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Abstract: We study the transition from integrability to chaos for the three-particle Fermi–Pasta–Ulam–
Tsingou (FPUT) model. We can show that both the quartic β-FPUT model (α = 0) and the cubic one
(β = 0) are integrable by introducing an appropriate Fourier representation to express the nonlinear
terms of the Hamiltonian. For generic values of α and β, the model is non-integrable and displays a
mixed phase space with both chaotic and regular trajectories. In the classical case, chaos is diagnosed
by the investigation of Poincaré sections. In the quantum case, the level spacing statistics in the
energy basis belongs to the Gaussian orthogonal ensemble in the chaotic regime, and crosses over to
Poissonian behavior in the quasi-integrable low-energy limit. In the chaotic part of the spectrum, two
generic observables obey the eigenstate thermalization hypothesis.

Keywords: integrable systems; chaotic Hamiltonian systems; quantum chaos; eigenstate thermalization
hypothesis

1. Introduction

The Fermi–Pasta–Ulam–Tsingou (FPUT) model [1] has widely been investigated with the
aim of understanding the approach to thermodynamic equilibrium in an isolated system [2,3].
Since the beginning of these studies, the relation with integrability in Hamiltonian mechanics
and the Kolmogorov–Arnold–Moser theorem [4–6] has been stressed [7]. More recently, the
“closeness” of the model to the integrable Toda lattice has carefully been examined [8].

Here, we take a different approach to integrability in the FPUT model, with the aim
of discussing its quantization. We study the N-particle model for periodic boundary
conditions and we introduce a specific Fourier transform, which allows us to conveniently
write the nonlinear interaction terms among the Fourier mode variables [9]. We then
consider the three-particle case N = 3 and prove that it is integrable when either the
cubic nonlinearity vanishes or the quartic nonlinearity does. Interestingly, the model with
only quartic nonlinearity, dubbed β-FPUT model, has an additional integral of the motion
besides energy and momentum. This integral, previously discovered in Ref. [10] using an
analogy with celestial mechanics, can be associated to a cylindrical symmetry, which is
only manifested in Fourier modes. Already for N = 4, this integral is no longer present,
and what remains for higher values of N, even in the thermodynamic limit, is the presence
of invariant subspaces in the Fourier mode space [9], whose stability has carefully been
examined by Chechin and coworkers (see Ref. [11] and Refs. therein). It should be here
mentioned that a study of the Einstein–Brillouin–Keller (EBK) quantization of the integrable
N = 3 Toda lattice was undertaken by Isola, Kantz and Livi [12]. The complete (α + β)-
FPUT model, with both non-zero cubic and quartic nonlinearity is non-integrable and
displays strong chaotic motion in an intermediate energy range, as we show numerically
by displaying Poincaré sections.
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The quantization of classical chaotic systems is still an extremely active field of research,
which has its roots in the discovery of the phenomenon of dynamical localization by Casati,
Chirikov, Ford and Izrailev [13] and in the pioneering investigation of level statistics
for Sinai billiards by Berry [14]. This latter topic was further investigated by Berry and
Tabor [15], who characterized specifically the Poisson statistics in the integrable limit. These
studies led to the famous universality hypothesis by Bohigas, Giannoni and Schmit [16],
who first suggested that the spectra of quantum chaotic systems are in agreement with
the predictions of random matrix theory (an early account of these developments can be
found in Tabor’s book [17]). The analysis of spectral statistics for smooth Hamiltonians
continued with the work of Seligman, Verbaarschot and Zirnbauer [18], who studied the
transition from regular to chaotic phase-space and fitted the levels with Poisson or Gaussian
orthogonal ensemble (GOE) statistics, respectively, for an even parity potential.

In this paper, we quantize the three-particle FPUT model in the formalism of first
quantization, and discuss its transition from integrability to chaos using methods from ran-
dom matrix theory. Moreover, we check the eigenstate thermalization hypothesis (ETH) [19,20]
for two relevant observables, kinetic energy and the additional integral of the motion. This
complements works about the bosonic FPUT model [21–23], and in particular a recent
study [24] investigating the localization transition in the thermodynamic limit.

The paper is organized as follows. In Section 2, we introduce the appropriate Fourier
mode variables and prove the integrability of both the α- and β- FPUT N = 3 model. In
Section 3, we quantize the three-particle FPUT model and study its level statistics. Section 4
is devoted to conclusions.

2. The FPUT Model and the Integrable Three-Particle Case

The Hamiltonian of the (α+ β)-Fermi–Pasta–Ulam–Tsingou coupled oscillator model is

H =
N

∑
i=1

[
p2

i
2

+
1
2
(qi+1 − qi)

2 +
α

3
(qi+1 − qi)

3 +
β

4
(qi+1 − qi)

4

]
= H0 + Hα + Hβ, (1)

where qi is the relative displacements of the i-th oscillator from its equilibrium position
and pi the conjugate momentum. We choose periodic boundary conditions qN+1 = q1,
pN+1 = p1. The unperturbed Hamiltonian can be written in quadratic form

H0 = H(α = 0, β = 0) =
1
2
[tpp +t qAq

]
, (2)

where t denotes the transposed of a column vector and A is the NxN symmetric matrix
whose elements are

Ai,j = −δi−1,j + 2δi,j − δi+1,j − δi,1δj,N − δi,Nδj,1. (3)

Due to the periodic boundary conditions, matrix A is degenerate. Its eigenvalues are
µk = ω2

k , where

ωk = 2 sin
(

πk
N

)
, k = 0, . . . , N − 1 (4)

are the harmonic frequencies of the linear oscillator chain. The normalized eigenvectors
are u0

n = 1/
√

N, for k = 0, uk
n =

√
2/N sin(2πkn/N + γ), for k = 1, . . . , [(N − 1)/2],

uN/2
n = (−1)n/

√
N, for k = N/2 (N even), uN−k

n =
√

2/N sin(2πkn/N + γ + π/2),
uN−k

n =
√

2/N sin(2πkn/N + γ + π/2), for k = bN/2c+ 1, . . . , N − 1. Here, b•c denotes
the integer part, the index n runs from 1 to N and the free parameter γ can be fixed
arbitrarily, due to the degeneracy of A. The NxN matrix S, which maps Fourier modes
Q0, . . . , QN−1 into q1, . . . , qN , is orthogonal, and its columns are given by the eigenvectors
of A. The momenta in the two dual spaces, P0, . . . , PN−1 and p1, . . . , pN , are related by
the same linear transformation S. Although the choice of γ does not affect the quadratic
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part of the Hamiltonian in Fourier modes, it does have consequences on the expression
of the nonlinear interaction terms among the Fourier modes. A particularly convenient
choice is γ = π/4, for which all columns of the transformation matrix S take the same
expression 1/

√
N[sin(2πkn/N) + cos(2πkn/N)], with n = 1, . . . , N as the row index and

k = 0, . . . , N− 1 as the column index, respectively. Using this transformation, the nonlinear
cubic term of the Hamiltonian is transformed into

Hα(Q) =
α

3

(
2
N

)3/2 N

∑
n=1

N−1

∑
k1,k2,k3=0

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

ωk1 ωk2 ωk3 Qk1 Qk2 Qk3 , (5)

where

Uγ
n,k = cos

(
πk(2n + 1)

N
+ γ

)
. (6)

The sum over n in Equation (5) can be explicitly performed using the properties of the
U′s (see Appendix A). The result is

Hα(Q) =
α

6

( √
2

N
√

N

)
N−1

∑
k1,k2,k3=0

Bk1,k2,k3 ωk1 ωk2 ωk3 Qk1 Qk2 Qk3 , (7)

where

Bk1,k2,k3 = −∆k1+k2+k3 + ∆k1+k2−k3 + ∆k1−k2+k3 + ∆k1−k2−k3 , (8)

and ∆r = (−1)m if r = mN and 0 otherwise, with m an integer. The Bk1,k2,k3 coupling
coefficients incorporate momentum conservation. The same procedure can be used to
derive the quartic term in the Hamiltonian, obtaining

Hβ(Q) =
β

8N

N−1

∑
k1,k2,k3,k4=0

Ck1,k2,k3,k4 ωk1 ωk2 ωk3 ωk4 Qk1 Qk2 Qk3 Qk4 , (9)

where

Ck1,k2,k3,k4 = −∆k1+k2+k3+k4 + ∆k1+k2−k3−k4 + ∆k1−k2+k3−k4 + ∆k1−k2−k3+k4 (10)

again reflecting momentum conservation. This method is fully general and can be applied
to derive the Hamiltonian in Fourier modes Q for all values of N.

The first nontrivial value of N is N = 3, since the N = 2 case, being a two-body
problem, is totally integrable. For N = 3, we obtain the following potential:

V(Q1, Q2) =
3
2
(Q2

1 + Q2
2) +

α

2
(Q1 + Q2)

3 +
9β

8
(Q2

1 + Q2
2)

2 (11)

where, for convenience, the Hamiltonian is rewritten in slightly different variables where
Q1 is swapped with Q2 and, then, the sign of Q1 is changed, leaving the Hamiltonian
invariant. Therefore, we can represent the dynamics in Fourier space as the motion of a
particle in the two-dimensional potential (11).

Let us first discuss the potential (11) with α = 0 and β 6= 0. The kinetic term of the
Hamiltonian is

K =
1
2
(P2

0 + P2
1 + P2

2 ) , (12)
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and hence, the center of mass motion is free, (P0 = const.). The potential is invariant under
rotations in the (Q1, Q2) plane; therefore, the pseudo-angular momentum

L0 = Q1P2 −Q2P1 (13)

is conserved. Going back to the original coordinates with an inverse Fourier transform, it
can be shown that

L0 =
1√
3
[p1(q3 − q2) + p2(q1 − q3) + p3(q2 − q1)] (14)

which was known to be a constant of motion, see [10]. In Fourier coordinates, this un-
expected constant of motion acquires an explicit physical meaning, by associating it to a
rotational symmetry. Thinking of the three coordinates (q1, q2, q3) as positions of a particle
in three dimensions, this symmetry corresponds to a cylindrical rotational symmetry of
the potential around the axis (u0

1, u0
2, u0

3) = (1, 1, 1)/
√

3, the first eigenvector of A. This
symmetry is related to the component of the angular momentum, L0, along this axis. The
two other constants of motion for this three-dimensional phase space are energy and the
momentum along the axis P0 = (p1 + p2 + p3)/

√
3.

The case α 6= 0, β = 0 is also integrable. This can be shown by introducing the
variables s = Q1 + Q2 and d = Q1−Q2. In terms of these variables, the potential is written
as V(s, d) = (3/4)(s2 + d2) + (α/2)s3 and is therefore separable along the directions s
and d. Along d, the motion is harmonic, while along s, the motion is the one of a cubic
oscillator. The motion in the full space is therefore a composition of free, harmonic and
cubic anharmonic motions along the three directions.

The intermediate case where both α 6= 0 and β 6= 0 is non-integrable. A typical
potential surface is displayed in Figure 1: it shows two valleys of different depths. If the
motion is within each valley, at low energy, it is quasi-regular and very weakly chaotic,
close to integrable. On the contrary, when the motion runs across the two valleys, at higher
energies, it is strongly chaotic, displaying intersections on the Poincaré plane that cover
an area, see Figures 2 and 3 with two different section planes (Q1, P1) and (Q1, Q2) (the
numerical integration algorithm is described in Appendix B). More precisely, the potential
minima have coordinates Q−1 = Q−2 = −1/(α−

√
α2 − 3β) and Q1 = Q2 = 0, while the

saddle point is located at Q+
1 = Q+

2 = −1/(α +
√

α2 − 3β) and the corresponding values
of the potential energy are

V(Q±1 , Q±2 ) =
4α
(

α±
√

α2 − 3β
)
− 9β

2
(

α±
√

α2 − 3β
)4 , V(0, 0) = 0 . (15)

Two valleys exist for weak to moderate quartic interactions (β < 3α2). The boundary
value of the potential separating motions within the valleys and above them is given by
Vb = V+. Notice that in the case of strong quartic interactions (β > 3α2), only one minimum
occurs, and the motion is again quasi-integrable.
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Figure 1. Effective potential surface V(Q1, Q2) = (3/2)(Q2
1 + Q2

2) + (α/2)(Q1 + Q2)
3 + (9β/8)

(Q2
1 + Q2

2)
2 for α =

√
2 and β = 0.5.

Figure 2. Poincaré maps (Q1(t∗), P1(t∗)) for the particle in the potential (11) at fixed times t∗ defined
by P2(t∗) = 0. The particle is initially at rest, and in the crater of the upper potential valley, i.e.,
Q1(0) > 0, Q2(0) = 0. (a) At low energies, the particle does not escape from the valley. The motion
describes a closed curve and it is hence quasi-integrable. (b,c) At higher energies, the particle visits
both potential valleys and a single orbit fills an area in the Poincaré section: the motion shows strong
chaotic behavior. (d–f) Zooms of (b). Parameters: α =

√
2 and β = 0.5 and 250,000 points in the

Poincare sections.
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Figure 3. Poincaré maps (Q1(t∗), Q2(t∗)) for fixed times t∗ defined by P2(t∗) = 0. Parameters are the
same as in Figure 2. (a) Integrable regime. (b,c) Chaotic regime. (d,e) Zooms of (b). (f) Zoom of (c).

Summarizing, this analysis shows that the FPUT three-particle model is integrable in
the two limits α → 0, β 6= 0 and α 6= 0, β → 0. Moreover, the model displays a strongly
chaotic behavior for intermediate values and α and β and for energies that are close to a
saddle in the two-dimensional phase-space of a fictitious particle, which represents the
motion in Fourier space. These results call for an analysis of the quantum behavior of such
a model, which is pursued in the following section.

3. The Quantum Three-Particle FPUT Model

In the remainder of the paper, we extend the study to a quantum mechanical version
of the three-particle FPUT model. To this end, we promote classical coordinates pj, qj to
quantum operators p̂j, q̂j, which satisfy canonical commutation relations [q̂i, p̂j] = iδi,j
(h̄ = 1). The quantum Hamiltonian of the three-particle FPUT model is then given by

H =
3

∑
i=1

[
p̂2

i
2

+
1
2
(q̂i+1 − q̂i)

2 +
α

3
(q̂i+1 − q̂i)

3 +
β

4
(q̂i+1 − q̂i)

4

]
. (16)

Analogously to the classical part, we can reduce the degrees of freedom by defining normal
modes Q̂0, Q̂1 and Q̂2. The mode Q̂0, corresponding to center of mass motion, decouples
from the other two, and we are thus left with the problem of obtaining the eigenvalues and
eigenstates for the relevant normal modes Q̂1 and Q̂2 of the potential

V̂ =
3
2
(Q̂2

1 + Q̂2
2) +

α

2
(Q̂1 + Q̂2)

3 +
9β

8
(Q̂2

1 + Q̂2
2)

2 . (17)

3.1. The Integrable Cases

As for the classical FPUT model, if α or β are equal to zero, the model is integrable. In
particular, if α = 0, as already discussed in Section 2, the model has a manifest cylindrical
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symmetry with respect to the Q0 axis. Therefore, it is convenient to pass to cylindrical
coordinates (r, φ, z) defined as 

Q1 = r cos φ

Q2 = r sin φ

Q0 = z

. (18)

In terms of these new variables, the time-independent Schrödinger equation reads[
− 1

2r
∂

∂r

(
r

∂

r∂r

)
− 1

2r2
∂2

∂φ2 −
1
2

∂2

∂z2 +
3
2

r2 +
9
8

βr4
]

ψ = Eψ , (19)

where we introduced the wave function ψ = ψ(r, φ, z). Moreover, the Hamiltonian com-
mutes with the operators corresponding to the two integrals of motion P̂0 and
L̂0 = Q̂1P̂2 − Q̂2P̂1. As a consequence, the energy levels can be labeled by three quan-
tum numbers E = En,l0,p0 corresponding to the three commuting observables Ĥ, P̂0, L̂0, and
we can search for the solutions of the Schrödinger equation having the separable form

ψn,p0,l0(r, φ, z) =
eip0z
√

L
eil0φ

√
2π

fn,l0(r) . (20)

The normalized eigenfunctions of the P̂0 and L̂0 operators factorize, and fn,l0(r) is the
radial wave function which remains to be found. L is the size of the system along the axial
direction z. We notice that square modulus of the total wave function must be normalized
to unity by requiring that∫

drdφdzr2
∣∣∣ψn,p0,l0(r, φ, z)

∣∣∣2 =
∫

drr2∣∣ fn,l0(r)
∣∣2 = 1 . (21)

It is then convenient to introduce the new radial function un,l0(r) =
√

r fn,l0(r). Finally,
inserting this ansatz in Equation (19), we obtain the radial equation

−1
2

d2un,l0(r)
dr2 + Veff(r)un,l0(r) = En,l0 un,l0(r) , (22)

where En,l0 = En,l0,p0 − p2
0/2, and we introduced the effective potential

Veff(r) =
4l2

0 − 1
8r2 +

3
2

r2 +
9
8

βr4 , (23)

which, in addition to the interaction potential V(r) = (3/2)r2 + (9/8)βr4, also contains
a centrifugal barrier term. Summarizing, we mapped the problem into a single particle
moving in a one-dimensional potential. We are not aware of the exact analytical solutions of
Equation (22) with given boundary conditions, but the equation could be of course solved
numerically to determine the radial spectrum quantitatively. This concludes the proof of
the integrability of the quantum version of the three-particle β-FPUT model.

The quantum integrability of the α-FPUT model is even simpler because the corre-
sponding Schrödinger equation is separable in two independent one-dimensional
Schrödinger equations, describing a harmonic and an anharmonic oscillator, respectively.

3.2. The Non-Integrable (α+β)-FPUT Three-Particle Model

The rotational symmetry of potential (11) for α = 0, leading to integrability, is lost
when the general case α 6= 0 is considered. In the classical case, we hence found chaotic
behavior, as shown by the Poincarè sections. Quantum mechanically, we should expect a
situation similar to the one studied in Ref. [18], where the Poisson level spacing statistics
was found in the integrable limit, while these statistics were seen to belong to the GOE
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universality class in the case of the mixed regular–chaotic phase space. In the quantum
FPUT model, we should therefore find the GOE statistics at intermediate energies and
Poisson statistics at both low and high energy.

We adopt a numerical diagonalization procedure of Hamiltonian Equation (16) [25].
We discretize the Hamiltonian on a two-dimensional square lattice with grid size [−L/2, L/2]2

and Ne grid points assuming open boundary conditions. The grid is carefully chosen such
that the minima of the potential are well resolved, and the boundaries of the grid are
completely dominated by the quartic term. Rescaled numerical spectra are presented in
Figure 4, with ascending order of energy levels. Eigenvalues stabilize as Ne is increased,
and we checked that the uncertainty in the numerical value of each eigenvalue is small
compared to the mean level spacing ∆.

0 5× 103 104

n

0

10

20

30

E
n

(a)

0.00 0.25 0.50 0.75 1.00
n/N

0

10

20

30

E
n

(b)

Ne = 1.6× 103

Ne = 3.6× 103

Ne = 6.4× 103

Ne = 104

Figure 4. Energy levels of the three-particle FPUT model for α =
√

2 and β = 1/2. In panel (a), the
levels are ordered in increasing value and for different grid points Ne of the lattice. In panel (b), we
scale the level order by the number of grid points, obtaining a perfect data collapse.

The central object in our analysis is the distribution function

P(s) = δ(s− δn) , (24)

which is obtained from consecutive level spacings

δn =
En+1 − En

∆
. (25)

Here, ∆ denotes the mean level spacing. The spectral statistics we present are in line with the
Gaussian orthogonal ensemble (GOE) of random matrices with distribution function [17,26,27]

PGOE(s) =
π

2
se−

π
4 s2

. (26)

This poses a clear signature of a chaotic quantum system with real, normally distributed
entries of the Hamiltonian. In contrast, integrability will be associated with an absence of
level repulsion and a Poissonian level distribution function

PP(s) = e−s . (27)

Another measure for chaos is given by the level-statistics ratio

r =
min(δn, δn+1)

max(δn, δn+1)
. (28)

Figure 5a shows the level distribution function P(s) for an energy window E ∈ [1.9, 2.2]
with n = 300 levels. With apparent level repulsion in place, level spacings are distributed
according to the GOE prediction, indicating chaotic behavior. This is contrasted with a
distribution obtained in an energy window E ∈ [7, 9] (n = 300 levels) in Figure 5b, with the
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Poissonian level statistic. The two discussed cases confirm the physical picture presented
above, though with noticeable fluctuations due to the number of considered levels.

0 1 2 3
s

0.0

0.2

0.4

0.6

0.8

P
(s

)

(a)

π
2se
−π

4s
2

0 1 2 3
s

0.00

0.25

0.50

0.75

1.00

P
(s

)

(b)

e−s

Figure 5. Level spacing distribution of the energy spectrum of the FPUT model P(s) with α =
√

2,
β = 1/2. In panel (a) the distribution is well fitted with GOE statistics, while in panel (b) the statistics
is clearly Poissonian.

The level spacing statistics in different regions of the spectrum is strongly affected by
the shape of the potential. We will consider representative parameter values of α and β
for which the potential landscape has two non-equivalent minima separated by a barrier
of height Vb, see Figure 6. At very low energies, the wave function localizes in one of the
potential minima, which gives rise to harmonic levels En ' ω(n+ 1

2 ). At very high energies,
the quartic term dominates over the cubic, effectively restoring rotational symmetry, and
therefore integrability. From a semi-classical point of view, we expect most of the chaos to
appear near the separatrix for levels at energies E & Vb.

The transition from Poissonian to GOE statistics as a function of energy is traced via
the level ratio r, see Figure 7. For this, we sweep the energy window with n eigenvalues cen-
tered around an energy E. At high energies (E� Vb), we find a level ratio consistent with
the Poisson distribution, r ≈ 0.38. At energies near to the barrier height but sufficiently high
so that it is not strongly affected by the presence of the potential minima (Vb ≤ E ≤ 20Vb),
the level ratio peaks at the GOE value r ≈ 0.52, signaling a transition to a fully quantum
chaotic behavior of the system. The transition between these two extremal cases occurs on
the same energy scale on which rotational symmetry is broken, and hence appears visible
in Figure 7. For low energies, the r-value decreases again but not fully to the Poissonian
value since the minima support harmonic oscillator eigenfunctions. This behavior should
be compared with the one of the integrable model (α = 0) shown in Figure 7b. In this case,
the level ratio is never compatible with chaotic statistics independently from the energy
interval considered.

Real-space wave functions support the picture of chaos in distinct regions of the
spectra, see Figure 6a–c. At low energies (E < Vb), back to the picture of quasi-integrability,
wave functions in the potential minimum attain the shape of two-dimensional orbitals
which can be labeled by radial and angular quantum numbers, Figure 6a. In contrast,
the chaotic behavior for states with intermediate energies (Vb < E < 20Vb) is reflected in
irregularly shaped wavefunctions with random direction of the nodal curves, Figure 6b. At
high energy (E� Vb), close to the other integrable limit, wavefunctions have a structure
similar to the one observed at low energy, Figure 6c.
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−2 −1
Q1

−2.5

−2.0

−1.5

−1.0

−0.5

Q
2

(a) E20 < Vb

−0.10

−0.05

0.00

0.05

0.10

ψ
20

−2 −1 0 1
Q1

−2

−1

0

1

Q
2

(b) E1600 > Vb

−0.04

−0.02

0.00

0.02

0.04

ψ
16

00

0 1
Q1

−2.25

−2.00

−1.75

−1.50

−1.25

−1.00

Q
2

(c) E7500 � Vb

−1.0

−0.5

0.0

0.5

1.0

ψ
75

00

×10−13

Figure 6. Representative wavefunctions at low E20 ' −0.43 < Vb (panel (a)), Vb < E1600 ' 2.0 < 20Vb
intermediate (panel (b)) and high E7500 ' 7.7� Vb (panel (c)) energy.
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Figure 7. Window averaged level–statistic ratio (28) as a function of the window averaged energy
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√
2, β = 0.5 (panel a) and α = 0, β = 0.5 (panel b). The GOE and the Poisson level statistics

values are shown by horizontal lines. The vertical light blue stripe indicates the region of average
energy Vb ≤ E ≤ 20Vb.

In fact, the nodal curves strongly repel each other, and do not cross, up to our numerical
resolution, see Figure 8b. This was predicted by Berry [14] and first verified for a free
particle in a stadium [28].
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Figure 8. Sign of the wavefunctions, showing nodal lines in different energy regions: low energy
(panel (a)), intermediate energy (panel (b)) and high energy (panel (c)).

3.3. Eigenstate Thermalization Hypothesis

According to the eigenstate thermalization hypothesis (ETH) of Deutsch [19] and Sred-
nicki [20] (see Ref. [29] for a review), if a quantum system is chaotic, the average of a
generic observable taken on the eigenstates of the energy is a smooth function of the energy
eigenvalue itself. In connection with ETH, and focusing on the relation between quantum
and classical systems (e.g., for the FPUT model), the adiabatic gauge potential is introduced
to characterize suppressed heating by a slow drive [30–32]. We checked the ETH property,
restricting to the stationary solutions of the Schrödinger equation, without any attempt
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to analyze the time evolution. Indeed, it is also guessed that the relaxation time to the
average is controlled by the size of the system, i.e., the number of particles. Therefore, we
cannot expect a fast relaxation in such a low-dimensional phase space as the one of the
three-particle FPUT model. The averages on the energy eigenstates of kinetic energy and
angular momentum are shown in Figures 9 and 10 as a function of energy in three different
regions of the spectrum. Both at low and at high energy, the kinetic energy and angular
momentum are irregularly scattered in a wide region of values, and change abruptly as the
energy is varied. It is only in the central chaotic region of the spectrum that they appear
to fluctuate stochastically around an average. We believe that this result is a particularly
transparent numerical verification of the ETH hypothesis.
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Figure 9. Average kinetic energy vs. energy for (a) the lower part of the spectrum (En < Vb), (b) the
central part of the spectrum where eigenstates are chaotic (En ≈ 10Vb), (c) upper part of the spectrum
(En > 50Vb).
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Figure 10. Average angular momentum vs. energy for (a) the lower part of the spectrum (En < Vb),
(b) the central part of the spectrum where eigenstates are chaotic (En ≈ 10Vb), (c) upper part of the
spectrum (En > 50Vb).

4. Conclusions

In this paper, we investigated the classical and quantum Fermi–Pasta–Ulam–Tsingou
model with three particles. Classically, the model is integrable in the two limits where
the cubic or the quartic term of the Hamiltonian vanishes. In the intermediate region, the
model shows a mixed phase space with both regular and chaotic trajectories, in agreement
with the picture suggested by the Kolmogorov–Arnold–Moser theorem. We computed
the energy spectrum and showed that, as expected from the Bohigas–Giannoni–Schmit
universality hypothesis, the level spacing satisfies the Gaussian orthogonal ensemble statistics
in the chaotic part of the spectrum. In the two integrable limits, the statistics become
Poissonian. We also showed how two generic observables obey the eigenstate thermalization
hypothesis of Deutsch and Srednicki in the chaotic part of the spectrum.
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Appendix A. Properties of the U Symbols

We here summarize some useful properties of the U symbols of Formula (6). It is
straightforward to prove that

Uφ
n,rUδ

n,s =
1
2

(
Uφ+δ

n,r+s + Uφ−δ
n,r−s

)
, (A1)

and

Uδ+π
n,r = −Uδ

n,r . (A2)

Using these properties, one derives the following identities when restricting to φ =
δ = π/4:

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

=
1
4

(
−U−π/4

n,k1+k2+k3
+ Uπ/4

n,k1+k2−k3
+ Uπ/4

n,k1−k2+k3
+ Uπ/4

n,k1−k2−k3

)
, (A3)

which is used for the derivation of the expression of the cubic term of the Hamiltonian of
the FPUT model in terms of Fourier modes. Moreover,

Uπ/4
n,k1

Uπ/4
n,k2

Uπ/4
n,k3

Uπ/4
n,k4

= (A4)

1
8
(−U0

n,k1+k2+k3+k4
+ U0

n,k1+k2−k3−k4
+ U0

n,k1−k2+k3−k4
+ U0

n,k1−k2−k3+k4
(A5)

+Uπ/2
n,k1+k2+k3−k4

+ Uπ/2
n,k1+k2−k3+k4

+ Uπ/2
n,k1−k2+k3+k4

−Uπ/2
n,k1−k2−k3−k4

) , (A6)

which is used in the derivation of the quartic term.

Appendix B. Details on Numerical Integration of the Classical Equations of Motion

We integrated the classical equations of motion for the effective two-dimensional
potential using a fourth-order Runge–Kutta scheme [33]. A stepsize ∆t = 0.01 proved to be
stable and sufficiently accurate for the purposes of this paper. We monitored the relative
error in energy conservation of 10−8 for the longest simulation times reported. Our main
goal is of a qualitative nature, i.e., showing integrability and chaos in different regions of
phase space. We cross-checked some results with a velocity Verlet integrator.
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