the case for Hořava gravity. Due to the reduced symmetry group, there is
an extra scalar degree of freedom in the spectrum of the theory, with dispersion
relation

ω2 = 4µ
1− λ

1− 2λ
k4 (6.10)

4This implies disregarding the global Hamiltonian constraint δS/δN = 0.
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around flat-space. Note the absence of k2 term, as a consequence of the triviality
of the piece linear in R in the Lagrangian. Unitarity and stability then require
µ > 0 and either λ < 1

2
or λ > 1. We will consider the latter case throughout

this Chapter, for reasons that will become clear in a moment.
When regarded as a quantum field theory, the action (6.9) corresponds to a

renormalizable theory. Within perturbation theory, all UV divergences can be
absorbed by a corresponding redefinition of the coupling constants. Correlation
functions of observables are then essentially the same as their classical values,
with κ, λ and µ replaced by κ(k∗), λ(k∗), µ(k∗), where k∗ is a parameter that sets
the interaction scale. The running of the couplings was computed in the one-loop
approximation in Ref. [323] and reads

dλ

d log k∗
=

15− 14λ

128π

√
1− 2λ

1− λ
κ̃ (6.11a)

dκ̃

d log k∗
= −(16− 33λ+ 18λ2)

128π(1− λ)2

√
1− λ

1− 2λ
κ̃2, (6.11b)

where we have defined κ̃ = κ√
µ
. It can be shown that the flows of κ and µ are

separately gauge dependent. However, those of κ̃ and λ are independent of the
choice of gauge. This signals that only these parameters appear in correlation
functions of gauge-invariant observables, and in physical observables of the theory.

The fact that the theory is stable against radiative corrections suggests a
justification for attempting a classical treatment down to arbitrarily short scales.
Indeed, the magnitude of quantum fluctuations can be estimated from the action
(6.9) as follows. Setting that for fluctuations the action is of order unity, δS ∼ 1,
and assuming a regular geometry, we obtain

(δKij)
2 ∼ κ

τl2
, (δR)2 ∼ κ

µτl2
, (6.12)

where τ and l are the characteristic time and length scales of the perturbations.
The fluctuations of the extrinsic and intrinsic curvatures are related to the metric
fluctuations as δKij ∼ τ−1δγij, δR ∼ l−2δγij. Substituting into (6.12) and taking
the product to get rid of τ and l, we obtain

δγij ∼
√
κ̃ , (6.13)

which remains small at all scales, as long as κ̃ is small.
Note that the set of β-functions (6.11) contains a fixed point of the renormal-

ization group flow in the region λ > 1 for the values

λ• =
15

14
, κ̃• = 0. (6.14)
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This shows that the theory enjoys asymptotic freedom at high energies, thus
representing a perturbatively UV-complete quantum field theory. A second fixed
point appears at λ = 1/2. However, in the vicinity of that point the expansion
parameter is κ̃(1 − 2λ)−

1
2 and it remains arbitrary at one loop. Thus, it cannot

be said whether this fixed point persists or not unless a two-loop computation is
performed. We will therefore focus on the first fixed point.

After fixing the lapse to N(t) = 1 by using the projectability condition, the
dynamical variables left in the theory are the shift N i and the spatial metric γij.
Varying the action with respect to them, we get the following equations of motion

Pi ≡ ∇jKij − λ∇iK = 0, (6.15a)

Gij ≡ −Dt

(
Kij − λγijK

)
− (1− 2λ)KKij − 2KikKj

k

+
1

2
KklKklγ

ij +
λ

2
K2γij +

µ

2
R2γij + 2µ∆Rγij

− 2µ∇i∇jR− Λγij = 0 , (6.15b)

where we have used that Rij = Rγij/2 in two dimensions. Here the covariant
time derivative is defined as

Dt = ∂t − LN⃗ , (6.16)

where LN⃗ is the Lie derivative along the shift vector, so that for a two-index
tensor we have,

DtA
ij = ∂tA

ij −Nk∇kA
ij + Aik∇kN

j + Ajk∇kN
i . (6.17)

On top of this and like in any gauge theory, local invariance under spatial time-
dependent diffeomorphisms (6.4) imposes a “Bianchi” identity [327, 330, 335]

∇jGji + γijDtPj +KP i = 0 . (6.18)

We assume the cosmological constant to be small compared to the UV scale
set by µ−1, Λµ ≪ 1. It is needed to regulate the long-distance behavior of the
solutions. This is a peculiarity of (2+1) dimensions, where the gravitational field
of a localized source does not vanish at infinity even in GR, persisting as a global
angle deficit. We find that the problem gets aggravated in Hořava gravity, where
in the limit Λ → 0 the conical deficit grows indefinitely at large radii, despite the
fact that all curvature invariants tend to zero. Introduction of non-vanishing Λ

turns this into a well-behaved de Sitter asymptotics with a finite angle deficit.
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6.3 Circularly symmetric spacetimes

In the following, we will write the equations of motion for a general non-rotating
circularly symmetric and stationary ansatz. We use polar coordinates (r, θ) for
the spatial slices and write the ADM metric in the preferred foliation as

ds2 = (−1 +NiN
i)dt2 + 2Nidx

idt+ γijdx
idxj , (6.19)

where we have already fixed N(t) = 1.
Stationarity of the solution imposes ∂tN i = ∂tγij = 0, while the requirement

of circular symmetry enforces N θ = 0. Finally, any two-dimensional metric is
conformally flat, implying that γij can only depend on a single function G(r).
We thus adopt, without loss of generality, the ansatz

ds22 = dr2 + r2G(r)2dθ2 (6.20)

for the two-dimensional spatial metric.
Putting all this together and defining N r = F (r), our ansatz for the full metric

finally takes the form

ds2 = (−1 + F (r)2)dt2 + 2F (r)dtdr + dr2 + r2G(r)2dθ2. (6.21)

This chart of coordinates is reminiscent of the well-known Gullstrand-Painlevé
coordinates (see e.g. Ref. [336]) in standard solutions – e.g. the Schwarzschild
metric and the Banados, Zanelli and Teitelboim (BTZ) BHs [334].

We now insert this ansatz into the equations of motion (6.15). From Pr and
Gθθ we obtain differential equations that are second order in derivatives for F (r),
and fourth order for G(r). Since the precise form of the equations is cumbersome
and not very illuminating, we relegate them to Appendix E.1. Schematically,
their form is

E1 [F, F
′, F ′′, G,G′, G′′] = 0, (6.22a)

E2

[
F, F ′, F ′′, G,G′, G′′, G(3), G(4)

]
= 0, (6.22b)

where a prime denotes a derivative with respect to the argument of the function.
From now on we will suppress the arguments for clarity whenever needed.

From Grr we can in principle obtain another second order equation for F (r).
However, one can combine it with Eq. (6.22a) to eliminate F ′′(r) and rewrite it
as a constraint

E3

[
F, F ′, G,G′, G′′, G(3)

]
= 0. (6.23)
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Furthermore, using the Bianchi identity (6.18), one can show that

E ′
3 + 2GrF ′E1 +

(
G′

G
+

1

r

)
(E2 − 2E3) = 0. (6.24)

Therefore, we see that the system is not over-determined. The condition (6.24)
implies that once the constraint equation (6.23) is imposed at a point, e.g. at a
boundary r0, then the constraint is propagated throughout r, provided that the
equations of motion (6.22) are satisfied.

Close examination of Eqs. (6.22) and (6.23) reveals that they are invariant
under constant rescalings of G(r) (i.e., if (F,G) is a solution, also (F, kG), with k
a constant rescaling factor, is a solution to the same theory). Thus, we can take
advantage of this and further simplify the equations of motion by defining a new
variable

Γ(r) =
1

r
+
G′(r)

G(r)
, (6.25)

This reduces Eq. (6.22) to a third-order system in Γ(r) of the form

E1 ≡ (λ− 1) (F ′′ + F ′Γ + FΓ′) + FΓ′ + FΓ2 = 0, (6.26a)

E2 ≡ µ
(
−8Γ′′′ − 16ΓΓ′′ − 12 (Γ′)

2
+ 8Γ2Γ′ + 4Γ4

)
+ (λ− 1)

(
2FF ′′ + (F ′)

2
+ 4FF ′Γ + 2F 2Γ′ + F 2Γ2

)
+ 2FF ′′ + 2 (F ′)

2 − 2Λ = 0, (6.26b)

while the constraint (6.23) becomes a second-order equation in Γ(r),

E3 ≡ µ
(
8ΓΓ′′ − 4 (Γ′)

2
+ 8Γ2Γ′ − 4Γ4

)
+ (λ− 1)

(
− (F ′)

2 − 2FF ′Γ− F 2Γ2
)

− 2FF ′Γ + 2Λ = 0. (6.26c)

Henceforth, instead of dealing with the original equations E1 and E2, we can in-
stead solve the system consisting of E1 and E3 (i.e. the system consisting of one
of the evolution equation and the constraint equation), effectively dealing with a
second-order system in both F (r) and Γ(r), and thus requiring only four integra-
tion constants. One can always do this because the Bianchi identity ensures that
the remaining equation E2 will be satisfied by the solution.

In the case of vanishing cosmological constant Λ, we can identify two sym-
metries of the equations of motion (besides the aforementioned invariance under
constant rescalings of G), corresponding to shifts and rescaling of the radial co-
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ordinate. In more detail, the field equations are invariant under

F (r) 7→ bF (b r + a), (6.27a)

Γ(r) 7→ bΓ(b r + a), (6.27b)

with arbitrary constants a and b. This symmetry will play an important role in
the numerical analysis of Sec. 6.5.

6.3.1 Black holes

We will define the concept of a BH from the perspective of an observer in the
IR limit of the theory, in analogy to the general relativistic case. If we were
dealing with GR, then a BH would be characterized by the presence of a trapped
surface for null trajectories [337], i.e. for (massless) particles with dispersion
relation ω = k. The outermost of all trapped surfaces is usually referred to
as the apparent horizon, which in stationary circularly symmetric configurations
coincides with the Killing and event horizons. By analogy, we will assume that
in the IR limit of Hořava gravity, massless particles move with dispersion relation
ω = k +O(k2), and therefore we will borrow the same definition of a BH.

The Killing horizon can be identified by requiring the time-like Killing vector
∂/∂t to have vanishing norm at the position of the horizon. For our metric ansatz,
this leads to the condition

∂

∂t
· ∂
∂t

= gtt = −1 + F 2(r) = 0 . (6.28)

Since our ansatz for the metric is stationary, the Killing horizon coincides with the
apparent horizon – which is defined in turn by the constant r surfaces becoming
null gµν∂µr∂νr = 0 [336] – and with the event horizon.

It is worth noting here an important difference with known BH solutions in
non-projectable Hořava gravity [132, 327]. In that theory, solutions are charac-
terized by the presence of a universal horizon, a compact surface that traps all
signals, regardless of their dispersion relation. Its position can be identified by
requiring the unit-vector orthogonal to the foliation,

Uµ = −Nδtµ, (6.29)

to become orthogonal to the Killing vector ∂t (which is tangent to hypersurfaces
of constant r), i.e.

U · ∂
∂t

= −N = 0. (6.30)
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Because of the condition N(t) = 1, it is impossible for solutions in projectable
Hořava gravity to present universal horizons. Thus, we can expect signals of
arbitrary speed to be able to eventually probe the interior of the BH (as defined
in the IR) and escape from it.

6.4 Black holes in the IR limit

We will now face the issue of obtaining circularly symmetric solutions to the
equations of motion (6.26)–(6.26c). This is not an easy task in general. The non-
linear character of the equations renders the problem hard to tackle analytically.
However, there is a regime in which solutions can be found rather easily, namely
the IR limit of the theory, which one can obtain by setting µ = 0. Solutions
obtained in this way will be valid whenever the spatial curvature of the slices is
low. This corresponds to focusing on the region r ≫ √

µ, where we expect this
to happen and where higher derivative terms can be ignored.

We start by considering the combination (E2 + E3)/2− FE1 of the equations,
which yields

FF ′′ + (F ′)2 − FF ′Γ− F 2Γ′ − F 2Γ2 = 0. (6.31)

Assuming that F (r) is non-vanishing everywhere and introducing a new variable

Y = Γ− F ′

F
, (6.32)

this equation can be cast into the simple form

−Y ′ + 2Y 2 − 3Y Γ = 0. (6.33)

Note that the derivative of Γ has disappeared from the equation.
Let us first consider the solution Y = 0 to this equation, which implies Γ =

F ′/F . Substituting this relation in Eq. (6.26c) (with µ = 0), we find that the
function F is linear,

F = ±r
√

Λ

2λ− 1
. (6.34)

Note that this solution exists for positive Λ only if λ > 1/2, and that it corre-
sponds to a constant radial function

G(r) = G∞. (6.35)

For G∞ = 1, this reduces to the de Sitter metric, which is regular everywhere
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and has a cosmological Killing horizon at

rdS =

√
2λ− 1

Λ
(6.36)

Other choices of G∞ lead to an angle deficit and a conical singularity at the origin.
We now consider the case of non-vanishing solutions to Eq. (6.33), Y ̸= 0. We

assume Y > 0 without loss of generality.5 From Eqs. (6.32) and (6.33), we can
express Γ and F ′/F in terms of Y and its derivative,

Γ = − Y ′

3Y
+

2

3
Y,

F ′

F
= − Y ′

3Y
− Y

3
. (6.37)

The second of these equations can be integrated if we introduce a new function
X(r) such that

X ′ = Y , (6.38)

yielding

F =
C

Y 1/3
e−X/3 , (6.39)

where C is an integration constant. Substituting this and the first relation (6.37)
into Eq. (6.26), we obtain a differential equation involving X and Y ,

0 =− (4λ− 2)(Y ′)2

9Y 2
+

(4λ− 2)Y ′

9
+

(5− λ)Y 2

9

+
2Λ

C2
Y 2/3 e2X/3. (6.40)

Recalling that Y is the derivative of X, we observe that this is a second-order
differential equation for the function X(r). Importantly, this equation does not
contain explicitly the variable r, and thus can be reduced to a first-order equa-
tion if we choose X to be our independent variable, instead of r. We therefore
substitute

Y ′ =
dY

dX
X ′ =

dY

dX
Y (6.41)

and obtain

0 =− 2(2λ− 1)

9

(
dY

dX

)2

+
2(2λ− 1)

9
Y
dY

dX
+

5− λ

9
Y 2

5Positive Y can always be achieved by changing the sign of r, as manifest from the definitions
(6.32) and (6.25).
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+
2Λ

C2
Y 2/3e2X/3. (6.42)

This is further simplified by the definition Y = Ŷ 3/2eX/2, which yields

−(2λ− 1)

(
dŶ

dX

)2

+ Ŷ 2 +
4Λ

C2
= 0. (6.43)

Again, in the case of positive Λ (on which we focus in this Chapter) the solution
exists only if λ > 1/2. Solving for Ŷ and substituting into the expression for Y
we find

Y =

(
± 2

√
Λ

|C| sinh
X −X0√
2λ− 1

)3/2

eX/2 , (6.44)

where X0 is an integration constant, and the signs ± are chosen to have the
expression in brackets positive. The constant X0 can be absorbed in the shift of
X and subsequent rescaling C 7→ CeX0/3, which leave both Y and F invariant.
Therefore we set X0 = 0 henceforward.

The solutions presents two branches corresponding to the plus/minus sign and
positive/negative X. Let us focus on the case X < 0 (we will comment on the
branch with X > 0 at the end of the section). Using Eqs. (6.38), (6.39) and the
first of Eqs. (6.37), we obtain the solution in parametric form

√
Λ r =

B

2

∫ X

−∞

e−X′/2(
sinh −X′√

2λ−1

)3/2
dX ′, (6.45a)

F = ±B e−X/2(
sinh −X√

2λ−1

)1/2
, (6.45b)

rG = G∞B

√
2λ− 1

Λ

eX/2(
sinh −X√

2λ−1

)1/2
, (6.45c)

where we have introduced a new integration constant G∞ and defined

B =

( |C|3
2
√
Λ

)1/2

. (6.46)

The ± in Eq. (6.45b) corresponds to the sign of the original integration con-
stant C, which can be both positive or negative, whereas B is strictly positive.
Note also that B is dimensionless and that the integral in Eq. (6.45a) converges
at the lower end, as long as λ < 5, and diverges as X → 0−, so that r varies from
0 to +∞. This is a relevant range for λ, as it includes the fixed point (6.14), and
we will focus on it in the following.
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Let us study the asymptotics of the solution (6.45). Consider first X → 0−,
corresponding to r → +∞, which yields

√
Λ r ≈ (2λ− 1)3/4

B√
−X , (6.47a)

F ≈ ±(2λ− 1)1/4
B√
−X ≈ ±

√
Λ

2λ− 1
r, (6.47b)

rG ≈ G∞
(2λ− 1)3/4√

Λ

B√
−X ≈ G∞r. (6.47c)

In these expressions we recognize the de Sitter metric [Eqs. (6.34) and (6.35)]
with the deficit angle set by G∞. The integration constant B has dropped out.
Therefore, at sufficiently large radii, the solution given by Eq. (6.45) approaches
the de Sitter geometry.

Second, we consider the other extreme X → −∞, corresponding to r ≪
B/

√
Λ. In this limit, we obtain

√
Λ r ≈ 2

√
2λ− 1

3−
√
2λ− 1

√
2B exp

[(
3

2
√
2λ− 1

− 1

2

)
X

]
, (6.48a)

F ≈ ±
√
2B exp

[(
1

2
√
2λ− 1

− 1

2

)
X

]
= ±F0(

√
Λ r)−σ, (6.48b)

G ≈ G∞B

r

√
2(2λ− 1)

Λ
exp

[(
1

2
√
2λ− 1

+
1

2

)
X

]
= G0(

√
Λ r)2σ, (6.48c)

where

σ =
λ− 2 +

√
2λ− 1

5− λ
> 0 , (6.49)

F0 = (
√
2B)1+σ

(
3−

√
2λ− 1

2
√
2λ− 1

)−σ

, (6.50)

G0 = G∞
√
2λ− 1 (

√
2B)−2σ

(
3−

√
2λ− 1

2
√
2λ− 1

)1+2σ

. (6.51)

Remarkably, these solutions present a second Killing horizon besides the cos-
mological one, located at

rH =
F

1
σ
0√
Λ
. (6.52)

From the point of view of the low-energy theory, this solution then describes a
black (white) hole for positive (negative) F (r). The second horizon is well within
the de Sitter radius (6.36) as long as F0 ≪ 1, which holds if B ≪ 1. Note that
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B ≪ 1 also implies G0 ≫ G∞.
Were these solutions to be trusted in the whole spacetime, extrapolating them

inwards would lead to curvature singularities at the origin, as can be seen in the
different curvature scalars

K = −
(
F0

Λσ/2

)
(1 + σ)

r1+σ
, (6.53)

R = −4σ(1 + 2σ)

r2
, (6.54)

KijK
ij =

(
F 2
0

Λσ

)
(5σ2 + 4σ + 1)

r2+2σ
, (6.55)

as well as in the full three-dimensional spacetime curvature

R(3) = 2σ(1 + 2σ)

[(
F 2
0

Λσ

)
1

r2+2σ
− 2

r2

]
, (6.56)

where we have made use of the Gauss–Codazzi relations.
In light of all this, we refer to these solutions as “IR BHs”. We can think

of them as akin to the Schwarzschild–de Sitter BHs of GR. They are solutions
to the low energy limit of a gravitational theory, and behind a horizon they
include a region (near the center) where the description provided by the low-
energy Lagrangian breaks down, and where one therefore needs to account for
the dynamics of the full theory. In particular, in the case at hand we expect the
effects of the µR2 term to become important at a distance r ∼ √

µ from the center.
This ensures that for any IR solution there is always a value of √µ≪ rH for which
the UV corrections are only important deep inside the geometry. Therefore, they
do not modify the horizon, and the solution still appears as a BH to exterior
observers.

Let us discuss the limit of vanishing cosmological constant Λ → 0. If one
keeps the combinations BΛ− σ

2(1+σ) , G∞Λ− σ2

(1+σ) fixed in this limit, the BH horizon
radius rH remains finite, whereas the de Sitter asymptotics are pushed to infinity.
The solution (6.48b)-(6.48c) is then valid for arbitrary large radii. Note that the
curvature invariants K, KijK

ij, R and R(3) of this solution vanish as r → ∞,
just like the projections of the Riemann tensor on the (normalized) timelike and
spacelike Killing vectors (parallel respectively to ∂t and ∂θ). This implies that the
asymptotic geometry is locally flat, but not globally such, because it presents an
asymptotically increasing negative deficit angle due to the growth of the function
G. This unappealing behavior is due to the peculiarity of the 2-dimensional
spatial geometry, where a change of the circumference of a circle does not affect
the local characteristics of space. We have seen how this long-distance behavior
is regulated by the presence of a positive cosmological constant.
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Finally, we comment on the X > 0 branch of solutions. A similar analysis
shows that it also presents de Sitter asymptotics for X → 0+. However, the
solutions in this branch do not have any additional Killing horizons, besides the
cosmological one. Moreover, the metric function rG diverges at r → 0, a behavior
that appears rather pathological. For these reasons, we are not going to consider
these solutions further in this Chapter.

6.5 Black holes in the UV-complete theory

We now analyze how the inclusion of the higher derivative terms affects the
BH solutions found in the previous section. The higher derivative terms are
important at distances r ∼ √

µ ≪ 1/
√
Λ. Therefore, in this section we neglect

the cosmological constant and use Eqs. (6.48b), (6.48c) as the large-distance form
of the solution. In other words, we will look for solutions of Eqs. (6.26a), (6.26c)
with Λ = 0, which have asymptotics

F (r) = F∞r
−σ, (6.57a)

Γ(r) =
1 + 2σ

r
, (6.57b)

at r → ∞, where F∞ is a constant. To simplify notations, we will from now on
measure distances in units of √µ, which corresponds to formally setting µ = 1 in
the equations.

Based on generic arguments, one may expect a renormalizable UV-complete
theory including higher order spatial derivatives to allow for “resolving” the central
curvature singularity of BHs, which is also present in the aforementioned IR
solutions (see e.g. Ref. [133] for a mention of this possibility). In the following, we
will therefore try to seek BH solutions to the UV-complete theory that implement
this feature.

In principle, the singularity could be resolved in (at least) three possible ways:
(a) the full solution may have a regular center at r = 0; (b) the full solution
may extend all the way down to r = −∞, where it may open up into another
asymptotic region, thus describing a wormhole configuration; (c) the full solution
extends all the way down to r = −∞, with the metric function rG and all
curvature invariants remaining bounded: this would describe the resolution of
the singularity into an infinite throat.

To see if any of these options gets realized, we start by counting the number
of free parameters in the solution of the system (6.26a), (6.26c) once the large-
distance asymptotics (6.57) are fixed. We linearize the functions F , Γ around
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their asymptotics by writing

F (r) = F∞r
−σ

(
1 + f(r)

)
, (6.58a)

Γ(r) =
1 + 2σ

r

(
1 + g(r)

)
, (6.58b)

where we assume f and g to be small at large r. Substituting this into Eqs. (6.26a),
(6.26c) and expanding to linear order in f and g we find a system of two second-
order linear equations, whose general solution reads (see Appendix E.2 for de-
tails),

f = f∞r
−2(1−σ) + C1

σ

r
+ C2 + C3f3(r) + C4f4(r), (6.59a)

g = g∞r
−2(1−σ) + C1

1

r
+ C3g3(r) + C4g4(r) . (6.59b)

Here the coefficients f∞, g∞ are fixed in terms of λ and F∞ and correspond to a
particular solution of the linear system. Notice that consistency of the asymptotic
expansion requires that these solutions decrease at r → ∞, which implies σ < 1.
This requirement is satisfied if λ < 5/2, which includes the interesting fixed point
(6.14).

The coefficients CI in Eqs. (6.59) are arbitrary. The parameters C1, C2 cor-
respond to the symmetry (6.27) of the equations, spontaneously broken by the
asymptotic form (6.58). One easily recognizes in the linearly independent so-
lutions they multiply the results of an infinitesimal shift and rescaling of the
asymptotics (6.58). The two remaining linearly independent solutions (f3, g3)

and (f4, g4) are oscillating and can be found analytically in the limit (λ− 1) ≪ 1

using a version of the WKB expansion [141] (see Appendix E.2). Importantly, the
amplitude of g3 and g4 grows at large r, destroying the desired asymptotic behav-
ior. To satisfy the boundary conditions at infinity, we have to set C3 = C4 = 0.
Thus, we conclude that imposing the large-distance asymptotics (6.58) leaves
only 2 free parameters C1, C2, both corresponding to the exact symmetries of the
equations.

As the next step, we include non-linear corrections to the asymptotic expan-
sion. Motivated by the results of our linearized analysis, we use an ansatz for F
and Γ in the form of a double series in inverse powers of r,

F (r) = F∞r
−σ

[
1 +

∑
n,m

f(n,m)

rn+mσ

]
, (6.60a)

Γ(r) =
1 + 2σ

r

[
1 +

∞∑
n,m

g(n,m)

rn+mσ

]
, (6.60b)
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6.5. Black holes in the UV-complete theory

Figure 6.1: Radial profile of the metric functions and curvature invariants. Metric
functions integrated inwards and the corresponding curvature invariants for F∞ = 1,
f(1,0) = 0 and λ = 15

14 . The qualitative behavior of the solution is the same for other
values of λ.

with n, and m integers such that n + mσ > 0. Plugging this ansatz into the
equations of motion, the latter can be solved perturbatively in powers of r−1, in
terms of only two integration constants F∞ and f(1,0).

We now fix F∞ = 1, f(1,0) = 0 and numerically integrate Eqs. (6.26a), (6.26c)
from large r towards the center. The result is shown in Fig. 6.1. We see that
F and Γ monotonically grow as r decreases and diverge at a finite value of r.
(Note however that the areal radius |rG| goes to zero as F and Γ diverge, i.e. the
area of the singularity vanishes.) The curvature invariants also diverge at that
point, indicating that the BH singularity persists even after the inclusion of the
higher derivative terms. Notice that varying F∞ and f(1,0) will not change this
result, aside from rescalings/shifts of the solutions. As discussed above, these
parameters correspond to exact symmetries that cannot turn a singular behavior
into a regular one.

However, it is still premature at this point to claim the absence of a regular
solution with certainty because of the following caveat in the above argument.
It is logically possible that the divergence observed in the numerical solution is
due to a spurious admixture (produced by numerical errors) of modes that are
regular throughout the spacetime and modes that are instead singular. Thus, we
need to further scrutinize our numerical procedure to ensure its stability.

Let us focus on the possibility that the BH might have a regular center (option
(a) above). We thus impose regularity by assuming that F (r) and G(r) are
analytic near r = 0, with respectively only odd and even powers of r [205]6.

6This is needed to ensure that the metric (6.21) is C∞ at the center when expressed in
Cartesian coordinates, but is also automatically implied by the field equations themselves.

108



6.5. Black holes in the UV-complete theory

Absence of an angle deficit at r = 0 would also require G = 1 there, but that
condition can be imposed without loss of generality because the field equations
are homogeneous in G, [i.e., as already mentioned, if (F,G) is a solution, also
(F, kG), with k a constant rescaling factor, is a solution to the same theory].
This ansatz implies, for F and Γ, the functional form

F (r) =
∞∑
n=0

F2n+1r
2n+1, (6.61a)

Γ (r) =
1

r
+

∞∑
n=0

Γ2n+1r
2n+1. (6.61b)

Replacing this ansatz in the field equations (6.26) and (6.26c) we find that the
coefficients F2n+1 and Γ2n+1 are all given in terms of two integration constants, F1

and Γ1. We have checked that the resulting perturbative solution leads to regular
curvature invariants KijK

ij, K, R and R(3) at the origin. Note that because
we have fixed the center to be at r = 0, in the numerical investigation below
we will not be allowed to use the shift symmetry [parameter a in Eqs. (6.27a)–
(6.27b)], whereas we will exploit the rescaling symmetry [parametrized by b in
Eqs. (6.27a)–(6.27b)].

The strategy is to use the perturbative solution (6.61), valid near the center,
to provide initial data for F and Γ at some small radius r ≪ 1, and integrate
numerically outwards (once the integration constants F1, Γ1 have been chosen).
Similarly, one can use the IR solution (6.60) (fixing the integration constants
F∞, f(1,0)) to provide initial data at a finite radius r ≫ 1 for a numerical integra-
tion inwards. One then matches the two solutions smoothly at some fixed radius
rm ∼ 1, where both solutions are regular, by imposing

∆F |rm = ∆F ′|rm = ∆Γ|rm = ∆Γ′|rm = 0, (6.62)

where

∆X|rm = Xout(rm)−Xin(rm) (6.63)

refers to the difference between the values of the function X(r) when approaching
the matching point rm from the two directions. Equivalently, one can think of
this problem as that of finding the root(s) of the system

F (p) = 0, (6.64)

where p =
(
F1,Γ1, F∞, f(1,0)

)
and the components of F are the jumps shown in

(6.62).
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6.6. A perturbative expansion in (λ− 1)

As mentioned earlier, the symmetry under rescaling of coordinates can still
be used to eliminate one of the four integration constants [F∞, f(1,0) for the outer
solution and F1,Γ1 for the inner one]. We choose for instance to set F1 = 1.
The system we have to solve is then overdetermined: we have four junction
conditions (6.62) for three parameters. Thus, one does not expect existence
of a regular solution on general grounds. To verify this, we consider three of
the junction conditions given by Eq. (6.62), and we solve them (with a Newton-
Raphson method) in our three variables Γ1, F∞ and f(1,0). We then check whether
the fourth junction condition is satisfied (to within numerical errors) and it is not.
We have checked that this result is stable against the choice of the initial guess
of the Newton-Raphson algorithm.

Based on this overwhelming evidence, we can therefore conclude that there
exist no regular solutions approaching at large radii the IR BHs that we identified
previously, even if we allow for a conical defect at the center. This result excludes
option (a) outlined in the beginning of the section.

Let us now consider option (b). In that case, the metric function rG(r) must
diverge at both r = ±∞, remaining finite and non-vanishing in between. This
implies that its logarithmic derivative Γ(r) must change sign at finite r = r∗.
However, this is impossible due to Eq. (6.26c). If Γ(r∗) = 0, the left-hand side of
this equation becomes a sum of strictly negative terms, implying that also F ′(r∗)

and Γ′(r∗) must vanish. The latter means that Γ(r) does not actually cross zero,
and we arrive at a contradiction7.

Option (c) still remains a logical possibility. We have not attempted to rule
out robustly for generic values of λ, as we did with option (a). However, given
our experience in the structure of solutions to Eqs. (6.26a), (6.26c), we believe it
is unlikely. This is corroborated by the analysis in the limit (λ−1) ≪ 1 presented
in the next section.

6.6 A perturbative expansion in (λ− 1)

Let us now give an additional analytic argument showing that no regular UV
extension to our IR BH solutions exists. The interesting UV fixed point of the
renormalization group flow (6.14) is close to λ = 1 and, at least along some of the
flow lines, λ further approaches 1 when the theory flows towards IR [323]. This
motivates to study the behavior of the solutions by performing a perturbative
expansion in ϵ ≡ λ− 1.

7One can be more careful and Taylor expand Γ(r) in the vicinity of r∗ to see its behavior
in more detail. One then obtains Γ(r) ∝ (r − r∗)

2, which confirms that Γ(r) does not change
sign.
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6.6. A perturbative expansion in (λ− 1)

According to standard techniques dealing with differential equations with
small parameters in front of the highest derivatives, we introduce a rescaled
coordinate r̃ = r/ϵ1/2. Recalling that σ ≈ (λ − 1)/2 in the desired limit, the
asymptotics (6.57b) and (6.60b) for Γ(r) suggest the following ansatz,

Γ(r̃) =
1 + ϵg̃(r̃)

ϵ1/2 r̃
, (6.65)

where the function g̃ is of order one and will interpolate between small and large
r̃. We will see shortly that this ansatz provides the most general solution to
the field equations (6.26a), (6.26c) in the relevant limit ϵ ≪ 1. Notice that the
divergence of Γ(r̃) at r̃ = 0 excludes the wormhole (b) and throat (c) scenarios.

Substituting the ansatz into E1 and E3 and retaining only the leading terms
in ϵ, we obtain

F ′′ +
F ′

r̃
− F

r̃2
(1− r̃g̃′ − g̃) = 0, (6.66a)

8g̃′′

r̃
− 16g̃

r̃3
− 2FF ′ = 0, (6.66b)

where now the derivatives are taken with respect to r̃. Note that, despite a lot of
simplifications, this is still a system of two second-order differential equations, like
the original system (6.26a), (6.26c). Its general solution contains four arbitrary
integration constants, implying that we have not lost any solutions in making the
ansatz (6.65).

Equation (6.66b) can be integrated once, yielding

8

(
g̃′

r̃
+
g̃

r̃2

)
− F 2 = A, (6.67)

where the integration constant A must be fixed by suitable boundary conditions.
Since σ ∼ ϵ/2 as ϵ → 0, the asymptotics (6.57) correspond to the boundary
conditions

F → F∞ , g̃ → 1 at r̃ → +∞, (6.68)

from which one obtains A = −F∞. We can use the scaling transformation [cor-
responding to the parameter b in Eqs. (6.27)] to set F∞ = 1 and hence A = −1.
Moreover, from Eq. (6.67) we also obtain a sub-leading term in F ,

F (r̃) = 1 +
4

r̃2
+O

(
1

r̃3

)
. (6.69)

The combination of g̃ and its derivative in Eq. (6.67) is the same as in
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Eq. (6.66a). By combining the two equations one then obtains a closed second-
order equation for F (r̃)

F ′′ +
F ′

r̃
+

(
F 2 − 1

8
− 1

r̃2

)
F = 0. (6.70)

This is still a non-linear differential equation, which, to the best of our knowledge,
cannot be solved analytically. Nevertheless, its numerical analysis is straightfor-
ward. Starting from large r̃ with the boundary conditions (6.69) and integrating
inwards, we find that F diverges, producing a curvature singularity at the center.

Alternatively, we can assume existence of a regular center. From the expansion
(6.61) near r̃ = 0, it follows that the corresponding boundary conditions are

F ≈ F̃1r̃, g̃ ≈ Γ1r̃
2 , (6.71)

where F̃1 = ϵ1/2F1 and Γ1 = −1/24 is fixed from Eq. (6.67) by using the boundary
condition at spatial infinity (A = −1). We have numerically integrated Eq. (6.70)
from r̃ = 0 with initial conditions F (0) = 0, F ′(0) = F̃1 and scanned over different
values of the single free parameter F̃1. We have observed that the solution always
oscillates at large r̃ around 1 or −1 with a non-vanishing amplitude, and cannot
be matched to the asymptotics (6.68). This once again rules out the possibility
of a regular center inside the IR BH.

6.7 Discussion

Many puzzles of quantum gravity are related to BHs. To set up the stage for
addressing these puzzles in a UV-complete theory, we looked for circularly sym-
metric stationary non-rotating vacuum solutions in (2 + 1)-dimensional Hořava
gravity. We found that in the presence of a positive cosmological constant the
theory possesses, unlike (2 + 1)-dimensional GR, a family of solutions with two
Killing horizons: the outer cosmological horizon, and the inner horizon that corre-
sponds to a BH from the low-energy perspective. At large distances the solutions
asymptotically approach de Sitter spacetime with a possible finite angle deficit.
In the limit of vanishing cosmological constant the asymptotic spacetime is locally
flat, but features a global growing (negative) deficit angle.

Motivated by the conjecture that the good quantum properties of Hořava
gravity may lead to resolution of BH singularities (see e.g. Ref. [133, 338]), we
scrutinized the regularity of our BH solutions. We found that they are singular
at the center, similar to BHs in GR, implying that no resolution of singularities
occurs in the pure vacuum theory. Stated differently, we have ruled out the
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6.7. Discussion

existence of regular classical solutions in pure (2+1)-dimensional Hořava gravity
(“gravitational solitons”) with BH-type Killing horizons.

Our results can have several interpretations. It can be that the BH solutions
we found are merely physically irrelevant. A more interesting possibility is that
they may form as the geometry describing the exterior of collapsing matter con-
figurations. In that case, the fate of the central singularity will depend on the
dynamics of matter. For example, the latter can form a compact remnant inside
the Killing horizon, smoothing out the metric at the center. Alternatively, regular
solutions may be dynamical (see e.g. Ref. [339, 340]). For instance, matter can
bounce back from the center, in which case the BH solution will correspond to
transient configurations.8

In this context it is instructive to discuss the gravitational energy of the BH
solutions. Recall first that we did not impose the global Hamiltonian constraint
following from the variation of the action with respect to the lapse N(t),

δS

δN
= 0 ⇒

∫
d2x

√
γ
(
KijK

ij − λK2 + µR2 + 2Λ
)
= 0.

We find this constraint meaningless for spacetimes with non-compact spatial
slices, like in our case: a positive energy in one region of space can be com-
pensated by a negative contribution from another region infinitely far away. An
alternative viewpoint is that we have studied the version of the theory where
the lapse is set to N = 1 from the start and there is no gauge freedom of time-
reparametrization. Therefore, the theory possesses a well-defined notion of local
and global energy, given by the Hamiltonian.

Applying the Legendre transform to the Lagrangian (6.9), we find the Hamil-
tonian of pure Hořava gravity,

H =
1

κ

∫
d2x

√
γ

(
KijK

ij − λK2 + µR2 + 2Λ
)

− 2

κ

∫
d2x

√
γ PiN

i +
1

κ

∮
dΣiqi, (6.72)

where

qi = 2Ni

(
Kij − λKγij

)
, (6.73)

and dΣi denotes the line element vector on the boundary at spatial infinity. Notice
that we do not include any York–Gibbons–Hawking term [341, 342] neither in
the action, nor in the Hamiltonian. This is justified, since the field equations

8Such bounce is in principle classically allowed in Hořava gravity, because the Killing hori-
zon is not the true event horizon for high-energy modes that propagate with arbitrarily high
velocities.
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are fourth-order in spatial derivatives of the metric γij and thus the variational
principle requires fixing both δγij and its derivatives on the spatial boundary to
zero. The variation of the action (6.9) is then well-defined without any boundary
term. The Hamiltonian (6.72) does not include the contribution of matter, which,
as we argued, must be considered in the full physical setup. However, we can
use it to compute the energy arising from the gravitational field outside matter
configurations.

To simplify further discussion, let us set Λ = 0. Then, for stationary solutions,
like our BH metric, the gravitational energy can be cast into a boundary integral
using the following relation,

√
γ
(
KijK

ij − λK2 + µR2
)
=

√
γ γijGij + (1− 2λ)∂t(

√
γ K) +

√
γ∇il

i, (6.74)

where

li = (2λ− 1)N iK − 2µ∇iR . (6.75)

Thus, using Gauss law we can write

Htot = Hout +Hcenter +O
(
Pi,Gij

)
, (6.76)

where
Hout =

1

κ

∮
dΣi(li + qi) , (6.77)

the term Hcenter includes possible matter contribution in the central region, as
well as the integral of li over the line encompassing this region, and O (Pi,Gij)

denotes terms that vanish on shell (in vacuum and away from singularities). The
long-distance contribution Hout is evaluated using the asymptotics F = F∞r

−σ,
G = Ĝ∞r

2σ at r → ∞ with the result

Hout =
2π

κ
F 2
∞Ĝ∞ (1 + 3σ) . (6.78)

We observe that this contribution is finite and positive.
The finiteness of the BH gravitational energy is consistent with the proposal

that this metric can form outside matter configurations during gravitational col-
lapse. To investigate this possibility in more detail, one would need to follow
the dynamics of time-dependent spherical collapse in this theory. Unlike in the
infrared limit of Hořava gravity, where gravitational collapse has been studied in
several works [135, 343–346], numerical simulations in the UV theory are com-
plicated by the presence of higher (spatial) derivatives, which would require to
carefully examine the character of the resulting (non-linear) system of partial dif-
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ferential equations, the well-posedness of the Cauchy problem, etc. Clearly, more
work is needed in this direction.
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Part V

Conclusion
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Summary

The increasing availability of data from experiments probing strong gravity (GW
interferometers, VLBI and binary pulsar observations) has motivated a renewed
interest in computing predictions in the strong field for both GR and alternative
theories.

Throughout this Thesis we have considered theories inspired by the puzzles of
Dark Energy (for which k-essence arose as a viable dynamical explanation) and
by the search for a theory of quantum gravity (for which Hořava gravity arose
as a promising recent candidate). For these theories, we have explored a diverse
range of phenomena, including: the nonlinear consequences of the presence of
new dynamical scalar degrees of freedom, how the self-interactions of such scalars
can shield matter configurations from fifth forces, and how higher-derivatives may
restore regularity to the BH interior. We have also addressed theory-independent
ways to interpret data from BH images, an approach that may be practically
convenient given the large variety of available theories beyond GR. We recap the
results presented in each Part below.

Part II. In Chapter 2, we have seen that the nonlinear self-interactions in k-
essence that produce kinetic screening (required to have the theory explain Dark
Energy and at the same time satisfy local gravitational constraints), may also
become an obstacle to the well-posedness of the initial-value problem and stable
dynamical evolutions –the latter is necessary, for example, to obtain predictions
for the gravitational waveform from binary mergers. Indeed, these nonlinear
interactions may lead to a change of character of the scalar equation of motion
from hyperbolic to parabolic/elliptic, which we characterized as either Tricomi-
type or Keldysh-type breakdowns. We have illustrated two ways to restore well-
posedness to the Cauchy problem for quadratic k-essence. The first was to resort
to a UV completion of the theory at higher-energy (shorter scales), when it is
known, that admits a well-posed initial-value-problem. The second was through
the “fixing-the-equations” approach, which modifies the equations of motion in
a way designed to damp high-frequency modes suspect of causing the Cauchy
breakdown. We have shown an example where it can explicitly be observed how
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both of these approaches allow to evolve past the point where there used to be a
Tricomi-type breakdown. Moreover, the direct comparison in our study between
the UV solution and “fixed” solution provided a “sanity check” of the “fixing-the-
equations” approach –indeed we observed the same qualitative behavior for both.
The latter point is relevant as the “fixing-the-equations” approach can be readily
applied to cases where no UV completions are available, such as the screening
branch of quadratic k-essence, as well as other alternative theories of gravity.

The above results are part of a larger effort in the community, to extend nu-
merical relativity evolutions to theories beyond GR –see Ref. [347] for a review of
the state-of-the art in the field. One of the ultimate goals in this area is to com-
pute the accurate waveforms necessary to compare alternative theories of gravity
with experimental GW data on the same footing as GR –i.e. beyond null tests.
Moreover, in Chapter 3, we have shown that a spin-off of these investigations (as
well as of Refs. [113, 179, 180, 185, 186, 202]) is that the techniques that have
been found to be useful for k-essence may be extended to other theories, such as
massive vectors with nonlinear potentials –where the longitudinal mode behaves
essentially like k-essence.

With respect to static matter configurations, in Chapter 4, we have studied
the resilience of kinetic screening against general matter couplings –most previous
work in the literature focused on linear matter couplings. However, we have seen
that the most general k-essence model, not ruled out by current constraints on
GW propagation, allows for couplings to matter dependent on the kinetic term of
the scalar. Our results show that kinetic screening is dominant when quadratic
terms are included in the matter coupling, as in Damour-Esposito-Farèse theory.
On the other hand, effects form kinetic-dependent terms in the matter coupling
are confined to the interior of the star, and maintain kinetic screening in the
exterior. Kinetic-dependent effects may however be tested with other stellar
physics probes (e.g. mass-radius relations or burning processes). With regards
to future dynamical evolutions of stars with kinetic-dependent matter couplings,
one needs to take into account new terms mixing the principal parts of the scalar
and matter equations. Nevertheless, we expect the techniques of Chapter 2 to be
of use.

Part III. The framework presented in Chapter III goes in the direction of
generalizing and improving previous attempts to constrain gravity using the size
of the bright ring in BH images obtained with VLBI. In particular, we have
attempted to address recent concerns on the role of uncertainty in the astrophysics
modelling for tests of GR with BH images.

We have done so by tackling the general inverse problem of BH imaging in a
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simplified setting (spherical symmetry, small deformations confined to one metric
function and simplified accretion). Using mock observation data, we have set
out to reconstruct (both independently and simultaneously) the metric and the
emissivity profile of the accretion matter, which we parameterized in a theory-
independent way using a basis of Gaussian functions and power laws. Part of the
degeneracy between the large number of parameters in the model was dealt with
the application of a Principal Component Analysis (PCA), which selects the most
relevant combinations of the basis functions that can be extracted from the input
data. This allowed us to recover the metric and emissivity for the case when only
one of them was allowed to vary.

Further, we have highlighted that theoretical priors may be critical to over-
come the degeneracy between geometry and accretion physics. And we have
demonstrated that with such priors, both the metric and the astrophysics can be
recovered simultaneously in our simplified model. However, more work needs to
be carried out before our framework can be applied to realistic data. In this direc-
tion, future studies may improve the modelling of accretion (possibly informed
with GR magneto-hydrodynamics simulation data), include spin, and apply a
non-linear generalization of the PCA (to extend beyond small deformations of
the GR solutions).

Also in the direction of improving tests of gravity with BH images we note
recent work by Ref. [348], where (in addition to the shadow size) the peak image
intensity contrast was included in order to address the issue of degeneracy. Fur-
ther work studying the relation between geometry and astrophysics in BH images
was carried out in Refs. [12, 349–351].

Part IV. In Chapter 6, we have addressed a yet unresolved issue relating QG
and BHs. Namely, whether (and how) QG resolves the singularity in the interior
of BHs. In light of recent results showing that (2+1) projectable Hořava grav-
ity is both renormalizable and UV-complete, we have attempted to find regular
solutions in the full nonlinear theory in a simplified setting (circular-symmetry,
restriction to stationary solutions and treating the theory in the classical field
theory sense). Despite initial expectations that higher spatial derivatives (which
give rise to modified dispersion relations) in Hořava gravity might lead to regular
interiors, we have found that all circularly symmetric solutions (reducing to IR
BHs) are singular at the origin.

However, regular solutions may possibly be found by relaxing some of our
assumptions, e.g. by including Lifshitz matter (i.e. matter consistent with the
symmetries of Hořava gravity) or by looking for non-stationary solutions. Future
work may consider the question of whether these solutions may be formed from
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gravitational collapse. Nevertheless, steps in this direction need to deal with
the well-posedness of the Cauchy problem for this type of theories. Long-term
directions may include the search for regular BHs in the full non-projectable
version of Hořava gravity in 3 + 1 dimensions.
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Appendix A

In this Appendix, we present the strongly hyperbolic formulation used in Chap-
ter 2 to study the evolution of the metric degrees of freedom.

A.1 The Z4 formulation

The covariant field equations in the Z4 formulation [352] are given by [55]

Gµν +∇µZν +∇νZµ −∇σZ
σgµν

+ κ1 (nµZν + nνZµ + κ2nσZ
σgµν) = 8πGTµν , (A.1)

where Gµν is the Einstein tensor, Tµν is the stress-energy tensor of the matter
content, Zµ is a 4-vector, nµ is the unit normal covector to the time slices, and
κ1 and κ2 are constants. The terms associated to κ1 and κ2 are introduced in
a convenient way to enforce the decay of constraint violations associated to Zµ,
and are called constraint damping terms. Provided κ1 > 0 and κ2 > −1, these
constraint damping terms help drive solutions to (A.1) to those of GR, which are
recovered when Zµ ≡ 0 [55].

In this formulation, the Hamiltonian and momentum constraints are naturally
included in the system of evolution equations, and the requirement that these
constraints hold at an initial time t = 0 is equivalent to Zµ|t=0= ∂tZ

µ|t=0 = 0.
It can be shown that these constraints evolve (ignoring the constraint damping
terms) according to □Zµ +RµνZ

ν = 0 [55].
In the 3 + 1 decomposition,

ds2 = −α2 dt2 + γij(dx
i + βi dt)(dxj + βj dt) , (A.2)

Eq. (A.1) becomes [55]

(∂t − Lβ) γij = −2αKij , (A.3a)

(∂t − Lβ)Kij = −∇iαj + α
[
Rij +∇iZj +∇jZi
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A.2. The Z3 system

− 2K2
ij + (trK − 2Θ)Kij − κ1 (1 + κ2)Θγij

]
− 8πα

[
Sij −

1

2
(trS − τ) γij

]
, (A.3b)

(∂t − Lβ)Θ =
α

2

[
trR + 2∇kZ

k + (trK − 2Θ) trK − tr
(
K2

)
− 2Zkαk/α− κ2(2 + κ2)Θ− 16πτ

]
, (A.3c)

(∂t − Lβ)Zi = α
[
∇j

(
Ki

j − δi
jtrK

)
+ ∂iΘ

− 2Ki
jZj −Θαi/α− κ1Zi − 8πSi

]
, (A.3d)

where γij is the spatial metric, Kij is the extrinsic curvature, Θ ≡ nµZ
µ is

the normal projection of Zµ, and the projections of the stress-energy tensor are
defined as τ ≡ T µνnµnν , Si ≡ T µ

i nµ and Sij ≡ Tij.

A.2 The Z3 system

The solutions of Eq. (A.3) are invariant under the variable redefinition Kij →
Kij + (n/2)Θγij. A family of Z3 systems is obtained by performing such trans-
formation and breaking this symmetry by enforcing Θ ≡ 0 and n = 4/3 [353, 354].

In spherical symmetry, the Z3 system used to perform the simulations of
Chapter 2 is given by [212, 213]

∂tAr = −∂r[α trK] , (A.4a)

∂tDrr
r = −∂r[αKr

r] , (A.4b)

∂tDrθ
θ = −∂r[αKθ

θ] , (A.4c)

∂tZr = −∂r[2αKθ
θ] + 2α

{
(Kr

r −Kθ
θ)
(
Drθ

θ +
1

r

)
(A.4d)

−Kr
r
[
Zr +

1

4r

(
1− grr

gθθ

)]
+ ArKθ

θ +
1

4r

grr
gθθ

(Kθ
θ −Kr

r)− 4πSr

}
, (A.4e)

∂tKr
r = −∂r

[
αgrr

(
Ar +

2

3
Drθ

θ − 4

3
Zr

)]
+ α

{
(Kr

r)2 +
2

3
Kθ

θ(Kr
r −Kθ

θ)

− grrDrr
rAr +

1

3r
[grr(Drr

r − Ar − 4Zr) + gθθ(Drθ
θ − Ar)]

+
2

3
grr

[
Zr +

1

4r

(
1− grr

gθθ

)]
(2Drr

r − 2Drθ
θ − Ar)

− 2

3
grr

(
Drθ

θ +
1

r

)
(Drr

r − Ar) + 8π
(τ
6
− Sr

r

2
+ Sθ

θ
)}

, (A.4f)

∂tKθ
θ = −∂r

[
αgrr

(
− 1

3
Drθ

θ +
2

3
Zr

)]
+ α

{1

3
Kθ

θ(−Kr
r + 4Kθ

θ)

+
1

6r
[grr(Ar − 2Drr

r − 4Zr) + gθθ(Ar − 2Drθ
θ)]
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− 2

3
grr

[
Zr +

1

4r

(
1− grr

gθθ

)]
(Drr

r −Drθ
θ − 2Ar)

+
1

3
grr

(
Drθ

θ +
1

r

)
(Drr

r − 4Ar) + 8π
(τ
6
+
Sr

r

2

)}
, (A.4g)

where the variables Aj, Dij
k have been defined Eq .(2.30).
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Appendix B

B.1 Weak data example

In this Appendix, we show results for the case with weak initial data correspond-
ing to parameters rc = 55LΛ, σ = 15LΛ, and A = 0.02LΛ [Eq. (2.43)], and the
same values for the coupling constants as in the main text (Sec. 4.4). During the
evolution, an ingoing pulse bounces off the origin and is dispersed as it propagates
outwards. No apparent sound or black hole horizons are formed.

In Fig. B.1, we show the spatial maximum and minimum values of the eigen-
values of the effective metric and of the characteristic speeds, where no Cauchy
breakdown is observed. Consistently with the discrepancy measure EAB [π] in
Fig. B.2, the scalar profiles show agreement across the board in Fig. B.3. For this
initial data, the evolution remains in the linear/EFT regime at all times.

B.2 Constraint propagation in the “fixed” theory

In the “fixed" theory, the equations of motion do not automatically imply the
conservation of the stress-energy tensor. Indeed, the right hand side of

∇µT (π)
µν = 2∇νπ∇µ [(Σ−K ′ (X))∇µπ] + term prop. to Eq. (2.27) (B.1)

is not formally zero when the equations of motion are used. However, if the
“driver" equation [c.f. Eq. (2.28)] is such that Σ ≈ K ′ (X), an approximate
conservation equation for T (π)

µν is expected, i.e. ∇µT
(π)
µν ≈ 0.

In order to see the effect on the propagation of the constraint equations, we
follow Ref. [205] (see also Ref. [355]). We begin by defining the projections of
Einstein equations Eµν ≡ Gµν − κT

(π)
µν = 0, given by

H ≡ nµnνEµν ,

Mµ ≡ −nρPµ
σEρσ , (B.2)

Eµν ≡ Pµ
ρPν

σEρσ ,
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Figure B.1: Character of the k-essence scalar equation (weak initial data). First
panel: the minimum and maximum values of the eigenvalues of the effective metric in
k-essence (red solid line), the U(1) UV completion (green dashed line) and the “fixed"
theory (blue dotted line). For the last two, the effective metric is not a fundamental
quantity but “emergent" at low energies. From top to bottom: max (λ+), min (λ+),
max (λ−), min (λ−). Second panel: the minimum and maximum values of the char-
acteristic speeds. In this panel, from top to bottom: max (V+), min (V+), max (V−),
min (V−).

where nµ is the vector normal to the foliation and Pµ
σ =

(
δσµ + nµn

σ
)

is the
spatial projector. Therefore, the Hamiltonian and momentum constraints can be
expressed as H = 0 and Mµ = 0, respectively. The evolution equations for the
metric are instead Eµν = 0. Finally, the evolution of the Hamiltonian and mo-
mentum constraints can be obtained from the projections of ∇µ

(
Gµν − κT

(π)
µν

)
and are given by,

nν∇νH = −DνMν − EµνDµnν + LH (H,Mσ) + κnν ∇µT (π)
µν , (B.3)

nν∇νMµ = −DνEµν − Eµνnλ∇λn
ν + LMµ (H,Mσ)− κPµ

σ∇λT
(π)
σλ , (B.4)

respectively, where and LH and LMµ are zero for vanishing arguments, and D the
spatial covariant derivative. Thus, an approximate conservation of the constraints
(nν∇νH ≈ 0 and nν∇νMµ ≈ 0) happens if (i) they are satisfied initially, (ii) we
use the equations of motion, and (iii) the driver equation ensures that Σ ≈ K ′ (X)

during the evolution.
In contrast, for k-essence and the U(1) UV completion, the stress energy

tensor is conserved, and thus nν∇νH = nν∇νMµ = 0, when the equations of
motion are used.
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Figure B.2: Discrepancy of the k-essence scalar (weak initial data). The discrepancy
measure EAB of the k-essence scalar π for theories A vs. B, defined in Eq. (2.50);
namely, k-essence vs. U(1) UV completion (red solid line), k-essence vs. “fixed" theory
(green dashed line), and “fixed" theory vs. U(1) UV completion (blue dot-dashed line).
For completeness, we plot maxAH (NL) in the U(1) UV completion (orange dot-dashed
line).
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Figure B.3: Dynamics of the pulse in the linear/EFT regime (weak initial data). Time
snapshots of the k-essence scalar for representative times from t = 0 to t = 75TΛ for
k-essence (red solid lines), the phase field of the U(1) UV completion (green dashed
lines) and the π-scalar of the “fixed" theory (blue dotted lines).
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Appendix C

C.1 Derivation of the scalar and matter equations

Variation of the action with respect to φ and the Bianchi identity applied to
Eq. (4.5) give

∇µ (K∇µφ) = − T̃

4Φ3
∂φΦ , (C.1)

∇µ

[
T µν + T (φ)µν

]
= 0 , (C.2)

respectively, where

K ≡ K ′(X)− T̃

2Φ3
∂XΦ , (C.3)

T̃ ≡ g̃µνT̃
µν is the trace of the matter stress-energy tensor in the Jordan frame,

and g̃µν ≡ Φ−1gµν is the metric in the Jordan frame.
The disformal relation (4.11) arises due to the factor

δg̃µν
δgρσ

=
1

Φ
δρµδ

σ
ν +

∂XΦ

Φ2
gµν∇ρφ∇σφ . (C.4)

These equations can be written as Eqs. (4.8)-(4.12) by using the (disformal)
relation (4.11), and by substituting Eq. (C.1) into Eq. (C.2).
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Appendix D

D.1 Black hole shadow with PCA

In this appendix we apply the PCA framework to the shadow size of a non-rotating
BH and conclude that only one combination of parameters can be meaningfully
constrained. We will ignore the effect of spin as in Ref. [267].

The impact parameter bph and radial location rph of the photon sphere are
obtained by solving the system V (rph, bph) = ∂V (rph, bph) /∂r = 0, where V (r, b)

is the effective potential of null rays in spherical symmetry. Remarkably, V (r) is
only sensitive to the gtt(r) metric function, and therefore, no constraints can be
placed on an independent function grr(r). Explicitly, this system becomes [144]

rph =
2gtt(rph)

g′tt(rph)
, b2ph = − 4gtt(rph)

[g′tt(rph)]
2 . (D.1)

For the Schwarzschild metric, these equations can be easily solved to obtain rSch
ph =

3MBH and bSch
ph = 3

√
3MBH.

A deformed Schwarzschild metric introduces deviations on the photon sphere
radius δrph and impact parameter δbph. By linearizing Eqs. (D.1), they are found
to be

δrph = −3

8

[
3r2s δg

′
tt

(
rSch
ph

)
− 4rs δgtt

(
rSch
ph

)]
,

δbph =
9

4

√
3 rs δgtt

(
rSch
ph

)
, (D.2)

where rs = 2MBH and where we can describe δgtt(r) as a sum of M basis terms
with parameters αi as in Eq. (5.6) in the main text. Our model for the impact
parameter – the only observable– will then be bM (α) = bSch

ph + δbph (α).
We compare with a measurement bSch

ph ± σ, with error σ ≈ 0.17 bSch
ph [263], by

writing the likelihood

log p(α|bSch
ph ) = −

(
bM (α)− bSch

ph

)2
2σ2

. (D.3)
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D.1. Black hole shadow with PCA

For flat priors, the Fisher matrix (5.13) becomes

Fij ∝ δg
(i)
tt

(
rSch
ph

)
δg

(j)
tt

(
rSch
ph

)
, (D.4)

which has only one non-zero eigenvalue, corresponding to the eigenvector

e(1) ∝
(
δg

(1)
tt , . . . , δg

(M)
tt

)
|rSch

ph
. (D.5)

Then, the only combination [c.f. Eq. (11) of Ref. [144]] we can constrain with the
EHT measurement is ∣∣∣∣∣

M∑
i=1

αiδg
(i)
tt

(
rSch
ph

)∣∣∣∣∣ ≲ 0.17. (D.6)
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Appendix E

E.1 Equations of motion

In this Appendix, we provide explicit expressions for the field equations in terms
of the metric functions F (r) and G(r), using the same notation as in the main
text. In more detail, the explicit expressions for Eqs. (6.15) are

E1 = (λ− 1)
(
r2

(
GF ′G′ +G (GF ′′ + FG′′)− F (G′)

2
)
+G2rF ′ − FG2

)
+ FGr2G′′ + 2FGrG′, (E.1)

E2 = (λ− 1)

[
Gr3

(
F
(
2G (GF ′′ + FG′′)− F (G′)

2
)
+G2 (F ′)

2
+ 4FGF ′G′

)
+ 2FG2r2 (2GF ′ + FG′)− F 2G3r

]

+ µ

[
4r3

(
−4 (G′)

2
G′′ + 4GG(3)G′ +G

(
3 (G′′)

2 − 2GG(4)
))

− 16r2
(
−4GG′G′′ + 2 (G′)

3
+G2G(3)

)
+ 16Gr

(
2GG′′ − (G′)

2
)
− 32G2G′

]
+ 2G3r3

(
(F ′)

2
+ FF ′′

)
− 2G3r3Λ , (E.2)

while the constraint (6.23) is

E3 = (λ− 1)
[
−2FG2r2 (GF ′ + FG′)−Gr3 (GF ′ + FG′)

2 − F 2G3r
]

+ µ

[
r3

(
−8 (G′)

2
G′′ + 8GG(3)G′ − 4G (G′′)

2
)

+ 8r2
(
−GG′G′′ − 2 (G′)

3
+G2G(3)

)
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E.2. Linearized analysis at large radius

+ 16Gr
(
GG′′ − 3 (G′)

2
)
− 16G2G′

]
− 2FG3r2F ′ − 2FG2r3F ′G′ + 2G3r3Λ . (E.3)

E.2 Linearized analysis at large radius

To study the asymptotics of the general solution of the system (E1, E3) at large
r, we substitute the expansion (6.58) and linearize, assuming the functions f, g
and their first derivatives are small (f, g ≪ 1 and rf ′, rg′ ≪ 1). We do not need
to make any assumptions about the second derivatives of f and g. Proceeding in
this way, we obtain the system of linear equations

(λ− 1)f ′′ +
(λ− 1)

r
f ′ +

λ(1 + 2σ)

r
g′+ (E.4a)

+
(1 + 2σ)2 − (λ− 1)σ(σ + 1)

r2
g = 0,

8(1 + 2σ)2g′′ +
16σ(1 + 2σ)2

r
g′

− 2(λ+ σ + λσ)F 2
∞r

1−2σf ′

− (λ− 1)(1 + 4σ + 3σ2)F 2
∞r

−2σg

=
16σ(1 + 2σ)2(2 + σ)

r2
. (E.4b)

Note that in deriving Eq. (E.4) we have assumed that σ < 1 and neglected terms
of order O(r−2g) in Eq. (E.4b), which are small compared to the terms we have
kept.

We are now interested in the solutions of this system at large r ≫ 1. A
particular solution is provided by

f = f∞r
−2(1−σ), g = g∞r

−2(1−σ), (E.5)

where the coefficients f∞, g∞ are determined from the linear algebraic equations,

4(λ− 1)(1− σ)2f∞+

+ (1− 2λ+ 5σ − 3λσ + 5σ2 + 3λσ2)g∞ = 0, (E.6)

4(λ+ σ + λσ)(1− σ)f∞+

− (λ− 1)(1 + 4σ + 3σ2)g∞ =
16σ(1 + 2σ)2(2 + σ)

F 2
∞

. (E.7)

In particular, at λ− 1 ≪ 1 we have f∞ = 4(λ− 1)/F 2
∞, g∞ = 0.

It is straightforward to see that two solutions of the homogeneous system at
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E.2. Linearized analysis at large radius

large r have the form

f =
σ

r
, g =

1

r
, and f = const, g = 0. (E.8)

As discussed in the main text, they correspond to the shift and rescaling of the
non-linear solution.

The two other solutions cannot in general be found analytically. Still, they
can be derived in the limit (λ− 1) ≪ 1. To simplify the subsequent analysis, we
set F∞ = 1, as can always be achieved by the symmetry transformation (6.27).

We observe that the highest derivative term in Eq. (E.4a) is multiplied by
a small quantity, which suggests using the Wentzel–Kramers–Brillouin (WKB)
expansion [141]. The derivatives of a function should be treated as enhanced by
a factor 1/

√
λ− 1 compared to the function itself. We will need both the leading

and the subleading terms in the expansion in powers of
√
λ− 1. With this in

mind and recalling that σ ≈ (λ− 1)/2, we simplify Eqs. (E.4), keeping only the
relevant terms:

(λ− 1)f ′′ +
λ− 1

r
f ′ +

g′

r
+
g

r2
= 0, (E.9a)

8g′′ − 2r1−2σf ′ = 0 (E.9b)

The form of the equations suggests the following ansatz,

f = (f0 +
√
λ− 1f1 + . . .) exp

(
iQ√
λ− 1

)
, (E.10a)

g =
√
λ− 1 (g0 +

√
λ− 1g1 + . . .) exp

(
iQ√
λ− 1

)
, (E.10b)

We first consider the leading order, which corresponds to termsO(1) andO(1/
√
λ− 1)

in Eqs. (E.9a) and (E.9b), respectively. At this order, we obtain

− (Q′)2f0 +
iQ′

r
g0 = 0, (E.11a)

− 2ir1−2σQ′f0 − 8(Q′)2g0 = 0. (E.11b)

As f0, g0 are non-vanishing by assumption, the system must be degenerate, giving
the condition

(Q′)2 =
r−2σ

4
. (E.12)

Choosing the positive root, we find Q = r1−2σ/2 and

g0 = − i

2
r1−σf0 . (E.13)
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E.2. Linearized analysis at large radius

The fact that Q is real implies that the solution is quickly oscillating.
To find the behavior of the amplitude, we need to go to the next WKB order.

This corresponds to terms O(
√
λ− 1) in Eq. (E.9a) and O(1) in Eq. (E.9b). Using

that Q′′ = O(λ− 1), we obtain

2iQ′f ′
0 +

iQ′

r
f0 +

g′0
r
+
g0
r2

− (Q′)2f1 +
iQ′

r
g1 = 0, (E.14a)

16iQ′g′0 − 2r1−2σf ′
0 − 2iQ′r1−2σf1 − 8(Q′)2g1 = 0 (E.14b)

Next, we multiply the second equation by iQ′r−1+2σ/2 and add it to the first one.
This eliminates the functions f1 and g1, so that we are left with an equation con-
taining only f0 and g0. Using further the relation (E.13), we obtain a differential
equation for f0,

f ′
0 +

(1− σ)f0
2r

= 0. (E.15)

We then obtain that f0 ∝ r−(1−σ)/2 and g0 ∝ r(1−σ)/2, where the latter is a
growing function of the radial coordinate.

The above analysis shows that for (λ − 1) ≪ 1 two linearly independent
solutions of the system (E.4) oscillate with a growing amplitude. By solving the
system numerically we have found that this qualitative behavior persists at finite
(λ− 1) as long as λ ≲ 5/2.

Let us make the following comment. At first sight, it may be surprising to
find oscillatory asymptotics in stationary perturbations of a time-independent
background. Normally, one would expect such perturbations to obey an elliptic
equation, which should lead to solutions that exponentially grow or decay at large
r. The fact that the perturbations are instead oscillating in r seems to suggest
that the spatial part of the eigenmode equation in the BH background has turned
hyperbolic, and one may worry if this leads to a rapid gradient instability when the
time evolution is included. In more detail, the WKB result (E.12) could suggest
that the dispersion relation for the short-wavelength modes at small (λ− 1) has
changed from (6.10) to

ω2 = 4µ(λ− 1) k4 − F 2(r) k2 , (E.16)

where we have used that r−σ = F (r). This would imply an instability on time
scale τinst ∼ F/

√
µ(λ− 1), which would be catastrophic.

Fortunately, this is not the case. The reason is that our BH background is
stationary, rather than static, i.e. it has non-vanishing shift vector. Therefore,
the time derivative operator in any field equations gets modified by an admixture
of a term with spatial derivatives (cf. Eq. (6.16)), ∂t 7→ ∂t − N i∂i + . . ., where
dots stand for term without derivatives acting on the field. As a consequence,
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E.2. Linearized analysis at large radius

the dispersion relation for short-wavelength modes takes the form

(
ω − F (r) k

)2
= 4µ(λ− 1)k4 , (E.17)

which for ω = 0 is the same as Eq. (E.16). But now ω never becomes imaginary,
and no catastrophic instabilities develop. Notice that this does not prove the
absence of long-wavelength instabilities that are, anyway, less harmful.
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1.1 Gravitational wave polarizations. The effect of the two GW po-
larizations, + (“plus”) on panel (a) and × (“cross”) on panel (b),
is illustrated on the effect it produces on a ring of test particles.
Here, the plane GW travels in the z-direction, perpendicular to
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the Advanced LIGO observatories. Produced with the software
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m1 ≈ (1.36−2.26)M⊙ and m2 ≈ (0.86−1.36)M⊙) in the NGC4993
galaxy –see also Ref. [99]. The GW signal is followed, 1.7 s later,
by short Gamma-Ray Bursts observed by Fermi-GBM (top) and
INTEGRAL (down). Top right panel. Representative early spec-
tra indicative of a possible kilonova. Middle panel. Timeline of
multimessenger observations in GW and all across the EM spec-
trum, with respect to the GW observation time tc. Lower left inset.
Optical transient observations. Lower right, first X-ray and radio
observations. Taken from LIGO Scientific Collaboration and Virgo
Collaboration, et al [100]. See original source for more details. . 12
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1.4 Kinetic screening sketch. When kinetic screening is active, the
scalar force is suppressed in the vicinity of matter distributions,
e.g. a neutron star (NS). Outside the Vainshtein radius (black cir-
cle, not to scale), the scalar force is not suppressed and the scalar
behaves as Dark Energy. . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Kinetic Screening Example. The normalized scalar gradient for
k-essence (solid red), with β = 0 and γ > 0, and FJBD theory
(dashed green) are shown. Suppression of the scalar fifth force
(proportional to the scalar gradient) due kinetic screening is evi-
dent. For k-essence, the Vainshtein radius is located near the last
“knee”. Taken from ter Haar, et al [113]. . . . . . . . . . . . . . . 15

1.6 Chart of gravitational regimes. In the horizontal plane, the binding
energy of the system U and representative speed v, normalized by
powers of c. In color code, the representative size of the system,
and (inversely) proportional to the latter are the density (accel-
eration). The weak and non-relativistic regime is located towards
the lower left corner, whereas the strong and relativistic regime
towards the top right corner. Markers indicate example probes of
different parts of this chart. The triangular markers correspond to:
(1) binary BH systems with LIGO-Virgo, (2) binary NS systems
with LIGO-Virgo, (3) binary BH systems with LISA, and (4) bi-
nary BH systems with Pulsar-Timing Arrays (PTA). Courtesy of
Enrico Barausse. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Gravitational wave damping in the double pulsar system PSR J0737–3039A/B
. Top panel. Cumulative shift of the times of periastron passage
relative to a model with no GW damping. Each data point rep-
resents 60 days of data to which a Keplerian orbit is fitted. In
solid red, the GR prediction based on measurements of the masses
reported in Kramer, et al [16]. Bottom panel. Residuals of the
deviation with respect to the GR prediction. See original source
for more details. Taken from Kramer et al [16]. . . . . . . . . . . 22
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1.8 Bounds on parameterized PN coefficients of the GW phase. See
main text for the definition of the coefficients δφi. Blue and gray
diamonds indicate bounds obtained using the SEOBNRv4_ROM
with the GWTC-3 [8] and GWTC-2 [7] catalogues, respectively.
White diamonds used the IMRPhenomPv2 model for GWTC-2
data. The diamond markers are the combined bounds for the el-
igible GW events, and assume that the deviations take the same
values for events. Horizontal colored bars indicate bounds from
individual events labeled by their redshifted total mass. See main
source for more details. Taken from Ref. et al [8]. . . . . . . . . . 23

1.9 Bounds on charges for non-rotating metrics. Comparison of the
shadow sizes consistent the the measurement of Sag A*. White re-
gions (using two different values for the distance to Sag A*, labelled
Keck and VLTI) indicate consistency at 68% CL with the inferred
value of the shadow. The latter is described by the fractional di-
ameter deviation δ. In dashed black, the value of the shadow for
the Schwarzschild metric. In solid lines, the shadow size as a func-
tion of the a single charge (normalized to its maximum value) pa-
rameterizing various nonrotating BH metrics: Reissner–Nordström
(RN), Bardeen, Hayward, Frolov, the Kazakov & Solodukhin (KS)
and the Gibbons–Maeda–Garfinkle–Horowitz–Strominger solution
for Einstein–Maxwell–dilaton–axion theory (EMd–1). See original
source for more details. Taken from Ref. et al [12]. . . . . . . . . 25

2.1 EFT evolution. First panel: The radial profile of the k-essence
field multiplied by r, at time t = 50TΛ (red solid line) compared
with the phase field of the U(1) UV completion (green dashed line)
and the π-scalar of “fixed" theory (blue dotted line), showing that
they are indistinguishable from each other. Second panel: Absolute
differences ∆π ≡ π(A)−π(B) for theories A vs. B; namely, k-essence
vs. UV (orange solid lines), k-essence vs. “fixed" (light green dashed
lines) and “fixed" vs. UV (black dotted lines). Third and fourth
panels: relative differences, R [g] ≡

∣∣(g(A) − g(B)
)
/g(B)

∣∣, of the
metric functions g = grr, gθθ for theories A vs. B. . . . . . . . . . 43
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2.2 Character of the k-essence scalar equation. First panel: the
minimum and maximum values of the eigenvalues of the effective
metric in k-essence (red solid line), U(1) UV completion (green
dashed line) and the “fixed" theory (blue dotted line). For the last
two, the effective metric is not a fundamental quantity but “emer-
gent" at low energies. From top to bottom: max (λ+), min (λ+),
max (λ−), min (λ−). The Tricomi-type breakdown is signaled by
minλ+ → 0 at t ∼ 56.5TΛ. Second panel: the minimum and maxi-
mum values of the characteristic speeds. In this panel, from top to
bottom: max (V+), min (V+), max (V−), min (V−). Notice that, at
t ∼ 56.5TΛ, |min (V+)−max (V−)| → 0, signaling a Tricomi-type
breakdown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Gravitational collapse of the pulse. Radial profiles of the lapse
α at times t/TΛ = 30, 55, 80 in k-essence (red solid lines), U(1)
UV completion (green dashed lines) and the “fixed” theory (blue
dotted lines). Increasing times are denoted by increasing intensity
of the color. The lapse approaching zero near the origin is a typical
effect signaling the formation of a black hole. Note that k-essence
experiences a Tricomi breakdown at t ∼ 55.6TΛ, much before any
apparent horizon formation. . . . . . . . . . . . . . . . . . . . . . 45

2.4 Nonlinear regime assessment. The spatial maximum of the ratio
of the self-interaction term to the kinetic term for k-essence (red
solid line), the U(1) UV completion (green dashed line) and the
“fixed” theory (blue dotted line). The maximum is taken in the
region outside the apparent horizon, if present. During the early
evolution, this measure is small (≲ 10−2). As the pulse approaches
the origin, the system enters the nonlinear regime maxAH (NL) ∼
O(1), shortly after the Tricomi transition at t ∼ 56.5TΛ. This
measure decreases in the later stage once the black hole is formed
and nonlinearities are hidden behind the apparent horizon. . . . 47
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2.5 Discrepancy of the k-essence scalar. The discrepancy measure EAB

of the k-essence scalar π of theories A vs. B, defined in Eq. (2.50);
namely, k-essence vs. U(1) UV completion (red solid line), k-
essence vs. “fixed” theory (green dashed line), and “fixed” theory
vs. U(1) UV completion (blue dot-dashed line). The discrepancy
measures involving k-essence stop at the Cauchy breakdown of the
theory. The colored diamonds and square markers, denote the
(approximate) time of formation of the sound horizon (SH) and
apparent horizon (AH) in each theory, respectively. Note that,
the diamonds are superposed since both theories agree in the EFT
regime. The black star marker denotes the approximate time where
maxAH (NL) ≈ 1 in the U(1) UV theory –see also Fig. 2.4. . . . . 48

2.6 Dynamics of the pulse in the nonlinear regime. Time snapshots
of the k-essence scalar for representative times from t = 55TΛ to
t = 69TΛ for k-essence (red solid lines), the phase field of the
U(1) UV completion (green dashed lines) and the π-scalar of the
“fixed” theory (blue dotted lines). The profiles corresponding to
the quadratic model of k-essence exist only up to the Tricomi-type
breakdown of the theory (at t ∼ 56.5TΛ), and hence, they are only
shown in the first panel. The “fixed” theory exhibits a qualitatively
similar behavior to that of the U(1) UV completion. The solid
vertical lines indicate the location of the apparent horizon, while
the dashed and dotted vertical lines denote the location of the low-
energy sound horizon. The appearance and disappearance of the
sound horizon between frames t = 57TΛ and t = 65TΛ occurs due
to the theory entering the nonlinear/UV regime. The singularity-
avoidance prescription chosen for the lapse causes the “freezing” of
the scalar profile near the origin, once the black hole forms. . . . 49

4.1 Scalar profile for φ-dependent matter couplings. Dashed cyan:
Standard FJBD solution with parameters (β, α1, α2) = (0, 1, 0).
Dot dashed purple: DEF model with parameters (β, α1, α2) =

(0, 0, 9/4). Solid red: k-essence with (β, α1, α2) = (−1, 1, 0). Dot-
ted orange: k-essence with (β, α1, α2) = (−1, 1, 9/4). Dashed blue:
k-essence with (β, α1, α2) = (−1, 0, 9/4). We choose stars with
M̃b = 1.87M⊙, near the top of the β = α1 = 0 charge-mass curve.
In all cases we use Λ = 1keV. . . . . . . . . . . . . . . . . . . . . 64
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4.2 Scalar profile for φ-dependent matter couplings with equal φ(0).
Same cases as in Fig. 4.1. Here, however, we fix the bound-
ary condition at the center to the same constant value φ(0)/Λ =

1.709× 10−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 FJBD theory with X2-coupling to matter. Dashed blue: scalar gra-

dient profile for (β, α1, λ1, λ2) = (0, 10−3, 0,−1) and Λ = 10.3MeV.
Solid green: kinetic screening in k-essence with parameters (β, α1, λ1, λ2) =

(−1, 10−3, 0, 0) – for the purposes of comparison we have used an
energy scale Λ = 0.38MeV. Red dash dot: scalar gradient pro-
file obtained with the analytic model (A. M.) with parameters
(β, α1, λ1, λ2) = (0, 10−3, 0,−1) and Λ = 10.3MeV. We choose
ρ̃c = ρ̃ (0) and r⋆ as given by the integration in k-essence. . . . . 66

4.4 FJBD theory with generic kinetic coupling to matter at DE scales.
Solid green: scalar gradient profile for (β, α1, λ1, λ2) = (0, 1,−1,−1).
Dashed orange: scalar gradient profile for (β, α1, λ1, λ2) = (0, 10−3, 0,−1).
In both solutions, the energy scale is Λ = 1meV. Dotted blue: for
comparison, the k-essence screened solution with (β, α1, λ1, λ2) =

(−1, 10−3, 0, 0) and Λ = 3.6 × 10−12meV. The vertical axis is
rescaled with respect to the latter value for Λ and, in all cases, we
use the analytic model. . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 k-essence and kinetic coupling with matter. Solid blue: With pa-
rameters (β, α1, λ1, λ2) = (−1, 10−3,−1, 1). Dashed green: With
parameters (β, α1, λ1, λ2) = (−1, 10−3, 0, 1) and Λ = 1meV for the
function K(X), however, we choose a different energy scale Λ ≈
0.52 keV in Φ for illustrative purposes, such that the cancellation
effect is maximized. Dash dot red: (β, α1, λ1, λ2) = (−1, 10−3, 0, 0)

and Λ = 1meV. The parameters used for the equation of state
{ρ̃c, r⋆} are taken to be the same as in Fig. 4.3. . . . . . . . . . . 68

5.1 Intensity profile for a deformed Schwarzschild metric. Upper panel:
Computed intensity profiles I(b) used as “observations”, as a func-
tion of the impact parameter b for the Schwarzschild metric (blue)
and the deformed Schwarzschild metric (gray), with correspond-
ing “measurement” error bars of ±0.1 I∗. The scale I∗ is used to
normalize the intensity profile, and its units are given in the main
text. The Schwarzschild intensity profile is used as input data for
the example of Sec. 5.4.1, while the deformed Schwarzschild one is
used in the examples of Secs. 5.4.2 and 5.4.3. Lower panel: Rela-
tive difference RI = (ISch − Idef-Sch) /ISch of the images in the upper
panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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5.2 Reconstruction of the emissivity. Individual reconstruction of the
emissivity when the metric is fixed (blue), and joint reconstruction
(orange) when it is constrained to be a power law, corresponding
respectively to the examples of Sec. 5.4.1 and 5.4.3. The scale j∗
is used to normalize the emissivity and its units are given in the
main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Reconstruction of the metric deviation. Individual reconstruction
of the metric deviation from Schwarzschild, δgtt(r) = gtt(r) −
g
(0)
tt (r), when the emissivity is fixed (blue) and joint reconstruction

(orange), corresponding respectively to the examples of Sec. 5.4.1
and 5.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Radial profile of the metric functions and curvature invariants.
Metric functions integrated inwards and the corresponding curva-
ture invariants for F∞ = 1, f(1,0) = 0 and λ = 15

14
. The qualitative

behavior of the solution is the same for other values of λ. . . . . . 108

B.1 Character of the k-essence scalar equation (weak initial data). First
panel: the minimum and maximum values of the eigenvalues of the
effective metric in k-essence (red solid line), the U(1) UV comple-
tion (green dashed line) and the “fixed" theory (blue dotted line).
For the last two, the effective metric is not a fundamental quantity
but “emergent" at low energies. From top to bottom: max (λ+),
min (λ+), max (λ−), min (λ−). Second panel: the minimum and
maximum values of the characteristic speeds. In this panel, from
top to bottom: max (V+), min (V+), max (V−), min (V−). . . . . . 125

B.2 Discrepancy of the k-essence scalar (weak initial data). The dis-
crepancy measure EAB of the k-essence scalar π for theories A
vs. B, defined in Eq. (2.50); namely, k-essence vs. U(1) UV com-
pletion (red solid line), k-essence vs. “fixed" theory (green dashed
line), and “fixed" theory vs. U(1) UV completion (blue dot-dashed
line). For completeness, we plot maxAH (NL) in the U(1) UV com-
pletion (orange dot-dashed line). . . . . . . . . . . . . . . . . . . . 126

B.3 Dynamics of the pulse in the linear/EFT regime (weak initial data).
Time snapshots of the k-essence scalar for representative times
from t = 0 to t = 75TΛ for k-essence (red solid lines), the phase
field of the U(1) UV completion (green dashed lines) and the π-
scalar of the “fixed" theory (blue dotted lines). . . . . . . . . . . 127
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