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Abstract: Neurodegenerative disorders are affecting millions of people worldwide, impacting the
healthcare system of our society. Among them, Alzheimer’s disease (AD) is the most common
form of dementia, characterized by severe cognitive impairments. Neuropathological hallmarks
of AD are β-amyloid (Aβ) plaques and neurofibrillary tangles, as well as endoplasmic reticulum
and mitochondria dysfunctions, which finally lead to apoptosis and neuronal loss. Since, to date,
there is no definitive cure, new therapeutic and prevention strategies are of crucial importance. In
this scenario, cannabinoids are deeply investigated as promising neuroprotective compounds for
AD. In this study, we evaluated the potential neuroprotective role of cannabinerol (CBNR) in an
in vitro cellular model of AD via next-generation sequencing. We observed that CBNR pretreatment
counteracts the Aβ-induced loss of cell viability of differentiated SH-SY5Y cells. Moreover, a network-
based transcriptomic analysis revealed that CBNR restores normal mitochondrial and endoplasmic
reticulum functions in the AD model. Specifically, the most important genes regulated by CBNR are
related mainly to oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding
(HSPA5) and degradation (CUL3, FBXW7, UBE2D1), and glucose (G6PC3) and lipid (HSD17B7,
ERG28, SCD) metabolism. Therefore, these results suggest that CBNR could be a new neuroprotective
agent helpful in the prevention of AD dysfunctions.

Keywords: Alzheimer’s disease; cannabinerol; phytocannabinoids; transcriptomic analysis; network
analysis; mitochondria; endoplasmic reticulum

1. Introduction

According to the World Health Organization (WHO), across the world, 55 million
people suffer from Alzheimer’s and other dementias, with the numbers expected to increase
to 139 million in 2050 due to population aging [1]. The global impact of dementia affects
not just patients but also caregivers and healthcare systems.

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most
common form of dementia. It is characterized by severe cognitive decline, including
memory, language, and behavioral impairments, and is often accompanied by motor dis-
abilities [2,3]. Molecularly, it is characterized by the accumulation of extracellular deposits
of β-amyloid (Aβ), intracellular tau-containing neurofibrillary tangles, microglia activa-
tion, and mitochondrial and endoplasmic reticulum dysfunctions. Altogether, this leads
to the accumulation of misfolded/unfolded proteins, alterations in calcium homeostasis,
oxidative stress, and apoptosis [2,4]. Studies on AD patients and AD models reported a
reduction in mitochondrial activity and ATP production, even before plaque formation [5];
moreover, it has been shown that the accumulation of Aβ-peptides leads to prolonged endo-
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plasmic reticulum stress linked with the dysregulation of mitochondrial metabolism [6,7],
contributing to the onset and development of AD [8,9].

To date, there are no definitive therapies against AD, but available medications help
to reduce the symptoms and clinical decline. Two types of drugs are recommended by
the U.S. Food and Drug Administration (FDA) for the treatment of AD: pharmacological
drugs and monoclonal antibodies. The former are mainly used to alleviate AD symptoms;
they include donepezil, galantamine, and rivastigmine, which inhibit acetylcholinesterase
activity, and memantine, an antagonist of the N-methyl-D-aspartate (NMDA) receptor [10].
In contrast, the latter include aducanamab, lecanemab, and donanemab (in the FDA ap-
proval phase), which are able to bind to and reduce the levels of Aβ at different stages of
plaque formation [11]. Other drugs are under consideration, including γ- and β-secretase
inhibitors, α-secretase modulators, and tau protein aggregation inhibitors (full list and
details reviewed in [12]). In addition to medical therapies, prevention strategies, such as
lifestyle improvement and neuroprotective molecules, are helpful in reducing risk factors
and protecting neurons from degeneration.

In this regard, cannabinoids have recently been shown to have neuroprotective
properties in diverse neurodegenerative diseases, including AD [13–16]. Specifically,
∆9-tetrahydrocannabinol (∆9-THC), the most abundant phytocannabinoid of Cannabis
sativa, has been demonstrated to inhibit acetylcholinesterase activity [17], and it reduces
glutamate-mediated hyperexcitability in primary neuronal cultures [18]. Moreover, it in-
creased neprilysin levels, the endopeptidase responsible for Aβ degradation, reducing Aβ

accumulation in 5xFAD transgenic mice [19]. However, ∆9-THC also displayed psychotic ef-
fects [20], limiting its clinical applicability. In addition to ∆9-THC, other phytocannabinoids
have been investigated in AD models. Cannabidiol (CBD), a non-psychoactive compound,
was reported to protect rat PC12 neurons from Aβ-induced toxicity [21] and to inhibit tau
hyperphosphorylation [22]. In vivo studies showed that long-term oral treatment with
CBD prevented memory impairments in the APP × PS1 transgenic mouse AD model [23]
and delayed cognitive decline in 5xFAD transgenic mice [24]. In an in vitro AD model,
cannabigerol (CBG) prevented the accumulation of the Aβ protein; in addition, cannabidi-
varin (CBDV) reduced Aβ toxicity and prevented energy loss [25]. Finally, cannabidiolic
acid (CBDA) and tetrahydrocannabinolic acid (THCA) have also been shown to reduce Aβ

and tau pathologies, improving memory in a murine AD model [26].
Recently, “minor cannabinoids” [27], such as ∆8-tetrahydrocannabinol (∆8-THC) and

cannabinerol (CBNR), have also been investigated to understand whether they have sim-
ilar neuroprotective functions compared to “major ones”. Accordingly, our group has
previously documented that ∆8-THC pretreatment of differentiated SH-SY5Y neurons
prevented the Aβ-induced loss of cell viability by modulating genes involved in endoplas-
mic reticulum stress and proteostasis, thus reducing apoptosis [28]. Moreover, ∆8-THC
was also reported to moderately inhibit acetylcholinesterase and butyrylcholinesterase
activity [29]. CBNR, a geometric isomer of CBG, is a less-studied phytocannabinoid that we
recently demonstrated to be involved in neuronal differentiation in NSC-34 cells [30] and
in the regulation of genes associated with synapse organization and specialization, such as
cytoskeleton- and ion channel-related genes [31].

In this study, we evaluated the potential neuroprotective role of CBNR and the un-
derlying molecular mechanisms in an in vitro cellular model of AD via next-generation
sequencing. A network-based transcriptomic analysis was performed to understand which
subcellular structures and genes could be modulated by CBNR in the neuroprotection and
prevention against AD dysfunctions.

2. Materials and Methods
2.1. Cell Culture and Differentiation

The human neuroblastoma cell line SH-SY5Y was obtained from the American Type
Culture Collection (ATCC) (Manassas, VA, USA). Cells were plated onto 96-well plates
(#353072, Corning Incorporated, Corning, NY, USA) at a density of 50,000/well or onto
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6-well plates (#130184, Thermo Scientific, Rochester, NY, USA) at a density of 800,000/well
in maintenance medium composed of DMEM/F-12 Ham (#D6421, Sigma-Aldrich, Saint
Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (#F7524, Sigma-Aldrich,
Saint Louis, MO, USA), 1% penicillin/streptomycin (#P0781, Sigma-Aldrich, Saint Louis,
MO, USA), and 1% L-glutamine (#G7513, Sigma-Aldrich, Saint Louis, MO, USA) at 37 ◦C
in a humidified atmosphere of 5% CO2 and 95% air. On the following day, SH-SY5Y cells
were incubated for 5 days with 10 µM of retinoic acid (RA) (#R2625, Sigma-Aldrich, Saint
Louis, MO, USA) in order to induce differentiation. RA-containing medium was refreshed
midway through the treatment.

2.2. Cell Characterization via Western Blot Analysis

At the end of the RA treatment, SH-SY5Y differentiated cells and sister SH-SY5Y
non-differentiated cells were harvested with ethylenediaminetetraacetic acid (EDTA) for
5 min at 37 ◦C. Then, the cells were pelleted and proteins were extracted using RIPA
buffer (#89901, Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions. Western blot analysis was performed according to standard methods. The
protein concentration was evaluated using the Bio-Rad Protein Assay (#5000006, Bio-Rad
Laboratories, Hercules, CA, USA), and thirty micrograms of proteins were denaturated in
β-Mercaptoethanol-added Sample Buffer 1X (#161-0747, Bio-Rad Laboratories, Hercules,
CA, USA) at 95 ◦C for 5 min. Next, proteins were separated on sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a PVDF transfer
membrane of 0.45 µm (#IPVH00010, Immobilon-P PVDF, Merck Millipore division of Merck
KGaA, Darmstadt, Germany). The membrane was blocked for 1 h at room temperature
in 1X TBS-Tween containing 5% non-fat dried milk. Then, it was incubated with the
primary antibody overnight at 4 ◦C. Afterwards, the membrane was washed 3 times in
1X TBS-Tween, incubated 1 h with horseradish peroxidase (HRP)-conjugated secondary
antibody in 1X TBS-Tween containing 5% non-fat dry milk at room temperature, washed
again 3 times, and the signal was finally revealed by an enhanced chemiluminescence
reagent (#WBLUF0500, Immobilion Forte Western HRP Substrate, Millipore Corporation,
Burlington, MA, USA). The following primary antibodies were used: anti-AChRα1, rat
monoclonal (1:200; #sc-65829, Santa Cruz Biotechnology, Inc., Dallas, TX, USA); anti-TH,
rabbit polyclonal (1:1000; #AB152, Millipore, Burlington, MA, USA); anti-Neurofilament,
mouse monoclonal, clone DA2 (1:1000; #MAB1615, Millipore, Burlington, MA, USA); in
NSC-34 cells and HRP-conjugated anti-GAPDH, rabbit monoclonal, 14C10 (1:1000; #3683,
Cell Signaling Technology, Danvers, MA, USA).

The following secondary antibodies were used: HRP-conjugated mouse anti-rabbit
IgG (1:2000; #sc-2357, Santa Cruz Biotechnology, Inc., Dallas, TX, USA), HRP-conjugated
chicken anti-mouse IgG (1:2000; #SA1-72021, Thermo Scientific, Waltham, MA, USA), and
HRP-conjugated goat anti-rat IgG (1:2000; #a110-105p, Bethyl Laboratories, Montgomery,
TX, USA). The same membrane was processed for each pair of primary and secondary
antibodies, then stripped with RestoreTM Western Blot buffer (#21059, Thermo Scientific,
Meridian, Rockford, IL, USA).

Images were acquired with a ChemiDoc™ MP System (Bio-Rad Laboratories S.r.l.,
Hercules, CA, USA) and analyzed with the ImageJ-Fiji 1.54f software. Protein levels were
normalized against GAPDH. The uncropped blots for TH, Neurofilament, AChRα1, and
GAPDH are available in Supplementary Figures S1, S2, S3, and S4, respectively.

2.3. Cell Treatment with β-amyloid and CBNR

After 5 days of RA-induced differentiation, SH-SY5Y cells were pretreated for 24 h
with CBNR at 10 µM or 20 µM (two concentrations that have been previously reported to
show biological effects and no cytotoxicity [30,31]) in maintenance medium. CBNR was
provided by the Department of Pharmaceutical Sciences, University of Eastern Piedmont,
dissolved in dimethylsulfoxide (DMSO) (#D8418, Sigma-Aldrich, Saint Louis, MO, USA),
and further diluted in phosphate-buffered saline (PBS) 1× (#806552, Sigma-Aldrich, Saint



Cells 2024, 13, 1012 4 of 18

Louis, MO, USA). β-amyloid peptide 1-42 (Aβ) (#A9810, Sigma-Aldrich, Saint Louis, MO,
USA) was also dissolved in DMSO, diluted in PBS 1×, and finally aggregated at 37 ◦C for
24 h. It has been demonstrated that Aβ incubation for 24 h at 37 ◦C induces the formation
of aggregates [32]. At the end of the pretreatment, cells were treated with 10 µM of Aβ

for 24 h. Control cells were simply treated with PBS-diluted DMSO in the maintenance
medium. The final DMSO concentration in cell cultures was <0.1%.

2.4. MTT Assay

SH-SY5Y cell cultures were set up and treated in 96-well plates as described in “Cell
Culture and Differentiation” (Section 2.1) and “Cell Treatment with β-amyloid and CBNR”
(Section 2.3). At the end of the treatment, cell metabolic activity was evaluated with a
Thiazolyl Blue Tetrazolium Bromide (MTT) assay (#M5655, Sigma-Aldrich, Saint Louis, MO,
USA). Briefly, cells were incubated with the maintenance medium containing 0.5 mg/mL
MTT at 37 ◦C for 4 h. The formed formazan crystals were dissolved in acidic (0.1 N HCl)
isopropanol at 37 ◦C for 1 h to produce a colored solution. The absorbance was quantified
by spectrophotometric measurement at 570 nm using the BioTek Synergy H1 microplate
reader (Agilent, Santa Clara, CA, USA). The background was measured at 630 nm.

2.5. Extraction of Total RNA and cDNA Library Preparation

SH-SY5Y cell cultures were set up and treated in 6-well plates as described in “Cell
Culture and Differentiation” (Section 2.1) and “Cell Treatment with β-amyloid and CBNR”
(Section 2.3). At the end of the treatment, cells were harvested using 0.25% trypsin-
ethylenediaminetetraacetic acid (EDTA) solution (#T4049, Sigma-Aldrich, Saint Louis,
MO, USA) and pelleted by centrifugation (300× g for 5 min). Then, the pellet was pro-
cessed for RNA extraction. Total RNA was extracted using the Maxwell® RSC simplyRNA
Cells Kit (#AS1390, Promega, Madison, WI, USA) with the Maxwell® RSC instrument.
Afterwards, library preparation (from 100 ng of total RNA) of two biological replicates
was carried out using TruSeq® RNA Exome (#20020492, #20020189, #20020490, #20020183,
Illumina, San Diego, CA, USA) [31], following the manufacturer’s instructions as already
reported. The Tapestation 4150 instrument (Agilent, Santa Clara, CA, USA), using the
D1000 screentape (#5067-5582 and #5067-5583, Agilent, Santa Clara, CA, USA), was used
to validate the quality of the library. A denaturation step using 0.2 N sodium hydroxide
(NaOH) was performed, and then it was diluted until it reached a concentration of 1.42 pM.
The NextSeq 500/550 Mid Output Reagent Kit v2 (300 cycles) (#20024905, Illumina, San
Diego, CA, USA) was used for sequencing with the Illumina instrument NextSeqTM 550Dx
(Illumina, San Diego, CA, USA). The run was made in the paired-end mode.

2.6. Comparative Transcriptomic Analysis

The quality of the sequence data acquired from the sequencer was tested with the
FastQC tool version 0.11.9 (Babraham Institute, Cambridge, UK). Subsequently, Trimmo-
matic version 0.40-rc1 [33] (Usadel Lab, Aachen, Germany) was exploited for the removal
of adapters and low-quality bases. The refined reads were used as input for the STAR
RNA-seq aligner 2.7.3a [34] (New York, NY, USA) against the human reference genome
(GRCh38). Following alignment, the expression level of the various transcripts was deter-
mined utilizing the HTSeq-count Python package version 0.13.5 [35] (European Molecular
Biology Laboratory (EMBL) in Heidelberg, Germany). Differentially expressed genes
(DEGs) were identified through the DESeq2 library version 1.36.0 [36] in R version 4.2.0 (R
Core Team). Corrected p-values, defined as q-values, were computed using the Benjamini–
Hochberg post procedure, and a threshold of 0.05 was set to minimize the number of false
positive genes. Data manipulation and plots were generated using the R libraries dplyr
(version 1.1.4), ggplot2 (version 3.4.0), and circlize (version 0.4.15).
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2.7. Gene Network Analysis

We used Panther ([37], available online: https://pantherdb.org, accessed on 7 Febru-
ary 2024) to retrieve cellular component terms from the gene ontology. We performed
an overrepresentation analysis of our DEGs against the Homo sapiens reference list using
default parameters (Fisher’s exact test corrected by the false discovery rate). There were
45 overrepresented terms, among which one is related to an unclassified ontology (Table S3).
Thus, we inspected the deepest child of each positive overrepresented cluster. For each
of the 11 terms, we built the network using the STRING database ([38], available online:
https://string-db.org/, accessed on 7 February 2024). The limit of nodes in a STRING
network is 2000; thus, we excluded larger networks. We used the most pressing interaction
score (0.900). All other parameters chosen are the default ones. For each network, we
downloaded from STRING the tabular text output (string_interactions.tsv), and we per-
formed the analysis of the network using R (version 4.2.0). Specifically, the library “igraph”
(version 1.4.1) was used for constructing the topology of the network and for computing the
betweenness centrality (BC), the closeness centrality (CCe), the neighborhood connectivity
(NC), the clustering coefficient (CCo), the average shortest path (AVP), and the number of
vertices (V) for each node of the network. For each module of each network, the weight
(W) associated to each DEG was computed using the following formula:

W =
BC × CCe × log2NC × CCo

2−log2V × AVP

Some particular cases were observed. In particular, if a gene had either a BC, CCe, or
CCo equal to 0, we substituted 0 with the lowest value of the BC, CCe or CCo (depending
on which of them is 0) in the network in which it took place. This substitution is neces-
sary in order to prevent a biased null weight. In the case in which all the values of the
parameter were 0 for a network, the 10−7 value was set. Indeed, this value is lower than
the lowest value.

2.8. Statistical Analysis

The statistical analysis of the cell metabolic activity assay was carried out using
GraphPad Prism version 8.0.2 software (GraphPad Software, La Jolla, CA, USA). Multiple
comparisons were performed using a one-way ANOVA test and the Bonferroni post hoc
test. A p-value of less than 0.05 was considered statistically significant. The results are
expressed as the mean ± standard deviation (SD). Details of the normalization criteria and
number of biological replicates are provided in the legends of Figures 1 and 2. Full primary
data are provided in Table S1.

3. Results
3.1. SH-SY5Y Cell Differentiation and Characterization

As widely reported in literature, retinoic acid (RA) differentiation of SH-SY5Y cells
leads to mainly cholinergic neurons, justifying their use as a cellular model of Alzheimer’s
disease (AD) [39,40]. We further validated this model by characterizing RA-differentiated
SH-SY5Y cells via Western blot analysis. Specifically, as depicted in Figure 1, we compared
protein levels of Tyrosine hydroxylase (TH), Neurofilament, and the Nicotinic acetylcholine
receptor subunit alpha 1 (AChRα1) between differentiated and non-differentiated SH-SY5Y
cells. Results showed that the Neurofilament and AChRα1 proteins, but not the TH protein,
were highly upregulated in differentiated cells compared with non-differentiated ones,
confirming that RA-differentiated SH-SY5Y cells are mature cholinergic neurons.

https://pantherdb.org
https://string-db.org/
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Figure 1. Characterization of RA-differentiated SH-SY5Y cells. Differentiated and non-differentiated
SH-SY5Y cells were compared, and the protein levels of TH, Neurofilament, and AChRα1 neuronal
markers were evaluated via Western blot assays. Protein levels are doubly normalized against
GAPDH and SH-SY5Y non-differentiative cells and expressed as the mean ± SD. There were three
biological replicates per condition. ** p < 0.01; *** p < 0.001; ns stands for not significant. The complete
primary data and statistical analysis are reported in Table S1.

3.2. CBNR Improves the Aβ-Induced Loss of Cell Viability

In order to evaluate the effects of CBNR in a cellular model of AD, we performed an
MTT assay of RA-differentiated SH-SY5Y cells treated with β-amyloid (Aβ) and 10 µM or
20 µM CBNR. As illustrated in Figure 2, Aβ treatment reduced (−31.2%; p < 0.0001) the
cell viability compared with the control. This Aβ reduction is partially restored (+10.5%;
p < 0.0142) by pretreating cells with 20 µM CBNR with respect to the Aβ condition. More-
over, CBNR alone is not cytotoxic at both concentrations.

To examine the molecular mechanisms underlying the neuroprotective function of
CBNR in this AD model, we analyzed the transcriptomic profile of RA-differentiated SH-
SY5Y cells treated with Aβ and pretreated with 20 µM CBNR (CBNR20-Aβ sample), treated
with Aβ alone (Aβ sample), or a control (CTRL sample).
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Figure 2. Evaluation of cell viability via the MTT assay after CBNR pretreatment in a cellular
AD model. The treatment with Aβ reduced the cell viability of RA-differentiated SH-SY5Y cells,
but 20 µM CBNR pretreatment was able to restore it. Results are normalized against the control
and expressed as the mean ± SD. There were five biological replicates per condition. * p < 0.05;
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3.3. Subcellular Structures Regulated by CBNR in the Aβ-Induced AD Model

We performed comparative analyses of the Aβ sample against the CBNR20-Aβ sample
(Aβ vs. CBNR20-Aβ) and of the CTRL sample against the Aβ sample (CTRL vs. Aβ). Aβ

vs. CBNR20-Aβ showed 1549 differentially expressed genes (DEGs), among which 822
were upregulated and 727 were downregulated. On the other hand, CTRL vs. Aβ resulted
in 1000 upregulated and 1262 downregulated genes for a total of 2262 DEGs. All DEGs for
both comparative analyses are included in Table S2.

In order to investigate in which subcellular structures CBNR is able to carry out its ef-
fects, we performed the statistical overrepresentation of gene ontology terms of the cellular
component category for the Aβ vs. CBNR20-Aβ comparative analysis (Table S3). The in-
spection resulted in 45 overrepresented terms. Among them, we observed the most specific
children for each term. In detail, the overrepresented terms were “core mediator complex
(GO:0070847)”, “mitochondrial protein-containing complex (GO:0098798)”, “nuclear speck
(GO:0016607)”, “mitochondrial matrix (GO:0005759)”, “mitochondrial protein-containing
complex (GO:0098798)”, “ribonucleoprotein complex (GO:1990904)”, “mitochondrial in-
ner membrane (GO:0005743)”, “intracellular protein-containing complex (GO:0140535)”,
“transferase complex (GO:1990234)”, “nucleolus (GO:0005730)”, “endoplasmic reticulum
membrane (GO:0005789)”, “cytosol (GO:0005829)”, “external side of plasma membrane
(GO:0009897)”, and “T cell receptor complex (GO:0042101)”. On the other hand, to know
where the activity of CBNR was not prominent, we also retrieved the cellular component
terms that were not overrepresented to look at the significance of the other subcellular struc-
tures. In particular, we focused our attention on “ribosome (GO:0005840) “, “peroxisome
(GO:0005777)”, “lysosome (GO:0005764)”, “Golgi apparatus (GO:0005794)”, “extracellu-
lar region (GO:0005576)”, and “endosome (GO:0005768)”. Additionally, in Figure 3, we
represented all these terms along their scores in the analysis of the overrepresentation.
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Figure 3. Overrepresentation analysis of cellular component terms in the Aβ vs. CBNR20-Aβ

comparison. The score value on the x-axis stands for fold enrichment. The black label refers to
ontology terms that were statistically significant. Conversely, the gray labels show the terms without
any statistical significance. The color of the balls indicates a positive (blue) or a negative (orange)
overrepresentation. The size of the balls is related to the ratio between the DEGs found in the ontology
terms and the total genes included in the term itself. The terms are sorted alphabetically.

Successively, we analyzed the impact of CBNR on the diverse subcellular structures as
well as which DEGs play a pivotal role in the structure itself. For this purpose, we used a
combinatory approach that took into consideration both comparative transcriptomic analy-
ses and a network inspection. First of all, we focused our attention on the overrepresented
terms. Among them, we also excluded the terms GO:0009897, GO:0005886, and GO:0042101,
which, even with statistical significance, had a negative overrepresentation. Moreover, we
had to exclude the term GO:0005829 since it is composed of more than 2000 genes, and
it is not feasible to build the network. Then, we categorized the remaining terms in the
nucleus (GO:0005730, GO:0016607, GO:0070847), mitochondria (GO:0005743, GO:0005759,
GO:0098798), endoplasmic reticulum (GO:0005730, GO:0016607, GO:0070847), and intra-
cellular complexes (GO:0140535, GO:1990904, GO:1990234). In Figure 4, we reported how
CBNR is able to regulate the different structures based on the level of the fold change in our
AD model. In particular, in order to compare the regulation exerted by CBNR pretreatment
with respect to the Aβ condition, we performed a comparison of the CTRL vs. Aβ (left
frames) against the Aβ vs. CBNR20-Aβ (right frames) analyses with regard to the DEGs
included in the structures regulated by CBNR. In detail, the top frames of Figure 4 show the
sum of the absolute fold change, highlighting how much each structure is upregulated or
downregulated. Conversely, the bottom frames describe how each structure is modulated.
Of note, the distribution of the absolute fold changes in the comparison (CTRL vs. Aβ

against Aβ vs. CBNR20-Aβ) is similar among the structures (top frames). Nevertheless,
the sign of the regulation is quite different, taking into consideration the actual fold change
(bottom frames). These results suggest that the treatment with CBNR in an Aβ-induced
AD model counteracts the downregulation observed in the main subcellular structures in
Aβ samples, especially the endoplasmic reticulum.
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Figure 4. Comparison of DEG regulation among the main subcellular structures. Each plot shows
the sum of the fold change for each DEG included in the structure for the CTRL vs. Aβ (left frames)
against the Aβ vs. CBNR20-Aβ (right frames) analyses. In the top frames, the sum of the absolute fold
change is highlighted, so it is possible to observe how much CBNR is able to regulate the structures.
On the other hand, the bottom frames highlight the sum of the positive or negative fold change,
showing if the structure is upregulated or downregulated overall.

It is interesting to note that some proteins may overlap their functionality among the
subcellular structures of a cell. Indeed, as expected, considering the DEGs of the Aβ vs.
CBNR20-Aβ comparison, we observed that around one-third of the DEGs of intracellular
complexes were shared with the other structures. Among the shared DEGs, more than
one-half are included both in the intracellular complexes and in the nucleus (Figure 5,
Table S4).
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Figure 5. Chord plot representing the DEGs shared among subcellular structures of the Aβ vs.
CBNR20-Aβ comparison. Whether a gene is downregulated (green) or upregulated (red) is high-
lighted at the bottom of each DEG. The structures are the endoplasmic reticulum (yellow), mitochon-
dria (orange), nucleus (purple,) and intracellular complexes (grey).

3.4. Network-Based Analysis Reveals Key Genes Regulated by CBNR in the Aβ-Induced
AD Model

Every protein has a different relevance in the cellular compartment in which it plays
a role. Accordingly, we inspected the interaction network of proteins in each subcellular
structure. For this reason, we performed a network analysis, taking advantage of protein–
protein interaction networks available in the STRING database ([38], available online:
https://string-db.org/, accessed on 7 February 2024).

In detail, for each cellular component term, we built the protein network using the
tightened parameters to limit, as much as possible, the number of weak interactions re-
ported in STRING. Thus, for each network, we computed the parameters “betweenness
centrality”, “closeness centrality”, “neighborhood connectivity”, “clustering coefficient”,
“average shortest path”, and “number of vertices”. All these parameters (collected in
Table S4) were used to assign a score weight of importance to each DEG in our compar-
ative analyses (see the “Materials and Methods” section for further details). Again, we
categorized ontologies as mitochondria, endoplasmic reticulum, nucleus, and intracellular
complexes, considering the highest weight for those genes shared among more ontolo-
gies pertaining to the same category. Next, we observed in Figure 6 (top frames) how
the weights of DEGs are distributed among the subcellular structures (top frames), along
with the combination of the network score weight with the fold changes (bottom frames).
Interestingly, the mitochondria contained DEGs with a higher score and, consequently,
were very important in the network. Remarkably, the fold change combined with the score
obtained by the network analysis showed that mitochondrial DEGs were highly inhibited

https://string-db.org/
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in the CTRL vs. Aβ comparison, whereas in Aβ vs. CBNR20-Aβ, the final regulation in the
mitochondria looked comparable to that in the endoplasmic reticulum.
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Figure 6. Comparison of weights and weighted-DEG regulation among the main subcellular struc-
tures. Each plot includes information about the score for each gene included in the structure for the
CTRL vs. Aβ (left frames) and Aβ vs. CBNR20-Aβ (right frames) analyses. In the top frames, the
mean of the simple weights is highlighted. On the other hand, the bottom frames show the mean of
the naïve fold change combined with the score weight obtained in the network analysis.

In Table 1, we listed the top 10% DEGs for each structure resulting from the net-
work analysis of the Aβ vs. CBNR20-Aβ comparison. In particular, genes involved in
oxidative phosphorylation (COX6B1, OXA1L, MT-CO2, MT-CO3), protein folding (HSPA5),
glucose (G6PC3) and lipid metabolism (HSD17B7, ERG28, SCD), and the ubiquitin complex
(CUL3, FBXW7, UBE2D1) were upregulated. These results suggest that CBNR improves
the Aβ-induced dysfunctions with regard to the metabolic activity of mitochondrial and
endoplasmic reticulum structures.
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Table 1. Top 10% DEGs of each structure resulting from the Aβ vs. CBNR20-Aβ network-based
transcriptomic analysis.

Structure Gene Fold Change Weight
Cellular

Component
Term

COX6B1 0.11 18.56511 GO:0005743
OXA1L 0.13 13.56726 GO:0005743
MT-CO2 0.17 8.746326 GO:0005743

Mitochondria NDUFS2 −0.06 7.026098 GO:0098798
MRPS5 −0.17 5.356617 GO:0098798
MT-CO3 0.2 3.993246 GO:0005743
MRPL17 0.46 3.257547 GO:0005743

LPIN1 −0.07 8.420952 GO:0005789
PSEN1 0.18 4.153903 GO:0005789
HSPA5 0.13 3.228354 GO:0005789

Endoplasmic HSD17B7 0.41 2.454414 GO:0005789
reticulum ERG28 0.41 1.92561 GO:0005789

G6PC3 0.13 1.795113 GO:0005789
RYR2 −0.25 1.421016 GO:0005789
SCD 0.08 1.242196 GO:0005789

DCAF13 −0.11 12.2385 GO:0005730
PPP1R8 −0.21 5.108257 GO:0016607

CTR9 0.18 4.591837 GO:0016607
POLR2D 0.28 3.826531 GO:0016607

BYSL −0.29 2.928742 GO:0005730
Nucleus TBP −0.14 2.919908 GO:0005730

NGDN −0.18 2.703704 GO:0005730
POLR1A −0.11 2.074889 GO:0005730
WDR46 −0.19 1.969072 GO:0005730

MYBBP1A −0.16 1.881808 GO:0005730

POLR2E −0.29 10.12183 GO:0140535
RPS28 −0.14 8.585967 GO:1990904
RPS18 −0.21 7.982169 GO:1990904
BYSL −0.29 5.367588 GO:1990904

NGDN −0.18 4.317974 GO:1990904
CDKN1B −0.22 4.217337 GO:1990234

CUL3 0.23 4.099537 GO:1990234
Intracellular MRPL21 0.27 3.86925 GO:1990904
complexes TBP −0.14 3.414874 GO:0140535

MRPL17 0.46 3.37295 GO:1990904
FBXW7 0.14 3.17825 GO:0140535

TRAPPC1 0.26 3.163546 GO.0140535
POLR2D 0.28 3.12412 GO:0140535

RPS8 0.08 3.123559 GO:1990904
RING1 −0.33 2.57826 GO:1990234

UBE2D1 0.24 2.366765 GO:1990234
IKBKB −0.20 2.145099 GO:1990234

Fold change is related to the naïve fold change obtained by the comparison of Aβ vs. CBNR20-Aβ and rounded to
the second decimal place. The weight is obtained by a combination of betweenness centrality, closeness centrality,
neighborhood connectivity, clustering coefficient, average shortest path, and number of vertices.

4. Discussion

Alzheimer’s disease (AD) is a progressively fatal neurodegenerative disorder affecting
millions of people worldwide and is still without a definitive treatment. To date, pharmaco-
logical drugs mainly act on AD symptoms, whereas FDA-approved monoclonal antibodies
try to reduce Aβ accumulation and the clinical decline [10,11]. In this scenario, prevention
strategies are helpful to protect neurons from degeneration. Accordingly, many cannabi-
noids have been studied for their neuroprotective properties in both in vitro and in vivo
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AD models [13–16]. They are able to reduce Aβ accumulation and tau hyperphosphoryla-
tion, inhibit acetylcholinesterase activity, reduce excitotoxicity, and some mitochondrial
and endoplasmic reticulum dysfunctions. Interestingly, we have previously reported that
the ∆8-THC pretreatment of differentiated SH-SY5Y neurons restored the Aβ-induced
loss of cell viability, modulating genes involved in endoplasmic reticulum stress and pro-
teostasis [28]. ∆8-THC belongs to the so-called “minor phytocannabinoids”, including the
less-investigated CBNR. Recently, we demonstrated in NSC-34 cells that CBNR is involved
in neuronal differentiation [30], regulating synaptic genes related mainly to the cytoskele-
ton and ion channels [31]. Given the role exerted by the other cannabinoids against AD
dysfunctions, we also wondered about CBNR.

In this study, we evaluated whether and how CBNR displays a neuroprotective
role in an in vitro cellular model of AD. For this purpose, we used a retinoic acid (RA)-
differentiated human neuroblastoma SH-SY5Y cell line pretreated with CBNR for 24 h,
and then the AD model was induced via the administration of Aβ for an additional 24 h.
SH-SY5Y cells are widely used as a cellular model of AD [39,40] due to their ability to
differentiate mainly into cholinergic neurons under RA treatment. We further character-
ized RA-differentiated SH-SY5Y cells, showing high expression of the Neurofilament and
AChRα1 proteins, but not of TH, in differentiated cells compared with non-differentiated
ones (Figure 1, Table S1). As expected, RA-differentiated SH-SY5Y cells are mature cholin-
ergic neurons.

We observed that pretreatment with CBNR at 20 µM was able to counteract the
Aβ-induced reduction of cell viability (Figure 2, Table S1), suggesting an effective neuropro-
tective role of CBNR at this concentration. In order to molecularly understand how CBNR
improves the Aβ damage, we used a next-generation sequencing approach, comparing and
analyzing the transcriptome of Aβ samples pretreated with 20 µM CBNR (CBNR20-Aβ)
compared with Aβ pretreatment alone. We found 1549 differentially expressed genes
(DEGs) (Table S2). Firstly, we focused our attention on subcellular compartments and
structures that were mainly regulated by CBNR. The GO analysis (Figure 3) revealed that
many of these DEGs belong to the nucleus, mitochondria, and endoplasmic reticulum
organelles and to intracellular complexes, such as ribonucleoprotein and transferase com-
plexes (Table S3). Moreover, considering the fold change, CBNR positively regulated the
most of the DEGs included in the endoplasmic reticulum as well as the mitochondria. On
the contrary, CBNR seemed to negatively regulate the majority of DEGs included in the nu-
cleus and intracellular complexes (Figure 4, bottom right). To compare the effects of CBNR
with the Aβ samples, we also considered DEGs (a total of 2262; Table S2) that resulted from
the sample control (CTRL) against Aβ and that were included in the structures regulated
by CBNR. Interestingly, Aβ negatively regulated all nucleus, mitochondria, endoplasmic
reticulum organelles and intracellular complexes (Figure 4, bottom left). These results
suggest that treatment with CBNR in an AD model counteracts the global downregulation
of the main cellular structures, especially the endoplasmic reticulum and mitochondria.

However, there are two important considerations to take into account in our study:
(1) proteins may play their role (directly or indirectly) in more subcellular structures (as
we noted for our DEGs in Figure 5); (2) each protein has a different impact on the cell
physiology, even according to interactors in the structure to which they belong. In order
to address these two points and to investigate the main genes regulated by CBNR to
prevent Aβ-induced dysfunctions, we took advantage of the protein–protein interaction
networks available on the STRING database [38]. We evaluated the impact of a protein in
the network on the basis of how much it is crucial for the network itself (i.e., how much its
absence impairs the network). Starting from genes included in the most specific children of
each significative cellular component term, we assigned a different weight to our DEGs
according to their different properties within the network (Table S4). Interestingly, thanks
to this analysis, DEGs included in the mitochondria had a high impact with respect to
other structures (Figure 6, top frames). Moreover, considering again the fold change,
mitochondria DEGs were highly inhibited in Aβ samples, whereas the CBNR pretreatment
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completely inverted their regulation at a level similar to those of the endoplasmic reticulum
(Figure 6, bottom frames). Finally, top-weighted DEGs were genes mainly involved in
oxidative phosphorylation in the mitochondria; genes involved in protein folding, glucose,
and lipid metabolism in the endoplasmic reticulum; and among the intracellular complexes,
some genes of the ubiquitin complex (Table 1). Therefore, the regulation of these key
processes could be the way in which CBNR counteracts the Aβ damage in an AD model.

Specifically, among the top-weighted DEGs of the mitochondria, there are four upreg-
ulated genes (COX6B1, OXA1L, MT-CO2, and MT-CO3), which encode components of the
cytochrome c oxidase (COX) complex. This is a heteromeric enzymatic complex, localized
in the inner mitochondrial membrane, composed of three catalytic subunits encoded by mi-
tochondrial genes (such as MT-CO2 and MT-CO3) and diverse structural subunits encoded
by nuclear genes (including COX6B1 and OXA1L). COX, also known as Complex IV, is the
last component of the mitochondrial respiratory chain, driving oxidative phosphorylation.
It catalyzes the reduction of oxygen to water, cooperating with the other complexes to
eject protons into the intermembrane space, creating an electrochemical gradient funda-
mental for ATP production by complex V (ATP synthase) [41]. Moreover, OXA1L protein
is required for the insertion of integral membrane proteins into the mitochondrial inner
membrane and is essential for the assembly of complexes I, IV, and V [42,43]. Defects in
oxidative phosphorylation have been widely reported in AD patients and in in vivo AD
models. Indeed, subunits of the COX complex are frequently inhibited in AD, leading to
increased reactive oxygen species levels and reduced ATP production [44,45]. Therefore,
the fact that CBNR is able to upregulate some of the main COX subunits with respect to Aβ

samples supports the molecular way in which CBNR improves the viability of SH-SY5Y
cells in our AD model. Regarding the endoplasmic reticulum, the HSPA5 gene was up-
regulated. It encodes a member of the heat-shock protein 70 (HSP70) family, a chaperone
important for the proper folding, quality control, and assembly of proteins in the endo-
plasmic reticulum lumen [46]. Accumulation of misfolded/unfolded proteins is a common
feature of AD and is linked to apoptosis processes [7,9]. Additionally, genes related to
glucose (G6PC3) and lipid metabolism (HSD17B7, ERG28, and SCD) were also upregulated
by CBNR. G6PC3 encodes the catalytic subunit of glucose-6-phosphatase (G6Pase), an
enzyme localized in the endoplasmic reticulum lumen, which catalyzes the hydrolysis of
glucose-6-phosphate to glucose and phosphate in the last step of glycogenolysis and gluco-
neogenesis. Deficiency of the enzyme is also associated with apoptosis [47]. HSD17B7 and
ERG28 are genes involved in cholesterol biosynthesis, encoding a catalytic and non-catalytic
protein, respectively [48–50]; in contrast, SCD encodes the stearoyl-CoA desaturase, an
enzyme mainly involved in oleic acid biosynthesis [51]. Accumulating evidence reported
lipid dyshomeostasis in AD, revealing complex and diverse mechanisms that connect
lipid metabolism with AD-related pathophysiologies [52]. Notably, we also observed the
downregulation of the RYR2 gene, which encodes the ryanodine receptor 2 channel that
is involved in the release of Ca2+ ions from the endoplasmic reticulum into the cytosol,
regulating cellular calcium homeostasis. Hyperexcitability and a high concentration of
cytosolic calcium are common defects in AD. Upregulation and/or overactivation of the
RYR2 channel have been reported in AD models [53,54].

Finally, ubiquitin complex genes CUL3, FBXW7, and UBE2D1 were increased among
the intracellular complexes. The Cullin 3 protein encoded by the CUL3 gene is a crucial
scaffold component of the E3 ubiquitin ligase complex, which is required in the polyubiqui-
tination and subsequent degradation of specific protein substrates [55]. The FBXW7 gene
encodes the substrate recognition component of the SCF-type E3 ubiquitin ligase, which
is involved in phosphorylation-dependent ubiquitination. Remarkably, FBXW7 has been
demonstrated to antagonize apoptotic JNK signaling by binding to phosphorylated JUN
and promoting its ubiquitination and subsequent degradation [56]. Instead, the UBE2D1
gene encodes a member of the E2 ubiquitin-conjugating enzyme family, which works in con-
cert with E3 ubiquitin ligase and the E1 ubiquitin-activating complex in the ubiquitination
and subsequent degradation of selected short-lived and misfolded/unfolded proteins [57].
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Impairment of these enzymes is associated with AD, contributing to the accumulation of
abnormal proteins [55,58].

It is important to note that we obtained diverse ribonucleoprotein genes related to
ribosomes and ribosome biogenesis, which were deregulated by CBNR in our AD model.
However, some of them were upregulated and others were downregulated. Moreover,
there are controversial reports about the expression of translation machinery proteins in
AD (details in [59–61]). This point will require further study.

Regarding the potential limitations of this study, our results should be further validated
using in vivo models that mimic the real physiopathological conditions of AD. For instance,
the impact of CBNR in vivo may be tissue-specific, and the dose effect could differ from
an in vitro to an in vivo model. Accordingly, transgenic murine AD models and neurons
derived from human-induced pluripotent stem cells of AD patients may be helpful.

In conclusion, our study demonstrates that the phytocannabinoid CBNR displays
neuroprotective properties in an Aβ-induced AD model in differentiated SH-SY5Y cells.
Indeed, it restores mitochondrial and endoplasmic reticulum dysfunctions, regulating genes
related to oxidative phosphorylation, protein folding, ubiquitin-mediated degradation,
and glucose and lipid metabolism. Therefore, CBNR could be a novel molecule able to
prevent some of the key early features of AD and potentially other diseases characterized
by similar dysfunctions.
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