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A REDUCED ORDER CUT FINITE ELEMENT METHOD FOR

GEOMETRICALLY PARAMETERIZED STEADY AND UNSTEADY

NAVIER–STOKES PROBLEMS

EFTHYMIOS N. KARATZAS1,4, MONICA NONINO2, FRANCESCO BALLARIN3,
AND GIANLUIGI ROZZA4

Abstract. We focus on steady and unsteady Navier–Stokes flow systems in a reduced-
order modeling framework based on Proper Orthogonal Decomposition within a levelset
geometry description and discretized by an unfitted mesh Finite Element Method. This work
extends the approaches of [39,41,43] to nonlinear CutFEM discretization. We construct and
investigate a unified and geometry independent reduced basis which overcomes many barriers
and complications of the past, that may occur whenever geometrical morphings are taking
place. By employing a geometry independent reduced basis, we are able to avoid remeshing
and transformation to reference configurations, and we are able to handle complex geometries.
This combination of a fixed background mesh in a fixed extended background geometry
with reduced order techniques appears beneficial and advantageous in many industrial and
engineering applications, which could not be resolved efficiently in the past.

1. Introduction

In the present work, we are interested in studying geometrically parameterized steady and
unsteady Navier–Stokes equations in a Eulerian framework. We rely on an approach based
on unfitted mesh Finite Element Method, which shows its flexibility especially when domains
are subject to large deformations, and classical methods such as the Finite Element Method
(FEM) fail.

In general, new computational tools have been invented and studied over the past years to
solve numerically Navier-Stokes problems: the classical FEM is a powerful tool to discretize
the physical domain of interest and simulate the behavior of the solution, and its efficiency
has been proven in a wide range of applications [14, 46, 49]. Nonetheless, FEM capability
to handle geometrically parametrized problems comes to a limit, this limit being given by
extremely complex geometries, but also by situations where large deformations, fractures,
contact points occur. As an alternative to classical FEM, we can consider Finite Element
(FE) approximations of the physical fields that are not fitted to the actual physical geometry.
The FE approximations are then cut at the boundaries and interfaces: this gives rise to the
Cut Finite Element Method (CutFEM). For a more precise idea and for more rigorous defi-
nitions of what “cutting” a physical field means, and for a detailed introduction to CutFEM,
we refer to [18] and references therein.
The repeated solution of parametrized problems discretized by CutFEM on the other hand,
is an expensive task (whose cost essentially depends on the size of the underlying background
mesh), especially in complex geometries. It is precisely at this point that the Reduced Basis
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2 GEOMETRICALLY PARAMETERIZED NAVIER–STOKES CUTFEM ROMS

Method (RBM) comes into play. It is well known that the Reduced Basis Method is an ex-
tremely powerful tool to obtain a speedup in the simulation of the behavior of the solution of
the system. The method relies on a set of already computed solutions (snapshots) for different
parameter values: see, for example, [32, 33, 52]. Therein, these snapshots are FE approxima-
tions of the truth solution, thus the RBM relies on the FEM. Even though in general there are
several methods that can be employed to project the full order system to a reduced system,
see for example [25–27,38,47,50], in the present work we will employ the Proper Orthogonal
Decomposition (POD). We use a fixed background geometry and mesh: this approach leads
to important advantages whenever a geometry deforms, [39], and it overcomes several related
limitations in efficiency, compared with traditional FEM, see e.g. [5, 41, 42]. For the reader
interested in Reduced Order Methods based on classical FEM we refer to: [33] for Proper
Orthogonal Decomposition, to [25, 33, 38, 47, 50] for greedy approaches and certified Reduced
Basis Method, to [25–27] for Proper Generalized Decomposition (PGD), to [31, 50] for linear
elliptic and parabolic systems and to [30,48,62] for nonlinear problems.
The aim of this work is to implement a Reduced Basis Method for the stationary and time–
dependent Navier–Stokes equations, that relies on an unfitted CutFEM discretization. Al-
ready existing results on RBM applied to Navier Stokes problems with standard FEM can
be found in the classical literature, see for example [35, 48, 58]; for other results concerning
RBM based on embedded FEM for different kind of problems, see for example [41,42], as well
as [43] for Navier-Stokes with the Shifted Boundary Method. Nevertheless, there is still a fun-
damental lack in the literature for results that combine the RBM with an unfitted CutFEM
discretization: indeed, a first important reference in this framework is represented by [39],
where the authors focus on steady, linear model problems such as the Stokes problem and
the Darcy problem. The results presented in this manuscript represent the first step in the
application of unfitted CutFEM based Reduced Basis Method to time–dependent, nonlinear
fluid flows: to the best of our knowledge, indeed, existing results in the reduced order model
framework include only linear problems, see [39].

The paper is structured as follows: in Section 2 we introduce some basic notions of unfitted
mesh Finite Element discretization, as well as some notation that will be used throughout the
work. In Section 3 we introduce the steady Navier–Stokes equations with incompressibility
constraint in a fluid domain where the shape of some of the boundaries is described through
a levelset function depending on a geometrical parameter. In Section 3.2 we state the weak
formulation of the problem of interest, which is based on Nitsche’s method with penalty
term, and a Ghost Penalty stabilization. In Section 3.3 we present the Proper Orthogonal
Decomposition, with a focus in Section 3.3.1 on the lifting of non–homogeneous Dirichlet
boundary conditions that are imposed strongly, and with a focus in Section 3.3.2 on the natural
smooth extension, a technique that is here used to obtain improved parameter–independent
reduced basis functions. In Section 3.4 we present the online system to be solved, and finally
in Section 3.5 we show some numerical results. In Section 4 we move then to the unsteady
Navier–Stokes equations, formulated over the same physical domain as the one previously
considered: the strong formulation is presented in Section 4.1. In Section 4.2 we state the
weak formulation after time discretization and after spatial discretization. In Section 4.3
we present the POD technique used in the case of time–dependent parametrized problems,
and in Section 4.4 we present some numerical results. In Section 5 we introduce another
computational fluid dynamics test case, where an obstacle is now immersed in a fluid. In
Section 5.1.2 we briefly recall the weak formulation, as well as the POD and the online system
in Section 5.2; numerical results are provided in Section 5.3. Conclusions and perspectives
are provided in Section 6.
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Figure 1. Left: the physical domain of interest Ω (dark blue), with inflow
boundary Γin, outflow boundary Γout, and top and bottom boundaries which
are denoted here ΓD. The boundary Γ is the boundary delimited by the green
sets, and is the immersed boundary. Right: the background mesh Îh.

IΓ Ih

Figure 2. Left: the portion of the mesh intersected by the immersed bound-
ary Γ , namely IΓ , is depicted in red. Right: the fictitious domain Ω∗h is
depicted in red, and is determined by the elements T of the active mesh Ih.

2. Full order discretization by CutFEM: an introduction to terminology and
definitions

The aim of this Section is to introduce some basic notions and definitions in the CutFEM
framework: these definitions will be employed in the discrete formulation of the problems that
we present hereafter.

As mentioned in the Introduction, unfitted Finite Element discretizations are extremely
useful for the numerical simulation of problems whose physical domain undergoes a signifi-
cant change in its topology: contact points occur, overlapping domains, changes in the shape
due to geometrical parametrization are just some of many examples. The fundamental idea
at the core of unfitted discretization is the realization of a fixed background mesh: this mesh,
once generated, will not change, thus avoiding any additional expensive procedures as remesh-
ing. The physical domain over which the problem of interest is formulated will intersect the
elements of the background mesh, creating a natural subdivision into two meshes: an active
mesh and an inactive mesh; in addition, the boundary of the physical domain will cut, in an
arbitrary way, some of the elements of the background mesh. All these concepts are at the
basis of every unfitted FEM discretization: let us now see more in detail how all these entities
are defined.

Let Ω be the physical domain over which our problem is formulated, and let Îh be a
fixed background mesh of our choice, of mesh size h > 0, covering Ω, with inlet boundary
Γin = {x ∈ Γ : u(x, t) · n < 0} (see Figure 1). Given a background mesh, this identifies
in a natural way the active mesh Ih, which is the portion of the background mesh made by
elements T that are actually intersected by the physical domain:

Ih := {T ∈ Îh : Ω ∩ T 6= ∅}.
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Figure 3. Instance geometry of the problem for θ = 0.37: the fluid domain
Ω(θ) (blue) has an inlet boundary Γin on the left and an outlet boundary Γout
on the right. The rest of the boundaries (ΓD) are Dirichlet type boundaries.
The shape of D(θ) (red) is described by the levelset function Φθ(x, y) (see
Equation 2). The immersed boundary Γθ is depicted in green.

Then, starting from the active mesh we can define a domain Ω∗h as follows:

Ω∗h =
⋃
T∈Ih

T.

Two situations can present: Ih is a

• boundary fitted mesh if Ω∗h = Ω;

• unfitted mesh if Ω ( Ω∗h. In this case Ω∗h is the so called fictitious domain, and we
have an unfitted discretization of the problem of interest (see Figure 2). This is the
kind of discretization that will adopted throughout the paper.

For unfitted meshes a crucial role is played by those elements T of the active mesh that are
cut by the immersed boundary Γ of the physical domain Ω:

IΓ := {T ∈ Ih : T ∩ Γ 6= ∅}.

Related to the set IΓ we can also define the set of facets that belong to elements intersected
by the boundary:

FΓ := {F ∈ F : F is a facet of an element T ∈ IΓ }.

In the framework of unfitted meshes and unfitted Finite Element discretization, the role of
the cut elements T ∈ IΓ is important: indeed, it has been shown (see for example [16,18,20,
21]) that stability issues may arise, depending on the quality of the cut, namely depending on
how the boundary Γ cuts an element T . In order to overcome the dependency of the stability
and a priori estimates on the position of the interface, and the overall ill-conditioning of
the global system matrix due to bad intersections, Burman et al. introduced a stabilization
technique called Ghost Penalty, see [15,18,19,21]. The idea of the Ghost Penalty stabilization
is to adding weakly consistent operators with the aim of having a better control on the solution
in Ω∗h \ Ω. We will return more into the details of the Ghost Penalty stabilization used in
Section 3.2. We remark that the Ghost Penalty technique is the stabilization that will be
used throughout the paper, nevertheless there are alternative techniques like the residual-
based stabilization (RBVM), see for example [56].

3. Steady Navier–Stokes

In the following, we focus on the steady incompressible Navier–Stokes equations, which are
formulated within an Eulerian formalism. We first introduce the problem formulation, and
then we present the discretized version of the original problem, in the CutFEM framework.
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Figure 4. Six examples of solid walls, described by the levelset {Φθ = 0}.
From left to the right, the levelset for θ = −0.1,−0.06, 0, 0.18, 0.37, 0.50.

3.1. Strong formulation. Let R be a background rectangular domain in R2, and let D(θ) ⊂
R be a bounded subset of R, whose boundary is described through a levelset function {Φθ =
0}, where Φθ is an implicit function depending on a geometrical parameter θ. The physical
domain over which our problem is formulated is Ω(θ) := R \ D(θ), and is depicted in Figure
3 for a given value of θ. In Figure 3 we can see the inlet boundary Γin, the outlet boundary
Γout, as well as the top and bottom wall of the domain, which are denoted by ΓD, since
Dirichlet conditions will be applied there. We further denote Γθ the immersed boundary, that
is, the remaining part of the boundary ∂Ω(θ) that is in common to D(θ). We denote by P
the parameter space to which θ belongs. Under these assumptions, our problem of interest
reads: for every θ ∈ P, find u(θ) : Ω(θ) 7→ R2 and p(θ) : Ω(θ) 7→ R such that:

(1)

{
−µ∆u(θ) +∇p(θ) + (u(θ) · ∇)u(θ) = f(θ) in Ω(θ),

divu(θ) = 0 in Ω(θ),

where µ is the fluid viscosity and f(θ) is the fluid volume external force. Problem (1) is
completed by the following boundary conditions: at the inlet boundary Γin we impose a
prescribed inlet velocity (througout the manuscript we choose a parameter independent inlet
profile) u(θ) = uin; we then have a zero outflow condition on Γout, a no–slip boundary
condition u(θ) ·nD = 0 on ΓD, with nD the outgoing normal to ΓD, and a no–slip boundary
condition u(θ) = 0 on Γθ.

3.1.1. Geometrical parametrization. For the problem considered in this section the expression
of the levelset function is the following:

(2)
Φθ(x, y) = −

(
|A(x) +B(x)− 1|+ |A(x)−B(x)− 2|+D(x)

)
·
(
|A(x) + C(x)− 1|+ |A(x)− C(x)− 2|+D(x)

)
,

where A(x) =
√
k1 |x− k3|, B(x) =

√
k2 |y − k4|, C(x) =

√
k2 |y − k5| and D(x) = e−θ(k1(x−

k3)
2)θ − 4.
The values of the constants k1, k2, k3, k4, k5 are reported in Table 1. To have a better idea

of how the shape of the walls changes by varying the parameter θ, the reader is referred to
Figure 4.

3.2. Discrete weak formulation. As we can see from Figure 3, the background mesh Îh is
a rectangular mesh made by triangular elements. By choosing an unfitted mesh, once we have
defined a background mesh, there is no need to remesh every time the parameter θ changes
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Table 1. Values for the constants in the levelset equation (2).

Constant Value
k1 10
k2 10
k3 −2
k4 −1
k5 1

(and hence every time the shape of the levelset in dark grey in Figure 3 changes). Before going
any further, we remark that we decide to impose the Dirichlet boundary conditions in the
following way: the no–slip condition on the immersed boundary Γθ is imposed weakly, whereas
the inflow condition, as well as the homogeneous Dirichlet condition on ΓD are imposed
strongly. Let us now introduce the following discrete approximation spaces:

Vh,2(θ) := {vh ∈ C0(Ω
∗
h(θ))2 : vh|T ∈ (P2(T ))2, ∀T ∈ Ih(θ)},

Qh,1(θ) := {qh ∈ C0(Ω
∗
h(θ)) : qh|T ∈ P1(T ), ∀T ∈ Ih(θ)},

where Ih(θ) and Ω∗h(θ) are respectively the active mesh and the fictitious domain correspond-
ing to the physical domain Ω(θ), as defined in Section 2.1: these spaces clearly depend on θ,
since the levelset geometry changes according to the parameter. We then define:

V D
h,2θ) := {vh ∈ Vh,2(θ) : vh = uin on Γin and vh · nD = 0 on ΓD},

V 0
h,2(θ) := {vh ∈ Vh,2(θ) : vh = 0 on Γin}

The discretized weak formulation of the problem, with Nitsche’s Method and Ghost Penalty
terms then reads: find (uh(θ), ph(θ)) ∈ V D

h,2(θ) × Qh,1(θ) such that for all test functions

(vh(θ), qh(θ)) ∈ V 0
h,2(θ)×Qh,1(θ):

(3) A(uh(θ), ph(θ);vh(θ), qh(θ)) = L(vh(θ)),

where:

A(uh(θ), ph(θ);vh(θ), qh(θ)) = ah(uh(θ),vh(θ)) + bh(ph(θ),vh(θ))− bh(qh(θ),uh(θ))+

+ch(uh(θ);uh(θ),vh(θ) + gGP (uh(θ),vh(θ); ph(θ), qh(θ))

L(vh) = (f, vh)Ω(θ)

In the previous equation we have the following bilinear (and trilinear) forms:

ah(uh(θ),vh(θ)) = µ(∇uh(θ),∇vh(θ))Ω(θ) − µ(∇uh(θ)nΓ ,vh(θ))Γθ−
−µ(uh(θ),∇vh(θ)nΓ )Γθ + γµ/h(uh(θ),vh(θ))Γθ
+γφ/h(uh(θ) · nΓ ,vh(θ) · nΓ )Γθ

ch(uh(θ);uh(θ),vh(θ)) = ((uh(θ) · ∇)uh(θ),vh(θ))Ω(θ) − ((uh(θ) · n)uin,vh(θ))Γin

bh(ph(θ),vh(θ)) = −(ph(θ),∇ · vh(θ))Ω(θ) + (ph(θ)nΓ ,vh(θ))Γθ

gGP (uh(θ),vh(θ); ph(θ), qh(θ)) = gGPu (uh(θ);uh(θ),vh(θ)) + gGPp (uh(θ); ph(θ), qh(θ))

+gGPµ (uh(θ),vh(θ)) + gGPβ (uh(θ);uh(θ),vh(θ))

s where nΓ is the outward pointing normal to the immersed boundary Γθ, and h is the
mesh size. The term −((uh(θ) · n)uh(θ),vh(θ))Γin in the trilinear form ch, where n in this
term is the outgoing normal to the inlet boundary, that accounts for the inlet flow Γin =
{x ∈ Γ : u(x, t) · n < 0} (see for example [10]). The ghost penalties gGPu (uh(θ),vh(θ)),
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Table 2. Constants values for the weak formulation of the problem

Constant Value Constant Value
µ 0.05 h 0.07
γ 10 γu 0.001
α 0.1 γµ 0.1
γp 0.1 γ0s 0.1
λs 10 γ1s 0.01

gGPp (ph(θ), qh(θ)), gGPµ (uh(θ),vh(θ)), and gGPβ (ph(θ), qh(θ)) are defined as:

gGPu (uh(θ);uh(θ),vh(θ)) = γu
∑

F∈FΓθ

φu,F,θh
2j+1([[∇ · ∂jnuh(θ)]], [[∇ · ∂jnvh(θ)]])F ,

gGPp (uh(θ); ph(θ), qh(θ)) = γp
∑

F∈FΓθ

h3µ−1(1/max(h/µ||u(θ)||∞,T , 1))([[∂nph(θ)]], [[∂nqh(θ)]])F ,

gGPµ (uh(θ),vh(θ)) = γµ

2∑
j=1

∑
F∈FΓθ

µh2j−1([[∂jnuh(θ)]], [[∂jnvh(θ)]])F ,

gGPβ (uh(θ);uh(θ),vh(θ)) = γβ

2∑
j=1

∑
F∈FΓθ

φβ,F,θu
2
∞,F,θh

2j−1([[(uh(θ) · ∇)∂jnuh(θ)]], [[(uh(θ) · ∇)∂jnvh(θ)]])F .

In the previous equations, µ is the fluid kinematic viscosity, ∂n denotes the partial derivative
with respect to the normal outgoing the face F . We have used the following notation:

u∞,F,θ := ||uh(θ)||0,∞,F , φT,θ := µ+ cu||uh(θ)||0,∞,ThT(4)

φβ,T,θ := φp,T,θ = h2Tφ
−1
T,θ, φu,T,θ := φT,θ,(5)

where hT is the characteristic element length. Then, φβ,F,θ, φu,F,θ and φp,F,θ are the corre-
sponding face averages. In order to simplify the implementation and the exposition, we choose
here cu = 1.0. The terms appearing in the bilinear form ah(uh,vh), in the bilinear form
bh(ph(θ),vh(θ)) and in the trilinear form ch(uh(θ;uh(θ),vh(θ)) come from standard integra-
tion by parts of the steady Navier–Stokes equations, due to the fact that the test functions
are non–vanishing on the boundary Γθ. We then have the Nitsche terms, that have been
used to weakly impose the non–slip boundary condition on Γθ. The term gGPβ is a convective

stabilization term which for low Reynolds number is taken γβ = 0, whereas gGPu is the incom-

pressibility stabilization while gGPp , gGPµ contain additional terms that extend the solution to
the extended domain, [21, 39, 56]. We point out that we choose a symmetric Nitsche method
because, even if the non–symmetric alternative leads to better stability behaviour, it can also
lead to suboptimal convergence or larger L2 errors: for more details we refer to the discussions
in [17,55]. For sake of completeness we report that the choice of a symmetric Nitsche method
leads to some lack of coercivity in the bilinear form ah, and therefore a stabilization term is
consistently added. Additionally, the need for the Ghost Penalty stabilization terms is given
by the fact that we are implementing an unfitted mesh discretization of the problem. With
unfitted meshes indeed, it may happen that the cut elements (namely the elements T ∈ IΓθ)
are cut in an arbitrary way by the boundary Γθ. The abritrariness of the cut position can
lead to stability issues that ghost penalty stabilization terms can handle. In this manuscript
we adopted the stabilization presented, for example, in [56], as well as for an analysis on the
stability properties of the chosen weak formulation. The values of the constants appearing in
the previous equations as well as for the supremizer enrichment are reported in Table 2.

3.3. Proper Orthogonal Decomposition-Galerkin Model Reduction. We now present
the Proper Orthogonal Decomposition (POD), a method that is applied to parameter-dependent
problems in order to extract and create a set of reduced basis functions, with which we will
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subsequently perform the model order reduction. The POD method consists of two phases:
one offline and one online. During the offline phase, we compute the solution of the prob-
lem of interest, for different values of the parameter θ. These values of the parameter are
collected from a training set Ptrain, and the corresponding solutions are stored into a matrix,
the so-called snapshots matrix. This matrix is then processed in order to extract the reduced
basis functions. Afterwards, in the online phase, we employ these basis functions in a way
that reduces the dimension of the original problem, and in a way that is computationally
efficient for (in our case) geometrically parametrized systems. We remind hereafter that for
POD-Galerkin ROMs for incompressible Navier–Stokes equations, instabilities in the approx-
imation of the pressure may occur. We refer to [23,29,51] for a more detailed analysis of the
problem, while for such instabilities on transient problems we refer to [4, 13, 28, 37, 57]. For
SUPG and PSPG kind of stabilization we refer to [6,53,59,60]. Levelset techniques with cut
Finite Element Nitsche method will be employed for the parametrization and ROM focusing
on a fixed, geometrical parameter independent, background mesh following approaches as
in [39,41,42].

3.3.1. The lifting function. In view of the online phase of the reduction procedure, we have
to take care of the non–homogeneous Dirichlet boundary condition at the inlet boundary Γin.
We will now briefly explain how we overcome this difficulty, with the understanding that the
following procedure will be carried out for all the test cases considered, even if we will not
explicitly mention it again, for the sake of the simplicity of the notation.
The idea is that, in order to take care of a non–homogeneous Dirichlet boundary condition,
we can define, for each parameter θ ∈ P, a lifting function `(θ) : Ω(θ) 7→ R2, sucht that
`(θ) = uin on the inlet boundary Γin and `(θ) · nD = 0 on ΓD. Once we have done this, we
can define a homogenized velocity

u0(θ) := u(θ)− `(θ),

with u0(θ) ∈ V 0
h,2(θ). This will become important in the next paragraph, when we state the

algebraic formulation of the system that we are going to solve during the online phase of the
method. The reader interested in more details on the lifting function and its use is referred,
for example, to [6, 36].

3.3.2. The natural smooth extension. Let us now make an important remark about the dis-
crete function spaces and about the CutFEM solutions: as we can see from the definitions in
Section 3.2, the FE velocity uh(θ) belongs to a space that is θ–dependent, namely Vh,2(θ), and
the same goes for the FE pressure ph(θ) ∈ Qh,1(θ). This θ–dependence can create numerous
problems: in general we can expect that, for two different values θ1 and θ2 of the parameter,
Ω(θ1) 6= Ω(θ2), and therefore uh(θ1) /∈ Vh,2(θ

2), and similarly for the pressure. This can
lead to many difficulties, especially in view of the reduction procedure: in order to perform a
Proper Orthogonal Decomposition we will have to compute scalar products between functions
that, in theory, can belong to different discrete spaces. In order to overcome this problem, the
main idea is to extend the CutFEM solutions, namely the snapshots, to the whole background
mesh: this is achieved thanks to a natural smooth extension of both velocity and pressure.
The realization, at the discrete level, of the natural smooth extension is carried out through
the stabilization Ghost Penalty terms that appear in the weak formulation of the original
problem: we refer the reader interested in more details and in the stability analysis of this
procedure to [11, 45]. As we know, the CutFEM solution is defined up to Ω∗h(θ): as an effect
of the ghost penalty stabilization, the solution smoothly goes to zero in the cut zone IΓθ .
Thanks to the ghost penalty stabilization then, we can simply extend the CutFEM solution
to be zero in R \ Ω∗h(θ), thus obtaining a solution that is defined on the whole background
mesh. Another possibility, which we do not take into consideration in this manuscript, is
to implement instead an harmonic extension of the CutFEM solution: we refer the reader
interested in a detailed discussion on techniques to extend the snapshots to the background
mesh to [8, 39]: the reason we do not pursue this idea here is that the implementation of
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an harmonic extension would require an additional problem to be solved for every snapshot
computed, thus incrementing the cost of the reduction procedure.
We remark that the natural smooth extension is employed also in order to extend the lift-
ing function `(θ) to a function that is defined on the whole background mesh. Thanks to
the extension procedure we obtain snapshots (û0

h(θ), p̂h(θ)) that are defined on the common

background mesh Îh, where now û0
h(θ) := ûh(θ) − ˆ̀(θ). Such extension defines a pair of

velocity–pressure snapshots (û0
h(θ), p̂h(θ)) belonging to θ–independent discrete spaces:

V̂ 0
h,2 := {v̂h ∈ C0(R)2 : v̂h|T ∈ (P2(T ))2 ∀T ∈ Îh and vh = 0 on Γin and vh · nD = 0 on ΓD},

Q̂h,1 := {q̂h ∈ C0(R) : q̂h|T ∈ P1(T ) ∀T ∈ Îh}.

At this point we can define a bijection between V̂ 0
h,2 and RN̂h

u (respectively Q̂h,1 and RN̂h
p ),

where N̂h
u and N̂h

p are the dimensions of the discrete spaces V̂ 0
h,2 and Q̂h,1:

(6)

u0
h(θ) = (u1h(θ), . . . , u

N̂h
u

h (θ))T ∈ RN̂h
u ⇐⇒ û0

h(θ) =
∑N̂h

u
i=1 u

i
h(θ)ϕ̂i ∈ V̂ 0

h,2,

p
h
(θ) = (p1h(θ), . . . , p

N̂h
p

h (θ))T ∈ RN̂h
p ⇐⇒ ph(θ) =

∑N̂h
p

i=1 p
i
h(θ)ζ̂i ∈ Q̂h,1,

where ϕ̂i and ζ̂i are the parameter–independent basis functions of the FE spaces V̂ 0
h,2 and Q̂h,1

respectively. We can now introduce the following forms:

âh(ϕ̂i, ϕ̂q; θ) := µ(∇ϕ̂i,∇ϕ̂q)R − µ(∇ϕ̂inΓ , ϕ̂q)Γθ
−µ(ϕ̂i,∇ϕ̂jnΓ )Γθ + γµ/h(ϕ̂i, ϕ̂q)Γθ

+γφ/h(ϕ̂i · nΓ , ϕ̂q · nΓ )Γθ

ĉh(ϕ̂k; ϕ̂i, ϕ̂q; θ) := ((ϕ̂k · ∇)ϕ̂i, ϕ̂q)R

b̂h(ζ̂i, ϕ̂q; θ) := −(ζ̂i,∇ · ϕ̂q)R + (ζ̂inT , ϕ̂
q)Γθ

We can therefore define the following matrices:

Â(θ)iq := âh(ϕ̂i, ϕ̂q) + ĉh( ˆ̀(θ); ϕ̂i, ϕ̂q)

+ĉh(ϕ̂i; ˆ̀(θ), ϕ̂q) + gGPµ (ϕ̂i, ϕ̂q)

N̂(uh(θ); θ)iq :=

Nh
u (θ)∑
k=1

ukh(θ)ĉh(ϕ̂k; ϕ̂i, ϕ̂q)+

+gGPu (

Nh
u∑

k=1

ukh(θ)ϕ̂k; ϕ̂i, ϕ̂q) + gGPβ (

Nh
u (θ)∑
k=1

ukh(θ)ϕ̂k; ϕ̂i, ϕ̂q)

B̂(θ)iq := b̂h(ζ̂i, ϕ̂q),

Ĉ(θ)iq := gGPp (

Nh
u (θ)∑
k=1

ukh(θ)ϕ̂k; ζ̂i, ζ̂q)

Thanks to the matrices introduced, we can now state the algebraic formulation of the Navier–
Stokes problem, after the snapshots extension and after the lifting of the inlet condition:

R(Uh(θ), θ) :=

[
Â(θ) + N̂(u0

h(θ); θ) B̂T (θ)

B̂(θ) Ĉ(θ)

] [
u0
h(θ)
p
h
(θ)

]
−
[
F̂1(θ)

F̂2(θ)

]
=

[
0
0

]
,

where Uh(θ) = (u0
h(θ), p

h
(θ)), (F̂1(θ))i :=

∫
R ϕ̂

i · f dx+ âh(ϕ̂i, ˆ̀(θ); θ) + ĉh( ˆ̀(θ); ˆ̀(θ), ϕ̂i) and

F̂2(θ) = 0 since the embedded Dirichlet boundary data gD = 0.
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3.3.3. Reduced Basis generation. Let us now denote by θ(j) each parameter in a finite dimen-
sional training set Ptrain = {θ1, . . . , θM} for a large number M . The snapshots matrices Su

and Sp for the fluid velocity and the fluid pressure are defined as follows:

Su = [û0
h(θ1), . . . , û0

h(θM )] ∈ RN
h
u×M , Sp = [p̂h(θ1), . . . , p̂h(θM )] ∈ RN

h
p×M .(7)

In order to make the pressure approximation stable at the reduced order level we also
introduce a velocity supremizer variable sh: see [6,51,53] for a more detailed introduction to
the supremizer enrichment for Navier–Stokes equation. We start with a Laplace problem for
the supremizer s(θ), ∀θ ∈ P:

(8)


−∆s(θ) = −∇ph(θ) in Ω(θ),

s(θ) = 0 in Γin∪D∪out,

s(θ) = 0 in Γθ

Again, we impose boundary conditions (8)2 strongly, and (8)3 weakly, thanks to the Nitsche
method. We have therefore the following discretized problem: find sh(θ) ∈ V 0

h,k(θ) such that

∀vh(θ) ∈ V 0
h,k(θ):

(∇sh(θ),∇vh(θ))Ω(θ) − (∇sh(θ)nΓ ,vh(θ))Γθ − (∇vh(θ)nΓ , sh(θ))Γθ +
λs
h

(sh(θ), vh(θ))Γθ

+gGP (sh(θ),vh(θ)) = −(∇ph(θ),vh(θ))Γθ ,

where the Ghost Penalty term is given by:

gGP (sh(θ),vh(θ)) =
∑

1≤j≤2

∑
F∈FΓθ

γjsh
2j+1([[∂jnsh(θ)]], [[∂jnvh(θ)]])F ,

We employ the same natural smooth extension (and the same extended FE space used for
velocity) also for the supremizer, thus obtaining the extendend snapshots ŝh. These snapshots
are then collected in the snapshot matrix

Ss = [ŝh(θ1), . . . , ŝh(θM )] ∈ RN
h
u×M ,

We then carry out a compression by POD on the snapshots matrices, namely Su, Ss and
Sp, following e.g. [44]. This derives an eigenvalue problem, that for the velocity for example
reads:

CuQu = QuΛu, for Cuij = (ûh(θi), ûh(θj))L2(Îh), i, j = 1, . . . ,M,

where Cu is the correlation matrix derived from the θ-independent snapshots, Qu is an eigen-
vectors square matrix and Λu is a diagonal matrix of eigenvalues. Similar eigenvalue problems
can be derived for the supremizer and for the pressure. We refer the reader interested in the
details about the POD and its implementation to [6, 34]. The i–th reduced basis function
Φui for the fluid velocity, for example, is then obtained (possibly after L2 normalization) by
applying the snapshots matrix Su to the i–th column of the matrix Qu.

3.4. Online algebraic system. Thanks to the POD on the velocity snapshots and thanks
to the enrichment with supremizer snapshots we obtain a set {Φu1 , . . . ,ΦuN ,Φs1, . . . ,ΦsN} of 2N
basis functions for the reduced order approximation of the velocity, and a set {Φp1, . . . , Φ

p
N}

of N basis functions for the reduced order approximation of the pressure. We define: V̂N ,
the enriched reduced basis space for the velocity, and Q̂N , the reduced basis space for the
pressure:

V̂N = span{Φu,s1 , . . . ,Φu,s2N}, Q̂N = span{Φp1, . . . , Φ
p
N}

where N < M is chosen according to the eigenvalue decay of Λuii and Λpii, see for instance
[12,50]. In the definition of the reduced space for the fluid velocity, we used a unified notation:
Φu,si = Φui for i = 1, . . . , N and Φu,si = Φsi for i = N + 1, . . . , 2N . We also remark the fact

that the finite dimensional reduced spaces V̂N and Q̂N are parameter–independent, thanks to
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the natural smooth extension performed on the snapshots. We can now introduce the online
velocity uN (θ) and the online pressure pN (θ):

uN (θ) :=
2N∑
i=1

uiN (θ)Φu,si = Lu,suN (θ),(9)

pN (θ) :=
N∑
i=1

pi
N

(θ)Φpi = LppN (θ),(10)

where Lu,s ∈ RNh
u×2N and Lp ∈ RNh

p×N are rectangular matrices containing the FE degrees

of freedom of the basis of V̂N and Q̂N . The parameter dependent solution vector uN (θ) ∈
R2N and p

N
(θ) ∈ RN and the parameter independent reduced basis functions Φu,si , Φpi are

the key ingredients necessary to perform a Galerkin projection of the full system onto the
aforementioned reduced basis space. By introducing the vector UN (θ) = (uN (θ), p

N
(θ)), the

algebraic formulation, at the reduced order level, of the steady Navier–Stokes problem, reads
as follows:

R̂(UN (θ), θ) :=

[
LTu,s(Â(θ) + N̂(uN (θ); θ))Lu,s LTu,sB̂

T
(θ)Lp

LTp B̂(θ)Lu,s LTp Ĉ(θ)Lp

]
UN (θ)−

[
LTu,sF̂1(θ)

LTp F̂2(θ)

]
= 0.(11)

We point out that the matrices appearing in (11) have huge kernels, indeed, as we can see,

we are considering the FE basis functions of the FE spaces V̂h,2 and Q̂h,1 that are parameter–
independent, and defined on the whole background mesh. The aforementioned formulation
(11) however is required only by the ROM procedure: in particular, during the solution of
the online reduced system (11), we are going to discard all the entries in the matrices that
are associated with DOFs that are situated outside of the computational domain Ω∗h(θ). This
means that the value of the reduced solution uN (θ) outside Ω∗h(θ) is not interesting and can
be discarded during the analysis of the numerical results.

In the above POD-ROM solution, we clarify that we have to assemble the matrices of
the high fidelity system. For a “cheaper” in time execution and less computation resources
costs, one could achieve further improvement employing hyper reduction techniques as in
[9, 24,61,64].

3.5. Numerical results. In this paragraph we present the results obtained by applying
the aforementioned reduction techniques to our model problem. For our simulation, the
fluid viscosity is µf = 0.05 cm2/s and the fluid density is 1 g/cm3. The prescribed inlet
velocity is given by uin = (1, 0) m/s. The reduced basis have been obtained with a Proper
Orthogonal Decomposition on the set of snapshots: this reduction technique, although costly
in computational terms, is very useful as it gives an insight on the rate of decay of the
eigenvalues related to each component of the solution. We take Ntrain = 150, and we generate
randomly Ntrain uniformly distributed values for the parameter θ. We then run a POD on
the collected set of snapshots and we obtain our basis functions, with which we are going
to compute the reduced solutions (uN (θ(i)), pN (θ(i))), where i = 1, . . . , Ntest, and N is the
number of basis functions that we use. Figures 5(a) and 5(b) give an example of the
first modes that we obtain with this procedure, whereas in Figure 6 we report the decay of
the eigenvalues for all the components of the solution and for the supremizer. To test the
reduced order model we generate randomly Ntest = 30 uniformly distributed values values
for θ ∈ Ptest. We are interested in the behavior of the relative approximation error that we
obtain by changing the number of basis functions N used to build the reduced solution. In
order to do this we let N vary in a discrete set N : for a fixed value of N ∈ N , and for each θi,
i = 1, . . . , Ntest, we compute both the reduced solution (uN (θi), pN (θi)) and the corresponding

full order solution (uh(θi), ph(θi)). We compute the L2 relative error εN,iu for the velocity and

the relative error εN,ip for the pressure; then we compute the average approximation errors εNu
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(a) First six modes for the velocity.

(b) First four modes for the pressure.

Figure 5. Steady system: Some reduced basis modes for velocity and pressure
for a geometrically patrametrized Navier–Stokes system.

Figure 6. Steady case: POD eigenvalues decay for the fluid velocity u (black),
the fluid pressure p (blue), and the fluid supremizer s (magenta), for a set of
Ntrain = 200 snapshots.
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Figure 7. Steady case: Mode dependent errors between high fidelity and
reduced order approximation, with the supremizer enrichment.

Figure 8. Steady case: Uncut geometry and the high fidelity velocity solution
for parameter θ = −0.015854 (left), reduced order solution for the same θ
(right) and approximation error (middle)

and εNp for every N ∈ N , defined as:

εNu =
1

Ntest

Ntest∑
i=1

εN,iu .

Figure 7 shows the relative approximation errors plotted against the number N of basis
functions used, with the use of the supremizer enrichment at the reduced order level.

Figures 8 and 9 show the approximation error for the velocity and pressure, for a given
test value of the parameter, with the supremizer enrichment. It is worth to mention that the
approximation error tends to concentrate near the cut between the physical domain and the
background mesh, similar to to experiments in the works of [39–41, 43], phenomenon which
will be studied in a future work.

3.5.1. Integration over boundary elements. The simulations presented in this manuscript have
been implemented with ngsxfem, which is an add-on library to the finite element package Net-
gen/NGSolve, which enables the use of unfitted finite element technologies, such as CutFEM
indeed. One of the main tools of ngsxfem is the availability of a routine that ”studies” the
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Figure 9. Steady case: Uncut geometry and the high fidelity pressure solution
for parameter θ = −0.015854 (left), reduced order solution for the same θ
(right) and approximation error (middle)

topology of the domain, identifying elements of the background mesh that are situated inside
or outside the levelset function, or are cut-elements. Thanks to this routine, ngsxfem then
takes automatically care of the integration of bilinear forms over cut-elements.

4. Unsteady Navier–Stokes

We now extend the previous treatment to the unsteady incompressible Navier–Stokes prob-
lem, by introducing the time evolution term ∂tu(θ) in system (1). The physical domain over
which the problem is formulated is always the one in Figure 3.

4.1. Strong formulation. Given a time interval of interest [0, T ], the strong formulation of
the problem reads as follows: for every θ ∈ P, and for every t ∈ [0, T ], find u(t; θ) : Ω(θ) 7→ R2

and p(t; θ) : Ω(θ) 7→ R such that:

(12)


∂tu(θ)− µ∆u(θ) +∇p(θ) + (u(θ) · ∇)u(θ) = f(θ) in Ω(θ)× [0, T ],

divu(θ) = 0 in Ω(θ)× [0, T ],

u(x, 0; θ) = u0(x, θ) in Ω(θ),

with geometrical parameterization identical to that in the previous subsection. The problem
is completed by the following boundary conditions: a prescribed inlet velocity uin at the inlet
boundary Γin(θ), a zero outflow condition at the outflow boundary, a boundary condition
u(θ) · nD = 0 on ΓD and a no–slip boundary condition onf Γθ.

4.2. Space discretization and time–stepping scheme. We discretize in time by a back-
wards Euler approach: we discretize the time interval [0, T ] with the following partition:

0 = t0 < . . . < tNt = T ,

where every interval (tn, tn+1] has measure τn+1 = tn+1 − tn, n = 0, ..., Nt − 1. The discrete
version of the initial condition u0(x; θ) is denoted by u0

h(x; θ); we denote unh the discrete fluid
velocity at time step tn, and similar notation is used for the pressure.

After having applied a time stepping scheme, the space discretized weak formulation of the
problem reads as follows: for every n = 0, . . . , Nt − 1, we seek a discrete velocity un+1

h (θ) ∈
V D
h,2(θ) and discrete pressure pn+1

h (θ) ∈ Qh,1(θ), such that for every (vh(θ), qh(θ)) ∈ V 0
h,2(θ)×

Qh,1(θ), it holds:

m(un+1
h (θ)− unh(θ), vh) + τn+1A(un+1

h (θ), pn+1
h (θ),vh(θ), qh(θ)) = τn+1L(vh(θ)),
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where

m(wh,vh) :=

∫
Ω(θ)

wh · vh dx,

where L(vh(θ)) is defined as in Section 3.2, and A(uh
n+1(θ), pn+1

h (θ),vh(θ), qh(θ)) is defined
as follows:

A(uh(θ), ph(θ);vh(θ), qh(θ)) = ah(uh(θ),vh(θ)) + bh(ph(θ),vh(θ))− bh(qh(θ),uh(θ))+

+ch(uh(θ);uh(θ),vh(θ) + gGPu (uh(θ);uh(θ),vh(θ)) + gGPµ (uh(θ),vh(θ))+

gGPσ (uh(θ),vh(θ)) + gGPp (uh(θ); ph(θ), qh(θ))

The forms ah, bh, ch as well as the stabilization terms gGPu , gGPµ , gGPβ and gGPp have been
introduced in Section 3.2.

4.3. POD and reduced basis generation. Similarly to what has been done in the previous
Section 3.3, in the time dependent case an offline/online procedure will be employed, that will
lead to the generation of a proper reduced basis set. Since the system is both (geometrical)
parameter and time-dependent, we sample not only the geometrical parameter θ, but also the
time t, with the sample points tk ∈ {t0, . . . , tNt} ⊂ [0, T ]. This procedure is computationally
more expensive and results in a much larger total number of snapshots to be collected with
respect to the static system: the total number of snapshots that we collect is now equal to

M̂ = M ·Nt. The snapshots matrices Su, Ss and Sp are then given by:

Su = [û0
h(θ1, t0), . . . , û0

h(θ1, tNt), . . . , û0
h(θM , t0), . . . , û0

h(θM , tNt)] ∈ RN
h
u×M̂ ,(13)

Ss = [ŝh(θ1, t0), . . . , ŝh(θ1, tNt), . . . , ŝh(θM , t0), . . . , ŝh(θM , tNt)] ∈ RN
h
u×M̂ ,(14)

Sp = [p̂h(θ(1), t0), . . . , p̂h(θ1, tNt), . . . , p̂h(θM , t0), . . . , p̂h(θM , tNt)] ∈ RN
h
p×M̂ ,(15)

where we used the ˆ notation to indicate that we implemented, also in this case, a natural
smooth extension of the FE solutions obtained in the offline phase of the method, in order
to work with parameter–independent reduced basis functions and parameter–independent
reduced basis spaces, as well as a lifting function for the inlet velocity, see Section 3.3.1. We
solve an eigenvalue problem like the one introduced in Section 3.3, and finally, adopting the
notation of Section 3.4 we end up with the parameter–independent reduced basis spaces

V̂N = span{Φu,s1 , . . . ,Φu,s2N}, Q̂N = span{Φp1, . . . , Φ
p
N},

Let us now denote by (unN (θ), pnN (θ)) the reduced solution at time-step tn, for n = 0, . . . , Nt,

where unN (θ) := un,0N (θ)+`(θ), and un,0N (θ) and pnN (θ) are defined as in (9) and in (10), respec-

tively. We can derive the subsequent reduced algebraic system for the unknown Un+1
h (θ) =

(un+1,0
N (θ), pn+1

N (θ)):

(16)

[
LTu,sM̂Lu,s 0

0 0

]
Un+1
N (θ) + τn+1R̂N (Un+1

N (θ); θ) =

[
LTu,sM̂Lu,s 0

0 0

]
UnN (θ),

where M̂ij := (ϕ̂i, ϕ̂j)R. Here {ϕ̂i}N
h
u

i=1 are the FE basis functions of the FE parameter–

independent spaces V̂ D
h,2 and Q̂h,1, as defined in Section 3.3.2. Here, R̂(UN (θ); θ) is defined as

in Section 3.4.

4.4. Numerical results. In this paragraph we present the results obtained by applying the
proposed reduction technique to a time dependent case. The time-step used in our simulation
is τ = 0.011s, and the final time is T = 0.7s. The fluid viscosity is µf = 0.05 cm2/s and the
fluid density is 1 g/cm3. We impose a constant inlet velocity uin = (1, 0) m/s. We now take
Ntrain = 200, and we generate randomly Ntrain uniformly distributed values for the parameter
θ. We also remind that we sample the time interval [0, T ] with an equispaced sampling
{t0, . . . , tNt}. We then run a POD on the set of snapshots collected, and we obtain our basis
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(a) First six modes for the velocity.

(b) First four modes for the pressure.

Figure 10. Unsteady system with static in time geometry: Some reduced
basis modes for velocity and pressure for the evolutionary in time, geometrically
patrametrized Navier–Stokes system.

functions with which we are going to compute the reduced solutions (uN (t, θi), pN (t, θi), where
i = 1, . . . , Ntest, and N is the number of basis functions that we use.

Figure 10 gives an example of the first modes that we obtain with this procedure, whereas
in Figure 11 we show the rate of decay of the eigenvalues for all the components of the solution
and for the supremizer. To test the reduced order model we generate randomly Ntest = 30
uniformly distributed values for θ ∈ Ptest.
We are again interested in the behavior of the relative approximation error as a function
of the number N of basis functions used at the reduced order level. We therefore let N
vary in a discrete set N : for a fixed value of N ∈ N , and for each θi, i = 1, . . . , Ntest, we
compute both the reduced solution (uN (t, θi), pN (t, θi)) and the corresponding high order

solution (uh(t, θi), ph(t, θi)). We calculate the L2 relative error εN,iu,tk
for the velocity and the

relative error εN,ip,tk
for the pressure at time tk, by taking an average of these relatives error we

obtain the mean approximation error εN,iu for u and εN,ip for p, for each θi ∈ Ptest. Finally we
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Figure 11. Time dependent case and the POD eigenvalues decay for the
fluid velocity u (black), the fluid pressure p (blue), and the fluid supremizer s
(magenta), for a set of Ntrain = 200 snapshots.
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Figure 12. Unsteady case: Mode dependent errors between high fidelity and
reduced order approximation, with the supremizer enrichment.

compute the average approximation errors εNu and εNp for every N ∈ N , defined as:

εNu =
1

Ntest

Ntest∑
i=1

εN,iu .

Figure 12 shows the relative approximation errors plotted against the number N of basis
functions used, with the supremizer enrichment at the reduced order level.

Figure 14 shows the approximation error for the pressure, for the same parameter value,
with the supremizer enrichment. Figure 13 shows the approximation error for the fluid velocity
uf for a given value of the test parameter θ, at the final time-step of the simulation.

5. Unsteady Navier–Stokes: immersed obstacle

We now consider here a further test case of interest, namely the case of an obstacle immersed
in a fluid. For this test case we assume that D(θ) represents a cylinder immersed in the fluid
domain, and therefore we denote herein Γθ = ∂D(θ) the immersed boundary.

The physical domain over which the problem is formulated is depicted in Figure 15.
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Figure 13. Unsteady case: Cut geometry and high fidelity fluid velocity at
final time T = 0.7 for parameter θ = 0.045406 (left), reduced order solution
for the same θ (right) and approximation error (bottom).

Figure 14. Unsteady case: Cut geometry and the high fidelity pressure so-
lution at final time at final time T = 0.7 for parameter θ = 0.050014 (left),
reduced order solution for the same θ (right) and approximation error (bot-
tom).

Γin Γout

ΓD

ΓD

ΓθD(θ)

Figure 15. The physical domain of interest (light blue) and the levelset ge-
ometry (dark blue). The position of the immersed obstacle is determined by a
geometrical parameter θ. The immersed boundary is ∂D(θ) := Γθ.
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Figure 16. Different levelset geometries: from left to right, θ = 0.5, θ = −0.5,
θ = 0.

5.1. Strong formulation. The problem reads as follows: for every t ∈ [0, T ] and for every
θ ∈ P ⊂ R, find u(t; θ) : Ω(θ) 7→ R2, p(t; θ) : Ω(θ) 7→ R such that:

(17)


∂tu(θ)− µ∆u(θ) +∇p(θ) + (u(θ) · ∇)u(θ) = f(θ) in Ω(θ)× [0, T ],

divu(θ) = 0 in Ω(θ)× [0, T ],

u(x, 0; θ) = u0(x, θ) in Ω(θ).

The previous system is completed by the following boundary conditions: a prescribed inlet
velocity uin at the inlet boundary Γin, a no slip boundary condition on the immersed boundary
Γθ, a zero outflow condition on Γout and a boundary condition u(θ) · nD = 0 on ΓD.

5.1.1. Geometrical parametrization. The obstacle immersed in the fluid domain in our prob-
lem is a circle, defined through the time dependent levelset function:

φ(x, y, θ) = (x+ 1.5)2 + (y − θ)2 −R2,

where θ determines the position of the center of the cylinder in the domain, and R is the
radius of the circle. Figure 16 shows the physical domain Ω(θ) for different values of the
parameter θ: as we can see, changing the value of the geometrical parameter can produce a
significant change in the physical domain of interest, and therefore this situation is particularly
interesting for an unfitted discretization point of view, since adopting a standard discretization
would require remeshing, or, alternatively, remapping the whole problem (17) onto a reference
configuration, similarly to what is done for example with an Arbitrary Lagrangian Eulerian
approach in fluid–structure interaction (see for example [7, 46,49,63]).

5.1.2. Weak formulation and time discretization. We now want to state the weak formulation
of the original problem after discretization in space and after having applied a time stepping
scheme. As far as the time discretization concerns, we employ the time stepping scheme
adopted in Section 4: we discretize the time interval [0, T ] in sub-intervals (tn, tn+1] of measure
τn+1 = tn+1 − tn, for n = 0, . . . , Nt − 1. Also in this case, we decide to treat the boundary
conditions in the following way: the boundary conditions on ΓD and on Γout, as well as
the condition on the inlet profile, are imposed strongly; only the boundary condition on the
immersed boundary Γθ is imposed weakly, thanks to the Nitsche method. For the space
discretization we therefore use the discrete spaces introduced in Section 4.2, and which we
recall briefly:

Vh,2(θ) := {vh ∈ (C0(Ω
∗
h(θ)))2 : vh|T ∈ (P2(T ))2, ∀T ∈ Ih(θ)},

V D
h,2(θ) := {vh ∈ Vh,2(θ) such that vh = uin on Γin and vh · nD = 0 on ΓD},
V 0
h,2(θ) := {vh ∈ Vh,2(θ) such that vh = 0 on Γin and vh · nD = 0 on ΓD},

Qh,1(θ) := {qh ∈ C0(Ω
∗
h(θ)) : qh|T ∈ P1(T ), ∀T ∈ Ih(θ)}.

For the weak formulation we restore to the one presented in Section 4.2.
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Figure 17. First three modes for the x–component of the velocity and for the
y–component.

5.2. Proper Orthogonal Decomposition and online system. Also in this case, once we
have computed the snapshots (uh(ti; θ), ph(ti; θ)), for all θ in a discrete parameter training
set Ptrain and for i = 0, . . . , Nt, we rely on a natural smooth extension of the snapshots,
and on a lifting of the inlet boundary condition, in order to obtain solutions that are defined
on the whole background mesh Îh. Again, we use a supremizer enrichment technique in
order to obtain stable approximations of the pressure in the online step, and we use a lifting
function to treat the non–homogeneous Dirichlet condition at the inlet boundary Γin. Also
here, in order to make the notation more light, we will omit the lifting function, with the
understanding that it has been used for implementation purposes. After having created the
parameter independent reduced basis functions {Φu,si }2Ni=1 and {Φpi }Ni=1 for the fluid velocity
and fluid pressure respectively, the online algebraic system that we are going to solve, for
every θ ∈ P, is the one presented in Equation (16):[

LTu,sM̂Lu,s 0
0 0

]
Un+1
N (θ) + τn+1R̂N (Un+1

N (θ); θ) =

[
LTu,sM̂Lu,s 0

0 0

]
UnN (θ).

5.3. Numerical results. We now present some numerical results for the test case of the
immersed obstacle. The cylinder has a radius R = 0.2 cm, and the center C of the cylinder
has coordinates (xc, yc) = (−1.5, θ), with θ ∈ [−0.65, 0.65]. The background domain R is a
rectangle of coordinates (−2,−1) and (2, 1). The fluid viscosity is µ = 0.05, the fluid density

is 1. The mesh size is hmax = 0.07, and the timestep used for the discretization is τ = hmax
6 ;

the final time of the simulation is T = 0.7 s. The inlet velocity profile is uin = (1, 0) m/s. In
this case, Ntrain = 200 is the number of parameters θi that we take to compute the snapshots
for the POD, whereas Ntest = 30 is the number of parameters θi for which we compute the
online solution.

Figures 19–24 represent the fluid velocity and the fluid pressure, at the last time-step of
the simulation, for three different values of the geometrical parameter θ. As we can see, the
change in the position of the immersed obstacle, according to the parameter θ, is significant;
nonetheless, with an unfitted discretization we were able to obtain very good results, in terms
of both velocity and pressure approximation. The use of the supremizer enrichment technique
helps to obtain a more accurate results for the reduced order fluid pressure. In Figure 25 we
can see the behaviour of the first eigenvalues returned by a POD on the fluid velocity, the fluid
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Figure 18. First four pressure modes

Figure 19. Fluid velocity approximation (top left), reduced order approxima-
tion (top right) and approximation error (bottom), for θ = 0, at time t = 0.7
s.

Figure 20. Pressure approximation (top left), reduced order approximation
(top right) and approximation error (bottom), for θ = 0, at time t = 0.7 s.

pressure and the fluid supremizer; Figure 26 shows the behaviour of the mean approximation
error, plotted against the number N of basis functions used for the online approximation,
and for 30 values of the parameter θ in the test sample. We remark that these results have
been obtained without the implementation of any snapshot transportation technique (see for
example [22, 39, 46]): the analysis of the influence of this additional feature on the overall
quality of the approximation at the reduced order level is left for a future work.
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Figure 21. Fluid velocity approximation (top left), reduced order approxi-
mation (top right) and approximation error (bottom), for θ = 0.6, at time
t = 0.7 s.

Figure 22. Pressure approximation (top left), reduced order approximation
(top right) and approximation error (bottom), for θ = 0.6, at time t = 0.7 s.

Figure 23. Fluid velocity approximation (top left), reduced order approxi-
mation (top right) and approximation error (bottom), for θ = −0.6, at time
t = 0.7 s.

6. Conclusions

In this work we have introduced a POD–Galerkin ROM approach for geometrically parametrized
two dimensional Navier–Stokes equations, both in the steady and in the unsteady case. The
procedure that we have proposed shows many of the advantages that characterize CutFEM
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Figure 24. Pressure approximation (top left), reduced order approximation
(top right) and approximation error (bottom), for θ = −0.6, at time t = 0.7 s.

Figure 25. Immersed obstacle: decay of the first 200 eigenvalues returned
by the POD on the fluid velocity (black), the pressure (magenta) and the
supremizer (blue).

Figure 26. Immersed obstacle: mean error behaviour, according to differ-
ent number of basis functions used in the online phase, for the fluid velocity
(blue) and the pressure (red). The results were obtained using the supremizer
enrichment technique.

and reduced order methods. First of all, by choosing an unfitted mesh approach, we have
shown that it is possible to work with geometries that can potentially change significantly the
shape of (part of) the domain, as we can see from the examples in Figure 4 and Figure 16. By
employing an unfitted CutFEM approach at the full order level, we can let the geometrical
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parameter θ vary in a large interval of values: this helps to overcome one of the limitations
of the standard Finite Element discretization, where a re–meshing would have been needed.

At the reduced order level, an unfitted mesh discretization has been combined with a snap-
shot extension, in order to be able to work with finite dimensional spaces that are parameter–
independent: the importance of this aspect is related to the choice of performing a Proper
Orthogonal Decomposition. In addition, the implementation of a supremizer enrichment tech-
nique allows us to obtain a stable approximation of the fluid pressure. Combined together,
the unfitted CutFEM discretization and the Reduced Basis Method represent a very powerful
tool, which here allowed us to investigate time–dependent, nonlinear fluid flows problems. To
conclude, with this work we started to prepare the basis for a CutFEM-RB procedure that,
thanks to a Galerkin projection and with the use of a supremizer enrichment, will ideally be
used to obtain accurate approximations of solutions of very complex problems, such as fully
coupled multiphysics problem, where large displacements of the structure may occur. There-
fore, as future perspectives, we first would like to extend the procedure presented here to
nonlinear, time–dependent problems, where the levelset geometry is time–dependent (i.e. the
motion of the levelset geometry is time–dependent, and this motion is known a priori); then,
we would like to move to a more general case, where on the contrary the motion of the levelset
geometry is an unknown of the problem. As a next step and as final goal therefore, we would
like to test the performance of this approach with time dependent Fluid–Structure Interaction
problems, geometrically shallow water flows as well as with phase flow Navier-Stokes systems.
Furthermore, from the model reduction point of view, we will pursue further developments in
hyper-reduction techniques [9, 24,61,64] tailored for unfitted discretizations.
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54. J. Schöberl, C++11 implementation of finite elements in NGSolve, Institute for Analysis and Scientific
Computing, Vienna University of Technology (2014).

55. B. Schott and W. Wall, A new face-oriented stabilized XFEM approach for 2D and 3D incompressible
Navier–Stokes equations, Comput. Methods Appl. Mech. Eng. 276 (2014), 233–265.

56. B. Schott, W. Wall, and E. Burman, Stabilized cut finite element methods for complex interface coupled
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