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Chapter 1

Introduction

In the vast realm of fluid dynamics, modulational instability –more commonly known
as Benjamin-Feir instability in the context of water waves– plays a prominent role among
the phenomena characterizing the wave nature of fluids.
Broadly speaking, this kind of instability concerns the modulation of an undisturbed traveling
periodic wave with small boosts of much longer period, called long-wave perturbations, that
are expected to trigger the disruption of the original waveform.
The disintegrative process of wave trains that the phenomenon exhibits is nowadays
supported by a wide-spread and heterogeneous array of scientific evidence encompassing
physical experiments, numerical simulations, and, more recently, rigorous analytical results.

The present thesis collects some advancements in the mathematical comprehension of
the Benjamin-Feir instability in water waves. We shall describe the linear modulational
instability of a particular class of solutions of the two-dimensional water waves system with
sea depth h ∈ (0,+∞], i.e. traveling, 2π-periodic, planar waves, known as Stokes waves.
Following the classic linearization procedure, we consider a small perturbation h := h(t, x)
of a Stokes wave of amplitude ϵ > 0 and, by discarding quadratic terms O(h2), we obtain
the linearized water waves system along the Stokes wave

∂th(t, x) = Lϵh(t, x) , (1.0.1)

where Lϵ is a linear operator with 2π-periodic coefficients.
The linear modulational stability problem consists in the spectral analysis of the operator
Lϵ regarded as acting on 2πN -periodic functions, for a large natural number N .
In this context we shall describe the complete branching of the portion of the spectrum of
Lϵ closest to 0, with a particular focus on the parts of spectrum outside the imaginary axis.
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8 CHAPTER 1. INTRODUCTION

The existence of an eigenvalue λ with positive real part of Lϵ and of an associated
eigenvector eiµxv(x), for a 2π-periodic function v := v(x) ̸= 0 and a rational value 0 < µ ≤ 1,
called Floquet exponent, gives rise to the following solution h(t, x) of (1.0.1):

h(t, x) := Re
(
eλteiµxv(x)

)
, ∂th(t, x) = Lϵh(t, x) . (1.0.2)

Since λ has positive real part, the solution h(t, x) grows exponentially fast in time.
Via Bloch-Floquet theory, as we shall see later, we pursue the search for λ as an eigenvalue

of the shifted operator Lµ,ϵ := e−iµxLϵeiµx, which acts only on 2π-periodic functions.
For small values of µ and ϵ, the Hamiltonian nature of the operator Lµ,ϵ, inherited from
the Hamiltonicity of the water waves system, allows unstable eigenvalues, i.e. with positive
real part, to bifurcate only from multiple eigenvalues of L0,0. In particular Benjamin-Feir
unstable eigenvalues are expected to bifurcate from the quadruple eigenvalue 0 of L0,0

corresponding to four symmetries of the water waves system.
The core question of the thesis is the following:

• Benjamin-Feir stable/unstable eigenvalues: describe the global bifurcation of the four
eigenvalues of the operator Lµ,ϵ branching off, as µ > 0 and ϵ > 0, from the quadruple
eigenvalue of L0,0 located in the origin of the complex plane.

We provide an exhaustive answer, in full agreement with the existing numerical findings [35]
and extending the analytical literature [21, 74]. Our results are divided into three chapters:

1. Benjamin-Feir instability in infinite depth ([13], Chapter 3). In the idealized
model of an ocean of infinite depth, four distinct eigenvalues of Lµ,ϵ branch off from 0
as both parameters µ and ϵ are turned on. Two of them remain stable, i.e. purely
imaginary, whereas the other two bifurcate specularly out of the imaginary axis and
depict, for constant ϵ > 0 as µ varies, a figure “8” that was previously conjectured by
numerical simulations. The two unstable eigenvalues collide at the top of the figure
“8” and then split again, this time on the imaginary axis.
These results are presented in Theorem 1.2.2, Section 1.4 and Chapter 3.

2. Benjamin-Feir instability in finite depth ([16], Chapter 4). In an ocean of
finite depth h > 0 a drastic regime shift occurs depending on whether the seabed is
shallower or deeper than the Whitham-Benjamin critical threshold hWB ≈ 1.363.
We adapt the deep-water analysis to this model and find an analytical formula for
this threshold separating the deep-water unstable regime from the stable regime of
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shallow water. In the latter case the 4 eigenvalues of Lµ,ϵ under examination are
purely imaginary, whereas, once the depth exceeds the critical threshold, the behavior
of the 4 eigenvalues is in continuity with the infinite-depth case. In particular we find,
for constant ϵ > 0 as µ varies, a depth-dependent figure “8” depicted by two unstable
eigenvalues.
These results are presented in Theorem 1.2.3, Section 1.5 and Chapter 4.

3. Benjamin-Feir instability at the critical depth ([17], Chapter 5). A fine-tuned
analysis of the case of critical depth shows the persistence of the pair of unstable
eigenvalues, forming a degenerate figure “8”, at the Whitham-Benjamin threshold.
This yields an instability zone of the parameters which includes shallow depths
(smaller than the critical threshold) once these are coupled with sufficiently big values
of the amplitude ϵ. The result disposes of a long-standing debate within the scientific
community regarding the stability/instability of Stokes waves in the transient regime
between shallow and deep water.
These results are presented in Theorem 1.2.4, Section 1.6 and Chapter 5.

1.1 Historical background

Let us frame our findings regarding Benjamin-Feir instability within the historical
background of the prior results obtained on the matter.

Stokes waves derive their name from Sir George Stokes, who, in his renowned article
[84], computed the initial expansion of these particular traveling waves in 1847.
The existence of small amplitude Stokes waves of the water waves system (here Theorem
2.1.1) was first rigorously proved in the one-century-old works by Nekrasov [73] and Levi-
Civita [67] in the case of infinite depth and Struik in the case of finite depth. Afterwards these
results were extended to global branches containing extreme waves in [60, 89, 72, 32, 5, 81].

The unexpected discovery of modulational instability for Stokes waves traces its origins
to the physical experiments conducted by Benjamin and Feir [10] in 1967, while they were
trying to replicate Stokes waves inside large water tanks. This was the first observation in
fluid dynamics of this type of instability, which is still known today as the Benjamin-Feir
instability. However, we must here stress that modulational instability per se had already
been discovered by Piliptetskii and Rustamov [80] in 1965, during experiments involving
high-power lasers in organic solvents, and later received a first mathematical derivation due



10 CHAPTER 1. INTRODUCTION

Stokes wave near the wavemaker. Broken wave far from the wavemaker.

Figure 1.1: The two pictures come from [9, Figure 1] and illustrate the disintegration of the
wavetrain due to modulational instability.

to Bespalov and Talanov [19] in 1966.
After the discovery that Stokes waves in deep water are unstable, many heuristic explanations
were proposed, e.g. Lighthill [69] and Zakharov [97, 100]. In the light of these results
it was evinced that modulational instability arises when a wave of a given periodicity is
perturbed by a, however small, boost with much longer periodicity. This so-called long-wave
perturbation leads to the disintegration of the wavetrain with a redistribution of the energy
on a broad spectrum. More precisely the aforementioned works predict the occurrence of
unstable eigenvalues (i.e. with positive real part) of the linearized equations at the Stokes
wave, near the origin of the complex plane, corresponding to small Floquet exponents µ or,
equivalently, to long-wave perturbations.
The same phenomenon was later predicted by Whitham [92] and Benjamin [9] for Stokes
waves of wavelength 2πκ, in finite depth h, provided that κh is greater than hWB ≈ 1.363
which we have called, in their honor, Whitham-Benjamin threshold value.
For a comprehensive historical survey on this topic, we direct the reader to the work [101].

Modulational instability has attracted significant interest from the scientific community
over time. Among the numerous physical experiments (e.g. [79, 25, 26]) and numerical
simulations (e.g. [44, 61, 75, 99, 87]) conducted to explore this phenomenon, special
recognition is given to the work of Deconinck and Oliveras [35], who were the first to provide
a comprehensive view of the L2(R)-spectrum of the operator Lϵ near the origin of the
complex plane. Their work suggests that in that region, the spectrum is distributed both
on the imaginary axis –consistent with our results, as two out of the four eigenvalues of Lµ,ϵ
near 0 follow this pattern as µ varies, see Theorems 1.4.1-1.5.1– and out of the imaginary
axis (becoming unstable) to form a figure “8”, see Figure 1.2.
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Figure 1.2: Numerical figure “8” from [35] depicted by the whole L2(R) spectrum of the
linearized operator near the origin of the complex plane. The picture also shows other
instability phenomena of lower intensity far from the origin (see [34, 48]).

Theorems 1.2.2-1.2.3 are the first analytical proofs of this long-conjectured phenomenon:
the unstable eigenvalues λ±

1 (µ, ϵ) depict a complete figure “8” as µ varies in the interval
[−µ(ϵ), µ(ϵ)].
Our results are the first to analytically exhibit the full instability picture not only for
the water wave system, but for all the fluid dynamical systems where the Benjamin-Feir
phenomenon occurs, exception made for the focusing 1d NLS equation, for which Deconinck-
Upsal [37] showed the presence of a figure “8” for elliptic solutions by exploiting the
integrable structure of the equation.

Any rigorous proof of the Benjamin-Feir instability has to face the difficulty that the
perturbed eigenvalues bifurcate from the defective eigenvalue zero. The first rigorous proof
of a local branch of unstable eigenvalues close to zero for κh larger than the Whitham-
Benjamin threshold hWB ≈ 1.363 was obtained by Bridges-Mielke [21] in finite depth. Their
method, based on a spatial dynamics and a center manifold reduction, breaks down in deep
water1. To deal with this case Nguyen-Strauss [74] have recently developed a new approach,
based on a Lyapunov-Schmidt decomposition.
Both Bridges-Mielke [21] and Nguyen-Strauss [74] reduce the spectral problem to a finite
dimensional one, here a 4 × 4 matrix, and, in a suitable regime of parameters (µ, ϵ), prove
the existence of unstable eigenvalues close to the origin with non-zero real part, namely the

1We quote however [50] for an analogue in infinite depth which carries most of the properties of a center
manifold.
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figure “x” amid the aforementioned figure “8”, see Figure 1.3.
In particular, for the case of infinite depth, we are able to prolong the local branches of

Figure 1.3: We highlighted in red the portion of figure “8” that the previous analytical
results [21, 74] were able to describe, proving for the first time ever the existence of
Benjamin-Feir unstable spectrum in the case of finite depth and deep water respectively.
We boxed in blue the part of the spectrum of Lϵ we find with our method and that we
present in the thesis.

eigenvalues discovered by Nguyen-Strauss in [74] far from the bifurcation, until they collide
again on the imaginary axis and beyond.
In the case of finite depth the same holds and a precise comparison can be made between
the fundamental functions that we obtain from our method and the coefficients obtained in
the approach of Bridges-Mielke [21] to describe the bifurcation of unstable eigenvalues.
Thus our works on the infinite [13] and finite [16] depth cases, here Chapters 3 and 4,
build upon the rigorous results [74]-[21], managing to improve the final outcome with a
complete description of the spectrum near the origin of the complex plane. Moreover, as
we shall see in the next section, we found a common demonstrative procedure for the two
cases, albeit with the necessary adjustments due to the intrinsic differences between the
two models. We are confident that this technique can be extended to many other cases of
linear modulational instability.
The shallow/deep water transient. A question remained open: to determine the
stability or instability of the Stokes waves at the critical Whitham-Benjamin depth hWB

and analyze in detail the change of stable-vs-unstable behavior of the eigenvalues along this
shallow-to-deep water transient.
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Several formal responses have been provided in existing literature [55, 57, 86, 85]. The
solutions for water waves within the framework of modulational instability are formally
approximated by an equation that describes the wave envelope. If h < hWB, this equation
takes the form of a defocusing cubic nonlinear Schrödinger equation (NLS), whereas if
h > hWB, it becomes a focusing cubic NLS. This behavior aligns with the established
stability/instability findings for shallow/deep water, as discussed earlier. The behavior
around the critical depth h = hWB corresponds to the disappearance of the cubic coefficients,
necessitating the determination of a higher-order effective NLS.
In the 1970s, Johnson’s formal calculations [56] hinted at a stability scenario for Stokes
waves when h slightly exceeded hWB. However, Kakutani and Michihiro [57], a few years
later, derived a distinct quintic NLS equation and asserted the modulational instability of
Stokes waves. This instability was further validated by Slunyaev [86], who investigated how
the coefficients of the quintic effective NLS equation vary with h.
In our work [17], here Chapter 5, we prove with mathematical rigor the occurrence of the
latter scenario: Stokes waves of the pure gravity water waves equations at the critical depth
are linearly unstable under long wave perturbations.

High-frequency modulational instability. Other modulationally unstable eigenvalues
for the Stokes waves can be found far from the origin as showed in [34] and [48].
These unstable eigenvalues arise from the double eigenvalues in the L2(R)-spectrum of the
linearized water waves system along the Stokes wave and depict figures “0”, i.e. ellipse-
shaped curves called isolas which were described numerically in [35] and supported by
formal expansions in ϵ in [34], see also [1].
Differently from the case of the quadruple eigenvalue 0, the study of the spectrum in the
case of high-frequency instabilities is reduced to finding the eigenvalues of a 2x2 Hamiltonian
and reversible matrix. On the other hand, this simplification is balanced by a significant
computational complexity in deriving the actual instability of these finite-dimensional
matrices, which can only be determined by knowing the p-th order (or higher) Taylor
expansion of the matrix entries, for a positive integer parameter p that indexes, increasingly
with respect to the distance from the origin, the unperturbed double eigenvalues.
We plan to adapt, in the near future, the methods presented in this thesis to the study of
this problem. This could lead to a description of the full L2(R)-spectrum of the linearized
water waves system along a Stokes wave in the case of small amplitudes.

Nonliner results. In literature one can find some pioneering assaults on the nonlinear case.
We bring up the outcome of Jin, Liao, and Lin [54] regarding the nonlinear modulational
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instability in various fluid model equations. By assuming a priori that these approximate
versions of water waves are linearly unstable, the three authors derive the existence of
solutions U(t, x) having initial datum U(0, x) arbitrarily close to the traveling wave in the
Hs(Tq) norm, but diverging from this in the L2(Tq) norm.
A similar result was obtained by Chen-Su [27] concerning Stokes waves in deep water, by
relaying on the modulational approximation to the water waves given by the NLS instead
of working on the full system directly.
Results related to the nonlinear transversal instability of solitary traveling water waves
in finite depth, which decay as they extend to infinity over the real line R, have been
established in [76]. It is important to note that in deep water, there are no solitary wave
solutions, as shown in [47, 49].

Further literature on modulational instability. Modulational instability has been
studied also for a variety of approximate water waves models, such as KdV, gKdV, NLS
and the Whitham equation by, for instance, Whitham [93], Segur, Henderson, Carter and
Hammack [83], Gallay and Haragus [42], Haragus and Kapitula [43], Bronski and Johnson
[24], Johnson [55], Hur and Johnson [45], Bronski, Hur and Johnson [23], Hur and Pandey
[46], Leisman, Bronski, Johnson and Marangell [66]. Also for these approximate models,
numerical simulations predict a figure “8” similar to that in Figure 1.2 for the bifurcation
of the unstable eigenvalues close to zero.
However, in none of these approximate models (except for the integrable NLS in [37]) the
complete picture of the Benjamin-Feir instability has been rigorously proved so far.
We expect that the present approach can be adapted to describe the full bifurcation of the
eigenvalues for these models too.

1.2 Benjamin-Feir unstable eigenvalues

We now state our results regarding the Benjamin-Feir unstable eigenvalues.
Let us first introduce the Zakharov Hamiltonian formulation of the water waves, where the
water is modeled as an Euler fluid, in which we will take our steps.
We recall that Euler fluids form the basis of fluid dynamics theory. They are idealized fluids
that are inviscid (meaning they have no internal friction or viscosity) and incompressible
(meaning they have constant density). This assumption is particularly useful for studying
certain aspects of fluid behavior, especially in cases where the effects of viscosity are
negligible. In our context, Euler fluids provide a simplified framework for understanding
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the fundamental principles governing wave propagation. By neglecting viscosity, the focus
can be directed towards the interplay between nonlinearity and dispersion, which are key
factors contributing to the emergence of phenomena like Benjamin-Feir instability.
However we remark that, although Euler fluids are a valuable theoretical tool, real-world
fluids, including water, do have viscosity and the results obtained from the use of the model
of Euler fluids should be interpreted in light of this simplification.
With this in mind, we plan to broaden this study in the future by incorporating the more
comprehensive framework of viscous fluids provided by the Navier-Stokes equations.
Notation. From now on we denote the partial derivative of a function with respect to a
variable with a subscript.
The water-waves system. Let us consider an ocean modeled by the cylindrical domain

Dh,η :=
{
(t, x, y) ∈ R×T×R : −h < y < η(t, x)

}
, T := R/2πZ , h ∈ (0,+∞] , (1.2.1)

which is delimited from above by the graph ∂Dη = {y = η(t, x)} of a periodic function
η(t, x) being the water surface, and from below by the sea depth h > 0. The Euler equations
for a two-dimensional, incompressible, inviscid, irrotational, fluid filling the ocean in (1.2.1),
under the pure action of gravity, are

Φt + 1
2(Φ2

x + Φ2
y) + gη = P at y = η(x)

ηt = Φy − ηx Φx at y = η(x)

Φxx + Φyy = 0 in Dh,η

Φy → 0 as y → −h ,

(1.2.2)

where Φ := Φ(t, x, y) is the harmonic scalar potential of the irrotational velocity field, g is
the gravity constant and P ∈ R is the Bernoulli constant, i.e. the atmospheric pressure
along the free surface.
The whole dynamics of the fluid is governed by the two boundary conditions at the free
surface in (1.2.2). The first one, called dynamic boundary condition, requires the pressure of
the fluid to align with the constant atmospheric pressure P along the free surface, whereas
the second one, called kinematic boundary condition, imposes that the fluid particles remain
on the free surface during the time evolution.
The harmonic potential Φ is uniquely determined by its trace ψ(t, x) = Φ(t, x, η(t, x)) at
the free surface y = η(t, x) as the solution of the elliptic equation

Φxx + Φyy = 0 in Dh,η, Φ(t, x, η(t, x)) = ψ(t, x) , Φy(t, x, y) → 0 as y → −h . (1.2.3)
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As shown by Zakharov [98] and Craig-Sulem [32], the time evolution of the fluid is completely
determined by the following Hamiltonian system for the unknowns (η(t, x), ψ(t, x))[

ηt

ψt

]
= J

[
∇ηH

∇ψH

]
, J :=

[
0 Id

−Id 0

]
, (1.2.4)

where ∇ denote the L2-gradient, and the Hamiltonian

H(η, ψ) :=
∫
T

(
1
2ψG(η)ψ + 1

2gη
2 − Pη

)
dx

is the sum of the kinetic and potential energy of the fluid with G(η) being the Dirichlet-
Neumann operator of the domain Dh,η, namely

[G(η; h)ψ](x) := [G(η)ψ](x) := Φy(x, η(x)) − Φx(x, η(x))ηx(x) . (1.2.5)

Following [32, 98], the L2-gradient with respect to η of the kinetic energy

K(η, ψ) := 1
2(ψ,G(η)ψ)L2 = 1

2

∫
Dη

|∇Φ|2 dx , (1.2.6)

is equal to
∇ηK(η, ψ) = −1

2ψ
2
x + 1

2(1 + η2
x)
(
G(η)ψ + ηxψx

)2
, (1.2.7)

allowing us to recast system (1.2.4) as the following equivalent system

ηt = G(η)ψ , ψt = P − gη − ψ2
x

2 + 1
2(1 + η2

x)
(
G(η)ψ + ηxψx

)2
. (1.2.8)

In addition to Hamiltonicity, the water waves system (1.2.8) is time-reversible with respect
to the involution

ρ

[
η(x)
ψ(x)

]
:=
[
η(−x)

−ψ(−x)

]
, i.e. H ◦ ρ = H . (1.2.9)

Stokes waves. A particular class of solutions of the water waves system (1.2.8) is formed
by the Stokes waves, namely solutions of the form η(t, x) = η̆(x− ct) and ψ(t, x) = ψ̆(x− ct)
for some real translational velocity c and a pair

(
η̆(x), ψ̆(x)

)
of 2π-periodic functions. The

profile (η̆, ψ̆) is thus an equilibrium of the following system

ηt = cηx +G(η)ψ , ψt = cψx + P − gη − ψ2
x

2 + 1
2(1 + η2

x)
(
G(η)ψ + ηxψx

)2
, (1.2.10)

given by the water waves equations (1.2.8) in a reference frame moving at constant speed c.
Existence and uniqueness of such solutions, for small amplitudes, represent a classic result
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of Levi-Civita [67] and Nekrasov [73] in the case of infinite depth, and Struik [88] in the
case of finite depth. We now state a low-regularity version of the existence result for the
Stokes of wavenumber κ = 1 with normalized constants g = 1 and P = 0 (cfr. Lemma
2.1.2), while postponing a more refined version to Theorem 2.1.1.

Theorem 1.2.1. There exists ϵ0 := ϵ0(h) > 0 and a unique family of analytic solutions

(ηϵ(x), ψϵ(x), cϵ) ∈ H1(T) ×H1(T) × R

of the system (1.2.10), parameterized by |ϵ| ≤ ϵ0, such that ηϵ(x), ψϵ(x), cϵ are respectively
even, odd and constant in x and admit the Taylor expansion in ϵ

ηϵ(x) = ϵ cos(x) + O(ϵ2) , ψϵ(x) = ϵc−1
h sin(x) + O(ϵ2) , cϵ = ch + O(ϵ) , (1.2.11)

with ch :=
√

tanh(h), c+∞ = 1 in infinite depth, being the bifurcation value of the solution.

We are now in a position to present the first results of this thesis.
Notation. In the following pages we denote by O(µm1ϵn1 , . . . , µmpϵnp), mj , nj ∈ N, analytic
functions of (µ, ϵ) with values in a Banach space X which satisfy, for some C > 0,

∥O(µmj ϵnj )∥X ≤ C
p∑
j=1

|µ|mj |ϵ|nj

for small values of (µ, ϵ). We denote r(µm1ϵn1 , . . . , µmpϵnp), with or without a labeling
subscript, scalar functions O(µm1ϵn1 , . . . , µmpϵnp) which are also real analytic.

Deep water. The first part of the thesis provides, for small values of the parameters ϵ and
µ, the full description of the four eigenvalues near zero of the operator

Lµ,ϵ =
[
(∂x + iµ) ◦ (1 + pϵ(x)) |D + µ|

−(1 + aϵ(x)) (1 + pϵ(x))(∂x + iµ)

]
, pϵ, aϵ : T → R , pϵ, aϵ = O(ϵ) ,

which we carry out in Section 1.3 as the Floquet shift Lµ,ϵ := e−iµxLϵeiµx of the linearized
(and conjugated) operator Lϵ along the Stokes wave (ηϵ, ψϵ) in the case of infinite depth
h = +∞. We now focus on Benjamin-Feir unstable eigenvalues, postponing the complete
result to Theorem 1.4.1.

Theorem 1.2.2. Let h = +∞. There exist ϵ1, µ0 > 0 and an analytic function

µ : [0, ϵ1) → [0, µ0) , of the form µ(ϵ) = 2
√

2ϵ(1 + r(ϵ)) , (1.2.12)
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such that, for any ϵ ∈ [0, ϵ1), the operator Lµ,ϵ has two eigenvalues λ±
1 (µ, ϵ) given by


1
2 iµ+ i r(µϵ2, µ2ϵ, µ3) ± µ

8
√

∆(µ, ϵ) , ∀µ ∈ [0, µ(ϵ)) ,
1
2 iµ(ϵ) + i r(ϵ3) , µ = µ(ϵ) ,
1
2 iµ+ i r(µϵ2, µ2ϵ, µ3) ± i µ8

√
|∆(µ, ϵ)| , ∀µ ∈ (µ(ϵ), µ0) ,

(1.2.13)

where the function ∆(µ, ϵ) has the expansion

∆(µ, ϵ) = 8ϵ2
(
1 + r0(ϵ, µ)

)
− µ2(1 + r′

0(ϵ, µ)) ,

being positive when 0 < µ < µ(ϵ) and negative as µ > µ(ϵ).

As the Floquet parameter µ lies in
(
0, µ(ϵ)

)
the eigenvalues λ±

1 (µ, ϵ) in (1.2.13) form the
upper part of a figure “8” and have opposite non-zero real part. As µ tends to µ(ϵ), the two
eigenvalues λ±

1 (µ, ϵ) collide again in the upper semiplane Im(λ) > 0 on the imaginary axis
far from the origin of the complex plane. After the collision, for µ > µ(ϵ), they split again,
remain stable and move along the imaginary axis. For µ < 0 the operator Lµ,ϵ possesses the
symmetric eigenvalues λ±

1 (−µ, ϵ) forming the lower part of the figure “8” in the semiplane
Im(λ) < 0. Figure 1.4 portrays the whole splitting of these two eigenvalues. This figure “8”
is the complete Benjamin-Feir branching of the L2(R)-spectrum of the operator Lϵ outside
of the imaginary axis predicted by Benjamin and Feir [10] and pioneered by the rigorous
findings of Nguyen and Strauss [74].

Finite depth. The main result of the second part of the thesis provides, for finite values
of the depth h and ϵ and µ small enough , the full splitting of the four eigenvalues close to
zero of the operator

Lµ,ϵ(h) :=
[
(∂x + iµ) ◦ (ch + pϵ(x)) |D + µ| tanh

(
(h + fϵ)|D + µ|

)
−(1 + aϵ(x)) (ch + pϵ(x))(∂x + iµ)

]
,

which we derive in Section 1.3 as the Floquet shift Lµ,ϵ := e−iµxLϵeiµx of the linearized
(and conjugated) operator Lϵ along the Stokes wave (ηϵ, ψϵ) in the case of finite depth
0 < h < +∞.
As for the case of infinite depth we postpone the complete result to Theorem 1.5.1 and first
focus, in Theorem 1.2.3, on the Benjamin-Feir unstable eigenvalues again forming, when
the sea is sufficiently deep, a figure “8” in continuity with the deep-water case.
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Figure 1.4: Traces of the eigenvalues λ±
1 (µ, ϵ) in the complex λ-plane at fixed |ϵ| ≪ 1 as

µ varies. For µ ∈ (0, µ(ϵ)) the eigenvalues fill the portion of the 8 in {Im(λ) > 0} and for
µ ∈ (−µ(ϵ), 0) the symmetric portion in {Im(λ) < 0}.

Theorem 1.2.3. (Benjamin-Feir unstable eigenvalues) There exists a unique value
hWB > 0 such that, for any h > hWB, there exist ϵ1, µ0 > 0 and an analytic function
µ : [0, ϵ1) → [0, µ0), of size µ(ϵ) = r(ϵ) such that, for any ϵ ∈ [0, ϵ1), the operator Lµ,ϵ has
two eigenvalues λ±

1 (µ, ϵ) of the form
i 1

2C1(h)µ+ i r2(µϵ2, µ2ϵ, µ3) ± µ
8C2(h)(1 + r(ϵ, µ))

√
∆BF(h;µ, ϵ), ∀µ ∈ [0, µ(ϵ))

i 1
2C1(h)µ(ϵ) + i r(ϵ3), µ = µ(ϵ)

i 1
2C1(h)µ+ i r2(µϵ2, µ2ϵ, µ3) ± i µ8C2(h)(1 + r(ϵ, µ))

√
|∆BF(h;µ, ϵ)|, ∀µ ∈ (µ(ϵ), µ0)

(1.2.14)
where C1(h), C2(h) > 0, for every h > 0, with C1(h), C2(h) → 1 as h → +∞, and ∆BF(h;µ, ϵ)
is, for any 0 < ϵ < ϵ1 dependent on h, positive for 0 < µ < µ(ϵ) and negative for µ > µ(ϵ).

In Section 1.5 we shall see that the value hWB ≈ 1.363 of Theorem 1.2.3 coincides with
the critical depth found by Whitham [92] and Benjamin [9] and analytically carried out by
Bridges and Mielke [21].
For h > hWB as the Floquet parameter varies in 0 < µ < µ(ϵ), the eigenvalues λ±

1 (µ, ϵ) in
(1.2.13) have opposite non-zero real part and form the upper part of a h-dependent figure “8”
in continuity with the case of infinite depth. The lower part of the figure “8” is depicted by
the symmetric eigenvalues λ±

1 (−µ, ϵ) of the operator Lµ,ϵ for µ < 0. This figure “8” is the
whole finite-depth unstable branching of the L2(R)-spectrum of Lϵ predicted by Whitham
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[92] and Benjamin [9] and pioneered by the rigorous findings of Bridges and Mielke [21].
In the shallow-water regime 0 < h < hWB, for sufficiently small ϵ, the two eigenvalues in
(1.2.14) remain purely imaginary.
The result, also in its complete form in Theorem 1.5.1, is not conclusive in the specific case
h = hWB, for here, as we shall see, the first expansion of the discriminant ∆BF appearing in
(1.2.14) degenerates and its sign, determining stability or lack thereof, has to be evinced by
a higher-order expansion. This is the content of the third and last part of the thesis.

Critical threshold. The main result of the third part of the thesis proves, for the critical
value of the depth h = hWB, the full splitting of the four eigenvalues close to zero of the
operator Lµ,ϵ when ϵ and µ are small enough, see Theorem 1.6.1. We present here the core
result that states for the first time in the analytical literature the existence of Benjamin-Feir
unstable eigenvalues for the critical-depth case forming, as we shall detail in Theorem 1.6.2,
a degenerate figure “8”.

Theorem 1.2.4. (Modulational instability of the Stokes wave at h = hWB) In the
critical-depth case h = hWB, small amplitude Stokes waves of amplitude O(ϵ) are linearly
unstable subject to long wave perturbations. Actually Stokes waves are modulational unstable
also at nearby depths h < hWB: there is an analytic function defined for ϵ small, of the form

h(ϵ) = −cϵ2 + O(ϵ3) , c > 0 ,

such that, for any (h, ϵ) satisfying

h > hWB + h(ϵ) , (1.2.15)

the linearized operator Lµ,ϵ along the Stokes wave has two eigenvalues with nontrivial real
part for any Floquet exponent µ small enough, see Figure 1.5. For h = hWB the unstable
eigenvalues depict a closed figure “8” as µ varies in an interval of size [0, c1ϵ2).

We call this figure “8” degenerate because, as we shall see in Section 1.6, it is much
smaller in height and width than that of the sufficiently-deep water case h > hWB.
For a more rigorous statement we refer to Theorems 1.6.1 and 1.6.2 which, additionally,
provide a necessary and sufficient condition for the existence of unstable eigenvalues.

1.3 Linearization along the Stokes wave

Before commenting Theorems 1.2.2, 1.2.3, 1.2.4 and entering the specific formulation of
the complete results in 1.4.1, 1.5.1 and 1.6.1, let us present their common mathematical
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Figure 1.5: The values of (h, ϵ) in (0,∞)× (0, ϵ1) for which there are Benjamin-Feir unstable
eigenvalues fill the zone above the red curve, where ∆BF(h; 0, ϵ) > 0.

framework. The content of this section is classical, and we do not dwell on it for the
moment, postponing a more detailed discussion to Section 2.1 and referring the reader to
the extensive literature on the subject.

The linearized water waves system along the Stokes wave of wavenumber κ = 1 is[
η̂t

ψ̂t

]
=
[

−G(ηϵ)Bϵ − ∂x ◦ (Vϵ − cϵ) G(ηϵ)
−1 +Bϵ(Vϵ − cϵ)∂x −Bϵ∂x ◦ (Vϵ − cϵ) −BϵG(ηϵ) ◦Bϵ −(Vϵ − cϵ)∂x +BϵG(ηϵ)

]
︸ ︷︷ ︸

[
η̂

ψ̂

]
,

=: JAϵ : H1(T,R2) ⊂ L2(T,R2) closed−→ L2(T,R2) (1.3.1)

with J in (1.2.4) and (Vϵ, Bϵ) being the velocity field of the Stokes wave, i.e. the gradient of
the potential Φ in (1.2.3) with η = ηϵ(t, x), ψ = ψϵ(t, x). We observe that Aϵ = A⊤

ϵ , where
A⊤ is the transposed operator with respect the scalar product of L2(T,R2), which shows
that the real system (1.3.1) is Hamiltonian. Moreover the linear operator JAϵ is reversible,
i.e. it anti-commutes with the involution ρ in (1.2.9).
The linearized system in (1.3.1) is simplified by the following conjugations.

1. Good unknown of Alinhac. The time-independent linear transformation[
η̂

ψ̂

]
:= Zϵ

[
u

v

]
, Zϵ =

[
1 0
Bϵ 1

]
, Z−1

ϵ =
[

1 0
−Bϵ 1

]
, (1.3.2)

under which the system (1.3.1) assumes the form[
ut

vt

]
= L̃ϵ

[
u

v

]
, L̃ϵ :=

[
−∂x ◦ (Vϵ − cϵ) G(ηϵ)

−1 − (Vϵ − cϵ)(Bϵ)x −(Vϵ − cϵ)∂x

]
, (1.3.3)

where we regard L̃ϵ as a closed operator L̃ϵ : H1(T,R2) ⊂ L2(T,R2) → L2(T,R2).
The linear system (1.3.3) is still real Hamiltonian and reversible as (1.3.1), because the
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transformation Zϵ is symplectic and reversibility preserving, i.e.

Z⊤
ϵ JZϵ = J , Zϵ ◦ ρ = ρ ◦ Zϵ .

2. Levi-Civita flattening. A conformal change of variables to flatten the water surface.
Following [7, Appendix A] one finds a diffeomorphism of T, x 7→ x+ pϵ(x), with pϵ(x) being
a 2π-periodic odd function and a constant fϵ determined as fixed point of (see [7, (A.15)])

pϵ = H

tanh
(
(h + fϵ)|D|

) [ηϵ(x+ pϵ(x))] , fϵ := 1
2π

∫
T
ηϵ(x+ pϵ(x))dx , (1.3.4a)

which, in the case of infinite depth h = +∞, boils down to

pϵ = H[ηϵ(x+ pϵ(x))] . (1.3.4b)

Here H is the Hilbert transform, i.e. the Fourier multiplier operator

H(ei jx) := −i sign(j)ei jx , ∀j ∈ Z \ {0} , H(1) := 0 .

One then writes the Dirichlet-Neumann operator as (cfr. [7, Lemma A.5])

G(ηϵ) = ∂x ◦ P−1
ϵ ◦ H ◦ tanh

(
(h + fϵ)|D|

)︸ ︷︷ ︸
= H if h=+∞

◦Pϵ , (Pϵu)(x) := u(x+ pϵ(x)) . (1.3.5)

The Levi-Civita flattening is the symplectic and reversibility-preserving mapping

Pϵ :=
[(

1 + (pϵ)x
)
Pϵ 0

0 Pϵ

]
. (1.3.6)

Under this conjugation system (1.3.3) is recast, by (1.3.5), into the linear system (1.0.1),
with Lϵ being the Hamiltonian and reversible real operator

Lϵ := Pϵ L̃ϵ P
−1
ϵ =

[
∂x ◦ (ch + pϵ(x)) |D| tanh((h + fϵ)|D|)

−(1 + aϵ(x)) (ch + pϵ(x))∂x

]
= JBϵ

Bϵ :=
[

1 + aϵ(x) −(ch + pϵ(x))∂x
∂x ◦ (ch + pϵ(x)) |D| tanh((h + fϵ)|D|)

]
= B∗

ϵ ,

(1.3.7a)

which in the case of infinite depth h = +∞ is

Lϵ =
[
∂x ◦ (1 + pϵ(x)) |D|

−(1 + aϵ(x)) (1 + pϵ(x))∂x

]
= J

[
1 + aϵ(x) −(1 + pϵ)(x)∂x

∂x ◦ (1 + pϵ(x)) |D|

]
︸ ︷︷ ︸

=Bϵ

. (1.3.7b)
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The functions pϵ := pϵ(x) and aϵ := aϵ(x) appearing in (1.3.7) are given by

ch + pϵ(x) := cϵ − Vϵ(x+ pϵ(x))
1 + (pϵ)x(x) ,

1 + aϵ(x) := 1 + (Vϵ(x+ pϵ(x)) − cϵ)(Bϵ)x(x+ pϵ(x))
1 + (pϵ)x(x) .

(1.3.8)

We regard Lϵ as a closed operator Lϵ : H1(T,R2) ⊂ L2(T,R2) → L2(T,R2).
We are now able to reformulate the linear modulational problem into a precise statement:

• find a natural N ≥ 1 and an eigenvalue λ ∈ σL2(TN )(Lϵ) such that Re(λ) > 0,

where TN := R/2πNZ. We recall that an eigenvalue is an element of the point spectrum of
an operator. Thus λ has an associated eigenspace Vλ ⊂ L2(TN ,C2) and any eigenvector
w ∈ Vλ, w ̸= 0, satisfies Lϵw(x) = λw(x).
The link between eigenvectors w ∈ Vλ of Lϵ and solutions

(
λ, µ, v(x)

)
of (1.0.2) becomes

more evident in view of the Bloch-Floquet spectral decomposition. We have (cfr. [55])

σL2(TN )(Lϵ) =
⋃

µ∈ΩN

σL2(T)(Lµ,ϵ) , σL2(R)(Lϵ) =
⋃
µ∈Ω

σL2(T)(Lµ,ϵ) , Lµ,ϵ := e−iµxLϵe
iµx

(1.3.9)
where Ω := [−1

2 ,
1
2) and ΩN ⊂ Ω ∩ Q, s.t. |ΩN | = N , NΩN ⊂ Z.

The last identity in (1.3.9) allows us to extend the domain of the Floquet exponent µ in
(1.0.2) to every value in the domain Ω := [−1

2 ,
1
2). Alternatively, instead of the domain2 Ω,

one can consider any domain of the form Ω +m, with m ∈ Z, because of the identity

Lµ+m,ϵ = e−imxLµ,ϵe
imx , ∀m ∈ Z , (1.3.10)

which shows that the spectrum σL2(T)(Lµ) is a 1-periodic set in µ.
We remark that, since Lϵ is a real operator, Lϵ,µ = L−µ,ϵ. As a first consequence the
spectrum σ(L−µ,ϵ) = σ(Lµ,ϵ) may be studied only for µ > 0. As a second consequence the
operator Lµ,ϵ is not real anymore, apart from L0,0. To deal with complex operators we
equip the space L2(T,C2) with the complex scalar product

(f, g) := 1
2π

∫ 2π

0
(f1g1 + f2g2) dx , ∀f =

[
f1

f2

]
, g =

[
g1

g2

]
∈ L2(T,C2) , (1.3.11)

so that, from now on, ∥f∥2 := (f, f). We have the following
2in solid state physics this is called “first zone of Brillouin”.
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Definition 1.3.1 (Complex Hamiltonian/Reversible operator). A complex operator
L : H1(T,C2) ⊂ L2(T,C2) closed−→ L2(T,C2) is
(i) Hamiltonian, if it can be written as L = JB, with J in (1.2.4) and B being a self-adjoint
operator, namely B = B∗, where B∗ (with domain H1(T)) is the adjoint with respect to
the complex scalar product (1.3.11) of L2(T);
(ii) reversible, if it anticommutes with the complex involution ρ

L ◦ ρ = −ρ ◦ L , (1.3.12)

where (cfr. (1.2.9))

ρ

[
η(x)
ψ(x)

]
:=
[
η(−x)

−ψ(−x)

]
. (1.3.13)

The Floquet shift Lµ,ϵ = e−iµxLϵeiµx of the real operator Lϵ in (1.3.7a) is the complex
Hamiltonian and reversible operator

Lµ,ϵ =
[
(∂x + iµ) ◦ (ch + pϵ(x)) |D + µ| tanh

(
(h + fϵ)|D + µ|

)
−(1 + aϵ(x)) (ch + pϵ(x))(∂x + iµ)

]
(1.3.14a)

=
[

0 Id
−Id 0

]
︸ ︷︷ ︸

= J

[
1 + aϵ(x) −(ch + pϵ(x))(∂x + iµ)

(∂x + iµ) ◦ (ch + pϵ(x)) |D + µ| tanh
(
(h + fϵ)|D + µ|

)]︸ ︷︷ ︸
=: Bµ,ϵ = B∗

µ,ϵ

,

in the case of infinite depth h = +∞

Lµ,ϵ =
[
(∂x + iµ) ◦ (1 + pϵ(x)) |D + µ|

−(1 + aϵ(x)) (1 + pϵ(x))(∂x + iµ)

]
(1.3.14b)

=
[

0 Id
−Id 0

]
︸ ︷︷ ︸

= J

[
1 + aϵ(x) −(1 + pϵ(x))(∂x + iµ)

(∂x + iµ) ◦ (1 + pϵ(x)) |D + µ|

]
︸ ︷︷ ︸

= Bµ,ϵ

.

The derivation of Lµ,ϵ from Lϵ in (1.3.7) can be carried out by means of Lemma 2.1.5.
We regard Lµ,ϵ as a closed operator Lµ,ϵ : H1(T,C2) ⊂ L2(T,C2) → L2(T,C2). Property
(1.3.12) for Lµ,ϵ follows because Lϵ is a real operator which is reversible with respect to the
involution ρ in (1.2.9). Equivalently, since J ◦ ρ = −ρ ◦ J, a complex Hamiltonian operator
L = JB is reversible, if the self-adjoint operator B is reversibility-preserving, i.e.

B ◦ ρ = ρ ◦ B . (1.3.15)
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In its final form problem (1.0.2) is reformulated as follows:

• find a Floquet exponent µ ∈ R, and an eigenvalue λ ∈ σL2(T)(Lµ,ϵ) such that Re(λ) > 0.

The complete solution of this problem, for λ near the origin of the complex plane and small
parameter ϵ and µ, is given in Theorems 1.4.1, 1.5.1 and 1.6.1 deeply relies on Hamiltonicity
and reversibility of the operator Lµ,ϵ.

We aim to find the unstable eigenvalues of Lµ,ϵ by a perturbation argument based on
the complete knowledge of the spectrum of the Fourier multiplier

Lµ,0 =
[
ch(∂x + iµ) |D + µ| tanh

(
h|D + µ|

)
−1 ch(∂x + iµ)

]
, (1.3.16)

consisting of the purely imaginary eigenvalues {λ±
k (µ) , k ∈ Z}, where

λ±
k (µ) := i

(
ch(±k + µ) ∓

√
|k ± µ| tanh(h|k ± µ|)

)
, (1.3.17)

at h = +∞

Lµ,0 =
[
∂x + iµ |D + µ|

−1 ∂x + iµ

]
, λ±

k (µ) := i
(

± k + µ∓
√

|k ± µ|
)
. (1.3.18)

For µ = 0 we find that 0 is the quadruple eigenvalue of the real operator L0,0 given by

λ+
0 (0) = λ−

0 (0) = λ+
1 (0) = λ−

1 (0) = 0 . (1.3.19)

It is an isolated eigenvalue for L0,0, meaning that the spectrum σ (L0,0) splits into two
separated parts

σ (L0,0) = σ′ (L0,0) ∪ σ′′ (L0,0) where σ′(L0,0) := {0} (1.3.20)

and σ′′(L0,0) :=
{
λσk(0), k ̸= 0, 1 , σ = ±

}
.

As shown in [74, Theorem 4.1], the operator L0,ϵ –which has the same matrix representation
as Lϵ in (1.3.7) with domain restricted to 2π-periodic functions– keeps 0 as quadruple
eigenvalue.

By Kato’s perturbation theory (see Lemma 2.2.1 below) for any µ, ϵ ̸= 0 sufficiently
small, the perturbed spectrum σ (Lµ,ϵ) admits a disjoint decomposition as

σ (Lµ,ϵ) = σ′ (Lµ,ϵ) ∪ σ′′ (Lµ,ϵ) , |σ′ (Lµ,ϵ) | ≤ 4 , (1.3.21)



26 CHAPTER 1. INTRODUCTION

where σ′ (Lµ,ϵ) consists of 4 eigenvalues (counted with multiplicity) close to 0.
We denote by Vµ,ϵ the sum of all the generalized eigenspaces associated with eigenvalues in
σ′ (Lµ,ϵ). The spectral subspace Vµ,ϵ has dimension 4 and is invariant by Lµ,ϵ.
Theorems 1.4.1, 1.5.1 and 1.6.1 give analytic expressions for the four eigenvalues, produced
as spectrum of a 4 × 4 matrix representing the operator Lµ,ϵ restricted to Vµ,ϵ, in a certain
region of the parameters (µ, ϵ, h) ∈ (−µ0, µ0) × (−ϵ1, ϵ1) × [h1, h2].
The figure “8” we encountered in Theorems 1.2.2, 1.2.3 and 1.2.4 is depicted by two of these
four eigenvalues that, when the seabed is sufficiently deep, are unstable i.e. with opposite
nonzero real part.

Our method. We prepend here some of the main common points of our method to describe
the spectral branching of the operator Lµ,ϵ, while postponing the particular description of
each case after its own complete statement in Theorems 1.4.1, 1.5.1 or 1.6.1.
The first ingredient is a symplectic version of Kato’s theory of similarity transformations
[59, II-§4]. The Kato method is perfectly suited to study splittings of multiple isolated
eigenvalues, for which regular perturbation theory might fail. It has been used in the study
of infinite dimensional integrable systems [58, 63, 8, 71].
In particular we implement Kato theory for the complex operators Lµ,ϵ which have an
Hamiltonian and reversible structure, inherited by the Hamiltonian [98, 32] and reversible
[18, 7, 11] nature of the water waves equations. We show how Kato’s theory can be used to
prolong, in an analytic way, a symplectic and reversible basis of the generalized eigenspace
of the unperturbed operator L0,0 into a (µ, ϵ)-dependent symplectic and reversible basis
of the corresponding invariant subspace of Lµ,ϵ. Thus the restriction of the canonical
complex symplectic form to this subspace, is represented, in this symplectic basis, by the
constant symplectic matrix J4 defined in (2.2.25), which is independent of (µ, ϵ). This
feature simplifies considerably perturbation theory.
In this way the spectral problem is reduced to determine the eigenvalues of a 4 × 4
matrix, which depends analytically in µ, ϵ and it is Hamiltonian and reversible. These
properties imply strong algebraic features on the matrix entries, for which we provide
detailed expansions.
The second main ingredient of our method is the use of block-decoupling, in the mold
of KAM theory, to simplify the 4 × 4 spectrum-mining process avoiding the use of the
characteristic polynomial of the reduced matrix, as in the periodic Evans function approach
[24, 48] or in [45, 74]. This allows to capture the whole figure “8” even in the zone where
the eigenvalues fail to depend analytically on the parameters.
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We use a symplectic transformation to conjugate the orginal 4 × 4 Hamiltonian reversible
matrix obtained by the Kato method to a block-diagonal matrix whose 2 × 2 diagonal
blocks are Hamiltonian and reversible. One of these two blocks has the eigenvalues given in
(1.2.13), (1.2.14) or (1.6.7) (depending on the case), forming the figure “8” characteristic of
the Benjamin-Feir instability phenomenon.

1.4 Benjamin-Feir spectrum in deep water

In the case of infinite depth our complete spectral result is the following

Theorem 1.4.1. (Complete Benjamin-Feir spectrum) There exist ϵ0, µ0 > 0 and
a basis Ffin of the four-dimensional vector space Vµ,ϵ such that, for any 0 ≤ µ < µ0 and
0 ≤ ϵ < ϵ0, the operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ is represented on Ffin by a 4 × 4 matrix of the
form (

U 0
0 S

)
, (1.4.1)

where U and S are 2 × 2 matrices of the form

U :=
(

i
(1

2µ+ r(µϵ2, µ2ϵ, µ3)
)

−µ2

8 (1 + r5(ϵ, µ))
µ2

8 (1 + r1(ϵ, µ)) − ϵ2(1 + r′
1(ϵ, µϵ2)) i

(1
2µ+ r(µϵ2, µ2ϵ, µ3)

)) , (1.4.2)

S :=
(

iµ
(
1 + r9(ϵ2, µϵ, µ2)

)
µ+ r10(µ2ϵ, µ3)

−1 − r8(ϵ2, µ2ϵ, µ3) iµ
(
1 + r9(ϵ2, µϵ, µ2)

)) , (1.4.3)

where in each of the two matrices the diagonal entries are identical. The eigenvalues of the
matrix U are given by

λ±
1 (µ, ϵ) = 1

2iµ+ i r(µϵ2, µ2ϵ, µ3) ± µ

8

√
8ϵ2
(
1 + r0(ϵ, µ)

)
− µ2(1 + r′

0(ϵ, µ)
)
. (1.4.4)

Note that if 8ϵ2(1 + r0(ϵ, µ)) −µ2(1 + r′
0(ϵ, µ)) > 0, respectively < 0, the eigenvalues λ±

1 (µ, ϵ)
have a nontrivial real part, respectively are purely imaginary.

The eigenvalues of the matrix S are a pair of purely imaginary eigenvalues of the form

λ±
0 (µ, ϵ) = ∓i √

µ
(
1 + r′(ϵ2, µϵ, µ2)

)
+ iµ

(
1 + r9(ϵ2, µϵ, µ2)

)
. (1.4.5)

For ϵ = 0 the eigenvalues λ±
1 (µ, 0), λ±

0 (µ, 0) coincide with those in (1.3.18).



28 CHAPTER 1. INTRODUCTION

Let us comment on the result.
1. Validity region. Theorem 1.4.1 gives analytic expressions (1.4.4)-(1.4.5) for both

stable and unstable eigenvalues of Lµ,ϵ near 0 that holds in the region of the parameters
[0, µ0) × [0, ϵ0). The analytic curve µ(ϵ) = 2

√
2ϵ(1 + r(ϵ)) in (1.2.12), with tangent line

at ϵ = 0 given by µ = 2
√

2ϵ, divides the validity region in an “unstable” part where two
eigenvalues of Lµ,ϵ with non-trivial real part arise, and a “stable” part where all the four
eigenvalues of Lµ,ϵ are purely imaginary, see Figure 1.6.

Figure 1.6: The blue line is the analytic curve defined implicitly by 8ϵ2
(
1 + r0(ϵ, µ)

)
−

µ2(1 + r′
0(ϵ, µ)) = 0. For values of µ below this curve, the two eigenvalues λ±

1 (µ, ϵ) have
opposite real part. For µ above the curve, λ±

1 (µ, ϵ) are purely imaginary.

2. Regularity break. The eigenvalues (1.4.4), that coincide with those in (1.2.13),
are not analytic in (µ, ϵ) close to the value (µ(ϵ), ϵ) where λ±

1 (µ, ϵ) collide at the top of
the figure “8” far from 0, but only Hölder continuous. Any attempt to describe the whole
figure “8” by supposing a priori the eigenvalues to be analytic in (µ, ϵ) is thus doomed to
fail. This might explain why, in previous approaches, the validity region of the parameters
is way narrower than the one presented here and able to render only the figure “x” amid
the figure “8”, see Figure 1.3. On the other hand, the 2 × 2 matrix U, whose spectrum is
given by (1.4.4), is analytic with respect to the parameters (µ, ϵ).

3. Stability interval. For larger values of the Floquet parameter µ, the perturbative
principle of Hamiltonian spectra that we described in Section 2.1 guarantees that the
eigenvalues will remain on the imaginary axis until the Floquet exponent µ reaches values
close to the next “collision” between two other eigenvalues of Lµ,0 in (1.3.18). For water
waves in infinite depth this value is close to µ = 1/4, with eigenvalues close to i 3/4.

We conclude this section with a detailed description of our approach.
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Ideas and scheme of proof. We first write the operator Lµ,ϵ = iµ+Lµ,ϵ as in (2.2.1) and
we aim to construct a basis of Vµ,ϵ to represent Lµ,ϵ|Vµ,ϵ as a convenient 4 × 4 matrix. The
unperturbed operator L0,0|V0,0 possesses 0 as isolated eigenvalue with algebraic multiplicity
4 and generalized kernel V0,0 spanned by the vectors {f±

1 , f
±
0 } in (2.1.15b), (2.1.16).

Exploiting Kato’s theory of similarity transformations for separated eigenvalues we
prolong the unperturbed symplectic basis {f±

1 , f
±
0 } of V0,0 into a symplectic basis of Vµ,ϵ

(cfr. Definition 2.2.6), depending analytically on µ, ϵ. In Lemma 2.2.1 we construct the
transformation operator Uµ,ϵ, see (2.2.11), which is invertible and analytic in µ, ϵ, and maps
isomorphically V0,0 into Vµ,ϵ. Furthermore, since Lµ,ϵ is Hamiltonian and reversible, we
prove in Lemma 2.2.2 that the operator Uµ,ϵ is symplectic and reversibility preserving.
This implies that the vectors fσk (µ, ϵ) := Uµ,ϵf

σ
k , k = 0, 1, σ = ±, form a symplectic and

reversible basis of Vµ,ϵ, according to Definition 2.2.6.
This construction has the following interpretation in the setting of complex symplectic

structures, cfr. [6, 38]. The complex symplectic form (2.2.20) restricted to the symplectic
subspace Vµ,ϵ is represented, in the (µ, ϵ)-dependent symplectic basis fσk (µ, ϵ), by the
constant antisymmetric matrix J4 defined in (2.2.25), for any value of (µ, ϵ). In this sense
Uµ,ϵ is acting as a “Darboux transformation”. Consequently, the Hamiltonian and reversible
operator Lµ,ϵ|Vµ,ϵ is represented, in the symplectic basis fσk (µ, ϵ), by a 4 × 4 matrix of the
form J4Bµ,ϵ with Bµ,ϵ selfadjoint, see Lemma 2.2.10. This property simplifies considerably
the perturbation theory of the spectrum (we refer to [78] for a discussion, in a different
context, of the difficulties raised by parameter-dependent symplectic forms).

We then modify the basis {fσk (µ, ϵ)} to construct a new symplectic and reversible basis
{gσk (µ, ϵ)} of Vµ,ϵ, still depending analytically on µ, ϵ, with the additional property that
g−

1 (0, ϵ) has zero space average; this property plays a crucial role in the expansion obtained
in Lemma 3.2.5, necessary to exhibit the Benjamin-Feir instability phenomenon, see Remark
3.2.6. By construction, the eigenvalues of the 4 × 4 matrix Lµ,ϵ, representing the action
of the operator Lµ,ϵ on the basis {gσk (µ, ϵ)}, coincide with the portion of the spectrum
σ′(Lµ,ϵ) close to zero, defined in (1.3.21). In Proposition 3.2.2 we prove that the 4 × 4
Hamiltonian and reversible matrix Lµ,ϵ has the form

Lµ,ϵ = J4

(
E F

F ∗ G

)
=
(

J2E J2F

J2F ∗ J2G

)
, (1.4.6)

where J2 =
( 0 1

−1 0
)

and E = E∗, G = G∗ and F are 2 × 2 matrices having the expansions
(3.2.5)-(3.2.7). To compute these expansions –from which the Benjamin-Feir instability will
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emerge– we use two ingredients. First we Taylor expand (µ, ϵ) 7→ Uµ,ϵ in Lemma 3.1.3. The
Taylor expansion of Uµ,ϵ is not a symplectic operator, but this is no longer important to
compute the expansions (3.2.5)-(3.2.7) of the matrix Lµ,ϵ. We used the fact that Uµ,ϵ is
symplectic to prove the Hamiltonian structure (1.4.6) of Lµ,ϵ. The second ingredient is a
careful analysis of L0,ϵ and ∂µLµ,ϵ|µ=0. In particular we prove that the (2, 2)-entry of the
matrix E in (3.2.5) does not have any term O(ϵm) nor O(µϵm) for any m ∈ N. These terms
would be dangerous because they might change the sign of the entry (2, 2) of the matrix
E in (3.2.5) which instead is always negative. This is crucial to prove the Benjamin-Feir
instability, as we explain below. We show the absence of terms O(ϵm), m ∈ N, fully
exploiting the structural information (2.1.17) concerning the four dimensional generalized
Kernel of the operator L0,ϵ for any ϵ > 0, see Lemma 3.2.4. The absence of terms O(µϵm),
m ∈ N, is due to the properties of the basis {gσk (µ, ϵ)} (see Remark 3.2.6) and it is the
motivation for modifying the original basis {fσk (µ, ϵ)}.

Thanks to this analysis, the 2 × 2 matrix

J2E =
(

−i
(µ

2 + r2(µϵ2, µ2ϵ, µ3)
)

−µ2

8 (1 + r5(ϵ, µ))
−ϵ2(1 + r′

1(ϵ, µϵ2)) + µ2

8 (1 + r′′
1(ϵ, µ)) −i

(µ
2 + r2(µϵ2, µ2ϵ, µ3)

)) (1.4.7)

possesses two eigenvalues with non-zero real part –we say that it exhibits the Benjamin-Feir
phenomenon– as long as the two off-diagonal elements have the same sign, which happens
for 0 < µ < µ(ϵ) with µ(ϵ) ∼ 2

√
2ϵ. On the other hand the 2 × 2 matrix J2G has purely

imaginary eigenvalues for µ > 0 of order O(√µ). In order to prove that the complete 4 × 4
matrix Lµ,ϵ in (1.4.6) possesses Benjamin-Feir unstable eigenvalues as well, our aim is to
eliminate the coupling term J2F . This is done in Section 3.3 by a block diagonalization
procedure, inspired by KAM theory. This is a singular perturbation problem because the
spectrum of the matrices J2E and J2G tends to 0 as µ → 0. We construct a symplectic
and reversibility preserving block-diagonalization transformation in three steps:

1. First step of block-diagonalization (Section 3.3.1). Note that the spectral gap between
the 2 block matrices J2E and J2G is of order O(√µ), whereas the entry F11 of the matrix F
has size O(ϵ3). In Section 3.3.1 we perform a symplectic and reversibility-preserving change
of coordinates removing F11 and conjugating Lµ,ϵ to a new Hamiltonian and reversible
matrix L(1)

µ,ϵ whose block-off-diagonal matrix J2F (1) has size O(µϵ, µ3) and J2E(1) has the
same form (1.4.7), and therefore possesses Benjamin-Feir unstable eigenvalues as well. This
transformation is inspired by the Jordan normal form of L0,ϵ.

2. Second step of block-diagonalization (Section 3.3.2). We next perform a step of
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block-diagonalization to decrease further the size of the off-diagonal blocks: by applying
a procedure inspired by KAM theory we obtain (at least) a O(µ2) factor in each entries
of F (2) in (3.3.14) (by contrast note the presence of O(µϵ) entries in F (1)). To achieve
this, we construct a linear change of variables that conjugates the matrix L(1)

µ,ϵ to the new
Hamiltonian and reversible matrix L(2)

µ,ϵ in (3.3.13), where the new off-diagonal matrix J2F (2)

is much smaller than J2F (1). The delicate point, for which we perform Step 2 separately
from Step 3, is to estimate the new block-diagonal matrices after the conjugation, and prove
that J2E(2) has still the form (1.4.7) – thus possessing Benjamin-Feir unstable eigenvalues.
Let us elaborate on this. In order to reduce the size of J2F (1), we conjugate L(1)

µ,ϵ by the
symplectic matrix exp(S(1)), where S(1) is a Hamiltonian matrix with the same form of
J2F (1), see (3.3.12). The transformed matrix L(2)

µ,ϵ = exp(S(1))L(1)
µ,ϵ exp(−S(1)) has the Lie

expansion3

L(2)
µ,ϵ =

(
J2E(1) 0

0 J2G(1)

)
+
(

0 J2F (1)

J2[F (1)]∗ 0

)
+
[
S(1) ,

(
J2E(1) 0

0 J2G(1)

)]
+ 1

2
[
S(1),

[
S(1),

(
J2E(1) 0

0 J2G(1)

)]]
+
[
S(1),

(
0 J2F (1)

J2[F (1)]∗ 0

)]
+ h.o.t.

(1.4.8)

The first line in the right hand side of (1.4.8) is the original block-diagonal matrix, the
second line of (1.4.8) is a purely off-diagonal matrix and the third line is the sum of two
block-diagonal matrices and “h.o.t.” collects terms of much smaller size. We determine S(1)

in such a way that the second line of (1.4.8) vanishes (this equation would be referred to
as the “homological equation” in the context of KAM theory). In this way the remaining
off-diagonal matrices (appearing in the h.o.t. remainder) are much smaller in size. We
then compute the block-diagonal corrections in the third line of (1.4.8) and show that
the new block-diagonal matrix J2E(2) has again the form (1.4.7) (clearly with different
remainders, but of the same order) and thus displays Benjamin-Feir instability. This last
step is delicate because S(1) = O(ϵ, µ2) and J2F (1) = O(µϵ, µ3) and so the matrix in the
third line of (1.4.8) could a priori have elements of size O(µϵ2). Adding a term of size O(µϵ2)
to the (1,2)-entry of the matrix J2E(1), which has the form −µ2

8 (1 + r5(ϵ, µ)) as in (1.4.7),
could make it positive. In such a case the eigenvalues of J2E(2) would be purely imaginary,
and the Benjamin-Feir instability would disappear. Actually, estimating individually each
components, we show that no contribution of size O(µϵ2) appears in the (1,2)-entry.

One further comment is needed. We solve the required homological equation without
3recall that exp(S)L exp(−S) =

∑
n≥0

1
n! adn

S(L), where ad0
S(L) := L, adn

S(L) = [S, adn−1
S (L)] for n ≥ 1.
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diagonalizing J2E(1) and J2G(1) (as done typically in KAM theory). Note that diagonal-
ization is not even possible at µ ∼ 2

√
2ϵ where J2E(1) becomes a Jordan block (here its

eigenvalues fail to be analytic). We use a direct linear algebra argument that enables to
preserve the analyticity in µ, ϵ of the transformed 4 × 4 matrix L(2)

µ,ϵ.
3. Complete block-diagonalization (Section 3.3.3). As a last step in Lemma 3.3.8 we

perform, by means of a standard implicit function theorem, a symplectic and reversibility
preserving transformation that block-diagonalize L(2)

µ,ϵ completely. The invertibility prop-
erties and estimates required to apply the implicit function theorem rely on the solution
of the homological equation obtained in Step 2. The off-diagonal matrix J2F (2) is small
enough to directly prove that the block-diagonal matrix J2E(3) has the same form of J2E(2),
thus possesses Benjamin-Feir unstable eigenvalues (without distinguishing the entries as we
do in Step 2).

In conclusion, the original matrix Lµ,ϵ in (1.4.6) has been conjugated to the Hamiltonian
and reversible matrix (1.4.1). This proves Theorem 1.4.1 and Theorem 1.2.2.

1.5 Benjamin-Feir spectrum in finite depth

Before stating the main result let us introduce the “Whitham-Benjamin” function

eWB := eWB(h) := 1
ch

[9c8
h − 10c4

h + 9
8c6

h
− 1

h − 1
4e2

12

(
1 + 1 − c4

h
2 + 3

4
(1 − c4

h)2

c2
h

h
)]
, (1.5.1)

where ch =
√

tanh(h) is the bifurcation value of the Stokes wave (cfr. Theorem 1.2.1), and

e12 := e12(h) := ch + c−1
h (1 − c4

h)h > 0 , ∀h > 0 . (1.5.2)

The function eWB(h) is well defined for any h > 0 because the denominator h − 1
4e2

12 > 0 in
(1.5.1) is positive for any h > 0, see Lemma 4.3.7. The function (1.5.1) coincides, up to a
non zero factor, with the celebrated function obtained by Whitham [92], Benjamin [9] and
Bridges-Mielke [21] which has as unique root the threshold depth between the shallow and
the deep-water regimes.
The value hWB > 0 in Theorem 1.2.3, that we call Whitham-Benjamin critical depth, is thus
the zero of the Whitham-Benjamin function eWB(h), numerically approximated by

hWB ≈ 1.363 . (1.5.3)

The Whitham-Benjamin function eWB(h) is negative for 0 < h < hWB, positive for h > hWB

and asymptotically 1− as h → +∞, see Figure 1.7.
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Before stating of Theorem 1.2.3, let us also define the positive coefficient

e22 := e22(h) := (1 − c4
h)(1 + 3c4

h)h2 + 2c2
h(c4

h − 1)h + c4
h

c3
h

> 0 , ∀h > 0 . (1.5.4)

We observe that the functions e12(h) > ch and e22(h) > 0 are positive for any h > 0, tend
to 0 as h → 0+ and to 1 as h → +∞, see Lemma 4.2.6.

Figure 1.7: Plot of the Whitham-Benjamin function eWB(h). The red dot shows its unique
root hWB = 1.363 . . . . which is the celebrated “shallow/sufficiently deep” water threshold
predicted independently by Whitham (cfr.[92] p.49) and Benjamin (cfr.[9] p.68), and
recovered in the rigorous proof of Bridges-Mielke [21, p. 183].

In the case of finite depth our complete spectral result is the following

Theorem 1.5.1. (Complete Benjamin-Feir spectrum) There exist ϵ0, µ0 > 0, uni-
formly for the depth h in any compact set of (0,+∞), and a basis Ffin of the four-
dimensional vector space Vµ,ϵ such that, for any 0 < µ < µ0 and 0 ≤ ϵ < ϵ0, the
operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ is represented on the basis Ffin by a 4 × 4 matrix of the form(

U 0
0 S

)
, (1.5.5)

where U and S are 2 × 2 matrices, with identical diagonal entries each, of the form

U =
(

i
(
(ch − 1

2e12)µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

−µϵ2eWB + r′
1(µϵ3, µ2ϵ2) + e22

µ3

8 (1 + r′′
1(ϵ, µ)) i

(
(ch − 1

2e12)µ+ r2(µϵ2, µ2ϵ, µ3)
)) ,

S =
(

i chµ+ i r9(µϵ2, µ2ϵ) tanh(hµ) + r10(µϵ)
−µ+ r8(µϵ2, µ3ϵ) i chµ+ i r9(µϵ2, µ2ϵ)

)
, (1.5.6)

where eWB, e12, e22 are defined in (1.5.1), (1.5.2), (1.5.4). The eigenvalues of U have the
form

λ±
1 (µ, ϵ) = i 1

2 c̆hµ+ i r2(µϵ2, µ2ϵ, µ3) ± 1
8µ
√

e22(h)(1 + r5(ϵ, µ))
√

∆BF(h;µ, ϵ) , (1.5.7)
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where c̆h := 2ch − e12(h) and ∆BF(h;µ, ϵ) is the Benjamin-Feir discriminant function

∆BF(h;µ, ϵ) := 8eWB(h)ϵ2 − 8r′
1(ϵ3, µϵ2) − e22(h)µ2(1 + r′′

1(ϵ, µ)
)
. (1.5.8)

As e22(h) > 0, they have non-zero real part if and only if ∆BF(h;µ, ϵ) > 0.
The eigenvalues of the matrix S are a pair of purely imaginary eigenvalues of the form

λ±
0 (µ, ϵ) = i chµ

(
1 + r9(ϵ2, µϵ)

)
∓ i
√
µ tanh(hµ)

(
1 + r(ϵ)

)
. (1.5.9)

For ϵ = 0 the eigenvalues λ±
1 (µ, 0), λ±

0 (µ, 0) coincide with those in (1.3.17).

Theorem 1.2.3 descends from Theorem 1.5.1 with hWB being the Whitham-Benjamin
threshold in (1.5.3),

µ(ϵ) = ehϵ(1 + r(ϵ)) , eh :=
√

8eWB(h)
e22(h) , (1.5.10)

C1(h) := c̆h and C2(h) :=
√

e22(h). Figure 1.8 portrays the whole splitting of these two
eigenvalues.

Figure 1.8: The picture on the left shows, in the “shallow” water regime h < hWB, the
eigenvalues λ±

1 (µ, ϵ) and λ±
0 (µ, ϵ) which are purely imaginary. The picture on the right shows,

in the “sufficiently deep” water regime h > hWB, a first approximation of the eigenvalues
λ±

1 (µ, ϵ) in the complex λ-plane at fixed |ϵ| ≪ 1 as µ varies. This figure “8 ” depends on h
and shrinks to 0 as h → h+

WB, see Figure 1.9. As h → +∞ the spectrum resembles the one
in deep water.

Remark 1.5.2. At ϵ = 0, the eigenvalues in (1.5.7) have the Taylor expansion

λ±
1 (µ, 0) = i (ch − 1

2e12(h))µ± i e22(h)
8 µ2 + O(µ3) ,
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which coincides with the one of λ±
1 (µ) in (1.3.17), in view of the coefficients e12(h) and

e22(h) defined in (1.5.2), (1.5.4).

Let us comment Thoerem 1.5.1.
1. The exact figure “8”. The figure “8” depicted by the two eigenvalues in (1.5.7)

is well approximated by the curves

µ 7→
(

± µ

8
√

e22

√
8eWBϵ2 − e22µ2, 1

2 c̆hµ
)
, (1.5.11)

see Figure 1.8, which also portrays the Benjamin-Feir spectrum in the stable case of shallow
water. A better approximation of the figure “8” can be obtained by expanding the analytic
remainders r, r1, r′′

1 , r2 which are explicitly computable. Actually, we tackle part of this task
in the last part of the thesis to analyze the critical-depth case. However we remark that
expansion (1.5.7)-(1.5.8) is sufficient to provide an exact description of the figure “8” as
union of two convex regions (i.e. the upper and lower halves) encircled by a closed curve
having 0 as double point and tangents at the top and bottom of the figure “8” parallel to
the real axis. The figure “8” is symmetric with respect to the real axis due to the reality of
the operator Lϵ, and symmetric with respect to the imaginary axis as a consequence of its
Hamiltonian nature.

2. Relation with Bridges-Mielke [21]. To facilitate a precise comparison between
the outcomes of the paper of Bridges and Mielke [21] and Theorem 1.5.1, we elaborate
on the connection of the functions with their respective coefficients. The expression for
the Whitham-Benjamin function, denoted as eWB, in equation (4.2.5), takes the form
eWB = (chh)−1ν(F ), where ν(F ) is explicitly defined in [21, formula (6.17)], and F = chh− 1

2

represents the Froude number, as indicated in [21, formula (3.4)]. Additionally, the value
of the term e12 within equation (1.5.2) corresponds to e12 = 2cg, where, by [21, formula
(3.8)], cg = 1

2ch
(
1 + F−2sech2(h)

)
defines the group velocity. Lastly, the term e22(h) is

proportional to ċg, where ċg signifies the derivative of the group velocity as defined in [21,
formula (6.15)]. Notably, for gravity waves, this derivative is consistently negative across
all depths.

3. Behavior near the Whitham-Benjamin depth hWB. As h → h+
WB the first

approximation in (1.5.11) of the figure “8” of Benjamin-Feir unstable eigenvalues collapses
to zero, see Figure 1.9. In particular

max
µ∈[0,µ(ϵ)]

Reλ+
1 (µ, ϵ) = Reλ+

1 (µmax, ϵ) = 1
2eWB(h)ϵ2 + r(ϵ3) (1.5.12)
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Figure 1.9: in a first approximation The Benjamin-Feir eigenvalue λ+
1 (µmax, ϵ) in (1.5.12)

has maximal real part 1
2eWB(h)ϵ2 which shrinks to zero as h → h+

WB making the whole figure
“8” collapse.

degenerates to r(ϵ3) as h → h+
WB.

4. Shallow water regime. In Theorem 1.5.1 we prove that the four eigenvalues
of Lµ,ϵ close to zero remain purely imaginary for ϵ sufficiently small in the shallow-water
regime 0 < h < hWB. The expansion of the eigenvalues in Theorem 1.5.1 becomes singular
when h → 0+, coherently with the expansion of the Stokes waves in (A.3.1).

5. Unstable Floquet exponents and amplitudes (µ, ϵ). In Theorem 1.5.1
we actually prove that the expansion (1.2.14) of the eigenvalues of Lµ,ϵ holds for any
value of (µ, ϵ) in a larger rectangle [0, µ0) × [0, ϵ0), and there exist Benjamin-Feir unstable
eigenvalues if and only if the analytic function ∆BF(h;µ, ϵ) in (1.5.8) is positive. The zero
set of ∆BF(h;µ, ϵ) is an analytic variety which, for h > hWB, is, restricted to the rectangle
[0, µ0) × [0, ϵ1), the graph of the analytic function µ(ϵ) = ehϵ(1 + r(ϵ)) in (1.5.10). This
function is tangent at ϵ = 0 to the straight line µ = ehϵ, and divides [0, µ0) × [0, ϵ1) in the
region where ∆BF(h;µ, ϵ) > 0 –i.e. where the eigenvalues of Lµ,ϵ have non-trivial real part–
from the “stable” one where all the eigenvalues of Lµ,ϵ are purely imaginary, see Figure 1.10.
In the region [0, µ0) × [ϵ1, ϵ0) the higher order polynomial approximations of ∆BF(h;µ, ϵ)
(which are computable) will determine the sign of ∆BF(h;µ, ϵ).

6. Deep water limit. In the present form, the expansions of the eigenvalues in 1.2.3
and 1.5.1 may not admit a limit as h → +∞. Indeed the remainders in the expansions of the
eigenvalues are uniform only on compact sets of depths h ∈ (0,+∞). Mathematically, the
difference between the two cases becomes evident by analyzing the asymptotic behavior of
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Figure 1.10: The solid curve portrays the graph of the real analytic function µ(ϵ) in (1.5.10)
as h > hWB. For values of µ below this curve, the two eigenvalues λ±

1 (µ, ϵ) have non zero real
part. For µ above the curve, λ±

1 (µ, ϵ) are purely imaginary. In the region [ϵ1, ϵ0) × [0, µ0)
the eigenvalues are real/purely imaginary depending on the higher order corrections given
by Theorem 1.5.1, which determine the sign of ∆BF(h;µ, ϵ).

tanh(hµ) or similar quantities. In the idealized deep water case h = +∞, the term tanh(hµ)
is replaced with 1, no matter how small the Floquet exponent µ is. On the contrary, for
constant finite depth h > 0 we have tanh(hµ) = O(µh) as µ → 0. Additional intermediate
scaling regimes hµ ∼ 1, hµ ≪ 1, hµ ≫ 1 are possible.
The passage from the finite to the infinite-depth model is intrinsically delicate. It is well-
known (e.g. see [30]) that intermediate long-wave regimes of the water-waves equations
formally lead to different physically-relevant limit equations as Boussinesq, KdV, NLS,
Benjamin-Ono, etc...

7. Behavior at the Whitham-Benjamin threshold hWB. The analysis of Theorem
1.5.1 is not conclusive for the critical depth h = hWB, since, by recalling that eWB(hWB) = 0,
the Benjamin-Feir discriminant function (1.5.8) reduces to

∆BF(hWB;µ, ϵ) = r(ϵ3) + r(µϵ2) − e22(hWB)µ2(1 + r′′
1(ϵ, µ)) . (1.5.13)

Thus the quadratic expansion in (1.5.13) is not sufficient anymore to determine the sign of
∆BF(hWB;µ, ϵ), which could be either positive or negative depending on the sign of the term
r(ϵ3), provided µ is small enough. The analysis of this case will be the content of the last
part of the thesis.

We conclude this section describing in detail our approach.
Ideas and scheme of proof. The first step is to exploit as in the case of infinite-depth
Kato’s theory to prolong the unperturbed symplectic basis {f±

1 , f
±
0 } of V0,0 in (2.1.15a)-
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(2.1.16) into a symplectic basis {fσk (µ, ϵ), k = 0, 1, σ = ±} of the spectral subspace Vµ,ϵ

associated with σ′ (Lµ,ϵ) in (1.3.21), depending analytically on µ, ϵ. Its expansion in µ, ϵ is
provided in Lemma 4.1.2. This procedure reduces our spectral problem to determine the
eigenvalues of the 4×4 Hamiltonian and reversible matrix Lµ,ϵ (Lemma 2.2.10), representing
the action of the operator Lµ,ϵ − i chµ on {fσk (µ, ϵ)}. In Proposition 4.2.1 we prove that

Lµ,ϵ = J4

(
E F

F ∗ G

)
=
(

J2E J2F

J2F ∗ J2G

)
where J4 =

(
J2 0
0 J2

)
, J2 =

(
0 1

−1 0

)
,

(1.5.14)
and the 2 × 2 matrices E,G, F have the expansions (4.2.2)-(4.2.4). In finite depth this
computation is much more involved than in deep water, as we need to track the exact
dependence of the matrix entries with respect to h. In particular the matrix E is

E =
(

e11ϵ2(1 + r′
1(ϵ, µϵ)) − e22

µ2

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ2

8 (1 + r5(ϵ, µ))

)
(1.5.15)

where the coefficients e11 and e22, defined in (4.2.5) and (1.5.4), are strictly positive for any
value of h > 0. Thus the submatrix J2E has a pair of eigenvalues with nonzero real part,
for any value of h > 0, provided 0 < µ < µ(ϵ) ∼ ϵ. On the other hand, it has to come out
that the complete 4 × 4 matrix Lµ,ϵ possesses unstable eigenvalues if and only if the depth
exceeds the celebrated Whitham-Benjamin threshold hWB ∼ 1.363 . . .. Indeed the correct
eigenvalues of Lµ,ϵ are not a small perturbation of those of

(
J2E 0

0 J2G

)
and will emerge

only after one non-perturbative step of block diagonalization. This was not the case in the
infinitely deep water case, where the corresponding submatrix J2E was sufficient to obtain
the Benjamin-Feir eigenvalues, and we only had to check their stability under perturbation.

Remark 1.5.3. We emphasize that (1.5.15) is not a simple Taylor expansion in µ, ϵ: note
that the (2, 2)-entry in (1.5.15) does not have any term O(ϵm) nor O(µϵm) for any m ∈ N.
These terms could change the sign of the entry (2, 2) which instead, in (1.5.15), is always
negative (recall that e22(h) > 0). We prove the absence of terms ϵm exploiting the structural
information (2.1.17) concerning the four dimensional generalized Kernel of the operator
L0,ϵ for any ϵ > 0, see Lemma 4.2.2. We also note that the 2 × 2 matrices J2E and J2G in
(1.5.14) have both eigenvalues of size O(µ). As already mentioned, this is a crucial difference
with the deep water case, where the eigenvalues of J2G are O(√µ).

In order to determine the spectrum of the matrix Lµ,ϵ in (1.5.14), we perform a block
diagonalization of Lµ,ϵ to eliminate the coupling term J2F (which has size ϵ, see (4.2.4)).
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We proceed, in Section 4.3, in three steps:
1. Symplectic rescaling. We first perform a symplectic rescaling which is singular at

µ = 0, see Lemma 4.3.1, obtaining the matrix L(1)
µ,ϵ. The effects are twofold: (i) the diagonal

elements of

E(1) =
(

e11µϵ2(1 + r′
1(ϵ, µϵ)) − e22

µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

)
(1.5.16)

have size O(µ), as well as those of G(1), and (ii) the matrix F (1) has the smaller size O(µϵ).
2. Non-perturbative step of block-diagonalization (Section 4.3.1). Inspired by KAM

theory, we perform one step of block decoupling to decrease further the size of the off-
diagonal blocks. This step modifies the matrix J2E(1) in a substantial way, by a term
O(µϵ2). Let us explain better this step. In order to reduce the size of J2F (1), we conjugate
L(1)
µ,ϵ by the symplectic matrix exp(S(1)), where S(1) is a Hamiltonian matrix with the same

form of J2F (1), see (4.3.9). The transformed matrix L(2)
µ,ϵ = exp(S(1))L(1)

µ,ϵ exp(−S(1)) has the
Lie expansion4

L(2)
µ,ϵ =

(
J2E(1) 0

0 J2G(1)

)
+
(

0 J2F (1)

J2[F (1)]∗ 0

)
+
[
S(1) ,

(
J2E(1) 0

0 J2G(1)

)]
+ 1

2
[
S(1),

[
S(1),

(
J2E(1) 0

0 J2G(1)

)]]
+
[
S(1),

(
0 J2F (1)

J2[F (1)]∗ 0

)]
+ h.o.t.

(1.5.17)

The first line in the right hand side of (1.5.17) is the previous block-diagonal matrix, the
second line of (1.5.17) is a purely off-diagonal matrix and the third line is the sum of two
block-diagonal matrices and “h.o.t.” collects terms of much smaller size. S(1) is determined
in such a way that the second line of (1.5.17) vanishes, and therefore the remaining off-
diagonal matrices (appearing in the h.o.t. remainder) are smaller in size. Unlike the
infinitely deep water case, the block-diagonal corrections in the third line of (1.5.17) are
not perturbative, modifying substantially the block-diagonal part. More precisely we obtain
that L(2)

µ,ϵ has the form (4.3.10) with

E(2) :=
(
µϵ2eWB + r′

1(µϵ3, µ2ϵ2) − e22
µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

)
.

Note the appearance of the Whitham-Benjamin function eWB(h) in the (1,1)-entry of
E(2), which changes sign at the critical depth hWB, see Figure 1.7, unlike the coefficient

4recall that exp(S)L exp(−S) =
∑

n≥0
1
n! adn

S(L), where ad0
S(L) := L, adn

S(L) = [S, adn−1
S (L)] for n ≥ 1.
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e11(h) > 0 in (1.5.16). If eWB(h) > 0 and ϵ and µ are sufficiently small, the matrix J2E(2)

has eigenvalues with non-zero real part (recall that e22(h) > 0 for any h). On the contrary,
if eWB(h) < 0, then the eigenvalues of J2E(2) lay on the imaginary axis.

3. Complete block-diagonalization (Section 4.3.2). In Lemma 4.3.9 we completely
block-diagonalize L(2)

µ,ϵ by means of a standard implicit function theorem, finally proving
that Lµ,ϵ is conjugated to the matrix (1.5.5).

1.6 Benjamin-Feir spectrum near the critical depth hWB

As described in Section 1.5 the stability analysis of the Stokes waves in the case of finite
depth is completely determined by the sign of the Benjamin-Feir discriminant function
∆BF(h;µ, ϵ) in (1.5.8). In particular, for any h > hWB it results eWB(h) > 0 and therefore for
µ and ϵ small enough ∆BF(h;µ, ϵ) > 0 proving the existence of unstable eigenvalues. On the
contrary for h < hWB one has eWB(h) < 0 and consequently ∆BF(h;µ, ϵ) < 0 implying the
stability of the two eigenvalues.

In the case of critical depth h = hWB our complete spectral result is the following

Theorem 1.6.1 (Complete Benjamin-Feir spectrum). There exist ϵ0, µ0 > 0, uni-
formly for the depth h in any compact set of (0,+∞), and a basis Ffin of the four-
dimensional vector space Vµ,ϵ such that, for any 0 < µ < µ0 and 0 ≤ ϵ < ϵ0, the
operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ is represented on the basis Ffin by a 4 × 4 matrix of the form(

U 0
0 S

)
, (1.6.1)

where U and S are 2 × 2 matrices, with identical purely imaginary diagonal entries each, of
the form

U =
(

i
(
(ch − 1

2e12)µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

−µ
8 ∆BF(h;µ, ϵ) i

(
(ch − 1

2e12)µ+ r2(µϵ2, µ2ϵ, µ3)
)) , (1.6.2)

S =
(

i chµ+ i r9(µϵ2, µ2ϵ) tanh(hµ) + r10(µϵ)
−µ+ r8(µϵ2, µ3ϵ) i chµ+ i r9(µϵ2, µ2ϵ)

)
. (1.6.3)

The Benjamin-Feir discriminant function ∆BF(h;µ, ϵ) in (1.6.2) has the form

∆BF(h;µ, ϵ) := 8eWB(h)ϵ2 + 8ηWB(h)ϵ4 + r1(ϵ5, µϵ3) − e22(h)µ2(1 + r′′
1(ϵ, µ)

)
(1.6.4)
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where eWB(h) is the Whitham-Benjamin function in (1.5.1), e22(h) > 0 is in (1.5.4), and
the value of ηWB(h) is explicitly computable (cfr. [17, (1.20)]). In particular

ηWB(hWB) ≈ 5.65555 > 0 , (1.6.5)

is strictly positive.

Figure 1.11: The plot of the function ηWB(h) looks positive for every depth.

By Theorem 1.6.1 and (1.6.5) we deduce Theorem 1.2.4 since eigenvalues with nonzero
real part appear whenever the Benjamin-Feir discriminant ∆BF(h;µ, ϵ) > 0.

In the following corollary of Theorem 1.6.1 we describe the unstable eigenvalues of Lµ,ϵ
at the critical depth h = hWB. Analogous results hold for any pair (h, ϵ) satisfying (1.2.15).

Theorem 1.6.2. (Benjamin-Feir unstable eigenvalues at h = hWB.) There exist
ϵ1, µ0 > 0 and an analytic function µ(·) : [0, ϵ1) → [0, µ0) of the form

µ(ϵ) = c ϵ2
(
1 + r(ϵ)

)
, c :=

√
8ηWB(hWB)
e22(hWB) , (1.6.6)

such that, for any ϵ ∈ [0, ϵ1), the operator Lµ,ϵ has two eigenvalues λ±
1 (µ, ϵ)

i 1
2 c̆hµ+ i r2(µϵ2, µ2ϵ, µ3) ± 1

8µ
√

e22(hWB)(1 + r(ϵ, µ))
√

∆BF(hWB;µ, ϵ) 0 < µ < µ(ϵ)

i 1
2 c̆hµ+ i r2(µϵ2, µ2ϵ, µ3) ± i 1

8µ
√

e22(hWB)(1 + r(ϵ, µ))
√

|∆BF(hWB;µ, ϵ)| µ(ϵ) ≤ µ < µ0 ,

(1.6.7)
with c̆h := 2ch − e12(h) > 0 and

∆BF(hWB;µ, ϵ) = 8ηWB(hWB)ϵ4 + r1(ϵ5, µϵ3) − e22(hWB)µ2(1 + r′′
1(ϵ, µ)

)
.

A first approximation of the degenerate figure “8” obtained by discarding remainders in
(1.6.7) is given in Figure 1.12. We now prove Theorem 1.6.2 relying on Theorem 1.6.1.
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Figure 1.12: The degenerate figure “8” at the critical depth. It has a smaller height and
width than the deep-water one in Figure 1.8.

Proof of Theorem 1.6.2. Since ∆BF(hWB; 0, ϵ) = 8ηWB(hWB)ϵ4(1 + r(ϵ)), it results that
∆BF(hWB;µ, ϵ) > 0, for any µ ∈ (0, µ(ϵ)) as in (1.6.6) and ϵ small enough. The unstable
eigenvalues λ±

1 (µ, ϵ) in (1.6.6) are those of the matrix U in (1.6.2). In order to determine
the value µ = µ(ϵ) such that λ±

1 (µ, ϵ) touches the imaginary axis far from the origin, we set
µ = cϵ2 so that ∆BF(hWB;µ, ϵ) = 0 if and only if

0 = ϵ−4∆BF(hWB; cϵ2, ϵ) = 8ηWB(hWB)(1 + r(ϵ)) + r1(cϵ) − e22(hWB)c2(1 + r1(ϵ)
)
.

This equation is solved by an analytic function ϵ 7→ cϵ = c(1 + r(ϵ)) with c defined in
(1.6.6).

We conclude this section describing the main steps of the proof and the organization of
this part of the thesis.
Ideas and scheme of proof. We recall from Section 1.5 that, through the results in
Chapter 2.2, the finite-depth instability matter was reduced to the problem of determining
the eigenvalues of the 4 × 4 Hamiltonian and reversible matrix Lµ,ϵ = JBµ,ϵ in (2.2.25). In
Section 5.1 we provide the Taylor expansion of the matrix Bµ,ϵ in (5.1.2) at an order of
accuracy higher than in Proposition 4.2.1. In particular in Proposition 5.1.1 we compute
the coefficients of the Taylor expansion up to order 4 in the matrix entries (5.1.5a)-(5.1.5c)
which enter in the constant ηWB(h) (cfr. (5.2.9)) appearing in the Benjamin-Feir discriminant
function (1.6.4). This explicit computation requires the knowledge of the Taylor expansions
of the Kato spectral projections Pµ,ϵ up to cubic order, that we provide in Section 5.1.2,
relying on complex analysis. In order to perform effective computations we observe several



1.6. BENJAMIN-FEIR SPECTRUM NEAR THE CRITICAL DEPTH hWB 43

analytical cancellations in Sections 5.1.3 and 5.1.4, which reduce considerably the number of
explicit scalar products to compute. The proof of Proposition 5.1.1 requires ultimately the
knowledge of the Taylor expansion up to order four of the auxiliary functions (2.1.7)-(1.3.4a)
appearing in the Alinhac and Levi-Civita transformations. and of the functions aϵ(x), pϵ(x)
in the operator Lµ,ϵ in (1.3.14a), which are derived in Appendix A.4. Such expansions are
derived from the one for the Stokes waves that we prove in Appendix A.3. Finally in Section
5.2 we implement more steps of the block-diagonalization procedure of the finite-depth case
which provides the block-diagonal matrix (1.6.2) and we analytically compute the expansion
of the Benjamin-Feir discriminant function ∆BF(h;µ, ϵ), in particular of the constant ηWB(h)
in (5.2.9) and its positive value at h = hWB.

We point out that the constant ηWB in (5.2.9) is analytically computed in terms of the
coefficients (5.2.4) which, in turn, are expressed in terms of the coefficients ϕ21, ϕ22, γ12, η12,
γ11, ϕ11, γ22, ϕ12, f11, and ultimately η

[0]
2 , . . . , η

[4]
4 , ψ

[2]
2 , . . . , ψ

[4]
4 , c2, c4 of the Stokes wave

provided in Appendix A.3. Then we used the software Mathematica® to compute how the
coefficients of the Stokes wave, of the functions aϵ(x), pϵ(x) in (1.3.8), and ηWB(h) in (5.2.9)
depend on h, starting from their algebraic formulas. The Mathematica code employed can
be found at https://git-scm.sissa.it/amaspero/benjamin-feir-instability.

https://git-scm.sissa.it/amaspero/benjamin-feir-instability




Chapter 2

Spectral reduction

In this chapter we extensively describe our method to reduce the problem of studying
the L2(R)-spectrum of Lϵ in (1.3.7) to the study of a 4 × 4 matrix.

2.1 Properties of Lϵ and Lµ,ϵ

In this section we derive some useful properties of the linearized operator Lϵ and of
its Floquet shift Lµ,ϵ on which we will rely in the sequel. The content of this section will
sometimes revisit that of section 1.3, shedding light on some details we just outlined during
the introduction.
Stokes waves. We reformulate the existence and uniqueness Theorem 1.2.1 in the following
setting of spaces of periodic analytic functions

Hσ,s := Hσ,s(T) :=
{
u(x) =

∑
k∈Z

uke
i k·x : ∥u∥2

Hσ,s :=
∑
k∈Z

e2σ|k|⟨k⟩2s |uk|2 < ∞
}
. (2.1.1)

If σ = 0 the space H0,s is the usual Sobolev space Hs. If σ > 0, a periodic function u(x)
belongs to Hσ,s(T), if and only if it admits an analytic extension in the strip |y| < σ and
the traces at the boundaries u(· + i y), |y| = σ, belong to the Sobolev space Hs := Hs(T)
(cfr. [15, Appendix B.1]). Moreover we denote with Hσ,s

ev , respectively Hσ,s
odd, the subspace

of Hσ,s collecting even, respectively odd, functions.
The vector field associated to system (1.2.10) in the above spatial setting is

F : Hσ,s+1(T) ×Hσ,s+1(T) × R × (0,+∞] × R>0 × R −→ Hσ,s(T) ×Hσ,s(T) (2.1.2)

(η, ψ, c ; h, g, P ) 7→
(
cηx +G(η; h)ψ , cψx + P − gη − ψ2

x

2 + 1
2(1 + η2

x)
(
G(η; h)ψ + ηxψx

)2)
.

45
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A Stokes wave is a zero of F . Let B(r) := {x ∈ R : |x| < r} be the real ball of radius r
centered in 0, we have the following

Theorem 2.1.1. (Stokes waves) For any σ ≥ 0, s > 5/2, wavenumber κ ∈ N, depth
h ∈ (0,+∞], positive gravity constant g > 0 and atmospheric pressure P ∈ R there exists
ϵ0 := ϵ0(σ, s, κ, h, g, P ) > 0 and a unique family of solutions

(ηϵ(x), ψϵ(x), cϵ) ∈ Hσ,s
ev (T) ×Hσ,s

odd(T) × R

of the system (1.2.10), parameterized by |ϵ| ≤ ϵ0, such that

1. the map ϵ 7→ (ηϵ, ψϵ, cϵ), B(ϵ0) → Hσ,s(T) ×Hσ,s(T) × R is analytic;

2. the solutions (ηϵ(x), ψϵ(x), cϵ) have the expansion

(ηϵ(x), ψϵ(x)) = ϵ
(P
g

+
√
κ cos(κx),

√
g

tanh(hκ) sin(κx)
)

+O(ϵ2) ,

cϵ → ch,κ,g :=

√
g tanh(hκ)

κ
as ϵ → 0 ;

(2.1.3)

3. the solutions (ηϵ(x), ψϵ(x), cϵ) depend analytically on the parameters h, g > 0, P ∈ R.

Nowadays the existence of traveling solutions of (1.2.10) is derived through the analytic
Crandall-Rabinowitz bifurcation theorem from a simple eigenvalue, see e.g. [20]. We remark
that C1 traveling waves are actually real analytic, see Lewy [68] and Nicholls-Reitich [77].
We give an explicit proof of Theorem 2.1.1 in the case of infinite depth in Appendix A.2.

In the sequel we shall always consider the Stokes wave given by Theorem 2.1.1 of
wavenumber κ = 1, with gravity constant g = 1 and external pressure P = 0. The following
result ensures that such choice implies no loss of generality.

Lemma 2.1.2 (Symmetries of the Stokes waves). Let
(
η(x), ψ(x), c, h, 1, 0

)
be a zero

of F , i.e. equilibrium solutions of (1.2.10) with ocean depth h > 0, gravity constant g = 1
and Bernoulli constant P = 0. Then:

1. for any Φ0 ∈ R one has F
(
η(x), ψ(x) + Φ0, c ; h, 1, 0

)
= 0;

2. for any θ ∈ R one has F
(
η(x+ θ), ψ(x+ θ), c ; h, 1, 0

)
= 0;

3. for any P ̸= 0 one has F
(
η(x) − P,ψ(x), c ; h + P, 1, P

)
= 0;
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4. for any g > 0 one has F
(
η(x),√gψ(x),√g c ; h, g, 0

)
= 0.

Lemma 2.1.2 follows from the following symmetries of the Dirichlet-Neumann operator.

Lemma 2.1.3. The Dirichlet-Neumann operator in (1.2.5) enjoys the following symmetries:

1. G(η∨)[ψ∨] = (G(η)[ψ])∨, where f∨(x) := f(−x);

2. G(η)[ψ + Φ0] = G(η)[ψ] for any real Φ0;

3. G(h, η+P )[ψ] = G(h+P, η)[ψ] and G(+∞, η+P )[ψ] = G(+∞, η)[ψ]
for any real P ;

4. τθG(η)ψ = G(τθη)[τθψ] for any real θ, where τθu(x) := u(x+ θ).

(2.1.4)

In particular by symmetry (2.1.4)-1 we obtain the time-reversibility property (1.2.9).
In Proposition A.3.1 we prove the fourth-order Taylor expansion in (A.3.2) of the Stokes
wave of wavenumber κ = 1, with g = 1 and P = 0.
Linearization along a Stokes wave. By linearizing the traveling water wave system
in (1.2.10) along the family (ηϵ(x), ψϵ(x), cϵ) of Stokes waves given by Theorem 2.1.1 with
wavenumber κ = 1, g = 1 and P = 0 we obtain the linear system(

η̂t , ψ̂t
)

= d(η,ψ)F (ηϵ, ψϵ, cϵ; h, 1, 0)
[
η̂ , ψ̂

]
, (2.1.5)

with F in (2.1.2). The explicit matrix form of (2.1.5) given in (1.3.1) requires deriving the
Dirichlet-Neumann operator G(η) in (1.2.5) with respect to an increment in η. For this
purpose, we employ the so-called shape derivative introduced in [64], which is given by

dηG(η)[η̂, ψ] = −G(η)[B(η, ψ)η̂] − (V (η, ψ)η̂)x , (2.1.6)

where
V (η, ψ) := −B(η, ψ)ηx + ψx , B(η, ψ) := G(η)ψ + ψxηx

1 + η2
x

. (2.1.7)

Once evaluated at a solution (η, ψ) of the water wave system (1.2.8), the functions (V,B)
are the horizontal and vertical components of the velocity field (Φx,Φy) at the free surface.
Moreover they inherit regularity and parity from (η, ψ), hence along a Stokes wave

ϵ 7→ (Vϵ, Bϵ) :=
(
V (ηϵ, ψϵ), B(ηϵ, ψϵ)

)
is an analytic mapping from B(ϵ0) to Hσ,s−1

ev (T) ×Hσ,s−1
odd (T). The propagation of regularity

extends to the Levi-Civita flattening in (1.3.6), where the solution ϵ 7→
(
pϵ(x), fϵ

)
of (1.3.4a)
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is an analytic mapping from B(ϵ0) to Hσ,s
odd(T) × R. Finally, the functions aϵ(x) and pϵ(x)

in (1.3.8) inherit regularity and parity from Vϵ, Bϵ and pϵ, i.e. the mapping ϵ 7→ (pϵ, aϵ) is
analytic from B(ϵ0) to Hσ,s−1

ev (T) ×Hσ,s−2
ev (T). We have the following

Proposition 2.1.4. The functions pϵ(x) and aϵ(x) in (1.3.8) and the ϵ-dependent constant
fϵ in (1.3.4a) admit the Taylor expansion

pϵ(x) = p
[1]
1 ϵ cos(x) + ϵ2

(
p

[0]
2 + p

[2]
2 cos(2x)

)
+ ϵ3

(
p

[1]
3 cos(x) + p

[3]
3 cos(3x)

)
+ ϵ4

(
p

[0]
4 + p

[2]
4 cos(2x) + p

[4]
4 cos(4x)

)
+ O(ϵ5) ,

(2.1.8a)

aϵ(x) = a
[1]
1 ϵ cos(x) + ϵ2

(
a

[0]
2 + a

[2]
2 cos(2x)

)
+ ϵ3

(
a

[1]
3 cos(x) + a

[3]
3 cos(3x)

)
+ ϵ4

(
a

[0]
4 + a

[2]
4 cos(2x) + a

[4]
4 cos(4x)

)
+ O(ϵ5) ,

(2.1.8b)

fϵ = ϵ2f2 + ϵ4f4 + O(ϵ5) , ch =
√

tanh(h) , (2.1.8c)

with the Taylor coefficients given in (A.4.22)-(A.4.23) and (A.4.8) for arbitrary depth h > 0.

Let us report here the second-order coefficients of the expansion (2.1.8) for the infinite
depth case h = +∞ (ch = 1):

p
[1]
1 = a

[1]
1 = p

[2]
2 = a

[2]
2 = −2 , p

[0]
2 = 3

2 , a
[0]
2 = 2 , (2.1.9)

which will be fundamental for the proof of instability in the infinite-depth case.
Let us now detail one of the main tools for the study the modulations of a periodic

wave caused by long-wave perturbations: Bloch-Floquet theory.
Bloch-Floquet decomposition. The space L2(TN ), TN := R/2πNZ admits the splitting

L2(TN ) =
⊕
µ∈ΩN

eiµxL2(T) , ΩN :=

{−1
2 + 1

2N , . . . ,
1
2 − 1

2N } , if N is odd ,

{−1
2 , . . . ,

1
2 − 1

N } , if N is even ,
(2.1.10)

where in fact any translation of the set ΩN by an integer provides an identical splitting.
The decomposition follows by dividing the Fourier expansion of u ∈ L2(TN ) as follows

u(x) =
∑
j∈Z

ŭje
i j

N
x =

∑
µ∈ΩN

∑
k∈Z

ŭkN+µNe
i (k+µ)N

N
x =

∑
µ∈ΩN

eiµx ∑
k∈Z

ŭ(k+µ)Ne
i kx

︸ ︷︷ ︸
=: ŭ(x;µ) ∈ L2(T)

,

where the 2π-periodic Bloch waves ŭ(x;µ) are uniquely determined.
Let L be an operator on L2(TN ). The Bloch-Floquet expansion of its action on u ∈ L2(TN )
gives

Lu(x) =
∑
µ∈ΩN

Leiµxŭ(x, µ) =
∑
µ∈ΩN

eiµxLµŭ(x, µ) , Lµ := e−iµxLeiµx . (2.1.11)
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The last sum in (2.1.11) is the Bloch-Floquet decomposition of Lu(x) provided Lµ preserves
2π-periodic functions. This is the case for pseudodifferential operators with 2π-periodic
coefficients (such as Lϵ in (1.3.7)), as shown in the following extension of [74, Lemma 3.5].

Lemma 2.1.5. Let ℓ(x, ξ) be a 2π-periodic in x symbol of a pseudodifferential operator
L := ℓ(x,D) : Hs1(T) → Hs2(T). Then

Lµ = e−iµxℓ(x,D)eiµx = ℓ(x,D + µ) : Hs1(T) → Hs2(T) , ∀µ ∈ R . (2.1.12)

Proof. Let u(x) = ∑
k∈Z

uke
i kx be a 2π-periodic function. Then eiµxu(x) = ∑

k∈Z
uke

i (k+µ)x and

e−iµxL[eiµxu(x)] =
∑
k∈Z

uk ℓ(x, k + ℓ)ei (k+µ)x

=
∑
k∈Z

uk ℓ(x, k + µ)ei kx = ℓ(x,D + µ)u(x) . (2.1.13)

Clearly ℓ(x, ξ+µ) satisfies the same decay estimates of ℓ(x, ξ) and since ℓ(x, ξ) is 2π-periodic
in x then ℓ(x,D + µ)u(x) in (2.1.13) is.

As shown in (1.3.9), the spectrum of an operator L on L2(TN ) preserving Floquet fibers
(e.g. satisfying the conditions of Lemma 2.1.5) can be decomposed similarly to (2.1.10).
Remarkably, the decomposition in (1.3.9) also extends to the whole spectrum of L on L2(R),
as discussed in [55] and related sources.
The semiperturbed spectra. The unstable eigenvalues of Lµ,ϵ are obtained, in our
method, by a perturbation argument based on the complete knowledge of the spectrum of
L0,0.
As we shall see in detail in Section 2.2, this is possible for two main reasons. Let Σ ⊂ C be
the interior of a compact portion of the complex plane without parts of the spectrum of
L0,0 lying on its boundary ∂Σ. Then for small values of ϵ > 0 and µ > 0 we have that:

• isolated eigenvalues of Lµ,ϵ inside Σ evolve continuously with respect to the parameters;

• the number of the eigenvalues of Lµ,ϵ inside Σ, counted with multiplicity, is constant.

Moreover, the Hamiltonicity of these operators gives the following spectral symmetry.

Lemma 2.1.6. Let L be a complex Hamiltonian operator, as in Definition 1.3.1,

L = JB : H1(T,C2) ⊂ L2(T,C2) closed−→ L2(T,C2) .

Then
λ ∈ σL2(L) ⇐⇒ −λ ∈ σL2(L) . (2.1.14)
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Proof. We prove the contrapositive. Let z ∈ C in the resolvent set of L. Then the operator

L − z = J(B − J−1z)J∗J−∗ = J[J(B − J−∗z)]∗J−∗ J∗=−J= J(L∗ + z)J−∗

is invertible. In particular −z is in the resolvent set of L∗ or, equivalently, −z is in the
resolvent set of L, which implies (2.1.14).

By Lemma 2.1.6 we deduce the following perturbative principle for Hamiltonian spectra:
no unstable eigenvalue of Lµ,ϵ originates from a simple, isolated, purely-imaginary eigenvalue
of L0,0 by perturbation in ϵ or µ. Indeed any contradiction of this statement would violate
either the continuity of the spectrum with respect to the parameters or the local constancy
of the number of eigenvalues.
The principle restricts the search for eigenvalues with positive real part of Lµ,ϵ in proximity
of multiple eigenvalues of the unperturbed operator L0,0. According to Lemma 2.1.6, any
of these unstable eigenvalues consistently appears alongside (at least) one twin eigenvalue
symmetric with respect to the imaginary axis.

The perturbative procedure to obtain the spectrum of Lµ,ϵ from that of L0,0 is sig-
nificantly enhanced when considering the exact information about the spectra of the
semiperturbed operators Lµ,0 and L0,ϵ, which we will now describe.

Lemma 2.1.7. The spectrum of the Fourier multiplier Lµ,0 in (1.3.16) is the double family
of eigenvalues in (1.3.17) and, for the case of infinite depth, in (1.3.18).

Proof. For every k ∈ Z, the action of the operator Lµ,0 restricted to the invariant subspace

span Fk , Fk :=
{[1

0

]
ei kx,

[
0
1

]
ei kx

}
is represented on the basis Fk by the matrix(

i ch(k + µ) |k + µ| tanh
(
h|k + µ|

)
−1 i ch(k + µ)

)
,

whose spectrum is {λ+
k (µ), λ−

k (µ)}.

As already stressed in the introduction, Benjamin-Feir instability arises by perturbation
from the quadruple eigenvalue 0 of L0,0. The Kernel of L0,0 is three-dimensional, with a
real basis given by

f+
1 :=

 c1/2
h cos(x)

c−1/2
h sin(x)

 , f−
1 :=

−c1/2
h sin(x)

c−1/2
h cos(x)

 , f−
0 :=

[
0
1

]
, (2.1.15a)
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being in the infinite-depth h = +∞ case

f+
1 :=

[
cos(x)
sin(x)

]
, f−

1 :=
[
− sin(x)
cos(x)

]
, f−

0 :=
[
0
1

]
. (2.1.15b)

Thus 0 is defective as eigenvalue of L0,0. To complete (2.1.15) to a real basis of the whole
generalized eigenspace we add the generalized eigenvector

f+
0 :=

[
1
0

]
, L0,0f

+
0 = −f−

0 . (2.1.16)

We now adapt the proof of [74, Theorem 4.1] to show that the operator L0,ϵ keeps 0 as
quadruple eigenvalue with a particular Jordan structure.

Lemma 2.1.8. The operator L0,ϵ has a four-dimensional generalized Kernel V0,ϵ such that(
L0,ϵ

∣∣
V0,ϵ

)2
= 0 . (2.1.17)

Proof. We show the above structure, that is clearly invariant by conjugations, for the
generalized kernel of the operator d(η,ψ)F

(
ηϵ(x), ψϵ(x), cϵ ; h, 1, 0

)
in (2.1.5)-(1.3.1).

Let Sϵ :=
(
ηϵ(x), ψϵ(x), cϵ ; h, 1, 0

)
, by the symmetries of Lemma 2.1.2 we have that

V1 := [0, 1] and V2 := [(ηϵ(x))x, (ψϵ)x]

are kernel vectors since

0 = ∂Φ0

∣∣
Φ0=0F

(
ηϵ(x), ψϵ(x) + Φ0, cϵ ; h, 1, 0

)
= d(η,ψ)F (Sϵ)V1 , (2.1.18a)

and
0 = ∂θ

∣∣
θ=0F

(
ηϵ(x+ θ), ψϵ(x+ θ), cϵ ; h, 1, 0

)
= d(η,ψ)F (Sϵ)V2 . (2.1.18b)

Similarly, by denoting with a dot the derivative with respect to ϵ,

0 = ∂ϵF
(
ηϵ(x), ψϵ(x), cϵ ; h, 1, 0

)
= d(η,ψ)F (Sϵ)[η̇ϵ, ψ̇ϵ] + ∂cF (Sϵ)ċϵ , (2.1.18c)

where, by (2.1.2),
∂cF (Sϵ) =

[
(ηϵ)x, (ψϵ)x

]
= V2 . (2.1.19)

Thus V3 := [η̇ϵ, ψ̇ϵ] is a generalized kernel vector, since by (2.1.18c) and (2.1.19)

d(η,ψ)F (Sϵ)V3 = −ċϵV2 . (2.1.20)
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This shows that V0,ϵ is at least three-dimensional. By Lemma 2.1.14 its dimension is exactly
four. Indeed dimV0,0 = 4, given that V0,0 is spanned by the vectors in (2.1.15)-(2.1.16),
and a hypothetical simple eigenvalue emerging from 0 as ϵ ̸= 0 cannot move away from the
imaginary axis due to Hamiltonicity, nor can it move along the imaginary axis due to the
reality of L0,ϵ, thus it must remain in 0.
To prove (2.1.17), we note that the operator L0,ϵ is represented on any real symplectic basis
(cfr. Definition 2.2.6) by a 4 × 4 real Hamiltonian matrix (cfr. Definition 2.2.12) L0,ϵ on
V0,ϵ. By Hamiltonicity and reality the rank of the matrix L2

0,ϵ is even, namely there exists a
non-negative integer n ∈ N0 such that

0 ≤ dim Rg L2
0,ϵ = 2n , dim Ker L2

0,ϵ ≥ 3 , dim Rg L2
0,ϵ + dim Ker L2

0,ϵ = 4 ,

implying that the rank of L2
0,ϵ vanishes, namely L2

0,ϵ is the zero matrix.

We are now in a position to introduce our symplectic version of Kato perturbation
theory to follow the branching of the quadruple eigenvalue 0 of L0,0 as both the parameters
ϵ and µ are turned on.

2.2 Symplectic Kato theory

In this section we apply Kato’s similarity transformation theory [59, I-§4-6, II-§4] to
study the splitting of the eigenvalues of Lµ,ϵ in (1.3.14) near 0 for small values of µ and ϵ.
First of all it is convenient to decompose the operator Lµ,ϵ in (1.3.14) as

Lµ,ϵ = i chµ+ Lµ,ϵ , µ > 0 , (2.2.1)

where Lµ,ϵ is the operator

Lµ,ϵ :=
[
∂x ◦ (ch + pϵ(x)) + iµ pϵ(x) |D + µ| tanh

(
(h + fϵ)|D + µ|

)
−
(
1 + aϵ(x)

)
(ch + pϵ(x))∂x + iµ pϵ(x)

]
, (2.2.2a)

whereas in the case of infinite depth h = +∞ one has

Lµ,ϵ :=
[
∂x ◦ (1 + pϵ(x)) + iµ pϵ(x) |D| + µ(sgn(D) + Π0)

−(1 + aϵ(x)) (1 + pϵ(x))∂x + iµ pϵ(x)

]
, (2.2.2b)

since c+∞ = 1 and

|D + µ| = |D| + µ
(

sgn(D) + Π0
)
, Π0f(x) := 1

2π

∫
T
f(x)dx , (2.2.3)
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sgn(D)
∑
k≥0

ak cos(kx) +
∑
k≥1

bk sin(kx) := i
∑
k≥1

ak sin(kx) − i
∑
k≥1

bk cos(kx) . (2.2.4)

The operator Lµ,ϵ has the form Lµ,ϵ = JBµ,ϵ, where

Bµ,ϵ :=
[

1 + aϵ(x) −(ch + pϵ(x))∂x − iµ pϵ(x)
∂x ◦ (ch + pϵ(x)) + iµ pϵ(x) |D + µ| tanh

(
(h + fϵ)|D + µ|

)] , (2.2.5a)

which, in the case of infinite depth h = +∞, becomes

Bµ,ϵ :=
[

1 + aϵ(x) −((1 + pϵ(x))∂x − iµ pϵ(x)
∂x ◦ (1 + pϵ(x)) + iµ pϵ(x) |D| + µ(sgn(D) + Π0)

]
. (2.2.5b)

The operator Bµ,ϵ is selfadjoint, and reversibility-preserving, i.e. fulfills (1.3.15). Thus Lµ,ϵ

is Hamiltonian and reversible, namely it satisfies, by (1.3.12),

Lµ,ϵ ◦ ρ = −ρ ◦ Lµ,ϵ , ρ defined in (1.3.13) . (2.2.6)

We also observe that B0,ϵ is a real operator.
The effect on the spectrum of Lµ,ϵ of the shift in (2.2.1) is but a translation along the

imaginary axis of the quantity i chµ, namely

σ(Lµ,ϵ) = i chµ+ σ(Lµ,ϵ) ,
(
σ(Lµ,ϵ) = iµ+ σ(Lµ,ϵ) at h = +∞

)
.

In the sequel we focus on the analysis of the spectrum of Lµ,ϵ.
We also note that L0,ϵ = L0,ϵ for any ϵ ≥ 0. In particular L0,0 has zero as isolated
eigenvalue with algebraic multiplicity 4, geometric multiplicity 3 and generalized kernel
spanned by the vectors {f+

1 , f
−
1 , f

+
0 , f

−
0 } in (2.1.15)-(2.1.16). Furthermore its spectrum is

separated as in (1.3.20). In general L0,ϵ has zero as isolated eigenvalue and fulfills (2.1.17).
We also remark that, in view of (2.2.3), the operator Lµ,ϵ, in the case of infinite depth
h = +∞, is linear in µ. We remind that Lµ,ϵ : Y ⊂ X → X has domain Y := H1(T) :=
H1(T,C2) and range X := L2(T) := L2(T,C2).

In the next lemma we construct the transformation operators which map isomorphically
the unperturbed spectral subspace into the perturbed ones.

Lemma 2.2.1. Let Γ be a closed, counterclockwise-oriented curve around 0 in the complex
plane separating σ′ (L0,0) = {0} and the other part of the spectrum σ′′ (L0,0) in (1.3.20).
There exist ϵ0, µ0 > 0 such that for any (µ, ϵ) ∈ B(µ0) × B(ϵ0) the following statements
hold:
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1. The curve Γ belongs to the resolvent set of the operator Lµ,ϵ : Y ⊂ X → X in (2.2.2).

2. The operators
Pµ,ϵ := − 1

2πi

∮
Γ
(Lµ,ϵ − λ)−1dλ : X → Y (2.2.7)

are well defined projections commuting with Lµ,ϵ, i.e.

P 2
µ,ϵ = Pµ,ϵ , Pµ,ϵLµ,ϵ = Lµ,ϵPµ,ϵ . (2.2.8)

The map (µ, ϵ) 7→ Pµ,ϵ is analytic from B(µ0) ×B(ϵ0) to L(X,Y ).

3. The domain Y of the operator Lµ,ϵ decomposes as the direct sum

Y = Vµ,ϵ ⊕ Ker(Pµ,ϵ) , Vµ,ϵ := Rg(Pµ,ϵ) = Ker(Id − Pµ,ϵ) , (2.2.9)

of the closed subspaces Vµ,ϵ, Ker(Pµ,ϵ) of Y , which are invariant under Lµ,ϵ,

Lµ,ϵ : Vµ,ϵ → Vµ,ϵ , Lµ,ϵ : Ker(Pµ,ϵ) → Ker(Pµ,ϵ) .

Moreover

σ(Lµ,ϵ) ∩ {z ∈ C inside Γ} = σ(Lµ,ϵ|Vµ,ϵ) = σ′(Lµ,ϵ),
σ(Lµ,ϵ) ∩ {z ∈ C outside Γ} = σ(Lµ,ϵ|Ker(Pµ,ϵ)) = σ′′(Lµ,ϵ) ,

(2.2.10)

proving the “semicontinuity property" (1.3.21) of separated parts of the spectrum.

4. The projections Pµ,ϵ are similar one to each other: the transformation operators

Uµ,ϵ :=
(
Id − (Pµ,ϵ − P0,0)2)−1/2[

Pµ,ϵP0,0 + (Id − Pµ,ϵ)(Id − P0,0)
]
, (2.2.11)

where (Id −R)− 1
2 is defined, for any operator R satisfying ∥R∥L(Y ) < 1, by the power

series

(Id −R)− 1
2 :=

∞∑
k=0

(
−1/2
k

)
(−R)k = Id + 1

2R+ 3
8R

2 + O(R3) , (2.2.12)

are bounded and invertible in Y and in X, with inverse

U−1
µ,ϵ =

[
P0,0Pµ,ϵ + (Id − P0,0)(Id − Pµ,ϵ)

](
Id − (Pµ,ϵ − P0,0)2)−1/2

, (2.2.13)

and
Uµ,ϵP0,0U

−1
µ,ϵ = Pµ,ϵ , U−1

µ,ϵPµ,ϵUµ,ϵ = P0,0 . (2.2.14)

The map (µ, ϵ) 7→ Uµ,ϵ is analytic from B(µ0) ×B(ϵ0) to L(Y ).



2.2. SYMPLECTIC KATO THEORY 55

5. The subspaces Vµ,ϵ = Rg(Pµ,ϵ) are isomorphic one to each other: Vµ,ϵ = Uµ,ϵV0,0. In
particular dimVµ,ϵ = dimV0,0 = 4, for any (µ, ϵ) ∈ B(µ0) ×B(ϵ0).

We prove Lemma 2.2.1 in the case of infinite depth and redirect to [16, Lemma 3.1] for
the very few changes to adopt in the case of finite depth.

Proof. 1. For any λ ∈ C we decompose Lµ,ϵ−λ = L0,0 −λ+Rµ,ϵ where L0,0 =
[
∂x |D|
−1 ∂x

]
and

Rµ,ϵ := Lµ,ϵ − L0,0 =
[
(∂x + iµ)pϵ(x) µg(D)

−aϵ(x) pϵ(x)(∂x + iµ)

]
: Y → X , (2.2.15)

having used also (2.2.3) and setting g(D) := sgn(D) + Π0. For any λ ∈ Γ, the operator
L0,0 − λ is invertible and its inverse is the Fourier multiplier matrix operator

(L0,0 − λ)−1 = Op
(

1
(i k − λ)2 + |k|

[
i k − λ −|k|

1 i k − λ

])
: X → Y .

Hence, for |ϵ| < ϵ0 and |µ| < µ0 small enough, uniformly on the compact set Γ, the operator
(L0,0 − λ)−1Rµ,ϵ : Y → Y is bounded, with small operatorial norm. Then Lµ,ϵ − λ is
invertible by Neumann series and

(Lµ,ϵ − λ)−1 =
(
Id + (L0,0 − λ)−1Rµ,ϵ

)−1(L0,0 − λ)−1 : X → Y . (2.2.16)

This proves that Γ belongs to the resolvent set of Lµ,ϵ.
2. By the previous point the operator Pµ,ϵ is well defined and bounded X → Y . It clearly
commutes with Lµ,ϵ. The projection property P 2

µ,ϵ = Pµ,ϵ is a classical result based on
complex integration, see [59], and we omit it. The map (µ, ϵ) → (L0,0 −λ)−1Rµ,ϵ ∈ L(Y ) is
analytic. Since the map T 7→ (Id+T )−1 is analytic in L(Y ) (for ∥T∥L(Y ) < 1) the operators
(Lµ,ϵ − λ)−1 in (2.2.16) and Pµ,ϵ in L(X,Y ) are analytic as well with respect to (µ, ϵ).
3. The decomposition (2.2.9) is a consequence of Pµ,ϵ being a continuous projection in L(Y ).
The invariance of the subspaces follows since Pµ,ϵ and Lµ,ϵ commute. To prove (2.2.10)
define for an arbitrary λ0 ̸∈ Γ the operator

Rµ,ϵ(λ0) := − 1
2πi

∮
Γ

1
λ− λ0

(Lµ,ϵ − λ)−1 dλ : X → Y .

If λ0 is outside Γ, one has Rµ,ϵ(λ0)(Lµ,ϵ − λ0) = (Lµ,ϵ − λ0)Rµ,ϵ(λ0) = Pµ,ϵ and thus
λ0 ̸∈ σ(Lµ,ϵ|Vµ,ϵ). For λ0 inside Γ, Rµ,ϵ(λ0)(Lµ,ϵ − λ0) = (Lµ,ϵ − λ0)Rµ,ϵ(λ0) = Pµ,ϵ − Id
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and thus λ0 ̸∈ σ(Lµ,ϵ|Ker(Pµ,ϵ)). Then (2.2.10) follows.
4. By (2.2.7), the resolvent identity A−1 −B−1 = A−1(B −A)B−1 and (2.2.15), we write

Pµ,ϵ − P0,0 = 1
2πi

∮
Γ
(Lµ,ϵ − λ)−1Rµ,ϵ(L0,0 − λ)−1dλ .

Then ∥Pµ,ϵ − P0,0∥L(Y ) < 1 for |ϵ| < ϵ0, |µ| < µ0 small enough and the operators Uµ,ϵ in
(2.2.11) are well defined in L(Y ) (actually Uµ,ϵ are also in L(X)). The invertibility of Uµ,ϵ
and formula (2.2.14) are proved in [59], Chapter I, Section 4.6, for the pairs of projections
Q = Pµ,ϵ and P = P0,0. The analyticity of (µ, ϵ) 7→ Uµ,ϵ ∈ L(Y ) follows by the analyticity
(µ, ϵ) 7→ Pµ,ϵ ∈ L(Y ) and of the map T 7→ (Id − T )− 1

2 in L(Y ) for ∥T∥L(Y ) < 1.
5. It follows from the conjugation formula (2.2.14).

The Hamiltonian and reversible nature of the operator Lµ,ϵ, see (2.2.5) and (2.2.6),
imply additional algebraic properties for spectral projections Pµ,ϵ and the transformation
operators Uµ,ϵ.

Lemma 2.2.2. For any (µ, ϵ) ∈ B(µ0) ×B(ϵ0), the following holds true:

(i) The projections Pµ,ϵ defined in (2.2.7) are (complex) skew-Hamiltonian, namely JPµ,ϵ

are skew-Hermitian
JPµ,ϵ = P ∗

µ,ϵJ , (2.2.17)

and reversibility preserving, i.e. ρPµ,ϵ = Pµ,ϵρ.

(ii) The transformation operators Uµ,ϵ in (2.2.11) are symplectic, namely

U∗
µ,ϵJUµ,ϵ = J ,

and reversibility preserving.

(iii) P0,ϵ and U0,ϵ are real operators, i.e. P0,ϵ = P0,ϵ and U0,ϵ = U0,ϵ.

Remark 2.2.3. The term (complex) skew-Hamiltonian is used in [39, Section 6] for
matrices.

Proof. Let γ : [0, 1] → C be a counter-clockwise oriented parametrization of Γ.
(i) Since Lµ,ϵ is Hamiltonian, it results Lµ,ϵJ = −JL ∗

µ,ϵ on Y . Then, for any scalar λ in
the resolvent set of Lµ,ϵ, the number −λ belongs to the resolvent of L ∗

µ,ϵ and

J(Lµ,ϵ − λ)−1 = −(L ∗
µ,ϵ + λ)−1J . (2.2.18)
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Taking the adjoint of (2.2.7), we have

P ∗
µ,ϵ = 1

2πi

∫ 1

0

(
L∗
µ,ϵ − γ(t)

)−1
γ̇(t)dt = 1

2πi

∮
Γ

(
L∗
µ,ϵ + λ

)−1
dλ , (2.2.19)

because the path −γ(t) winds around the origin clockwise. We conclude that

JPµ,ϵ
(2.2.7)= − 1

2πi

∮
Γ
J (Lµ,ϵ − λ)−1 dλ (2.2.18)= 1

2πi

∮
Γ

(
L ∗
µ,ϵ + λ

)−1
Jdλ (2.2.19)= P ∗

µ,ϵJ .

Let us now prove that Pµ,ϵ is reversibility preserving. By (2.2.6) one has (Lµ,ϵ − λ)ρ =
ρ(−Lµ,ϵ − λ) and, for any scalar λ in the resolvent set of Lµ,ϵ, we have ρ(Lµ,ϵ − λ)−1 =
−(Lµ,ϵ + λ)−1ρ, using also that (ρ)−1 = ρ. Thus, recalling (2.2.7) and (1.3.13), we have

ρPµ,ϵ = 1
2πi

∫ 1

0
− (Lµ,ϵ + γ(t))−1 γ̇(t)dt ρ = − 1

2πi

∮
Γ
(Lµ,ϵ − λ)−1dλ ρ = Pµ,ϵρ ,

because the path −γ(t) winds around the origin clockwise.
(ii) If an operator A is skew-Hamiltonian then Ak, k ∈ N, is skew-Hamiltonian as well. As
a consequence, being the projections Pµ,ϵ, P0,0 and their difference skew-Hamiltonian, the
operator

(
Id − (Pµ,ϵ −P0,0)2)−1/2 defined as in (2.2.12) is skew Hamiltonian as well. Hence,

by (2.2.11) we get

JUµ,ϵ =
[(

Id − (Pµ,ϵ − P0,0)2)−1/2]∗ [
P0,0Pµ,ϵ + (Id − P0,0)(Id − Pµ,ϵ)

]∗
J

(2.2.13)= U−∗
µ,ϵJ

and therefore U∗
µ,ϵJUµ,ϵ = J. Finally the operator Uµ,ϵ defined in (2.2.11) is reversibility-

preserving just as ρ commutes with Pµ,ϵ and P0,0.
(iii) By (2.2.7) and since L0,ϵ is a real operator, we have

P0,ϵ = 1
2πi

∫ 1

0
(L0,ϵ − γ(t))−1 γ̇(t)dt = − 1

2πi

∮
Γ

(L0,ϵ − λ)−1 dλ = P0,ϵ

because the path γ(t) winds around the origin clockwise, proving that the operator P0,ϵ is
real. Then the operator U0,ϵ defined in (2.2.11) is real as well.

By the previous lemma, the linear involution ρ commutes with the spectral projections
Pµ,ϵ and then ρ leaves invariant the subspaces Vµ,ϵ = Rg(Pµ,ϵ).

Let us discuss the implications of the previous lemma in the setting of complex symplectic
structures, presented for example in [6, 38]. The infinite dimensional complex space
L2(T,C2), with scalar product (1.3.11), is equipped with the complex symplectic form

Wc : L2(T,C2) × L2(T,C2) → C , Wc(f, g) := (Jf, g) , (2.2.20)

which is sesquilinear, skew-Hermitian and non-degenerate, cfr. Definition 1 in [38]. The
skew-Hamiltonian property (2.2.17) of the projection Pµ,ϵ implies the following lemma.
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Lemma 2.2.4. For any (µ, ϵ), the linear subspace Vµ,ϵ = Rg(Pµ,ϵ) is a complex symplectic
subspace of L2(T,C2), namely the symplectic form Wc in (2.2.20), restricted to Vµ,ϵ, is
non-degenerate.

Proof. Let f̃ ∈ Vµ,ϵ, thus f̃ = Pµ,ϵf̃ . Suppose that Wc(f̃ , g̃) = 0 for any g̃ = Pµ,ϵg ∈ Vµ,ϵ,
g ∈ L2(T,C2). Thus

0 = Wc(f̃ , g̃) = (Jf̃ , Pµ,ϵg) = (P ∗
µ,ϵJf̃ , g) (2.2.17)= (JPµ,ϵf̃ , g) = (Jf̃ , g) .

We deduce that Jf̃ = 0 and then f̃ = 0.

Remark 2.2.5. In view of Lemma 2.2.2-(ii) the transformation operator Uµ,ϵ is symplectic,
namely preserves the symplectic form (2.2.20), i.e. Wc(Uµ,ϵf, Uµ,ϵg) = Wc(f, g), for any
f, g ∈ L2(T,C2).

Symplectic and reversible basis of Vµ,ϵ. It is convenient to represent the Hamiltonian
and reversible operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ in a basis which is symplectic and reversible,
according to the following definition.

Definition 2.2.6. (Symplectic reversible basis) A Vµ,ϵ basis F := {f+
1 , f−

1 , f+
0 , f−

0 } is

• symplectic if, for any k, k′ = 0, 1,(
Jf−

k , f+
k

)
= 1 ,

(
Jfσk , f

σ
k

)
= 0 , ∀σ =± ;

if k ̸= k′ then
(
Jfσk , f

σ′
k′
)

= 0 , ∀σ, σ′ = ± .
(2.2.21)

• reversible if

ρf+
1 = f+

1 , ρf−
1 = −f−

1 , ρf+
0 = f+

0 , ρf−
0 = −f−

0 ,

i.e. ρfσk = σfσk , ∀σ = ±, k = 0, 1 .
(2.2.22)

Remark 2.2.7. By Remark 2.2.5, the operator Uµ,ϵ maps a symplectic basis in a symplectic
basis.

In the next lemma we outline a property of a reversible basis. We use the following
notation along the thesis: we denote by even(x) a real 2π-periodic function which is even
in x, and by odd(x) a real 2π-periodic function which is odd in x.
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Lemma 2.2.8. The real and imaginary parts of the elements of a reversible basis F = {f±
k },

k = 0, 1, enjoy the following parity properties

f+
k (x) =

[
even(x) + i odd(x)
odd(x) + i even(x)

]
, f−

k (x) =
[
odd(x) + i even(x)
even(x) + i odd(x)

]
. (2.2.23)

Proof. By the definition of the involution ρ in (1.3.13), we get

f+
k (x) =

[
a(x) + i b(x)
c(x) + i d(x)

]
= ρf+

k (x) =
[
a(−x) − i b(−x)

−c(−x) + i d(−x)

]
=⇒ a, d even, b, c odd .

The properties of f−
k follow similarly.

We now expand a vector of Vµ,ϵ along a symplectic basis.

Lemma 2.2.9. Let F = {f+
1 , f

−
1 , f

+
0 , f

−
0 } be a symplectic basis of Vµ,ϵ. Then any f in Vµ,ϵ

has the expansion

f = −
(
Jf , f−

1

)
f+

1 +
(
Jf , f+

1

)
f−

1 −
(
Jf , f−

0

)
f+

0 +
(
Jf , f+

0

)
f−

0 . (2.2.24)

Proof. We decompose f = α+
1 f+

1 +α−
1 f−

1 +α+
0 f+

0 +α−
0 f−

0 for suitable coefficients ασk ∈ C. By
applying J, taking the L2 scalar products with the vectors {fσk}σ=±,k=0,1, using (2.2.21) and
noting that

(
Jf+

k , f−
k

)
= −1, we get the expression of the coefficients ασk as in (2.2.24).

We now represent Lµ,ϵ : Vµ,ϵ → Vµ,ϵ with respect to a symplectic and reversible basis.

Lemma 2.2.10. The 4 × 4 matrix that represents the Hamiltonian and reversible op-
erator Lµ,ϵ = JBµ,ϵ : Vµ,ϵ → Vµ,ϵ with respect to a symplectic and reversible basis
F = {f+

1 , f
−
1 , f

+
0 , f

−
0 } of Vµ,ϵ is

Lµ,ϵ = J4Bµ,ϵ , J4 :=
(

J2 0
0 J2

)
, J2 :=

(
0 1

−1 0

)
, where Bµ,ϵ = B∗

µ,ϵ (2.2.25)

is the self-adjoint matrix

Bµ,ϵ =



(
Bµ,ϵ f+

1 , f+
1

) (
Bµ,ϵ f−

1 , f+
1

) (
Bµ,ϵ f+

0 , f+
1

) (
Bµ,ϵ f−

0 , f+
1

)(
Bµ,ϵ f+

1 , f−
1

) (
Bµ,ϵ f−

1 , f−
1

) (
Bµ,ϵ f+

0 , f−
1

) (
Bµ,ϵ f−

0 , f−
1

)(
Bµ,ϵ f+

1 , f+
0

) (
Bµ,ϵ f−

1 , f+
0

) (
Bµ,ϵ f+

0 , f+
0

) (
Bµ,ϵ f−

0 , f+
0

)(
Bµ,ϵ f+

1 , f−
0

) (
Bµ,ϵ f−

1 , f−
0

) (
Bµ,ϵ f+

0 , f−
0

) (
Bµ,ϵ f−

0 , f−
0

)

 . (2.2.26)

The entries of the matrix Bµ,ϵ are alternatively real or purely imaginary: for any σ = ±,
k = 0, 1,

(Bµ,ϵ fσk , fσk′) is real,
(
Bµ,ϵ fσk , f−σ

k′

)
is purely imaginary . (2.2.27)
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Proof. Lemma 2.2.9 implies that

Lµ,ϵfσk = −
∑

k′=0,1,σ′=±
σ′(JLµ,ϵfσk , f

−σ′

k′
)
fσ

′
k′ =

∑
k′=0,1,σ′=±

σ′(Bµ,ϵfσk , f
−σ′

k′
)
fσ

′
k′ .

Then the matrix representing the operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ with respect to the basis
F is given by J4Bµ,ϵ with Bµ,ϵ in (2.2.26). The matrix Bµ,ϵ is selfadjoint because Bµ,ϵ is a
selfadjoint operator. We now prove (2.2.27). By recalling (1.3.13) and (1.3.11) it results

(f , g) = (ρf , ρg) . (2.2.28)

Then, by (2.2.28), since Bµ,ϵ is reversibility-preserving and (2.2.22), we get(
Bµ,ϵ fσk , f

σ′
k′
)

=
(
ρBµ,ϵ fσk , ρfσ′

k′
)

=
(
Bµ,ϵρ fσk , ρfσ′

k′
)

= σσ′ (Bµ,ϵ fσk , fσ′
k′
)
,

which proves (2.2.27).

Remark 2.2.11. The complex symplectic form Wc in (2.2.20) restricted to the symplectic
subspace Vµ,ϵ is represented, in any symplectic basis (cfr. (2.2.21)), by the matrix J4 in
(2.2.25), acting in C4 with the standard complex scalar product.

Hamiltonian and reversible matrices. In the sequel we frequently deal with matrices
of the form obtained in Lemma 2.2.10. We shall use the following terminology.

Definition 2.2.12. A 2n× 2n, n = 1, 2, matrix of the form L = J2nB is

1. Hamiltonian if B is a self-adjoint matrix, i.e. B = B∗;

2. Reversible if B is reversibility-preserving, i.e. ρ2n ◦ B = B ◦ ρ2n, where

ρ4 :=
(
ρ2 0
0 ρ2

)
, ρ2 :=

(
c 0
0 −c

)
, (2.2.29)

and c : z 7→ z is the conjugation of the complex plane. Equivalently, ρ2n ◦L = −L◦ρ2n.

In the sequel we shall mainly deal with 4 × 4 Hamiltonian and reversible matrices. The
transformations preserving the Hamiltonian structure are called symplectic, and satisfy

Y ∗J4Y = J4 . (2.2.30)

If Y is symplectic then Y ∗ and Y −1 are symplectic as well. A Hamiltonian matrix L = J4B,
with B = B∗, is conjugated through Y in the new Hamiltonian matrix

L1 = Y −1LY = Y −1J4Y
−∗Y ∗BY = J4B1 where B1 := Y ∗BY = B∗

1 . (2.2.31)
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Note that the matrix ρ4 in (2.2.29) represents the action of the involution ρ : Vµ,ϵ → Vµ,ϵ

defined in (1.3.13) in a reversible basis (cfr. (2.2.22)). A 4 × 4 matrix B = (Bij)i,j=1,...,4 is
reversibility-preserving if and only if its entries are alternatively real and purely imaginary,
namely Bij is real when i+ j is even and purely imaginary otherwise, as in (2.2.27). A 4 × 4
complex matrix L = (Lij)i,j=1,...,4 is reversible if and only if Lij is purely imaginary when
i+ j is even and real otherwise.

In the sequel we shall use that the flow of a Hamiltonian reversibility-preserving matrix
is symplectic and reversibility-preserving.

Lemma 2.2.13. Let Σ be a self-adjoint and reversible matrix, then exp(τJ4Σ), τ ∈ R, is a
reversibility-preserving symplectic matrix.

Proof. The flow φ(τ) := exp(τJ4Σ) solves d
dτφ(τ) := J4Σφ(τ), with φ(0) = Id. Then

ψ(τ) := φ(τ)∗J4φ(τ)−J4 satisfies ψ(0) = 0 and d
dτψ(τ) = φ(τ)∗J∗

4J4φ(τ)+φ(τ)∗J4J4φ(τ) =
0 . Then ψ(τ) = 0 for any τ and φ(τ) is symplectic. The matrix exp(τJ4Σ) = ∑

n≥0
1
n!(τJ4Σ)n

is reversibility-preserving since each (J4Σ)n, n ≥ 0, is reversibility-preserving.





Chapter 3

Benjamin-Feir instability in deep
water

In this chapter we prove the full description of the Benjamin-Feir instability phenomenon
in the case of infinite depth given in Theorem 1.4.1 and its “corollary” Theorem 1.2.2.

3.1 Expansion of the Kato basis

In this section we use the transformation operators Uµ,ϵ obtained in Chapter 2.2 to
construct a symplectic and reversible basis of Vµ,ϵ and, in Proposition 3.2.2, we compute
the 4 × 4 Hamiltonian and reversible matrix representing Lµ,ϵ : Vµ,ϵ → Vµ,ϵ on such basis.
First basis of Vµ,ϵ. In view of Lemma 2.2.1, the first basis of Vµ,ϵ that we consider is

F :=
{
f+

1 (µ, ϵ), f−
1 (µ, ϵ), f+

0 (µ, ϵ), f−
0 (µ, ϵ)

}
,

fσk (µ, ϵ) := Uµ,ϵf
σ
k , σ = ± , k = 0, 1 ,

(3.1.1)

obtained applying the transformation operators Uµ,ϵ in (2.2.11) to the vectors

f+
1 =

[
cos(x)
sin(x)

]
, f−

1 =
[
− sin(x)
cos(x)

]
, f+

0 =
[
1
0

]
, f−

0 =
[
0
1

]
, (3.1.2)

which form a basis of V0,0 = Rg(P0,0), cfr. (2.1.15b)-(2.1.16). Note that the real valued
vectors {f±

1 , f
±
0 } are orthonormal with respect to the scalar product (1.3.11), and satisfy

Jf+
1 = −f−

1 , Jf−
1 = f+

1 , Jf+
0 = −f−

0 , Jf−
0 = f+

0 , (3.1.3)

63
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thus forming a symplectic and reversible basis for V0,0, according to Definition 2.2.6.
In view of Remarks 2.2.5 and 2.2.7, the symplectic operators Uµ,ϵ transform, for any

(µ, ϵ) small, the symplectic basis (3.1.2) of V0,0, into the symplectic basis (3.1.1):

Lemma 3.1.1. The basis F of Vµ,ϵ defined in (3.1.1), is symplectic and reversible, i.e.
satisfies (2.2.21) and (2.2.22). Each map (µ, ϵ) 7→ fσk (µ, ϵ) is analytic from B(µ0) ×B(ϵ0)
to H1(T).

Proof. Since by Lemma 2.2.2-(ii) the maps Uµ,ϵ are symplectic and reversibility-preserving
the transformed vectors f+

1 (µ, ϵ), . . . , f−
0 (µ, ϵ) are symplectic orthogonals and reversible

as well as the unperturbed ones f+
1 , . . . , f

−
0 . The analyticity of fσk (µ, ϵ) follows from the

analyticity property of Uµ,ϵ proved in Lemma 2.2.1.

In the next lemma we provide a suitable expansion of the vectors fσk (µ, ϵ) in (µ, ϵ). We
denote by even0(x) a real, even, 2π-periodic function with zero space average. In what

follows O(µmϵn)
[
even(x)
odd(x)

]
denotes an analytic map in (µ, ϵ) ranging in H1(T,C2), whose first

component is even(x) and the second one odd(x); similar meaning for O(µmϵn)
[
odd(x)
even(x)

]
,

and similar notation.

Lemma 3.1.2. (Expansion of the basis F) For small values of (µ, ϵ) the basis F in
(3.1.1) has the following expansion

f+
1 (µ, ϵ) =

[
cos(x)
sin(x)

]
+ i µ4

[
sin(x)
cos(x)

]
+ ϵ

[
2 cos(2x)
sin(2x)

]
(3.1.4)

+ O(µ2)
[
even0(x) + i odd(x)
odd(x) + i even0(x)

]
+ O(ϵ2)

[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even(x)

]
+ O(µ2ϵ, µϵ2) ,

f−
1 (µ, ϵ) =

[
− sin(x)
cos(x)

]
+ i µ4

[
cos(x)

− sin(x)

]
+ ϵ

[
−2 sin(2x)

cos(2x)

]
(3.1.5)

+ O(µ2)
[
odd(x) + i even0(x)
even0(x) + i odd(x)

]
+ O(ϵ2)

[
odd(x)
even(x)

]
+ iµϵ

[
even(x)
odd(x)

]
+ O(µ2ϵ, µϵ2) ,

f+
0 (µ, ϵ) =

[
1
0

]
+ ϵ

[
cos(x)

− sin(x)

]
+ O(ϵ2)

[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even0(x)

]
+ O(µ2ϵ, µϵ2) , (3.1.6)

f−
0 (µ, ϵ) =

[
0
1

]
+ µϵ

([
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

])
+ O(µ2ϵ, µϵ2) , (3.1.7)
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where the remainders O() are vectors in H1(T). For µ = 0 the basis {f±
k (0, ϵ), k = 0, 1} is

real and

f+
1 (0, ϵ) =

[
even0(x)
odd(x)

]
, f−

1 (0, ϵ) =
[
odd(x)
even(x)

]
, f+

0 (0, ϵ) =
[
1
0

]
+
[
even0(x)
odd(x)

]
, f−

0 (0, ϵ) =
[
0
1

]
.

(3.1.8)

The rest of the section is devoted to the proof of Lemma 3.1.2.
We first Taylor-expand the transformation operators Uµ,ϵ defined in (2.2.11). We denote ∂ϵ
with a prime and ∂µ with a dot.

Lemma 3.1.3. The first jets of Uµ,ϵP0,0 are

U0,0P0,0 = P0,0 , U ′
0,0P0,0 = P ′

0,0P0,0 , U̇0,0P0,0 = Ṗ0,0P0,0 , (3.1.9)

U̇ ′
0,0P0,0 =

(
Ṗ ′

0,0 − 1
2P0,0Ṗ

′
0,0
)
P0,0 , (3.1.10)

where

P ′
0,0 = 1

2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ , (3.1.11)

Ṗ0,0 = 1
2πi

∮
Γ
(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ , (3.1.12)

and

Ṗ ′
0,0 = − 1

2πi

∮
Γ
(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ (3.1.13a)

− 1
2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ (3.1.13b)

+ 1
2πi

∮
Γ
(L0,0 − λ)−1L̇ ′

0,0(L0,0 − λ)−1dλ . (3.1.13c)

The operators L ′
0,0 and L̇0,0 are

L ′
0,0 =

[
∂x ◦ p1(x) 0

−a1(x) p1(x) ◦ ∂x

]
, L̇0,0 =

[
0 sgn(D) + Π0

0 0

]
, (3.1.14)

with a1(x) = p1(x) = −2 cos(x), cfr. (2.1.8)-(2.1.9). The operator L̇ ′
0,0 is

L̇ ′
0,0 =

[
i p1(x) 0

0 i p1(x)

]
. (3.1.15)
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Proof. By (2.2.11) and (2.2.12) one has the Taylor expansion in L(Y )

Uµ,ϵP0,0 = Pµ,ϵP0,0 + 1
2(Pµ,ϵ − P0,0)2Pµ,ϵP0,0 + O(Pµ,ϵ − P0,0)4 ,

where O(Pµ,ϵ − P0,0)4 = O(ϵ4, ϵ3µ, ϵ2µ2, ϵµ3, µ4) ∈ L(Y ). Consequently one derives (3.1.9),
(3.1.10), using also the identity Ṗ0,0P ′

0,0P0,0 + P ′
0,0Ṗ0,0P0,0 = −P0,0Ṗ ′

0,0P0,0, which follows
differentiating P 2

µ,ϵ = Pµ,ϵ. Differentiating (2.2.7) one gets (3.1.11)–(3.1.13c). Formulas
(3.1.14)-(3.1.15) follow by (2.2.2b).

By the previous lemma we have the Taylor expansion

fσk (µ, ϵ) = fσk + ϵP ′
0,0f

σ
k + µṖ0,0f

σ
k + µϵ

(
Ṗ ′

0,0 − 1
2P0,0Ṗ

′
0,0
)
fσk + O(µ2, ϵ2) . (3.1.16)

In order to compute the vectors P ′
0,0f

σ
k and Ṗ0,0fσk using (3.1.11) and (3.1.12), it is useful

to know the action of (L0,0 − λ)−1 on the vectors

f+
k :=

[
cos(kx)
sin(kx)

]
, f−

k :=
[
− sin(kx)
cos(kx)

]
, f+

−k :=
[

cos(kx)
− sin(kx)

]
, f−

−k :=
[

sin(kx)
cos(kx)

]
, k ∈ N .

(3.1.17)

Lemma 3.1.4. The space H1(T) decomposes as H1(T) = V0,0 ⊕ U ⊕ WH1, with WH1 :=
∞⊕
k=2

Wk

H1

, where the subspaces V0,0,U and Wk, defined below, are invariant under L0,0 and

the following properties hold:

(i) V0,0 = span{f+
1 , f

−
1 , f

+
0 , f

−
0 } is the generalized kernel of L0,0. For any λ ̸= 0 the

operator L0,0 − λ : V0,0 → V0,0 is invertible and

(L0,0 − λ)−1f+
1 = − 1

λ
f+

1 , (L0,0 − λ)−1f−
1 = − 1

λ
f−

1 , (L0,0 − λ)−1f−
0 = − 1

λ
f−

0 ,

(3.1.18)

(L0,0 − λ)−1f+
0 = − 1

λ
f+

0 + 1
λ2 f

−
0 . (3.1.19)

(ii) U := span
{
f+

−1, f
−
−1

}
. For any λ ̸= ±2i the operator L0,0 − λ : U → U is invertible

and

(L0,0−λ)−1f+
−1 = 1

λ2 + 4
(
−λf+

−1 + 2f−
−1

)
, (L0,0−λ)−1f−

−1 = 1
λ2 + 4

(
−2f+

−1 − λf−
−1

)
.

(3.1.20)
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(iii) Each subspace Wk := span
{
f+
k , f

−
k , f

+
−k, f

−
−k

}
is invariant under L0,0. Let WL2 :=

∞⊕
k=2

Wk

L2

. For any |λ| < 1
2 , the operator L0,0 − λ : WH1 → WL2 is invertible and, for

any f ∈ WL2,

(L0,0 − λ)−1f = (∂2
x + |D|)−1

[
∂x −|D|
1 ∂x

]
f + λφf (λ, x) , (3.1.21)

for some analytic function λ 7→ φf (λ, ·) ∈ H1(T,C2).

Proof. By inspection the spaces V0,0, U and Wk are invariant under L0,0 and, by Fourier
series, they decompose H1(T,C2).
(i) Formulas (3.1.18)-(3.1.19) follow using that f+

1 , f
−
1 , f

−
0 are in the kernel of L0,0, and

L0,0f
+
0 = −f−

0 .
(ii) Formula (3.1.20) follows using that L0,0f

+
−1 = −2f−

−1 and L0,0f
−
−1 = 2f+

−1.
(iii) Let W := WH1 . The operator (L0,0 − λId)

∣∣
W

is invertible for any λ /∈ {±i
√

|k|±i k, k ≥

2, k ∈ N} and (L0,0
∣∣
W

)−1 =
(
∂2
x + |D|

)−1
[
∂x −|D|
1 ∂x

]
|W

. In particular, by Neumann series,

for any λ such that |λ|∥(L0,0
∣∣
W

)−1∥L(WL2 ,H1(T)) < 1, e.g. for any |λ| < 1/2,

(L0,0
∣∣
W

− λ)−1 = (L0,0
∣∣
W

)−1(Id − λ(L0,0
∣∣
W

)−1)−1 = (L0,0
∣∣
W

)−1 ∑
k≥0

((L0,0
∣∣
W

)−1λ)k .

Formula (3.1.21) follows with φf (λ, x) := (L0,0
∣∣
W

)−1∑
k≥1 λ

k−1[(L0,0
∣∣
W

)−1]kf .

We shall also use the following formulas, obtained by (3.1.14) and (3.1.2):

L ′
0,0f

+
1 = 2

[
sin(2x)

0

]
, L ′

0,0f
−
1 = 2

[
cos(2x)

0

]
, L ′

0,0f
+
0 = 2

[
sin(x)
cos(x)

]
, L ′

0,0f
−
0 = 0 ,

L̇0,0f
+
1 = −i

[
cos(x)

0

]
, L̇0,0f

−
1 = i

[
sin(x)

0

]
, L̇0,0f

+
0 = 0, L̇0,0f

−
0 = f+

0 .

(3.1.22)
We finally compute P ′

0,0f
σ
k and Ṗ0,0fσk .

Lemma 3.1.5. One has

P ′
0,0f

+
1 =

[
2 cos(2x)
sin(2x)

]
, P ′

0,0f
−
1 =

[
−2 sin(2x)

cos(2x)

]
, P ′

0,0f
+
0 = f+

−1 , P ′
0,0f

−
0 = 0 ,

Ṗ0,0f
+
1 = i

4f
−
−1 , Ṗ0,0f

−
1 = i

4f
+
−1 , Ṗ0,0f

+
0 = 0 , Ṗ0,0f

−
0 = 0 .

(3.1.23)
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Proof. We first compute P ′
0,0f

+
1 . By (3.1.11), (3.1.18) and (3.1.22) we deduce

P ′
0,0f

+
1 = − 1

2πi

∮
Γ

1
λ

(L0,0 − λ)−1
[
2 sin(2x)

0

]
dλ .

We note that
[

2 sin(2x)
0

]
belongs to W, being equal to f−

−2 − f−
2 (recall (3.1.17)). By (3.1.21)

there is an analytic function λ 7→ φ(λ, ·) ∈ H1(T,C2) so that

P ′
0,0f

+
1 = − 1

2πi

∮
Γ

1
λ

( [−2 cos(2x)
− sin(2x)

]
+ λφ(λ)

)
dλ =

[
2 cos(2x)
sin(2x)

]
,

using the residue Theorem. Similarly one computes P ′
0,0f

−
1 . By (3.1.11), (3.1.18) and

(3.1.22), one has P ′
0,0f

−
0 = 0. Next we compute P ′

0,0f
+
0 . By (3.1.11), (3.1.18), (3.1.19) and

(3.1.22) we get

P ′
0,0f

+
0 = − 2

2πi

∮
Γ

1
λ

(L0,0−λ)−1f−
−1dλ (3.1.20)= − 1

2πi

∮
Γ

(
− 4
λ(λ2 + 4)f

+
−1− 2

λ2 + 4f
−
−1

)
dλ = f+

−1 ,

where in the last step we used the residue theorem. We compute now Ṗ0,0f
+
1 . First we

have Ṗ0,0f
+
1 = i

2πi
∮

Γ
1
λ(L0,0 − λ)−1

[
cos(x)

0

]
dλ and then, writing

[
cos(x)

0

]
= 1

2(f+
1 + f+

−1)

and using (3.1.20), we conclude

Ṗ0,0f
+
1 = i

2
1

2πi

∮
Γ

(
− 1
λ2 f

+
1 − 1

λ2 + 4f
+
−1 + 2

λ(λ2 + 4)f
−
−1

)
dλ = i

4f
−
−1

using again the residue theorem. The computations of Ṗ0,0f
−
1 , Ṗ0,0f

+
0 , Ṗ0,0f

−
0 are analogous.

So far we have obtained the linear terms of the expansions (3.1.4), (3.1.5), (3.1.6),
(3.1.7). We now provide further information about the expansion of the basis at µ = 0.

Lemma 3.1.6. The basis {fσk (0, ϵ), k = 0, 1, σ = ±} is real. For any ϵ it results f−
0 (0, ϵ) ≡

f−
0 . The property (3.1.8) holds.

Proof. The reality of the basis fσk (0, ϵ) is a consequence of Lemma 2.2.2-(iii). Since by
(2.2.2b) L0,ϵf

−
0 = 0 for any ϵ, we deduce (L0,ϵ − λ)−1f−

0 = − 1
λf

−
0 and then, using also the

residue theorem,
P0,ϵf

−
0 = − 1

2πi

∮
Γ
(L0,ϵ − λ)−1f−

0 dλ = f−
0 .
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In particular P0,ϵf
−
0 = P0,0f

−
0 , for any ϵ and we get, by (2.2.11), f−

0 (0, ϵ) = U0,ϵf
−
0 = f−

0 ,
for any ϵ.

Let us prove property (3.1.8). In view of (2.2.23) and since the basis is real, we know

that f+
k (0, ϵ) =

[
even(x)
odd(x)

]
, f−

k (0, ϵ) =
[
odd(x)
even(x)

]
, for any k = 0, 1. By Lemma 3.1.1 the basis

{fσk (0, ϵ)} is symplectic (cfr. (2.2.21)) and, since Jf−
0 (0, ϵ) = Jf−

0 =
[

1
0

]
, for any ϵ, we get

0 =
(
Jf−

0 (0, ϵ) , f+
1 (0, ϵ)

)
=
( [1

0

]
, f+

1 (0, ϵ)
)
, 1 =

(
Jf−

0 (0, ϵ), f+
0 (0, ϵ)

)
=
( [1

0

]
, f+

0 (0, ϵ)
)
.

Thus the first component of both f+
1 (0, ϵ) and f+

0 (0, ϵ) −
[

1
0

]
has zero average, proving

(3.1.8).

We now provide further information about the expansion of the basis at ϵ = 0.

Lemma 3.1.7. For any small µ, we have f+
0 (µ, 0) ≡ f+

0 and f−
0 (µ, 0) ≡ f−

0 . Moreover the
vectors f+

1 (µ, 0) and f−
1 (µ, 0) have both components with zero space average.

Proof. The operator Lµ,0 =
[
∂x |D + µ|
−1 ∂x

]
leaves invariant the subspace Z := span{f+

0 , f
−
0 }

since Lµ,0f
+
0 = −f−

0 and Lµ,0f
−
0 = µf+

0 . The operator Lµ,0
∣∣
Z

has the two eigenvalues
±i √

µ, which, for small µ, lie inside the loop Γ around 0 in (2.2.7). Then, by (2.2.10), we
have Z ⊆ Vµ,0 = Rg(Pµ,0) and

Pµ,0f
±
0 = f±

0 , f±
0 (µ, 0) = Uµ,0f

±
0 = f±

0 , for any µ small .

The basis {fσk (µ, 0)} is symplectic. Then, since Jf+
0 =

[
0

−1

]
and Jf−

0 =
[

1
0

]
, we have

0 =
(
Jf+

0 (µ, 0) , fσ1 (µ, 0)
)

=
([ 0

−1

]
, fσ1 (µ, 0)

)
, 0 =

(
Jf−

0 (µ, 0), fσ1 (µ, 0)
)

=
([1

0

]
, fσ1 (µ, 0)

)
,

namely both the components of f±
1 (µ, 0) have zero average.

We finally consider the µϵ term in the expansion (3.1.16) of the vectors fσk (µ, ϵ), k = 0, 1,
σ = ±.
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Lemma 3.1.8. The derivatives (∂µ∂ϵfσk )(0, 0) =
(
Ṗ ′

0,0 − 1
2P0,0Ṗ ′

0,0
)
fσk satisfy

(∂µ∂ϵf+
1 )(0, 0) = i

[
odd(x)
even(x)

]
, (∂µ∂ϵf−

1 )(0, 0)− = i
[
even(x)
odd(x)

]
,

(∂µ∂ϵf+
0 )(0, 0) = i

[
odd(x)
even0(x)

]
, (∂µ∂ϵf−

0 )(0, 0) = 1
2

[
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

]
.

(3.1.24)

Proof. We decompose the Fourier multiplier operator L̇0,0 in (3.1.14) as

L̇0,0 = L̇
(I)
0,0 + L̇

(II)
0,0 , L̇

(I)
0,0 :=

[
0 sgn(D)
0 0

]
, L̇

(II)
0,0 :=

[
0 Π0

0 0

]
,

and, accordingly, we write Ṗ ′
0,0 = (3.1.13a)(I) + (3.1.13a)(II) + (3.1.13b)(I) + (3.1.13b)(II) +

(3.1.13c) defining

(3.1.13a)(I) := − 1
2πi

∮
Γ
(L0,0 − λ)−1L̇

(I)
0,0 (L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ , (3.1.25)

(3.1.13a)(II) := − 1
2πi

∮
Γ
(L0,0 − λ)−1L̇

(II)
0,0 (L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ , (3.1.26)

(3.1.13b)(I) := − 1
2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1L̇
(I)
0,0 (L0,0 − λ)−1dλ , (3.1.27)

(3.1.13b)(II) := − 1
2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1L̇
(II)
0,0 (L0,0 − λ)−1dλ . (3.1.28)

Note that the operators (3.1.13a)(I), (3.1.13b)(I) and (3.1.13c) are purely imaginary because
L̇

(I)
0,0 is purely imaginary, L ′

0,0 in (3.1.14) is real and L̇ ′
0,0 in (3.1.15) is purely imaginary

(argue as in Lemma 2.2.2-(iii)). Then, applied to the real vectors fσk , k = 0, 1, σ = ±, give
purely imaginary vectors.
We first compute (∂µ∂ϵf+

1 )(0, 0). Using (3.1.18) and (3.1.22) we get

(3.1.13a)(II)f+
1 = 2

2πi

∮
Γ

1
λ

(L0,0 − λ)−1L̇
(II)
0,0 (L0,0 − λ)−1

[
sin(2x)

0

]
dλ = 0

because, by Lemma 3.1.4, (L0,0 − λ)−1
[

sin(2x)
0

]
∈ W and therefore it is a vector with zero

average, so in the kernel of L̇
(II)
0,0 . In addition (3.1.13b)(II)f+

1 = 0 since L̇
(II)
0,0 (L0,0 −

λ)−1f+
1 = 0. All together Ṗ ′

0,0f
+
1 is a purely imaginary vector. Since P0,0 is a real operator,

also (Ṗ ′
0,0 − 1

2P0,0Ṗ ′
0,0)f+

1 is purely imaginary, and Lemma 2.2.8 implies that (∂µ∂ϵf+
1 )(0, 0)
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has the claimed structure in (3.1.24). In the same way one proves the structure for
(∂µ∂ϵf−

1 )(0, 0).
Next we prove that (∂µ∂ϵf+

0 )(0, 0), in addition to being purely imaginary, has zero
average. We have, by (3.1.19) and (3.1.22)

(3.1.13a)(I)f+
0 := 2

2πi

∮
Γ
(L0,0 − λ)−1L̇

(I)
0,0 (L0,0 − λ)−1 1

λ

[
sin(x)
cos(x)

]
dλ

and since the operators (L0,0 − λ)−1 and L̇
(I)
0,0 are both Fourier multipliers, hence they

preserve the absence of average of the vectors, then (3.1.13a)(I)f+
0 has zero average. In

addition (3.1.13a)(II)f+
0 = 0 as L̇

(II)
0,0 (L0,0 − λ)−1

[
sin(x)
cos(x)

]
= 0. Next (3.1.13b)(I)f+

0 = 0

since L̇
(I)
0,0 f

±
0 = 0. Using also that L̇

(II)
0,0 f+

0 = 0 and L̇
(II)
0,0 f−

0 = f+
0 ,

(3.1.13b)(II)f+
0

(3.1.19)= − 1
2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1 1
λ2 f

+
0 dλ

(3.1.19),(3.1.22)= 2
2πi

∮
Γ

1
λ3 (L0,0 − λ)−1

[
sin(x)
cos(x)

]
dλ = 0

using (3.1.20) and the residue theorem. Finally, by (3.1.19) and (3.1.15) where p1(x) =
−2 cos(x),

(3.1.13c)f+
0 = − i 2

2πi

∮
Γ
(L0,0 − λ)−1

(
− 1
λ

[
cos(x)

0

]
+ 1
λ2

[
0

cos(x)

] )
dλ

is a vector with zero average. We conclude that Ṗ ′
0,0f

+
0 is an imaginary vector with zero

average, as well as (∂µ∂ϵf+
0 )(0, 0) since P0,0 sends zero average functions in zero average

functions. Finally, by Lemma 2.2.8, (∂µ∂ϵf+
0 )(0, 0) has the claimed structure in (3.1.24).

We finally consider (∂µ∂ϵf−
0 )(0, 0). By (3.1.18) and L ′

0,0f
−
0 = 0 (cfr. (3.1.22)), it results

(3.1.13a)(M)f−
0 = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
L̇

(M)
0,0 (L0,0 − λ)−1L ′

0,0f
−
0 dλ = 0 , M = I, II .

Next by (3.1.18) and L̇
(I)
0,0 f

−
0 = 0 we get (3.1.13b)(I)f−

0 = 0. Then, since L̇
(II)
0,0 f−

0 = f+
0 ,

(3.1.13b)(II)f−
0

(3.1.18)−(3.1.19)= 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
L ′

0,0
(

− 1
λ
f+

0 + 1
λ2 f

−
0

)
dλ

(3.1.22),(3.1.20)= − 2
2πi

∮
Γ

1
λ2

1
λ2 + 4(−2f+

−1 − λf−
−1)dλ = 1

2f
−
−1 = 1

2

[
sin(x)
cos(x)

]
,
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which is the only real term of (∂µ∂ϵf−
0 )(0, 0) in (3.1.24). Finally by (3.1.18) and (3.1.15)

(3.1.13c)f−
0 = 2i

2πi

∮
Γ
(L0,0 − λ)−1 1

λ

[
0

cos(x)

]
dλ = − i

2

[
cos(x)

− sin(x)

]

by (3.1.18), (3.1.20) and the residue theorem. In conclusion Ṗ ′
0,0f

−
0 = 1

2

[
sin(x)
cos(x)

]
− i

2

[
cos(x)

− sin(x)

]
∈

U and, since P0,0|U = 0, we find that
(
Ṗ ′

0,0 − 1
2P0,0Ṗ ′

0,0
)
f−

0 = 1
2

[
sin(x)
cos(x)

]
− i

2

[
cos(x)
sin(x)

]
.

This completes the proof of Lemma 3.1.2.

3.2 Matrix representation of Lµ,ϵ on Vµ,ϵ

Before representing the operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ we slightly modify the basis F in
(3.1.1) into another symplectic and reversible basis of Vµ,ϵ with an additional property.
Note that the second component of the vector f−

1 (0, ϵ) is an even function whose space
average is not necessarily zero, cfr. (3.1.8). Thus we introduce the new symplectic and
reversible basis of Vµ,ϵ

G :=
{
g+

1 (µ, ϵ), g−
1 (µ, ϵ), g+

0 (µ, ϵ), g−
0 (µ, ϵ)

}
,

defined by

g+
1 (µ, ϵ) := f+

1 (µ, ϵ) , g−
1 (µ, ϵ) := f−

1 (µ, ϵ) − n(µ, ϵ)f−
0 (µ, ϵ) ,

g+
0 (µ, ϵ) := f+

0 (µ, ϵ) + n(µ, ϵ)f+
1 (µ, ϵ) , g−

0 (µ, ϵ) := f−
0 (µ, ϵ) ,

(3.2.1)

with

n(µ, ϵ) :=

(
f−

1 (µ, ϵ) , f−
0 (µ, ϵ)

)
∥f−

0 (µ, ϵ)∥2 . (3.2.2)

Note that n(µ, ϵ) is real, because, in view of (2.2.28) and Lemma 3.1.1,

n(µ, ϵ) :=

(
ρf−

1 (µ, ϵ) , ρf−
0 (µ, ϵ)

)
∥f−

0 (µ, ϵ)∥2 =

(
f−

1 (µ, ϵ) , f−
0 (µ, ϵ)

)
∥f−

0 (µ, ϵ)∥2 = n(µ, ϵ) . (3.2.3)

This new basis has the property that g−
1 (0, ϵ) has zero average, see (3.2.13). We shall exploit

this feature crucially in Lemma 3.2.5, see remark 3.2.6.

Lemma 3.2.1. The basis G in (3.2.1) is symplectic and reversible, i.e. it satisfies (2.2.21)
and (2.2.22). Each map (µ, ϵ) 7→ gσk (µ, ϵ) is analytic as a map B(µ0) ×B(ϵ0) → H1(T,C2).
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Proof. The vectors g±
k (µ, ϵ), k = 0, 1 satisfy (2.2.21) and (2.2.22) because f±

k (µ, ϵ), k = 0, 1
satisfy the same properties as well, and n(µ, ϵ) is real. The analyticity of gσk (µ, ϵ) follows
from the corresponding property of the basis F.

We now state the main result of this section.

Proposition 3.2.2. The matrix that represents the Hamiltonian and reversible operator
Lµ,ϵ : Vµ,ϵ → Vµ,ϵ in the symplectic and reversible basis G of Vµ,ϵ defined in (3.2.1), is a
Hamiltonian matrix Lµ,ϵ = J4Bµ,ϵ, where Bµ,ϵ is a self-adjoint and reversibility preserving
(i.e. satisfying (2.2.27)) 4 × 4 matrix of the form

Bµ,ϵ =
(
E F

F ∗ G

)
, E = E∗ , G = G∗ , (3.2.4)

where E,F,G are the 2 × 2 matrices

E :=
(
ϵ2(1 + r′

1(ϵ, µϵ2)) − µ2

8 (1 + r′′
1(ϵ, µ)) i

(1
2µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2µ+ r2(µϵ2, µ2ϵ, µ3)
)

−µ2

8 (1 + r5(ϵ, µ))

)
(3.2.5)

G :=
(

1 + r8(ϵ3, µ2ϵ, µϵ2, µ3) −i r9(µϵ2, µ2ϵ, µ3)
i r9(µϵ2, µ2ϵ, µ3) µ+ r10(µ2ϵ, µ3)

)
(3.2.6)

F =
(
r3(ϵ3, µϵ2, µ2ϵ, µ3) i r4(µϵ, µ3)

i r6(µϵ, µ3) r7(µ2ϵ, µ3)

)
. (3.2.7)

The rest of this section is devoted to the proof of Proposition 3.2.2. The first step is to
provide the following expansion in (µ, ϵ) of the basis G.

Lemma 3.2.3. (Expansion of the basis G) For small values of (µ, ϵ), the basis G defined
in (3.2.1) has the following expansion

g+
1 (µ, ϵ) =

[
cos(x)
sin(x)

]
+ i µ4

[
sin(x)
cos(x)

]
+ ϵ

[
2 cos(2x)
sin(2x)

]
(3.2.8)

+ O(µ2)
[
even0(x) + i odd(x)
odd(x) + i even0(x)

]
+ O(ϵ2)

[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even(x)

]
+ O(µ2ϵ, µϵ2) ,

g−
1 (µ, ϵ) =

[
− sin(x)
cos(x)

]
+ i µ4

[
cos(x)

− sin(x)

]
+ ϵ

[
−2 sin(2x)

cos(2x)

]
(3.2.9)

+ O(µ2)
[
odd(x) + i even0(x)
even0(x) + i odd(x)

]
+ O(ϵ2)

[
odd(x)
even0(x)

]
+ iµϵ

[
even(x)
odd(x)

]
+ O(µ2ϵ, µϵ2) ,
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g+
0 (µ, ϵ) =

[
1
0

]
+ ϵ

[
cos(x)

− sin(x)

]
+ O(ϵ2)

[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even0(x)

]
+ O(µ2ϵ, µϵ2) ,(3.2.10)

g−
0 (µ, ϵ) =

[
0
1

]
+ µϵ

([
sin(x)
cos(x)

]
+ i

[
even0(x)
odd(x)

])
+ O(µ2ϵ, µϵ2) . (3.2.11)

In particular, at µ = 0, the basis {gσk (0, ϵ), σ = ±, k = 0, 1} is real,

g+
1 (0, ϵ) =

[
even0(x)
odd(x)

]
, g−

1 (0, ϵ) =
[
odd(x)
even0(x)

]
,

g+
0 (0, ϵ) =

[
1
0

]
+
[
even0(x)
odd(x)

]
, g−

0 (0, ϵ) =
[
0
1

]
,

(3.2.12)

and, for any ϵ, ∫
T
g−

1 (0, ϵ) dx = 0 . (3.2.13)

Proof. First note that, by (3.1.8), f−
0 (0, ϵ) =

[
0
1

]
, and thus g−

1 (0, ϵ) in (3.2.1) reduces to

g−
1 (0, ϵ) = f−

1 (0, ϵ) −
(
f−

1 (0, ϵ),
[
0
1

] ) [0
1

]
,

which satisfies (3.2.13), recalling also that the first component of f−
1 (0, ϵ) is odd. In order

to prove (3.2.8)-(3.2.11) we note that n(µ, ϵ) in (3.2.2) is real by (3.2.3), and satisfies, by
(3.1.5), (3.1.7),

n(µ, ϵ) = 1
1 + r(µ2ϵ, µϵ2)

[
r(ϵ2)+µϵ

( [− sin(x)
cos(x)

]
,

[
sin(x)
cos(x)

] )
+r(µ2ϵ, µϵ2)

]
= r(ϵ2, µ2ϵ, µϵ2) .

Hence, in view of (3.1.4)-(3.1.7), the vectors gσk (µ, ϵ) satisfy the expansion (3.2.8)-(3.2.11).
Finally at µ = 0 the vectors g±

k (0, ϵ), k = 0, 1, are real being real linear combinations of
real vectors.

We start now the proof of Proposition 3.2.2. It is useful to decompose Bµ,ϵ in (2.2.5b)
as

Bµ,ϵ = Bϵ + B♭ + B♯ ,

where Bϵ, B♭, B♯ are the self-adjoint and reversibility preserving operators

Bϵ := B0,ϵ :=
[

1 + aϵ(x) −(1 + pϵ(x))∂x
∂x ◦ (1 + pϵ(x)) |D|

]
, (3.2.14)
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B♭ := µ

[
0 0
0 g(D)

]
, g(D) = sgn(D) + Π0 , (3.2.15)

B♯ := µ

[
0 −i pϵ

i pϵ 0

]
. (3.2.16)

Note that the operators B♭, B♯ are linear in µ. In order to prove (3.2.4)-(3.2.7) we exploit
the representation Lemma 2.2.10 and compute perturbatively the 4 × 4 matrices, associated,
as in (2.2.26), to the self-adjoint and reversibility preserving operators Bϵ, B♭ and B♯, in
the basis G.

Lemma 3.2.4. (Expansion of Bϵ) The self-adjoint and reversibility preserving matrix
Bϵ := Bϵ(µ) associated, as in (2.2.26), with the self-adjoint and reversibility preserving
operator Bϵ, defined in (3.2.14), with respect to the basis G of Vµ,ϵ in (3.2.1), expands as

Bϵ =


ϵ2 + µ2

8 + r1(ϵ3, µϵ4) i r2(µϵ3) r3(ϵ3, µϵ2) i r4(µϵ3)
−i r2(µϵ3) µ2

8 i r6(µϵ) 0
r3(ϵ3, µϵ2) −i r6(µϵ) 1 + r8(ϵ3, µϵ2) i r9(µϵ2)
−i r4(µϵ3) 0 −i r9(µϵ2) 0

+ O(µ2ϵ, µ3) .

(3.2.17)

Proof. We expand the matrix Bϵ(µ) as

Bϵ(µ) = Bϵ(0) + µ(∂µBϵ)(0) + µ2

2 (∂2
µB0)(0) + O(µ2ϵ, µ3) . (3.2.18)

The matrix Bϵ(0). The main result of this long paragraph is to prove that the matrix Bϵ(0)
has the expansion (3.2.22). The matrix Bϵ(0) is real, because the operator Bϵ is real and
the basis {g±

k (0, ϵ)}k=0,1 is real. Consequently, by (2.2.27), its matrix elements (Bϵ(0))i,j are

real whenever i+ j is even and vanish for i+ j odd. In addition g−
0 (0, ϵ) =

[
0
1

]
by (3.2.12),

and, by (3.2.14), we get Bϵg
−
0 (0, ϵ) = 0, for any ϵ. We deduce that the self-adjoint matrix

Bϵ(0) has the form

Bϵ(0) =
(
Bϵ g

σ
k (0, ϵ), gσ′

k′ (0, ϵ)
)
k,k′=0,1,σ,σ′=±

=


a 0
0 b

α 0
0 0

α 0
0 0

c 0
0 0

 , (3.2.19)
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with a, b, c, α real numbers depending on ϵ. We claim that b = 0 for any ϵ. As a first step
we prove that

either b = 0 , or b ̸= 0 and a = 0 = α . (3.2.20)

By Lemma 2.1.8 the operator L0,ϵ ≡ L0,ϵ (cfr. (2.2.1)) satisfies L 2
0,ϵ = 0 on V0,ϵ being

exactly the generalized Kernel of L0,ϵ, by Lemma 2.2.1. Thus the matrix

Lϵ(0) := J4Bϵ(0) =


0 b

−a 0
0 0

−α 0
0 0

−α 0
0 0

−c 0

 , (3.2.21)

which represents L0,ϵ : V0,ϵ → V0,ϵ, satisfies L2
ϵ (0) = 0, namely

L2
ϵ (0) =


−ab 0

0 −ab
−αb 0

0 0
0 0
0 −αb

0 0
0 0

 = 0 .

This implies (3.2.20). We now prove that the matrix Bϵ(0) defined in (3.2.19) expands as

Bϵ(0) =


a 0
0 b

α 0
0 0

α 0
0 0

c 0
0 0

 =


ϵ2 + r(ϵ3) 0 r(ϵ3) 0

0 0 0 0
r(ϵ3) 0 1 + r(ϵ3) 0

0 0 0 0

 . (3.2.22)

We expand the operator Bϵ in (3.2.14) as

Bϵ = B0+ϵB1+ϵ2B2+O(ϵ3), B0 :=
[

1 −∂x
∂x |D|

]
, Bj :=

[
aj(x) −pj(x)∂x

∂x ◦ pj(x) 0

]
, j = 1, 2 ,

(3.2.23)
where the remainder term O(ϵ3) ∈ L(Y,X) and, by (2.1.8)-(2.1.9),

a1(x) = p1(x) = −2 cos(x) , a2(x) = 2 − 2 cos(2x) , p2(x) = 3
2 − 2 cos(2x) . (3.2.24)

• Expansion of a = ϵ2 + r(ϵ3). By (3.2.8) we split the real function g+
1 (0, ϵ) as

g+
1 (0, ϵ) = f+

1 +ϵg+
11+ϵ2g+

12+O(ϵ3), f+
1 =

[
cos(x)
sin(x)

]
, g+

11 :=
[
2 cos(2x)
sin(2x)

]
, g+

12 :=
[
even0(x)
odd(x)

]
,

(3.2.25)
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where both g+
12 and O(ϵ3) are vectors in H1(T). Since B0f

+
1 = J−1L0,0f

+
1 = 0, and both

B0, B1 are self-adjoint real operators, it results

a =
(
Bϵg

+
1 (0, ϵ) , g+

1 (0, ϵ)
)

= ϵ
(
B1f

+
1 , f+

1

)
+ ϵ2

[(
B2f

+
1 , f+

1

)
+ 2

(
B1f

+
1 , g+

11

)
+
(
B0g

+
11 , g

+
11

)]
+ O(ϵ3) . (3.2.26)

By (3.2.23) one has

B1f
+
1 =

[
0

2 sin(2x)

]
, B2f

+
1 =

[ 1
2 cos(x)

3 sin(3x) − 1
2 sin(x)

]
, B0g

+
11 =

[
0

−2 sin(2x)

]
= −B1f

+
1 .

(3.2.27)
Then the ϵ2-term of a is

(
B2f

+
1 , f+

1

)
+
(
B1f

+
1 , g+

11

)
and, by (3.2.26), (3.2.27), (3.2.25), a

direct computation gives a = ϵ2 + r(ϵ3) as stated in (3.2.22).
In particular, for ϵ ̸= 0 sufficiently small, one has a ̸= 0 and the second alternative in

(3.2.20) is ruled out, implying b = 0.
• Expansion of c = 1 + r(ϵ3). By (3.2.10) we split the real-valued function g+

0 (0, ϵ) as

g+
0 (0, ϵ) = f+

0 + ϵg+
01 + ϵ2g+

02 + O(ϵ3) , f+
0 =

[
1
0

]
, g+

01 :=
[

cos(x)
− sin(x)

]
, g+

02 :=
[
even0(x)
odd(x)

]
.

(3.2.28)
Since, by (2.1.15b) and (3.2.23), B0f

+
0 = f+

0 , and both B0, B1 are self-adjoint real operators,

c =
(
Bϵg

+
0 (0, ϵ) , g+

0 (0, ϵ)
)

= 1 + ϵ
(
B1f

+
0 , f+

0

)
+ ϵ2

[(
B2f

+
0 , f+

0

)
+ 2

(
B1f

+
0 , g+

01

)
+
(
B0g

+
01 , g

+
01

)]
+ r(ϵ3) ,

(3.2.29)

where we also used ∥f+
0 ∥ = 1 and (f+

0 , g
+
01) = (f+

0 , g
+
02) = 0. By (3.2.23), (3.2.24) one has

B1f
+
0 = 2

[
− cos(x)
sin(x)

]
, B2f

+
0 =

[
2 − 2 cos(2x)

4 sin(2x)

]
, B0g

+
01 = 2

[
cos(x)

− sin(x)

]
= −B1f

+
0 .

(3.2.30)
Then the ϵ2-term of c is

(
B2f

+
0 , f+

0

)
+
(
B1f

+
0 , g+

01

)
and, by (3.2.28)-(3.2.30), we conclude

that c = 1 + r(ϵ3) as stated in (3.2.22).
• Expansion of α = O(ϵ3). By (3.2.25), (3.2.28) and since B0,B1 are self-adjoint and real
we have

α =
(
Bϵg

+
1 (0, ϵ) , g+

0 (0, ϵ)
)

=
(
B0f

+
1 , f+

0

)
+ ϵ

[(
B1f

+
1 , f+

0

)
+
(
B0f

+
1 , g+

01

)
+
(
B0g

+
11 , f

+
0

)]
+
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ϵ2
[ (

B2f
+
1 , f+

0

)
+
(
B1f

+
1 , g+

01

)
+
(
B1f

+
0 , g+

11

)
+
(
B0g

+
12 , f

+
0

)
+
(
B0g

+
11 , g

+
01

)
+
(
B0f

+
1 , g+

02

) ]
+ r(ϵ3) .

Recalling that B0f
+
1 = 0 and B0f

+
0 = f+

0 , we arrive at

α = ϵ
[(
B1f

+
1 , f+

0

)
+
(
g+

11 , f
+
0

)]
+ ϵ2

[ (
B2f

+
1 , f+

0

)
+
(
B1f

+
1 , g+

01

)
+
(
B1f

+
0 , g+

11

)
+
(
g+

12 , f
+
0

)
+
(
B0g

+
11 , g

+
01

) ]
+ r(ϵ3) = r(ϵ3) ,

using that, by (3.2.25), (3.2.27), (3.2.28) (3.2.30), all the scalar products in the formula
vanish.

We have proved the expansion (3.2.22).
Linear terms in µ. We now compute the terms of Bϵ(µ) that are linear in µ. It results

∂µBϵ(0) = X +X∗ where X :=
(
Bϵg

σ
k (0, ϵ), (∂µgσ

′
k′ )(0, ϵ)

)
k,k′=0,1,σ,σ′=± . (3.2.31)

We now prove that

X =


O(ϵ4) 0 O(ϵ2) 0
O(ϵ3) 0 O(ϵ) 0
O(ϵ4) 0 O(ϵ2) 0
O(ϵ3) 0 O(ϵ2) 0

 . (3.2.32)

The matrix Lϵ(0) in (3.2.21) where b = 0, represents the action of the operator L0,ϵ : V0,ϵ →
V0,ϵ in the basis {gσk (0, ϵ)} and then we deduce that L0,ϵg

−
1 (0, ϵ) = 0, L0,ϵg

−
0 (0, ϵ) = 0. Thus

also Bϵg
−
1 (0, ϵ) = 0, Bϵg

−
0 (0, ϵ) = 0, for every ϵ, and the second and the fourth column of

the matrix X in (3.2.32) are zero. In order to compute the other two columns we use the
expansion of the derivatives, where denoting with a dot the derivative w.r.t. µ,

ġ+
1 (0, ϵ) = i

4

[
sin(x)
cos(x)

]
+ i ϵ

[
odd(x)
even(x)

]
+ O(ϵ2) , ġ+

0 (0, ϵ) = i ϵ
[
odd(x)
even0(x)

]
+ O(ϵ2) ,

(3.2.33)

ġ−
1 (0, ϵ) = i

4

[
cos(x)

− sin(x)

]
+ i ϵ

[
even(x)
odd(x)

]
+ O(ϵ2) , ġ−

0 (0, ϵ) = ϵ
( [sin(x)

cos(x)

]
+ i

[
even0(x)
odd(x)

] )
+ O(ϵ2)

that follow by (3.2.8)-(3.2.11). In view of (3.1.3), (3.2.8)-(3.2.11), (3.2.21) and since
Bϵg

σ
k (0, ϵ) = −JLϵg

σ
k (0, ϵ), we have

Bϵg
+
1 (0, ϵ) =

(
ϵ2 + r(ϵ3)

)
Jg−

1 (0, ϵ) + r(ϵ3) Jf−
0 = ϵ2

[
cos(x)
sin(x)

]
+ r(ϵ3)

( [1
0

]
+
[
even0(x)
odd(x)

] )
,
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Bϵg
+
0 (0, ϵ) = r(ϵ3)Jg−

1 (0, ϵ) +
(
1 + r(ϵ3)

)
Jf−

0 =
[
1
0

]
+ r(ϵ3)

( [1
0

]
+
[
even0(x)
odd(x)

] )
. (3.2.34)

The other two columns of the matrix X in (3.2.31) have the expansion (3.2.32), by (3.2.33)
and (3.2.34).
Quadratic terms in µ. By denoting with a double dot the double derivative w.r.t. µ, we
have

∂2
µB0(0) =

(
B0f

σ
k , g̈

σ′
k′ (0, 0)

)
+
(
g̈σk (0, 0) , B0f

σ′
k

)
+2

(
B0ġ

σ
k (0, 0) , ġσ′

k′ (0, 0)
)

=: Y +Y ∗+2Z .
(3.2.35)

We claim that Y = 0. Indeed, its first, second and fourth column are zero, since B0fσk = 0
for fσk ∈ {f+

1 , f
−
1 , f

−
0 }. The third column is also zero by noting that B0f

+
0 = f+

0 and

g̈+
1 (0, 0) =

[
even0(x) + i odd(x)
odd(x) + i even0(x)

]
, g̈−

1 (0, 0) =
[
odd(x) + i even0(x)
even0(x) + i odd(x)

]
, g̈+

0 (0, 0) = g̈−
0 (0, 0) = 0 .

We claim that

Z =
(
B0ġ

σ
k (0, 0) , ġσ′

k′ (0, 0)
)
k,k′=0,1,
σ,σ′=±

=


1
8 0 0 0
0 1

8 0 0
0 0 0 0
0 0 0 0

 . (3.2.36)

Indeed, by (3.2.33), we have ġ+
0 (0, 0) = ġ−

0 (0, 0) = 0. Therefore the last two columns of Z,

and by self-adjointness the last two rows, are zero. By (3.2.33), ġ+
1 (0, 0) = i

4

[
sin(x)
cos(x)

]
and

ġ−
1 (0, 0) = i

4

[
cos(x)

− sin(x)

]
, so that B0ġ

+
1 (0, 0) = i

2

[
sin(x)
cos(x)

]
and B0ġ

−
1 (0, 0) = i

2

[
cos(x)

− sin(x)

]
, and

we obtain the matrix (3.2.36) computing the scalar products.
In conclusion (3.2.18), (3.2.31), (3.2.32), (3.2.35), the fact that Y = 0 and (3.2.36) imply

(3.2.17), using also the selfadjointness of Bϵ and (2.2.27).

We now consider B♭.

Lemma 3.2.5. (Expansion of B♭) The self-adjoint and reversibility-preserving matrix
B♭ associated, as in (2.2.26), to the self-adjoint and reversibility-preserving operator B♭,
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defined in (3.2.15), with respect to the basis G of Vµ,ϵ in (3.2.1), admits the expansion

B♭ =


−µ2

4 i (µ2 + r2(µϵ2)) 0 0
−i (µ2 + r2(µϵ2)) −µ2

4 i r6(µϵ) 0
0 −i r6(µϵ) 0 0
0 0 0 µ

+ O(µ2ϵ, µ3) . (3.2.37)

Proof. We have to compute the expansion of the matrix entries (B♭gσk (µ, ϵ), gσ′
k′ (µ, ϵ)). The

operator B♭ in (3.2.15) is linear in µ and by (3.2.8), (3.2.9), (3.2.13) and the identities
sgn(D) sin(kx) = −i cos(kx) and sgn(D) cos(kx) = i sin(kx) for any k ∈ N, we have

B♭g+
1 (µ, ϵ) = −iµ

[
0

cos(x)

]
− µ2

4

[
0

sin(x)

]
− iµϵ

[
0

cos(2x)

]
+ iO(µϵ2)

[
0

even0(x)

]
+ O(µ2ϵ, µ3) ,

B♭g−
1 (µ, ϵ) = iµ

[
0

sin(x)

]
− µ2

4

[
0

cos(x)

]
+ iµϵ

[
0

sin(2x)

]
+ iO(µϵ2)

[
0

odd(x)

]
+ O(µ2ϵ, µ3) .

Note that µ
[

0 0
0 Π0

]
g−

1 (µ, ϵ) = O(µ3ϵ, µ2ϵ2) thanks to the property (3.2.13) of the basis G.

In addition, by (3.2.10)-(3.2.11), we get that

B♭g+
0 (µ, ϵ) = iµϵ

[
0

cos(x)

]
+ iO(µϵ2)

[
0

even0(x)

]
+ O(µ2ϵ) , B♭g−

0 (µ, ϵ) =
[

0
µ

]
+ O(µ2ϵ) .

Taking the scalar products of the above expansions of B♭gσk (µ, ϵ) with the functions gσ′
k′ (µ, ϵ)

expanded as in (3.2.8)-(3.2.11) we deduce (3.2.37).

Remark 3.2.6. The (2, 2) entry in the matrix B♭ in (3.2.37) has no terms O(µϵk), thanks
to property (3.2.13). This property is fundamental in order to verify that the (2, 2) entry
of the matrix E in (3.2.5) starts with −µ2

8 and therefore it is negative for µ small. Such
property does not hold for the first basis F defined in (3.1.1), and this motivates the use of
the second basis G.

Finally we consider B♯.

Lemma 3.2.7. (Expansion of B♯) The self-adjoint and reversibility-preserving matrix
B♯ associated, as in (2.2.26), to the self-adjoint and reversibility-preserving operators B♯,
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defined in (3.2.16), with respect to the basis G of Vµ,ϵ in (3.2.1), admits the expansion

B♯ =


0 i r2(µϵ2) 0 i r4(µϵ)

−i r2(µϵ2) 0 −i r6(µϵ) 0
0 i r6(µϵ) 0 −i r9(µϵ2)

−i r4(µϵ) 0 i r9(µϵ2) 0

+ O(µ2ϵ) . (3.2.38)

Proof. Since B♯ = −iµpϵJ and pϵ = O(ϵ) by (2.1.8)-(2.1.9), we have the expansion(
B♯gσk (µ, ϵ), gσ′

k′ (µ, ϵ)
)

=
(
B♯gσk (0, ϵ), gσ′

k′ (0, ϵ)
)

+ O(µ2ϵ) . (3.2.39)

We claim that the matrix entries (B♯gσk (0, ϵ), gσk′(0, ϵ)), k, k′ = 0, 1 are zero. Indeed they are
real by (2.2.27), and also purely imaginary, since the operator B♯ is purely imaginary1 and
the basis {g±

k (0, ϵ)}k=0,1 is real. Hence B♯ has the form

B♯ =


0 iβ 0 i δ

−iβ 0 −i γ 0
0 i γ 0 i η

−i δ 0 −i η 0

+ O(µ2ϵ) where



(
B♯g−

1 (0, ϵ) , g+
1 (0, ϵ)

)
=: iβ ,(

B♯g−
1 (0, ϵ) , g+

0 (0, ϵ)
)

=: i γ ,(
B♯g−

0 (0, ϵ) , g+
1 (0, ϵ)

)
=: i δ ,(

B♯g−
0 (0, ϵ) , g+

0 (0, ϵ)
)

=: i η ,
(3.2.40)

and α, β, γ, δ are real numbers. As B♯ = O(µϵ) in L(Y ), we get immediately that γ = r(µϵ)
and δ = r(µϵ). Next we compute the expansion of β and η. We split the operator B♯ in
(3.2.16) as

B♯ = iµϵB♯
1 + O(µϵ2) , B

♯
1 := −p1(x)J , (3.2.41)

with p1(x) in (3.2.24) and O(µϵ2) ∈ L(Y ). By (3.2.41) and the expansion (3.2.8)-(3.2.11),

g+
1 (0, ϵ) = f+

1 + O(ϵ), g−
1 (0, ϵ) = f−

1 + O(ϵ), g+
0 (0, ϵ) = f+

0 + O(ϵ), g−
0 (0, ϵ) =

[
0
1

]
we obtain

β = µϵ
(
B
♯
1f

−
1 , f+

1

)
+ r(µϵ2) , η = µϵ

(
B
♯
1f

−
0 , f+

0

)
+ r(µϵ2) .

Computing B
♯
1f

−
1 =

[
1 + cos(2x)

sin(2x)

]
, B♯

1f
−
0 =

[
2 cos(x)

0

]
and the various scalar products with

the vectors fσk in (3.1.2), we get β = r(µϵ2), η = r(µϵ2). Using also (3.2.39) and (3.2.40),
one gets (3.2.38).

Lemmata 3.2.4, 3.2.5 and 3.2.7 imply Proposition 3.2.2.
1An operator A is purely imaginary if A = −A. A purely imaginary operator sends real functions into

purely imaginary ones.
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3.3 Block decoupling

The 4 × 4 Hamiltonian and reversible matrix Lµ,ϵ = J4Bµ,ϵ obtained in Proposition 3.2.2,
has the form

Lµ,ϵ = J4

(
E F

F ∗ G

)
=
(

J2E J2F

J2F ∗ J2G

)
, (3.3.1)

where E,G, F are the 2 × 2 matrices in (3.2.5)-(3.2.7). In particular J2E has the form

J2E =
(

−i
(µ

2 + r2(µϵ2, µ2ϵ, µ3)
)

−µ2

8 (1 + r5(ϵ, µ))
−ϵ2(1 + r′

1(ϵ, µϵ2)) + µ2

8 (1 + r′′
1(ϵ, µ)) −i

(µ
2 + r2(µϵ2, µ2ϵ, µ3)

)) (3.3.2)

and therefore possesses two eigenvalues with non-zero real part (“Benjamin-Feir" eigenvalues),
as long as its two off-diagonal entries have the same sign, see the discussion below (1.4.7).
In order to prove that also the full 4 × 4 matrix Lµ,ϵ in (3.3.1) possesses Benjamin-Feir
unstable eigenvalues, we aim to eliminate the coupling term J2F by a change of variables.
More precisely in this section we conjugate the matrix Lµ,ϵ in (3.3.1) to the Hamiltonian
and reversible block-diagonal matrix L(3)

µ,ϵ in (3.3.35),

L(3)
µ,ϵ =

(
J2E(3) 0

0 J2G(3)

)
,

where J2E(3) is a 2×2 matrix with the same form as (3.3.2) (clearly with different remainders,
but of the same order). The spectrum of the 4 × 4 matrix L(3)

µ,ϵ, which coincides with that of
Lµ,ϵ, contains the Benjamin-Feir unstable eigenvalues of the 2 × 2 matrix J2E(3) (it turns
out that the two eigenvalues of J2G(3) are purely imaginary). This will prove Theorem
1.4.1.

The block-diagonalization of Lµ,ϵ is achieved in three steps, in Lemma 3.3.1, Lemma
3.3.2, and finally Lemma 3.3.8. Motivations and goals of each step were described at the
end of Section 1.4.

3.3.1 First step of block decoupling

We write the matrices E,F,G in (3.2.4) as

E =
(

E11 iE12

−iE12 E22

)
, F =

(
F11 iF12

iF21 F22

)
, G =

(
G11 iG12

−iG12 G22

)
(3.3.3)

where the real numbers Eij , Fij , Gij , i, j = 1, 2, have the expansion given in (3.2.5)-(3.2.7).
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Lemma 3.3.1. Conjugating the Hamiltonian and reversible matrix Lµ,ϵ = J4Bµ,ϵ obtained
in Proposition 3.2.2 through the symplectic and reversibility-preserving 4 × 4-matrix

Y = Id4 +m

(
0 −P
Q 0

)
with Q :=

(
1 0
0 0

)
, P :=

(
0 0
0 1

)
, m := m(µ, ϵ) := −F11(µ, ϵ)

G11(µ, ϵ) ,

(3.3.4)

where m = r(ϵ3, µϵ2, µ2ϵ, µ3) is a real number, we obtain the Hamiltonian and reversible
matrix

L(1)
µ,ϵ := Y −1Lµ,ϵY = J4B(1)

µ,ϵ =
(

J2E(1) J2F (1)

J2[F (1)]∗ J2G(1)

)
(3.3.5)

where B(1)
µ,ϵ is a self-adjoint and reversibility-preserving 4 × 4 matrix

B(1)
µ,ϵ =

(
E(1) F (1)

[F (1)]∗ G(1)

)
, E(1) = [E(1)]∗ , G(1) = [G(1)]∗ , (3.3.6)

where the 2 × 2 matrices E(1), G(1) have the same expansion (3.2.5)-(3.2.6) of E,G and

F (1) =
(

0 i r4(µϵ, µ3)
i r6(µϵ, µ3) r7(µ2ϵ, µ3)

)
. (3.3.7)

Note that the entry F
(1)
11 is 0, the other entries of F (1) have the same size as for F in

(3.2.7).

Proof. The matrix Y is symplectic, i.e. (2.2.30) holds, and since m is real, it is reversibility
preserving, i.e. satisfies (2.2.27). By (2.2.31),

B(1)
µ,ϵ = Y ∗Bµ,ϵY =

(
E(1) F (1)

[F (1)]∗ G(1)

)
, (3.3.8)

where, by (3.3.4) and (3.3.3), the self-adjoint matrices E(1), G(1) are

E(1) := E +m(QF ∗ + FQ) +m2QGQ = E +
(

2mF11 +m2G11 −imF21

imF21 0

)
,

G(1) := G−m(PF + F ∗P ) +m2PEP = G+
(

0 imF21

−imF21 −2mF22 +m2E22

)
.

(3.3.9)
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Similarly, the off-diagonal 2 × 2 matrix F (1) is

F (1) := F +m(QG− EP ) −m2QF ∗P =
(

0 i (F12 +mG12 −mE12 +m2F21)
iF21 F22 −mE22

)
,

(3.3.10)
where we have used that the first entry of this matrix is F11 +mG11 = 0, by the definition
of m in (3.3.4). By (3.3.8)-(3.3.10) and (3.2.5)-(3.2.7) we deduce the expansion of B(1)

µ,ϵ in
(3.3.7), (3.3.6) and consequently that of (3.3.5).

3.3.2 Second step of block decoupling

We now perform a further step of block decoupling, obtaining the new Hamiltonian and
reversible matrix L(2)

µ,ϵ in (3.3.13) where the 2 × 2 matrix J2E(2) has still the Benjamin-Feir
unstable eigenvalues and the size of the new coupling matrix J2F (2) is much smaller than
J2F (1). In particular note that the entries of F (2) in (3.3.14) have size O(µ2ϵ3, µ3ϵ2, µ5ϵ, µ7)
whereas those of F (1) in (3.3.7) are O(µϵ3, µ3).

Lemma 3.3.2. (Step of block decoupling) There exists a 2 × 2 reversibility-preserving
matrix X, analytic in (µ, ϵ), of the form

X =
(
x11 ix12

ix21 x22

)
=
(
r11(µ2, µϵ) i r12(µ3, µϵ)
i r21(ϵ, µ2) r22(µ3, µϵ)

)
, x11, x12, x21, x22 ∈ R , (3.3.11)

such that, by conjugating the Hamiltonian and reversible matrix L(1)
µ,ϵ, defined in (3.3.5),

with the symplectic and reversibility-preserving 4 × 4 matrix

exp
(
S(1)

)
, where S(1) := J4

(
0 Σ

Σ∗ 0

)
, Σ := J2X , (3.3.12)

we get the Hamiltonian and reversible matrix

L(2)
µ,ϵ := exp

(
S(1)

)
L(1)
µ,ϵ exp

(
−S(1)

)
= J4B(2)

µ,ϵ =
(

J2E(2) J2F (2)

J2[F (2)]∗ J2G(2)

)
, (3.3.13)

where the 2 × 2 self-adjoint and reversibility-preserving matrices E(2), G(2) have the same
expansion of E(1), G(1), namely of E,G, given in (3.2.5)-(3.2.6), and

F (2) =

 F
(2)
11 iF (2)

12
iF (2)

21 F
(2)
22

 =
(
r3(µ2ϵ3, µ3ϵ2, µ5ϵ, µ7) i r4(µ2ϵ3, µ4ϵ2, µ5ϵ, µ7)
i r6(µ2ϵ3, µ4ϵ2, µ5ϵ, µ7) r7(µ3ϵ3, µ4ϵ2, µ6ϵ, µ8)

)
. (3.3.14)
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Remark 3.3.3. The new matrix L(2)
µ,ϵ in (3.3.13) is still analytic in (µ, ϵ), as was L(1)

µ,ϵ. This
is not obvious a priori, since the spectrum of the matrices J2E(1) and J2G(1) is shrinking
to zero as (µ, ϵ) → 0. As we shall see in Lemma 3.3.5, analyticity is proved by a careful
computation which ensures that no singularities are introduced in the new matrix during
the block decoupling. This would not have been possible if we had not performed the first
step of block decoupling in Section 3.3.1.

The rest of the section is devoted to the proof of Lemma 3.3.2. We denote for simplicity
S = S(1).

The matrix exp(S) is symplectic and reversibility preserving because the matrix S in
(3.3.12) is Hamiltonian and reversibility preserving, cfr. Lemma 2.2.13. Note that S is
reversibility preserving since X has the form (3.3.11).

We now expand in Lie series the Hamiltonian and reversible matrix L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S).
We split L(1)

µ,ϵ into its 2×2-diagonal and off-diagonal Hamiltonian and reversible matrices

L(1)
µ,ϵ = D(1) +R(1) ,

D(1) :=
(
D1 0
0 D0

)
=
(

J2E(1) 0
0 J2G(1)

)
, R(1) :=

(
0 J2F (1)

J2[F (1)]∗ 0

)
. (3.3.15)

In order to construct a transformation which eliminates the main part of the off-diagonal
part R(1), we conjugate L(1)

µ,ϵ by a symplectic matrix exp(S) generated as the flow of a
Hamiltonian matrix S with the same form of R(1). By a Lie expansion we obtain

L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S)

= D(1) +
[
S , D(1)

]
+ 1

2[S, [S,D(1)]] +R(1) + [S,R(1)] (3.3.16)

+ 1
2

∫ 1

0
(1 − τ)2 exp(τS)ad3

S(D(1)) exp(−τS) dτ +
∫ 1

0
(1 − τ) exp(τS) ad2

S(R(1)) exp(−τS) dτ

where adA(B) := [A,B] := AB − BA denotes the commutator between linear operators
A,B.

We look for a 4 × 4 matrix S as in (3.3.12) which solves the homological equation

R(1) +
[
S , D(1)

]
= 0

which, recalling (3.3.15), amounts to eliminate the off-diagonal part(
0 J2F (1) + J2ΣD0 −D1J2Σ

J2[F (1)]∗ + J2Σ∗D1 −D0J2Σ∗ 0

)
= 0 . (3.3.17)
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Note that the equation J2F (1) + J2ΣD0 − D1J2Σ = 0 implies also J2[F (1)]∗ + J2Σ∗D1 −
D0J2Σ∗ = 0 and viceversa. Thus, writing Σ = J2X, namely X = −J2Σ, the equation
(3.3.17) is equivalent to solve the “Sylvester" equation

D1X −XD0 = −J2F
(1) . (3.3.18)

Recalling (3.3.15), (3.3.11) and (3.3.3), it amounts to solve the 4 × 4 real linear system
G

(1)
12 − E

(1)
12 G

(1)
11 E

(1)
22 0

G
(1)
22 G

(1)
12 − E

(1)
12 0 −E(1)

22

E
(1)
11 0 G

(1)
12 − E

(1)
12 −G(1)

11

0 −E(1)
11 −G(1)

22 G
(1)
12 − E

(1)
12


︸ ︷︷ ︸

=:A


x11

x12

x21

x22


︸ ︷︷ ︸

=:x⃗

=


−F21

F22

−F11

F12


︸ ︷︷ ︸

=:f⃗

. (3.3.19)

Recall that, by (3.3.7), F11 = 0.
We solve this system using the following result, verified by a direct calculus.

Lemma 3.3.4. The determinant of the matrix

A :=


a b c 0
d a 0 −c
e 0 a −b
0 −e −d a

 (3.3.20)

where a, b, c, d, e are real numbers, is

detA = a4 − 2a2(bd+ ce) + (bd− ce)2 . (3.3.21)

If detA ̸= 0 then A is invertible and

A−1 = 1
detA


a
(
a2 − bd− ce

)
b
(
−a2 + bd− ce

)
−c
(
a2 + bd− ce

)
−2abc

d
(
−a2 + bd− ce

)
a
(
a2 − bd− ce

)
2acd −c

(
−a2 − bd+ ce

)
−e
(
a2 + bd− ce

)
2abe a

(
a2 − bd− ce

)
b
(
a2 − bd+ ce

)
−2ade −e

(
−a2 − bd+ ce

)
d
(
a2 − bd+ ce

)
a
(
a2 − bd− ce

)
 .

(3.3.22)

As the Sylvester matrix A in (3.3.19) has the form (3.3.20) with (cfr. (3.2.5), (3.2.6))

a = G
(1)
12 − E

(1)
12 = −µ

2
(
1 + r(ϵ2, µϵ, µ2)

)
, b = G

(1)
11 = 1 + r(ϵ3, µϵ2, µ2ϵ, µ3) ,

c = E
(1)
22 = −µ2

8
(
1 + r(ϵ, µ)

)
, d = G

(1)
22 = µ(1 + r(µϵ, µ2)) , e = E

(1)
11 = r(ϵ2, µ2) ,

(3.3.23)
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we use (3.3.21) to compute
detA = µ2(1 + r(µ, ϵ3)) . (3.3.24)

Moreover, by (3.3.22), we have

A−1 = 1
µ


µ
2 (1 + r(ϵ, µ)) 1 + r(ϵ, µ) µ2

8 (1 + r(ϵ, µ)) − µ2

8 (1 + r(ϵ, µ))
µ(1 + r(ϵ, µ)) µ

2 (1 + r(ϵ, µ)) µ3

8 (1 + r(ϵ, µ)) − µ2

8 (1 + r(ϵ, µ))
r(ϵ2, µ2) r(ϵ2, µ2) µ

2 (1 + r(ϵ, µ)) −1 + r(ϵ, µ)
µr(ϵ2, µ2) r(ϵ2, µ2) −µ(1 + r(ϵ, µ)) µ

2 (1 + r(ϵ, µ))

 . (3.3.25)

Therefore, for any µ ̸= 0, there exists a unique solution x⃗ = A−1f⃗ of the linear system
(3.3.19), namely a unique matrix X which solves the Sylvester equation (3.3.18).

Lemma 3.3.5. The matrix solution X of the Sylvester equation (3.3.18) is analytic in
(µ, ϵ) and admits an expansion as in (3.3.11).

Proof. The expansion (3.3.11) of the coefficients xij = [A−1f⃗ ]ij follows, for any µ ̸= 0 small,
by (3.3.25) and the expansions of Fij in (3.3.7). In particular each xij admits an analytic
extension at µ = 0 and the resulting matrix X still solves (3.3.18) at µ = 0 (note that, for
µ = 0, one has F (1) = 0 and the Sylvester equation does not have a unique solution).

Since the matrix S solves the homological equation
[
S , D(1)

]
+R(1) = 0 we deduce by

(3.3.16) that

L(2)
µ,ϵ = D(1) + 1

2
[
S , R(1)

]
+ 1

2

∫ 1

0
(1 − τ2) exp(τS) ad2

S(R(1)) exp(−τS)dτ . (3.3.26)

The matrix 1
2

[
S , R(1)

]
is, by (3.3.12), (3.3.15), the block-diagonal Hamiltonian and re-

versible matrix
1
2
[
S , R(1)

]
=
(1

2J2(ΣJ2[F (1)]∗ − F (1)J2Σ∗) 0
0 1

2J2(Σ∗J2F (1) − [F (1)]∗J2Σ)

)
=
(

J2Ẽ 0
0 J2G̃

)
,

(3.3.27)
where, since Σ = J2X,

Ẽ := Sym
(
J2XJ2[F (1)]∗

)
, G̃ := Sym

(
X∗F (1)) , (3.3.28)

denoting Sym(A) := 1
2(A+A∗).

Lemma 3.3.6. The self-adjoint and reversibility-preserving matrices Ẽ, G̃ in (3.3.28) have
the form

Ẽ =
(

r1(µϵ2, µ3ϵ, µ5) i r2(µ2ϵ2, µ3ϵ, µ5)
−i r2(µ2ϵ2, µ3ϵ, µ5) r5(µ2ϵ2, µ4ϵ, µ5)

)
, G̃ =

(
r8(µϵ2, µ3ϵ, µ5) i r9(µ3ϵ, µ2ϵ2, µ5)

i r9(µ3ϵ, µ2ϵ2, µ5) r10(µ4ϵ, µ2ϵ2, µ6)

)
.

(3.3.29)
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Proof. For simplicity set F = F (1). By (3.3.11), (3.3.7) and since F11 = 0 (cfr. (3.3.7)),
one has

J2XJ2F
∗ =

(
x21F12 i (x22F21 + x21F22)
ix11F12 x12F21 − x11F22

)
=
(
r(µϵ2, µ3ϵ, µ5) i r(µ2ϵ2, µ3ϵ, µ5)

i r(µ2ϵ2, µ3ϵ, µ5) r(µ2ϵ2, µ4ϵ, µ5)

)

and, adding its symmetric (cfr. (3.3.28)), the expansion of Ẽ in (3.3.29) follows. For G̃ one
has

X∗F =
(
x21F21 i (x11F12 − x21F22)
ix22F21 x22F22 + x12F12

)
=
(
r(µϵ2, µ3ϵ, µ5) i r(µ3ϵ, µ2ϵ2, µ5)

i r(µ4ϵ, µ2ϵ2, µ6) r(µ4ϵ, µ2ϵ2, µ6)

)

and the expansion of G̃ in (3.3.29) follows by symmetrizing.

We now show that the last term in (3.3.26) is very small.

Lemma 3.3.7. The 4 × 4 Hamiltonian and reversibility matrix

1
2

∫ 1

0
(1 − τ2) exp(τS) ad2

S(R(1)) exp(−τS) dτ =
(

J2Ê J2F (2)

J2[F (2)]∗ J2Ĝ

)
(3.3.30)

where the 2×2 self-adjoint and reversible matrices Ê =
(

Ê11 i Ê12

−i Ê12 Ê22

)
, Ĝ =

(
Ĝ11 i Ĝ12

−i Ĝ12 Ĝ22

)
have entries

Êij , Ĝij = µ2r(ϵ3, µϵ2, µ3ϵ, µ5) , i, j = 1, 2 , (3.3.31)

and the 2 × 2 reversible matrix F (2) admits an expansion as in (3.3.14).

Proof. Since S and R(1) are Hamiltonian and reversibility-preserving then adSR(1) =
[S,R(1)] is Hamiltonian and reversibility-preserving as well. Thus each exp(τS) ad2

S(R(1)) exp(−τS)
is Hamiltonian and reversibility-preserving, and formula (3.3.30) holds. In order to estimate
its entries we first compute ad2

S(R(1)). Using the form of S in (3.3.12) and [S,R(1)] in
(3.3.27) one gets

ad2
S(R(1)) =

(
0 J2F̃

J2F̃ ∗ 0

)
where F̃ := 2

(
ΣJ2G̃− ẼJ2Σ

)
(3.3.32)

and Ẽ, G̃ are defined in (3.3.28). In order to estimate F̃ , we write G̃ =
(

G̃11 i G̃12

−i G̃12 G̃22

)
,

Ẽ =
(

Ẽ11 i Ẽ12

−i Ẽ12 Ẽ22

)
and, by (3.3.29), (3.3.11) and Σ = J2X, we obtain

ΣJ2G̃ =
(

x21G̃12 − x22G̃11 i (x21G̃22 − x22G̃12)
i (x11G̃12 + x12G̃11) −x11G̃22 − x12G̃12

)
=
(
r(µ2ϵ3, µ3ϵ2, µ5ϵ, µ7) i r(µ2ϵ3, µ4ϵ2, µ5ϵ, µ7)
i r(µ2ϵ3, µ4ϵ2, µ5ϵ, µ7) r(µ3ϵ3, µ4ϵ2, µ6ϵ, µ8)

)
,
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ẼJ2Σ =
(

Ẽ12x21 − Ẽ11x11 −i (Ẽ11x12 + Ẽ12x22)
i (Ẽ12x11 − Ẽ22x21) −Ẽ12x12 − Ẽ22x22

)
=
(
r(µ2ϵ3, µ3ϵ2, µ5ϵ, µ7) i r(µ2ϵ3, µ4ϵ2, µ6ϵ, µ8)
i r(µ2ϵ3, µ4ϵ2, µ5ϵ, µ7) r(µ3ϵ3, µ4ϵ2, µ6ϵ, µ8)

)
.

Thus the matrix F̃ in (3.3.32) has an expansion as in (3.3.14). Then, for any τ ∈ [0, 1],
the matrix exp(τS) ad2

S(R(1)) exp(−τS) = ad2
S(R(1))(1 + O(µ, ϵ)). In particular the matrix

F (2) in (3.3.30) has the same expansion of F̃ , whereas the matrices Ê, Ĝ have entries at
least as in (3.3.31).

Proof of Lemma 3.3.2. It follows by Lemmata 3.3.6 and 3.3.7. The matrix E(2) := E(1) +
Ẽ + Ê has the same expansion of E(1) in (3.2.5). The same holds for G(2).

3.3.3 Complete block decoupling and proof of the main results

We now block-diagonalize the 4 × 4 Hamiltonian and reversible matrix L(2)
µ,ϵ in (3.3.13).

First we split it into its 2 × 2-diagonal and off-diagonal Hamiltonian and reversible matrices

L(2)
µ,ϵ = D(2) +R(2) ,

D(2) :=

D(2)
1 0
0 D

(2)
0

 =
(

J2E(2) 0
0 J2G(2)

)
, R(2) :=

(
0 J2F (2)

J2[F (2)]∗ 0

)
. (3.3.33)

Lemma 3.3.8. There exist a 4 × 4 reversibility-preserving Hamiltonian matrix S(2) :=
S(2)(µ, ϵ) of the form (3.3.12), analytic in (µ, ϵ), of size O(ϵ3, µϵ2, µ3ϵ, µ5), and a 4 ×
4 block-diagonal reversible Hamiltonian matrix P := P (µ, ϵ), analytic in (µ, ϵ), of size
µ2O(ϵ4, µ4ϵ3, µ6ϵ2, µ8ϵ, µ10), such that

L(3)
µ,ϵ := exp(µS(2)) L(2)

µ,ϵ exp(−µS(2)) = D(2) + P . (3.3.34)

In particular

L(3)
µ,ϵ =

(
J2E(3) 0

0 J2G(3)

)
(3.3.35)

where E(3) and G(3) are selfadjoint and reversibility-preserving matrices of the form (3.2.5)-
(3.2.6).

Proof. We set for brevity S = S(2). The equation (3.3.34) is equivalent to the systemΠD

(
eµS

(
D(2) +R(2))e−µS)−D(2) = P

Π∅
(
eµS

(
D(2) +R(2))e−µS) = 0 ,

(3.3.36)
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where ΠD is the projection onto the block-diagonal matrices and Π∅ onto the block-off-
diagonal ones. The second equation in (3.3.36) is equivalent, by a Lie expansion, and since
[S,R(2)] is block-diagonal, to

R(2) + µ
[
S , D(2)

]
+ µ2 Π∅

∫ 1

0
(1 − τ)eµτSad2

S

(
D(2) +R(2))e−µτSdτ︸ ︷︷ ︸

=:R(S)

= 0 . (3.3.37)

The “nonlinear homological equation" (3.3.37), i.e. [S,D(2)] = − 1
µR

(2)−µR(S), is equivalent
to solve the 4 × 4 real linear system

Ax⃗ = f⃗(µ, ϵ, x⃗) , f⃗(µ, ϵ, x⃗) = µv⃗(µ, ϵ) + µ2g⃗(µ, ϵ, x⃗) (3.3.38)

associated, as in (3.3.19), to (3.3.37). The vector µv⃗(µ, ϵ) is associated with − 1
µR

(2) with
R(2) in (3.3.33). The vector µ2g⃗(µ, ϵ, x⃗) is associated with the matrix −µR(S), which is
a Hamiltonian and reversible block-off-diagonal matrix (i.e of the form (3.3.15)), of size
R(S) = O(µ) since Π∅ad2

S(D(2)) = 0. The function g⃗(µ, ϵ, x⃗) is quadratic in x⃗. In view of
(3.3.14) one has

µ2v⃗(µ, ϵ) := (−F (2)
21 , F

(2)
22 ,−F

(2)
11 , F

(2)
12 )⊤, F

(2)
ij = µ2r(ϵ3, µϵ2, µ3ϵ, µ5) . (3.3.39)

System (3.3.38) is equivalent to x⃗ = A−1f⃗(µ, ϵ, x⃗) and, writing A−1 = 1
µB(µ, ϵ) (cfr.

(3.3.25)), to
x⃗ = B(µ, ϵ)v⃗(µ, ϵ) + µB(µ, ϵ)g⃗(µ, ϵ, x⃗) .

By the implicit function theorem this equation admits a unique small solution x⃗ = x⃗(µ, ϵ),
analytic in (µ, ϵ), with size O(ϵ3, µϵ2, µ3ϵ, µ5) as v⃗ in (3.3.39). The claimed estimate of P
follows by the the first equation of (3.3.36) and the estimate for S and of R(2) obtained by
(3.3.14).

Proof of Theorems 1.4.1. By Lemma 3.3.8 and recalling (2.2.1) the operator Lµ,ϵ :
Vµ,ϵ → Vµ,ϵ is represented by the 4 × 4 Hamiltonian and reversible matrix

iµ+ exp(µS(2))L(2)
µ,ϵ exp(−µS(2)) = iµ+

(
J2E(3) 0

0 J2G(3)

)
=:
(

U 0
0 S

)
,

where the matrices E(3) and G(3) expand as in (3.2.5)-(3.2.6). Consequently the matrices
U and S have an expansion as in (1.4.2), (1.4.3). Theorem 1.4.1 is proved. The unstable
eigenvalues in Theorem 1.2.2 arise from the block U. Its bottom-left entry vanishes for
µ2

8 (1 + r′
1(µ, ϵ)) = ϵ2(1 + r′′

1(µ, ϵ)), which, by taking square roots, amounts to solve µ =
2
√

2ϵ(1 + r(µ, ϵ)). By the implicit function theorem, it admits a unique analytic solution
µ(ϵ) = 2

√
2ϵ(1 + r(ϵ)). The proof of Theorem 1.2.2 is complete.



Chapter 4

Benjamin-Feir instability in finite
depth

In this chapter we prove the full description of the Benjamin-Feir instability phenomenon
in the case of finite depth given in Theorem 1.5.1 and its “corollary” Theorem 1.2.3.

4.1 Expansion of the Kato basis

Using the transformation operators Uµ,ϵ in (2.2.11), we construct the basis of Vµ,ϵ

F :=
{
f+

1 (µ, ϵ), f−
1 (µ, ϵ), f+

0 (µ, ϵ), f−
0 (µ, ϵ)

}
, fσk (µ, ϵ) := Uµ,ϵf

σ
k , σ = ± , k = 0, 1 ,

(4.1.1)
where

f+
1 =

 c1/2
h cos(x)

c−1/2
h sin(x)

 , f−
1 =

−c1/2
h sin(x)

c−1/2
h cos(x)

 , f+
0 =

[
1
0

]
, f−

0 =
[
0
1

]
, (4.1.2)

form a basis of V0,0 = Rg(P0,0), cfr. (2.1.15a)-(2.1.16). Note that the real valued vectors
{f±

1 , f
±
0 } form a symplectic and reversible basis for V0,0, according to Definition 2.2.6.

Then, by Lemma 2.2.2 and 2.2.1 we deduce that (cfr. Lemma 4.1 in [13]):

Lemma 4.1.1. The basis F of Vµ,ϵ defined in (4.1.1), is symplectic and reversible, i.e.
satisfies (2.2.21) and (2.2.22). Each map (µ, ϵ) 7→ fσk (µ, ϵ) is analytic as a map B(µ0) ×
B(ϵ0) → H1(T).

In the next lemma we expand the vectors fσk (µ, ϵ) in (µ, ϵ). We denote by even0(x) a

real, even, 2π-periodic function with zero space average. In the sequel O(µmϵn)
[
even(x)
odd(x)

]

91
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denotes an analytic map in (µ, ϵ) with values in H1(T,C2), whose first component is even(x)

and the second one odd(x); similar meaning for O(µmϵn)
[
odd(x)
even(x)

]
, etc...

Lemma 4.1.2. (Expansion of the basis F) For small values of (µ, ϵ) the basis F in
(4.1.1) has the expansion

f+
1 (µ, ϵ) =

 c
1
2
h cos(x)

c
− 1

2
h sin(x)

+ i µ4 γh

 c
1
2
h sin(x)

c
− 1

2
h cos(x)

+ ϵ

[
αh cos(2x)
βh sin(2x)

]
(4.1.3)

+ O(µ2)
[
even0(x) + i odd(x)
odd(x) + i even0(x)

]
+ O(ϵ2)

[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even(x)

]
+ O(µ2ϵ, µϵ2) ,

f−
1 (µ, ϵ) =

−c
1
2
h sin(x)

c
− 1

2
h cos(x)

+ i µ4 γh

 c
1
2
h cos(x)

−c
− 1

2
h sin(x)

+ ϵ

[
−αh sin(2x)
βh cos(2x)

]
(4.1.4)

+ O(µ2)
[
odd(x) + i even0(x)
even0(x) + i odd(x)

]
+ O(ϵ2)

[
odd(x)
even(x)

]
+ iµϵ

[
even(x)
odd(x)

]
+ O(µ2ϵ, µϵ2) ,

f+
0 (µ, ϵ) =

[
1
0

]
+ ϵδh

 c
1
2
h cos(x)

−c
− 1

2
h sin(x)

+ O(ϵ2)
[
even0(x)
odd(x)

]
+ iµϵ

[
odd(x)
even0(x)

]
+ O(µ2ϵ, µϵ2) ,

(4.1.5)

f−
0 (µ, ϵ) =

[
0
1

]
+ iµϵ

[
even0(x)
odd(x)

]
+ O(µ2ϵ, µϵ2) , (4.1.6)

where the remainders O() are vectors in H1(T) and

αh := 1
2c

− 11
2

h (3+c4
h) , βh := 1

4c
− 13

2
h (1+c4

h)(3−c4
h) , γh := 1+ h(1 − c4

h)
c2

h
, δh := 3 + c4

h

4c
5
2
h

.

(4.1.7)
For µ = 0 the basis {f±

k (0, ϵ), k = 0, 1} is real and

f+
1 (0, ϵ) =

[
even0(x)
odd(x)

]
, f−

1 (0, ϵ) =
[
odd(x)
even(x)

]
, f+

0 (0, ϵ) =
[
1
0

]
+
[
even0(x)
odd(x)

]
, f−

0 (0, ϵ) =
[
0
1

]
.

(4.1.8)

The rest of the section is devoted to the proof of Lemma 4.1.2.
We first Taylor-expand the transformation operators Uµ,ϵ defined in (2.2.11). We denote ∂ϵ
with a prime and ∂µ with a dot.
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Lemma 4.1.3. The first jets of Uµ,ϵP0,0 are

U0,0P0,0 = P0,0 , U ′
0,0P0,0 = P ′

0,0P0,0 , U̇0,0P0,0 = Ṗ0,0P0,0 , (4.1.9)
U̇ ′

0,0P0,0 =
(
Ṗ ′

0,0 − 1
2P0,0Ṗ

′
0,0
)
P0,0 , (4.1.10)

where

P ′
0,0 = 1

2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ , (4.1.11)

Ṗ0,0 = 1
2πi

∮
Γ
(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ , (4.1.12)

and

Ṗ ′
0,0 = − 1

2πi

∮
Γ
(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1dλ (4.1.13a)

− 1
2πi

∮
Γ
(L0,0 − λ)−1L ′

0,0(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1dλ (4.1.13b)

+ 1
2πi

∮
Γ
(L0,0 − λ)−1L̇ ′

0,0(L0,0 − λ)−1dλ . (4.1.13c)

The operators L ′
0,0 and L̇0,0 are

L ′
0,0 =

[
∂x ◦ p1(x) 0

−a1(x) p1(x) ◦ ∂x

]
, L̇0,0 =

[
0 sgn(D)m(D)
0 0

]
, (4.1.14)

where sgn(D) is defined in (2.2.4) and m(D) is the real, even operator

m(D) := tanh(h|D|) + h|D|(1 − tanh2(h|D|)) (4.1.15)

and a1(x) and p1(x) are given in Proposition 2.1.4.
The operator L̇ ′

0,0 is

L̇ ′
0,0 =

[
i p1(x) 0

0 i p1(x)

]
. (4.1.16)

Proof. By (2.2.11) and (2.2.12) one has the Taylor expansion in L(Y )

Uµ,ϵP0,0 = Pµ,ϵP0,0 + 1
2(Pµ,ϵ − P0,0)2Pµ,ϵP0,0 + O(Pµ,ϵ − P0,0)4 ,

where O(Pµ,ϵ − P0,0)4 = O(ϵ4, ϵ3µ, ϵ2µ2, ϵµ3, µ4) ∈ L(Y ). Consequently one derives (4.1.9),
(4.1.10), using also the identity Ṗ0,0P ′

0,0P0,0 + P ′
0,0Ṗ0,0P0,0 = −P0,0Ṗ ′

0,0P0,0, which follows
differentiating P 2

µ,ϵ = Pµ,ϵ. Differentiating (2.2.7) one gets (4.1.11)-(4.1.13c). Formulas
(4.1.14)-(4.1.16) follow by (2.2.5a) using also that the Fourier multiplier Π0

(
tanh(h|D|) +

h|D|
(
1 − tanh2(h|D|)

))
= 0.
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By the previous lemma we have the Taylor expansion

fσk (µ, ϵ) = fσk + ϵP ′
0,0f

σ
k + µṖ0,0f

σ
k + µϵ

(
Ṗ ′

0,0 − 1
2P0,0Ṗ

′
0,0
)
fσk + O(µ2, ϵ2) . (4.1.17)

In order to compute the vectors P ′
0,0f

σ
k and Ṗ0,0fσk using (4.1.11) and (4.1.12), it is useful

to know the action of (L0,0 − λ)−1 on the vectors

f+
k :=

 c1/2
h cos(kx)

c−1/2
h sin(kx)

 , f−
k :=

−c1/2
h sin(kx)

c−1/2
h cos(kx)

 ,
f+

−k :=

 c1/2
h cos(kx)

−c−1/2
h sin(kx)

 , f−
−k :=

 c1/2
h sin(kx)

c−1/2
h cos(kx)

 , k ∈ N .

(4.1.18)

Lemma 4.1.4. The space H1(T) decomposes as H1(T) = V0,0 ⊕ U ⊕ WH1, with WH1 =
∞⊕
k=2

Wk

H1

where the subspaces V0,0,U and Wk, defined below, are invariant under L0,0 and

the following properties hold:

(i) V0,0 = span{f+
1 , f

−
1 , f

+
0 , f

−
0 } is the generalized kernel of L0,0. For any λ ̸= 0 the

operator L0,0 − λ : V0,0 → V0,0 is invertible and

(L0,0 − λ)−1f+
1 = − 1

λ
f+

1 , (L0,0 − λ)−1f−
1 = − 1

λ
f−

1 , (L0,0 − λ)−1f−
0 = − 1

λ
f−

0 ,

(4.1.19)

(L0,0 − λ)−1f+
0 = − 1

λ
f+

0 + 1
λ2 f

−
0 . (4.1.20)

(ii) U := span
{
f+

−1, f
−
−1

}
. For any λ ̸= ±2i the operator L0,0 − λ : U → U is invertible

and
(L0,0 − λ)−1f+

−1 = 1
λ2 + 4c2

h

(
−λf+

−1 + 2chf
−
−1

)
,

(L0,0 − λ)−1f−
−1 = 1

λ2 + 4c2
h

(
−2chf

+
−1 − λf−

−1

)
.

(4.1.21)

(iii) Each subspace Wk := span
{
f+
k , f

−
k , f

+
−k, f

−
−k

}
is invariant under L0,0. Let WL2 =

∞⊕
k=2

Wk

L2

. For any |λ| < δ(h) small enough, the operator L0,0 − λ : WH1 → WL2 is

invertible and for any f ∈ WL2

(L0,0 − λ)−1f =
(
c2

h∂
2
x + |D| tanh(h|D|)

)−1
[
ch∂x −|D| tanh(h|D|)

1 ch∂x

]
f + λφf (λ, x) ,

(4.1.22)
for some analytic function λ 7→ φf (λ, ·) ∈ H1(T,C2).



4.1. EXPANSION OF THE KATO BASIS 95

Proof. By inspection the spaces V0,0, U and Wk are invariant under L0,0 and, by Fourier
series, they decompose H1(T,C2). Formulas (4.1.19)-(4.1.20) follow using that f+

1 , f
−
1 , f

−
0

are in the kernel of L0,0, and L0,0f
+
0 = −f−

0 . Formula (4.1.21) follows using that L0,0f
+
−1 =

−2chf
−
−1 and L0,0f

−
−1 = 2chf

+
−1. Let us prove item (iii). Let W := WH1 . The operator

(L0,0 − λId)
∣∣
W

is invertible for any λ /∈ {±i
√

|k| tanh (h|k|) ± i kch, k ≥ 2, k ∈ N} and

(L0,0
∣∣
W

)−1 =
(
c2

h∂
2
x + |D| tanh(h|D|)

)−1
[

ch∂x −|D| tanh(h|D|))
1 ch∂x

]
|W

.

By Neumann series, for any λ such that |λ|∥(L0,0
∣∣
W

)−1∥L(W,H1(T)) < 1 we have

(L0,0
∣∣
W

− λ)−1 = (L0,0
∣∣
W

)−1(Id − λ(L0,0
∣∣
W

)−1)−1 = (L0,0
∣∣
W

)−1 ∑
k≥0

((L0,0
∣∣
W

)−1λ)k .

Formula (4.1.22) follows with φf (λ, x) := (L0,0
∣∣
W

)−1∑
k≥1 λ

k−1[(L0,0
∣∣
W

)−1]kf .

We shall also use the following formulas obtained by (4.1.14), (4.1.15) and (4.1.2):

L ′
0,0f

+
1 =

 2c−1/2
h sin(2x)

1
2c5/2

h (1 − c−4
h )(1 + cos(2x))

 , L ′
0,0f

−
1 =

 2 c−1/2
h cos(2x)

−1
2c5/2

h (1 − c−4
h ) sin(2x)

 ,
L ′

0,0f
+
0 =

 2c−1
h sin(x)(

c2
h + c−2

h

)
cos(x)

 , L ′
0,0f

−
0 = 0 ,

L̇0,0f
+
1 = −i b(h)

[
cos(x)

0

]
, L̇0,0f

−
1 = i b(h)

[
sin(x)

0

]
, b(h) := c−1/2

h
(
c2

h + h(1 − c4
h)
)
,

L̇0,0f
+
0 = 0 , L̇0,0f

−
0 = 0 .

(4.1.23)

Remark. In deep water we have L̇0,0f
−
0 = f+

0 (cfr. formula (A.14) in [13]). In finite depth
instead L̇0,0f

−
0 = 0 because the Fourier multiplier sgn(D)m(D) in (4.1.15) vanishes on the

constants.

We finally compute P ′
0,0f

σ
k and Ṗ0,0fσk .

Lemma 4.1.5. One has

P ′
0,0f

+
1 =

 1
2c

− 11
2

h (3 + c4
h) cos(2x)

1
4c

− 13
2

h (1 + c4
h)(3 − c4

h) sin(2x)

 , P ′
0,0f

−
1 =

 −1
2c

− 11
2

h (3 + c4
h) sin(2x)

1
4c

− 13
2

h (1 + c4
h)(3 − c4

h) cos(2x)

 ,
P ′

0,0f
+
0 = 1

4c
− 5

2
h (3 + c4

h)f+
−1 , P ′

0,0f
−
0 = 0 , Ṗ0,0f

+
0 = 0 , Ṗ0,0f

−
0 = 0 ,

Ṗ0,0f
+
1 = i

4
(
1 + c−2

h h(1 − c4
h)
)
f−

−1 , Ṗ0,0f
−
1 = i

4
(
1 + c−2

h h(1 − c4
h)
)
f+

−1 .

(4.1.24)
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Proof. We first compute P ′
0,0f

+
1 . By (4.1.11), (4.1.19) and (4.1.23) we deduce

P ′
0,0f

+
1 = − 1

2πi

∮
Γ

1
λ

(L0,0 − λ)−1

 2c−1/2
h sin(2x)

1
2c5/2

h (1 − c−4
h )(1 + cos(2x))

dλ .

We note that
[

2c−1/2
h sin(2x)

1
2 c5/2

h (1 − c−4
h )(1 + cos(2x))

]
= 1

2c5/2
h (1 − c−4

h )f−
0 + W. Therefore by (4.1.19)

and (4.1.22) there is an analytic function λ 7→ φ(λ, ·) ∈ H1(T,C2) so that

P ′
0,0f

+
1 = − 1

2πi

∮
Γ

1
λ

(
− c5/2

h (1 − c−4
h )

2λ f−
0 −1 + c4

h
4c6

h

2ch
c

− 1
2

h (3+c4
h)

1+c4
h

cos(2x)

c
− 1

2
h (3 − c4

h) sin(2x)

+ λφ(λ)
)

dλ ,

where we exploited the identity tanh(2h) = 2c2
h

1+c4
h

in applying (4.1.22). Thus, by means of
residue Theorem we obtain the first identity in (4.1.24). Similarly one computes P ′

0,0f
−
1 . By

(4.1.11), (4.1.19) and (4.1.23), one has P ′
0,0f

−
0 = 0. Next we compute P ′

0,0f
+
0 . By (4.1.11),

(4.1.19), (4.1.20) and (4.1.23) we get

P ′
0,0f

+
0 = − 1

2πi

∮
Γ

1
λ

(L0,0 − λ)−1
[

2c−1
h sin(x)

(c2
h + c−2

h ) cos(x)

]
dλ .

Next we decompose
[

2c−1
h sin(x)

(c2
h + c−2

h ) cos(x)

]
= 1

2c
− 3

2
h (c4

h + 3)︸ ︷︷ ︸
=:α

f−
−1 + 1

2c
− 3

2
h (c4

h − 1)︸ ︷︷ ︸
=:β

f−
1 . By (4.1.23) and

(4.1.21) we get

P ′
0,0f

+
0 = − 1

2πi

∮
Γ

(
− 2αch

λ(λ2 + 4c2
h)f

+
−1 − α

λ2 + 4c2
h
f−

−1 + β

λ2 f
−
1

)
dλ = α

2ch
f+

−1 ,

where in the last step we used the residue theorem. We compute now Ṗ0,0f
+
1 . First we have

Ṗ0,0f
+
1 = i

2πi b(h)
∮

Γ
1
λ(L0,0 − λ)−1

[
cos(x)

0

]
dλ, where b(h) is in (4.1.23), and then, writing[

cos(x)
0

]
= 1

2c
− 1

2
h (f+

1 + f+
−1) and using (4.1.21), we conclude using again the residue theorem

Ṗ0,0f
+
1 = i

4
(
1 + h(1 − c4

h)c−2
h
)
f−

−1. The computation of Ṗ0,0f
−
1 is analogous. Finally, in view

of (4.1.23), we have

Ṗ0,0f
+
0 = 1

2πi

∮
Γ
(L0,0 − λ)−1L̇0,0

( 1
λ2 f

−
0 − 1

λ
f+

0
)
dλ = 0 ,

Ṗ0,0f
−
0 = − 1

2πi

∮
Γ

1
λ

(L0,0 − λ)−1L̇0,0f
−
0 dλ = 0 .

In conclusion all the formulas in (4.1.24) are proved.
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So far we have obtained the linear terms of the expansions (4.1.3), (4.1.4), (4.1.5),
(4.1.6). We now provide further information about the expansion of the basis at µ = 0. The
proof of the next lemma follows as Lemma 3.1.6.

Lemma 4.1.6. The basis {fσk (0, ϵ), k = 0, 1, σ = ±} is real. For any ϵ f−
0 (0, ϵ) ≡ f−

0 . The
property (4.1.8) holds.

We now provide further information about the expansion of the basis at ϵ = 0. The follow-
ing lemma follows as Lemma 3.1.7. The key observation is that the operator Lµ,0

∣∣
Z
, where

Z is the invariant subspace Z := span{f+
0 , f

−
0 }, has the two eigenvalues ±i

√
µ tanh(hµ),

which, for small µ, lie inside the loop Γ around 0 in (2.2.7).

Lemma 4.1.7. For any small µ, we have f+
0 (µ, 0) ≡ f+

0 and f−
0 (µ, 0) ≡ f−

0 . Moreover the
vectors f+

1 (µ, 0) and f−
1 (µ, 0) have both components with zero space average.

We finally consider the µϵ term in the expansion (4.1.17).

Lemma 4.1.8. The derivatives (∂µ∂ϵfσk )(0, 0) =
(
Ṗ ′

0,0 − 1
2P0,0Ṗ ′

0,0
)
fσk satisfy

(∂µ∂ϵf+
1 )(0, 0) = i

[
odd(x)
even(x)

]
, (∂µ∂ϵf−

1 )(0, 0)− = i
[
even(x)
odd(x)

]
,

(∂µ∂ϵf+
0 )(0, 0) = i

[
odd(x)
even0(x)

]
, (∂µ∂ϵf−

0 )(0, 0) = i
[
even0(x)
odd(x)

]
.

(4.1.25)

Proof. We prove that Ṗ ′
0,0 = (4.1.13a) + (4.1.13b) + (4.1.13c) is purely imaginary. This

follows since the operators in (4.1.13a), (4.1.13b) and (4.1.13c) are purely imaginary because
L̇0,0 is purely imaginary, L ′

0,0 in (4.1.14) is real and L̇ ′
0,0 in (4.1.16) is purely imaginary

(argue as in Lemma 2.2.2-(iii)). Then, applied to the real vectors fσk , k = 0, 1, σ = ±, give
purely imaginary vectors.

The property (2.2.23) implies that (∂µ∂ϵfσk )(0, 0) have the claimed parity structure in
(4.1.25). We shall now prove that (∂µ∂ϵf±

0 )(0, 0) have zero average. We have, by (4.1.20)
and (4.1.23)

(4.1.13a)f+
0 := 1

2πi

∮
Γ
(L0,0 − λ)−1L̇0,0(L0,0 − λ)−1 1

λ

 2c−1
h sin(x)(

c2
h + c−2

h

)
cos(x)

 dλ

and since the operators (L0,0 − λ)−1 and L̇0,0 are both Fourier multipliers, hence they
preserve the absence of average of the vectors, then (4.1.13a)f+

0 has zero average. Next
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(4.1.13b)f+
0 = 0 since L̇0,0f

±
0 = 0, cfr. (2.2.4). Finally, by (4.1.20) and (4.1.16) where

p1(x) = p
[1]
1 cos(x),

(4.1.13c)f+
0 = i p[1]

1
2πi

∮
Γ
(L0,0 − λ)−1

(
− 1
λ

[
cos(x)

0

]
+ 1
λ2

[
0

cos(x)

] )
dλ

is a vector with zero average. We conclude that Ṗ ′
0,0f

+
0 is an imaginary vector with zero

average, as well as (∂µ∂ϵf+
0 )(0, 0) since P0,0 sends zero average functions in zero average

functions. Finally, by (2.2.23), (∂µ∂ϵf+
0 )(0, 0) has the claimed structure in (4.1.25).

We finally consider (∂µ∂ϵf−
0 )(0, 0). By (4.1.19) and L ′

0,0f
−
0 = 0 (cfr. (4.1.23)), it results

(4.1.13a)f−
0 = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
L̇0,0(L0,0 − λ)−1L ′

0,0f
−
0 dλ = 0 .

Next by (4.1.19) and L̇0,0f
−
0 = 0 we get (4.1.13b)f−

0 = 0. Finally by (4.1.19) and (4.1.16)

(4.1.13c)f−
0 = − 1

2πi

∮
Γ
(L0,0 − λ)−1 1

λ

[
0

i p[1]
1 cos(x)

]
dλ

has zero average since (L0,0 − λ)−1 is a Fourier multiplier (and thus preserves average
absence).

This completes the proof of Lemma 4.1.2.

4.2 Matrix representation of Lµ,ϵ on Vµ,ϵ

The main result of this section is the following

Proposition 4.2.1. The matrix that represents the Hamiltonian and reversible operator
Lµ,ϵ : Vµ,ϵ → Vµ,ϵ in the symplectic and reversible basis F of Vµ,ϵ defined in (4.1.1), is a
Hamiltonian matrix Lµ,ϵ = J4Bµ,ϵ, where Bµ,ϵ is a self-adjoint and reversibility preserving
(i.e. satisfying (2.2.27)) 4 × 4 matrix of the form

Bµ,ϵ =
(
E F

F ∗ G

)
, E = E∗ , G = G∗ , (4.2.1)

where E,F,G are the 2 × 2 matrices

E :=
(

e11ϵ2(1 + r′
1(ϵ, µϵ)) − e22

µ2

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ2

8 (1 + r5(ϵ, µ))

)
(4.2.2)
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G :=
(

1 + r8(ϵ2, µ2ϵ) −i r9(µϵ2, µ2ϵ)
i r9(µϵ2, µ2ϵ) µ tanh(hµ) + r10(µ2ϵ)

)
(4.2.3)

F :=

f11ϵ+ r3(ϵ3, µϵ2, µ2ϵ) iµϵc− 1
2

h + i r4(µϵ2, µ2ϵ)
i r6(µϵ) r7(µ2ϵ)

 , (4.2.4)

with e12 and e22 given in (1.5.2) and (1.5.4) respectively, and

e11 := 9c8
h − 10c4

h + 9
8c7

h
= 9(1 − c4

h)2 + 8c4
h

8c7
h

> 0 , f11 := 1
2c

− 3
2

h (1 − c4
h) . (4.2.5)

The rest of this section is devoted to the proof of Proposition 4.2.1.
We decompose Bµ,ϵ in (2.2.5a) as

Bµ,ϵ = Bϵ + B♭ + B♯ ,

where Bϵ, B♭, B♯ are the self-adjoint and reversibility preserving operators

Bϵ := B0,ϵ :=
[

1 + aϵ(x) −(ch + pϵ(x))∂x
∂x ◦ (ch + pϵ(x)) |D| tanh((h + fϵ)|D|)

]
, (4.2.6)

B♭ :=
[
0 0
0 |D + µ| tanh((h + fϵ)|D + µ|) − |D| tanh((h + fϵ)|D|)

]
, (4.2.7)

B♯ := µ

[
0 −i pϵ

i pϵ 0

]
, (4.2.8)

where the operator B♭ is analytic in µ.
In order to prove (4.2.1)-(4.2.4) we exploit the representation Lemma 2.2.10 and compute

perturbatively the 4×4 matrices, associated, as in (2.2.26), to the self-adjoint and reversibility
preserving operators Bϵ, B♭ and B♯, in the basis F.

Lemma 4.2.2. (Expansion of Bϵ) The self-adjoint and reversibility preserving matrix
Bϵ := Bϵ(µ) associated, as in (2.2.26), with the self-adjoint and reversibility preserving
operator Bϵ defined in (4.2.6), with respect to the basis F of Vµ,ϵ in (4.1.1), expands as

Bϵ =


e11ϵ2 + ζhµ

2 + r1(ϵ3, µϵ3) i r2(µϵ2) f11ϵ+ r3(ϵ3, µϵ2) i r4(µϵ3)
−i r2(µϵ2) ζhµ

2 i r6(µϵ) 0
f11ϵ+ r3(ϵ3, µϵ2) −i r6(µϵ) 1 + r8(ϵ2, µϵ2) i r9(µϵ2)

−i r4(µϵ3) 0 −i r9(µϵ2) 0

+ O(µ2ϵ, µ3) ,

(4.2.9)
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where e11, f11 are defined respectively in (4.2.5), and

ζh := 1
8chγ

2
h . (4.2.10)

Proof. We expand the matrix Bϵ(µ) as

Bϵ(µ) = Bϵ(0) + µ(∂µBϵ)(0) + µ2

2 (∂2
µB0)(0) + O(µ2ϵ, µ3) . (4.2.11)

The matrix Bϵ(0). The main result of this long paragraph is to prove that the matrix Bϵ(0)
has the expansion (4.2.15). The matrix Bϵ(0) is real, because the operator Bϵ is real and
the basis {f±

k (0, ϵ)}k=0,1 is real. Consequently, by (2.2.27), its matrix elements (Bϵ(0))i,j
are real whenever i + j is even and vanish for i + j odd. In addition f−

0 (0, ϵ) =
[

0
1

]
by

(4.1.8), and, by (4.2.6), we get Bϵf
−
0 (0, ϵ) = 0, for any ϵ. We deduce that the self-adjoint

matrix Bϵ(0) has the form

Bϵ(0) =
(
Bϵ f

σ
k (0, ϵ), fσ′

k′ (0, ϵ)
)
k,k′=0,1,σ,σ′=±

=


E11(0, ϵ) 0 F11(0, ϵ) 0

0 E22(0, ϵ) 0 0
F11(0, ϵ) 0 G11(0, ϵ) 0

0 0 0 0

 ,

(4.2.12)
where E11(0, ϵ), E22(0, ϵ), G11(0, ϵ), F11(0, ϵ) are real. We claim that E22(0, ϵ) = 0 for any
ϵ. As a first step, as in the infinite-depth case, we prove that

either E22(0, ϵ) ≡ 0 , or E11(0, ϵ) ≡ 0 ≡ F11(0, ϵ) . (4.2.13)

Indeed by Lemma (2.1.8) we have L 2
0,ϵ = 0 on V0,ϵ. Thus the matrix

Lϵ(0) := J4Bϵ(0) =


0 E22(0, ϵ) 0 0

−E11(0, ϵ) 0 −F11(0, ϵ) 0
0 0 0 0

−F11(0, ϵ) 0 −G11(0, ϵ) 0

 , (4.2.14)

which represents L0,ϵ : V0,ϵ → V0,ϵ, satisfies L2
ϵ (0) = 0, namely

L2
ϵ (0) = −


(E11E22)(0, ϵ) 0 (F11E22)(0, ϵ) 0

0 (E11E22)(0, ϵ) 0 0
0 0 0 0
0 (F11E22)(0, ϵ) 0 0

 = 0
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which implies (4.2.13). We now prove that the matrix Bϵ(0) defined in (4.2.12) expands as

Bϵ(0) =


e11ϵ2 + r(ϵ3) 0 f11ϵ+ r(ϵ3) 0

0 0 0 0
f11ϵ+ r(ϵ3) 0 1 + r(ϵ2) 0

0 0 0 0

 (4.2.15)

where e11 and f11 are in (4.2.21) and (4.2.24). We expand the operator Bϵ in (4.2.6) as

Bϵ = B0 + ϵB1 + ϵ2B2 + O(ϵ3), B0 :=
[

1 −ch∂x

ch∂x |D| tanh(h|D|)

]
,

B1 :=
[

a1(x) −p1(x)∂x
∂x ◦ p1(x) 0

]
, B2 :=

[
a2(x) −p2(x)∂x

∂x ◦ p2(x) −f2∂2
x

(
1 − tanh2(h|D|)

)] ,
(4.2.16)

where the remainder term O(ϵ3) ∈ L(Y,X), the functions a1, p1, a2, p2 are given in (2.1.4)
and, in view of (A.4.8), f2 := 1

4c−2
h (c4

h − 3).
• Expansion of E11(0, ϵ) = e11ϵ2 + r(ϵ3). By (4.1.3) we split the real function f+

1 (0, ϵ) as

f+
1 (0, ϵ) = f+

1 + ϵf+
11 + ϵ2f+

12 + O(ϵ3) ,

f+
1 =

 c
1
2
h cos(x)

c
− 1

2
h sin(x)

 , f+
11 :=

[
αh cos(2x)
βh sin(2x)

]
, f+

12 :=
[
even0(x)
odd(x)

]
,

(4.2.17)

where both f+
12 and O(ϵ3) are vectors in H1(T). Since B0f

+
1 = J−1L0,0f

+
1 = 0, and both

B0, B1 are self-adjoint real operators, it results

E11(0, ϵ) =
(
Bϵf

+
1 (0, ϵ) , f+

1 (0, ϵ)
)

= ϵ
(
B1f

+
1 , f+

1

)
+ ϵ2

[(
B2f

+
1 , f+

1

)
+ 2

(
B1f

+
1 , f+

11

)
+
(
B0f

+
11 , f

+
11

)]
+ O(ϵ3) .

(4.2.18)

By (4.2.16) one has

B1f
+
1 =

[
A1(1 + cos(2x))
B1 sin(2x)

]
, B2f

+
1 =

[
A2 cos(x) +A3 cos(3x)
B2 sin(x) +B3 sin(3x)

]
, B0f

+
11 =

[
A4 cos(2x)
B4 sin(2x)

]
,

(4.2.19)
with

A1 := 1
2(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ), B1 := −p[1]
1 c

1
2
h ,

A2 := c
1
2
h a

[0]
2 − c

− 1
2

h p
[0]
2 + 1

2c
1
2
h a

[2]
2 − 1

2c
− 1

2
h p

[2]
2 , A4 := αh − 2βhch ,

B2 := −c
1
2
h p

[0]
2 − 1

2c
1
2
h p

[2]
2 + c

− 1
2

h f2(1 − c4
h) , B4 := −2αhch + 4c2

h
1 + c4

h
βh .

(4.2.20)
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By (4.2.19) and (4.2.17), we deduce

E11(0, ϵ) = e11ϵ
2 + r(ϵ3) , e11 := 1

2
(
A2c

1
2
h +B2c

− 1
2

h + 2αhA1 + 2B1βh + αhA4 + βhB4
)
.

(4.2.21)
By (4.2.21), (4.2.20), (4.1.7) and (A.4.22)-(A.4.23) we obtain (4.2.5). Since e11 > 0 the
second alternative in (4.2.13) is ruled out, implying E22(0, ϵ) ≡ 0.
• Expansion of G11(0, ϵ) = 1 + r(ϵ2). By (4.1.5) we split the real-valued function f+

0 (0, ϵ)
as

f+
0 (0, ϵ) = f+

0 +ϵf+
01+ϵ2f+

02+O(ϵ3) , f+
0 =

[
1
0

]
, f+

01 := δh

 c
1
2
h cos(x)

−c
− 1

2
h sin(x)

 , f+
02 :=

[
even0(x)
odd(x)

]
.

(4.2.22)
Since, by (2.1.15a) and (4.2.16), B0f

+
0 = f+

0 , using that B0, B1 are self-adjoint real
operators, and ∥f+

0 ∥ = 1, (f+
0 , f

+
01), we have G11(0, ϵ) =

(
Bϵf

+
0 (0, ϵ) , f+

0 (0, ϵ)
)

= 1 +
ϵ
(
B1f

+
0 , f+

0

)
+ r(ϵ2). By (4.2.16) and (A.4.22)-(A.4.23) one has

B1f
+
0 =

 a[1]
1 cos(x)

−p[1]
1 sin(x)

 (4.2.23)

and, by (4.2.22), we deduce G11(0, ϵ) = 1 + r(ϵ2).
• Expansion of F11(0, ϵ) = f11ϵ + r(ϵ3). By (4.2.16), (4.2.17), (4.2.22), using that B0,B1

are self-adjoint and real, and B0f
+
1 = 0, B0f

+
0 = f+

0 , we obtain

F11(0, ϵ) = ϵ
[(
B1f

+
1 , f+

0

)
+
(
f+

11 , f
+
0

)]
+ ϵ2

[ (
B2f

+
1 , f+

0

)
+
(
B1f

+
1 , f+

01

)
+
(
B1f

+
0 , f+

11

)
+
(
f+

12 , f
+
0

)
+
(
B0f

+
11 , f

+
01

) ]
+ r(ϵ3) .

By (4.2.17), (4.2.19), (4.2.20), (4.2.22), (4.2.23), all these scalar products vanish but the
first one, and then

F11(0, ϵ) = f11ϵ+ r(ϵ3) , f11 := A1 = 1
2(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ) , (4.2.24)

which, by substituting the expressions of a[1]
1 , p[1]

1 in Proposition 2.1.4, gives the expression
in (4.2.5).

The expansion (4.2.15) in proved.
Linear terms in µ. We now compute the terms of Bϵ(µ) that are linear in µ. It results

∂µBϵ(0) = X +X∗ where X :=
(
Bϵf

σ
k (0, ϵ), (∂µfσ

′
k′ )(0, ϵ)

)
k,k′=0,1,σ,σ′=± . (4.2.25)
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We now prove that

X =


O(ϵ3) 0 O(ϵ2) 0
O(ϵ2) 0 O(ϵ) 0
O(ϵ3) 0 O(ϵ2) 0
O(ϵ3) 0 O(ϵ2) 0

 . (4.2.26)

The matrix Lϵ(0) in (4.2.14) where E22(0, ϵ) = 0, represents the action of the operator
L0,ϵ : V0,ϵ → V0,ϵ in the basis {fσk (0, ϵ)} and then we deduce that L0,ϵf

−
1 (0, ϵ) = 0,

L0,ϵf
−
0 (0, ϵ) = 0. Thus also Bϵf

−
1 (0, ϵ) = 0, Bϵf

−
0 (0, ϵ) = 0, and the second and the fourth

column of the matrix X in (4.2.26) are zero. To compute the other two columns we use
the expansion of the derivatives. In view of (4.1.3)-(4.1.6) and by denoting with a dot the
derivative w.r.t. µ, one has

ḟ+
1 (0, ϵ) = i

4γh

 c
1
2
h sin(x)

c
− 1

2
h cos(x)

+ i ϵ
[
odd(x)
even(x)

]
+ O(ϵ2) , ḟ+

0 (0, ϵ) = i ϵ
[
odd(x)
even0(x)

]
+ O(ϵ2) ,

ḟ−
1 (0, ϵ) = i

4γh

 c
1
2
h cos(x)

−c
− 1

2
h sin(x)

+ i ϵ
[
even(x)
odd(x)

]
+ O(ϵ2) , ḟ−

0 (0, ϵ) = i ϵ
[
even0(x)
odd(x)

]
+ O(ϵ2) .

(4.2.27)
In view of (1.2.4), (4.1.3)-(4.1.6), (4.2.14), (4.1.8), (4.2.21),(4.2.24), and since Bϵf

σ
k (0, ϵ) =

−JLϵf
σ
k (0, ϵ), we have

Bϵf
+
1 (0, ϵ) = E11(0, ϵ) Jf−

1 (0, ϵ) + F11(0, ϵ) Jf−
0 = ϵ

[
f11

0

]
+ ϵ2e11

c
− 1

2
h cos(x)
c

1
2
h sin(x)

+ O(ϵ3) ,

Bϵf
+
0 (0, ϵ) = F11(0, ϵ) Jf−

1 (0, ϵ) +G11(0, ϵ) Jf−
0 =

[
1
0

]
+ ϵf11

c
− 1

2
h cos(2x)
c

1
2
h sin(2x)

+ O(ϵ2) .

(4.2.28)
We deduce (4.2.26) by (4.2.27) and (4.2.28).
Quadratic terms in µ. By denoting with a double dot the double derivative w.r.t. µ, we
have

∂2
µB0(0) =

(
B0f

σ
k , f̈

σ′
k′ (0, 0)

)
+
(
f̈σk (0, 0) , B0f

σ′
k

)
+2

(
B0ḟ

σ
k (0, 0) , ḟσ′

k′ (0, 0)
)

=: Y+Y ∗+2Z .
(4.2.29)

We claim that Y = 0. Indeed, its first, second and fourth column are zero, since B0fσk = 0
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for fσk ∈ {f+
1 , f

−
1 , f

−
0 }. The third column is also zero by noting that B0f

+
0 = f+

0 and

f̈+
1 (0, 0) =

[
even0(x) + i odd(x)
odd(x) + i even0(x)

]
, f̈−

1 (0, 0) =
[
odd(x) + i even0(x)
even0(x) + i odd(x)

]
, f̈+

0 (0, 0) = f̈−
0 (0, 0) = 0 .

We claim that

Z =
(
B0ḟ

σ
k (0, 0) , ḟσ′

k′ (0, 0)
)
k,k′=0,1,
σ,σ′=±

=


ζh 0 0 0
0 ζh 0 0
0 0 0 0
0 0 0 0

 , (4.2.30)

with ζh as in (4.2.10). Indeed, by (4.2.27), we have ḟ+
0 (0, 0) = ḟ−

0 (0, 0) = 0. Therefore the
last two columns of Z, and by self-adjointness the last two rows, are zero. By (4.2.16),
(4.2.27) we obtain the matrix (4.2.30) with

ζh :=
(
B0ḟ

+
1 (0, 0) , ḟ+

1 (0, 0)
)

=
(
B0ḟ

−
1 (0, 0) , ḟ−

1 (0, 0)
)

= 1
8chγ

2
h .

In conclusion (4.2.11), (4.2.25), (4.2.26), (4.2.29), the fact that Y = 0 and (4.2.30) imply
(4.2.9), using also the selfadjointness of Bϵ and (2.2.27).

We now consider B♭.

Lemma 4.2.3. (Expansion of B♭) The self-adjoint and reversibility-preserving matrix
B♭ associated, as in (2.2.26), to the self-adjoint and reversibility-preserving operator B♭,
defined in (4.2.7), with respect to the basis F of Vµ,ϵ in (4.1.1), admits the expansion

B♭ =


−µ2

4 bh i (µ2 e12 + r2(µϵ2)) 0 0
−i (µ2 e12 + r2(µϵ2)) −µ2

4 bh i r6(µϵ) 0
0 −i r6(µϵ) 0 0
0 0 0 µ tanh(hµ)

+ O(µ2ϵ, µ3) (4.2.31)

where e12 is defined in (1.5.2) and

bh := γhch + c−1
h h(1 − c4

h)(γh − 2(1 − c2
hh)) . (4.2.32)

Proof. We have to compute the expansion of the matrix entries (B♭fσk (µ, ϵ), fσ′
k′ (µ, ϵ)). First,

by (4.1.6), (4.2.7) and since fϵ = O(ϵ2) (cfr. (2.1.8c)) we have

B♭f−
0 (µ, ϵ) =

[
0

µ tanh
(
hµ
)]+

[
0

O(µ2ϵ)

]
.
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Hence, by (4.1.3)-(4.1.6), the entries of the last column (and row) of B♭ are(
B♭f−

0 (µ, ϵ), f+
1 (µ, ϵ)

)
= O(µ2ϵ) ,

(
B♭f−

0 (µ, ϵ), f−
1 (µ, ϵ)

)
= µ tanh(hµ)O(ϵ2) + O(µ2ϵ2) = O(µ2ϵ2)(

B♭f−
0 (µ, ϵ), f+

0 (µ, ϵ)
)

= O(µ2ϵ, µ3) ,
(
B♭f−

0 (µ, ϵ), f−
0 (µ, ϵ)

)
= µ tanh(hµ) + O(µ2ϵ) ,

in agreement with (4.2.31).
In order to compute the other matrix entries we expand B♭ in (4.2.7) at µ = 0, obtaining

B♭ = µB♭
1(0) + µR♭(ϵ) + µ2B♭

2 + O(µ2ϵ, µ3) , where

B♭
1(0) :=

[
hD
(
1 − tanh2(h|D|)

)
+ sgn(D) tanh(h|D|)

]
ΠII , ΠII :=

[
0 0
0 Id

]
,

R♭(ϵ) := O(ϵ2)ΠII , B♭
2 :=

[
h
(
1 − tanh2(h|D|)

)(
1 − h tanh(h|D|)|D|

)]
ΠII .

(4.2.33)

We note that

µ
(
R♭(ϵ)fσk (µ, ϵ), fσ′

k′ (µ, ϵ)
)

= µ
(
R♭fσk (0, ϵ), fσ′

k′ (0, ϵ)
)

+ O(µ2ϵ2) =

O(µ2ϵ2) if σ = σ′ ,

O(µϵ2) if σ ̸= σ′ .

(4.2.34)
Indeed, if σ = σ′,

(
R♭fσk (0, ϵ), fσ′

k′ (0, ϵ)
)

is real by (2.2.27), but purely imaginary too, since
the operator R♭ is purely imaginary (as B♭ is) and the basis {f±

k (0, ϵ)}k=0,1 is real. The
terms (4.2.34) contribute to r2(µϵ2) and r6(ϵµ) in (4.2.31).

Next we compute the other scalar products. By (4.1.3), (4.2.33), and the identities
sgn(D) sin(kx) = −i cos(kx) and sgn(D) cos(kx) = i sin(kx) for any k ∈ N, we have

µB♭
1(0)f+

1 (µ, ϵ) = −iµ♭1

[
0

cos(x)

]
−µ2

4 γh♭1

[
0

sin(x)

]
−iµϵ♭2

[
0

cos(2x)

]
+iO(µϵ2)

[
0

even0(x)

]
+O(µ2ϵ, µ3)

where

♭1 := c
− 1

2
h (c2

h + (1 − c4
h)h)

♭2 := βh

(
tanh(2h) + 2h(1 − tanh2(2h))

)
= βh

( 2c2
h

1 + c4
h

+ 2h
(
1 − 4c4

h
(1 + c4

h)2
))
.

(4.2.35)

Similarly µ2B♭
2f

+
1 (µ, ϵ) = µ2♭3

[
0

sin(x)

]
+ O(µ2ϵ, µ3), where

♭3 := h
(
1 − tanh2(h)

)(
1 − tanh(h)h

)
c

− 1
2

h = h(1 − c4
h)(1 − c2

hh)c− 1
2

h . (4.2.36)

Analogously, using (4.1.4),

µB♭
1(0)f−

1 (µ, ϵ) = iµ♭1

[
0

sin(x)

]
−µ2

4 γh♭1

[
0

cos(x)

]
+iµϵ♭3

[
0

sin(2x)

]
+iO(µϵ2)

[
0

odd(x)

]
+O(µ2ϵ, µ3) ,
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and µ2B♭
2f

−
1 (µ, ϵ) = µ2♭3

[
0

cos(x)

]
+ O(µ2ϵ, µ3), with ♭j , j = 1, 2, 3, defined in (4.2.35) and

(4.2.36). In addition, by (4.1.5)-(4.1.6), we get that

µB♭
1(0)f+

0 (µ, ϵ) = iµϵδh♭1

[
0

cos(x)

]
+iO(µϵ2)

[
0

even0(x)

]
+O(µ2ϵ) , µ2B♭

2f
+
0 (µ, ϵ) =

[
0

O(µ2ϵ)

]

with ♭1 in (4.2.35). By taking the scalar products of the above expansions of B♭fσk (µ, ϵ)
with the functions fσ′

k′ (µ, ϵ) expanded as in (4.1.3)-(4.1.6) we obtain that (recall that the
scalar product is conjugate-linear in the second component)

(
µB♭

1(0)f+
1 (µ, ϵ), f+

1 (µ, ϵ)
)
,
(
µB♭

1(0)f−
1 (µ, ϵ), f−

1 (µ, ϵ)
)

= −µ2

4 γh♭1c
− 1

2
h + O(µ2ϵ, µ3)

(
µ2B♭

2f
+
1 (µ, ϵ), f+

1 (µ, ϵ)
)
,
(
µ2B♭

2f
−
1 (µ, ϵ), f−

1 (µ, ϵ)
)

= µ2

2 ♭3c
− 1

2
h + O(µ2ϵ, µ3)

and, recalling (4.2.33), (4.2.35), (4.2.36), we deduce the expansion of the entries (1, 1) and
(2, 2) of the matrix B♭ in (4.2.31) with bh = c

− 1
2

h (γh♭1 − 2♭3) in (4.2.32). Moreover(
µB♭

1(0)f−
1 (µ, ϵ), f+

1 (µ, ϵ)
)

= i µ2 e12+O(µϵ2, µ2ϵ, µ3) ,
(
µ2B♭

2f
−
1 (µ, ϵ), f+

1 (µ, ϵ)
)

= O(µ3, µ2ϵ) ,

where e12 := ♭1c
− 1

2
h is equal to (1.5.2). Finally we obtain(

µ(B♭
1(0) + µB♭

2)f−
1 (µ, ϵ), f+

0 (µ, ϵ)
)

= O(µϵ, µ3)
(µ(B♭

1(0) + µB♭
2)f+

1 (µ, ϵ), f+
0 (µ, ϵ)) = O(µ3, µ2ϵ) ,(

µ(B♭
1(0) + µB♭

2)f+
0 (µ, ϵ), f+

0 (µ, ϵ)
)

= O(µ2ϵ2) .

The expansion (4.2.31) is proved.

Finally we consider B♯.

Lemma 4.2.4. (Expansion of B♯) The self-adjoint and reversibility-preserving matrix
B♯ associated, as in (2.2.26), to the self-adjoint and reversibility-preserving operators B♯,
defined in (4.2.8), with respect to the basis F of Vµ,ϵ in (4.1.1), admits the expansion

B♯ =


0 i r2(µϵ2) 0 iµϵc− 1

2
h + i r4(µϵ2)

−i r2(µϵ2) 0 −i r6(µϵ) 0
0 i r6(µϵ) 0 −i r9(µϵ2)

−iµϵc− 1
2

h − i r4(µϵ2) 0 i r9(µϵ2) 0

+ O(µ2ϵ) .

(4.2.37)
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Proof. Since B♯ = −iµpϵJ and pϵ = O(ϵ) by (2.1.8a), we have the expansion(
B♯fσk (µ, ϵ), fσ′

k′ (µ, ϵ)
)

=
(
B♯fσk (0, ϵ), fσ′

k′ (0, ϵ)
)

+ O(µ2ϵ) . (4.2.38)

The matrix entries (B♯fσk (0, ϵ), fσk′(0, ϵ)), k, k′ = 0, 1, σ = {±} are zero, because they
are simultaneously real by (2.2.27), and purely imaginary, being the operator B♯ purely
imaginary and the basis {f±

k (0, ϵ)}k=0,1 real. Hence B♯ has the form

B♯ =


0 iβ 0 i δ

−iβ 0 −i γ 0
0 i γ 0 i η

−i δ 0 −i η 0

+ O(µ2ϵ) where



(
B♯f−

1 (0, ϵ) , f+
1 (0, ϵ)

)
=: iβ ,(

B♯f−
1 (0, ϵ) , f+

0 (0, ϵ)
)

=: i γ ,(
B♯f−

0 (0, ϵ) , f+
1 (0, ϵ)

)
=: i δ ,(

B♯f−
0 (0, ϵ) , f+

0 (0, ϵ)
)

=: i η ,
(4.2.39)

and α, β, γ, δ are real numbers. As B♯ = O(µϵ) in L(Y ), we deduce that γ = r(µϵ). Let us
compute the expansion of β, δ and η. By (A.4.22) and (1.2.4) we write the operator B♯ in
(4.2.8) as

B♯ = iµϵB♯
1 + O(µϵ2) , B

♯
1 := 2c−1

h cos(x)
[

0 Id
−Id 0

]
, (4.2.40)

with O(µϵ2) ∈ L(Y ). In view of (4.1.3)-(4.1.6), f±
1 (0, ϵ) = f±

1 + O(ϵ), f+
0 (0, ϵ) = f+

0 + O(ϵ),

f−
0 (0, ϵ) =

[
0
1

]
, where fσk are in (4.1.2). By (4.2.40) we have B

♯
1f

−
1 =

[
c

− 3
2

h (1 + cos(2x))
c

− 1
2

h sin(2x)

]
,

B
♯
1f

−
0 =

[
2c−1

h cos(x)
0

]
and then

β = µϵ
(
B
♯
1f

−
1 , f+

1

)
+ r(µϵ2) = r(µϵ2) ,

δ = µϵ
(
B
♯
1f

−
0 , f+

1

)
+ r(µϵ2) = µϵc

− 1
2

h + r(µϵ2) ,

η = µϵ
(
B
♯
1f

−
0 , f+

0

)
+ r(µϵ2) = r(µϵ2) .

This proves (4.2.37).

Lemmata 4.2.2, 4.2.3, 4.2.4 imply (4.2.1) where the matrix E has the form (4.2.2) and

e22 := 2(bh − 4ζh) = 2γhch + 2c−1
h h(1 − c4

h)(γh − 2(1 − c2
hh)) − chγ

2
h ,

with bh in (4.2.32) and ζh in (4.2.10). The term e22 has the expansion in (1.5.4). Moreover

G := G(µ, ϵ) =
(

1 + r8(ϵ2, µ2ϵ, µ3) −i r9(µϵ2, µ2ϵ, µ3)
i r9(µϵ2, µ2ϵ, µ3) µ tanh(hµ) + r10(µ2ϵ, µ3)

)
(4.2.41)
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F := F (µ, ϵ) =

f11ϵ+ r3(ϵ3, µϵ2, µ2ϵ, µ3) iµϵc− 1
2

h + i r4(µϵ2, µ2ϵ, µ3)
i r6(µϵ, µ3) r7(µ2ϵ, µ3)

 . (4.2.42)

In order to deduce the expansion (4.2.3)-(4.2.4) of the matrices F,G we exploit further
information for

Lµ,0 := JBµ,0 , Bµ,0 :=
[

1 −ch∂x

ch∂x |D + µ| tanh
(
h|D + µ|

)] . (4.2.43)

We have

Lemma 4.2.5. At ϵ = 0 the matrices are F (µ, 0) = 0 and G(µ, 0) =
(

1 0
0 µ tanh(hµ)

)
.

Proof. By Lemma 4.1.7 and (4.2.43) we have Bµ,0f
+
0 (µ, 0) = f+

0 and Bµ,0f
−
0 (µ, 0) =

µ tanh(hµ)f−
0 , for any µ. Then the lemma follows recalling (2.2.26) and the fact that

f+
1 (µ, 0) and f−

1 (µ, 0) have zero space average by Lemma 4.1.7.

In view of Lemma 4.2.5 we deduce that the matrices (4.2.41) and (4.2.42) have the form
(4.2.3) and (4.2.4). This completes the proof of Proposition 4.2.1.

We now show that the constant e22 in (1.5.4) is positive for any depth h > 0.

Lemma 4.2.6. For any h > 0 the term e22 in (1.5.4) is positive, e22 → 0 as h → 0+ and
e22 → 1 as h → +∞. As a consequence for any h0 > 0 the term e22 is bounded from below
uniformly in h > h0.

Proof. The quantity z := c2
h = tanh(h) is in (0, 1) for any h > 0. Then the quadratic

polynomial (0,+∞) ∋ h 7→ (1 − z2)(1 + 3z2)h2 + 2z(z2 − 1)h + z2 is positive because its
discriminant −4z4(1 − z2) is negative as 0 < z2 < 1. The limits for h → 0+ and h → +∞
follow by inspection.

4.3 Block decoupling and emergence of the Whitham-Benjamin
function

In this section we block-decouple the 4 × 4 Hamiltonian matrix Lµ,ϵ = J4Bµ,ϵ obtained
in Proposition 4.2.1.

We first perform a singular symplectic and reversibility-preserving change of coordinates.
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Lemma 4.3.1. (Singular symplectic rescaling) The conjugation of the Hamiltonian
and reversible matrix Lµ,ϵ = J4Bµ,ϵ obtained in Proposition 4.2.1 through the symplectic and
reversibility-preserving 4 × 4-matrix

Y :=
(
Q 0
0 Q

)
with Q :=

(
µ

1
2 0

0 µ− 1
2

)
, µ > 0 , (4.3.1)

yields the Hamiltonian and reversible matrix

L(1)
µ,ϵ := Y −1Lµ,ϵY = J4B(1)

µ,ϵ =
(

J2E(1) J2F (1)

J2[F (1)]∗ J2G(1)

)
(4.3.2)

where B(1)
µ,ϵ is a self-adjoint and reversibility-preserving 4 × 4 matrix

B(1)
µ,ϵ =

(
E(1) F (1)

[F (1)]∗ G(1)

)
, E(1) = [E(1)]∗ , G(1) = [G(1)]∗ , (4.3.3)

where the 2 × 2 reversibility-preserving matrices E(1), G(1) and F (1) extend analytically at
µ = 0 with the following expansion

E(1) =
(

e11µϵ2(1 + r′
1(ϵ, µϵ)) − e22

µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

)
, (4.3.4)

G(1) =
(
µ+ r8(µϵ2, µ3ϵ) −i r9(µϵ2, µ2ϵ)

i r9(µϵ2, µ2ϵ) tanh(hµ) + r10(µϵ)

)
, (4.3.5)

F (1) =

f11µϵ+ r3(µϵ3, µ2ϵ2, µ3ϵ) iµϵc− 1
2

h + i r4(µϵ2, µ2ϵ)
i r6(µϵ) r7(µϵ)

 (4.3.6)

where e11, e12, e22, f11 are defined in (4.2.5), (1.5.2), (1.5.4).

Remark 4.3.2. The matrix L(1)
µ,ϵ, a priori defined only for µ ̸= 0, extends analytically to the

zero matrix at µ = 0. For µ ̸= 0 the spectrum of L(1)
µ,ϵ coincides with the spectrum of Lµ,ϵ.

Proof. The matrix Y is symplectic, i.e. (2.2.30) holds, and since µ is real, it is reversibility
preserving, i.e. satisfies (2.2.27). By (2.2.31),

B(1)
µ,ϵ = Y ∗Bµ,ϵY =

(
E(1) F (1)

[F (1)]∗ G(1)

)
,

with, Q being self-adjoint, E(1) = QEQ = [E(1)]∗, G(1) = QGQ = [G(1)]∗ and F (1) = QFQ.
In view of (4.2.2)-(4.2.4), we obtain (4.3.4)-(4.3.6).
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4.3.1 Non-perturbative step of block decoupling

We first verify that the quantity Dh := h − 1
4e2

12 is nonzero for any h > 0. In view of the
comment 3 after Theorem 1.2.3, we have that Dh = h − c2

g. The non-degeneracy property
Dh ̸= 0 corresponds to that in Bridges-Mielke [21, p.183] and [92, p.409].

Lemma 4.3.3. For any h > 0

Dh := h − 1
4e2

12 > 0 , and lim
h→0+

Dh = 0 . (4.3.7)

Proof. We write Dh = (
√

h + 1
2e12)(

√
h − 1

2e12) whose first factor is positive for h > 0. We
claim that also the second factor is positive. In view of (1.5.2) it is equal to 1

2c−1
h f(h) with

f(h) :=
(√

h tanh(h) −
√

h +
√

tanh(h)
)(√

h tanh(h) +
√

h −
√

tanh(h)
)

=: q(h)p(h) .

The function p(h) is positive since h > tanh(h) for any h > 0. We claim that also the
function q(h) is positive. Indeed its derivative

q′(h) = 1 − tanh(h)
2
√

h
√

tanh(h)

(
−
√

tanh(h) +
√

h +
√

h tanh(h)
)

+
√

h
(
1 − tanh2(h)

)
> 0

for any h > 0. Since q(0) = 0 we deduce that q(h) > 0 for any h > 0. This proves the
lemma.

We now state the main result of this section.

Lemma 4.3.4. (Step of block decoupling) There exists a 2 × 2 reversibility-preserving
matrix X, analytic in (µ, ϵ), of the form

X :=
(
x11 ix12

ix21 x22

)
with xij ∈ R , i, j = 1, 2 , (4.3.8)

=

 r11(ϵ) i r12(ϵ)
−i 1

2D−1
h (e12f11 + 2c

− 1
2

h )ϵ+ i r21(ϵ2, µϵ) 1
2D−1

h (c− 1
2

h e12 + 2hf11)ϵ+ r22(ϵ2, µϵ)

 ,

where e12, f11 are defined in (1.5.2), (4.2.5) and Dh is the positive constant in (4.3.7), such
that the following holds true. By conjugating the Hamiltonian and reversible matrix L(1)

µ,ϵ,
defined in (4.3.2), with the symplectic and reversibility-preserving 4 × 4 matrix

exp
(
S(1)

)
, where S(1) := J4

(
0 Σ

Σ∗ 0

)
, Σ := J2X , (4.3.9)
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we get the Hamiltonian and reversible matrix

L(2)
µ,ϵ := exp

(
S(1)

)
L(1)
µ,ϵ exp

(
−S(1)

)
= J4B(2)

µ,ϵ =
(

J2E(2) J2F (2)

J2[F (2)]∗ J2G(2)

)
, (4.3.10)

where the reversibility-preserving 2 × 2 self-adjoint matrix [E(2)]∗ = E(2) has the form

E(2) =
(
µϵ2eWB + r′

1(µϵ3, µ2ϵ2) − e22
µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

)
,

(4.3.11)

where

eWB = e11 − D−1
h
(
c−1

h + hf2
11 + e12f11c

− 1
2

h
)

(4.3.12)

(with constants e11, Dh, f11, e12, defined in (4.2.5), (4.3.7), (1.5.2)), is the Whitham-
Benjamin function defined in (1.5.1), the reversibility-preserving 2 × 2 self-adjoint matrix
[G(2)]∗ = G(2) has the form

G(2) =
(
µ+ r8(µϵ2, µ3ϵ) −i r9(µϵ2, µ2ϵ)

i r9(µϵ2, µ2ϵ) tanh(hµ) + r10(µϵ)

)
, (4.3.13)

and

F (2) =
(
r3(µϵ3) i r4(µϵ3)
i r6(µϵ3) r7(µϵ3)

)
. (4.3.14)

The rest of the section is devoted to the proof of Lemma 4.3.4. For simplicity let
S = S(1).

The matrix exp(S) is symplectic and reversibility-preserving because the matrix S

in (4.3.9) is Hamiltonian and reversibility-preserving, by Lemma 2.2.8. Note that S is
reversibility preserving since X has the form (4.3.8).

We now expand in Lie series the Hamiltonian and reversible matrix L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S).
We split L(1)

µ,ϵ into its 2×2-diagonal and off-diagonal Hamiltonian and reversible matrices

L(1)
µ,ϵ = D(1) +R(1) , (4.3.15)

D(1) :=
(
D1 0
0 D0

)
:=
(

J2E(1) 0
0 J2G(1)

)
, R(1) :=

(
0 J2F (1)

J2[F (1)]∗ 0

)
,

and we perform the Lie expansion

L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S) = D(1) +
[
S , D(1)

]
+ 1

2[S, [S,D(1)]] +R(1) + [S,R(1)] (4.3.16)
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+ 1
2

∫ 1

0
(1 − τ)2 exp(τS)ad3

S(D(1)) exp(−τS) dτ +
∫ 1

0
(1 − τ) exp(τS) ad2

S(R(1)) exp(−τS) dτ .

We look for a 4 × 4 matrix S as in (4.3.9) (which is Hamiltonian, reversibility-preserving
and off-diagonal as the term R(1) we wish to eliminate) that solves the homological equation
R(1) +

[
S , D(1)

]
= 0, which, recalling (4.3.15), reads

(
0 J2F (1) + J2ΣD0 −D1J2Σ

J2[F (1)]∗ + J2Σ∗D1 −D0J2Σ∗ 0

)
= 0 . (4.3.17)

Note that the equation J2F (1) + J2ΣD0 − D1J2Σ = 0 implies also J2[F (1)]∗ + J2Σ∗D1 −
D0J2Σ∗ = 0 and viceversa. Thus, writing Σ = J2X, namely X = −J2Σ, the equation
(4.3.17) amounts to solve the “Sylvester" equation

D1X −XD0 = −J2F
(1) . (4.3.18)

We write the matrices E(1), F (1), G(1) in (4.3.2) as

E(1) =

 E
(1)
11 iE(1)

12
−iE(1)

12 E
(1)
22

 , F (1) =

 F
(1)
11 iF (1)

12
iF (1)

21 F
(1)
22

 , G(1) =

 G
(1)
11 iG(1)

12
−iG(1)

12 G
(1)
22


(4.3.19)

where the real numbers E(1)
ij , F

(1)
ij , G

(1)
ij , i, j = 1, 2, have the expansion in (4.3.4), (4.3.5),

(4.3.6). Thus, by (4.3.15), (4.3.8) and (4.3.19), the equation (4.3.18) amounts to solve the
4 × 4 real linear system

G
(1)
12 − E

(1)
12 G

(1)
11 E

(1)
22 0

G
(1)
22 G

(1)
12 − E

(1)
12 0 −E(1)

22
E

(1)
11 0 G

(1)
12 − E

(1)
12 −G(1)

11
0 −E(1)

11 −G(1)
22 G

(1)
12 − E

(1)
12


︸ ︷︷ ︸

=:A


x11

x12

x21

x22


︸ ︷︷ ︸

=:x⃗

=


−F (1)

21
F

(1)
22

−F (1)
11

F
(1)
12


︸ ︷︷ ︸

=:f⃗

. (4.3.20)

We solve this system using the following result, verified by a direct calculation.

Lemma 4.3.5. The determinant of the matrix

A :=


a b c 0
d a 0 −c
e 0 a −b
0 −e −d a

 (4.3.21)
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where a, b, c, d, e are real numbers, is

detA = a4 − 2a2(bd+ ce) + (bd− ce)2 = (bd− a2)2 − 2ce
(
a2 + bd− 1

2ce
)
. (4.3.22)

If detA ̸= 0 then A is invertible and

A−1 = 1
detA


a
(
a2 − bd− ce

)
b
(
−a2 + bd− ce

)
−c
(
a2 + bd− ce

)
−2abc

d
(
−a2 + bd− ce

)
a
(
a2 − bd− ce

)
2acd −c

(
−a2 − bd+ ce

)
−e
(
a2 + bd− ce

)
2abe a

(
a2 − bd− ce

)
b
(
a2 − bd+ ce

)
−2ade −e

(
−a2 − bd+ ce

)
d
(
a2 − bd+ ce

)
a
(
a2 − bd− ce

)
 .

(4.3.23)

The Sylvester matrix A in (4.3.20) has the form (4.3.21) where, by (4.3.4)-(4.3.6) and
since tanh(hµ) = hµ+ r(µ3),

a = G
(1)
12 − E

(1)
12 = −e12

µ

2
(
1 + r(ϵ2, µϵ, µ2)

)
, b = G

(1)
11 = µ+ r8(µϵ2, µ3ϵ) , (4.3.24)

c = E
(1)
22 = −e22

µ

8 (1 + r5(ϵ, µ)) , d = G
(1)
22 = µh + r(µϵ, µ3) , e = E

(1)
11 = r(µϵ2, µ3) ,

where e12 and e22, defined respectively in (1.5.2), (1.5.4), are positive for any h > 0.
By (4.3.22), the determinant of the matrix A is

detA = (bd− a2)2 + r(µ4ϵ2, µ6) = µ4D2
h(1 + r(ϵ, µ2)) (4.3.25)

where Dh is defined in (4.3.7). By (4.3.23), (4.3.24), (4.3.25) and, since Dh = h − 1
4e2

12, we
obtain

A−1 = (1 + r(ϵ, µ)) 1
µD2

h


1
2e12Dh Dh

1
32e22(e2

12 + 4h) −1
8e12 e22

hDh
1
2e12Dh

1
8e12e22h − 1

32e22 (e2
12 + 4h)

r(ϵ2, µ2) r(ϵ2, µ2) 1
2e12Dh −Dh

r(ϵ2, µ2) r(ϵ2, µ2) −hDh
1
2e12Dh

 .

(4.3.26)

Therefore, for any µ ̸= 0, there exists a unique solution x⃗ = A−1f⃗ of the linear system
(4.3.20), namely a unique matrix X which solves the Sylvester equation (4.3.18).

Lemma 4.3.6. The matrix solution X of the Sylvester equation (4.3.18) is analytic in
(µ, ϵ), and admits an expansion as in (4.3.8).
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Proof. By (4.3.20), (4.3.26), (4.3.19), (4.3.6) we obtain, for any µ ̸= 0
x11

x12

x21

x22

 = 1
D2

h


1
2 e12Dh Dh

1
32 e22(e2

12 + 4h) − 1
8 e12 e22

hDh
1
2 e12Dh

1
8 e12e22h − 1

32 e22 (e2
12 + 4h)

r(ϵ2, µ2) r(ϵ2, µ2) 1
2 e12Dh −Dh

r(ϵ2, µ2) r(ϵ2, µ2) −hDh
1
2 e12Dh




r(ϵ)
r(ϵ)

−f11ϵ+ r(ϵ3, µϵ2, µ2ϵ)
c

− 1
2

h ϵ+ r(ϵ2, µϵ)

 (1 + r(ϵ, µ)) ,

which proves (4.3.8). In particular each xij admits an analytic extension at µ = 0. Note
that, for µ = 0, one has E(2) = G(2) = F (2) = 0 and the Sylvester equation reduces to
tautology.

Since the matrix S solves the homological equation
[
S , D(1)

]
+ R(1) = 0, identity

(4.3.16) simplifies to

L(2)
µ,ϵ = D(1) + 1

2
[
S , R(1)

]
+ 1

2

∫ 1

0
(1 − τ2) exp(τS) ad2

S(R(1)) exp(−τS)dτ . (4.3.27)

The matrix 1
2

[
S , R(1)

]
is, by (4.3.9), (4.3.15), the block-diagonal Hamiltonian and reversible

matrix
1
2
[
S , R(1)

]
=
(1

2J2(ΣJ2[F (1)]∗ − F (1)J2Σ∗) 0
0 1

2J2(Σ∗J2F (1) − [F (1)]∗J2Σ)

)
=
(

J2Ẽ 0
0 J2G̃

)
,

(4.3.28)
where, since Σ = J2X,

Ẽ := Sym
(
J2XJ2[F (1)]∗

)
, G̃ := Sym

(
X∗F (1)) , (4.3.29)

denoting Sym(A) := 1
2(A+A∗).

Lemma 4.3.7. The self-adjoint and reversibility-preserving matrices Ẽ, G̃ in (4.3.29) have
the form

Ẽ =
(

ẽ11µϵ2 + r̃1(µϵ3, µ2ϵ2) i r̃2(µϵ2)
−i r̃2(µϵ2) r̃5(µϵ2)

)
, G̃ =

(
r̃8(µϵ2) i r̃9(µϵ2)

−i r̃9(µϵ2) r̃10(µϵ2)

)
,

ẽ11 := −D−1
h
(
c−1

h + hf2
11 + e12f11c

− 1
2

h
)
.

(4.3.30)

Proof. For simplicity we set F = F (1). By (4.3.8), (4.3.6), one has

J2XJ2F
∗ =

(
x21F12 − x22F11 i (x21F22 + x22F21)

i (x11F12 + x12F11) −x11F22 + x12F21

)
=
(

ẽ11µϵ2 + r(µϵ3, µ2ϵ2) i r(µϵ2)
i r(µϵ2) r(µϵ2)

)



4.3. BLOCK DECOUPLING 115

with ẽ11 defined in (4.3.30). The expansion of Ẽ in (4.3.30) follows in view of (4.3.29).
Since X = O(ϵ) by (4.3.8) and F = O(µϵ) by (4.3.6) we deduce that X∗F = O(µϵ2) and
the expansion of G̃ in (4.3.30) follows.

Note that the term ẽ11µϵ2 in the matrix Ẽ in (4.3.29)-(4.3.30), has the same order of
the (1, 1)-entry of E(1) in (4.3.4), thus will contribute to the Whitham-Benjamin function
eWB in the (1, 1)-entry of E(2) in (4.3.11). Finally we show that the last term in (4.3.27) is
small.

Lemma 4.3.8. The 4 × 4 Hamiltonian and reversibility matrix

1
2

∫ 1

0
(1 − τ2) exp(τS) ad2

S(R(1)) exp(−τS) dτ =
(

J2Ê J2F (2)

J2[F (2)]∗ J2Ĝ

)
(4.3.31)

where the 2 × 2 self-adjoint and reversible matrices Ê, Ĝ have entries

Êij , Ĝij = r(µϵ3) , i, j = 1, 2 , (4.3.32)

and the 2 × 2 reversible matrix F (2) admits an expansion as in (4.3.14).

Proof. Since S and R(1) are Hamiltonian and reversibility-preserving then adSR(1) =
[S,R(1)] is Hamiltonian and reversibility-preserving as well. Thus each exp(τS) ad2

S(R(1)) exp(−τS)
is Hamiltonian and reversibility-preserving, and formula (4.3.31) holds. In order to estimate
its entries we first compute ad2

S(R(1)). Using the form of S in (4.3.9) and [S,R(1)] in (4.3.28)
one gets

ad2
S(R(1)) =

(
0 J2F̃

J2F̃ ∗ 0

)
where F̃ := 2

(
ΣJ2G̃− ẼJ2Σ

)
(4.3.33)

and Ẽ, G̃ are defined in (4.3.29). Since Ẽ, G̃ = O(µϵ2) by (4.3.30), and Σ = J2X =
O(ϵ) by (4.3.8), we deduce that F̃ = O(µϵ3). Then, for any τ ∈ [0, 1], the matrix
exp(τS) ad2

S(R(1)) exp(−τS) = ad2
S(R(1))(1 + O(µ, ϵ)). In particular the matrix F (2) in

(4.3.31) has the same expansion of F̃ , namely F (2) = O(µϵ3), and the matrices Ê, Ĝ have
entries as in (4.3.32).

Proof of Lemma 4.3.4. It follows by (4.3.27)-(4.3.28), (4.3.15) and Lemmata 4.3.7 and 4.3.8.
The matrix E(2) := E(1) + Ẽ + Ê has the expansion in (4.3.11), with eWB = e11 + ẽ11 as in
(4.3.12). Similarly G(2) := G(1) + G̃+ Ĝ has the expansion in (4.3.13).
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4.3.2 Complete block decoupling and proof of the main results

We now block-diagonalize the 4 × 4 Hamiltonian and reversible matrix L(2)
µ,ϵ in (4.3.10).

First we split it into its 2 × 2-diagonal and off-diagonal Hamiltonian and reversible matrices

L(2)
µ,ϵ = D(2) +R(2) ,

D(2) :=
(

J2E(2) 0
0 J2G(2)

)
, R(2) :=

(
0 J2F (2)

J2[F (2)]∗ 0

)
. (4.3.34)

Lemma 4.3.9. There exist a 4 × 4 reversibility-preserving Hamiltonian matrix S(2) :=
S(2)(µ, ϵ) of the form (4.3.9), analytic in (µ, ϵ), of size O(ϵ3), and a 4 × 4 block-diagonal
reversible Hamiltonian matrix P := P (µ, ϵ), analytic in (µ, ϵ), of size O(µϵ6) such that

exp(S(2))(D(2) +R(2)) exp(−S(2)) = D(2) + P . (4.3.35)

Proof. We set for brevity S = S(2). The equation (4.3.35) is equivalent to the systemΠD

(
eS
(
D(2) +R(2))e−S)−D(2) = P

Π∅
(
eS
(
D(2) +R(2))e−S) = 0 ,

(4.3.36)

where ΠD is the projection onto the block-diagonal matrices and Π∅ onto the block-off-
diagonal ones. The second equation in (4.3.36) is equivalent, by a Lie expansion, and since
[S,R(2)] is block-diagonal, to

R(2) +
[
S , D(2)

]
+ Π∅

∫ 1

0
(1 − τ)eτSad2

S

(
D(2) +R(2))e−τSdτ︸ ︷︷ ︸

=:R(S)

= 0 . (4.3.37)

The “nonlinear homological equation" (4.3.37),

[S,D(2)] = −R(2) − R(S) , (4.3.38)

is equivalent to solving the 4 × 4 real linear system

Ax⃗ = f⃗(µ, ϵ, x⃗) , f⃗(µ, ϵ, x⃗) = µv⃗(µ, ϵ) + µg⃗(µ, ϵ, x⃗) (4.3.39)

associated, as in (4.3.20), to (4.3.38). The vector µv⃗(µ, ϵ) is associated with −R(2) where
R(2) is in (4.3.34). The vector µg⃗(µ, ϵ, x⃗) is associated with the matrix −R(S), which is a
Hamiltonian and reversible block-off-diagonal matrix (i.e of the form (4.3.15)). The factor µ
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is present in D(2) and R(2), see (4.3.11), (4.3.13), (4.3.14) and the analytic function g⃗(µ, ϵ, x⃗)
is quadratic in x⃗ (for the presence of ad2

S in R(S)). In view of (4.3.14) one has

µv⃗(µ, ϵ) := (−F (2)
21 , F

(2)
22 ,−F

(2)
11 , F

(2)
12 )⊤, F

(2)
ij = r(µϵ3) . (4.3.40)

System (4.3.39) is equivalent to x⃗ = A−1f⃗(µ, ϵ, x⃗) and, writing A−1 = 1
µB(µ, ϵ) (cfr.

(4.3.26)), to
x⃗ = B(µ, ϵ)v⃗(µ, ϵ) + B(µ, ϵ)g⃗(µ, ϵ, x⃗) .

By the implicit function theorem this equation admits a unique small solution x⃗ = x⃗(µ, ϵ),
analytic in (µ, ϵ), with size O(ϵ3) as v⃗ in (4.3.40). Then the first equation of (4.3.36) gives
P = [S,R(2)] + ΠD

∫ 1
0 (1 − τ)eτSad2

S

(
D(2) +R(2))e−τSdτ , and its estimate follows from those

of S and R(2) (see (4.3.14)).

Proof of Theorems 1.5.1 and 1.2.3. By Lemma 4.3.9 and recalling (2.2.1) the
operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ is represented by the 4 × 4 Hamiltonian and reversible matrix

i chµ+ exp(S(2))L(2)
µ,ϵ exp(−S(2)) = i chµ+

(
J2E(3) 0

0 J2G(3)

)
=:
(

U 0
0 S

)
,

where the matrices E(3) and G(3) expand as in (4.3.11), (4.3.13). Consequently the matrices
U and S expand as in (1.5.6). Theorem 1.5.1 is proved. Theorem 1.2.3 is a straightforward
corollary. The function µ(ϵ) in (1.5.10) is defined as the implicit solution of the function
∆BF(h;µ, ϵ) in (1.5.8) for ϵ small enough, depending on h.





Chapter 5

Benjamin-Feir instability at the
Whitham-Benjamin threshold

In this chapter we prove the full description of the Benjamin-Feir instability phenomenon
at the critical depth hWB given in Theorem 1.6.1.

5.1 Expansion of Bµ,ϵ

In this section we provide the Taylor expansion of the matrix Bµ,ϵ in (4.2.1), i.e. (5.1.2),
at an order of accuracy higher than in Proposition 4.2.1. In particular we compute
the quadratic terms γ11ϵ2, ϕ21µϵ, the cubic ones η12µϵ2, γ12µϵ2,ϕ11ϵ3, ϕ22µ2ϵ, and the
quartic terms η11ϵ4, γ22µ2ϵ2, ϕ12µϵ3 in the matrices (5.1.5a)-(5.1.5c) below. These are the
coefficients which enter in the constant ηWB (cfr. (5.2.9)) of the Benjamin-Feir discriminant
function (1.6.4).

We recall from Proposition 4.2.1 that the operator Lµ,ϵ : Vµ,ϵ → Vµ,ϵ in (2.2.5) defined
for (µ, ϵ) ∈ Bµ0(0) ×Bϵ0(0) is represented on the basis F in (4.1.1) by the 4 × 4 Hamiltonian
and reversible matrix

Lµ,ϵ = JBµ,ϵ where J := J4 :=
(

J2 0
0 J2

)
, J2 :=

(
0 1

−1 0

)
, (5.1.1)

with the 4 × 4 matrix Bµ,ϵ decomposing as

Bµ,ϵ =
(
E(µ, ϵ) F (µ, ϵ)
F ∗(µ, ϵ) G(µ, ϵ)

)
(5.1.2)

119
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where E, G are the 2 × 2 self-adjoint matrices

E(µ, ϵ) :=
(

E11(µ, ϵ) iE12(µ, ϵ)
−iE12(µ, ϵ) E22(µ, ϵ)

)
:=
((

Bµ,ϵf
+
1 , f

+
1
) (

Bµ,ϵf
−
1 , f

+
1
)(

Bµ,ϵf
+
1 , f

−
1
) (

Bµ,ϵf
−
1 , f

−
1
)) , (5.1.3a)

G(µ, ϵ) :=
(

G11(µ, ϵ) iG12(µ, ϵ)
−iG12(µ, ϵ) G22(µ, ϵ)

)
:=
((

Bµ,ϵf
+
0 , f

+
0
) (

Bµ,ϵf
−
0 , f

+
0
)(

Bµ,ϵf
+
0 , f

−
0
) (

Bµ,ϵf
−
0 , f

−
0
)) , (5.1.3b)

and

F (µ, ϵ) :=
(
F11(µ, ϵ) iF12(µ, ϵ)
iF21(µ, ϵ) F22(µ, ϵ)

)
:=
((

Bµ,ϵf
+
0 , f

+
1
) (

Bµ,ϵf
−
0 , f

+
1
)(

Bµ,ϵf
+
0 , f

−
1
) (

Bµ,ϵf
−
0 , f

−
1
)) . (5.1.3c)

Here, in view of Lemmata 2.2.10, 2.2.2 and 2.2.1, we have introduced the operator

Bµ,ϵ := P ∗
0,0 U

∗
µ,ϵBµ,ϵ Uµ,ϵ P0,0 . (5.1.4)

The main result of this section is the following proposition.

Proposition 5.1.1. The 2 × 2 matrices E := E(µ, ϵ), F := F (µ, ϵ), G := G(µ, ϵ) defined
in (5.1.3) admit the expansion

E =
(

e11ϵ2(1 + r′
1(ϵ3, µϵ)) + η11ϵ4 − e22

µ2

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)

)
−i
(1

2e12µ+η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)
)

−e22
µ2

8 (1 + r5(ϵ2, µ))

)
(5.1.5a)

G =
(

1+γ11ϵ2 + r8(ϵ3, µϵ2, µ2ϵ) −i γ12µϵ2 − i r9(µϵ3, µ2ϵ)
i γ12µϵ2 + i r9(µϵ3, µ2ϵ) µ tanh(hµ)+γ22µ2ϵ2 + r10(µ2ϵ3, µ3ϵ)

)
(5.1.5b)

F =

f11ϵ+ϕ11ϵ3 + r3(ϵ4, µϵ2, µ2ϵ) iµϵc− 1
2

h +iϕ12µϵ3 + i r4(µϵ4, µ2ϵ2, µ3ϵ)
iϕ21µϵ+ i r6(µϵ3, µ2ϵ) ϕ22µ2ϵ+ r7(µ2ϵ3, µ3ϵ)

 , (5.1.5c)

where the coefficients

e11 := 9c8
h − 10c4

h + 9
8c7

h
= 9(1 − c4

h)2 + 8c4
h

8c7
h

> 0 , f11 := 1
2c

− 3
2

h (1 − c4
h) , (5.1.6a)

e12 := ch + c−1
h (1 − c4

h)h > 0 , (5.1.6b)

e22 := (1 − c4
h)(1 + 3c4

h)h2 + 2c2
h(c4

h − 1)h + c4
h

c3
h

> 0 , (5.1.6c)

were computed in Proposition 4.2.1, whereas

η11 := 1
256c19

h (c2
h + 1)

(
− 36c26

h − 108c24
h − 261c22

h − 73c20
h + 1429c18

h + 1237c16
h (5.1.6d)
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− 3666c14
h − 3450c12

h + 3774c10
h + 3654c8

h − 873c6
h − 765c4

h + 81c2
h + 81

)
,

η12 :=
c2

h
(
3c12

h − 8c8
h + 3c4

h + 18
)

−
(
c16

h − 2c12
h + 12c8

h − 38c4
h + 27

)
h

16c9
h

, (5.1.6e)

γ11 := −c8
h + 6c4

h − 5
8c4

h
, γ12 := 2c12

h − c8
h − 9

16c7
h

, γ22 := c4
h − 5
4c2

h
, (5.1.6f)

ϕ11 := 10c20
h + 4c18

h − 7c16
h − 6c14

h − 99c12
h + 257c8

h − 6c6
h − 171c4

h + 18
64c27/2

h

, (5.1.6g)

ϕ12 := 2c18
h − 2c16

h − 33c14
h − 27c12

h + 34c10
h + 34c8

h − 33c6
h − 27c4

h + 18c2
h + 18

32c25/2
h (c2

h + 1)
(5.1.6h)

ϕ21 := c2
h(c4

h − 5) − (c8
h + 2c4

h − 3)h
8c7/2

h

, ϕ22 := −c4
hh + c2

h + h

4c5/2
h

. (5.1.6i)

The rest of the section is devoted to the proof of this proposition.
In Proposition 4.2.1 we showed that the matrices E,G, F in (5.1.5a), (5.1.5b), (5.1.5c)

admit the following expansions

E(µ, ϵ) =
(

e11ϵ2 − e22
µ2

8 i 1
2e12µ

−i 1
2e12µ −e22

µ2

8

)
+
(

r1(ϵ3, µ2ϵ, µ3) i r2(µϵ2, µ2ϵ, µ3)
−i r2(µϵ2, µ2ϵ, µ3) r5(µ2ϵ, µ3)

)
︸ ︷︷ ︸

=:E(µ,ϵ)

, (5.1.7a)

G(µ, ϵ) =
(

1 0
0 µ tanh(hµ)

)
+
(
r8(ϵ2, µ2ϵ) −i r9(µϵ2, µ2ϵ)

i r9(µϵ2, µ2ϵ) r10(µ2ϵ) ,

)
︸ ︷︷ ︸

=:Γ(µ,ϵ)

(5.1.7b)

F (µ, ϵ) :=

f11ϵ iµϵc− 1
2

h

0 0

+
(
r3(ϵ3, µϵ2, µ2ϵ) i r4(µϵ2, µ2ϵ)

i r6(µϵ) r7(µ2ϵ)

)
︸ ︷︷ ︸

=:Φ(µ,ϵ)

. (5.1.7c)

In order to get the expansion of E(µ, ϵ), Γ(µ, ϵ) and Φ(µ, ϵ) in Proposition 5.1.1 we first
expand the operators Bµ,ϵ in (2.2.5a) (Section 5.1.1), the projection Pµ,ϵ in (2.2.7) (Section
5.1.2) and the operator Bµ,ϵ in (5.1.4) (Section 5.1.3). Finally we prove Proposition 5.1.1
in Section 5.1.4.

Notation. For an operator A = A(µ, ϵ) we denote its Taylor coefficients as

Ai,j := 1
i!j!

(
∂iµ∂

j
ϵA
)
(0, 0) , Ak := Ak(µ, ϵ) :=

∑
i+j=k
i,j≥0

Ai,jµ
iϵj . (5.1.8)
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Moreover we shall occasionally split Ai,j = A
[ev]
i,j + A

[odd]
i,j , where A[ev]

i,j is the part of the
operator Ai,j having only even harmonics, whereas A[odd]

i,j is the part having only odd ones.

5.1.1 Expansion of Bµ,ϵ

In the sequel O5 means an operator which maps H1(T,C2) into L2(T,C2)-functions
with size ϵ5, µϵ4, µ2ϵ3, µ3ϵ2, µ4ϵ or µ5.

Lemma 5.1.2. The operator Bµ,ϵ in (2.2.5a) has the Taylor expansion

Bµ,ϵ = B0 + B1 + B2 + B3 + B4 + O5 , (5.1.9)

where

B0 =
[

1 −ch∂x

ch∂x |D| tanh
(
h|D|

)] , (5.1.10a)

B1 = ϵ

[
a1(x) −p1(x)∂x

∂x ◦ p1(x) 0

]
+ µℓ1,0(|D|)Πs , (5.1.10b)

B2 = ϵ2
[

a2(x) −p2(x)∂x
∂x ◦ p2(x) ℓ0,2(|D|)

]
− iµϵp1(x)J + µ2ℓ2,0(|D|)Πev , (5.1.10c)

B3 = ϵ3
[

a3(x) −p3(x)∂x
∂x ◦ p3(x) 0

]
− iµϵ2p2(x)J + µ3ℓ3,0(|D|)Πs, (5.1.10d)

B4 = ϵ4
[

a4(x) −p4(x)∂x
∂x ◦ p4(x) ℓ0,4(|D|)

]
− iµϵ3p3(x)J + µ2ϵ2ℓ2,2(|D|)Πev + µ4ℓ4,0(|D|)Πev ,

(5.1.10e)

and pi(x) and ai(x), i = 1, . . . , 4, are computed in (A.4.22a)-(A.4.23a), J is the symplectic
matrix in (1.2.4),

Πs :=
[
0 0
0 sgn(D)

]
, Πev :=

[
0 0
0 Id

]
, (5.1.11)

and

ℓ1,0(|D|) = tanh(h|D|) + h|D|
(
1 − tanh2(h|D|)

)
, (5.1.12a)

ℓ2,0(|D|) = h
(
1 − tanh2(h|D|)

)(
1 − h|D| tanh(h|D|)

)
, (5.1.12b)

ℓ0,2(|D|) = f2|D|2
(
1 − tanh2(h|D|)

)
, (5.1.12c)

ℓ2,2(|D|) = f2
(
1 − tanh2(h|D|)

) (
−h2|D|2 + 3h2|D|2 tanh2(h|D|) − 4h|D| tanh(h|D|) + 1

)
, (5.1.12d)
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ℓ0,4(|D|) = f4|D|2
(
1 − tanh2(h|D|)

)
− f2

2|D|3 tanh(h|D|)
(
1 − tanh2(h|D|)

)
, (5.1.12e)

with f2 and f4 in (A.4.8).

Proof. By Taylor-expanding (2.2.5a).

We observe that, using the notation introduced in (5.1.8), we have

B
[ev]
i,j =

Bi,j if j is even ,

0 if j is odd ,
B

[odd]
i,j =

0 if j is even ,

Bi,j if j is odd .
(5.1.13)

5.1.2 Expansion of the projection Pµ,ϵ

The projections Pµ,ϵ in (2.2.7) admit the expansion

Pµ,ϵ = P0 + P1 + P2 + P3 + O4 , (5.1.14)

where
P0 := P0,0 , P1 := P

[
B1
]

P2 := P
[
B2
]

+ P
[
B1,B1

]
,

P3 := P
[
B3
]

+ P
[
B2,B1

]
+ P

[
B1,B2

]
+ P

[
B1,B1,B1

]
,

(5.1.15)

and

P
[
A1] := 1

2πi

∮
Γ
(L0,0 − λ)−1JA1(L0,0 − λ)−1dλ , and for k ≥ 2

P
[
A1, . . . , Ak

]
:= (−1)k+1

2πi

∮
Γ
(L0,0 − λ)−1JA1(L0,0 − λ)−1 . . . JAk(L0,0 − λ)−1dλ .

(5.1.16)
In virtue of (5.1.8), (5.1.15)-(5.1.16) and (5.1.13) we obtain

P
[ev]
i,j =

Pi,j if j is even ,

0 if j is odd ,
P

[odd]
i,j =

0 if j is even ,

Pi,j if j is odd .
(5.1.17)

Action of Pℓ,j on the unperturbed vectors. We now collect how the operators Pℓ,j
act on the vectors f+

1 , f
−
1 , f

+
0 , f

−
0 in (4.1.2). We denote

f+
−1 :=

 c1/2
h cos(x)

−c−1/2
h sin(x)

 , f−
−1 :=

 c1/2
h sin(x)

c−1/2
h cos(x)

 . (5.1.18)

We first consider the first order jets P0,1 and P1,0 of P1.
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Lemma 5.1.3. (First order jets) The action of the jets P0,1 and P1,0 of P1 in (5.1.15)
on the basis in (4.1.2) is

P0,1f
+
1 =

[
a0,1 cos(2x)
b0,1 sin(2x)

]
, P0,1f

−
1 =

[
−a0,1 sin(2x)
b0,1 cos(2x)

]
,

P0,1f
+
0 = u0,1f

+
−1 , P0,1f

−
0 = 0 , P1,0f

+
0 = 0 , P1,0f

−
0 = 0 ,

P1,0f
+
1 = i u1,0f

−
−1 , P1,0f

−
1 = i u1,0f

+
−1 ,

(5.1.19)

where
a0,1 := 1

2c
− 11

2
h (3 + c4

h) , b0,1 := 1
4c

− 13
2

h (1 + c4
h)(3 − c4

h) ,

u0,1 := 1
4c

− 5
2

h (3 + c4
h) , u1,0 := 1

4
(
1 + c−2

h h(1 − c4
h)
)
.

(5.1.20)

Proof. See (4.1.24).

Lemma 5.1.4. (Second order jets). The action of the jet P0,2 of P2 in (5.1.15) on the
basis in (4.1.2) is given by

P0,2f
+
1 = n0,2f

+
1 + u+

0,2f
+
−1 +

[
a0,2 cos(3x)
b0,2 sin(3x)

]
, P0P0,2f

+
0 = 0 , (5.1.21a)

P0,2f
−
1 = n0,2f

−
1 + u−

0,2f
−
−1 +

[
ã0,2 sin(3x)
b̃0,2 cos(3x)

]
, P0,2f

−
0 = 0 , (5.1.21b)

where ã0,2, b̃0,2 ∈ R and

n0,2 := c12
h + c8

h − 9c4
h − 9

8c12
h

, u+
0,2 := −2c12

h − 7c8
h + 8c4

h + 9
32c8

h
, u−

0,2 := 2c12
h − 11c8

h + 20c4
h − 3

32c8
h

,

a0,2 := 3(c12
h + 17c8

h + 51c4
h + 27)

64c23/2
h

, b0,2 := 3(3c12
h − 5c8

h + 25c4
h + 9)

64c25/2
h

. (5.1.21c)

The action of the jet P2,0 on the vector f−
0 in (4.1.2) is

P2,0f
−
0 = 0 . (5.1.21d)

The action of the jet P1,1 on the basis in (4.1.2) is

P1,1f
+
1 = i m̃1,1f

−
0 + i

[
ã1,1 sin(2x)
b̃1,1 cos(2x)

]
, P1,1f

−
1 = i

[
a1,1 cos(2x)
b1,1 sin(2x)

]
,

P1,1f
−
0 = − i

2c−3/2
h f+

−1 , P1,1f
+
0 = i ñ1,1f

−
1 + i ũ1,1f

−
−1 , (5.1.21e)
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where m̃1,1, ã1,1, b̃1,1, ñ1,1, ũ1,1 ∈ R and

a1,1 := −3(c8
h − 6c4

h + 5)h − 3c2
h(c4

h + 3)
8c15/2

h

,

b1,1 := (c8
h + 8c4

h − 9)h + 3(c6
h + c2

h)
8c17/2

h

.

(5.1.22)

(Third order jets). The jets P0,3, P1,2 and P2,1 of P3 in (5.1.15) act on f+
1 , f−

0 as

P0,3f
+
1 =

[
a0,3 cos(2x)
b0,3 sin(2x)

]
+
[
ã0,3 cos(4x)
b̃0,3 sin(4x)

]
, P0,3f

−
0 = 0 ,

P1,2f
−
0 = i

[
a1,2 cos(2x)
b1,2 sin(2x)

]
, P2,1f

−
0 = ñ2,1f

−
1 + ũ2,1f

−
−1 ,

(5.1.23)

where ã0,3, b̃0,3, ñ2,1, ũ2,1 ∈ R and

a0,3 := 1
64c35/2

h (c2
h + 1)

(
6c22

h + 2c20
h + 27c18

h + 21c16
h − 379c14

h

− 361c12
h + 575c10

h + 581c8
h − 243c6

h − 225c4
h − 162c2

h − 162
)
,

b0,3 := 1
128c37/2

h (c2
h + 1)

(
6c26

h + 10c24
h + 35c22

h + 21c20
h − 146c18

h − 146c16
h

− 46c14
h − 34c12

h + 470c10
h + 482c8

h − 333c6
h − 315c4

h − 162c2
h − 162

)
,

a1,2 = −c4
h + 3
4c7

h
, b1,2 := c4

h + 1
4c4

h
.

(5.1.24)

The rest of the section is devoted to the proof of Lemma 5.1.4.

We denote, for any k ∈ N,

f+
k :=

 c1/2
h cos(kx)

c−1/2
h sin(kx)

 , f−
k :=

−c1/2
h sin(kx)

c−1/2
h cos(kx)

 ,
f+

−k :=

 c1/2
h cos(kx)

−c−1/2
h sin(kx)

 , f−
−k :=

 c1/2
h sin(kx)

c−1/2
h cos(kx)

 ,
(5.1.25)

and we define for any k ∈ Z the spaces

Wk := span
{
f+
k , f

−
k , f

+
−k, f

−
−k

}
, Wσ

k := spanR{fσk , fσ−k} , σ = ± . (5.1.26)

We have the following
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Lemma 5.1.5. The jets of the operator Bµ,ϵ in (5.1.10) act on the spaces in (5.1.26) as
follows1

Bℓ,jW
σ
k = i ℓW(−1)ℓσ

k−j +R i ℓW(−1)ℓσ
k−j+2 +R · · · +R i ℓW(−1)ℓσ

k+j︸ ︷︷ ︸
j+1 terms

, f−
0 /∈ B0,jW

−
k , (5.1.27)

with ℓ, j = 0, . . . , 4, while the operator J in (1.2.4) acts as JW±
k = W∓

k .

Proof. The first formula in (5.1.27) follows by (5.1.10)-(5.1.11). Let us prove the second
statement by contradiction supposing that there exists g ∈ W−

k such that B0,jg = f−
0 . Then

1 =
(
f−

0 , f
−
0
)

=
(
B0,jg, f

−
0
)

=
(
g,B0,jf

−
0
)

= 0, by (5.1.10), which is a contradiction.

We now give an extended version of Lemma 4.1.4.

Lemma 5.1.6. The space H1(T) decomposes as H1(T) = V0,0 ⊕ U ⊕ WH1, with WH1 =
,⊕

k≥2
Wk

H1
where the subspaces V0,0,U and Wk, defined below, are invariant under L0,0 and

the following properties hold:

(i) V0,0 = span{f+
1 , f

−
1 , f

+
0 , f

−
0 } is the generalized kernel of L0,0. For any λ ̸= 0 the

operator L0,0 − λ : V0,0 → V0,0 is invertible and

(L0,0 − λ)−1f+
1 = − 1

λ
f+

1 , (L0,0 − λ)−1f−
1 = − 1

λ
f−

1 , (L0,0 − λ)−1f−
0 = − 1

λ
f−

0 ,

(5.1.28a)

(L0,0 − λ)−1f+
0 = − 1

λ
f+

0 + 1
λ2 f

−
0 . (5.1.28b)

(ii) U := span
{
f+

−1, f
−
−1

}
. For any λ ̸= ±2i the operator L0,0 − λ : U → U is invertible

and
(L0,0 − λ)−1f+

−1 = 1
λ2 + 4c2

h

(
−λf+

−1 + 2chf
−
−1

)
,

(L0,0 − λ)−1f−
−1 = 1

λ2 + 4c2
h

(
−2chf

+
−1 − λf−

−1

)
.

(5.1.28c)

(iii) Each subspace Wk in (5.1.26) is invariant under L0,0. For any |λ| < δ(h) small
enough and any natural k ≥ 2, the operator L0,0 − λ : Wk → Wk is invertible and for
any f ∈ Wk and any natural number N

(L0,0 − λ)−1f = L ⊥

0,0f + λ
(
L ⊥

0,0
)2
f + · · · + λN−1(L ⊥

0,0
)N
f + λNφf,N (λ, x) ,

(5.1.28d)
1the sum is direct if j ≤ k, otherwise some spaces may overlap.
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for some analytic function λ 7→ φf,N (λ, ·) ∈ Wk, where L ⊥

0,0 : Wk → Wk is

L ⊥
0,0 := (

c2
h∂

2
x + |D| tanh(h|D|)

)−1
[

ch∂x −|D| tanh(h|D|)
1 ch∂x

]
, L ⊥

0,0W
±
k = W∓

k . (5.1.29)

Remark 5.1.7. We will use in the sequel the following decomposition formula[
a cos(x)
b sin(x)

]
= 1

2(ac
− 1

2
h + bc

1
2
h )f+

1 + 1
2(ac

− 1
2

h − bc
1
2
h )f+

−1 ,[
a sin(x)
b cos(x)

]
= 1

2(bc
1
2
h − ac

− 1
2

h )f−
1 + 1

2(bc
1
2
h + ac

− 1
2

h )f−
−1 ,

∀a , b ∈ C . (5.1.30)

Notation. We denote by O(λ) an analytic function having a zero of order 1 at λ = 0 and
OZ(λm) an analytic function with valued in a subspace Z having a zero of order m at
λ = 0. We denote with O(λ−1 : λ) any function having a Laurent series at λ = 0 of the
form ∑

j∈Z\{0} ajλ
j . We denote by fWk

a function in Wk.
If h(λ) = h0 + O(λ−1 : λ), h0 ∈ C, then, by the residue theorem,

1
2πi

∮
Γ

h(λ)
λ

dλ = h0 . (5.1.31)

We prepend to the proof of Lemma 5.1.4 a list of results given by straight-forward
computations.

Lemma 5.1.8 (Action of (L0,0 − λ)−1JB0,1 on V0,0, U and W2). One has

(L0,0 − λ)−1JB0,1f
+
1 = ζ+

1
λ
f−

0 + A+
2 + λB−

2 + λ2fW+
2

+ λ3fW−
2

+ OW2(λ4) ,

(L0,0 − λ)−1JB0,1f
−
1 = A−

2 + λB+
2 + λ2fW−

2
+ λ3fW+

2
+ OW2(λ4) ,

(L0,0 − λ)−1JB0,1f
+
0 = ζ+

0
λ
f−

1 + α+
0

λ2 + 4c2
h
f+

−1 + λ
β+

0
λ2 + 4c2

h
f−

−1 ,

(L0,0 − λ)−1JB0,1f
−
0 = 0 ,

(L0,0 − λ)−1JB0,1f
+
−1 =

ζ+
−1
λ
f−

0 + A+
−2 + λfW−

2
+ OW2(λ2) ,

(L0,0 − λ)−1JB0,1f
−
−1 = fW−

2
+ OW2(λ) ,

(5.1.32)

where ζ+
1 , ζ

+
0 , α+

0 , β
+
0 , ζ

+
−1 are real numbers, and

A+
2 (x) :=


−a[1]

1 ch + (2 + c4
h)p[1]

1

2c9/2
h

cos(2x)

− (c4
h + 1)(a[1]

1 ch − 2p[1]
1 )

4c11/2
h

sin(2x)

 , B−
2 (x) :=


(c4

h + 1)
(
(c4

h + 4)p[1]
1 − 2a[1]

1 ch
)

4c19/2
h

sin(2x)

(c4
h + 1)

(
a

[1]
1 ch(c4

h + 2) − (3c4
h + 4)p[1]

1
)

8c21/2
h

cos(2x)

 ,
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A−
2 (x) :=


(
a

[1]
1 ch − (c4

h + 2)p[1]
1
)

2c9/2
h

sin(2x)

− (c4
h + 1)(a[1]

1 ch − 2p[1]
1 )

4c11/2
h

cos(2x)

 , B+
2 (x) :=


(c4

h + 1)
(
(c4

h + 4)p[1]
1 − 2a[1]

1 ch
)

4c19/2
h

cos(2x)

−
(c4

h + 1)
(
a

[1]
1 ch(c4

h + 2) − (3c4
h + 4)p[1]

1
)

8c21/2
h

sin(2x)

 ,

A+
−2(x) :=


(c3

hp
[1]
1 − a

[1]
1 )

2c7/2
h

cos(2x)

−a
[1]
1 (c4

h + 1)
4c9/2

h

sin(2x)

 . (5.1.33)

Moreover

(L0,0 − λ)−1JB0,1A+
2 = ζ+

2
λ
f−

1 + α+
2

λ2 + 4c2
h
f+

−1 + A+
3 + λβ+

2
λ2 + 4c2

h
f−

−1 + λfW−
3

+ OW3(λ2) ,

(L0,0 − λ)−1JB0,1B−
2 = ζ+

3
λ
f+

1 + α+
3

λ2 + 4c2
h
f−

−1 + fW−
3

+ λβ+
3

λ2 + 4c2
h
f+

−1 + OW3(λ) ,

(L0,0 − λ)−1JB0,1A−
2 = ζ−

2
λ
f+

1 + α−
2

λ2 + 4c2
h
f−

−1 + fW−
3

+ λβ−
2

λ2 + 4c2
h
f+

−1 + λfW+
3

+ OW3(λ2) ,

(L0,0 − λ)−1JB0,1B+
2 = ζ−

3
λ
f−

1 + α−
3

λ2 + 4c2
h
f+

−1 + fW+
3

+ λβ−
3

λ2 + 4c2
h
f−

−1 + OW3(λ) , (5.1.34)

where ζ−
2 , β±

2 , α±
3 and β±

3 are real numbers and

ζ+
2 := −(a[1]

1 )2c2
h − 2a[1]

1 (c4
h + 2)chp

[1]
1 + (3c4

h + 4)(p[1]
1 )2

8c5
h

, (5.1.35)

α+
2 := −α−

2 := −(a[1]
1 )2ch − 2a[1]

1 (c4
h + 1)p[1]

1 + c3
h(p[1]

1 )2

4c3
h

,

ζ+
3 := ζ−

3 :=
(c4

h + 1)(a[1]
1 ch − 2p[1]

1 )
(
(c4

h + 2)p[1]
1 − a

[1]
1 ch

)
8c10

h
,

A+
3 (x) :=


(a[1]

1 )2(c4
h + 3)c2

h − 2chp
[1]
1 a

[1]
1 (c8

h + 9c4
h + 6) + (11c8

h + 29c4
h + 12)(p[1]

1 )2

32c19/2
h

cos(3x)

(3c4
h + 1)

(
(a[1]

1 )2c2
h − 2chp

[1]
1 a

[1]
1 (c4

h + 2) + (3c4
h + 4)(p[1]

1 )2)
32c21/2

h

sin(3x)

 .

Proof. Use the operator B0,1 in (5.1.10b), Lemma 5.1.6 and that

1
2 tanh(2h) − 4c2

h
= −1 + c4

h
4c6

h
,

1
3 tanh(3h) − 9c2

h
= −1 + 3c4

h
24c6

h
,

which comes from the classical identity tanh(a+ b) = tanh(a)+tanh(b)
1+tanh(a) tanh(b) .
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Lemma 5.1.9 (Action of (L0,0 − λ)−1JB1,0 on V0,0 and U). One has

(L0,0 − λ)−1JB1,0f
+
1 = −i µh

λ
f+

1 + i 2chµh

λ2 + 4c2
h
f−

−1 − i λµh

λ2 + 4c2
h
f+

−1 ,

(L0,0 − λ)−1JB1,0f
−
1 = −i µh

λ
f−

1 + i 2chµh

λ2 + 4c2
h
f+

−1 + iλ µh

λ2 + 4c2
h
f−

−1 ,

(L0,0 − λ)−1JB1,0f
±
0 = 0 ,

(L0,0 − λ)−1JB1,0f
+
−1 = i µh

λ
f+

1 − i 2chµh

λ2 + 4c2
h
f−

−1 + i λµh

λ2 + 4c2
h
f+

−1 ,

(L0,0 − λ)−1JB1,0f
−
−1 = −i µh

λ
f−

1 + i 2chµh

λ2 + 4c2
h
f+

−1 + iλ µh

λ2 + 4c2
h
f−

−1 ,

(5.1.36)

with
µh := (c4

h − 1)h − c2
h

2ch
. (5.1.37)

Proof. We apply the operator B1,0 = ℓ1,0(|D|)Πs in (5.1.10b) to the vectors in V0,0 and use
(5.1.30) and (5.1.28a)-(5.1.28c).

Lemma 5.1.10 (Action of (L0,0 − λ)−1JB0,2 on V0,0). One has

(L0,0 − λ)−1JB0,2f
+
1 = τ+

1
λ
f−

1 + ℓ+1
λ2 + 4c2

h
f+

−1 + L+
3 + λm+

1
λ2 + 4c2

h
f−

−1 +OW3(λ) ,

(L0,0 − λ)−1JB0,2f
−
1 = τ−

1
λ
f+

1 + ℓ−1
λ2 + 4c2

h
f−

−1 + fW−
3

+ OU⊕W3(λ) , (5.1.38)

(L0,0 − λ)−1JB0,2f
+
0 = τ+

0
λ
f−

0 + fW+
2

+ OW2(λ) , (L0,0 − λ)−1JB0,2f
−
0 = 0 ,

where m+
1 , τ−

1 , τ+
0 , are real numbers, and

τ+
1 := 1

4ch

(
2a[0]

2 c2
h + a

[2]
2 c2

h + 2f2(1 − c4
h) − 4chp

[0]
2 − 2chp

[2]
2
)
,

ℓ+1 := 1
2
(
c2

h(2a[0]
2 + a

[2]
2 ) − 2f2(1 − c4

h)
)
, ℓ−1 := 1

2
(
c2

h(−2a[0]
2 + a

[2]
2 ) + 2f2(1 − c4

h)
)
,

L+
3 (x) :=


−
(
a

[2]
2 ch(c4

h + 3) − 2(5c4
h + 3)p[2]

2 )
16c9/2

h

cos(3x)

−(3c4
h + 1)(a[2]

2 ch − 2p[2]
2 )

16c11/2
h

sin(3x)

 . (5.1.39)

Proof. We apply the operators B0,2 in (5.1.10c) and J in (1.2.4) to the vectors in V0,0. Then
we use (5.1.30) and Lemma 5.1.6 to obtain (5.1.38)-(5.1.39).
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Lemma 5.1.11 (Action of (L0,0 − λ)−1JB1,1 on V0,0 and U). One has

(L0,0 − λ)−1JB1,1f
+
1 = − i c

− 1
2

h
λ2 f−

0 + i c
− 1

2
h
λ

f+
0 + i fW−

2
+ OW(λ) ,

(L0,0 − λ)−1JB1,1f
−
1 = i c

− 3
2

h
λ

f−
0 + i Q+

2 + λi fW−
2

+ OW2(λ2) ,

(L0,0 − λ)−1JB1,1f
+
0 = i c

− 3
2

h
λ

f+
1 − 2i c

− 1
2

h
λ2 + 4c2

h
f−

−1 + λ
i c

− 3
2

h
λ2 + 4c2

h
f+

−1 ,

(L0,0 − λ)−1JB1,1f
−
0 = i c

− 1
2

h
λ

f−
1 + 2i c

1
2
h

λ2 + 4c2
h
f+

−1 + λ
i c

− 1
2

h
λ2 + 4c2

h
f−

−1 ,

(5.1.40)

where

Q+
2 (x) :=


(c4

h + 3)p[1]
1

4c9/2
h

cos(2x)

3(c4
h + 1)p[1]

1

8c11/2
h

sin(2x)

 . (5.1.41)

Proof. We have B1,1 = −i p1(x)J by (5.1.10c), with p1(x) = p
[1]
1 cos(x) in (A.4.22a) and

p
[1]
1 = −2c−1

h . Use also Lemma 5.1.6.

Lemma 5.1.12 (Action of (L0,0 − λ)−1JB2,0 on f−
0 ). One has

(L0,0 − λ)−1JB2,0f
−
0 = h

λ2 f
−
0 − h

λ
f+

0 . (5.1.42)

Proof. We apply B2,0 = ℓ2,0(|D|)Πev in (5.1.10c) and (5.1.28b).

Lemma 5.1.13 (Action of ((L0,0 − λ)−1JB0,1)2 on V0,0). One has

[(L0,0 − λ)−1JB0,1]2f+
1 = ζ+

2
λ
f−

1 + α+
2

λ2 + 4c2
h
f+

−1 + ζ+
3 f

+
1 + A+

2

+ λ
(
fW−

1
+ fW−

3

)
+ λ2fW+

1
+ OW3(λ2) + O(λ3) ,

[(L0,0 − λ)−1JB0,1]2f−
1 = ζ−

2
λ
f+

1 + α−
2

λ2 + 4c2
h
f−

−1 + ζ−
3 f

−
1 + fW−

3
+ λ

(
fW+

1
+ fW+

3

)
+ λ2fW−

1
+ OW3(λ2) + O(λ3) ,

(5.1.43)

[(L0,0 − λ)−1JB0,1]2f+
0 = ζ+

0 B+
2 + α+

0
4c2

h
A+

−2 + O(λ−1 : λ) , [(L0,0 − λ)−1JB0,1]2f−
0 = 0 .
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Proof. Apply twice Lemma 5.1.8 and use that

λ2 (L0,0 − λ)−1JB0,1 fW±
2

= λα±
5 f

∓
1 + λ2fW±

1
+ OW3(λ2) + O(λ3) ,

λ3 (L0,0 − λ)−1JB0,1 fW∓
2

= λ2α±
6 f

±
1 + O(λ3) ,

(L0,0 − λ)−1JB0,1OW2(λ4) = O(λ3)

where α±
5 , α±

6 are real numbers.

We further list a series of identities to exploit later.
By applying first Lemma 5.1.9 and then Lemma 5.1.8 we get

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB1,0f
+
1 = −iµh

[ζ+
1
λ2 f

−
0 + 1

λ
A+

2 + fW−
2

+ α7f
−
0 + OW2(λ) + OW0(λ2)

]
,

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB1,0f
−
1 = −iµh

[ 1
λ

(
A−

2 −
2chζ

+
−1

λ2 + 4c2
h
f−

0

)
+ J+

2 + λfW−
2

+ OW2(λ2)
]
,

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB1,0f
±
0 = 0 , (5.1.44)

where α7 is a real number and

J+
2 (x) := B+

2 (x) − 1
2ch

A+
−2(x) (5.1.33)=


(5c4

h + 4)p[1]
1 − a

[1]
1 ch(c4

h + 2)
4c19/2

h

cos(2x)

(c4
h + 1)

(
(3c4

h + 4)p[1]
1 − 2a[1]

1 ch
)

8c21/2
h

sin(2x)

 . (5.1.45)

By applying first Lemma 5.1.8 and then Lemma 5.1.9, and since JB1,0Wk ⊆ Wk, we get

(L0,0 − λ)−1JB1,0(L0,0 − λ)−1JB0,1f
+
1 = i fW−

2
+ OW2(λ) ,

(L0,0 − λ)−1JB1,0(L0,0 − λ)−1JB0,1f
−
1 = i S+

2 + iλfW−
2

+ OW2(λ2) ,

(L0,0 − λ)−1JB1,0(L0,0 − λ)−1JB0,1f
+
0 = i fW−

1
+ O(λ−1 : λ) ,

(L0,0 − λ)−1JB1,0(L0,0 − λ)−1JB0,1f
−
0 = 0 ,

(5.1.46)

where, using also (5.1.29), (5.1.10b)–(5.1.12a), (5.1.33)

i S+
2 (x) := (L0,0) ⊥JB1,0A−

2 = i


(c8

hh + c6
h − 2c4

hh + c2
h + h)(a[1]

1 ch − 2p[1]
1 )

4c21/2
h

cos(2x)

(c8
hh + c6

h − 2c4
hh + c2

h + h)(a[1]
1 ch − 2p[1]

1 )
8c23/2

h

sin(2x)

 .
(5.1.47)
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We are now in position to prove Lemmata 5.1.4.
Second-order jets. The proof is divided in three parts, one for each group of formulas in
(5.1.21).
Computation of P0,2fσj . Since P0,ϵf

−
0 = f−

0 (cfr. Lemma 4.1.6) we have

P0,2f
−
0 = 0 . (5.1.48)

On the other hand, for fσj ∈ {f+
1 , f

−
1 , f

+
0 }, in view of (5.1.15) we have, by (5.1.28a)-(5.1.28b)

and since B0,1f
−
0 = B0,2f

−
0 = 0,

P0,2f
σ
j = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,2f

σ
j dλ (5.1.49)

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB0,1f

σ
j dλ =: Iσj + IIσj .

In case fσj = f+
0 one readily sees, in view of (5.1.38) for I+

0 and (5.1.43) for II+
0 , that

P0,2f
+
0 ∈ W+

2 which implies the second statement in (5.1.21a). We now compute the
remaining four terms.

First by Lemma 5.1.10 and the residue theorem

I+
1 = − ℓ+1

4c2
h
f+

−1 − L+
3 , I−

1 = − ℓ−1
4c2

h
f−

−1 + fW−
3
. (5.1.50)

Then by (5.1.43) and the residue theorem

II+
1 = α+

2
4c2

h
f+

−1 + ζ+
3 f

+
1 + A+

3 , II−
1 = α−

2
4c2

h
f−

−1 + ζ−
3 f

−
1 + fW−

3
. (5.1.51)

In conclusion we have formulae (5.1.21a), (5.1.21b) with

P0,2f
+
1 = α+

2 − ℓ+1
4c2

h︸ ︷︷ ︸
u+

0,2

f+
−1 + ζ+

3︸︷︷︸
n0,2

f+
1 −L+

3 + A+
3︸ ︷︷ ︸[

a0,2 cos(3x)
b0,2 sin(3x)

], P0,2f
−
1 = α−

2 − ℓ−1
4c2

h︸ ︷︷ ︸
u−

0,2

f−
−1 + ζ−

3︸︷︷︸
n0,2

f−
1 + fW−

3
,

and we obtain the explicit expression (5.1.21c) of the coefficients given by

n0,2 := ζ+
3 , u+

0,2 := α+
2 − ℓ+1
4c2

h
, u−

0,2 := α−
2 − ℓ−1
4c2

h
,

[
a0,2 cos(3x)
b0,2 sin(3x)

]
:= A+

3 (x) − L+
3 (x) ,

with ζ+
3 , α±

2 , A+
3 in (5.1.35) and ℓ±1 , L+

3 in (5.1.39).
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Computation of P2,0f
−
0 . Since Pµ,0f−

0 = f−
0 (cfr. Lemma 4.1.7) we have

P2,0f
−
0 = 0 . (5.1.52)

Computation of P1,1fσj . In case fσj ∈ {f+
1 , f

−
1 , f

−
0 } by (5.1.15), (5.1.16) and (5.1.28a),

we have

P1,1f
σ
j = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,1f

σ
j dλ+ 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB1,0f

σ
j dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,0(L0,0 − λ)−1JB0,1f

σ
j dλ =: IIIσj + IVσ

j + Vσ
j , (5.1.53a)

whereas, by (5.1.28b), (5.1.36), (5.1.32)

P1,1f
+
0 = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,1f

+
0 dλ+ 1

2πi

∮
Γ

(L0,0 − λ)−1

λ2 JB1,1f
−
0 dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,0(L0,0 − λ)−1JB0,1f

+
0 dλ =: III+

0 + IV+
0 + V+

0 . (5.1.53b)

When fσj = f+
1 one readily sees, in view of (5.1.40) for III+

1 , (5.1.44) for IV+
1 and (5.1.46)

for V+
1 , that P1,1f

+
1 ∈ iW−

0 ⊕R iW−
2 as stated in (5.1.21e). Similarly, when fσj = f+

0 one
has, in view of (5.1.40) for III+

0 and IV+
0 and (5.1.46) for V+

0 , that P1,1f
+
0 ∈ iW−

1 as stated
in (5.1.21e).

We now compute the remaining terms. By Lemma 5.1.11 and the residue theorem

III−
1 = −i Q+

2 , III−
0 = − i

2c3/2
h

f+
−1 . (5.1.54)

By (5.1.44) we have
IV−

1 = −iµhJ+
2 , IV−

0 = 0 . (5.1.55)

By (5.1.46) we have
V−

1 = i S+
2 , V−

0 = 0 . (5.1.56)

In conclusion we have formulae (5.1.21e) with

P1,1f
−
1 = −i Q+

2 + i S+
2 − iµhJ+

2︸ ︷︷ ︸
i
[
a1,1 cos(2x)
b1,1 sin(2x)

] , P1,1f
−
0 = − i

2c3/2
h

f+
−1 , (5.1.57)

and we obtain the explicit expression (5.1.22) of the coefficients given by[
a1,1 cos(2x)
b1,1 sin(2x)

]
:= −Q+

2 + S+
2 − µhJ+

2
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with S+
2 in (5.1.47), µh in (5.1.37), Q+

2 in (5.1.41) and J+
2 in (5.1.45).

This concludes the proof of Lemma 5.1.4.

Third-order jets.
Computation of P0,3fσj . Similarly to (5.1.48) we have P0,3f

−
0 = 0 (as stated in (5.1.23)).

Let us now compute P0,3f
+
1 . By (5.1.15), (5.1.16) and (5.1.28a)

P0,3f
+
1 = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,3f

+
1 dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,2(L0,0 − λ)−1JB0,1f

+
1 dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB0,2f

+
1 dλ

− 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB0,1f

+
1 dλ

=: VI + VII + VIII + IX . (5.1.58)

We now compute these four terms.

VI
)

By (5.1.10d) we have B0,3 =
[

a3(x) −p3(x)∂x
∂x ◦ p3(x) 0

]
with p3(x), a3(x) in (A.4.22b)-

(A.4.23b). Then B0,3f
−
0 = 0 whereas JB0,3f

+
1 = α10f

−
0 + W−

2 + fW−
4

where α10 ∈ R
and

W−
2 (x) :=


−c

1
2
h (p[1]

3 + p
[3]
3 ) sin(2x)

−ch(a[1]
3 + a

[3]
3 ) + (p[1]

3 + p
[3]
3 )

2c
1
2
h

cos(2x)

 . (5.1.59)

Hence by (5.1.28d) we get

(L0,0 − λ)−1JB0,3f
+
1 = L ⊥

0,0(W−
2 + fW−

4
) + O(λ−1 : λ) ,

and, by (5.1.31), the term VI in (5.1.58) is

VI = −L ⊥

0,0W−
2 + f̃W+

4
, (5.1.60)

with

L ⊥

0,0W−
2 (x) = −

κ1 cos(2x)

ς1 sin(2x)

 , κ1 : = ch(a[1]
3 + a

[3]
3 ) − (c4

h + 2)(p[1]
3 + p

[3]
3 )

2c9/2
h

,

ς1 : = (c4
h + 1)(ch(a[1]

3 + a
[3]
3 ) − 2(p[1]

3 + p
[3]
3 ))

4c11/2
h

.

(5.1.61)



5.1. EXPANSION OF Bµ,ϵ 135

VII
)

By Lemma 5.1.8 and since B0,2f
−
0 = 0, we get

(L0,0 − λ)−1JB0,2(L0,0 − λ)−1JB0,1f
+
1 = (L0,0 − λ)−1JB0,2A+

2 (5.1.62)
+ λ(L0,0 − λ)−1JB0,2fW−

2
+ λ2(L0,0 − λ)−1JB0,2fW+

2
+ O(λ) .

Applying the operators B0,2 in (5.1.10c) and J in (1.2.4) to the vector A+
2 in (5.1.33) one

obtains
JB0,2A+

2 = X−
2 + fW−

0
+ fW−

4
, (5.1.63a)

where

X−
2 (x) :=


−

(c4
h − 1)2f2(a[1]

1 ch − 2p[1]
1 ) + ch(c4

h + 1)p[0]
2
(
(c4

h + 2)p[1]
1 − a

[1]
1 ch

)
c11/2

h (c4
h + 1)

sin(2x)

−
a

[0]
2 ch

(
(c4

h + 2)p[1]
1 − a

[1]
1 ch

)
+ (c4

h + 1)p[0]
2 (a[1]

1 ch − 2p[1]
1 )

2c11/2
h

cos(2x)

 .

(5.1.63b)
On the other hand, in view of (5.1.27) and Lemma 5.1.6, one has

λ(L0,0 − λ)−1JB0,2fW−
2

= O(λ) , λ2(L0,0 − λ)−1JB0,2fW+
2

= O(λ) . (5.1.63c)

Then Lemmata 5.1.10, 5.1.6, (5.1.62) and (5.1.63) give

(L0,0 − λ)−1JB0,2(L0,0 − λ)−1JB0,1f
+
1 = L ⊥

0,0(X−
2 + fW−

4
) + O(λ−1 : λ) ,

and, by (5.1.31), the term VII in (5.1.58) is

VII = L ⊥

0,0X−
2 + f̃W+

4
, (5.1.64)

with, by (5.1.29) and (5.1.63b),

L ⊥

0,0X−
2 (x) =

[
κ2 cos(2x)
ς2 sin(2x)

]
(5.1.65)

with
κ2 :=

1
2c21/2

h

[
a

[1]
1 ch

(
a

[0]
2 c2

h + (c4
h − 1)2f2 − 2(c4

h + 1)chp
[0]
2
)

+p
[1]
1
(

− a
[0]
2 (c4

h + 2)c2
h − 2(c4

h − 1)2f2 + (c8
h + 5c4

h + 4)chp
[0]
2
)]
,

ς2 :=
1

4c23/2
h

[
a

[1]
1 ch

(
a

[0]
2 c2

h(c4
h + 1) + (c4

h − 1)2f2 − ch(c8
h + 3c4

h + 2)p[0]
2
)

+p[1]
1
(

− a
[0]
2 (c8

h + 3c4
h + 2)c2

h − 2(c4
h − 1)2f2 + (3c8

h + 7c4
h + 4)chp

[0]
2
)]
.
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VIII
)

By Lemma 5.1.10, (5.1.39) and Lemma 5.1.6 we get

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB0,2f
+
1 = (5.1.66)

τ+
1
λ

(L0,0 − λ)−1JB0,1f
−
1 + ℓ+1

λ2 + 4c2
h
(L0,0 − λ)−1JB0,1f

+
−1 + L ⊥

0,0JB0,1L+
3

+ λm+
1

λ2 + 4c2
h
(L0,0 − λ)−1JB0,1f

−
−1 + (L0,0 − λ)−1JB0,1OW3(λ) + O(λ) .

Applying the operators B0,1 in (5.1.10b) and J in (1.2.4) to the vector L+
3 in (5.1.39) one

obtains
JB0,1L+

3 = Y−
2 + fW−

4
, (5.1.67a)

where

Y−
2 (x) :=


p

[1]
1
(
a

[2]
2 ch(3 + c4

h) − 2(3 + 5c4
h)p[2]

2
)

16c9/2
h

sin(2x)

−
3(1 + 3c4

h)p[1]
1 (a[2]

2 ch − 2p[2]
2 ) + a

[1]
1 ch

(
− a

[2]
2 ch(3 + c4

h) + 2(3 + 5c4
h)p[2]

2
)

32c11/2
h

cos(2x)

 .
(5.1.67b)

In view of (5.1.27) and Lemma 5.1.6, one obtains by inspection

λm+
1

λ2 + 4c2
h
(L0,0 − λ)−1JB0,1f

−
−1 = O(λ) , (L0,0 − λ)−1JB0,1OW3(λ) = O(λ) . (5.1.67c)

Then (5.1.66), Lemmata 5.1.8, 5.1.6 and (5.1.67) give

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB0,2f
+
1 = τ+

1 B+
2 + ℓ+1

4c2
h
A+

−2 + L ⊥

0,0(Y−
2 + fW−

4
) + O(λ−1 : λ) ,

and, by (5.1.31), the term VIII in (5.1.58) is

VIII = τ+
1 B+

2 + ℓ+1
4c2

h
A+

−2 + L ⊥

0,0Y−
2 + f̃W+

4
, (5.1.68)

where

L ⊥

0,0Y−
2 (x) =

κ3 cos(2x)

ς3 sin(2x)

 . (5.1.69)

with

κ3 : = a
[1]
1 ch

(
a

[2]
2 ch(c4

h + 3) − 2(5c4
h + 3)p[2]

2
)

− a
[2]
2 ch(c8

h + 13c4
h + 6)p[1]

1 + 2(c4
h + 3)(5c4

h + 2)p[1]
1 p

[2]
2

32c19/2
h

,
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ς3 : = (c4
h + 1)

[
a

[1]
1 ch

(
a

[2]
2 ch(c4

h + 3) − 2(5c4
h + 3)p[2]

2
)

− 2a[2]
2 ch(5c4

h + 3)p[1]
1 + 4(7c4

h + 3)p[1]
1 p

[2]
2
]

64c21/2
h

.

IX
)

By (5.1.43) we get

[(L0,0 − λ)−1JB0,1]3f+
1 = ζ+

2
λ

(L0,0 − λ)−1JB0,1f
−
1 (5.1.70a)

+ α+
2

λ2 + 4c2
h
(L0,0 − λ)−1JB0,1f

+
−1 + ζ+

3 (L0,0 − λ)−1JB0,1f
+
1 + (L0,0 − λ)−1JB0,1A+

3

+ λ(L0,0 − λ)−1JB0,1
(
fW−

1
+ fW−

3

)
+ λ2(L0,0 − λ)−1JB0,1fW+

1

+ (L0,0 − λ)−1JB0,1OW3(λ2) + (L0,0 − λ)−1JB0,1O(λ3) .
(5.1.70b)

In view of (5.1.27) and Lemma 5.1.6 the terms in the two lines in (5.1.70b) are

λ(L0,0 − λ)−1JB0,1
(
fW−

1
+ fW−

3

)
= O(λ) , λ2(L0,0 − λ)−1JB0,1fW+

1
= O(λ) ,

(L0,0 − λ)−1JB0,1OW3(λ2) = O(λ2) , (L0,0 − λ)−1JB0,1O(λ3) = O(λ) .

The remaining terms in (5.1.70), again by Lemma 5.1.8, are

[(L0,0 − λ)−1JB0,1]3f+
1 = ζ+

2 B+
2 + α+

2
4c2

h
A+

−2 + ζ+
3 A+

2 + L ⊥

0,0JB0,1A+
3 + O(λ−1 : λ) .

(5.1.71)

By applying the operators B0,1 in (5.1.10b) and J in (1.2.4) to the vector A+
3 in (5.1.35)

one gets
JB0,1A+

3 = Z−
2 + fW−

4
(5.1.72)

where

Z−
2 (x) := −


p

[1]
1

(
(a[1]

1 )2(c4
h+3)c2

h−2a[1]
1 p

[1]
1 (c8

h+9c4
h+6)ch+(p[1]

1 )2(11c8
h+29c4

h+12)
)

32c19/2
h

sin(2x)

(a[1]
1 ch−p[1]

1 )
(

(a[1]
1 )2(c4

h+3)c2
h−2a[1]

1 p
[1]
1 (c8

h+13c4
h+6)ch+3(p[1]

1 )2(9c8
h+15c4

h+4)
)

64c21/2
h

cos(2x)

 .
(5.1.73)

Finally, by (5.1.71) and (5.1.72), we get that the term IX in (5.1.58) is

IX = −ζ+
2 B+

2 − α+
2

4c2
h
A+

−2 − ζ+
3 A+

2 − L ⊥

0,0
(
Z−

2 + fW−
4

)
, (5.1.74)
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where

L ⊥

0,0Z−
2 =

κ4 cos(2x)

ς4 sin(2x)

 (5.1.75)

where

κ4 := 1
64c29/2

h

(
− (a[1]

1 )3(c4
h + 3)c3

h + (a[1]
1 )2p

[1]
1 (3c8

h + 31c4
h + 18)c2

h

− a
[1]
1 (p[1]

1 )2(2c12
h + 49c8

h + 101c4
h + 36)ch + (p[1]

1 )3(11c12
h + 67c8

h + 86c4
h + 24)

)
ς4 := (c4

h + 1)
128c31/2

h

(
− (a[1]

1 )3(c4
h + 3)c3

h + 2(a[1]
1 )2p

[1]
1 (c8

h + 14c4
h + 9)c2

h

− a
[1]
1 (p[1]

1 )2(31c8
h + 89c4

h + 36)ch + 2(p[1]
1 )3(19c8

h + 37c4
h + 12)

)
In conclusion, by (5.1.58), (5.1.60), (5.1.64), (5.1.68) and (5.1.74) we deduce that

P0,3f
+
1 = L ⊥

0,0
(
−W−

2 + X−
2 + Y−

2 − Z−
2

)
+ (τ+

1 − ζ+
2 )B+

2 + ℓ+1 − α+
2

4c2
h

A+
−2 − ζ+

3 A+
2 + f̃W+

4

which proves the expansion of P0,3f
+
1 in (5.1.23) with[

a0,3 cos(2x)
b0,3 sin(2x)

]
:=
[
(κ1 + κ2 + κ3 − κ4) cos(2x)
(ς1 + ς2 + ς3 − ς4) sin(2x)

]

+ (τ+
1 − ζ+

2 )B+
2 (x) + ℓ+1 − α+

2
4c2

h
A+

−2(x) − ζ+
3 A+

2 (x) ,

with κi, ςi, i = 1, . . . , 4 in (5.1.61), (5.1.65), (5.1.69), (5.1.75), B+
2 , A+

−2 A+
2 in (5.1.33),

ζ+
2 , α+

2 , ζ+
3 in (5.1.35) and ℓ+1 , τ+

1 in (5.1.39), resulting in the coefficients a0,3 and b0,3 in
(5.1.24).
Computation of P1,2f

−
0 . By (5.1.15), (5.1.16) and the fact that B1,0f

−
0 = B0,1f

−
0 =

B0,2f
−
0 = 0, the term P1,2f

−
0 reduces to

P1,2f
−
0 = − 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,2f

−
0 dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB1,1f

−
0 dλ =: X + XI . (5.1.76)

We now compute the two terms.
X
)

By (5.1.103) we have JB1,2f
−
0 = i a3f

−
0 + i W−

−2 with W−
−2(x) := p

[2]
2

[
0

cos(2x)

]
and, by

(5.1.28),

X (5.1.31)= −i L ⊥

0,0W−
−2 , L ⊥

0,0W−
−2(x) (5.1.29)= p

[2]
2

 c−4
h cos(2x)

1 + c4
h

2c5
h

sin(2x)

 . (5.1.77)
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XI
)

By Lemmata 5.1.11, 5.1.8 one has

(L0,0 − λ)−1JB0,1(L0,0 − λ)−1JB1,1f
−
0 = i c

− 1
2

h B+
2 + i 1

2c3/2
h

A+
−2 + O(λ−1 : λ) ,

and therefore
XI = i c

− 1
2

h B+
2 + i 1

2c3/2
h

A+
−2 . (5.1.78)

In conclusion, by (5.1.76), (5.1.77) and (5.1.78)

P1,2f
−
0 = −i (L ⊥

0,0)W−
−2 + i c

− 1
2

h B+
2 + i 1

2c3/2
h

A+
−2 , (5.1.79)

which, in view of (5.1.77), proves the expansion of P1,2f
−
0 in (5.1.23) with

[
a1,2 cos(2x)
b1,2 sin(2x)

]
:=

−p[2]
2 c−4

h cos(2x)
−p[2]

2
1+c4

h
2c5

h
sin(2x)

+ c
− 1

2
h B+

2 (x) + 1
2c3/2

h

A+
−2(x) ,

with B+
2 and A+

−2 in (5.1.33), resulting in the coefficients a1,2 and b1,2 given in (5.1.24).
Computation of P2,1f

−
0 . By (5.1.15) and the fact that B1,0f

−
0 = B0,1f

−
0 and B2,1 = 0

the term P2,1f
−
0 reduces to

P2,1f
−
0 = 1

2πi

∮
Γ

(L0,0 − λ)−1

λ
JB0,1(L0,0 − λ)−1JB2,0f

−
0 dλ

+ 1
2πi

∮
Γ

(L0,0 − λ)−1

λ
JB1,0(L0,0 − λ)−1JB1,1f

−
0 dλ .

By repeated use of (5.1.27) and Lemma 5.1.6 one finds that P2,1f
−
0 ∈ W−

1 as stated in
(5.1.23).

5.1.3 Expansion of Bµ,ϵ

In this section we provide the expansion of the operator Bµ,ϵ defined in (5.1.4). We
introduce the notation Sym[A] := 1

2A+ 1
2A

∗.

Lemma 5.1.14 (Expansion of Bµ,ϵ). The operator Bµ,ϵ in (5.1.4) has the Taylor expan-
sion

Bµ,ϵ =
4∑
j=0

Bj + O5 (5.1.80)
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where

B0 := P ∗
0 B0P0, B1 := P ∗

0 B1P0, B2 := P ∗
0 Sym

[
B2 + B1P1

]
P0 , (5.1.81a)

B3 := P ∗
0 Sym

[
B3 + B2P1 + B1(Id − P0)P2

]
P0 , (5.1.81b)

B4 := P ∗
0 Sym

[
B4 + B3P1 + B2(Id − P0)P2 + B1(Id − P0)P3 − B1P1P0P2 + NP0P2

]
P0 ,

(5.1.81c)

the operators P0, . . . , P3 are defined in (5.1.15) and

N := 1
4
(
P ∗

2 B0 − B0P2
)

= −N∗ . (5.1.82)

It results (
Nfσk , f

σ′
k′
)

= 0 , ∀fσk , fσ
′

k′ ∈ {f+
1 , f

−
1 , f

−
0 } . (5.1.83)

Proof. In order to expand Bµ,ϵ in (5.1.4) we first expand Uµ,ϵP0. In view of (2.2.11) we
have, introducing the analytic function g(x) := (1 − x)− 1

2 for |x| < 1,

Uµ,ϵP0 = g((Pµ,ϵ − P0)2)Pµ,ϵ P0 = Pµ,ϵ g((Pµ,ϵ − P0)2)P0 , (5.1.84)

using that (Pµ,ϵ − P0)2 commutes with Pµ,ϵ, and so does g((Pµ,ϵ − P0)2). The Taylor
expansion g(x) = 1 + 1

2x+ 3
8x

2 + O(x3) implies that

g((Pµ,ϵ − P0)2) = Id + 1
2(Pµ,ϵ − P0)2︸ ︷︷ ︸

=:g2

+ 3
8(Pµ,ϵ − P0)4︸ ︷︷ ︸

=:g4

+O6 , (5.1.85)

where O6 = O((Pµ,ϵ − P0)6) ∈ L(Y ).
Furthermore, since Pµ,ϵLµ,ϵ = Lµ,ϵPµ,ϵ (see Lemma 2.2.1- item 2), applying J to both

sides and using (2.2.2), yields

P ∗
µ,ϵBµ,ϵ = Bµ,ϵPµ,ϵ where P 2

µ,ϵ = Pµ,ϵ . (5.1.86)

Therefore the operator Bµ,ϵ in (5.1.4) has the expansion

Bµ,ϵ
(5.1.84)= P ∗

0 g((Pµ,ϵ − P0)2)∗ P ∗
µ,ϵBµ,ϵ Pµ,ϵ g((Pµ,ϵ − P0)2)P0

(5.1.86)= P ∗
0 g((Pµ,ϵ − P0)2)∗ Bµ,ϵ Pµ,ϵ g((Pµ,ϵ − P0)2)P0

(5.1.85)= P ∗
0 (Id + g∗

2 + g∗
4 + O6)Bµ,ϵ Pµ,ϵ

(
Id + g2 + g4 + O6

)
P0

= Sym
[
P ∗

0
(
Bµ,ϵPµ,ϵ + 2Bµ,ϵPµ,ϵg2 + g∗

2Bµ,ϵPµ,ϵg2 + 2Bµ,ϵPµ,ϵg4
)
P0
]

+ O6

(5.1.87)

using (5.1.86) and that g2 = O2 and g4 = O4.
A further analysis of the term (5.1.87) relies on the following lemma.
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Lemma 5.1.15. Let Π+
0 be the orthogonal projection on f+

0 in (4.1.2) and Π∠ := Id − Π+
0 .

One has

B0 P0 = P ∗
0 B0 = Π+

0 , B0 P1 + B1 P0 = P ∗
1 B0 + P ∗

0 B1 , (5.1.88)
P0 P1 P0 = 0 , P0 P2 P0 = −P 2

1 P0 = −P0 P
2
1 , (5.1.89)

(Pµ,ϵ − P0)2P0 = P0(Id − Pµ,ϵ)P0 , (Pµ,ϵ − P0)4P0 = P0
(
(Id − Pµ,ϵ)P0

)2
, (5.1.90)

JPj = P ∗
j J , ∀j ∈ N0 , P ∗

0 B0PjΠ∠P0 = Π+
0 PjΠ∠P0 . (5.1.91)

Proof. We deduce that B0 P0 = Π+
0 because B0f

+
1 = B0f

−
1 = B0f

−
0 = 0, B0f

+
0 = f+

0 and
the first identity in (5.1.88) follows also since P ∗

0 B0 = B0P0 by (5.1.86). The second one
follows by expanding the identity in (5.1.86) at order 1, using the expansions of Pµ,ϵ and
Bµ,ϵ in (5.1.14) and (5.1.9). The identities in (5.1.89) follow by expanding the identity
P 2
µ,ϵ = Pµ,ϵ at order 1 and 2, getting P1P0 + P0P1 = P1 and P2P0 + P 2

1 + P0P2 = P2, and
applying P0 to the right and the left of the identities above. The first identity in (5.1.90) is
verified using that P 2

µ,ϵ = Pµ,ϵ and the second one follows by applying the first one twice.
Finally the first identity in (5.1.91) follows by expanding the identity JPµ,ϵ = P ∗

µ,ϵJ in
(2.2.2) into homogeneous orders. The last identity in (5.1.91) descends from the first of
(5.1.88), since for any g ∈ L2(T,C2) and fσk ∈ {f+

1 , f
−
1 , f

−
0 } one has(

P ∗
0 B0Pjf

σ
k , g

)
=
(
Pjf

σ
k ,B0P0g

)
=
(
Pjf

σ
k ,Π+

0 g
)

=
(
Π+

0 Pjf
σ
k , g

)
.

This concludes the proof of the lemma.

By (5.1.90) and (5.1.89) the Taylor expansions of g2P0 and g4P0 in (5.1.85) are

g2P0 = 1
2P0(Id − Pµ,ϵ)P0 = −1

2P0 P2 P0 − 1
2P0 P3 P0 − 1

2P0 P4 P0 + O5 , (5.1.92a)

g4P0 = 3
8P0(Id − Pµ,ϵ)P0(Id − Pµ,ϵ)P0 = 3

8P0 P2 P0 P2 P0 + O5 . (5.1.92b)

We now Taylor expand the operators in (5.1.87) and collect the terms of the same order.
Expression of B0: The term of order 0 in (5.1.87) is simply B0 = P ∗

0 B0P0.
Expression of B1: The term of order 1 is

B1 = 1
2P

∗
0
(
B0P1 + B1P0 + P ∗

1 B0 + P ∗
0 B1

)
P0 = P ∗

0 B1 P0

using (5.1.89) and (5.1.88) and that B0,B1 are self-adjoint.
Expression of B2: We compute the terms of order 2 in (5.1.87). By (5.1.92a) we get

B2 = Sym[P ∗
0
(
B2P0 + B1P1 + B0P2 − B0P0P2

)
P0] . (5.1.93)
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Moreover

P ∗
0 (B0P2 − B0P0P2)P0 = P ∗

0 B0(Id − P0)P2P0
(5.1.88)= B0P0(Id − P0)P2P0 = 0 ,

and from (5.1.93) descends the expression of B2 in (5.1.81a).
Expression of B3: We compute the terms of order 3 in (5.1.87). By (5.1.92a), identity
(5.1.81b) follows from

B3 = Sym[P ∗
0
(
B3 + B2P1 + B1P2 + B0P3 − (B0P1 + B1P0)P0 P2 P0 − B0 P0 P3 P0

)
P0]

= Sym[P ∗
0
(
B3 + B2P1 + B1P2 − B1P0P2

)
P0],

where we used P ∗
0 B0P3 = P ∗

0 B0P0P3 and P ∗
0 B0P1P0P2P0 = 0 by (5.1.88) and (5.1.89).

Expression of B4: At the fourth order we get, in view of (5.1.92a) and (5.1.92b),

B4 = Sym
[
P ∗

0
(
B0P4 + B1P3 + B2P2 + B3P1 + B4 − B0P0P4P0 − (B0P1 + B1P0)P0P3P0

− (B2P0 + B1P1 + B0P2)P0P2P0 + 3
4B0P0P2P0P2P0 + 1

4P
∗
2P

∗
0 B0P0P2P0

)
P0
]

= Sym
[
P ∗

0
(
B1(Id − P0)P3 + B2(Id − P0)P2 + B3P1 + B4 − B1P1P0P2P0

− 1
4B0(P0P2P0)2 + 1

4P
∗
2 B0P0P2P0

)
P0
]
, (5.1.94)

where to pass from the first to the second line we used P ∗
0 B0P4 = P ∗

0 B0P0P4 (by (5.1.88))
and P ∗

0 B0P1P0P3P0 = 0 (by (5.1.88) and (5.1.89)). We sum up the last two terms in (5.1.94)
into Sym[P ∗

0 NP0P2P0] where N is in (5.1.82). We observe that, in view of (5.1.88)-(5.1.91),
we have, for any fσk , fσ

′
k′ ∈ {f+

1 , f
−
1 , f

−
0 }, that (5.1.83) holds. Thus we obtain (5.1.81c). In

conclusion, we have proved formula (5.1.80).

Action of the jets of Bµ,ϵ on the kernel vectors. We now collect how the operators
Bi,j (cfr. (5.1.8)) acts on the vectors f+

1 , f
−
1 , f

−
0 .

Lemma 5.1.16. The first jets of the operator Bµ,ϵ in (5.1.4) act, for fσk ∈ {f+
1 , f

−
1 , f

−
0 },

as

B0,2f
σ
k = P ∗

0
(
B0,2 + B0,1P0,1

)
fσk , B2,0f

σ
k = P ∗

0
(
B2,0 + B1,0P1,0

)
fσk , (5.1.95a)

B1,1f
σ
k = P ∗

0
(
B1,1 + B1,0P0,1 + B0,1P1,0 + 1

2Π+
0 P1,1

)
fσk , (5.1.95b)

B0,3f
σ
k = P ∗

0
(
B0,3 + B0,2P0,1 + B0,1P0,2 − Sym[B0,1P0P0,2]

)
fσk ,

B3,0f
σ
k = P ∗

0
(
B3,0 + B2,0P1,0 + B1,0P2,0 − Sym[B1,0P0P2,0]

)
fσk ,

(5.1.95c)
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B1,2f
σ
k = P ∗

0
(
B1,2 + B1,1P0,1 + B0,2P1,0 + B1,0P0,2 + B0,1P1,1 + 1

2Π+
0 P1,2 (5.1.95d)

− Sym[B1,0P0P0,2 + B0,1P0P1,1]
)
fσk ,

B2,1f
σ
k = P ∗

0
(
B2,1 + B1,1P1,0 + B2,0P0,1 + B0,1P2,0 + B1,0P1,1 + 1

2Π+
0 P2,1 (5.1.95e)

− Sym[B0,1P0P2,0 + B1,0P0P1,1]
)
fσk ,

B0,4f
σ
k = P ∗

0
(
B0,4 + B0,3P0,1 + B0,2P0,2 + B0,1P0,3 (5.1.95f)
− Sym[B0,2P0P0,2 + B0,1P0P0,3 + B0,1P0,1P0P0,2 − N0,2P0P0,2]

)
fσk ,

B2,2f
σ
k = P ∗

0
(
B2,2 + B1,2P1,0 + B2,1P0,1 + B0,2P2,0 + B1,1P1,1 + B2,0P0,2 + B0,1P2,1 + B1,0P1,2

+ 1
2Π+

0 P2,2 − Sym[B0,2P0P2,0 + B1,1P0P1,1 + B2,0P0P0,2 + B0,1P0P2,1 + B1,0P0P1,2

+ B0,1P0,1P0P2,0 + B1,0P0,1P0P1,1 + B0,1P1,0P0P1,1 + B1,0P1,0P0P0,2

− N2,0P0P0,2 − N0,2P0P2,0 − N1,1P0P1,1]
)
fσk , (5.1.95g)

B1,3f
σ
k = P ∗

0
(
B1,3 + B0,3P1,0 + B1,2P0,1 + B0,2P1,1 + B1,1P0,2 + B1,0P0,3 + B0,1P1,2

+ 1
2Π+

0 P1,3 − Sym[B0,2P0P1,1 + B1,1P0P0,2 + B1,0P0P0,3 + B0,1P0P1,2 (5.1.95h)

+ B1,0P0,1P0P0,2 + B0,1P1,0P0P0,2 + B0,1P0,1P0P1,1 − N1,1P0P0,2 − N0,2P0P1,1]
)
fσk ,

with Bj, j = 0, . . . , 4, in (5.1.10) and Pj, j = 0, . . . , 3, in (5.1.15).

The proof of (5.1.95) relies on formulas (5.1.81a)–(5.1.81c) and Lemmata 5.1.17, 5.1.18
below.

Lemma 5.1.17. Let fσk ∈ {f+
1 , f

−
1 , f

−
0 }. For any j ∈ N we have

P ∗
0 Sym[Bj + Bj−1P1 + · · · + B1Pj−1]P0f

σ
k = P ∗

0
(
Bj + Bj−1P1 + · · · + B1Pj−1 + 1

2 Π+
0 Pj

)
P0f

σ
k ,

(5.1.96)
where Π+

0 is the orthogonal projection on f+
0 .

Proof. By identity (5.1.86) the operator Bµ,ϵPµ,ϵ is, like Bµ,ϵ, self-adjoint, hence its j-th jet
fulfills

Sym[BjP0 + · · · + B1Pj−1] = BjP0 + · · · + B1Pj−1 + B0Pj − Sym[B0Pj ] . (5.1.97)

We claim that, for fσk ∈ {f+
1 , f

−
1 , f

−
0 } we have

P ∗
0 (B0Pj − Sym[B0Pj ])P0f

σ
k = 1

2P
∗
0 Π+

0 PjP0f
σ
k , (5.1.98)



144 CHAPTER 5. CRITICAL THRESHOLD

which, together with (5.1.97), proves (5.1.96). Claim (5.1.98) follows, by observing that fσk
fulfills B0fσk = 0 and Π∠P0fσk = fσk (cfr. Lemma 5.1.15), then

P ∗
0 Sym[B0Pj ]P0f

σ
k = 1

2P
∗
0 B0Pjf

σ
k + 1

2P
∗
0P

∗
j B0f

σ
k = 1

2P
∗
0 B0PjΠ∠P0f

σ
k

(5.1.91)= 1
2Π+

0 Pjf
σ
k .

(5.1.99)
Using again that P ∗

0 B0Pjfσk = Π+
0 Pjf

σ
k we obtain (5.1.98).

Lemma 5.1.18. For any f ∈ {f+
1 , f

−
1 , f

−
0 } and j ∈ N we have Π+

0 P0,jf = Π+
0 Pj,0f = 0.

Proof. We have that Π+
0 P0,jf = 0 if and only if (P0,jf, f

+
0 ) = 0. By (4.1.8) we have that

P0,ϵf
−
0 = f−

0 for any ϵ and we have the chain of identities

(
P0,ϵf, f

+
0
)

= −
(
JP0,ϵf, Jf

+
0
) (2.2.2),Jf+

0 =−f−
0=
(
P ∗

0,ϵJf, f
−
0
)

=
(
Jf, P0,ϵf

−
0
)

=
(
Jf, f−

0
)

= 0

for any f ∈ {f+
1 , f

−
1 , f

−
0 }, deducing, in particular, that (P0,jf, f

+
0 ) = 0. The proof that

Π+
0 Pj,0f = 0 is obtained similarly, exploiting that Pµ,0f−

0 = f−
0 as proved in Lemma

4.1.7.

In virtue of (5.1.8), (5.1.13) and (5.1.17) and in view of (5.1.81)-(5.1.82) we obtain

B
[ev]
i,j =

Bi,j if j is even ,

0 if j is odd ,
B

[odd]
i,j =

0 if j is even ,

Bi,j if j is odd .
(5.1.100)

5.1.4 Proof of Proposition 5.1.1

Proposition 5.1.1 is a direct consequence of the next proposition.

Proposition 5.1.19. The 2 × 2 matrices E := E(µ, ϵ), Γ := Γ(µ, ϵ), Φ := Φ(µ, ϵ) in
(5.1.7a)-(5.1.7c) admit the expansions

E :=
(
η̃11ϵ3 + η11ϵ4 + r1(ϵ5, µϵ3, µ2ϵ, µ3) i

(
η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)

)
−i
(
η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)

)
η̃22µ2ϵ+ r5(µ2ϵ2, µ3)

)
, (5.1.101a)

Γ :=
(
γ11ϵ2 + r8(ϵ3, µϵ2, µ2ϵ) −i γ12µϵ2 − i r9(µϵ3, µ2ϵ)
i γ12µϵ2 + i r9(µϵ3, µ2ϵ) γ̃22µ2ϵ+ γ22µ2ϵ2 + r10(µ2ϵ3, µ3ϵ)

)
, (5.1.101b)

Φ :=
(

ϕ11ϵ3 + r3(ϵ4, µϵ2, µ2ϵ) i ϕ̃12µϵ2 + iϕ12µϵ3 + i ψ̃12µ2ϵ+ i r4(µϵ4, µ2ϵ2, µ3ϵ)
iϕ21µϵ+ i ϕ̃21µϵ2 + i r6(µϵ3, µ2ϵ) ϕ22µ2ϵ+ ϕ̃22µ2ϵ2 + r7(µ2ϵ3, µ3ϵ)

)
,

(5.1.101c)
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where

η̃11 :=
(
B0,3f

+
1 , f

+
1
)

= 0 , η̃22 :=
(
B2,1f

−
1 , f

−
1
)

= 0 , γ̃22 :=
(
B2,1f

−
0 , f

−
0
)

= 0 ,
i ϕ̃12 :=

(
B1,2f

−
0 , f

+
1
)

= 0 , i ϕ̃21 :=
(
B1,2f

+
0 , f

−
1
)

= −
(
B1,2f

−
1 , f

+
0
)

= 0 ,
ϕ̃22 :=

(
B2,2f

−
0 , f

−
1
)

= 0 , i ψ̃12 :=
(
B2,1f

−
0 , f

+
1
)

= 0 , (5.1.102a)

whereas the coefficients

η11 :=
(
B0,4f

+
1 , f

+
1
)
, i η12 :=

(
B1,2f

−
1 , f

+
1
)
,

γ11 :=
(
B0,2f

+
0 , f

+
0
)
, i γ12 :=

(
B1,2f

−
0 , f

+
0
)
, γ22 :=

(
B2,2f

−
0 , f

−
0
)
,

ϕ11 :=
(
B0,3f

+
0 , f

+
1
)

=
(
B0,3f

+
1 , f

+
0
)
, iϕ12 :=

(
B1,3f

−
0 , f

+
1
)
,

iϕ21 :=
(
B1,1f

+
0 , f

−
1
)

= −
(
B1,1f

−
1 , f

+
0
)
, ϕ22 =

(
B2,1f

−
0 , f

−
1
)
,

(5.1.102b)

are given in (5.1.6d)-(5.1.6i).

The rest of the section is devoted to the proof of Proposition 5.1.19.

Lemma 5.1.20. The coefficients η̃11, η̃22, γ̃22, ϕ̃12, ϕ̃21, ϕ̃22 in (5.1.102a) vanish.

Proof. The first six coefficients in (5.1.102a) are (use also the self-adjointness of the jets of
Bµ,ϵ)(
B

[ev]
0,3 f

+
1 , f

+
1
)
,
(
B

[ev]
2,1 f

−
1 , f

−
1
)
,
(
B

[ev]
2,1 f

−
0 , f

−
0
)
,
(
B

[odd]
1,2 f−

0 , f
+
1
)
,
(
f+

0 ,B
[odd]
1,2 f−

1
)
,
(
B

[odd]
2,2 f−

0 , f
−
1
)
,

which are zero because, by (5.1.100), the operators B
[ev]
0,3 B

[odd]
1,2 = B

[ev]
2,1 = B

[odd]
2,2 = 0.

For the computation of the other coefficients we use the following lemma.

Lemma 5.1.21. We have

B0,1f
+
1 =

1
2(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ) cos(2x)
−p[1]

1 c
1
2
h sin(2x)

+ h[0](x) , (5.1.103)

B1,0f
+
1 =

 0
−i c

− 1
2

h
(
c2

h + h(1 − c4
h)
)

cos(x)

 , B1,1f
+
1 = i p[1]

1
2

−c
− 1

2
h sin(2x)

c
1
2
h cos(2x)

+ h[0](x) ,

B0,2f
+
1 =

((a[0]
2 + 1

2a
[2]
2 )c

1
2
h − (p[0]

2 + 1
2p

[2]
2 )c− 1

2
h
)

cos(x)(
f2(1 − c4

h)c− 1
2

h − (p[0]
2 + 1

2p
[2]
2 )c

1
2
h
)

sin(x)

+

1
2
(
a

[2]
2 c

1
2
h − p

[2]
2 c

− 1
2

h
)

cos(3x)
−3

2p
[2]
2 c

1
2
h sin(3x)

 ,
B0,3f

+
1 =

1
2(a[1]

3 c
1
2
h − p

[1]
3 c

− 1
2

h )
0

+

1
2
(
a

[1]
3 c

1
2
h + a

[3]
3 c

1
2
h − p

[1]
3 c

− 1
2

h − p
[3]
3 c

− 1
2

h
)

cos(2x)
−(p[1]

3 + p
[3]
3 )c

1
2
h sin(2x)

+ h[4](x) ,
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B0,4f
+
1 =

 (
c

1
2
h (a[0]

4 + 1
2a

[2]
4 ) − c

− 1
2

h (p[0]
4 + 1

2p
[2]
4 )
)

cos(x)(
c

− 1
2

h (1 − c4
h)(f4 − f2

2c2
h) − c

1
2
h (p[0]

4 + 1
2p

[2]
4
)

sin(x)

+ h[3,5](x) ,

B1,0f
−
1 =

 0
i c

− 1
2

h
(
c2

h + h(1 − c4
h)
)

sin(x)

 , B1,1f
−
1 = − i p[1]

1
2

c
− 1

2
h

0

+ h[2](x) ,

B1,2f
−
1 = −i

c
− 1

2
h (p[0]

2 + 1
2p

[2]
2 ) cos(x)

c
1
2
h (p[0]

2 − 1
2p

[2]
2 ) sin(x)

+ h[3](x) ,

B0,1f
+
0 =

 a[1]
1 cos(x)

−p[1]
1 sin(x)

 , B0,2f
+
0 =

[
a

[0]
2
0

]
+

 a
[2]
2 cos(2x)

−2p[2]
2 sin(2x)

 ,
B1,1f

−
0 = −i p[1]

1

[
cos(x)

0

]
, B1,2f

−
0 = −i p[0]

2

[
1
0

]
− i p[2]

2

[
cos(2x)

0

]
,

B1,3f
−
0 = −i p[1]

3

[
cos(x)

0

]
+ h[3](x) , B2,2f

−
0 =

[
0
f2

]
,

with p
[i]
j and a

[i]
j , j = 1, . . . , 4, i = 0, . . . , j, in (A.4.22), (A.4.23) and f2 in (A.4.8) and

where h[κ1,...,κℓ](x) denotes a function supported on Fourier modes κ1, . . . , κℓ ∈ N0.

Proof. By (5.1.10)-(5.1.11) and (4.1.2).

We now compute the remaining coefficients in (5.1.102).
Computation of γ11. In view of (5.1.102b) and (5.1.81a) we have

γ11 =
(
B0,2f

+
0 , f

+
0
)︸ ︷︷ ︸

a
[0]
2 by (5.1.10c)

+ 1
2
(
B0,1P0,1f

+
0 , f

+
0
)

+ 1
2
(
B0,1f

+
0 , P0,1f

+
0
)

︸ ︷︷ ︸
u0,1
(
f+

−1,B0,1f
+
0

)
by (5.1.19)

. (5.1.104)

By (5.1.103) and (5.1.18) it results that (5.1.104) is equal to

γ11 = a
[0]
2 + 1

2u0,1(a[1]
1 c

1
2
h + p

[1]
1 c

− 1
2

h ) ,

which in view of (A.4.22), (5.1.20) gives the term in (5.1.6f).
Computation of ϕ21. In view of (5.1.102b) and (5.1.95b) we have

iϕ21 = −
(
B1,1f

−
1 , f

+
0
)

= −
(
B1,1f

−
1 , f

+
0
)

−
(
B0,1P1,0f

−
1 , f

+
0
)︸ ︷︷ ︸

i u1,0
(
f+

−1,B0,1f
+
0

)
by (5.1.19)

−
(
B1,0P0,1f

−
1 , f

+
0
)︸ ︷︷ ︸

0 by (5.1.19)

− 1
2
(
Π+

0 P1,1f
−
1 , f

+
0
)

︸ ︷︷ ︸
0 by (5.1.21e)

.
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By (5.1.103), (4.1.2) and (5.1.18) it results

ϕ21 = 1
2
(
c

− 1
2

h p
[1]
1 − u1,0c

1
2
h a

[1]
1 − u1,0c

− 1
2

h p
[1]
1
)

which in view of (A.4.22), (5.1.20) gives the term in (5.1.6i).
Computation of η12. In view of (5.1.102b) and (5.1.95d), (5.1.19), Lemmata 5.1.4 and
5.1.4 we have

i η12 =
(
B1,2f

−
1 , f

+
1
)

+
(
B1,1P0,1f

−
1 , f

+
1
)︸ ︷︷ ︸([−a0,1 sin(2x)

b0,1 cos(2x)

]
,B1,1f

+
1

)
by (5.1.19)

+
(
B0,2P1,0f

−
1 , f

+
1
)︸ ︷︷ ︸

i u1,0
(
f+

−1,B0,2f
+
1

)
by (5.1.19)

+
(
B1,0P0,2f

−
1 , f

+
1
)︸ ︷︷ ︸

n0,2(B1,0f
−
1 ,f

+
1 )+u−

0,2(f−
−1,B1,0f

+
1 ) by (5.1.21b)

+
(
B0,1P1,1f

−
1 , f

+
1
)︸ ︷︷ ︸

i
([a1,1 cos(2x)
b1,1 sin(2x)

]
,B0,1f

+
1

)
by (5.1.21e)

+ 1
2
(
Π+

0 P1,2f
−
1 , f

+
1
)

︸ ︷︷ ︸
=0 since Π+

0 f
+
1 =0

−1
2
(
B1,0P0P0,2f

−
1 , f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2(B1,0f
−
1 ,f

+
1 ) by (5.1.21b)

−1
2
(
B0,1P0P1,1f

−
1 , f

+
1
)

︸ ︷︷ ︸
=0 by (5.1.21e)

−1
2
(
B1,0f

−
1 , P0P0,2f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2(B1,0f
−
1 ,f

+
1 ) by (5.1.21a)

−1
2
(
B0,1f

−
1 , P0P1,1f

+
1
)

︸ ︷︷ ︸
(5.1.21e)

= +i 1
2 m̃1,1(f−

1 ,B0,1f
−
0 )=0

,

where the three underlined terms cancel out. Hence, by (5.1.103), (4.1.2) and (5.1.18),

η12 = − p
[0]
2 − 1

4p
[1]
1 (b0,1c

1
2
h + a0,1c

− 1
2

h ) + u1,0
(1
2cha

[0]
2 + 1

4cha
[2]
2 − 1

2c−1
h f2(1 − c4

h)
)

+ 1
2u

−
0,2(c2

h + h(1 − c4
h))c−1

h + 1
4c

1
2
h a

[1]
1 a1,1 − 1

2c
1
2
h p

[1]
1 b1,1 − 1

4c
− 1

2
h p

[1]
1 a1,1

which in view of (A.4.22), (5.1.20) and (5.1.21c) gives the term in (5.1.6e).
Computation of γ12. By (5.1.102b) and (5.1.95d), (5.1.19), Lemma 5.1.4 and 5.1.4 and
since B0,1f

−
0 = 0 and B1,0f

−
0 = 0 we have

i γ12 =
(
B1,2f

−
0 , f

+
0
)

+
(
B1,1P0,1f

−
0 , f

+
0
)︸ ︷︷ ︸

=0

+
(
B0,2P1,0f

−
0 , f

+
0
)︸ ︷︷ ︸

=0

+
(
B1,0P0,2f

−
0 , f

+
0
)︸ ︷︷ ︸

=0

+
(
B0,1P1,1f

−
0 , f

+
0
)︸ ︷︷ ︸

−i 1
2 c−3/2

h (f+
−1,B0,1f

+
0 )

+1
2
(
Π+

0 P1,2f
−
0 , f

+
0
)

︸ ︷︷ ︸
=0
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−1
2
(
B1,0P0P0,2f

−
0 , f

+
0
)

︸ ︷︷ ︸
=0

−1
2
(
B0,1P0P1,1f

−
0 , f

+
0
)

︸ ︷︷ ︸
=0

−1
2
(
B1,0f

−
0 , P0P0,2f

+
0
)

︸ ︷︷ ︸
=0

−1
2
(
B0,1f

−
0 , P0P1,1f

+
0
)

︸ ︷︷ ︸
=0

.

So, by (5.1.103), (4.1.2) and (5.1.18),

γ12 = −p[0]
2 − 1

4c−3/2
h (a[1]

1 c
1
2
h + p

[1]
1 c

− 1
2

h )

which in view of (A.4.22) gives the term (5.1.6f).
Computation of ϕ11. By (5.1.102b) and (5.1.95c), (5.1.19), Lemma 5.1.4 and 5.1.4 we
have

ϕ11 =
(
B0,3f

+
1 , f

+
0
)

+
(
B0,2P0,1f

+
1 , f

+
0
)︸ ︷︷ ︸([a0,1 cos(2x)

b0,1 sin(2x)

]
,B0,2f

+
0

)+
(
B0,1P0,2f

+
1 , f

+
0
)︸ ︷︷ ︸

n0,2(f+
1 ,B0,1f

+
0 )+u+

0,2(f+
−1,B0,1f

+
0 )

−1
2
(
B0,1P0P0,2f

+
1 , f

+
0
)

︸ ︷︷ ︸
− 1

2n0,2(f+
1 ,B0,1f

+
0 )

−1
2
(
B0,1f

+
1 , P0P0,2f

+
0
)

︸ ︷︷ ︸
(5.1.21a)

= 0

.

Thus, by (5.1.103), (4.1.2) and (5.1.18),

ϕ11 = 1
2a

[1]
3 c

1
2
h − 1

2p
[1]
3 c

− 1
2

h + 1
2a0,1a

[2]
2 − b0,1p

[2]
2

+ 1
4n0,2(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ) + 1
2u

+
0,2(a[1]

1 c
1
2
h + p

[1]
1 c

− 1
2

h )

which in view of (A.4.22), (5.1.20), (5.1.21c), gives the term (5.1.6g).
Computation of ϕ22. By (5.1.102b) and (5.1.95e), (5.1.19), Lemma 5.1.4 and 5.1.4 and
since B2,1 = 0 and B0,1f

−
0 = 0, B1,0f

−
0 = 0 we have

ϕ22 =
(
B2,1f

−
0 , f

−
1
)︸ ︷︷ ︸

0

+
(
B1,1P1,0f

−
0 , f

−
1
)︸ ︷︷ ︸

0

+
(
B2,0P0,1f

−
0 , f

−
1
)︸ ︷︷ ︸

0

+
(
B0,1P2,0f

−
0 , f

−
1
)︸ ︷︷ ︸

0

+
(
B1,0P1,1f

−
0 , f

−
1
)︸ ︷︷ ︸

− i
2 c−3/2

h

(
f+

−1,B1,0f
−
1

)+ 1
2
(
Π+

0 P2,1f
−
0 , f

−
1 )︸ ︷︷ ︸

1
2

(
ñ2,1Π+

0 f
−
1 +ũ2,1Π+

0 f
−
−1,f

−
1 )=0

−1
2
(
B0,1P0P2,0f

−
0 , f

−
1
)

︸ ︷︷ ︸
=0

− 1
2
(
B1,0P0P1,1f

−
0 , f

−
1
)

︸ ︷︷ ︸
=0
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− 1
2
(
B0,1f

−
0 , P0P2,0f

−
1
)

︸ ︷︷ ︸
=0

− 1
2
(
B1,0f

−
0 , P0P1,1f

−
1
)

︸ ︷︷ ︸
=0

.

So, by (5.1.103) and (5.1.18),

ϕ22 = 1
4c

− 5
2

h (c2
h + h(1 − c4

h))

which is the term (5.1.6i).
Computation of ψ̃12. By (5.1.102a), (5.1.95e) and since B2,1 = 0, P1,0f

−
0 = 0, P0,1f

−
0 = 0

by (5.1.19), Lemmata 5.1.4 and 5.1.4 this term is given by

i ψ̃12 =
(
B2,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B1,1P1,0f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B2,0P0,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B0,1P2,0f

−
0 , f

+
1
)︸ ︷︷ ︸

=0 by (5.1.21d)

+
(
B1,0P1,1f

−
0 , f

+
1
)︸ ︷︷ ︸

− i
2 c

− 3
2

h

(
f+

−1,B1,0f
+
1

)
by(5.1.21e)

+ 1
2
(
Π+

0 P2,1f
−
0 , f

+
1
)

︸ ︷︷ ︸
=0 as Π+

0 f
+
1 =0

− 1
2
(
B0,1P0P2,0f

−
0 , f

+
1
)

︸ ︷︷ ︸
=0 by (5.1.21d)

−1
2
(
B1,0P0P1,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0 by (5.1.21e)

− 1
2
(
B0,1f

−
0 , P0P2,0f

+
1
)︸ ︷︷ ︸

=0 since B0,1f
−
0 =0

−1
2
(
B1,0f

−
0 , P0P1,1f

+
1
)︸ ︷︷ ︸

=0 since B1,0f
−
0 =0

and finally, by (5.1.18) and (5.1.103),

i ψ̃12 = − i
2c−3/2

h
(
f+

−1,B1,0f
+
1
)

= 0 .

Computation of η11. By (5.1.102b), (5.1.95f), (5.1.19), Lemma 5.1.4 and Lemma 5.1.4
and (5.1.83), we have

η11 =
(
B0,4f

+
1 , f

+
1
)

+
(
B0,3P0,1f

+
1 , f

+
1
)︸ ︷︷ ︸([a0,1 cos(2x)

b0,1 sin(2x)

]
,B0,3f

+
1

)+
(
B0,2P0,2f

+
1 , f

+
1
)︸ ︷︷ ︸(

n0,2f
+
1 +u+

0,2f
+
−1+

[
a0,2 cos(3x)
b0,2 sin(3x)

]
,B0,2f

+
1

)
+

(
B0,1P0,3f

+
1 , f

+
1
)︸ ︷︷ ︸([a0,3 cos(2x)

b0,3 sin(2x)

]
,B0,1f

+
1

)−1
2
(
B0,2P0P0,2f

+
1 , f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2
(
B0,2f

+
1 ,f

+
1

)
−1

2
(
B0,2f

+
1 , P0P0,2f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2
(
B0,2f

+
1 ,f

+
1

) − 1
2
(
B0,1P0P0,3f

+
1 , f

+
1
)

︸ ︷︷ ︸
=0
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− 1
2
(
B0,1f

+
1 , P0P0,3f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1P0,1P0P0,2f

+
1 , f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2
([a0,1 cos(2x)

b0,1 sin(2x)

]
,B0,1f

+
1

)
−1

2
(
B0,1f

+
1 , P0,1P0P0,2f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2
([a0,1 cos(2x)

b0,1 sin(2x)

]
,B0,1f

+
1

)
+ 1

2
(
N0,2P0P0,2f

+
1 , f

+
1
)︸ ︷︷ ︸

=0

+ 1
2
(
f+

1 ,N0,2P0P0,2f
+
1
)

︸ ︷︷ ︸
=0

,

where the three underlined terms cancel out. Thus, in view of (5.1.103), (4.1.2) and (5.1.18),
we get

η11 = ch
a

[0]
4
2 + ch

a
[2]
4
4 − p

[0]
4 − p

[2]
4
2 + 1

2ch
(1 − c4

h)(f4 − f2
2c2

h) (5.1.105)

+ 1
4
(
c

1
2
h (a[1]

3 + a
[3]
3 ) − c

− 1
2

h (p[1]
3 + p

[3]
3 )
)
a0,1 − 1

2c
1
2
h (p[3]

3 + p
[1]
3 )b0,1

+ 1
4
(
a

[2]
2 c

1
2
h − p

[2]
2 c

− 1
2

h
)
a0,2 − 3

4c
1
2
h p

[2]
2 b0,2

+ 1
2u

+
0,2
(
cha

[0]
2 + 1

2cha
[2]
2 − c−1

h f2(1 − c4
h)
)

+ 1
4a0,3

(
a

[1]
1 c

1
2
h − p

[1]
1 c

− 1
2

h
)

− 1
2b0,3c

1
2
h p

[1]
1

− 1
4n0,2a0,1(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ) + 1
2n0,2b0,1c

1
2
h p

[1]
1

which in view of (A.4.22), (A.4.23c), (5.1.20), (5.1.21c), (5.1.24) gives (5.1.6d).
Computation of γ22. By (5.1.102b), (5.1.95g), where we exploit that

(
Sym[A]f, f

)
=

Re
(
Af, f

)
, (5.1.19), Lemma 5.1.4, Lemma 5.1.4 and since B0,1f

−
0 = 0 and B1,0f

−
0 = 0 we

have

γ22 =
(
B2,2f

−
0 , f

−
0
)︸ ︷︷ ︸

f2

+
(
B1,2P1,0f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+
(
B2,1P0,1f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+
(
B0,2P2,0f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+
(
B1,1P1,1f

−
0 , f

−
0
)︸ ︷︷ ︸

− i
2 c−3/2

h

(
f+

−1,B1,1f
−
0

)+
(
B2,0P0,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+
(
B0,1P2,1f

−
0 , f

−
0
)︸ ︷︷ ︸(

P2,1f
−
0 ,B0,1f

−
0

)
=0

+
(
B1,0P1,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+1
2
(
Π+

0 P2,2f
−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B0,2P0P2,0f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B1,1P0P1,1f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B2,0P0P0,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B0,1P0P2,1f

−
0 , f

−
0
)︸ ︷︷ ︸(

P0P2,1f
−
0 ,B0,1f

−
0

)
=0

−Re
(
B1,0P0P1,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B0,1P0,1P0P2,0f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B1,0P0,1P0P1,1f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B0,1P1,0P0P1,1f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

−Re
(
B1,0P1,0P0P0,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0
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+Re
(
N2,0P0P0,2f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

+Re
(
N0,2P0P2,0f

−
0 , f

−
0 )︸ ︷︷ ︸

=0

+Re
(
N1,1P0P1,1f

−
0 , f

−
0
)︸ ︷︷ ︸

=0

.

Then by (5.1.10e), (5.1.11), (5.1.12d), (5.1.18) and (5.1.103) we get

γ22 = f2 + p
[1]
1

4ch

which, in view of (A.4.8), (A.4.22c) gives (5.1.6f).
Computation of ϕ12. By (5.1.102b), (5.1.95h), (5.1.19), Lemma 5.1.4, Lemma 5.1.4,
(5.1.83) and since B0,2f

−
0 = 0, B1,0f

−
0 = 0 and B0,1f

−
0 = 0 we have

iϕ12 =
(
B1,3f

−
0 , f

+
1
)

+
(
B0,3P1,0f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B1,2P0,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B0,2P1,1f

−
0 , f

+
1
)︸ ︷︷ ︸

− i
2 c−3/2

h

(
f+

−1,B0,2f
+
1

)+
(
B1,1P0,2f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B1,0P0,3f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

+
(
B0,1P1,2f

−
0 , f

+
1
)︸ ︷︷ ︸

i
([a1,2 cos(2x)

b1,2 sin(2x)

]
,B0,1f

+
1

)
+ 1

2
(
Π+

0 P1,3f
−
0 , f

+
1
)

︸ ︷︷ ︸
=0

−1
2
(
B0,2P0P1,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,2f

−
0 , P0P1,1f

+
1
)︸ ︷︷ ︸

=0

− 1
2
(
B1,1P0P0,2f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B1,1f

−
0 , P0P0,2f

+
1
)

︸ ︷︷ ︸
− 1

2n0,2
(
B1,1f

−
0 ,f

+
1

) −1
2
(
B1,0P0P0,3f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

− 1
2
(
B1,0f

−
0 , P0P0,3f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1P0P1,2f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1f

−
0 , P0P1,2f

+
1
)︸ ︷︷ ︸

=0

− 1
2
(
B1,0P0,1P0P0,2f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B1,0f

−
0 , P0,1P0P0,2f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1P1,0P0P0,2f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

− 1
2
(
B0,1f

−
0 , P1,0P0P0,2f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1P0,1P0P1,1f

−
0 , f

+
1
)︸ ︷︷ ︸

=0

−1
2
(
B0,1f

−
0 , P0,1P0P1,1f

+
1
)︸ ︷︷ ︸

=0

+ 1
2
(
N1,1P0P0,2f

−
0 , f

+
1
)

︸ ︷︷ ︸
=0

+ 1
2
(
f−

0 ,N1,1P0P0,2f
+
1
)

︸ ︷︷ ︸
=0

+ 1
2
(
N0,2P0P1,1f

−
0 , f

+
1
)

︸ ︷︷ ︸
=0

+ 1
2
(
f−

0 ,N0,2P0P1,1f
+
1
)

︸ ︷︷ ︸
− i

2 m̃1,1
(
f−

0 ,N0,2f
−
0

)(5.1.83)
= 0

.
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Hence by (5.1.103), (4.1.2), (5.1.18), we have

ϕ12 = − 1
2p

[1]
3 c1/2

h − 1
4c

− 1
2

h (a[0]
2 + 1

2a
[2]
2 ) + 1

4c
− 5

2
h f2(1 − c4

h)

+ 1
4a1,2(a[1]

1 c
1
2
h − p

[1]
1 c

− 1
2

h ) − 1
2b1,2c

1
2
h p

[1]
1 + 1

4n0,2p
[1]
1 c

1
2
h ,

which, in view of (A.4.22), (5.1.24) gives the term (5.1.6h).

5.2 Block decoupling and proof of Theorem 1.6.1

In this section we prove Theorem 1.6.1 by block-decoupling the 4×4 Hamiltonian matrix
Lµ,ϵ = J4Bµ,ϵ in (5.1.1) obtained in Proposition 5.1.1, expanding the computations of the
finite-depth case at a higher degree of accuracy.

We first perform the singular symplectic and reversibility-preserving change of coordi-
nates in Lemma 4.3.1.

Lemma 5.2.1. (Singular symplectic rescaling) The conjugation of the Hamiltonian
and reversible matrix Lµ,ϵ = J4Bµ,ϵ in (5.1.1) obtained in Proposition 5.1.1 through the
symplectic and reversibility-preserving 4 × 4-matrix

Y :=
(
Q 0
0 Q

)
with Q :=

(
µ

1
2 0

0 µ− 1
2

)
, µ > 0 ,

yields the Hamiltonian and reversible matrix

L(1)
µ,ϵ := Y −1Lµ,ϵY = J4B(1)

µ,ϵ =
(

J2E(1) J2F (1)

J2[F (1)]∗ J2G(1)

)
(5.2.1)

where B(1)
µ,ϵ is a self-adjoint and reversibility-preserving 4 × 4 matrix

B(1)
µ,ϵ =

(
E(1) F (1)

[F (1)]∗ G(1)

)
, E(1) = [E(1)]∗ , G(1) = [G(1)]∗ ,

where the 2 × 2 reversibility-preserving matrices E(1) := E(1)(µ, ϵ), G(1) := G(1)(µ, ϵ) and
F (1) := F (1)(µ, ϵ) extend analytically at µ = 0 with the expansion

E(1) =
(

e11µϵ2(1 + r′
1(ϵ3, µϵ)) + η11µϵ4 − e22

µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)

)
−i
(1

2e12µ+ η12µϵ2 + r2(µϵ3, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ2, µ))

)
(5.2.2a)
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G(1) :=
(
µ+ γ11µϵ2 + r8(µϵ3, µ2ϵ2, µ3ϵ) −i γ12µϵ2 − i r9(µϵ3, µ2ϵ)

i γ12µϵ2 + i r9(µϵ3, µ2ϵ) tanh(hµ) + γ22µϵ2 + r10(µϵ3, µ2ϵ)

)
(5.2.2b)

F (1) :=

f11µϵ+ ϕ11µϵ3 + r3(µϵ4, µ2ϵ2, µ3ϵ) iµϵc− 1
2

h + iϕ12µϵ3 + i r4(µϵ4, µ2ϵ2, µ3ϵ)
iϕ21µϵ+ i r6(µϵ3, µ2ϵ) ϕ22µϵ+ r7(µϵ3, µ2ϵ)


(5.2.2c)

where the coefficients appearing in the entries are the same of (5.1.5).

Note that the matrix L(1)
µ,ϵ, initially defined only for µ ̸= 0, extends analytically to the

zero matrix at µ = 0. For µ ̸= 0 the spectrum of L(1)
µ,ϵ coincides with the spectrum of Lµ,ϵ.

Non-perturbative step of block decoupling. The following lemma computes the first
order Taylor expansions (5.2.4) of the matrix entries in (5.2.3) and then the expansion
(5.2.8) at a higher degree of accuracy with respect to Lemma 4.3.4.

Lemma 5.2.2. (Step of block decoupling) There exists a 2 × 2 reversibility-preserving
matrix X, analytic in (µ, ϵ), of the form

X :=
(
x11 ix12

ix21 x22

)
, xij ∈ R , i, j = 1, 2 , (5.2.3)

with

x11 = x
(1)
11 ϵ+ r(ϵ3, µϵ) , x12 = x

(1)
12 ϵ+ r(ϵ3, µϵ) (5.2.4a)

x21 = x
(1)
21 ϵ+ x

(3)
21 ϵ

3 + r(ϵ4, µϵ2, µ2ϵ) , x22 = x
(1)
22 ϵ+ x

(3)
22 ϵ

3 + r(ϵ4, µϵ2, µ2ϵ) ,

where

x
(1)
21 := −1

2D−1
h
(
e12f11 + 2c

− 1
2

h
)
, x

(1)
22 := 1

2D−1
h
(
c

− 1
2

h e12 + 2hf11
)
, (5.2.4b)

and

x
(1)
11 : = D−1

h
( 1

16e12e22x
(1)
21 − 1

2e12ϕ21 + ϕ22 − 1
8e22x

(1)
22
)
,

x
(1)
12 : = D−1

h
(1

8he22x
(1)
21 − hϕ21 + 1

2e12ϕ22 − 1
16e12e22x

(1)
22
)
,

x
(3)
21 : = D−1

h
(

− 1
2e11e12x

(1)
11 + 1

2(γ12 + η12)e12x
(1)
21 + 1

2e12γ11x
(1)
22

− 1
2ϕ11e12 − e11x

(1)
12 − γ22x

(1)
21 − (γ12 + η12)x(1)

22 − ϕ12
)
,

x
(3)
22 : = D−1

h
(
he11x

(1)
11 − h(γ12 + η12)x(1)

21 − hγ11x
(1)
22 + hϕ11

+ 1
2e11e12x

(1)
12 + 1

2e12γ22x
(1)
21 + 1

2e12(γ12 + η12)x(1)
22 + 1

2e12ϕ12
)
,

(5.2.4c)
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with e12, e22, e11, ϕ21, ϕ22, γ12, η12, γ11, ϕ11, γ22, ϕ12, f11 computed in (5.1.6) and, we report
here formula (4.3.7),

Dh := h − 1
4e2

12 > 0 , ∀h > 0 , (5.2.5)

such that the following holds true. By conjugating the Hamiltonian and reversible matrix
L(1)
µ,ϵ, defined in (5.2.1), with the symplectic and reversibility-preserving 4 × 4 matrix

exp
(
S(1)) , where S(1) := J4

(
0 Σ

Σ∗ 0

)
, Σ := J2X , (5.2.6)

we get the Hamiltonian and reversible matrix

L(2)
µ,ϵ := exp

(
S(1))L(1)

µ,ϵ exp
(

− S(1)) = J4B(2)
µ,ϵ =

(
J2E(2) J2F (2)

J2[F (2)]∗ J2G(2)

)
, (5.2.7)

where the reversibility-preserving 2 × 2 self-adjoint matrix E(2) has the form

E(2) =
(

eWBµϵ
2 + ηWBµϵ

4 + r′
1(µϵ5, µ2ϵ3) − e22

µ3

8 (1 + r′′
1(ϵ, µ)) i

(1
2e12µ+ r2(µϵ2, µ2ϵ, µ3)

)
−i
(1

2e12µ+ r2(µϵ2, µ2ϵ, µ3)
)

−e22
µ
8 (1 + r5(ϵ, µ))

)
,

(5.2.8)

where eWB is the Whitham-Benjamin function in (1.5.1) and

ηWB = η11 + x
(1)
21 ϕ12 + x

(3)
21 c

− 1
2

h − x
(1)
22 ϕ11 − x

(3)
22 f11 + 3

2(x(1)
21 )2x

(1)
22 ϕ22 + (x(1)

21 )2x
(1)
12 c

− 1
2

h

−3
2x

(1)
21 x

(1)
12 x

(1)
22 f11 + 3

2(x(1)
22 )2x

(1)
21 ϕ21 − 3

2x
(1)
22 x

(1)
11 x

(1)
21 c

− 1
2

h + (x(1)
22 )2x

(1)
11 f11 (5.2.9)

with x
(1)
11 , x(1)

12 , x(1)
22 , x(1)

21 , x(3)
21 , x(3)

22 in (5.2.4) and the remaining coefficients in (5.1.6),
whereas the reversibility-preserving 2 × 2 self-adjoint matrix G(2) has the form

G(2) =
(
µ+ r8(µϵ2, µ3ϵ) −i r9(µϵ2, µ2ϵ)

i r9(µϵ2, µ2ϵ) tanh(hµ) + r10(µϵ)

)
, (5.2.10)

and finally

F (2) =
(
r3(µϵ3) i r4(µϵ3)
i r6(µϵ3) r7(µϵ3)

)
. (5.2.11)

The rest of the section is devoted to the proof of Lemma 5.2.2. In Lemma 4.3.4 we
proved the existence of a matrix X as in (5.2.3) such that we obtain (5.2.7) with matrices
G(2), F (2) as in (5.2.10)-(5.2.11) and a 2 × 2-self adjoint and reversibility preserving matrix
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E(2) whose first entry has the form [E(2)]11 = eWBµϵ
2 + r1(µϵ3, µ2ϵ2). The main result of

Lemma 5.2.2 is that the first entry [E(2)]11 has the better expansion

[E(2)]11 = eWBµϵ
2 + r1(µϵ3, µ2ϵ2) = eWBµϵ

2 + ηWBµϵ
4 + r′

1(µϵ5, µ2ϵ3)

with ηWB computed in (5.2.9), which is relevant to determine the stability/instablity of the
Stokes wave at the critical depth. Clearly we could compute explicitly also other Taylor
coefficients of the matrix entries of E(2), G(2), F (2), but it is not needed.

The coefficients x(1)
21 and x

(1)
22 in (5.2.4b) were already computed in Lemma 4.3.4.

We now expand in Lie series the Hamiltonian and reversible matrix L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S)
where for simplicity we set S := S(1). We split L(1)

µ,ϵ into its 2 × 2-diagonal and off-diagonal
Hamiltonian and reversible matrices

L(1)
µ,ϵ = D(1) +R(1) , (5.2.12)

D(1) :=
(
D1 0
0 D0

)
:=
(

J2E(1) 0
0 J2G(1)

)
, R(1) :=

(
0 J2F (1)

J2[F (1)]∗ 0

)
,

and we perform the Lie expansion

L(2)
µ,ϵ = exp(S)L(1)

µ,ϵ exp(−S) = D(1) + [S,D(1)] + 1
2
[
S, [S,D(1)]

]
+R(1) + [S,R(1)] (5.2.13)

+ 1
2

∫ 1

0
(1 − τ)2 exp(τS)ad3

S(D(1)) exp(−τS) dτ +
∫ 1

0
(1 − τ) exp(τS) ad2

S(R(1)) exp(−τS) dτ

where adA(B) := [A,B] := AB −BA denotes the commutator between the linear operators
A,B.

We look for a 4 × 4 matrix S as in (5.2.6) that solves the homological equation R(1) +[
S , D(1)

]
= 0, which, recalling (5.2.12), reads(

0 J2F (1) + J2ΣD0 −D1J2Σ
J2[F (1)]∗ + J2Σ∗D1 −D0J2Σ∗ 0

)
= 0 . (5.2.14)

Writing Σ = J2X, namely X = −J2Σ, the equation (5.2.14) amounts to solve the “Sylvester”
equation

D1X −XD0 = −J2F
(1) . (5.2.15)

We write the matrices E(1), F (1), G(1) in (5.2.1) as

E(1) =

 E
(1)
11 iE(1)

12
−iE(1)

12 E
(1)
22

 , F (1) =

 F
(1)
11 iF (1)

12
iF (1)

21 F
(1)
22

 , G(1) =

 G
(1)
11 iG(1)

12
−iG(1)

12 G
(1)
22


(5.2.16)
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where the real numbers E(1)
ij , F

(1)
ij , G

(1)
ij , i, j = 1, 2, have the expansion in (5.2.2a), (5.2.2b),

(5.2.2c). Thus, by (5.2.12), (5.2.3) and (5.2.16), the equation (5.2.15) amounts to solve the
4 × 4 real linear system

G
(1)
12 − E

(1)
12 G

(1)
11 E

(1)
22 0

G
(1)
22 G

(1)
12 − E

(1)
12 0 −E(1)

22
E

(1)
11 0 G

(1)
12 − E

(1)
12 −G(1)

11
0 −E(1)

11 −G(1)
22 G

(1)
12 − E

(1)
12


︸ ︷︷ ︸

=:A


x11

x12

x21

x22


︸ ︷︷ ︸

=:x⃗

=


−F (1)

21
F

(1)
22

−F (1)
11

F
(1)
12


︸ ︷︷ ︸

=:f⃗

. (5.2.17)

As in the finite-depth case system (5.2.17) admits a unique solution. We now prove that it
has the form (5.2.4).

Lemma 5.2.3. The vector x⃗ = (x11, x12, x21, x22) with entries in (5.2.4) solves (5.2.17).

Proof. Since tanh(hµ) = hµ+ r(µ3), we have

G
(1)
12 − E

(1)
12 = −e12

µ

2 − (γ12 + η12)µϵ2 + r(µϵ3, µ2ϵ, µ3) , (5.2.18)

G
(1)
11 = µ+ γ11µϵ

2 + r8(µϵ3, µ2ϵ2, µ3ϵ) , E
(1)
22 = −e22

µ

8 (1 + r5(ϵ2, µ)) ,

G
(1)
22 = µh + γ22µϵ

2 + r(µϵ3, µ2ϵ, µ3) , E
(1)
11 = e11µϵ

2 + r(µϵ4, µ2ϵ3, µ3) ,

with coefficients e12, γ12, η12, γ11, e22, γ22 and e11 computed in (5.1.6). We exploit that
the terms x(1)

21 and x
(2)
22 have been already computed in Lemma 4.3.4, in order to get x(1)

11
and x

(2)
12 in (5.2.4) as solutions of the system

(
−1

2e12 1
h −1

2e12

)x(1)
11
x

(1)
12

 =

1
8e22x

(1)
21 − ϕ21

ϕ22 − 1
8e22x

(1)
22

 , det
(

−1
2e12 1
h −1

2e12

)
(5.2.5)= −Dh < 0 ,

(5.2.19)
given, using also (5.2.2c), by the first two lines in (5.2.17) at order µϵ. Similarly, x(3)

21 and
x

(3)
22 in (5.2.4) solve the system

(
−1

2e12 −1
−h −1

2e12

)x(3)
21
x

(3)
22

 =

−e11x
(1)
11 + (γ12 + η12)x(1)

21 + γ11x
(1)
22 − ϕ11

e11x
(1)
12 + γ22x

(1)
21 + (γ12 + η12)x(1)

22 + ϕ12

 , (5.2.20)

which comes, also by (5.2.2c), from the last two lines of (5.2.17) at order µϵ3. The solutions
of (5.2.19)-(5.2.20) are given in (5.2.4c).
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We now prove the expansion (5.2.8). Since the matrix S solves the homological equation[
S , D(1)

]
+R(1) = 0, identity (5.2.13) simplifies to

L(2)
µ,ϵ = D(1) + 1

2
[
S,R(1)]+ 1

2

∫ 1

0
(1 − τ2) exp(τS) ad2

S(R(1)) exp(−τS)dτ . (5.2.21)

By plugging the Lie expansion

exp(τS) ad2
S(R(1)) exp(−τS)

= ad2
S(R(1)) + τad3

S(R(1)) + τ2
∫ 1

0
(1 − τ ′) exp(τ ′τS) ad4

S(R(1)) exp(−τ ′τS) dτ ′

into (5.2.21) we get

L(2)
µ,ϵ = D(1) + 1

2
[
S,R(1)]+ 1

3ad2
S(R(1)) + 1

8ad3
S(R(1)) (5.2.22a)

+ 1
2

∫ 1

0
(1 − τ2)τ2

∫ 1

0
(1 − τ ′) exp(ττ ′S)ad4

S(R(1)) exp(−ττ ′S)dτ ′dτ . (5.2.22b)

Next we compute the commutators in the expansion (5.2.22a).

Lemma 5.2.4. One has
1
2
[
S,R(1)] =

(
J2Ẽ1 0

0 J2G̃1

)
(5.2.23)

where Ẽ1, G̃1 are self-adjoint and reversibility-preserving matrices of the form

Ẽ1 =
(

ẽ11µϵ2 + η̃
(a)
11 µϵ

4 + r̃1(µϵ5, µ2ϵ3, µ3ϵ2) i
(
ẽ12µϵ2 + r̃2(µϵ4, µ2ϵ2)

)
−i
(
ẽ12µϵ2 + r̃2(µϵ4, µ2ϵ2)

)
r̃5(µϵ2)

)
,

G̃1 =
(

g̃11µϵ2 + r̃8(µϵ4, µ2ϵ2) i
(
g̃12µϵ2 + r̃9(µϵ4, µ2ϵ2)

)
−i
(
g̃12µϵ2 + r̃9(µϵ4, µ2ϵ2)

)
g̃22µϵ2 + r̃10(µϵ4, µ2ϵ2)

)
,

(5.2.24)

where

ẽ11 := x
(1)
21 c

− 1
2

h − x
(1)
22 f11 , η̃

(a)
11 := x

(1)
21 ϕ12 + x

(3)
21 c

− 1
2

h − x
(1)
22 ϕ11 − x

(3)
22 f11 ,

ẽ12 := −g̃12 := 1
2
(
x

(1)
21 ϕ22 + x

(1)
22 ϕ21 − x

(1)
11 c

− 1
2

h − x
(1)
12 f11

)
,

g̃11 := x
(1)
11 f11 + x

(1)
21 ϕ21 , g̃22 := x

(1)
22 ϕ22 + x

(1)
12 c

− 1
2

h .

(5.2.25)

Proof. By (5.2.6), (5.2.12), and since Σ = J2X, we have

1
2
[
S , R(1)

]
=
(

J2Ẽ1 0
0 J2G̃1

)
, Ẽ1 := Sym

[
J2XJ2[F (1)]∗

]
, G̃1 := Sym

[
X∗F (1)] ,

(5.2.26)
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where Sym[A] := 1
2(A+ A∗), see (4.3.28)-(4.3.29). By (5.2.3), (5.2.16), setting F = F (1),

we have

J2XJ2F
∗ =

(
x21F12 − x22F11 i (x21F22 + x22F21)

i (x11F12 + x12F11) −x11F22 + x12F21

)
, (5.2.27)

X∗F =
(

x11F11 + x21F21 i (x11F12 − x21F22)
i (x22F21 − x12F11) x22F22 + x12F12

)
, (5.2.28)

and the expansions in (5.2.24) with the coefficients given in (5.2.25) follow by (5.2.27),
(5.2.28), (5.2.4) and (5.2.2c).

Lemma 5.2.5. One has

1
3ad2

S(R(1)) =
(

0 J2F̃

J2F̃ ∗ 0

)
, (5.2.29)

where F̃ is a reversibility-preserving matrix of the form

F̃ =
(

f̃11µϵ3 + r̃3(µϵ5, µ2ϵ3) i f̃12µϵ3 + i r̃4(µϵ5, µ2ϵ3)
i r̃6(µϵ3) r̃7(µϵ3)

)
, (5.2.30)

with

f̃11 := 4
3x

(1)
21 x

(1)
11 c

− 1
2

h − 4
3x

(1)
22 x

(1)
11 f11 − 4

3x
(1)
22 x

(1)
21 ϕ21 + 2

3x
(1)
21 x

(1)
12 f11 − 2

3(x(1)
21 )2ϕ22 ,

f̃12 := 4
3x

(1)
21 x

(1)
22 ϕ22 + 4

3x
(1)
12 x

(1)
21 c

− 1
2

h − 4
3x

(1)
12 x

(1)
22 f11 + 2

3(x(1)
22 )2ϕ21 − 2

3x
(1)
11 x

(1)
22 c

− 1
2

h .

(5.2.31)

Proof. Using the form of S in (5.2.6) and [S,R(1)] in (5.2.23) we deduce (5.2.29) with

F̃ := 2
3
(
J2XJ2G̃1 + Ẽ1X

)
(5.2.32)

where Ẽ1 and G̃1 are the matrices in (5.2.24). Writing Ẽ1 =
(

[Ẽ1]11 i [Ẽ1]12

−i [Ẽ1]12 [Ẽ1]22

)
, G̃1 =(

[G̃1]11 i [G̃1]12

−i [G̃1]12 [G̃1]22

)
we have, in view of (5.2.3),

J2XJ2G̃1 =
(

x21[G̃1]12 − x22[G̃1]11 i
(
x21[G̃1]22 − x22[G̃1]12

)
i
(
x11[G̃1]12 + x12[G̃1]11

)
−x11[G̃1]22 − x12[G̃1]12

)
,

Ẽ1X =
(

x11[Ẽ1]11 − x21[Ẽ1]12 i
(
x12[Ẽ1]11 + x22[Ẽ1]12

)
i
(
x21[Ẽ1]22 − x11[Ẽ1]12

)
x12[Ẽ1]12 + x22[Ẽ1]22

)
.

(5.2.33)
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By (5.2.32), (5.2.33), (5.2.4) and (5.2.24) we deduce that the matrix F̃ has the expansion
(5.2.30) with

f̃11 = 2
3
(
x

(1)
21 g̃12 − x

(1)
22 g̃11 + x

(1)
11 ẽ11 − x

(1)
21 ẽ12

)
,

f̃12 = 2
3
(
x

(1)
21 g̃22 − x

(1)
22 g̃12 + x

(1)
12 ẽ11 + x

(1)
22 ẽ12

)
,

which, by (5.2.25), gives (5.2.31).

Lemma 5.2.6. One has

1
8ad3

S(R(1)) =
(

J2Ẽ3 0
0 J2G̃3

)
, (5.2.34)

where the self-adjoint and reversibility-preserving matrices Ẽ3, G̃3 in (5.2.34) have entries
of size O(µϵ4). In particular the first entry of the matrix Ẽ3 has the expansion

[Ẽ3]11 = η̃
(b)
11 µϵ

4 + r(µϵ5, µ2ϵ4) (5.2.35)

with

η̃
(b)
11 := 3

2(x(1)
21 )2x

(1)
22 ϕ22 + (x(1)

21 )2x
(1)
12 c

− 1
2

h − 3
2x

(1)
21 x

(1)
12 x

(1)
22 f11 (5.2.36)

+3
2(x(1)

22 )2x
(1)
21 ϕ21 − 3

2x
(1)
22 x

(1)
11 x

(1)
21 c

− 1
2

h + (x(1)
22 )2x

(1)
11 f11 .

Proof. Since 1
8ad3

S(R(1)) = 3
8 [S, 1

3ad2
S(R(1))] and using (5.2.29), the identity (5.2.34) holds

with
Ẽ3 := 3

4Sym
[
J2XJ2[F̃ ]∗

]
, G̃3 := 3

4Sym
[
X∗F̃

]
. (5.2.37)

Since, by (5.2.4) the matrix X in (5.2.3) has entries of size O(ϵ) and the matrix F̃ in
(5.2.30) has entries of size O(µϵ3) we deduce that the matrices Ẽ3, G̃3 in (5.2.37) have

entries of size O(µϵ4). By (5.2.37) and denoting F̃ =
(
F̃11 i F̃12

i F̃21 F̃22

)
, we deduce, similarly

to (5.2.27), that [Ẽ3]11 = 3
4(x21F̃12 − x22F̃11) which, by (5.2.4) and (5.2.30), gives (5.2.35)

with η̃
(b)
11 = 3

4
(
x

(1)
21 f̃12 − x

(1)
22 f̃11

)
which by (5.2.31) gives (5.2.36).

Finally we show that the term in (5.2.22b) is small.

Lemma 5.2.7. The 4 × 4 Hamiltonian and reversible matrix
(

J2Ê J2F̂

J2[F̂ ]∗ J2Ĝ

)
given by

(5.2.22b) has the 2 × 2 self-adjoint and reversibility-preserving blocks Ê, Ĝ and the 2 × 2
reversibility-preserving block F̂ all with entries of size O(µϵ5).
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Proof. By the Hamiltonian and reversibility properties of S and R(1) the matrix ad4
S(R(1))

is Hamiltonian and reversible and the same holds, for any τ, τ ′ ∈ [0, 1], for

exp(ττ ′S) ad4
S(R(1)) exp(−ττ ′S) = [S, ad3

S(R(1))](1 + O(µ, ϵ)) . (5.2.38)

The claimed estimate on the entries of the matrix given by (5.2.22b) follows by (5.2.38)
and because S in (5.2.6) has entries of size O(ϵ) and ad3

S(R(1)) in (5.2.34) has entries of
size O(µϵ4).

Proof of Lemma 5.2.2. It follows by (5.2.22), (5.2.12) and Lemmata 5.2.4, 5.2.5, 5.2.6 and
5.2.7. The matrix E(2) := E(1) + Ẽ1 + Ẽ3 + Ê has the expansion in (5.2.8), with

eWB := e11 + ẽ11 = e11 − D−1
h
(
c−1

h + hf2
11 + e12f11c

− 1
2

h
)
, ηWB := η11 + η̃

(a)
11 + η̃

(b)
11 ,

as in (5.2.9). Furthermore G(2) := G(1) + G̃1 + G̃3 + Ĝ has the expansion in (5.2.10) and
F (2) := F̃ + F̂ has the expansion in (5.2.11).

Complete block decoupling and proof of the main result. Finally Theorem 1.6.1
is proved, as Theorem 1.5.1 in the case of finite-depth, by block-diagonalizing the 4 × 4
Hamiltonian and reversible matrix L(2)

µ,ϵ in (5.2.7),

L(2)
µ,ϵ = D(2) +R(2) , D(2) :=

(
J2E(2) 0

0 J2G(2)

)
, R(2) :=

(
0 J2F (2)

J2[F (2)]∗ 0

)
.

(5.2.39)

The next lemma reports the content of Lemma 4.3.9.

Lemma 5.2.8. There exist a 4 × 4 reversibility-preserving Hamiltonian matrix S(2) :=
S(2)(µ, ϵ) of the form (5.2.6), analytic in (µ, ϵ), of size O(ϵ3), and a 4 × 4 block-diagonal
reversible Hamiltonian matrix P := P (µ, ϵ), analytic in (µ, ϵ), of size O(µϵ6) such that

exp(S(2))(D(2) +R(2)) exp(−S(2)) = D(2) + P . (5.2.40)

By (5.2.40), (5.2.8)-(5.2.10) and the fact that P has size O(µϵ6) we deduce Theorem
1.6.1: there exists a symplectic and reversibility-preserving linear map that conjugates
the matrix i chµ + Lµ,ϵ (which represents Lµ,ϵ) with Lµ,ϵ in (5.1.1) into the Hamiltonian
and reversible matrix (1.6.1) with U in (1.6.2) and S in (1.6.3). The function ∆BF(h;µ, ϵ)
expands as in (1.6.4).



Appendix A

Stokes waves

We devote the whole appendix to the Stokes waves. We present four results:

1. in Section A.1 we prove as in [15, Section 2], for the infinite-depth case (we direct to
[77] for the finite-depth case), that the Dirichlet-Neumann operator is analytic with
respect to the sea surface η in the framework given by the analytic domains in (2.1.1);

2. in Section A.2 we prove as in [15, Section 3], for the infinite-depth case, the existence
of the Stokes waves as an analytic 1-parameter family of equilibrium solutions of
(1.2.10) in the analytic spaces introduced in (2.1.1);

3. in Section A.3 we expand, as done in [16, Appendix B]-[17, Appendix A.1], the Stokes
waves up to the fourth order in Taylor;

4. finally, in Section A.4, following [17, Appendix A.2] we Taylor-expand at the fourth
order the coefficients of the linear operator Lϵ in (1.3.7), obtained from the linearized
traveling water waves system (1.3.1) by conjugating with the Alinhac and Levi-Civita
transformations.

In each section we shall present the rigorous statements outlined above and their proof.

A.1 Analytic properties of the Dirichlet-Neumann operator

In this section we prove an analyticity result (Theorem A.1.1) for the Dirichlet-Neumann
map η 7→ G(η)ψ in (1.2.5) in the case of infinite depth. The novelty of this Theorem with
respect to the previous literature, e.g. [28, 31, 29, 95, 96, 64, 65], is that we consider η and

161
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ψ within the same analytic space Hσ,s, instead of considering η more regular than ψ.
Let us consider the cylindrical domain

D(d)
η :=

{
(x, y) ∈ Td × R : y < η(x)

}
, d ≥ 1 , (A.1.1)

which generalizes the one defined in (1.2.1) to arbitrary horizontal dimension and suppresses
the time variable.
We regard the Dirichlet-Neumann operator, which in dimension d takes the form

[G(η)ψ](x) := (∂yΦ)(x, η(x)) − ∇η(x) · (∇Φ)(x, η(x)) , (A.1.2)

as acting between spaces of periodic analytic functions defined in (A.1.3) below. We suppose
that the functions η and ψ belong to the spaces of periodic functions

Hσ,s := Hσ,s(Td) :=
{
u(x) =

∑
k∈Zd

uke
i k·x : ∥u∥2

Hσ,s :=
∑
k∈Zd

e2σ|k|1⟨k⟩2s |uk|2 < ∞
}

(A.1.3)
where, for any k = (k1, . . . , kd) ∈ Zd, we set

|k|1 := |k1| + · · · + |kd| , ⟨k⟩ := max(1, |k|) , |k| :=
( d∑
j=1

k2
j

)1/2
.

Clearly, if the dimension d = 1 then |k| = |k|1.
If σ = 0 the space H0,s is the usual Sobolev space Hs. If σ > 0, a periodic function

u(x) belongs to Hσ,s(Td), if and only if it admits an analytic extension in the strip
|y|∞ := max{|y1|, . . . , |yd|} < σ and the traces at the boundaries u(·+i y), |y|∞ = σ, belong
to the Sobolev space Hs := Hs(Td). This characterization is proved in [15, Appendix B.1],
together with the property that the spaces Hσ,s form, for s > d/2, an algebra with respect
to the product of functions and satisfy tame estimates.

The main result of this section is the following theorem.
Let Bσ,s(r) denote the open ball in Hσ,s of center 0 and radius r > 0.

Theorem A.1.1. (Dirichlet-Neumann operator) Let σ ≥ 0 and s, s0 such that
s + 1

2 , s0 ∈ N, and s − 3
2 ≥ s0 >

d+1
2 . Then there exists ϵ0 := ϵ0(s) > 0 such that the

Dirichlet-Neumann operator mapping

η 7→ G(η) , Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) → L(Hσ,s, Hσ,s−1) ,

is analytic and fulfills the tame estimate

∥G(η)ψ∥Hσ,s−1 ≤ C(s)
(
∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

Hσ,s0+ 3
2

)
. (A.1.4)
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We remark that, in Theorem A.1.1, the functions η, ψ have the same analytic regularity.
As we are about to see, the proof of such result relies on a regularizing flattening method
(following [64, 2]) together with a perturbative argument in suitable functional spaces.

The rest of the section is devoted to the proof of Theorem A.1.1.
The first step is to straighten the free surface.

Regularizing diffeomorphism. Following [64, 2] we apply the regularizing change of
variables

x = x′ , y = ρ(x′, y′) , ρ(x′, y′) := y′ + ey
′|D|η(x′) , (A.1.5)

where ey|D| is the Fourier multiplier(
ey|D|g

)
(x) :=

∑
k∈Zd

gk e
y|k| ei k·x , ∀ g(x) =

∑
k∈Zd

gk e
i k·x .

Note that
ρ(x′, 0) = η(x′) , lim

y′→−∞
ρ(x′, y′) − y′ = η0 ,

and, since
∂y′ρ(x′, y′) = 1 + ey|′D||D|η ,

if supy′<0 ∥ey′|D||D|η∥L∞(Td) < 1 the change of coordinates (A.1.5) is a diffeomorphism
between the domain Dη = {(x, y) : y ≤ η(x)} and the flat half-cylinder {(x′, y′) : y′ ≤ 0} =
Td × R≤0 where R≤0 := (−∞, 0]. By the change of variables (A.1.5) the derivatives ∂y and
∇x become respectively

Λ1 = 1
∂y′ρ

∂y′ , Λ2 = ∇x′ − ∇x′ρ

∂y′ρ
∂y′ ,

and the transformed harmonic function

φ(x′, y′) := Φ(x′, y′ + ρ(x′, y′))

solves the elliptic problem 
(Λ2

1 + Λ2
2)φ = 0

φ(x, 0) = ψ(x)

∂yφ(x, y) → 0 as y → −∞ .

(A.1.6)
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By means of the chain rule, system (A.1.6) is rewritten (cfr. [2]) as the perturbed elliptic
problem (we rename the variables x′, y′ as x, y)

∆x,yφ = F (η)[φ]

φ(x, 0) = ψ(x)

∂yφ(x, y) → 0 as y → −∞ ,

(A.1.7)

where
F (η)[φ] :=

(
α(η)∂2

y + β(η)∆ + γ(η) · ∇∂y + δ(η)∂y
)
φ (A.1.8)

with, since ∇ρ(x, y) = ey|D|∇η and ∂yρ(x, y) = 1 + ey|D||D|η,

α(η) := 1 − 1 + |∇ρ|2

∂yρ
= ey|D||D|η − |ey|D|∇η|2

1 + ey|D||D|η
,

β(η) := 1 − ∂yρ = −ey|D||D|η ,

γ(η) := 2∇ρ = 2ey|D|∇η ,

δ(η) := 1
∂yρ

(
− 2∇ρ · ∇∂yρ+ ∂yρ∆ρ+ 1 + |∇ρ|2

∂yρ
∂2
yρ
)
.

(A.1.9)

In the new variables (A.1.5), the Dirichlet-Neumann operator defined in (A.1.2) becomes

[G(η)ψ](·) = −∇η · ∇φ(·, 0) + 1 + |∇η|2(·)
1 + (|D|η)(·) (∂yφ)(·, 0) . (A.1.10)

Function spaces. In order to state our main existence result for the solutions of (A.1.7),
we introduce some function spaces. Given s ∈ N0, σ, a ≥ 0, we define

Hσ,s,a :=
{
u(x, y) =

∑
k∈Zd

uk(y)ei k·x : Td × (−∞, 0] → C : ∥u∥σ,s,a < ∞
}

(A.1.11)

endowed with the norm

∥u∥2
σ,s,a :=

s∑
j=0

∥∂jyu∥2
L2,a(R≤0,Hσ,s−j) (A.1.12)

=
s∑
j=0

∫ 0

−∞
∥∂jyu(·, y)∥2

Hσ,s−j e
−2aydy

=
s∑
j=0

∫ 0

−∞

∑
k∈Zd

e2σ|k|1 ⟨k⟩2(s−j) |∂jyuk(y)|2e2a|y|dy
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=
s∑
j=0

∑
k∈Zd

e2σ|k|1 ⟨k⟩2(s−j) ∥∂jyuk∥2
L2,a (A.1.13)

where, given a Hilbert space X, we have used the notation

∥u∥2
L2,a(R≤0,X) :=

∫ 0

−∞
∥u(y)∥2

Xe
−2ay dy =

∫ 0

−∞
∥u(y)∥2

Xe
2a|y| dy . (A.1.14)

Remark A.1.2. For σ = a = 0, the space H0,s,0 coincides with the Sobolev space
Hs(Td × R≤0) of L2 functions u : Td × R≤0 → C possessing weak derivatives ∂αu in
L2, for any multiindex α ∈ Nd+1 with modulus |α| ≤ s, with equivalent norm ∥u∥2

s =∑
α∈Nd+1,|α|≤s ∥∂αu∥2

L2 .

We point out that, for any s ∈ N,

∥u∥2
σ,s,a = ∥u∥2

L2,a(R≤0,Hσ,s) + ∥∂yu∥2
σ,s−1,a ,

and, by (A.1.12) and ∥∂xiv∥Hσ,s−1 ≤ ∥v∥Hσ,s , we directly get the following simple lemma.

Lemma A.1.3. Let s ∈ N, σ ≥ 0, a ≥ 0. The linear maps

∂xi : Hσ,s,a 7→ Hσ,s−1,a , ∀i = 1, . . . , d, ∂y : Hσ,s,a 7→ Hσ,s−1,a ,

are continuous.

We also denote

C ⊕ Hσ,s,a :=
{
c+ u(x, y) , c ∈ C , u ∈ Hσ,s,a} , Π : C ⊕ Hσ,s,a → Hσ,s,a, Π[c+ u] = u ,

(A.1.15)
and, with a small abuse of notation, given a function g ∈ C ⊕ Hσ,s,a, we denote its norm by
∥g∥σ,s,a := ∥Πg∥σ,s,a + |g − Πg|. The function spaces Hσ,s,a and C ⊕ Hσ,s,a are modeled to
mimic the decay of the harmonic function φ in (A.1.30) as y → −∞, cfr. Lemma A.1.6.

We now list a series of properties of the spaces Hσ,s,a used in the sequel. Their proofs
can be found in [15, Appendix B.2].

Lemma A.1.4 (Trace). Let σ ≥ 0, s ∈ R. Then one has

∥u∥C0(R≤0,Hσ,s) ≤ ∥u∥
L2(R≤0,H

σ,s+ 1
2 )

+ ∥∂yu∥
L2(R≤0,H

σ,s− 1
2 )
. (A.1.16)

In particular, the trace operator

Γ(u) := u(·, 0) := u|y=0 (A.1.17)
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is, for any s ∈ N0, a ≥ 0, a linear bounded map between Hσ,s+1,a → Hσ,s+ 1
2 , satisfying

∥Γ(u)∥
Hσ,s+ 1

2
≤ ∥u∥σ,s+1,0 ≤ ∥u∥σ,s+1,a . (A.1.18)

If s > d+1
2 , the space Hσ,s,a is an algebra with respect to the product of functions and

the following tame estimates hold.

Proposition A.1.5 (Tame). Let σ, a ≥ 0 and s ≥ s0 >
d+1

2 , s, s0 ∈ N. Then there exist
positive constants Cs ≥ 1 (non-decreasing in s) such that, for any u ∈ Hσ,s,0 and v ∈ Hσ,s,a,

∥uv∥σ,s,a ≤ Cs
(
∥u∥σ,s,0 ∥v∥σ,s0,a + ∥u∥σ,s0,0 ∥v∥σ,s,a

)
. (A.1.19)

In particular one has

∥uj∥σ,s,a ≤
(
2Cs∥u∥σ,s0,a

)j−1∥u∥σ,s,a , ∀j ≥ 1 . (A.1.20)

The next lemma proves the continuity of the harmonic function ey|D|g, which solves
the Dirichlet-Neumann elliptic problem (A.1.30), with respect to the Dirichlet datum g at
y = 0.

Lemma A.1.6 (Harmonic propagator). Let σ ≥ 0 and s + 1
2 ∈ N. Then, for any

g ∈ Hσ,s, the function
(ey|D|g)(x) :=

∑
k∈Zd

gk e
y|k| ei k·x

belongs to C ⊕ Hσ,s+ 1
2 ,a, a ∈ (0, 1), and the linear map

Hσ,s → Hσ,s+ 1
2 ,a , g 7→ Π[ey|D|g] = ey|D|g − g0 ,

is continuous.

We now come back to Theorem A.1.1. The key result of its proof is the following
proposition regarding the solution of the elliptic problem (A.1.7).

The parameter a ∈ (0, 1) plays a technical role in studying the decay as y → −∞ of the
solution of the elliptic problem (A.1.6). In the sequel we fix a = 1

2 .

Proposition A.1.7. Let σ ≥ 0 and s, s0 such that s+ 1
2 , s0 ∈ N and s− 3

2 ≥ s0 >
d+1

2 .
Then there exist ϵ0 := ϵ0(s) > 0 and, for any η ∈ Hσ,s∩Bσ,s0+ 3

2 (ϵ0) and ψ ∈ Hσ,s, a unique
solution φ ∈ C ⊕ Hσ,s+ 1

2 ,a of the elliptic problem (A.1.7), satisfying

∥Πφ∥σ,s+ 1
2 ,a

≤ C(s)
(
∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

Hσ,s0+ 3
2

)
. (A.1.21)

Moreover φ = Ψ(η)[ψ], where Ψ is an analytic map Hσ,s ∩ Bσ,s0+ 3
2 (ϵ0) → L(Hσ,s, C ⊕

Hσ,s+ 1
2 ,a), and Ψ(0)ψ = ey|D|ψ.
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Postponing the proof of this proposition, we first use it to deduce Theorem A.1.1.
Proof of Theorem A.1.1. By Proposition A.1.7, for any η ∈ Hσ,s ∩ Bσ,s0+ 3

2 (ϵ0) and
ψ ∈ Hσ,s, there exists a unique solution φ ∈ C ⊕ Hσ,s+ 1

2 ,a of (A.1.7). The Dirichlet-
Neumann operator is computed in (A.1.10). Since φ(x, 0) = ψ(x), using the trace operator
Γ(u) = u(·, 0) in (A.1.17), and recalling the definition of Π in (A.1.15), we rewrite (A.1.10)
as

G(η)ψ = −∇η · ∇ψ + 1 + |∇η|2

1 + (|D|η) Γ[∂yφ]

= −∇η · ∇ψ︸ ︷︷ ︸
=:G1(η)ψ

+ Γ[∂yΠφ]︸ ︷︷ ︸
=:G2(η)ψ

+ |∇η|2 − (|D|η)
1 + (|D|η) Γ[∂yΠφ]︸ ︷︷ ︸

=:G3(η)ψ

. (A.1.22)

We prove that each map

Gi : Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) → L(Hσ,s, Hσ,s−1) , i = 1, 2, 3 , is analytic , (A.1.23)

and fulfills the tame estimate (A.1.4). Regarding G1(η)ψ, it suffices to note that it is linear
in η and by the following tame estimate (cfr. [15, Lemma B.2])

∥fg∥Hσ,s ≤ Cs,s0

(
∥f∥Hσ,s∥g∥Hσ,s0 + ∥f∥Hσ,s0 ∥g∥Hσ,s

)
, (A.1.24)

one has

∥∇η · ∇ψ∥Hσ,s−1 ≲s ∥η∥
Hσ,s0+ 1

2
∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥

Hσ,s0+ 1
2
. (A.1.25)

Next we consider G2(η)ψ = Γ[∂yΠΨ(η)ψ]. By Lemma A.1.3 and A.1.4, the map φ 7→
Γ[∂yΠφ] ∈ L(C⊕Hσ,s+ 1

2 ,a, Hσ,s−1) which, together with the analyticity of η 7→ Ψ(η) stated
in Proposition A.1.7, implies the analyticity of η 7→ G2(η) as in (A.1.23). Moreover by
(A.1.18), Lemma A.1.3 and (A.1.21), we have

∥Γ[∂yΠφ]∥Hσ,s−1 ≤ ∥∂yΠφ∥σ,s− 1
2 ,0

≲s ∥ψ∥Hσ,s + ∥η∥Hσ,s∥ψ∥
Hσ,s0+ 3

2
. (A.1.26)

Finally consider G3(η)ψ = f(η)G2(η)ψ, where f(η) is the multiplication operator by the
function

f(η) = |∇η|2 − (|D|η)
1 + (|D|η) =

(
|∇η|2 − (|D|η)

) ∞∑
j=0

(−|D|η)j . (A.1.27)

By [15, Lemma B.2] we have that ∥(|D|η)j∥Hσ,s−1 ≤ (C(s)∥η∥
Hσ,s0+ 3

2
)j∥η∥Hσ,s for any

j ∈ N, and therefore f(η) in (A.1.27) is bounded, on the domain Hσ,s ∩Bσ,s0+ 3
2 (ϵ0), by

∥f(η)∥Hσ,s−1 ≲s ∥η∥Hσ,s . (A.1.28)
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Moreover f(η) in (A.1.27) is a series of analytic functions uniformly convergent on the
sets Bσ,s(R) ∩ Bσ,s0+ 3

2 (ϵ0), ∀R > 0. Thus, by Weierstrass theorem, η 7→ f(η) is analytic
on Bσ,s(R) ∩ Bσ,s0+ 3

2 (ϵ0), and, by the arbitrariness of R, on the whole open set Hσ,s ∩
Bσ,s0+ 3

2 (ϵ0) → Hσ,s−1. We conclude that also G3(η) is analytic as stated in (A.1.23).
Finally, (A.1.28) and (A.1.26) imply that G3(η) satisfies the tame estimate (A.1.4).

Remark A.1.8. It follows from the proof that G(0)ψ = G2(0)ψ = Γ[∂yΠΨ(0)ψ], which,
together with Ψ(0)ψ = ey|D|ψ, recovers the identity G(0)ψ = |D|ψ.

The final paragraph is devoted to the proof of Proposition A.1.7.

Proof of Proposition A.1.7: the perturbative argument. We look for a solution φ
of (A.1.7) of the form

φ(x, y) = φ(x, y) + u(x, y) (A.1.29)

where φ is the harmonic solution of
∆x,yφ = 0

φ(x, 0) = ψ(x)

∂yφ(x, y) → 0 as y → −∞ ,

i.e. φ(x, y) := ey|D|ψ(x) , (A.1.30)

whereas u solves the elliptic problem
∆x,yu = F (η)[ϕ+ u] ,

u(x, 0) = 0

∂yu(x, y) → 0 as y → −∞ ,

(A.1.31)

with ϕ := φ. The harmonic function φ = ey|D|ψ ia estimated by Lemma A.1.6.
The solution of system (A.1.31) is given by the following lemma.

Lemma A.1.9. Let σ ≥ 0 and s, s0 such that s+ 1
2 , s0 ∈ N and s− 3

2 ≥ s0 >
d+1

2 . Then
there exist ϵ0 := ϵ0(s) > 0 and a unique analytic map

η 7→ U(η) , U : Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) −→ L

(
C ⊕ Hσ,s+ 1

2 ,a
)
,

such that u = U(η)[ϕ] = U(η)[Πϕ], with Π in (A.1.15), solves (A.1.31), satisfying

∥ΠU(η)[ϕ]∥σ,s+ 1
2 ,a

≤ C(s)
(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+ ∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
. (A.1.32)
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The proof of Lemma A.1.9 relies on Lemmata A.1.10 and A.1.11 below.
Given a function g(x, y) defined in Td × (−∞, 0), we first consider the linear elliptic

problem 
∆x,yu = g

u(x, 0) = 0

∂yu(x, y) → 0 as y → −∞ .

(A.1.33)

The following key lemma is proved in [15, Appendix C].

Lemma A.1.10 (Elliptic regularity). Fix σ ≥ 0, s ∈ N0 and a ∈ (0, 1). For any
g ∈ Hσ,s,a, the elliptic problem (A.1.33) has a unique solution u := L(g) ∈ C ⊕ Hσ,s+2,a.
The linear map

L : Hσ,s,a → C ⊕ Hσ,s+2,a , g 7→ L(g) ,

is continuous, i.e. there exists Ca > 0 such that ∥Lg∥σ,s+2,a ≤ Ca∥g∥σ,s,a.

Thanks to Lemma A.1.10, we recast the nonlinear elliptic problem (A.1.31) into the
equation (

Id − L ◦ F (η)
)
[u] = L ◦ F (η)[ϕ] . (A.1.34)

Note that the linear operator Id − L ◦ F (η) depends non-linearly on η and that, recalling
(A.1.8), F (η)[ϕ] = F (η)[Πϕ] depends only on the component Πϕ ∈ Hσ,s,a of ϕ defined in
(A.1.15), for the presence of the derivatives ∂y, ∂yy,∇∂y. In the next lemma we study the
regularity of the nonlinear map η 7→ F (η).

Lemma A.1.11. Let σ ≥ 0, s+ 1
2 , s0 ∈ N with s− 3

2 ≥ s0 >
d+1

2 . There exists ϵ0 := ϵ0(s) > 0
such that the nonlinear map

F : Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) → L

(
C ⊕ Hσ,s+ 1

2 ,a,Hσ,s− 3
2 ,a
)
,

η 7→
{
ϕ 7→ F (η)[ϕ]

}
,

defined in (A.1.8) is analytic and satisfies the tame estimate

∥F (η)[ϕ]∥σ,s− 3
2 ,a

≤ C(s)
(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+ ∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
. (A.1.35)

Proof. We write F (η)[ϕ] in (A.1.8) as

F (η)[ϕ] = F1[α(η), ϕ] + F2[β(η), ϕ] +
d∑
j=1

F3j [γj(η), ϕ] + F4[δ(η), ϕ]
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with bilinear maps

F1[g, ϕ] := g∂2
yϕ , F2[g, ϕ] := g∆ϕ , F3j [g, ϕ] := g∂xj∂yϕ , F4[g, ϕ] := g∂yϕ .

In view of (A.1.19), Lemma A.1.3 and (A.1.15), each of these maps is bounded Hσ,s− 3
2 ,a ×

(C ⊕ Hσ,s+ 1
2 ,a) → Hσ,s− 3

2 ,a and any F ∈ {F1,F2,F3j ,F4} fulfills the tame estimates

∥F[g, ϕ]∥σ,s− 3
2 ,a

≲s ∥g∥σ,s− 3
2 ,a

∥Πϕ∥σ,s0+2,a + ∥g∥σ,s0,a∥Πϕ∥σ,s+ 1
2 ,a
. (A.1.36)

We claim that the maps

Hσ,s ∩Bσ,s0+ 1
2 (ϵ0) → Hσ,s− 1

2 ,a , η 7→ α(η) , β(η) , γj(η) , j = 1, . . . , d ,

Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) → Hσ,s− 3

2 ,a , η 7→ δ(η) ,
(A.1.37)

are analytic and, for any s ≥ s0 + 3
2 , j = 1, . . . , d,

∥α(η)∥σ,s− 1
2 ,a
, ∥β(η)∥σ,s− 1

2 ,a
, ∥γj(η)∥σ,s− 1

2 ,a
, ∥δ(η)∥σ,s− 3

2 ,a
≤ C(s)∥η∥Hσ,s . (A.1.38)

It is clear that these properties, together with (A.1.36), imply the Lemma.
Let us consider first α(η), defined in (A.1.9), which we rewrite as

α(η) =
(
1 − 1

∂yρ(η)
)

+
(
1 − 1

∂yρ(η)
)
|∇ρ(η)|2 − |∇ρ(η)|2 .

We first prove that η 7→ 1 − 1
∂yρ(η) is analytic as a map Hσ,s ∩ Bσ,s0(ϵ0) → Hσ,s− 1

2 ,a. We
first note that Lemma A.1.6 implies

∥∂yρ(η) − 1∥σ,s− 1
2 ,a

= ∥ey|D||D|η∥σ,s− 1
2 ,a

≲s ∥η∥Hσ,s . (A.1.39)

Then by (A.1.20) and (A.1.39) the series

1 − 1
∂yρ(η) = −

∑
j≥1

(1 − ∂yρ(η))j (A.1.40)

is bounded by∥∥∥ 1
∂yρ(η) − 1

∥∥∥
σ,s− 1

2 ,a
≤ ∥∂yρ(η) − 1∥σ,s− 1

2 ,a

∑
j≥1

(
2Cs∥∂yρ(η) − 1∥σ,s0,a

)j−1 ≤ C(s)∥η∥Hσ,s

(A.1.41)

provided ∥η∥
Hσ,s0+ 1

2
< ϵ0(s) is small enough. The series (A.1.40) of analytic functions in

uniformly convergent in Hσ,s− 1
2 ,a on the domain η ∈ Bσ,s(R) ∩Bσ,s0(ϵ0), ∀R > 0, thus it
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defines an analytic map on Hσ,s∩Bσ,s0(ϵ0). Moreover the linear map η 7→ ∇ρ(η) = ey|D|∇η
is, by Lemma A.1.6, bounded between Hσ,s → Hσ,s− 1

2 ,a. Therefore α(η) is the product of
analytic functions Hσ,s ∩Bσ,s0+ 1

2 (ϵ0) → Hσ,s− 1
2 ,a, and using the tame estimate (A.1.19) we

get (A.1.38).
The analyticity and the estimates of the functions η 7→ β(η), γj(η), j = 1, . . . , d stated

in (A.1.37) follow similarly. Finally consider δ(η) in (A.1.9). The biggest loss of derivatives
follows from the linear maps η 7→ ∆ρ(η), ∂2

yρ(η), ∇∂yρ(η) which, by Lemmata A.1.3
and A.1.6, are bounded between Hσ,s → Hσ,s− 3

2 ,a. Moreover δ(η) satisfies the estimate
∥δ(η)∥

Hσ,s− 3
2 ,a ≤ C(s, ∥η∥

Hσ,s0+ 3
2
) ∥η∥Hσ,s for any s− 3

2 ≥ s0.

Proof of Lemma A.1.9. For any s ≥ s0 + 3
2 such that s+ 1

2 ∈ N, by Lemmata A.1.10 and
A.1.11, the map

η 7→ P (η) := L ◦ F (η) , Hσ,s ∩Bσ,s0+ 1
2 (ϵ0) → L(C ⊕ Hσ,s+ 1

2 ,a) ,

is analytic and, for positive constants C(s) ≥ C ′(s0) > 0, in view of (A.1.15),

∥P (η)[ϕ]∥σ,s+ 1
2 ,a

≤ C(s)
(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+ ∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
∥P (η)[ϕ]∥σ,s0+2,a ≤ C ′(s0) ∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s0+2,a .

(A.1.42)

We claim that, for any η ∈ Hσ,s ∩ Bσ,s0+ 3
2 (ϵ0) and ϵ0(s) > 0 small enough, the operator

Id − P (η) is invertible in L(C ⊕ Hσ,s+ 1
2 ,a) and the inverse map

η 7→ (Id − P (η))−1 =
∞∑
j=0

P (η)j [ϕ] , Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) → L(C ⊕ Hσ,s+ 1

2 ,a) , (A.1.43)

is analytic. As each η 7→ P (η)j is analytic Hσ,s ∩ Bσ,s0+ 1
2 (ϵ0) → L(C ⊕ Hσ,s+ 1

2 ,a), the
claim follows by proving that the series (A.1.43) converges uniformly in L(C ⊕ Hσ,s+ 1

2 ,a)
for η ∈ Bσ,s(R) ∩Bσ,s0+ 3

2 (ϵ0) for any R > 0. By (A.1.42) we have, for any j ∈ N,

∥P (η)j [ϕ]∥σ,s0+2,a ≤
(
C ′(s0)∥η∥

Hσ,s0+ 3
2

)j∥Πϕ∥σ,s0+2,a , (A.1.44)

and, by induction, we prove that

∥P (η)j [ϕ]∥σ,s+ 1
2 ,a

≤ C(s)j∥η∥j−1
Hσ,s0+ 3

2

(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+j∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
.

(A.1.45)
Indeed, for j = 1 this is (A.1.42). Then assuming that (A.1.45) holds for j, we get

∥P (η)j+1[ϕ]∥σ,s+ 1
2 ,a

(A.1.42)
≤ C(s)

(
∥η∥

Hσ,s0+ 3
2
∥P (η)j [ϕ]∥σ,s+ 1

2 ,a︸ ︷︷ ︸
=:A

+ ∥η∥Hσ,s∥P (η)j [ϕ]∥σ,s0+2,a︸ ︷︷ ︸
=:B

)
.
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By the inductive hypothesis the first term is bounded by

A ≤ C(s)j∥η∥j
Hσ,s0+ 3

2

(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+ j∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
,

whereas, by (A.1.44),

B ≤ (C ′(s0)∥η∥
Hσ,s0+ 3

2
)j∥η∥Hσ,s∥Πϕ∥σ,s0+2,a ,

and we deduce, as C ′(s0) ≤ C(s), that

∥P (η)j+1[ϕ]∥σ,s+ 1
2 ,a

≤ C(s)j+1∥η∥j
Hσ,s0+ 3

2

(
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a
+(j+1)∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

)
,

which proves (A.1.45) at the step j + 1.
By (A.1.45), the series in (A.1.43) is bounded by

∥(Id − P (η))−1[ϕ]∥σ,s+ 1
2 ,a

≤
∑
j≥0

∥P (η)j [ϕ]∥σ,s+ 1
2 ,a

≤ ∥Πϕ∥σ,s+ 1
2 ,a

+
∑
j≥1

C(s)j∥η∥j−1
Hσ,s0+ 3

2
∥η∥

Hσ,s0+ 3
2
∥Πϕ∥σ,s+ 1

2 ,a

+
∑
j≥1

C(s)j∥η∥j−1
Hσ,s0+ 3

2
j ∥η∥Hσ,s∥Πϕ∥σ,s0+2,a

≤ 2∥Πϕ∥σ,s+ 1
2 ,a

+ C∥η∥Hσ,s∥Πϕ∥σ,s0+2,a (A.1.46)

provided ∥η∥
Hσ,s0+ 3

2
< ϵ0(s) is sufficiently small. In particular this shows the claim on the

uniform convergence of the series on Bσ,s(R) ∩Bσ,s0+ 3
2 (ϵ0) for any R > 0.

The analytic map

U : Hσ,s ∩Bσ,s0+ 3
2 (ϵ0) −→ L

(
C ⊕ Hσ,s+ 1

2 ,a
)
, U(η)[ϕ] := (Id − L ◦ F (η))−1[L ◦ F (η)[ϕ]

]
,

defines the unique solution u = U(η)[ϕ] of (A.1.34) and, consequently, of system (A.1.31).
By (A.1.46) and (A.1.42) we deduce (A.1.32). This proves Lemma A.1.9.

Proof of Proposition A.1.7. It follows with φ = Ψ(η)[ψ] = ey|D|ψ + U(η)[ey|D|ψ], see
(A.1.29), (A.1.30) and Lemma A.1.9.

A.2 Bifurcation of the Stokes waves

In this section we prove Theorem 2.1.1 in the case of infinite depth, namely the following
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Theorem A.2.1. (Stokes waves) For any σ ≥ 0, s > 5/2 and k ∈ N, there exists
ϵ0 := ϵ0(σ, s, k) > 0 and a unique family of solutions

(ηϵ(x), ψϵ(x), cϵ) ∈ Hσ,s(T) ×Hσ,s(T) × R

of the system (1.2.10), parameterized by |ϵ| ≤ ϵ0, such that

1. the map ϵ 7→ (ηϵ, ψϵ, cϵ), B(ϵ0) → Hσ,s(T) ×Hσ,s(T) × R is analytic;

2. ηϵ(x) is even, ηϵ(x) has zero average, ψϵ(x) is odd;

3. the solutions (ηϵ(x), ψϵ(x), cϵ) have the expansion

(ηϵ(x), ψϵ(x)) = ϵ(
√
k cos(kx),√g sin(kx)) +O(ϵ2) , cϵ →

√
g

k
as ϵ → 0 . (A.2.1)

We remark that a proof of Theorem 2.1.1 for arbitrary depth h > 0 can be given by
mimicking the following proof for the deep-water case. On the other hand, in the case of
finite depth and adding surface tension, Theorem 2.1.1 is proved by Nicholls-Reitich [77].

With the aid of the analyticity result of Theorem A.1.1, we can adapt the classical
bifurcation procedure to obtain a solution

(
ηϵ(x), ψϵ(x)

)
with ηϵ(x) and ψϵ(x) in the same

analytic space Hσ,s. This is fundamental to deduce the exact regularity, through the
functions pϵ(x) and aϵ(x) in (1.3.8), of the operator Lµ,ϵ in (1.3.14). This essentially
ensures, thanks to the algebra property of the spaces Hσ,s, that every formula presented so
far is analytic with respect to ϵ.

The rest of the section is devoted to the proof of Theorem A.2.1. It is based on the
application of the analytic Crandall-Rabinowitz Theorem A.2.2 below. For the proof we
refer e.g to [20], and Theorem 4.1 in Chap. 5 of [4] for its smooth version.

Theorem A.2.2 (Crandall-Rabinowitz bifurcation Theorem). Let X,Y be Banach spaces
and U ⊂ X be an open neighbourhood of 0. Let F : U × R → Y , F (u, c), be an analytic
map satisfying F (0, c) = 0 for any c ∈ R. Let c∗ be such that L := duF (0, c∗) ∈ L(X,Y ) is
not invertible and

1. Ker(L) = span⟨u∗⟩, u∗ ∈ X, is 1-dimensional;

2. the range R := Rng(L) is closed and codim R = 1;

3. (transversality) ∂cduF (0, c∗)[u∗] /∈ R .
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Then there exist ϵ∗ > 0 and an analytic function

(−ϵ∗, ϵ∗) → U × R, ϵ 7→ (uϵ, cϵ) , uϵ = ϵu∗ +O(ϵ2) , cϵ = c∗ +O(ϵ) ,

such that F (uϵ, cϵ) = 0 for any |ϵ| < ϵ∗.

Theorem A.2.1 is proved by applying Theorem A.2.2 to the nonlinear operator

F :
(
Hσ,s

ev0 ∩Bσ,s0(ϵ0)
)

×Hσ,s
odd × R −→ Hσ,s−1

odd ×Hσ,s−1
ev0 , σ ≥ 0 , s > 5/2 ,

F (η, ψ, c) :=
(
cηx +G(η)ψ , cψx − gη − ψ2

x

2 + 1
2(1 + η2

x)
(
G(η)ψ + ηxψx

)2) (A.2.2)

where Hσ,s
ev0 , respectively Hσ,s

odd, denote the space of even, respectively odd, and average-free
real valued functions in Hσ,s defined in (2.1.1), and ϵ0 := ϵ0(σ, s, s0) > 0 is provided by
Theorem A.1.1. Note that a real function (η, ψ) ∈ Hσ,s

ev0 × Hσ,s
odd admits a Fourier series

expansion[
η(x)
ψ(x)

]
=
∑
k≥1

[
ηk cos(kx)
ψk sin(kx)

]
with norm ∥(η, ψ)∥2

Hσ,s ≃
∑
k≥1

e2σ|k|⟨k⟩2s(η2
k + ψ2

k) . (A.2.3)

The fact that the nonlinear operator F in (A.2.2) maps a pair of functions (η, ψ) which
are odd/even in x into a pair of functions which are even/odd in x is verified thanks to
the reversibility property (1.2.9). Moreover, the second component of F has zero average
thanks to the following lemma.

Lemma A.2.3. Let G(η) be the Dirichlet-Neumann operator defined in (1.2.5). Then∫
T

−1
2ψ

2
x + 1

2(1 + η2
x)
(
G(η)ψ + ηxψx

)2 dx = 0 . (A.2.4)

Proof. By (4), the kinetic energy K(η, ψ) = 1
2(ψ,G(η)ψ)L2 in (1.2.6) satisfies K(η+m,ψ) =

K(η, ψ) for any m ∈ R. Thus

0 = d
dmK(η +m,ψ) = dηK(η, ψ)[1] = (∇ηK(η, ψ), 1)L2 =

∫
T

∇ηK(η, ψ) dx .

In view of (1.2.7), the identity (A.2.4) is proved.

We now start verifying the assumptions of the Crandall-Rabinowitz Theorem A.2.2.
First, by Theorem A.1.1, the nonlinear operator F defined in (A.2.2) is analytic. Moreover,
by inspection,

F (0, 0, c) = 0 , ∀c ∈ R .



A.2. BIFURCATION OF THE STOKES WAVES 175

The possible bifurcation values of non-trivial solutions of F (η, ψ, c) = 0 are those speeds c
such that the linearized operator

d(η,ψ)F (0, 0, c) : Hσ,s
ev0 ×Hσ,s

odd →Hσ,s−1
odd ×Hσ,s−1

ev0 ,

[
η̂

ψ̂

]
7→

[
c∂x |D|
−g c∂x

] [
η̂

ψ̂

]
, (A.2.5)

has a nontrivial kernel. In the next lemma we characterize such values.

Lemma A.2.4. (Bifurcation speeds) The kernel of d(η,ψ)F (0, 0, c) in (A.2.5) is nontrivial
if and only if

c = ±
√
g

k
for some k ∈ N . (A.2.6)

For any k ∈ N, the Kernel of L := d(η,ψ)F (0, 0, c∗
k), where we set c∗

k :=
√

g
k , is one

dimensional and

Ker(L) = ⟨u∗⟩ with u∗ :=
[√

k cos(kx)
√
g sin(kx)

]
. (A.2.7)

Proof. By the Fourier expansion (A.2.3), it results that the kernel of d(η,ψ)F (0, 0, c) is

nontrivial if and only if at least one of the matrices
[
−ck k

−g ck

]
, k ∈ N, has zero determinant.

This is verified provided c2k = g for some k ∈ N, i.e. (A.2.6) holds. In addition, a vector[
η(x)
ψ(x)

]
= ∑

j≥1

[
ηj cos(jx)
ψj sin(jx)

]
belongs to the Kernel of d(η,ψ)F (0, 0, c∗

k) if and only if

[
−c∗

kj j

−g c∗
kj

] [
ηj

ψj

]
= 0 , ∀j ≥ 1 . (A.2.8)

If j ̸= k then

det
[
−c∗

kj j

−g c∗
kj

]
= −(c∗

k)2j2 + gj = j2((c∗
j )2 − (c∗

k)2) ̸= 0 , (A.2.9)

since the map k 7→ (c∗
k)2 = g/k is injective on N. Hence ηj = ψj = 0 for any j ̸= k. On the

other hand, if j = k then (A.2.8) is solved provided √
gηk =

√
kψk, proving (A.2.7).

We apply Theorem A.2.2 with c∗
k :=

√
g
k . By Lemma A.2.4 assumption 1 holds. The

next lemma verifies the assumptions 2)-3).
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Lemma A.2.5. The range R := RngL, L = d(η,ψ)F (0, 0, c∗
k), is

R =


[
f

g

]
∈ Hσ,s−1

odd (T) ×Hσ,s−1
ev0 (T) :

[
f(x)
g(x)

]
=
[
fk sin(kx)
c∗
kfk cos(kx)

]
+

∑
j≥1,j ̸=k

[
fj sin(jx)
gj cos(jx)

] .

(A.2.10)
In particular R is closed and codimR = 1.

The vector (∂cd(η,ψ)F )(0, 0, c∗
k)
[√

k cos(kx)
√
g sin(kx)

]
does not belong to R.

Proof. A vector
[
f

g

]
∈ Hσ,s−1

odd (T) × Hσ,s−1
ev0 (T) belongs to R if and only if there is

[
η

ψ

]
∈

Hσ,s
ev0 ×Hσ,s

odd such that, recalling (A.2.5) and (A.2.3),[
−c∗

kj j

−g c∗
kj

] [
ηj

ψj

]
=
[
fj

gj

]
∀j ≥ 1 where

[
f(x)
g(x)

]
=
∑
j≥1

[
fj sin(jx)
gj cos(jx)

]
. (A.2.11)

For any j ̸= k, by (A.2.9), system (A.2.11) has the unique solution

ηj = 1
g

√
k

k − j
(√gfj −

√
kgj) , ψj = 1

j
√
g

√
k

k − j
(
√
kgfj − jgj) . (A.2.12)

If j = k, the system (A.2.11) is solvable if and only if

√
gfk =

√
kgk (A.2.13)

and a solution is ηk = − 1√
kg
fk, ψk = 0. By (A.2.12) we deduce that |ηj |, |ψj | ≤ Ck

j (|fj | +
|gj |), for any j ∈ N \ {k}, implying that (η, ψ) ∈ Hσ,s, actually

∥η∥Hσ,s , ∥ψ∥Hσ,s ≤ Ck(∥f∥Hσ,s−1 + ∥g∥Hσ,s−1) .

In conclusion, the range R of L has the form (A.2.10), by (A.2.13) and c∗
k =

√
g/k.

Finally differentiating (A.2.5) one computes

(∂cd(η,ψ)F )(0, 0, c∗
k)
[√

k cos(kx)
√
g sin(kx)

]
=
[
∂x 0
0 ∂x

] [√
k cos(kx)

√
g sin(kx)

]
=
[

−k
3
2 sin(kx)

k
√
g cos(kx)

]

which does not belong to the range R in (A.2.10).

All the assumptions of the Crandall-Rabinowitz Theorem are verified.
This concludes the proof of Theorem A.2.1.
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A.3 Expansion of the Stokes waves

In this part of the appendix we prove the following

Proposition A.3.1 (Expansion of Stokes waves). The Stokes waves ηϵ(x), ψϵ(x) and
the speed cϵ in Theorem 2.1.1 admit the expansion

ηϵ(x) = ϵ cos(x) + ϵ2
(
η

[0]
2 + η

[2]
2 cos(2x)

)
+ ϵ3

(
η

[1]
3 cos(x) + η

[3]
3 cos(3x)

)
+ ϵ4

(
η

[0]
4 + η

[2]
4 cos(2x) + η

[4]
4 cos(4x)

)
+ O(ϵ5) ,

(A.3.1a)

ψϵ(x) = ϵc−1
h sin(x) + ϵ2ψ

[2]
2 sin(2x) + ϵ3

(
ψ

[1]
3 sin(x) + ψ

[3]
3 sin(3x)

)
+ ϵ4

(
ψ

[2]
4 sin(2x) + ψ

[4]
4 sin(4x)

)
+ O(ϵ5) ,

(A.3.1b)

cϵ = ch + ϵ2c2 + ϵ4c4 + O(ϵ5) , ch := ch,1,1 =
√

tanh(h) , (A.3.1c)

with the Taylor coefficients, for arbitrary depth h > 0, given by

η
[0]
2 := c4

h − 1
4c2

h
, η

[2]
2 := 3 − c4

h
4c6

h
, ψ

[2]
2 := 3 + c8

h
8c7

h
, (A.3.2a)

c2 := 9 − 10c4
h + 9c8

h
16c7

h
+ (1 − c4

h)
2ch

η
[0]
2 = −2c12

h + 13c8
h − 12c4

h + 9
16c7

h
, (A.3.2b)

η
[1]
3 := −2c12

h + 3c8
h + 3

16c8
h(1 + c2

h) , η
[3]
3 := −3c12

h + 9c8
h − 9c4

h + 27
64c12

h
,

ψ
[1]
3 := 2c12

h − 3c8
h − 3

16c7
h(1 + c2

h) , ψ
[3]
3 := −9c12

h + 19c8
h + 5c4

h + 9
64c13

h
,

(A.3.2c)

η
[0]
4 := −4c20

h − 4c18
h + 17c16

h + 6c14
h − 48c8

h + 6c6
h + 36c4

h − 9
64c14

h
,

η
[2]
4 := 1

384c18
h (c2

h + 1)
(

− 24c22
h + 285c18

h + 177c16
h − 862c14

h − 754c12
h

+ 1116c10
h + 1080c8

h − 162c6
h − 54c4

h − 81c2
h − 81

)
,

η
[4]
4 := 21c20

h + c16
h − 262c12

h + 522c8
h + 81c4

h + 405
384c18

h (c4
h + 5) ,

ψ
[2]
4 := 1

768c19
h (c2

h + 1)
(

− 12c26
h − 36c24

h + 57c22
h + 93c20

h + 51c18
h − 21c16

h ,

− 646c14
h − 502c12

h + 1098c10
h + 1098c8

h − 243c6
h − 135c4

h − 81c2
h − 81

)
,

ψ
[4]
4 := −21c24

h + 60c20
h + 343c16

h − 1648c12
h + 3177c8

h + 756c4
h + 405

1536c19
h (c4

h + 5) ,

(A.3.2d)

c4 = 1
1024c19

h (c2
h + 1)

(
56c30

h + 88c28
h − 272c26

h − 528c24
h − 7c22

h + 497c20
h (A.3.2e)
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+ 1917c18
h + 1437c16

h − 4566c14
h − 4038c12

h + 4194c10
h + 3906c8

h − 891c6
h − 675c4

h + 81c2
h + 81

)
.

The rest of the section is devoted to the proof of Proposition A.3.1.
By Theorem 2.1.1 the Stokes waves admit the Taylor expansion

ηϵ(x) = ϵη1(x) + ϵ2η2(x) + ϵ3η3(x) + +ϵ4η4(x) + O(ϵ5) ,
ψϵ(x) = ϵψ1(x) + ϵ2ψ2(x) + ϵ3ψ3(x) + ϵ4ψ4(x) + O(ϵ5) ,
cϵ = ch + ϵc1 + ϵ2c2 + ϵ3c3 + ϵ4c4 + O(ϵ5) ,

(A.3.3)

where η1 = cos(x), ψ1 = c−1
h sin(x) and ηi is even(x) and ψi is odd(x) for i = 2, . . . , 4.

We solve order by order in ϵ the equations (1.2.10), that we rewrite as−c ψx + η + ψ2
x

2 − η2
x

2(1 + η2
x)(c− ψx)2 = 0

c ηx +G(η)ψ = 0 ,
(A.3.4)

having substituted G(η)ψ with −c ηx in the first equation.
We Taylor expand the Dirichlet-Neumann operator G(η) as

G(η) = G0 +G1(η) +G2(η) +G3(η) + O(η4)

where, by [29, formulae (39)-(40)],

G0 := D tanh(hD) = |D| tanh(h|D|) ,
G1(η) := −∂xη∂x −G0ηG0 ,

G2(η) := −1
2G0∂xη

2∂x + 1
2∂

2
xη

2G0 −G0ηG1(η) ,

G3(η) := 1
6∂

3
xη

3∂x + 1
6G0∂

2
xη

3G0 −G0ηG2(η) + 1
2∂

2
xη

2G1(η)

G4(η) := 1
24G0∂

3
xη

4∂x − 1
24∂

4
xη

4G0 + 1
2∂

2
xη

2G2(η) + 1
6G0∂

2
xη

3G1(η) −G0ηG3(η) .

(A.3.5)

Remark A.3.2. In order to check that (A.3.5) coincides with [29, formulae (39)-(40)] use
the identity D2 = −∂2

x. We point out that (A.3.5) coincides with [32, formulae (2.13)-(2.14)]
and the recursion formulae of [94, p. 24].

By linearizing system (A.3.4) at (η, ψ, c) = (0, 0, ch) we get the linear system

B0

[
η̂

ψ̂

]
= 0 , B0 :=

[
1 −ch∂x

ch∂x G0

]
, (A.3.6)

with B0 = B∗
0 with respect to the scalar product of L2(T,R2).

To apply the bifurcation procedure we study kernel and range of B0 in the following



A.3. EXPANSION OF THE STOKES WAVES 179

Lemma A.3.3. The kernel of the operator B0 in (A.3.6) is

K := Ker B0 = span
{[ cos(x)

c−1
h sin(x)

]}
(A.3.7a)

and its range R := Rn B0 = K⊥L2 is given by R = R0 ⊕R1 ⊕R∅, where

R0 := span
{[1

0

]}
, R1 := span

{[− cos(x)
ch sin(x)

]}
,

R∅ :=
∞⊕
k=2

Rk , Rk := span
{[cos(kx)

0

]
,

[
0

sin(kx)

]}
.

(A.3.7b)

Consequently there exists a unique self-adjoint bounded linear operator B−1
0 : R → R

B−1
0

[
1
0

]
=
[
1
0

]
, B−1

0

[
− cos(x)
ch sin(x)

]
= 1

1 + c2
h

[
− cos(x)
ch sin(x)

]
, (A.3.8)

B−1
0

[
f(x)
g(x)

]
=
(
|D| tanh(h|D|) + c2

h∂
2
x

)−1
[
|D| tanh(h|D|) ch∂x

−ch∂x 1

] [
f(x)
g(x)

]
, ∀

[
f

g

]
∈ R∅ ,

such that B0B
−1
0 = B−1

0 B0
∣∣
R

= IdR.

Second order in ϵ. By plugging the expansion (A.3.3) in system (A.3.4) and discarding
cubic terms we find the linear system

B0

[
η2

ψ2

]
=
[
c1(ψ1)x − 1

2(ψ1)2
x + 1

2(G0ψ1)2

−c1(η1)x −G1(η1)ψ1

]
, (A.3.9)

where B0 is the self-adjoint operator in (A.3.6). System (A.3.9) admits a solution if and
only if its right-hand term is orthogonal to the Kernel of B0 in (A.3.7a), namely

( [c1(ψ1)x − 1
2(ψ1)2

x + 1
2(G0ψ1)2

−c1(η1)x −G1(η1)ψ1

]
,

[
cos(x)

c−1
h sin(x)

] )
= 0 . (A.3.10)

In view of the explicit first-order expansion in (A.3.3) and the identity tanh(2h) = 2c2
h

1 + c4
h
,

it results
G0ψ1 = ch sin(x) , G1(η1)ψ1 = 1 − c4

h
ch(1 + c4

h) sin(2x) . (A.3.11)
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so that (A.3.10) implies c1 = 0, in agreement with (A.3.1c). Equation (A.3.9) reduces to[
1 −ch∂x

ch∂x G0

] [
η2

ψ2

]
=

−1
4(c−2

h − c2
h) − 1

4(c−2
h + c2

h) cos(2x)
− 1−c4

h
ch(1+c4

h) sin(2x)

 . (A.3.12)

Setting η2 = η
[0]
2 + η

[2]
2 cos(2x) and ψ2 = ψ

[2]
2 sin(2x), system (A.3.12) amounts toη

[0]
2 +

(
η

[2]
2 − 2chψ

[2]
2
)

cos(2x) = −1
4

(
c−2

h − c2
h

)
− 1

4

(
c−2

h + c2
h

)
cos(2x)

(−2chη
[2]
2 + 2ψ[2]

2 tanh(2h)) sin(2x) = − 1−c4
h

ch(1+c4
h) sin(2x) ,

which is solved by the coefficients η[0]
2 , η[2]

2 , ψ[2]
2 given in (A.3.2a).

Third order in ϵ. By plugging the expansion (A.3.3) in system (A.3.4) and discarding
quartic terms we find the following linear system

B0

[
η3

ψ3

]
=
[
c2(ψ1)x − (ψ1)x(ψ2)x − (η1)2

x(ψ1)xch + (η1)x(η2)xc2
h

−c2(η1)x −G1(η1)ψ2 −G1(η2)ψ1 −G2(η1)ψ1

]
=:
[
f3

g3

]
. (A.3.13)

In view of (A.3.1) we have

(ψ1)x(ψ2)x = ψ
[2]
2

ch
(cos(x) + cos(3x)) ,

(η1)2
x(ψ1)xch = 1

4(cos(x) − cos(3x)) ,
c2

h(η1)x(η2)x = c2
hη

[2]
2 (cos(x) − cos(3x)) . (A.3.14)

By means of (A.3.5) and since

tanh(h) = c2
h , tanh(2h) = 2c2

h
1 + c4

h
, tanh(3h) = 3c2

h + c6
h

1 + 3c4
h
, (A.3.15)

whereby

G0ψ2 = 4c2
h

1 + c4
h
ψ

[2]
2 sin(2x) , (A.3.16)

we have, in view of (A.3.11) too,

G1(η1)ψ2 = ψ
[2]
2

1 − c4
h

1 + c4
h

sin(x) + 3ψ[2]
2

1 − 2c4
h + c8

h
1 + 4c4

h + 3c8
h

sin(3x) ,

G2(η1)ψ1 = ch

4
3c4

h − 1
1 + c4

h
sin(x) − 3

4ch
c8

h − 4c4
h + 3

1 + 4c4
h + 3c8

h
sin(3x) ,

G1(η2)ψ1 = 1
ch

(
η

[0]
2 (1 − c4

h) + 1
2η

[2]
2 (1 + c4

h)
)

sin(x) + 3
2ch

η
[2]
2

1 − c8
h

1 + 3c4
h

sin(3x) .

(A.3.17)
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System (A.3.13) has a solution if and only if the right hand side is orthogonal to the Kernel
of B0 given in (A.3.7a), namely

0 =
( [f3(x)
g3(x)

]
,

[
cos(x)

c−1
h sin(x)

] )

=
( [c2(ψ1)x − (ψ1)x(ψ2)x − (η1)2

x(ψ1)xch + (η1)x(η2)xc2
h

−c2(η1)x −G1(η1)ψ2 −G1(η2)ψ1 −G2(η1)ψ1

]
,

[
cos(x)

c−1
h sin(x)

] )
.

(A.3.18)

The kernel equation (A.3.18) determines uniquely c2 to be, using also (A.3.14) and (A.3.17),
the term in (A.3.2b). Consequently the right-hand side of system (A.3.13) is explicitly
given by f3(x)

g3(x)

 =

f [1]
3 cos(x) + f

[3]
3 cos(3x)

g
[1]
3 sin(x) + g

[3]
3 sin(3x)

 , (A.3.19)

with
f

[1]
3 := −2c12

h + 3c8
h + 3

16c8
h

, f
[3]
3 := 3c8

h − 6c4
h − 3

8c8
h

,

g
[1]
3 := 2c12

h − 3c8
h − 3

16c7
h

, g
[3]
3 := −6c8

h + 15c4
h − 9

4c7
h(1 + 3c4

h) .

(A.3.20)

The choice of c2 in (A.3.2b) as solution of the kernel equation (A.3.18) ensures the existence
of a solution [

η3(x)
ψ3(x)

]
:=

η[1]
3 cos(x) + η

[3]
3 cos(3x)

ψ
[1]
3 sin(x) + ψ

[3]
3 sin(3x)

 := B−1
0

[
f3(x)
g3(x)

]
.

By Lemma A.3.3 and (A.3.15) we haveη[3]
3 cos(3x)
ψ

[3]
3 sin(3x)

 = B−1
0

[
β cos(3x)
δ sin(3x)

]
= −1 + 3c4

h
24c6

h

[
|D| tanh(h|D|) ch∂x

−ch∂x 1

]f [3]
3 cos(3x)
g

[3]
3 sin(3x)


= −1 + 3c4

h
24c6

h

3
(3c2

h+c6
h

1+3c4
h
f

[3]
3 + chg

[3]
3
)

cos(3x)
(3chf

[3]
3 + g

[3]
3 ) sin(3x)

 , (A.3.21)

and

η[1]
3 cos(x)
ψ

[1]
3 sin(x)

 = B−1
0

f [1]
3 cos(x)
g

[1]
3 sin(x)

 = 1
1+c2

h

f [1]
3 cos(x)
g

[1]
3 sin(x)

. The coefficients in (A.3.2c)

follow.

Fourth order in ϵ. By plugging the expansion (A.3.3) in system (A.3.4) and discarding
quintic terms we find the linear system

B0

[
η4

ψ4

]
=
[
f4

g4

]
, (A.3.22)
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with

f4 := c3(ψ1)x + c2(ψ2)x − (ψ1)x(ψ3)x − 1
2(ψ2)2

x + ch(η1)2
x

(
c2 − (ψ2)x

)
(A.3.23a)

+ (η1)x(η3)xc2
h + 1

2(η2)2
xc2

h + 1
2(η1)2

x(ψ1)2
x − 1

2c2
h(η1)4

x − 2ch(η1)x(η2)x(ψ1)x ,

g4 := −c3(η1)x − c2(η2)x −G1(η1)ψ3 −G1(η2)ψ2 −G1(η3)ψ1 (A.3.23b)
−G′

2(η1)[η2]ψ1 −G2(η1)ψ2 −G3(η1)ψ1,

where, in view of (A.3.5),

G′
2(η)[η̂] := −G0∂xηη̂∂x + ∂2

xηη̂G0 −G0η̂G1(η) −G0ηG1(η̂) . (A.3.24)

Let us inspect the terms in (A.3.23a). In view of (A.3.1) we have

c3(ψ1)x = c−1
h c3 cos(x) , c3(η1)x = −c3 sin(x) , c2(ψ2)x = 2c2ψ

[2]
2 cos(2x) , (A.3.25)

c2(η2)x = −2c2η
[2]
2 sin(2x) , 1

2(ψ2)2
x = (ψ[2]

2 )2 + (ψ[2]
2 )2 cos(4x) ,

(ψ1)x(ψ3)x = 1
2c−1

h ψ
[1]
3 + 1

2c−1
h
(
ψ

[1]
3 + 3ψ[3]

3
)

cos(2x) + 3
2c−1

h ψ
[3]
3 cos(4x) ,

ch(η1)2
x(ψ2)x = −1

2chψ
[2]
2 + chψ

[2]
2 cos(2x) − 1

2chψ
[2]
2 cos(4x) ,

1
2c2

h(η2)2
x = c2

h(η[2]
2 )2 − c2

h(η[2]
2 )2 cos(4x) , chc2(η1)2

x = 1
2chc2

(
1 − cos(2x)

)
,

c2
h(η1)x(η3)x = 1

2c2
hη

[1]
3 + 1

2c2
h
(

− η
[1]
3 + 3η[3]

3
)

cos(2x) − 3
2c2

hη
[3]
3 cos(4x) ,

1
2(η1)2

x(ψ1)2
x = c−2

h
16
(
1 − cos(4x)

)
,

1
2c2

h(η1)4
x = c2

h
16
(
3 − 4 cos(2x) + cos(4x)

)
,

2ch(η1)x(η2)x(ψ1)x = η
[2]
2 − η

[2]
2 cos(4x) .

Let us inspect the terms in (A.3.23b). In view of (A.3.5), (A.3.3), (A.3.15), whereby

G0ψ3 = c2
hψ

[1]
3 sin(x) + 3c2

h
3 + c4

h
1 + 3c4

h
ψ

[3]
3 sin(3x) , (A.3.26)

and since
tanh(4h) = 4c2

h + 4c6
h

1 + 6c4
h + c8

h
, (A.3.27)

we have

G1(η1)ψ3 =
(1 − c4

h
1 + c4

h
ψ

[1]
3 + 3(1 − c4

h)2ψ
[3]
3

(1 + c4
h)(1 + 3c4

h)
)

sin(2x) + 6 (1 − c4
h)3ψ

[3]
3 sin(4x)

(1 + 3c4
h)(1 + 6c4

h + c8
h) ,
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G1(η2)ψ2 = 4(1 − c4
h)2

(1 + c4
h)2ψ

[2]
2 η

[0]
2 sin(2x) + 4(1 − c4

h)2ψ
[2]
2 η

[2]
2

1 + 6c4
h + c8

h
sin(4x) , (A.3.28)

G1(η3)ψ1 =
( 1 − c4

h
ch(1 + c4

h)η
[1]
3 + 1 + 3c4

h
ch(1 + c4

h)η
[3]
3

)
sin(2x) + 2(1 − c4

h)(1 + 3c4
h)

ch(1 + 6c4
h + c8

h) η
[3]
3 sin(4x) .

In view of (A.3.1), (A.3.24), (A.3.15), (A.3.11), (A.3.17) and (A.3.27), we have

G′
2(η1)[η2]ψ1 =

( 8c5
hη

[2]
2

(1 + 3c4
h)(1 + c4

h) − 4ch(1 − c4
h)

(1 + c4
h)2 η

[0]
2

)
sin(2x) − 8ch(1 − c8

h)η[2]
2

(1 + 3c4
h)(1 + 6c4

h + c8
h) sin(4x) .

(A.3.29)
By (A.3.1), (A.3.5), (A.3.17), (A.3.15) and (A.3.27) we have

G2(η1)ψ2 = − 8c2
h(1 − c4

h)ψ[2]
2

(1 + c4
h)2(1 + 3c4

h) sin(2x) − 16c2
h(1 − c4

h)2ψ
[2]
2

(1 + c4
h)(1 + 3c4

h)(1 + 6c4
h + c8

h) sin(4x) .

(A.3.30)
Finally, by (A.3.1), (A.3.5), (A.3.17), (A.3.11), (A.3.15) and (A.3.27), we have

G3(η1)ψ1 = −1 + 14c4
h − 9c8

h
3ch(1 + c4

h)2(1 + 3c4
h) sin(2x) + 2 −1 + 15c4

h − 23c8
h + 9c12

h
3ch(1 + c4

h)(1 + 3c4
h)(1 + 6c4

h + c8
h) sin(4x) .

(A.3.31)
By (A.3.23), (A.3.25), (A.3.28), (A.3.29), (A.3.30), (A.3.31) and (A.3.2a)-(A.3.2c) system
(A.3.22) reads asf4(x)

g4(x)

 =

f [0]
4 + c−1

h c3 cos(x) + f
[2]
4 cos(2x) + f

[4]
4 cos(4x)

c3 sin(x) + g
[2]
4 sin(2x) + g

[4]
4 sin(4x)

 , (A.3.32)

with

f
[0]
4 = −4c20

h − 4c18
h + 17c16

h + 6c14
h − 48c8

h + 6c6
h + 36c4

h − 9
64c14

h
, f

[4]
4 = 7c16

h − 48c12
h + 126c8

h − 168c4
h − 45

128c14
h

,

f
[2]
4 = 4c22

h + 12c20
h − 27c18

h − 31c16
h + 78c14

h + 66c12
h − 72c10

h − 84c8
h + 6c6

h − 6c4
h + 27c2

h + 27
128c14

h (1 + c2
h) ,

g
[2]
4 = 3c16

h − 12c14
h − 39c12

h + 18c10
h + 139c8

h − 225c4
h + 18c2

h + 18
48c9

h(1 + c4
h) , (A.3.33)

g
[4]
4 = −21c20

h + 61c16
h + 14c12

h − 198c8
h + 279c4

h − 135
48c13

h (c8
h + 6c4

h + 1) .

As a consequence of (A.3.32) we have

( [f4(x)
g4(x)

]
,

[
cos(x)

c−1
h sin(x)

] )
= c−1

h c3 .
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By Lemma A.3.3, with c3 = 0 as stated in (A.3.1c), one ensures that the system (A.3.22) is
solved by [

η4(x)
ψ4(x)

]
= B−1

0

[
f4(x)
g4(x)

]
, (A.3.34)

where, in view of (A.3.8) and (A.3.32),η4(x)

ψ4(x)

 =

η[0]
4 + η

[2]
4 cos(2x) + η

[4]
4 cos(4x)

ψ
[2]
4 sin(2x) + ψ

[4]
4 sin(4x)

 , (A.3.35)

with, in view of (A.3.15) and (A.3.27) too,

η
[0]
4 := f

[0]
4 ,

η[2]
4

ψ
[2]
4

 = −1 + c4
h

4c6
h

 4c2
h

1+c4
h

2ch

2ch 1

f [2]
4

g
[2]
4

 = −1 + c4
h

4c6
h

 4c2
h

1+c4
h
f

[2]
4 + 2chg

[2]
4

2chf
[2]
4 + g

[2]
4

 ,
(A.3.36)η[4]

4

ψ
[4]
4

 = −1 + 6c4
h + c8

h
16c6

h(5 + c4
h)

16c2
h

1+c4
h

1+6c4
h+c8

h
4ch

4ch 1

f [4]
4

g
[4]
4

 = −1 + 6c4
h + c8

h
16c6

h(5 + c4
h)

16c2
h

1+c4
h

1+6c4
h+c8

h
f

[4]
4 + 4chg

[4]
4

4chf
[4]
4 + g

[4]
4

 .
By (A.3.35) we conclude the proof of (A.3.1a)-(A.3.1b) and, in view of (A.3.36) and
(A.3.33), of (A.3.2d). To conclude the proof of (A.3.2) we compute the term c4.
Fifth order in ϵ. By plugging the expansion (A.3.3) in system (A.3.4) and discarding
sextic terms we find the linear system

B0

[
η5

ψ5

]
=
[
f5

g5

]
+ c4

[
(ψ1)x

−(η1)x

]
, (A.3.37)

with

f5 := c2(ψ3)x − (ψ1)x(ψ4)x − (ψ2)x(ψ3)x + (η1)2
x

(
− ch(ψ3)x − c2(ψ1)x + (ψ1)x(ψ2)x

)
+ (η1)x(η2)x

(
(ψ1)2

x + 2chc2 − 2ch(ψ2)x
)

− ch(ψ1)x
(
(η2)2

x − (η1)4
x + 2(η1)x(η3)x

)
+ c2

h
(
(η1)x(η4)x + (η2)x(η3)x − 2(η1)3

x(η2)x
)
, (A.3.38a)

g5 := −c2(η3)x −G1(η1)ψ4 −G1(η2)ψ3 −G1(η3)ψ2 −G1(η4)ψ1 −G2(η1)ψ3 (A.3.38b)
−G2(η2)ψ1 −G′

2(η1)[η2, ψ2] −G′
2(η1)[η3, ψ1] −G3(η1)ψ2 −G′

3(η1)[η2, ψ1] −G4(η1)ψ1 ,

where G′
2 is in (A.3.24) and, by (A.3.5),

G′
3(η)[η̂] = 1

2∂
3
xη

2η̂∂x+ 1
2G0∂

2
xη

2η̂G0−G0η̂G2(η)−G0ηG
′
2(η)[η̂]+∂2

xηη̂G1(η)+ 1
2∂

2
xη

2G1(η̂) .
(A.3.39)
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The term c4 is obtained by imposing the expression on the right-hand side of (A.3.37) to
be orthogonal to the kernel of the operator B0 in (A.3.7a), obtaining, in view of (1.3.11),

c4 = −
(
f5, η1

)
+
(
g5, ψ1

)(
(ψ1)x, η1

)
−
(
(η1)x, ψ1

) = −ch

((
f5, η1

)
+
(
g5, ψ1

))
. (A.3.40)

By (A.3.38) and (A.3.1) we find that c4 in (A.3.40) has the explicit expression in (A.3.2e).

Remark A.3.4. Expansion (A.3.1)-(A.3.2) coincides with that in [41, formulae (12)-(14)],
provided one rescales properly their amplitude εFen = ϵ + f(h)ϵ3 with a suitable f(h),
translates their bottom to d := h + ϵ2η

[0]
2 + ϵ4η

[0]
4 + O(ϵ5) (in [41] the water surface η has

zero average) and removes from the velocity potential a shear term −ux (which corresponds
to a Galilean reference frame).

A.4 Fourth-order expansion of the operator Lµ,ϵ

In this section we compute the fourth order expansion of the functions aϵ(x) and pϵ(x)
and of the constant fϵ in (2.1.8).
We begin from the Taylor expansion of the Levi-Civita flattening.

Lemma A.4.1. (Fourth order expansion of p(x) and fϵ) The function p(x) in (1.3.4a)
admits the following Taylor expansion

p(x) = ϵc−2
h sin(x) + ϵ2p

[2]
2 sin(2x) + ϵ3

(
p

[1]
3 sin(x) + p

[3]
3 sin(3x)

)
+ ϵ4

(
p

[2]
4 sin(2x) + p

[4]
4 sin(4x)

)
+ O(ϵ5)

(A.4.1)

with coefficients

p
[2]
2 := 3 + 4c4

h + c8
h

8c8
h

, (A.4.2)

p
[1]
3 := 4c14

h + 2c12
h − 17c10

h − 14c8
h + 10c6

h + 10c4
h − 15c2

h − 12
16c10

h (c2
h + 1) , (A.4.3)

p
[3]
3 := 9 + 41c4

h + 43c8
h + 3c12

h
64c14

h
, (A.4.4)

p
[2]
4 := − 1

256c20
h (c2

h + 1)
(
8c24

h − 57c22
h − 37c20

h + 199c18
h + 175c16

h + 238c14
h (A.4.5)

+ 190c12
h − 130c10

h − 178c8
h + 171c6

h + 135c4
h + 27c2

h + 27
)
,

p
[4]
4 := c24

h + 44c20
h + 557c16

h + 2528c12
h + 3595c8

h + 1332c4
h + 135

512c20
h (c4

h + 5) . (A.4.6)
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The real constant fϵ in (1.3.7a) has the Taylor expansion

fϵ = ϵ2f2 + ϵ4f4 + O(ϵ5) (A.4.7)

with coefficients

f2 := c4
h − 3
4c2

h
, (A.4.8)

f4 := 1
64c14

h (c2
h + 1)

(
− 4c22

h − 8c20
h + 5c18

h + 23c16
h + 40c14

h + 22c12
h − 78c10

h

− 72c8
h + 72c6

h + 54c4
h − 27c2

h − 27
)
.

Proof. We expand

p(x) = ϵp1(x) + ϵ2p2(x) + ϵ3p3(x) + ϵ4p4(x) + O(ϵ5) ,
fϵ = ϵ2f2 + ϵ3f3 + ϵ4f4 + O(ϵ5) ,

(A.4.9)

Let us denote derivatives w.r.t x with a prime ′. We first note that the constant fϵ = O(ϵ2)
because η1(x) = cos(x) has zero average. Then, by (1.3.4a),

p(x) = H

tanh(h|D|)
[
ϵη1 + ϵ2

(
η2 + η′

1p1
)

+ O(ϵ3)
]
,

and, using that
H cos(kx) = sin(kx) , ∀k ∈ N ,

we get

p1(x) = H

tanh(h|D|) cos(x) = c−2
h sin(x) , (A.4.10)

p2(x) = H

tanh(h|D|)(η′
1p1 + η2) = (1 + c4

h)(c4
h + 3)

8c8
h

sin(2x) . (A.4.11)

As a consequence, by (1.3.4a),

fϵ = ϵ2

2π

∫
T

(
η2 + η′

1p1
)
dx+ O(ϵ3) = ϵ2

(
η

[0]
2 − 1

2c−2
h
)

+ O(ϵ3) = ϵ2
c4

h − 3
4c2

h
+ O(ϵ3) . (A.4.12)

By (1.3.4a), (A.3.1) and (A.4.9), we get

f3 = 1
2π

∫
T

(
η3(x) + η′

2(x)p1(x) + η′
1(x)p2(x) + 1

2η
′′
1(x)p2

1(x)
)
dx = 0
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as stated in the expansion (A.4.7). In view of (1.3.4a) and (A.4.12) we have

p3(x) = −i sgn(D)
tanh(h|D|)

(
η3(x) + η′

2(x)p1(x) + η′
1(x)p2(x) + 1

2η
′′
1(x)p2

1(x)
)

+ f2
∂x

tanh2(h|D|)
(
1 − tanh2(h|D|)

)
η1(x) .

(A.4.13)

In view of (A.4.13), (A.3.1) and (A.4.1)-(A.4.2), we have

p3(x) = 16η[1]
3 c8

h − 16η[2]
2 c6

h − 3 − 6c4
h − c8

h − 16f2c6
h + 16f2c10

h
16c10

h
sin(x)

+ (1 + 3c4
h)(8η[3]

3 c4
h + 8η[2]

2 c2
h + 4c4

hp
[2]
2 + 1)

8c6
h(3 + c4

h) sin(3x) ,
(A.4.14)

which, by (A.3.2a)-(A.3.2c), is (A.4.4). By (1.3.4a), (A.3.1), (A.4.2) and (A.4.4), we have

f4 = 1
2π

∫
T

(
η4(x) + η′

3(x)p1(x) + η′
2(x)p2(x) + η′

1(x)p3(x) (A.4.15)

+ 1
2η

′′
2(x)p2

1(x) + η′′
1(x)p2(x)p1(x) + 1

6η
′′′
1 (x)p3

1(x)
)
dx

= η
[0]
4 − η

[1]
3

2c2
h

− p
[2]
2 η

[2]
2 − 1

2p
[1]
3 + η

[2]
2

2c4
h

− p
[2]
2

4c2
h

+ 1
16c6

h
,

which gives the fourth-order coefficient in (A.4.8). Finally, by (1.3.4a) and (A.4.8),

p4(x) = −i sgn(D)
tanh(h|D|)

(
η4(x) + η′

3(x)p1(x) + η′
2(x)p2(x) + η′

1(x)p3(x)

+ 1
2η

′′
2(x)p2

1(x) + η′′
1(x)p2(x)p1(x) + 1

6η
′′′
1 (x)p3

1(x)
)

+ f2
∂x

tanh2(h|D|)
(
1 − tanh2(h|D|)

)(
η2(x) + η′

1(x)p1(x)
)

= 1 + c4
h

2c2
h

(1
2p

[1]
3 − 1

2p
[3]
3 − 1

12c6
h

− η
[2]
2
c4

h
+ η

[1]
3

2c2
h

− 3η[3]
3

2c2
h

+ η
[2]
4
)

sin(2x)

+ 1 + 6c4
h + c8

h
4c2

h(1 + c4
h)
( p[2]

2
4c2

h
+ 3η[3]

3
2c2

h
+ p

[2]
2 η

[2]
2 + 1

2p
[3]
3 + 1

48c6
h

+ η
[2]
2

2c4
h

+ η
[4]
4
)

sin(4x)

− f2
(1 − c4

h)2(1 + 2c2
hη

[2]
2 )

4c6
h

sin(2x) ,

which, by (A.3.2a)-(A.3.2c), gives (A.4.1) with the coefficients in (A.4.5)-(A.4.6).

We now give the fourth-order Taylor expansion of the velocity field
(
V (x), B(x)

)
of the

Stokes waves in (2.1.7).
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Lemma A.4.2 (Expansion of B(x) and V (x)). The functions B(x) and V (x) in (2.1.7)
admit the following Taylor expansion

B(x) = ϵB1(x) + ϵ2B2(x) + ϵ3B3(x) + ϵ4B4(x) + O(ϵ5) ,
V (x) = ϵV1(x) + ϵ2V2(x) + ϵ3V3(x) + ϵ4V4(x) + O(ϵ5) ,

(A.4.16)

where

B1(x) = ch sin(x) , B2(x) = B
[2]
2 sin(2x) , B

[2]
2 := 3 − 2c4

h
2c5

h
,

V1(x) = c−1
h cos(x) , V2(x) = ch

2 + V
[2]

2 cos(2x) , V
[2]

2 := 3 − c8
h

4c7
h

,

(A.4.17)

and

B3(x) = B
[1]
3 sin(x) +B

[3]
3 sin(3x) , B4(x) = B

[2]
4 sin(2x) +B

[4]
4 sin(4x) ,

V3(x) = V
[1]

3 cos(x) + V
[3]

3 cos(3x) , V4(x) = V
[0]

4 + V
[2]

4 cos(2x) + V
[4]

4 cos(4x) ,
(A.4.18)

with

B
[1]
3 := 6 + 3c2

h − 8c4
h − 8c6

h + 6c8
h + 3c10

h − 4c12
h − 2c14

h
16c7

h(1 + c2
h) , B

[3]
3 := 81 − 99c4

h + 43c8
h − c12

h
64c11

h
,

V
[1]

3 := 2c12
h − 15c8

h − 12c6
h + 24c4

h + 24c2
h − 3

16c7
h(1 + c2

h) , V
[3]

3 := 21c12
h − 39c8

h + 15c4
h + 27

64c13
h

,

(A.4.19a)

and

V
[0]

4 : = −2c18
h − 6c16

h + 3c14
h + 9c12

h − 33c6
h − 27c4

h + 36c2
h + 36

32c11
h (c2

h + 1) ,

B
[2]
4 : = 1

192c17
h (c2

h + 1)
(

− 24c22
h + 24c20

h + 354c18
h + 210c16

h

− 943c14
h − 835c12

h + 927c10
h + 855c8

h − 81c6
h + 27c4

h − 81c2
h − 81

)
,

V
[2]

4 : = 1
384c19

h (c2
h + 1)

(
12c26

h + 36c24
h − 9c22

h − 45c20
h + 357c18

h + 285c16
h

− 1060c14
h − 988c12

h + 1584c10
h + 1584c8

h − 243c6
h − 135c4

h − 81c2
h − 81

)
,

B
[4]
4 : = 6c20

h − 47c16
h − 100c12

h + 522c8
h − 594c4

h + 405
96c17

h (c4
h + 5) ,

V
[4]

4 : = 9c24
h − 96c20

h − 377c16
h + 1484c12

h − 1413c8
h + 756c4

h + 405
384c19

h (c4
h + 5) .

(A.4.19b)
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Proof. A direct computation shows that (A.4.16) and (A.4.17) hold.
On the other hand, in view of (2.1.7) and (A.3.1), (A.3.2), the third order terms are

B3(x) = −chη
′
3(x) + ch(η′

1(x))3 + ψ′
1(x)η′

2(x) + (ψ′
2(x) − c2)η′

1(x) (A.4.20a)

=
(
chη

[1]
3 − 3

4ch − 1
ch
η

[2]
2 + ψ

[2]
2 + c2

)
sin(x) +

(
3chη

[3]
3 + 1

4ch − 1
ch
η

[2]
2 − ψ

[2]
2
)

sin(3x)

and

V3(x) = ψ′
3(x) −B1(x)η′

2(x) −B2(x)η′
1(x) (A.4.20b)

=
(
ψ

[1]
3 + chη

[2]
2 + 1

2B
[2]
2
)

cos(x) +
(
3ψ[3]

3 − chη
[2]
2 − 1

2B
[2]
2
)

cos(3x) .

The fourth order terms are given by

B4(x) = ψ′
3(x)η′

1(x) +
(
ψ′

2(x) − c2 + 3ch(η′
1(x))2)η′

2(x) + ψ′
1(x)η′

3(x) − ψ′
1(x)(η′

1(x))3 − chη
′
4(x) ,

=
(3
2ψ

[3]
3 − 1

2ψ
[1]
3 + 2c2η

[2]
2 − 3chη

[2]
2 − 1

2ch
η

[1]
3 − 3

2ch
η

[3]
3 + 1

4ch
+ 2chη

[2]
4
)

sin(2x)
(

− 3
2ψ

[3]
3 − 2η[2]

2 ψ
[2]
2 + 3

2chη
[2]
2 − 3

2ch
η

[3]
3 − 1

8ch
+ 4chη

[4]
4
)

sin(4x) ,

V4(x) = ψ′
4(x) −B1(x)η′

3(x) −B2(x)η′
2(x) −B3(x)η′

1(x)
(A.4.20c)

= 1
2chη

[1]
3 +B

[2]
2 η

[2]
2 + 1

2B
[1]
3 +

(
4ψ[4]

4 − 3
2chη

[3]
3 −B

[2]
2 η

[2]
2 − 1

2B
[3]
3
)

cos(4x)

+
(
2ψ[2]

4 − 1
2chη

[1]
3 + 3

2chη
[3]
3 − 1

2B
[1]
3 + 1

2B
[3]
3
)

cos(2x) .

From (A.4.20) we obtain (A.4.18) with the coefficients in (A.4.19).

Remark A.4.3. The expansion of the functions V and B in (A.4.16) coincide respectively
with the horizontal and vertical derivative of the velocity potential Φ in [41, formula (12)]
after the rescaling procedure outlined in Remark A.3.4.

We now provide the fourth order expansion of the functions pϵ(x) and aϵ(x) in (1.3.8).

Proposition A.4.4. The functions pϵ(x) and aϵ(x) in (1.3.8) have a Taylor expansion

pϵ(x) = ϵp1(x) + ϵ2p2(x) + ϵ3p3(x) + ϵ4p4(x) + O(ϵ5) ,
aϵ(x) = ϵa1(x) + ϵ2a2(x) + ϵ3a3(x) + ϵ4a4(x) + O(ϵ5) ,

(A.4.21)

with

p1(x) = p
[1]
1 cos(x) , p

[1]
1 := −2c−1

h , (A.4.22a)
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p2(x) = p
[0]
2 + p

[2]
2 cos(2x) , p

[0]
2 := 9 + 12c4

h + 5c8
h − 2c12

h
16c7

h
, p

[2]
2 := −3 + c4

h
2c7

h
,

p3(x) = p
[1]
3 cos(x) + p

[3]
3 cos(3x) , p

[3]
3 := −c12

h + 17c8
h + 51c4

h + 27
32c13

h
, (A.4.22b)

p
[1]
3 := −2c14

h + 14c10
h + 11c8

h − 10c6
h − 10c4

h + 24c2
h + 21

8c9
h(c2

h + 1) ,

p4(x) = p
[0]
4 + p

[2]
4 cos(2x) + p

[4]
4 cos(4x) , (A.4.22c)

p
[0]
4 := 1

1024c19
h (c2

h + 1)
(
56c30

h + 88c28
h − 208c26

h − 336c24
h + 441c22

h + 369c20
h − 995c18

h

− 899c16
h − 630c14

h − 294c12
h + 1026c10

h + 1314c8
h − 27c6

h + 189c4
h + 81c2

h + 81
)
,

p
[2]
4 := 1

64c19
h (c2

h + 1)
(

− 12c22
h − 4c20

h − 19c18
h − 7c16

h + 350c14
h

+ 314c12
h − 256c10

h − 268c8
h + 198c6

h + 162c4
h + 27c2

h + 27
)
,

p
[4]
4 := −c20

h − 39c16
h − 366c12

h − 850c8
h − 657c4

h − 135
64c19

h (c4
h + 5) ,

and

a1(x) = a
[1]
1 cos(x) , a

[1]
1 := −(c2

h + c−2
h ) ,

a2(x) = a
[0]
2 + a

[2]
2 cos(2x) , a

[0]
2 := 3

2 + 1
2c4

h
, a

[2]
2 := 9c8

h − 14c4
h − 3

4c8
h

,
(A.4.23a)

a3(x) = a
[1]
3 cos(x) + a

[3]
3 cos(3x) , a

[3]
3 := −c16

h − 98c12
h + 252c8

h − 318c4
h − 27

64c14
h

,

a
[1]
3 := 4c18

h + 6c16
h − 11c14

h − 12c12
h − 45c10

h − 48c8
h + 93c6

h + 90c4
h + 27c2

h + 24
16c10

h (c2
h + 1) ,

(A.4.23b)

a4(x) = a
[0]
4 + a

[2]
4 cos(2x) + a

[4]
4 cos(4x) , (A.4.23c)

a
[0]
4 := −12c20

h − 31c18
h − 17c16

h + 40c14
h + 46c12

h − 150c10
h − 132c8

h + 84c6
h + 90c4

h + 9c2
h + 9

32c16
h (c2

h + 1) ,

a
[2]
4 := 1

128c20
h (c2

h + 1)
(

− 72c24
h − 431c22

h − 211c20
h + 1767c18

h

+ 1623c16
h − 2142c14

h − 2070c12
h + 1022c10

h + 854c8
h + 333c6

h + 297c4
h + 27c2

h + 27
)
,

a
[4]
4 := 9c24

h + 238c20
h − 233c16

h − 1676c12
h + 743c8

h − 3042c4
h − 135

128c20
h (c4

h + 5) .
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Proof. The first two jets p1(x), p2(x) in (A.4.22a) and a1(x), a2(x) in (A.4.23a) of the
expansion (A.4.21) come by direct computation. Let us explicitly show the third order
terms. In view of (1.3.8), (A.4.16) and (A.4.1), we have

p3(x) = ch
(

− p′
3(x) + 2p′

1(x)p′
2(x) − (p′

1(x))3)+ V1(x)
(
p′

2(x) − (p′
1(x))2) (A.4.24a)

−
(
c2 − V2(x) − V ′

1(x)p1(x)
)
p′

1(x)

− V3(x) − V ′
2(x)p1(x) − V ′

1(x)p2(x) − 1
2V

′′
1 (x)p2

1(x)

=
(

− chp
[1]
3 + 7

2ch
p

[2]
2 − 13

8 c−5
h − c2

c2
h

+ 1
2ch

+ 3V [2]
2

2c2
h

− V
[1]

3
)

cos(x)

+
(

− 3chp
[3]
3 + 5

2ch
p

[2]
2 − 3

8c5
h

− V
[2]

2
2c2

h
− V

[3]
3
)

cos(3x) ,

a3(x) = −p′
3(x) + 2p′

1(x)p′
2(x) − (p′

1(x))3 (A.4.24b)

− ch
(
B′

3(x) +B′′
2 (x)p1(x) +B′′

1 (x)p2(x) + 1
2B

′′′
1 (x)p2

1(x)
)

− p1(x)
(
B′

2(x) +B′′
1 (x)p1(x)

)
− p2(x)B′

1(x) ,

=
(

− p
[1]
3 + 2c−2

h p
[2]
2 − 3

4c−6
h − chB

[1]
3 + 2c−1

h B
[2]
2 + 1

2c2
hp

[2]
2

+ 1
8c−2

h − p
[1]
1 B

[2]
2 + 1

4c−1
h p

[1]
1 − chp

[0]
2 − 1

2chp
[2]
2
)

cos(x)

+
(

− 3p[3]
3 + 2c−2

h p
[2]
2 − 1

4c−6
h − 3chB

[3]
3 − 2c−1

h B
[2]
2

− 1
2c2

hp
[2]
2 − 1

8c−2
h − p

[1]
1 B

[2]
2 − 1

4c−1
h p

[1]
1 − 1

2chp
[2]
2
)

cos(3x) ,

and

p4(x) = c4 − V4(x) − V ′
3(x)p1(x) − V ′

2(x)p2(x) − V ′
1(x)p3(x) (A.4.25a)

− 1
2V

′′
2 (x)p2

1(x) − V ′′
1 (x)p2(x)p1(x) − 1

6V
′′′

1 (x)p3
1(x)

+ p′
1(x)

(
V3(x) + V ′

2(x)p1(x) + V ′
1(x)p2(x) + 1

2V
′′

1 (x)p2
1(x)

)
+
(
(p′

1(x))2 − p′
2(x)

)(
c2 − V2(x) − V ′

1(x)p1(x)
)

+ V1(x)
(
p′

3(x) − 2p′
2(x)p′

1(x) + (p′
1(x))3)

+ ch
(

− p′
4(x) + 2p′

3(x)p′
1(x) + (p′

2(x))2 − 3p′
2(x)(p′

1(x))2 + (p′
1(x))4) ,

= 3
4c−7

h + 1
2c2c−4

h − 5
4c−4

h V
[2]

2 − 2c−3
h p

[2]
2 − 1

4c−3
h + c−2

h V
[1]

3 + 2ch(p[2]
2 )2

+ 2c−1
h p

[1]
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The expansions of p3(x), a3(x), p4(x) and a4(x) in (A.4.22a)-(A.4.23a) descend from
(A.4.24a), (A.4.24b), (A.4.25a) and (A.4.25b) respectively, in view of (A.4.6), (A.4.4)
(A.4.2), (A.4.17), (A.3.2b), (A.4.20b), (A.4.20a) and (A.4.20c)-(A.4.19b).
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