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We discuss particle production in spacetimes endowed with a universal horizon in Einstein-aether and
Hořava gravity. We argue that continuity and differentiability of the lapse function require the orientation of
the foliation in the interior of the horizon to be reversed with respect to the exterior one. Unless this is
allowed, interaction of gravitating scalar fields with the universal horizon leads to unitarity violations in the
quantum theory. This property is responsible for particle production by the universal horizon, as we show
by computing explicitly its Hawking temperature for all stationary and spherically symmetric spacetimes.
We particularize our result to known analytic solutions, including those compatible with observational
constraints.
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I. INTRODUCTION

The prediction that black holes radiate is one of the few
glimpses on quantum gravity available so far. Furthermore,
the finding that Hawking’s radiation is thermal points down
to a profound connection between gravity and thermody-
namics. Black holes in general relativity (GR) have entropy,
hinting to the existence of microscopic degrees of freedom
whose collective dynamics gives rise to the gravitational
interaction. In GR, all these properties are controlled by the
horizon of the black hole, which acts as a causal barrier for
information [1].
This vision is challenged in models of Lorentz violating

gravity, such as Einstein-aether (EA) gravity [2], where a
timelike vector Uμ, the aether, breaks boost invariance. It
defines a preferred time direction and allows us to write
operators with only higher derivatives along spatial direc-
tions in the preferred frame, by a direct coupling to the
projector orthogonal to Uμ. This avoids the introduction of
ghost degrees of freedom and allows for modified
dispersion relations of the generic form,

ω2 ¼ q2 þ α4q4

Λ2
þ � � � þ α2nq2n

Λ2n−2 ; ð1Þ

which can propagate faster than light. Here Λ is the scale of
Lorentz violations and αi are dimensionless constants. This
questions the universality of the thermodynamic picture of

black holes, since no universal causal boundary seems
possible for all propagating speeds.
The intuitive image that we just described is however

wrong in the case of known nonrotating black hole
solutions in EA gravity [3–5]. For those, Uμ is irrotational
and defines a preferred foliation onto spacelike hyper-
surfaces, described by a scalar field Θ,

Uμ ¼
∂μΘffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij∂αΘ∂αΘjp : ð2Þ

When this happens, the dynamics of the theory coincides
with the low energy limit of Hořava gravity [6], known as
Khronometric theory [7].
In certain static space-times, it might happen that a

foliation leaf becomes a constant radius hypersurface.
Since all signals must travel by following the evolution
of the subsequent leafs, this implies that no signal can
escape from the region enclosed. Such a hypersurface is
named universal horizon (UH), and it occurs when
ðχ ·UÞ ¼ 0, where χμ is the Killing vector defining
staticity. The UH defines an absolute causal boundary
for all signals, regardless of their propagation speed. Due to
this, one may be tempted to generalize the laws of black
hole thermodynamics to the UH. However, it is not clear if
this naive approach is correct. Although there are works
that point towards this direction [8–14], there are others that
question this picture [15]. Among the positive results, the
resulting Hawking temperature reads

T ¼ n − 1

n
κUH
π

; ð3Þ
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for a dispersion relation in the ultra-violet (UV) of the form
ω2 ∼ α2nq2n. Here κUH ¼ −1

2
ða · χÞjrUH is the surface gravity

of the UH, and aμ ¼ Uα∇αUμ is the acceleration of the
aether. This jeopardizes the universality of thermodynamics,
unless the UV behavior of the dispersion relation is
universal.1 Incidentally, it is curious that a necessary con-
dition for the existence of a UH is that ða · χÞjUH ≠ 0 [17].
However, there is an issue that has been overlooked so

far. If the foliation describing the interior of the UH is
oriented in the same direction as the one in the exterior
region, the surface gravity of the UH is ill-defined, showing
a discontinuity. As a consequence, the lapse function will
always exhibit a kink at the UH, unless we allow the
interior and exterior leafs to not be ordered in the same
direction, thus breaking global causality in a very special,
yet not worrisome, manner.
In this paper we show how, when both foliations are

oriented in the same direction, the quantum theory for a
scalar field in the exterior of the black hole violates the
axioms of probability close to the UH. When the reversal of
the black hole interior is allowed instead, standard thermal
properties are recovered. As a final result of our work, we
derive the Hawking temperature of the radiation for all
spherically symmetric and stationary metrics with a UH.

II. BLACK HOLES IN EA GRAVITY

In the following we consider stationary and spherically
symmetric solutions in d ¼ 4 dimensions, whose most
general metric reads

ds2 ¼ FðrÞdt2 − BðrÞ2
FðrÞ dr

2 − r2dΩ2
2; ð4Þ

where we use mostly minus signature, and we assume
asymptotic flatness. The corresponding aether is irrota-
tional and has a single degree of freedom AðrÞ. We choose
to normalize it as [3]

Uμdxμ¼
1þFðrÞAðrÞ2

2AðrÞ dtþ BðrÞ
2AðrÞ

�
1

FðrÞ−AðrÞ2
�
dr; ð5Þ

where the form of the Ur component is fixed by demand-
ing UμUμ ¼ 1.
Staticity of the solution defines a Killing vector, which

takes the form χμdxμ ¼ FðrÞdt and signals the position of a
Killing horizon whenever jχj2 ¼ FðrÞ ¼ 0. The sign of the
aether components is chosen so that it is future directed in
the asymptotic region.
The aether defines a preferred time direction in terms of a

foliation in codimension one hypersurfaces Ndτ ¼ Uμdxμ

where

N ¼ ðχ · UÞ ¼ 1þ FðrÞAðrÞ2
2AðrÞ ; ð6Þ

is the lapse function of the foliation. This implies

dt ¼ dτ þ BðrÞ
FðrÞ

�
FðrÞAðrÞ2 − 1

FðrÞAðrÞ2 þ 1

�
dr: ð7Þ

In this preferred frame, the metric takes the Arnowitt-
Deser-Misner (ADM) form,2 [18]

ds2 ¼ N2dτ2 − γijðdxi þ NidτÞðdxj þ NjdτÞ; ð8Þ

where Ni is the shift vector and γij the spatial metric.
This choice of lapse is not unique. The theory is invariant

under foliation preserving diffeomorphisms (FDiff),

τ → τ̃ðτÞ; xi → x̃iðτ; xÞ: ð9Þ

The different elements of the metric transform under this as

Ñ ¼ dτ
dτ̃

N; Ñi ¼
�
Nj ∂x̃i

∂xj −
∂x̃i
∂τ

�
dτ
dτ̃

; ð10Þ

while the spatial metric γij transforms as a tensor under
spatial diffeomorphisms, but it is invariant under time
reparametrizations. Note that by going to this frame, the
time coordinate gets identified with the scalar field Θ ¼ τ.
We introduce now a simple notion of causality3 by

demanding that all clocks tick in the same direction. By
observing (10) we note that this requires

N > 0; ð11Þ

for all foliation leafs and observers. Whenever this con-
dition fails to be fulfilled, we can find an observer with
acausal time evolution within the region where N < 0,
since there dτ=dτ̃ < 0.
The solution will have a UH whenever the following two

conditions are satisfied [17]:

ðχ ·UÞjrUH ¼ 0; ðχ · aÞjrUH ≠ 0: ð12Þ

Since χμ is a Killing vector and there is no explicit time
dependence in any metric nor aether component, we have

ðχ · aÞ ¼ Uμ∂μðχ ·UÞ ¼ Ur∂rN; ð13Þ

so these conditions can be rewritten as

1Universal dispersion relations arise for instance in Hořava
gravity, induced by loop corrections [16].

2Hereinforward,we usegreek letters to refer to four-dimensional
indices, while latin letters run only over spatial directions.

3This corresponds to the notion of precausality discussed in
[19]. For a deeper discussion of causality in foliated space-times
cf. [17].
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NjrUH ¼ 0; ∂rNjrUH ≠ 0: ð14Þ

The fact that N vanishes at the UH is not a problem. It
simply implies that the time of the preferred observer
corresponding to that particular lapse diverges, in order to
keep Uμ finite. This is just a coordinate singularity of (8).
What cannot be avoided, however, is what we want to
remark here. If we demand Uμ and all metric invariants to
be of class C2, so that the action is well-defined, then the
same must be demanded forN, owing to its scalar character.
In this case, then (14) implies that N must change sign at
the UH. This has an obvious consequence for a black
hole—its interior and exterior are causally reversed. While
the region r > rUH is future oriented, the interior r < rUH is
past oriented.
Could this be solved in some manner? We can invoke the

global time reversal invariance of the solution, meaning that
a simultaneous transformation t → −t and Uμ → −Uμ is
also a solution with the same boundary conditions. For this
one, the lapse is reversed with respect to that of (4) and (5).
We can try to glue this solution in the interior of the black
hole, so that N > 0 everywhere. Alas, by doing so, the
product ða · χÞ becomes discontinuous, as N approaches
zero with nonvanishing derivative from both sides. Hence,
continuity and differentiability of N necessarily imply a
reversal of the foliation in the interior of the black hole.
At this point one might, and should, be worried about the

physical implications of this, since a loss of causality
typically implies the existence of closed time loops. We
note however that this is not the case here, since the
causally reversed region is shielded by the UH. The proper
time tA of any in-falling observer always grows dtA > 0,
crossing the UH and hitting the singularity. If a second
observer could see the in-falling trajectory at all times
though, the relation between its time tB and tA would flip
sign at the UH, having dtA=dtB > 0 for r > rUH, but
dtA=dtB < 0 for r < rUH. However, such an observer does
not exist, thus forbidding the existence of time machines
and closed time loops.

III. RADIATION FROM UNIVERSAL HORIZONS

In the following, we show how our findings are respon-
sible for the emission of Hawking radiation. We consider a
Lifshitz scalar field ϕ with action in the preferred frame
adapted to its motion4 [20],

S ¼ −
1

2

Z
dt̂dr

ffiffiffiffiffi
jĝj

p �
Dt̂ϕDt̂ϕþ

Xn
z¼1

αz
Λ2z−2 ϕð−Δ̂Þzϕ

�
;

ð15Þ

where we have suppressed the angular directions, and

Dt̂ ¼
1

N̂
ð∂ t̂ − N̂i∂iÞ; Δ̂ ¼ 1

N̂
∇iðN̂γij∇jÞ: ð16Þ

The hatted quantities are related to those in the ADMmetric
(8) by the appropriate FDiff transformation (9) which
synchronizes the foliation clock with that of the field.
Close to the UH, both γrr and N̂i vanish polynomially in

ðr − rUHÞ, while 1=N̂ diverges. Thus, the equation of
motion in that region is

∂2
t̂ϕþOðr − rUHÞ∂2

rϕ ¼ 0; ð17Þ

whose solutions are ϕ ¼ e�iωt̂þOðr−rUHÞ.
For an observer in the preferred frame, these modes have

positive energy whenever we pick the minus sign, while the
positive sign leads to negative energy. A sensible quanti-
zation and definition of a vacuum j0i can then be done in a
standard way. An observer sitting on the preferred frame
thus sees a stable vacuum at all times. However, as we will
see in a moment, this is not the case for any other observer
which does not follow the preferred coordinates.5 In
particular, we consider here an observer which travels with
rays of ϕ.
Let us now follow a standard derivation of Hawking

radiation [1,21]. Consider a positive energy wave packet of
ϕ, denoted as ϕ0, sitting on a leaf approaching the exterior
of the UH. The lapse N̂ is related to N by

N̂ ¼ dτ
dt̂

× N; ð18Þ

where dτ=dt̂ is continuous across the UH. Close to rUH we
thus write dτ=dt̂ ∼ v≡ constant, and

Uμdxμ ¼ −
BðrUHÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p ¼ N̂dt̂ ¼ vNdt̂; ð19Þ

where we have used N ∝ 1þ AðrUHÞ2FðrUHÞ ¼ 0.
In order to fix the value of v we follow [14]. Close to the

UH the ray infinitely blueshifts, its momentum becoming
of orderΛ [22]. We thus retain only the highest power in (1)
ω2 ∼ α2nq2n=Λ2n−2. Note however that neither ω nor q are
constant along the trajectory, since they are not constants of
motion. Instead, the Killing energy Ω ¼ ðχ · kÞ is constant,
where kμ is the four-momentum of the ray. In the preferred
frame, it can be decomposed as kμ ¼ ωUμ − qSμ, where Sμ

is the spacelike unit vector orthogonal to Uμ, so we get

Ω ¼ ðχ · kÞ ¼ ωðU · χÞ − qðS · χÞ; ð20Þ
4Notice that these rays do not follow geodesics of the metric,

but they are however the natural trajectories with no external
forces.

5This explains the results of [15], where the vacuum state is
implicitly taken as j0i at all times.

TIME ORIENTABILITY AND PARTICLE PRODUCTION FROM … PHYS. REV. D 105, 104009 (2022)

104009-3



with ðS · χÞ ¼ ð1 − AðrÞ2FðrÞÞ=ð2AðrÞÞ. This provides a
second equation that, together with (1), allows us to solve
for qðrÞ. Working at large q ∼ Λ and retaining only the
leading order, we obtain the group velocity of the ray,

cðrÞ ¼ dω
dq

¼ nð1 − AðrÞ2FðrÞÞ
1þ AðrÞ2FðrÞ ; ð21Þ

and with it we write its four-velocity Vμ ¼ Uμ − cðrÞSμ
[22]. Taking the ratio V0=V1 we thus get

dt̂
dr

¼ n
1 − n

BðrUHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p 1

N
þOðr − rUHÞ: ð22Þ

Comparing with (19) we read v ¼ ðn − 1Þ=n.
The preferred time t̂ diverges when approaching rUH. It

is related to the radial coordinate in (8) by (19), so we
integrate it when r → rþUH getting

t̂ ¼ −
ζ

η
log½vηðr − rUHÞ� ¼ −

ζ

η
logðxÞ; ð23Þ

where we have approximated N ∼ ηðr − rUHÞ, and we have
defined x¼vηðr−rUHÞ and ζ¼BðrUHÞ=ðv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−FðrUHÞ

p Þ>0.
Notice that since the wave packet is escaping the UH, ζ > 0.
The positive mode in the preferred frame will be seen by a
free falling ray crossing the UH as

ϕ0ðxÞ ¼ e−iωt̂ ¼ ei
ωζ
η logðxÞ; ð24Þ

and will in general contain positive and negative modes with
respect to the vacuum defined by this observer j0iff, which
sees frequencies ω̄. In order to disentangle both contribu-
tions, we follow Unruh [23], by noting that any function
bounded as jxj → ∞ and analytic in the lower half of the
complex plane contains only positive modes6 [1].
To extract the positive part of ϕ0 we thus perform an

analytic continuation of logðxÞ to x < 0. Since we want the
function to be analytic in the lower half of the complex
plane, we put the branch cut in the upper half and fix the
continuation to logð−xÞ þ iπ. With this, we have a function
which is fully analytic in the lower half. The positive
frequency part of the mode must be proportional to it

ϕþ ¼ cþ
�
ϕ0ðxÞ þ ϕ0ð−xÞe−

πζω
η

�
; ð25Þ

with cþ constant. The negative frequency part is given by
choosing an extension analytic in the upper part of the
complex plane, by logð−xÞ − iπ and thus,

ϕ− ¼ c−
�
ϕ0ðxÞ þ ϕ0ð−xÞe

πζω
η

�
: ð26Þ

The constants c� are fixed by demanding ϕþ þ ϕ− ¼ ϕ0

and read c− ¼ ð1 − e
2πωζ
η Þ−1 and cþ ¼ −c−e−

2πωζ
η .

The average number of particles seen by an observer in
free fall with the field ray is given by hN i ¼ −hϕ−ϕ−i,
where N is the particle number operator. In order to
compute it, we define the internal product of states in a
foliation leaf,

hψ1ψ2it̂ ¼ i
Z ffiffiffiffiffi

jγj
p

drðψ†
1∂ t̂ψ2 − ð∂ t̂ψ

†
1Þψ2Þ; ð27Þ

and note that hϕ0ðxÞϕ0ð−xÞi ¼ 0, since the functions have
disjoint support. We also note that ϕ0ð−xÞ corresponds to a
mode in the region r < rUH. Thus, in a similar form to (23)
and (24) we rewrite the positive mode e−iωt̂ in terms of
x < 0, by integrating the lapse close to r−UH. In order to
proof our point about the need for reversing the interior
foliation, we expand N now as N ∼�ηðr − rUHÞ. The
positive sign corresponds to a reversed interior, while the
minus sign refers to the gluing of two solutions which
keeps N > 0 everywhere.
Comparing both cases we get

dt̂
dr

����
x>0

¼ ∓dt̂
dr

����
x<0

: ð28Þ

Taking this into account, we note that hϕ0ðxÞϕ0ðxÞi ¼∓hϕ0ð−xÞϕ0ð−xÞi by direct comparison of the products.
We finally arrive to

hN i ¼ −hϕ0ðxÞϕ0ðxÞi
�
1 ∓ e

2πωζ
η

��
1 − e

2πωζ
η

�
−2
: ð29Þ

As we argued, choosing the sign that keeps the causal
ordering in both regions identical, which corresponds to the
positive sign in hN i, leads to fundamental problems. The
average number of particles (29) is negative for all ω > 0,
which implies a loss of unitarity.7 This is easily seen
through the density matrix operator ρ, because

hN i ¼ 1

Z
Trðρ ·N Þ: ð30Þ

Since both N and the partition function Z are semipositive
definite, hN i < 0 implies that there exist some eigenstates

6This is a consequence of Fourier decomposition, since the
Fourier measure e−iω̄x diverges at large x for negative ω̄, unless
ϕ0ðω̄Þ vanishes for ω̄ < 0.

7Let us stress that such a loss of unitarity is much more
dramatic than the one usually associated to the information loss
problem in black hole physics. While the latter comes from
assuming complete thermal evaporation of the black hole, which
in turn requires tracing over the Hawking partners in its interior
(so turning a pure state into a mixed one), the second is truly
associated to the violation of a basic tenet of quantum mechanics.
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ni of N for which hnijρjnii < 0, violating the axioms of
probability.
We conclude that a reversal of the foliation in the interior

of the black hole is a necessary condition for the quantum
field theory in the exterior to be well defined. By choosing
the correct sign we thus arrive to

hN i ¼ hϕ0ðxÞϕ0ðxÞiðe
2πωζ
η − 1Þ−1: ð31Þ

This is a thermal distribution of the Bose-Einstein type,
with greybody factor hϕ0ðxÞϕ0ðxÞi and temperature,

T ¼ η

2πζ
¼ n − 1

n
κUH
π

; ð32Þ

where we have computed η ¼ ∂rNjrUH from (13)
and 2κUH ¼ −ða · χÞjUH. As we observe, we recover
expression (3).

IV. TEMPERATURE OF UHs

Let us now consider explicit examples of analytic
solutions to the action of EA gravity [2],

S ¼ −
1

16πG

Z
d4x

ffiffiffiffiffi
jgj

p
ðRþ LU þ λðUμUμ − 1ÞÞ; ð33Þ

where λ is a Lagrange multiplier andLU ¼ Kαβ
μν∇αUμ∇βUν,

with Kαβ
μν ¼ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδνμ þ c4UαUβgμν and

couplings ci.
The solutions that we consider were obtained in [3] and

for both BðrÞ ¼ 1. However, they only solve the equations
of motion for particular values of ci. They are
Solution 1: c1 þ c2 þ c3 ¼ 0,

AðrÞ ¼ 1

1þ R
r

;

FðrÞ ¼ 1 −
2GM
r

−
Rð2GM þRÞ

r2
; ð34Þ

where R ¼ GMð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2−c1−c4

2ð1−c1−c3Þ
q

− 1Þ and rUH ¼ GM.

Solution 2: c1 þ c4 ¼ 0

FðrÞ ¼ 1 −
2GM
r

−
ðc1 þ c3Þr4u

r4
;

AðrÞ ¼ 1

FðrÞ
�
−
r2u
r2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞ þ r4u

r4

r �
; ð35Þ

where now ru ¼ GM
2
ð 27
1−c1−c3

Þ14 and rUH ¼ 3GM
2
. In both cases

M is the Komar mass of the black hole.

Plugging these solutions into (32) we find

T1 ¼
n − 1

n
1

2
ffiffiffi
2

p
πGM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − c1 − c4
1 − c1 − c3

s
; ð36Þ

T2 ¼
n − 1

n
1

3
ffiffiffi
3

p
πGM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 − c1 − c3

s
: ð37Þ

A particular limit of (34)—where c1þc4¼c1þc3¼0—
was explored in [14]. Comparing with them, we find
perfect agreement for the same values of the couplings.
However, our result here is valid for any ci, and it is not
restricted to a Schwarzschild metric. Nevertheless, this
corner of the parameter space has been already ruled out by
observations [24]. On the other hand, (35) can be made
compatible with observational bounds by simply letting
c1 þ c3 ¼ 0, which fixes the speed of gravitational waves
to c ¼ 1. In this case, (35) is the only nonrotating spheri-
cally symmetric solution with a regular UH, and it seems to
be the asymptotic end point of a spherical collapse with
asymptotically flat boundary conditions [25].

V. CONCLUSIONS

In this paper we have shown that continuity and differ-
entiability of N through a UH requires the interior foliation
of a black hole to be reversedwith respect to the exterior one.
Although this is harmless in terms of allowing an observer to
travel along a closed time loop, it has strong consequences
for the quantum properties of gravitating fields. There is a
strong dependence on the analytic continuation of the
positive frequency modes across the UH.
In well-defined quantum theories, this continuation is

chosen such that the mode is single-valued through the UH.
However, lapses with a kink there fail to satisfy this
property. This seems to result in thermodynamic properties.
We have shown how UHs radiate particles with Hawking
temperature (32) only if the reversed interior is allowed.
Our results apply to all stationary and spherically sym-
metric spacetimes. If the lapse is forced to be positive
everywhere, violations of unitarity are found instead. There
seems to be a strict relation between the well-posedness of
the QFT and thermal properties of BHs. Future investiga-
tions will show if such connection endures detailed
phenomenological and conceptual analyses which we have
already started in this paper.
To this aim, we have applied our results to known

analytic solutions. Besides purely theoretically interesting
spacetimes, these also include (35), which is compatible
with all current observations when c1 þ c3 ¼ 0. The need
for a reversal of the interior foliation sheds a shadow on the
actual physical validity of this solution in astrophysical
settings, however. It seems hard to develop such a strongly
nonlocal property from local evolution of collapsing matter.
Absence of a Birkhoff theorem in Lorentz violating gravity

TIME ORIENTABILITY AND PARTICLE PRODUCTION FROM … PHYS. REV. D 105, 104009 (2022)

104009-5



leaves the door open for other, perhaps similar, solutions to
be realized in nature.
Our findings here also highlight the significance of the

dynamics of the foliation orthogonal to Uμ, whose impor-
tance is sometimes overlooked when the four-dimensional
diffeomorphism invariant description is used. It would be
interesting to understand if shifting the perspective could
allow for finding rotating black hole solutions with a UH,
which have been elusive so far [26].
A final question for the future regards the stability of the

UH. Since the modes are infinitely blueshifted when
approaching rUH, one could contest the truncation of the

action to second derivatives. Higher derivative terms are
required in Hořava gravity to have a regular UV behavior
[27–30], and we could wonder if they have a role in the
dynamics of the UH.
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