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Abstract

The first direct detection of gravitational waves in 2015 ushered in a new era for studying
compact objects. Upcoming detectors like the Einstein Telescope are expected to contribute
thousands of binary coalescence events to the existing data pool. However, uncertainties
in the nature of stellar remnants from core-collapse supernovae and binary stellar evolution
hinder our theoretical understanding of compact objects binaries. In the first part of my
work, we examined the properties of stellar remnants using a grid of rotating and non-rotating
massive stars at various metallicities from Limongi and Chieffi, 2018. We simulated supernova
explosions of evolved progenitors with the HYdrodynamic Ppm Explosion with Radiation
diffusION code (Limongi and Chieffi, 2020), calibrated to match SN1987A’s properties. We
found that the heaviest black holes are influenced by initial stellar rotation, metallicity, and
the onset of pulsational pair-instability supernovae (PPISNe). Non-rotating progenitors at[
Fe/H] = −3 can form black holes up to 87 M⊙, within the theorized pair-instability mass

gap, while rotating progenitors are limited to 41.6 M⊙ due to increased wind mass loss. We
provided fitting formulas for compact remnant masses based on progenitor properties, suitable
for rapid population synthesis codes. In the second part of my work, I studied binary black
hole mass distributions using the rapid population synthesis code Stellar Evolution for N-body
(SEVN) (Spera and Mapelli, 2017; Spera et al., 2019; Iorio et al., 2023). We focused on
reproducing the observed primary black hole mass distribution from gravitational wave data,
particularly the peak at 35 M⊙. Initially attributed to PPISNe (Abbott et al., 2021; Abbott et al.,
2023), this peak arises from stable mass transfer in specific binary systems. (Hendriks et al.,
2023; Briel, Stevance, and Eldridge, 2023). Additionally, we explored the roles of common
envelope ejection efficiency and PPISNe in accumulating black holes in this mass range while
examining the influence of varying the initial mass function on the primary black hole mass
distribution.
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Chapter 1

Introduction

On September 14, 2015 the LIGO interferometers captured a gravitational-wave (GW) signal
from two merging black holes (BHs) with masses ∼ 36 M⊙ and ∼ 29 M⊙, respectively (see
Abbott et al., 2016c; Abbott et al., 2016b; Abbott et al., 2016a). The event, named GW150914,
was the first direct detection of GWs, and the proof that binary BHs (BBH) exist and can
merge within a Hubble time. Furthermore, prior to GW150914, there were no unambiguous
evidences for stellar BHs more massive than ∼ 25 M⊙, which is the upper limit for the masses
of BHs in known X-ray binaries (see Orosz, 2003; Özel et al., 2010; Miller-Jones et al., 2021).
Thus, GW150914 also provides a robust evidence for the existence of heavy stellar BHs. To
date, more than 90 BH-BH mergers have been reported by the LIGO-Virgo-KAGRA (LVK)
collaboration, (Abbott et al., 2019; LIGO Scientific Collaboration and Virgo Collaboration
et al., 2020; Abbott et al., 2023) and in about 70 of the events, at least one of the two BHs has
mass ≳ 25M⊙. Moreover, the number of detections is expected to significantly increase in the
next years because of the recent O4 LVK observing run1 and of the upcoming next-generation
detectors (e.g., Einstein Telescope and Cosmic Explorer).

From the theoretical point of view, the formation and the evolutionary pathways of BHs and
BBH are subject to significant uncertainties (see Mapelli, 2021; Spera, Trani, and Mencagli,
2022). Two main astrophysical formation channels have been proposed: the isolated binary
evolution scenario and the dynamical formation pathway. In the former, the stellar progenitors
evolve in complete isolation as a gravitationally bound pair and they eventually turn into
compact objects and merge within a Hubble time (see van den Heuvel and De Loore, 1973;
van den Heuvel, Portegies Zwart, and de Mink, 2017; Heggie, 1975; Tutukov and Yungelson,
1993; Brown, 1995; Bethe and Brown, 1998; Sandquist et al., 1998; Dewi, Podsiadlowski, and
Sena, 2006; Justham, Podsiadlowski, and Han, 2011; Dominik et al., 2012; Dominik et al.,
2015; Schneider et al., 2015; Belczynski et al., 2016; Belczynski et al., 2020; Marassi et al.,
2019; Pavlovskii et al., 2017; Vigna-Gómez et al., 2018; Wysocki et al., 2018; Mapelli and
Giacobbo, 2018; Neijssel et al., 2019; Graziani et al., 2020; Mandel and Fragos, 2020; Mandel
and Farmer, 2022; van Son, Justham, and De Mink, 2021; van Son et al., 2022; Broekgaarden
et al., 2021; Gallegos-Garcia et al., 2021; Marchant et al., 2021; Zevin et al., 2021). In the
latter, a compact-object binary forms and shrinks after a series of gravitational few-body
interactions in dense stellar environments (see Sigurdsson and Hernquist, 1993; Sigurdsson
and Phinney, 1995; Moody and Sigurdsson, 2008; Banerjee, Baumgardt, and Kroupa, 2010;
Banerjee, 2017; Banerjee, 2022; Downing et al., 2011; Mapelli et al., 2013; Mapelli, 2016;
Ziosi et al., 2014; Rodriguez et al., 2015; Rodriguez, Chatterjee, and Rasio, 2016; Rodriguez
et al., 2019; Di Carlo et al., 2019; Di Carlo et al., 2020a; Di Carlo et al., 2020b; Di Carlo et al.,
2021; Rastello et al., 2019; Rastello et al., 2020; Rastello et al., 2021; Kremer et al., 2020;
Wang, 2020; Wang et al., 2021; Wang, Tanikawa, and Fujii, 2022; Wang and Burrows, 2024;
Ye et al., 2022).

However, both the isolated and the dynamical scenarios rely on many uncertain astrophys-
ical processes, including the core-collapse supernova (ccSN) mechanism. Our knowledge

1See LIGO, Virgo AND KAGRA observing run plans.

https://observing.docs.ligo.org/plan/
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of the SN engine is still limited, thus investigating the explosion mechanism, the stellar
explodability, and the mass spectrum of stellar remnants is challenging.

Furthermore, from the LVK data, some peculiar distributions are emerging in some of
the observed distributions of binary BHs (BBHs) observables. One particularly intriguing
feature of the observed BBH population is the distribution of primary2 BH masses. It presents
accumulation regions and regions where there is a dearth of objects. Such features underlay
that there must be some phenomenon in place, that combined with the initial conditions of
the binaries, shapes the distribution of BH masses. The most robust statistical models (e.g.,
the POWER LAW + PEAK model, see Abbott et al., 2021; Abbott et al., 2023) foresee the
presence of two peaks, one at ∼ 10 M⊙ and one at ∼ 35 M⊙. However, the origin of these
feature is rather unclear, and many degenerate phenomena may be responsible for this, starting
from the SN prescriptions to the evolution of a binary system and its initial conditions.

The interplay between uncertainties in the final fate of massive stars, their impact on
binaries, and binary evolution processes remains an open problem. It requires to be tackled
carefully, studying individually each component, in order to properly account for all the
degenerate phenomena in place.

This is the purpose of this Thesis. In particular, I have investigated the BH mass spectrum
obtained from the evolution of massive stars and their SN explosion. I also studied the
implications of my results on the transition from directly collapsing massive star to stars that
are unstable against pair-production, and on the BH mass distribution in the framework of
isolated stars. Furthermore, I implemented my results in the population synthesis code SEVN,
to study how different stellar and binary evolution prescriptions affect the final distribution of
massive BHs, with a particular focus on the primary BH mass distribution.

In this Chapter, I will present the theoretical framework and the state-of-the-art knowledge
on the evolution and final fate of massive stars (e.g. ccSN, but not only, see 1.1.4), on the
binary stellar evolution processes, with a main focus on the isolated binary evolution scenario
(see 1.2, as it is the framework we will treat in the following Chapters), and on the dynamical
evolution scenario. In Chapter 2, I will present the numerical tool we used in our work, such
as the HYPERION (HYdrodynamic Ppm Explosion with Radiation diffusION, see Section
2.1) code, I used for simulating the explosion of a ccSN. I will also describe the SEVN
(Stellar Evolution for N-body, see Section 2.2) code, we used for simulating the evolution of
population of binary systems.

In the following chapters, I will present the results of my work. Chapter 3 is devoted
to discussing the results of the ccSNe simulations and their implications on the BH mass
spectrum. We also provide some fitting formulas to predict the final remnant mass of a stellar
progenitors on the basis of its properties at the presupernova stage. In Chapter 4, I will
examine the outcome of the simulations of a large set of binary stars, performed with SEVN. I
studied the effect of various initial conditions, of different prescriptions for the final fate of
massive stars, including the results of Chapter 3, and of the binary stellar evolution processes
on the BH mass distribution resulting from the evolution of isolated binaries.

Finally, Chapter 5 concludes the Thesis by summarizing the results and discussing potential
future directions for this research.

1.1 Single star evolution

All stars with Zero-Age Main Sequence (ZAMS) mass (MZAMS) > 9 M⊙ (see Limongi et al.,
2023 for the precise value of this transition) are expected to end their life with a ccSN and
form a compact object that can be either a BH or a neutron star (NS). However, the final

2The most massive BH of the binary. Hereinafter, with primary and secondary star/BH I will refer to the most
and least massive object in the system, respectively.
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remnant mass spectrum from single star evolution is still highly uncertain, as both stellar
evolution and the final explosive processes are hampered by many uncertainties.

Furthermore, an alternative theory predicts that BHs can also form from gravitational
collapse in the early Universe. Such objects are called primordial BHs (see Carr and Hawking,
1974; Carr, Kühnel, and Sandstad, 2016; Bird et al., 2016; Inomata et al., 2017). However, this
Thesis focuses on stellar-mass BHs, and in this chapter, I will review the processes involved
in their formation..

In this section, I will review the basics of the evolution of an isolated star and, as we are
interested in the formation of massive BHs, the main mass-loss phenomena (e.g., stellar winds).
Finally, I will summarize the state-of-the-art models predicting the final fate of massive stars.

1.1.1 Stellar evolution

Figure 1.1: HR diagram of non-rotating stars during the MS for metallicity
[
Fe/H] = 0 (black lines),

and
[
Fe/H] = −3 (red lines). This figure is taken from Limongi, 2017, and corresponds to Figure 2 in

their paper.

Stars are self-gravitating objects composed of hot plasma that exist in a state of hydrostatic
equilibrium. They achieve stability by balancing gravitational forces with outward pressure, a
state known as hydrostatic equilibrium. They lose energy from their surface in the form of
photons and/or from their core in the form of neutrinos. The equilibrium is maintained by the
balance between the pressure gradient and gravitational forces. This pressure is provided by a
combination of radiation, ideal gas, and partially or fully degenerate electrons. Since stars lose
energy—either due to being hotter than their surroundings or because of neutrino losses—they
simultaneously heat up and shrink, in accordance with the virial theorem. According to
this theorem, a portion of the gravitational energy gained through contraction is converted
into internal energy, while the remainder compensates for the energy lost. When the core
temperature of a star reaches sufficiently high levels, thermonuclear fusion reactions occur,
and nuclear energy replenishes the energy lost. This process temporarily halts gravitational
contraction. As the available nuclear fuel becomes depleted, gravitational contraction and
heating resume until the next source of nuclear fuel ignites. Consequently, the life of a star
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Figure 1.2: Stellar structure after all the central burning stages. Figure from Rudolf Kippenhahn, 2012.

can be understood as a continuous gravitational contraction of a self-gravitating ball of gas,
occasionally interrupted by periods during which nuclear fusion provides the energy lost as
radiation and/or neutrinos.

Upon its formation a massive star ignites into its core the thermonuclear fusion of hydrogen,
defining the Zero Age Main Sequence (ZAMS). In massive stars, the core hydrogen burning
phase is the longest-lasting nuclear burning stage and is primarily powered by the carbon-
nitrogen-oxygen (CNO) cycle. Because of the high nuclear energy flux, stars that burn
hydrogen via the CNO cycle will form a convective core that will progressively shrink, leaving
behind a region of partially processes CNO materials. Furthermore, in rotating stars, these
materials may be dredged up to the surface, providing observational constraints on angular
mixing efficiency.

When the central hydrogen mass fraction drops below 10−7, core H burning ceases, the
convective core vanishes, and gravitational contraction begins. The H burning then shifts in
shells.

The core H burning lasts between 106 − 107 yr, for stars in the mass range 13 − 120 M⊙.
Furthermore, during the core-H burning (also known as Main sequence, MS) the star evolve
towards increasingly higher luminosity and lower effective temperatures. This behavior outline
a diagonal line in the Hertzsprung-Russell (HR) diagram, as outlined in Figure 1.1 (Figure 2
from Limongi, 2017).

During this phase mass loss is quite efficient and it scales directly with the mass (i.e.
luminosity) and the metallicity (see Section 1.1.2 for further details) .

After the H-core depletion, the star starts the shell H-burning, and the burning shells move
outwards in mass, as the He core mass increases.
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During this phase the star evolves toward lower effective temperatures (i.e. the red side
of the HR diagram) at constant luminosity, until the central He-burning is activated. The
timescale for such a transition is highly correlated with the treatment of the chemical mixing on
the edge of the He core, i.e., the criterion for the transition from radiative to convective energy
transport (see Schwarzschild and Härm, 1958; Stothers, 1970; Langer, El Eid, and Fricke,
1985; Limongi, 2017). Once the He-core burning is activated, the evolution of the star depends
on the metallicity and on the position on the HR diagram at the end of the core-H burning.
This burning stage lasts for 106 − 105 yr (i.e. roughly one order of magnitude less than the MS)
and the evolution of the star is mainly driven by the He-core mass. At the end of the He-core
burning stage, the star will be left with a core composed of different abundances of 12C and
16O. The relative abundances of these two elements, in combination with the CO core mass,
will rule the evolution of the star from this moment onwards (see Chieffi and Limongi, 2020).
From core helium exhaustion to the presupernova stage, massive stars undergo four major
nuclear burning phases, named after their primary fuel: carbon, neon, oxygen, and silicon
(see Limongi and Chieffi, 2008 for a detailed discussion of the nucleosynthesis occurring
during each one of these nuclear burning). At the end of these burning stage, the star will
present the characteristic onion shell structure, which is shown in Figure 1.2. The evolution of
a massive star ends when its core is composed of iron-group elements (usually called "iron
core"). This is because all the thermonuclear reactions until the formation of the iron core
are exothermal reactions, thus they release energy, balancing the thermal energy that the stars
loses via radiation, other than ensuring countering the self-gravity of the star. This behavior
changes upon the formation of an iron core, as the energy per-nucleon decreases for elements
heavier than 56

26Fe. Thus, forming such elements via thermonuclear reactions requires energy,
instead of releasing it. This prevents the star from efficiently producing elements heavier than
iron through core burning.

1.1.2 Stellar Winds

In the previous section, I discussed the evolutionary stages of massive stars. A key factor
shaping their evolution is mass loss, which influences both their outer layers and internal
structure.

In this section, I will briefly review the current formalism for stellar winds, as they are a
crucial factor in determining both the evolution and the final fate of massive stars.

Wind mass loss arises from complex interactions between radiation and matter in stellar
atmospheres, playing a crucial role in determining the final fate of massive stars. This
phenomenon was firstly proposed by Saha, 1919, which suggested that the interplay between
radiation and matter, in the outer layer of a star, could lead to inelastic impact of photons with
the elements in the stellar surface. Thus, the matter would acquire a forward velocity and be
expelled from the star.

As of now, we know that the strongly anisotropic and continuous component of photons
from the innermost layers constantly exchanges energy and momentum with free electrons,
ions, atoms and dust grains in stellar atmospheres. Projecting these interaction on the radial
coordinate (i.e. assuming spherical symmetry), the momentum equation take the form:

v
dv
dr

= −
GM
r2 −

1
ρ

dp
dr

+ grad (1.1)

where M is the stellar mass, r is the radial coordinate, v(r), ρ(r), and p(r) are the radial
velocity, density and pressure profiles, respectively, and grad is the acceleration term due to
radiation. Thus, the net effect of stellar winds is to add the grad term to the usual hydrostatic
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Figure 1.3: Final mass of massive stars as a function of their initial mass for various metallicities.
The diagonal dashed-line correspond to the no-wind limit. This figure is taken from Spera, Trani, and

Mencagli, 2022, and corresponds to Figure 2 in their paper.

equilibrium equation. This latter term can be described as

grad = gcon + gline (1.2)

where gcon, and gline are the contribution to the radiative acceleration that are induced by
electron scattering and spectral line opacity, respectively. Specifically, the term gline means
that there is a selection effect, which chooses only some precise lines, depending on the
absorption frequency of the elements in the outer layers of the star. It is worth mentioning, that
within this terms lay also the dust-driven winds, that are mainly efficient in cold (Te f f ≤ 104)
red super giants (RSGs, see also Loon et al., 2005).

One of the first model proposed to treat stellar winds considering the gline term is the CAK
model (see Castor, Abbott, and Klein, 1975, and named after the initials of the authors), that
introduced a multiplier in the equation for stellar winds, that is:

v
dv
dr

= −
GM
r2 −

1
ρ

dp
dr

+ gcon
[
1 + M(τ)

]
(1.3)

where τ is the optical depth of the stellar wind, and it depends on the opacity where the
interaction take place, i.e. is evaluated case by case and locally. Furthermore, they also
included the wind velocity gradient, as prescribed by Sobolev, 1960. From the work of Castor,
Abbott, and Klein, 1975, it was apparent that all the spectral lines needed to be included M(τ),
and that this term was M(τ) >> 1, i.e. that stellar winds in hot massive stars are line driven.

This treatment, refined over time to include more spectral lines, revealed a strong metallic-
ity dependence of stellar winds. In fact, in the UV (i.e. the peak frequency for hot massive
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stars), hydrogen and helium present few spectral lines and the line-absorption mechanism is
rather inefficient. On the other hand, metals have many line spectra in the UV band, which
makes the line-absorption mechanisms very efficient in transferring energy to the matter,
causing the onset of strong stellar winds, that are coupled with high mass loss efficiency
throughout stellar evolution. In Figure 1.3, this effect is apparent, as stars with lower metal
content retain much more mass than stars at high Z, that instead experience severe mass loss
episodes during their life. This will influence the ability of massive stars to produce heavier
BHs, depending on their initial metallicity and mass.

Abbott and Lucy, 1985 proposed a different approach, through Monte Carlo (MC) simula-
tions. In this approach, photon packets are tracked on their journey from the photosphere to
the outer wind. At each interaction, momentum and energy are transferred from the photons to
the gas particles. This included also the possibility for multiple photon scatterings and pushed
Vink, de Koter, and Lamers, 2001 to revise the Ṁ − Z relation for stellar winds, obtaining:

Ṁ ∝ L2.2M−1.3Te f f

 v∞
vesc


−1.3

(1.4)

where the mass loss Ṁ is function of the star’s luminosity L, its mass M and its effective
temperature Te f f , with a factor proportional to the escape velocity vesc and the terminal flow
velocity v∞. The main success of these models was that they were equally successful for
relatively weak winds as they were for dense O-star winds. Vink, de Koter, and Lamers, 2001
found that the inner subsonic stellar winds for O-stars at high Z were caused by the iron-group
elements. This is because, they are extremely efficient absorbers as their complex atomic
structure allows for millions of different lines. On the other hand, for lower metallicities and
outer regions of the stars, they found that the main contributor to stellar winds come from CNO
elements. Prescriptions on stellar winds by Vink, de Koter, and Lamers, 2001 for massive
stars and by Vink and Koter, 2005 are the ones currently adopted by most state-of-the-art
stellar evolution codes.

Nonetheless, despite significant progress, several caveats remain in our understanding of
stellar winds, which introduce substantial uncertainties into models of massive star evolution:

• CAK theory and MC approach work excellently for supersonic winds, while they
struggle to reproduce subsonic winds (see Vink, 2022 for further details);

• Stars may approach Eddington luminosity limit during their life. This may cause
enhanced mass loss, which may work independently on the metallicity (see Vink and de
Koter, 2002; Yoon and Cantiello, 2010; Gräfener and Hamann, 2008; Gräfener et al.,
2011; Chen et al., 2015; Tang et al., 2014);

• Homogeneity of stellar winds: observations seem to suggest that winds are clumpy,
though the clumps’ formation mechanism and evolution is still under debate (see Davies,
Oudmaijer, and Vink, 2005; Puls et al., 2006. The properties of such clamps are highly
uncertain as well, however, they significantly affects their impact on stellar winds (see
Muijres et al., 2011).

When combining all these uncertainties the error associated to stellar winds they may induce
even a factor of 2 uncertainty (typical for state-of-the-art models, e.g., Vink, 2022), that might
have important consequences on the nature and mass spectrum of compact objects.
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1.1.3 Stellar rotation

In this section, I will summarize the main effect that angular rotation induces in the evolution
of a massive star. This section will largely be based on Meynet, Ekström, and Maeder, 2006;
Chieffi and Limongi, 2013; Limongi and Chieffi, 2018; Roberti, Limongi, and Chieffi, 2024.

Stellar rotation is a phenomenon intrinsically difficult to model for state-of-the-art stellar
evolution codes, as they are 1D codes working in spherical symmetry, while rotation is an
effect inherently 2D (if not 3D). However, Kippenhahn and Thomas, 1970 and Endal and
Sofia, 1976, showed that, with some assumption, it may be projected on 1D. The basic ideas
are that one can evaluate the averaged mechanical and thermal effects induced by rotation, as
prescribed by Kippenhahn and Thomas, 1970, with some assumptions:

• Cylindrical symmetry for angular velocity ω: this assumption is required to define
equipotential surfaces. Furthermore, it allows to maintain the same form in the stellar
structure equations, with the only addition of two form factors. They account for the
mechanical and thermal distortions induced by angular rotation.

• ω = const on isobar surfaces.

This last assumption was further supported by the work of Zahn, 1992, showing that an
assumption initially chosen for the sake of simplicity indeed captured the actual phenomenon.
This approximation is currently called stellular rotation, and implies that the equipotential
surfaces coincide with the isobars, an approximation already employed by Kippenhahn and
Thomas, 1970, even if not under this definition.

However, this approximation allows only for the star to rotate as a solid body. This limita-
tion has been surpassed thanks to the work of Meynet and Maeder, 1997, which demonstrated
that even by relaxing the assumption of cylindrical symmetry—thus dropping the requirement
for a conservative field, referred to hereafter as the conservative case—it was still possible
to maintain the equations for stellar structure proposed by Kippenhahn and Thomas, 1970.
However, this came with the price that the values of ρ and T , which were constant along the
isobars in the cylindrical symmetry approximation, in the formalism proposed by Meynet and
Maeder, 1997 have to be replaced with appropriate averages on each isobar. Nevertheless,
from a formal point of view, the only variation is that the values of ρ and T need to be inter-
preted as constant along the isobars in the conservative case, while in the non-conservative
case these two variables are averages along the isobars.

At this point the formalism is ready to be implemented in a stellar evolution code to
simulate the effect of angular rotation on a star during its life. However, angular rotation is a
phenomenon that should be considered on top of the other dynamical effects already in place
in the internal structure of a massive star. Rotation introduces an important factor, whose net
effect is to redistribute angular momentum and chemical species, and this affects significantly
the traditional dynamical instabilities (usually determined on the basis of the Schwarzschild
and/or Leydoux criteria) such as semiconvection in the H-burning, induced semiconvection in
He-burning, and the possible occurrence of some overshooting. Furthermore, rotation also
introduces other dynamical instabilities (e.g. meridional circulation and shear instability, see
Chieffi and Limongi, 2013; Limongi and Chieffi, 2018; Roberti, Limongi, and Chieffi, 2024).
To account for the effect of angular rotation on the stellar structure, one has to compute the
transport of angular momentum and chemical species along the stellar evolution. For the
former, there are various treatments, proposed by Chaboyer and Zahn, 1992; Talon and Zahn,
1997; Maeder, 2003; Mathis, Palacios, and Zahn, 2004. The latter is generally modeled along
the formalism proposed by Chaboyer and Zahn, 1992; Zahn, 1992. In the asymptotic regime,
the effect of rotation on the redistribution of chemical species can be described as a pure
diffusive process.
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The inclusion of some angular momentum changes many evolutionary properties of stars.
The net effect of angular rotation can be summarized in two main effects:

• Lowering of the effective gravity: Centrifugal force and angular momentum transport,
makes the stars expand, thus it evolves towards lower temperatures

• Rotation driven mixing: the interplay among convection, meridional circulation and
turbulent shear determines both the angular momentum transport and the mixing of
the chemicals. This latter result in longer central burning stages, i.e. stars with same
MZAMS produce more massive cores than their non-rotating counterparts.

This two effects are generally in competition, since the former produces redder stars, while the
latter result in brighter stars. For increased luminosity also the mass loss is more efficient, i.e.
rotating stars are more prone to be stripped of their H-envelope, producing more WR stars.

Furthermore, it is worth noting that the effect of angular rotation have to be considered
coupled with the other stellar parameters, e.g. MZAMS and Z, and one has to consider that the
effects we discussed before for various masses and metallicities are even enhanced by stellar
rotation.

However, from the point of view of the demography of massive BHs, the effects of angular
rotation on a star can be summarized as two: enhanced mass loss and production of more
massive cores, with respect to the non rotating counterparts.

Therefore, since the final fate of a massive star is ruled by its structure at the end of its
life, from rotating stellar progenitors we generally will expect a population of compact WR
stars at the pre-SN stage. Furthermore, these stars will have massive cores and very bounded
structure. This will allow for the production of more massive BHs but also lower limits for the
onset of pair-instabilities (see Section 1.1.4.2 and Section 3.3).

1.1.4 Final fate of a Massive star

1.1.4.1 Core-collapse Supernova

All stars with Zero-Age Main Sequence (ZAMS) mass (MZAMS) > 9.2 M⊙ (Limongi et al.,
2023) are expected to end their life with a ccSN and form a compact object that can be either a
BH or a neutron star (NS), depending on the mass of the stellar progenitor. These are the stars
that are able to ignite hydrostatic Ne burning and form an iron-group core. However, once
the Fe core is formed, the star is not sustained anymore by either the core’s nuclear reactions
or electron degeneracy pressure and it start collapsing. When the core’s temperature reaches
∼ 1010 K, the photodisintegration of iron-group elements becomes the dominant interaction
mechanism

56Fe + γ → 13 4He + 4n (1.5)

This process accelerate the collapse of the core, as it drains a significant amount of radiative
energy (∼ 2MeV per nucleon) from the star. Because of the accelerated core-collapse the core
reaches temperature high enough that even α particles begin to be photodisintegrated

4He + γ → 2p + 2n (1.6)

Furthermore, at this stage even electron capture phenomena are efficient, because of the high
electron kinetic energy, such that

p + e− → n + νe (1.7)

This results in another energy-loss source, as neutrinos are able to free stream away, without
interacting further with the stellar matter. Furthermore, this process also causes the an
enrichment of neutrons, that will eventually halts the first stage of the core-collapse.
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Figure 1.4: Cartoon of a core-collapsing star at the core-bounce. The central dashed region correspond
to the proto-NS, and on its surface the shock-wave is forming. Moving outwards there is an infalling
region, enclosed by the neutrino trapping region, which is so dense that neutrinos cannot free stream
away. Finally, the last surface, above which the mean free path (lν) of neutrinos allow them to leave the

star.

In fact, at this stage the core is already collapsing on the dynamical timescale, that at
densities of ∼ 1010gcm−3 means few milliseconds. As a consequence of the core-collapse, a
very compact degenerate structure, mainly composed by neutrons (called proto neutron star,
proto-NS), that can halt the collapse is formed, with a density ∼ 1014gcm−3 and a typical
binding energy of ∼ 1053 erg.

When a proto-compact object forms, the collapse ceases because it cannot accrete addi-
tional matter and it reaches a new stable state. In this state, the stellar matter is supported
against its own gravitational pull by the internal pressure of the nucleon gas, which is highly
incompressible due to the repulsive component of the nucleon-nucleon interaction potential
(see Janka, 2017). However, the outward matter continues its collapse, overshooting this
new equilibrium state, but because of the incompressible nature of the proto-NS the matter
bounces back, generating a shock wave, that starts propagating outwards. This is the so called
bounce-shock mechanism, firstly proposed by Colgate and White, 1966. If the shock was
completely elastic and no dissipation mechanism was present this could have been sufficient
in ejecting the matter above the shock, resulting in a successful SN explosion. However, the
shock dissipates most of its energy while traveling outwards, through the infalling material,
until it stalls at about hundreds of kilometers from the center, well within the Fe core, failing
to produce a successful SN. This is because, the shock photodissociates iron elements as it
moves through the core, and this process drains most of its energy.

At this stage, a new engine is required in order to produce a successful SN. The current
reference model for ccSNe is based on the neutrino driven explosion, firstly proposed by
Bethe and Wilson, 1985 (see also Burrows, Hayes, and Fryxell, 1995; Janka and Mueller,
1996; Janka, Melson, and Summa, 2016; Janka, 2017; Kotake, Sato, and Takahashi, 2006;
Herant et al., 1994; Foglizzo, Scheck, and Janka, 2006; Burrows, Radice, and Vartanyan,
2019; Aguilera-Dena et al., 2022).

The basic idea is that at the central densities reached after the neutronization processes
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neutrinos are essentially trapped in the core. Thus, they start a congestion that results in
the stall of the neutronization process at ∼ 1012 g cm−3, see Figure 1.4 for a schematic
representation. The latter completes only seconds after the collapse, when most of the very
high-energy neutrinos have had time to escape the core and to deposit part of their energy
in the material behind the former shock wave. If sufficient energy is injected into the stalled
shock by neutrino heating it can revive, initiating a successful SN explosion.

However, this process is inherently non-spherical, as 1D simulations of neutrino-driven
explosions struggle to generate successful SNe, while higher dimension simulations (as first
2D and in recent years 3D) revealed that the region that receive energy injection via neutrino-
heating experience non-radial instabilities. These latter have twofold effects: (i) they generate
asymmetric explosions, and (ii) convert thermal energy into kinetic energy, further fueling the
explosion, via the convection-enhanced neutrino-driven mechanism (see Burrows, Hayes, and
Fryxell, 1995; Janka and Mueller, 1996).

State-of-the-art 3D simulations predict successful SNe for low mass stars (MZAMS ≤

30 M⊙), while struggle in predicting the outcome of more massive stars. Furthermore, such
sophisticated simulations are subject to major uncertainties, especially on the progenitor
star side, that are obtained from 1D stellar evolution codes and need to be projected on 3
dimensions, and are computationally intensive. Because of this, we struggle to follow the
evolution of the explosion for more than a few seconds (Burrows et al., 2020; Bollig et al.,
2021; Burrows et al., 2024; Wang and Burrows, 2024). However, the formation of massive
BHs takes place on longer timescales, which are out of reach for state-of-the-art 3D models.

To overcome the computational limitations of detailed simulations, we resort to simplified
models that artificially stimulate SN explosions by injecting some amount of kinetic energy
(i.e., a kinetic bomb, see e.g. Limongi and Chieffi, 2003; Chieffi and Limongi, 2004) or
thermal energy (i.e., a thermal bomb, see e.g. Thielemann, Nomoto, and Hashimoto, 1996)
at an arbitrary mass coordinate location of the progenitor model. Alternatively, the inner
edge of the exploding mantle is moved outward like a piston following the trajectory of a
projectile launched with a specific velocity in a given potential (see Woosley and Weaver,
1995). Independently of the adopted techniques, the evolution of the shock is followed by
means of 1D hydrodynamical simulations. The main advantage of this approach is that the
computing cost is relatively small. Thus, it is possible to follow the evolution of the shock
over longer timescales and to estimate the amount of fallback and the final remnant mass
(see, e.g. O’Connor and Ott, 2011; Fryer et al., 2012; Ugliano et al., 2012; Ertl et al., 2016;
Sukhbold et al., 2016; Sukhbold, Woosley, and Heger, 2018).

Furthermore, the 1D approach has been extensively used to study the SN explosion yields,
especially in the context of explosive nucleosynthesis (see (Shigeyama and Nomoto, 1990;
Thielemann, Hashimoto, and Nomoto, 1990; Thielemann, Nomoto, and Hashimoto, 1996;
Nakamura et al., 2001; Nomoto et al., 2006; Umeda and Nomoto, 2002; Moriya et al., 2010;
Chieffi and Limongi, 2013; Limongi and Chieffi, 2018)).

1.1.4.2 Pair-Instabilities

While for massive stars in the mass interval MZAMS ∼ 9 − 80 M⊙, we have plenty of ob-
servations of spectacular transients, and a lack of robust theoretical models able to explain
unambiguously these phenomena, for more massive stars is true the opposite.

We know that very massive stars (MZAMS ∼ 80−200 M⊙) are radiation pressure dominated.
Before running out of viable nuclear fuel, they can reach a thermodynamic state where electron-
positron (e+e−) pair-production robs them of radiation support, triggering their collapse, hence
the name pair-instability. This model is well known from the theoretical point of view (e.g.
Fowler and Hoyle, 1964; Barkat, Rakavy, and Sack, 1967; Rakavy and Shaviv, 1967; Woosley,
2017) and there is general consensus among the astrophysical community. As a consequence
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Figure 1.5: Cartoon representing the core evolution through (P)PISN. Step 3 represents when the
evolution of the star takes different path depending on the binding energy of the star. 4a if the
thermonuclear explosion energy surpasses the binding energy of the star, 4b if the thermonuclear
episode unbound only part of the stellar structure (usually the H-envelope), and 4c when the energy
lost via pair-instabilities triggers the direct collapse of the star (usually very massive stars). Figure

from Renzo et al., 2020.

Figure 1.6: Mass of the BH as a function of the initial mass of its progenitor star, for different values
of metallicity. The shaded cyan area shows the location of the upper mass gap. The two black points

set the lower edge and the upper edge of the gap. Figure from Spera and Mapelli, 2017.

of the collapse induced by pair-instabilities, a thermonuclear fusion episode is triggered and
it may be strong enough to power an explosion that completely destroys the star. However,
while there is theoretical consensus, we are still lacking observational evidences (e.g. Briel
et al., 2022; Gabrielli et al., 2024).

In this section, I will briefly present the theoretical model describing pair-instabilities
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and their net effect on massive stars, especially from the point of view of the demography of
massive BHs.

Stars that undergo pair-instabilities are those star that are massive enough that, during the
nuclear burning stages, usually when the core is oxygen-dominated (see Fowler and Hoyle,
1964; Barkat, Rakavy, and Sack, 1967; Rakavy and Shaviv, 1967; Renzo and Smith, 2024),
reach a central temperature of T ∼ 7 × 108 K. When this happens the following reaction take
place:

γγ → e+e− →

ν−e ν+eγγ
(1.8)

Thus, a photon couple γγ produce an electron-positron pair e+e−. This latter then annihilates,
producing either a neutrino-antineutrino pair ν−e ν

+
e , which stream out of the star carrying away

their energy, or into a pair of photons γγ, which on average have lower energy than the original
photons. When this occurs in a star whose hydrostatic equilibrium depends on radiation
pressure (e.g. a very massive star), it can lead to a catastrophic instability: the production
of e+e− pairs effectively consumes radiation energy density. This softens the equation of
state, causing a local thermal instability in the star. Figure 1.5 shows the evolution of a star
undergoing pair-instabilities. Once the pair-production starts (step 1) and the EOS is softened,
triggering the collapse (step 2) the thermonuclear explosive episode is initiated (step 3), and
the final fate of the star depends on its core mass, and on the ratio between the energy released
in the explosive burning and the binding energy of the star.

If the energy released in the explosion is enough to unbound the entire star, a pair-instability
supernova (PISN) take place (step 4a). This is the phenomenon originally predicted by Fowler
and Hoyle, 1964; Barkat, Rakavy, and Sack, 1967; Rakavy and Shaviv, 1967, which leads to
full disruption of the star, leaving no remnant.

For slightly lower stellar masses, the central temperatures reached (and consequently, the
nuclear burning rate) are lower: this results in less energetic explosions that fail to completely
unbind the star. However, the explosion triggers one (or more) pulse that propagates through
the star ejecting some material, depending on the strength of the pulse (see Barkat, Rakavy,
and Sack, 1967; Chatzopoulos and Wheeler, 2012; Woosley, 2017; Woosley, 2019; Farmer
et al., 2019; Marchant et al., 2019; Renzo et al., 2020; Farag et al., 2022). When these
events occur, they may appear as bright transients that go under the name of pulsational
pair-instability supernovae (PPISN). Even if the explosion is not strong enough to unbind
and destroy the star, the thermonuclear explosion causes the core to expand. Thus, the core’s
temperature and density decrease, and the pair-production ceases. Afterwards, the star relaxes
on the thermal timescale via neutrino cooling (see Barkat, Rakavy, and Sack, 1967; Fraley,
1968). Depending on the pulse efficiency, it may happen even that the density and temperature
are driven to values low enough to shut off the neutrino cooling mechanism. If this latter is
the case, the energy in the star resumes to be carried through photons and convection (see
Woosley, 2017; Marchant et al., 2019; Renzo et al., 2020). After the relaxation time (spanning
between few days to ∼ 105 yrs, see Woosley, 2017; Renzo et al., 2020), pair-production may
resume in the star’s core, until it is eventually completely stable, either because of (i) the
exhaustion of viable nuclear fuel, (ii) the mass loss due to pulses or (iii) the loss of energy
during the cooling phase. Once the star is back to being stable the normal stellar evolution
resumes, with the various central burning stages expected from a massive stars performed
with what nuclear fuel is left after the pulsating phase. These stars will eventually produce an
iron-group core and undergo a core-collapse. These stars are generally expected to directly
collapse, through failed SNe, as the energy budget of the shockwave will not be enough to
unbind the star (e.g. Woosley, 2017; Farmer et al., 2019; Costa et al., 2021; Hendriks et al.,
2023).

Finally, stellar progenitors that are even more massive than the stars undergoing PISN
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trigger a second kind of instability: the photodisintegration instability (see Bond, Arnett, and
Carr, 1984; Fryer, Woosley, and Heger, 2001; Heger et al., 2003). In this stars, the energy
released by the thermonuclear explosion instead of being employed to accelerate the matter,
generating either a PISN or a PPISN, is used to photodisintegrate nuclei (C, O, Si, and the
product of the thermonuclear explosion). Therefore, the explosion energy is not transformed
into kinetic energy, canceling out the dynamical effect of pair-instability and causing the star
to directly collapse into a massive BH (≳ 250 M⊙).

However, while the physical phenomenon leading to the onset of pair-instabilities is
theoretically well comprehended, the criterion for the transition from the different regimes is
not fully understood. The processes triggering pair-instability are all taking place in the CO
core of a massive star, thus the general approach is to use this latter as a proxy for the onset of
pulsational-instabilities (see Spera and Mapelli, 2017; Woosley, 2017; Farmer et al., 2019;
Costa et al., 2021). Such a metric is prone to some uncertainties, as recent works pointed out
that several other factors play a role in the onset of (P)PISN, such as the chemical abundances
in the CO core (that may be due to different 12C(α, γ)16O reaction rates see Farmer et al.,
2019; Chieffi and Limongi, 2020), or the role of angular rotation ( see Chieffi and Limongi,
2013; Limongi and Chieffi, 2018; Costa et al., 2021), or the formalism for modeling dynamical
instabilities in the star (see Renzo et al., 2020). Furthermore, one has also to consider that
massive stars are often found in binaries, thus binary interaction may affect the property of
the stars, and so the onset of pair-instabilities (see Vigna-Gómez et al., 2018; Marchant et al.,
2019; Di Carlo et al., 2019; Di Carlo et al., 2020a; Renzo et al., 2020; Zapartas et al., 2021).

1.1.4.2.1 PPISN and PISN effect on the BH mass spectrum Even if there is no unani-
mous consensus on the criteria for the onset of the various pair-instability regime, their effect
on the BH mass spectrum is well understood. PPISNe significantly enhance the mass loss of
the stellar progenitor, while PISNe completely destroy it. Thus, they create a gap in the BH
mass spectrum, referred to as the upper-mass gap. This gap ranges from Mlow ∼ 60 − 80 M⊙
to Mhigh ∼ 200 − 250 M⊙. Figure 1.6 shows a typical BH mass spectrum with the upper-mass
gap, obtained from a population of single stars, at various metallicities (the figure is taken
from Spera and Mapelli, 2017).

This gap, especially its lower edge, is of great interest in the study of massive BHs, both
from single stars and from binaries. In the former scenario, it will allow us to put further
constrains on the details of the physical processes in place both during the stellar evolution
and during ccSNe. This is because the lower edge of the mass gap will be the result of failed
SNe, i.e. stars that directly collapse into BHs. In the latter scenario, is even more important to
properly constrain the lower edge of the mass gap, as some of the progenitors of GW mergers
had masses lying in the mass gap (e.g. LIGO Scientific Collaboration and Virgo Collaboration
et al., 2020). As of now, to explain the formation of such massive BHs in the context of our
current formalism for stellar evolution some complex phenomena are needed (e.g. hierarchical
mergers, see Kimpson et al., 2016; Di Carlo et al., 2019; Di Carlo et al., 2020a, but also other
channel have been proposed as in Roupas and Kazanas, 2019; Yang et al., 2019; Arca Sedda,
2020; Safarzadeh and Haiman, 2020; Liu and Bromm, 2020; Tanikawa et al., 2021; Farrell
et al., 2021). However, future work that better details the transition from ccSNe to PPISNe is
needed (for a review, see Renzo and Smith, 2024).

Ultimately, PPISNe are believed to have an additional impact on the black hole mass
distribution from massive binary systems. Because of PPISNe, most stars with 60 − 80 M⊙ ≲
MZAMS ≲ 130 M⊙, are expected to lose their hydrogen envelope and die as naked-He stars.
As a consequence, the final BH masses of stars undergoing PPISN are expected to cluster
in the 35 − 45 M⊙ mass interval, on top of the BHs produced through ccSN from lighter
stars, creating an accumulation of BHs in that particular mass-interval. This feature has been
retrieved in the observed population of merging BBH detected by the LIGO-Virgo-KAGRA
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(see Abbott et al., 2021; Abbott et al., 2023). However, many more effect may concur with
the onset of PPISN in this accumulation of BHs, starting for the processes related to the
evolution of a binary star system (see for further details Chapter 4), or the effect of dynamical
interactions in a dense environment.

1.2 Isolated binary evolution

Many stars, especially the more massive ones, are born in binaries or higher multiple stellar
systems. Moe and Stefano, 2017 showed that the multiplicity of stellar systems increases with
the stellar mass. This suggests that NS and BH stellar progenitors are born not as single stars,
but as binary members (and in a smaller part even of three or more stellar systems). Therefore,
studying binary interactions between two massive stellar companions is crucial to understand
the astrophysical evolution of many GW merger progenitors.

In this section, I will present the various binary processes that may affect binary stars.

1.2.1 Stellar Tides

In tightly bound stellar binaries, finite-size effects, such as tidal forces, become significant.
Thus, the point mass approximation fails to adequately describe their motion. Eggleton,
Kiseleva, and Hut, 1998 derived the equations of motion for a binary in such a state. The
basic idea is that the star is deformed by its companion, generating a gravitational quadrupole
moment. However, the response of the quadrupole moment is not instantaneous and the delay
allows the coupling between rotational and orbital angular momenta, on top of the dissipation
of orbital energy in the stellar interior because of the quadrupole momentum. The precise
formulation of the tidal dissipation depends on the star’s structure, as shown by Zahn, 1977
(see also Spera, Trani, and Mencagli, 2022).

Stellar tides introduce three main effects on the binary:

• Circularization of the orbit for eccentric binaries;

• Spinning-up of stars in close binaries: this effect synchronizes the rotation periods of
the two stars to the orbital period, and it aligns the spin of the two stars with the angular
momentum vector of the binary;

• Chemical homogeneous evolution (CHE): Tidal spin-up in a close binary introduces
rotational mixing of the stellar interior, which tends to flatten its chemical composition
gradient.

The first two effects are especially important in the context of GWs, as the tidal spin-up may
change the original spins of the two compact objects. Thus, these parameters may help us
distinguish the evolution pathway of the progenitor of GW merging systems. The CHE allow
massive stars to retain their H-envelope post-MS and prevents the onset of a common envelope
phase (CE, see Section 1.2.3), favoring the formation of high-mass BHs.

1.2.2 Mass Transfer

Section 1.1.2 presented the effects of stellar winds on the evolution of massive stars. However,
when a star is in a binary system, stellar winds are not the only actor that changes a star’s
mass.

In this section, I will present the effect on a binary’s orbit of mass variation of the two
stars composing it, either through stellar wind mass loss or via mass transfer.

When a star is in a binary system, stellar winds leads not only to variation in the structure
(mass, temperature, luminosity etc.) of the single star, but also in changes in the binary’s orbit.
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If they are isotropic (spherical symmetry, i.e. no change in the momentum of the system) and
adiabatic (slow with respect to the orbital period), the semimajor axis of the orbit varies as:

ȧ = −a
Ṁ1 + Ṁ1

M1 + M2
(1.9)

where Ṁ∗,i and Mi are the mass changes rate (negative since the star is losing mass via winds)
and the mass of the i-th star, respectively. If the mass loss is slow the only effects of stellar
winds is to widen the orbit, without varying the eccentricity (see Hadjidemetriou, 1963;
Dosopoulou and Kalogera, 2016a).

However, it is possible that the mass loss by a star via stellar winds is accreted by
its companion, introducing a positive value of Ṁi. The accreted material may also carry
momentum, both linear and angular, and this would further modify the orbit. The wind
accretion rate can be calculated with the model developed by Bondi and Hoyle, 1944, but
usually we refer to Hurley, Tout, and Pols, 2002 approximation:

Ṁ2 =
1

√
1 − e2

GM2

v2
w


2
αw

2a2

|Ṁ1|[
1 + (vcirc/vw)

2]3/2
(1.10)

where e is the eccentricity of the binary, vw the donor wind speed, vcirc =
√

G(M1 + M2)/a
is the mean orbital velocity, G is the gravitational constant and αw ∼ 1.5 is an efficiency factor.
Predict the answer of the binary system to stellar winds accretion is non-trivial, as it depends
not only on the amount of mass transferred, but also on the efficiency of momentum transport.
For a detailed treatment see Dosopoulou and Kalogera, 2016a; Dosopoulou and Kalogera,
2016b; Hamers and Dosopoulou, 2019.

Matter may be transferred from a star to its companion also via Roche lobe overflow
(RLO), that is usually more efficient that wind accretion (see Mapelli, 2018). The Roche lobe
(RL) of a star in a binary system is a teardrop-shaped equipotential surface surrounding the
star. The RLs of the two members of the binary are connected at a single point, known as the
Lagrangian L1 point. The most common-used approximation for the RL has been proposed by
Eggleton, 1983 an goes as follows:

RL = a
0.49q1/3

0.6q2/3 + ln(1 + q1/3)
(1.11)

where q is the mass ratio of the system of each star with respect to its companion (q =
M1/M2).

RLO take place when the radius of one star overfill its RL (Ri < RL,i), and if this happens,
the external layers of the star are forcefully stripped out by the gravitational pull of the stellar
companion and the centrifugal force of the orbit. Part of this material will be accreted by the
stellar companion, while some will be lost in the circumstellar medium. We will define the
mass transfer as conservative, if all the matter is accreted by the stellar companion, and non-
conservative otherwise. The lost matter will carry away also part of the angular momentum
from the binary, shrinking it.

An estimate of the mass accretion rate has been proposed by Ge et al., 2010, under the
assumption that the matter can be treated as an isentropic, adiabatic, and irrotational fluid,
with velocity flow parallel to the axis connecting the two stars’ centers. The mass accretion
rate can be then estimated as:

Ṁ1 ≃ −
M1

Porb

 ∆R
RL,1


n+3/2

(1.12)
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where Porb is the orbital period, RL,1 is the RL of the donor star, ∆R = R1 − RL,1 is the RL
filling factor, and n and R1 are the envelope’s polytropic index and the donor star’s radius,
respectively.

However, RLO does not change only the binary’s orbit, but also the structural properties
of the two stars. Thus, modeling the response of the both the donor and the accretor star is
crucial to predict the evolution of a stellar binary, other than the properties of the eventual
remnants.

To evaluate the stability of the mass transfer one has to consider the typical timescales
for stellar processes that are the dynamical timescale tdyn(describing the time on which a star
reacts to a perturbation to the hydrostatic equilibrium, also known as free-falling timescale),
the thermal timescale tKH (describing the maximumm allow variation rate in the thermal
structure of a star, also known as Kelvin-Helmholtz timescale), and the nuclear timescale tnuc

(the time needed to exhaust the nuclear fuel). If the timescale over which a star loses mass
because of a RLO episode is such that

tnuc <
M1

Ṁ1
<< tKH (1.13)

the mass transfer is considered stable, as the mass transfer timescale is well above the thermal
timescale, allowing the star to remain in thermal equilibrium. On the other hand, if is true that

tKH <
M1

Ṁ1
< tdyn (1.14)

this implies that mass transfer can disrupt a star’s thermal equilibrium, inducing significant
changes in luminosity and radius. Furthermore, in certain extreme cases, mass transfer may
occur on a dynamical timescale, profoundly modifying the donor star’s behavior.

To assess the stability of mass-transfer the most commonly used approach (see Portegies
Zwart and Verbunt, 1996; Tout et al., 1997; Hurley, Tout, and Pols, 2002; Eggleton, 2006) is
to assume that R ∝ mζ , and that the variation of the donor’s star during RL is:

dR1

dt
=
∂R1

∂t
+ ζ

R1

M1

dM1

dt
(1.15)

where ∂R1/∂t is due to nuclear burning, while ζ represents the adiabatic/thermal response of
the donor star to mass loss, and dM∗,1/dt is the donor mass loss rate, i.e. is always negative.
One has also to account for the RL variation during the mass transfer, computed as:

dRL,1

dt
=
∂RL,1

∂t
+ ζL

RL,1

M1

dM1

dt
(1.16)

where ∂RL,1/∂t models the effects due to tides and GW radiation, and ζL describes the
adiabatic response of the RL to mass loss, that can either expand or shrink. If ζL > ζ the RL
shrink faster than than the donor’s radius the mass transfer is deemed unstable, otherwise it is
stable.

The stability of mass transfer depends on the value of ζ. It can be unstable on the thermal
timescale if ζ represents the thermal response of the donor and ζ < ζL, or on the dynamical
timescale if ζ represents the adiabatic response of the donor and ζ < ζL. Should the mass
transfer be dynamically unstable, or if both stars overfill their Roche lobes, the binary system
will either merge—assuming there is no distinct core-envelope separation, i.e. a steep density
gradient at the core-envelope boundary—or otherwise enter a common envelope (CE) phase
(see Section 1.2.3).
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1.2.3 Common Envelope

Figure 1.7: Schematic representation of the evolution of a BBH through CE. The companion of the
BH (black circle) is initially in the main sequence (MS, light blue circle). Once the star evolve out of
the MS, it overfills its RL and trigger a CE phase (if the mass transfer is not stable), where the star’s
core and the BH starts co-rotating. At this stage there are two possibilities: (i) the CE is ejected and
we are left with a BH + naked-He star binary, whose semimajor axis is much smaller than the initial
binary’s; (ii) the CE is not ejected and the BBH and the He-core spiral in until they merge together,

leaving a single BH. Figure from Mapelli, 2018.

Unstable mass transfer in binary systems can lead to a common envelope (CE) phase,
during which one star becomes engulfed by the other’s envelope. During this phase, the stars
begin to spiral inward because of the gas drag from the envelope. This drag causes a loss of
orbital energy, which, along with a portion of the orbital angular momentum, is transferred
to the envelope, causing it to heat up and expand. At this stage, two outcomes are possible
(summarized in Figure 1.7, from Mapelli, 2018): if the envelope is too tightly bound, the
inspiral continues until the cores are tidally disrupted, resulting in a merger into a single star.
On the other hand, if the envelope is ejected, a new short-period binary system is created.

The CE is a key factor in the formation of GW events from isolated binary stars, as it
can shrink binary separations by a factor of hundreds, decreasing the coalescence time of
compact-object binaries, and allowing them to merge within a Hubble time (see Dominik
et al., 2015; Giacobbo and Mapelli, 2018; Mapelli and Giacobbo, 2018; Belczynski et al.,
2020; Tanikawa et al., 2021; Zevin et al., 2021).

The most commonly used approach to model CE relies on analytical methods, as they are
easier to implement and less numerically expensive than hydrodynamical simulations (see e.g.
Sandquist et al., 1998; Ricker and Taam, 2012; Ivanova, Justham, and Podsiadlowski, 2015;
Ivanova, 2018), and among them the most commonly adopted formalism is the α − γ model
(see van den Heuvel and De Loore, 1973; Webbink, 1985; Nelemans et al., 2000), or energy
formalism, as it is based on energy balance considerations.

The basic idea of this formalism is to compare the orbital energy pre-CE with the enve-
lope’s binding energy. By comparing these two energies, it is possible to estimate whether or
not a binary will survive the CE phase, and, if it does, to estimate the final semimajor axis of
the orbit.

The two parameters of the model, α, and γ, are used to parametrize the CE efficiency (i.e.,
which fraction of the removed orbital energy is transferred to the envelope) and the envelope
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binding energy, respectively. The latter is estimated as proposed by de Kool, 1990 as:

Eenv = −
GM1M1,env

λR
(1.17)

where R is the stellar radius, and M1,env is the mass of the stellar envelope. When both stars
are giant stars with a well-formed core, both the envelopes are included in Eq. 1.17. The value
of λ is usually obtained from polytropic fitting or from detailed 1D stellar evolution codes
(see Hurley, Tout, and Pols, 2002; Dewi, Podsiadlowski, and Sena, 2006; Claeys et al., 2014;
Kruckow et al., 2018).

Then, the fraction of the orbital energy of the cores, which goes into unbinding the
envelope, can be expressed as

∆Eorb = α(Eorb, f − Eorb,i) =
GM1,cM2,c

2

 1
a f
−

1
ai

 (1.18)

where M1,c and M2,c are the masses of the two cores, Eorb,i (Eorb,i) and ai (a f ) are the value of
orbital energy and of the semimajor axis before (after) the CE phase, respectively. By equating
Eq. 1.17 and Eq. 1.18 (i.e., assuming that all the variation of energy due to CE is employed to
eject the CE), such that ∆E = Eenv, it is possible to estimate the final value of a f .

For α = 1, all the orbital energy due to the orbit’s shrink is used to unbind the envelope,
while for α < 1, part of this energy is lost. Thus, the α parameter rules the efficiency of the CE
inspiral. Population synthesis studies suggest that a larger value of α (α ≳ 3) is required to
match the binary NS (BNS) merger rates inferred by LVK collaboration (e.g., Giacobbo and
Mapelli, 2018). This indicates that energy may be generated during the CE phase within this
framework. Recent one-dimensional simulations propose alternative energy sources to binary
contraction, such as the recombination energy released when hydrogen plasma recombines
into atoms and molecules (Fragos et al., 2019).

However, the α− λ model, while numerically efficient, oversimplifies the complex physics
of CE evolution by compressing it within two parameters. It presumes complete envelope
ejection, despite hydrodynamic simulations indicating the possibility of partial ejection. It
also assumes that the ejected envelope has zero kinetic energy at infinity, which may not be
accurate. Moreover, the model overlooks critical factors like angular momentum transfer, tidal
heating, and the recombination energy of the envelope material, all of which can significantly
influence CE evolution outcomes (Ivanova et al., 2013).

1.3 Dynamical evolution

The dynamical scenario describes the formation of binary systems through gravitational inter-
actions within stellar clusters, relatively dense groups of stars held together by gravitational
forces. This process is an alternative method for forming merging compact-object binaries,
considering that most stars, if not all, originate in stellar clusters.

In this section, I will briefly review the processes that interest binary systems (for a more
detailed review of the processes in place in dense environments see Mapelli, 2018; Spera,
Trani, and Mencagli, 2022), and the environment that host such processes.

1.3.1 Dense Stellar Environments

Star clusters are distinguished according to their age, density and mass.
The most massive and dense possible environments are nuclear star clusters (NSCs),

which resides in the nuclei of galaxies, including our own (see Böker et al., 2002; Graham and
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Spitler, 2009). In these clusters may also host a super-massive BH (SMBH) at their center,
that plays an important role in the dynamical processes in place. The environment close to
the BH can be a relevant formation site of GW progenitor systems. Furthermore, if the BH is
accreting matter is called active galactic nucleus (AGN), and its accretion disk is a region that
can trap BHs, thus it is a possible environment for GW mergers (see McKernan et al., 2012;
McKernan et al., 2014; McKernan et al., 2018; McKernan et al., 2020; McKernan, Ford, and
O’Shaughnessy, 2020; Bellovary et al., 2016; Bartos et al., 2017; Leigh et al., 2018; Secunda
et al., 2019; Yang et al., 2019).

The globular clusters (GCs) are typically old systems (∼ 12 Gyr, close to the Universe’s
age), that are very dense and massive (≥ 104 M⊙). Because of their age they are generally
not star-forming, as they do not contain anymore gas or dust. Because of their high masses
and central densities (ρc ≥ 104 M⊙pc−3), GCs are one of the most studied environment for
the dynamical formation of GW-progenitor binaries (see Zwart and McMillan, 1999; Mapelli
et al., 2005; Downing et al., 2011; Rodriguez et al., 2015; Antonini and Rasio, 2016; Askar
et al., 2017; Arca Sedda, Askar, and Giersz, 2018; Rodriguez et al., 2019; Kremer et al.,
2020).

Young dense star clusters (YDSCs) are relatively young (<100 Myr) systems, thought to
be the most common birthplace of massive stars (see Lada and Lada, 2003; Portegies Zwart,
McMillan, and Gieles, 2010). While they are generally smaller than GCs, their central densities
may be comparable. YDSCs are thought to be close relatives of the ancient progenitors of GCs,
as they have masses similar to those of GCs at the present day. However, as they experience
stellar mass loss YDSCs are not massive enough to evolve into present-day GCs.

Finally, the smaller environments are open clusters (OCs) They are irregular systems com-
posed of few stars (tens to few thousands) and are generally younger than GCs. Furthermore,
they may still retain some gas from the primordial general cloud that originated them.

YDSCs and OCs are not long-lived as they eventually disintegrate within the tidal field
of their host galaxy, losing mass in the process. Contributing to their disintegration are
factors such as gas expulsion and stellar evaporation. Gas expulsion can occur in the early
stages of gas-rich star clusters’ lives. Stellar winds and SNe may remove the remaining gas
from the cluster, weakening its gravitational pull and possibly leading to its disintegration, a
phenomenon known as infant mortality.

1.3.2 Three body star encounters

In general, binaries have an energy reservoir, their internal energy:

Eint =
1
2
µv2 −

GM1M2

r
(1.19)

where µ = M1M2/(M1 + M2) is the reduced mass of the binary (whose components have
mass M1 and M2), v is the relative velocity between the two members of the binary, and
r is the distance between the two members of the binary. As shown by Kepler’s laws,
Eint = −Eb = −Gm1m2/(2a), where Eb is the binding energy of the binary system, a being
its semi-major axis.

A binary can exchange its internal energy with the other stars only if it undergoes a close
encounter with another star, which will perturb its orbital parameters. An encounter is defined
a close encounter if the single star approaches the binary by few times the value of the orbital
separation. If this is the case, we talk about a three-body encounter.

The frequency of such encounters scales with the local star densities, so this process has a
non-negligible occurrence rate only in very dense environment, such as stellar clusters. As
a consequence of a three-body encounter, a binary can either harden (increase its binding
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energy, i.e., decrease its orbital separation), exchange objects (one of the two component of
the binary is substituted by the third interacting object) or be ejected from the star cluster.

1.3.2.1 Hardening

When a binary system experiences multiple three-body encounters throughout its existence, it
is expected that its semimajor axis will shrink due to such interactions, a phenomenon known
as dynamical hardening.

According to Heggie, 1975, a binary can be labeled as hard (soft) if its binding energy is
larger (smaller) than the average kinetic energy of stars in the same star cluster. It is worth
noting that hardness is a property of the binary relative to its environment. Due to the higher
velocity dispersion, the same binary in the core of a cluster might be soft, whereas in the halo
it would be hard.

Heggie, 1975 showed that hard binaries tend to harden through three-body encounters,
meaning that their semimajor axis will shrink. As BHs are among the most massive bodies
in star clusters, they are expected to be in hard binaries, thus to harden as a consequence of
dynamical interactions. Such a process may be efficient enough to reduce the semimajor axis
enough to enter a regime where GW emission is efficient, producing merging BBH able to
merge within a Hubble time. Heggie, 1975 predicts the hardening rate for hard binaries to be

d
dt

1
a

 = 2πGξ
ρ

σ
(1.20)

where ξ is a the hardening parameter (ξ ∼ 0.1 − 10, tuned through numerical experiments,
see Hills, 1983; Quinlan, 1996), ρ is the local stellar mass density, and σ is the local velocity
dispersion. If we couple Eq. 1.20 with Peters, 1964 equation for the GW emission:

ȧ = −
64G3M1M2(M1 + M2)

5c5a3(1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)

(1.21)

One obtain the estimate of the evolution of a BBH binary affected by dynamical three-body
encounters and GW emission:

da
dt

= −2πξ
Gρ
σ

a2 −
64
5

G3M1M2(M1 + M2)

c5(1 − e2)7/2
a−3 (1.22)

that holds in the hard binary approximation. Furthermore, Eq. 1.22 holds under the assumption
that the total mass of the binary is much larger than the average mass of a star in the cluster
and that three-body encounters have a small impact parameter. The first term on the right hand
side of Eq. 1.22 accounts for dynamical hardening and scales as ∝ a2, while the second term
accounts for GW emission, scaling as ∝ a−3. Thus, the former is more efficient the larger is
the binary, while the latter becomes efficient only for very close binaries.

1.3.2.2 Exchanges

Dynamical exchanges are three-body interactions where one member of a binary system is
replaced by the third object. Such exchanges can result in the creation of new BBHs: for
instance, if a binary consisting of a BH and a low-mass star is involved in an exchange with a
single BH, a new BBH is formed. This is a crucial difference between BHs in isolated fields
and those in star clusters: a BH that forms as an isolated object in the field is unlikely to join a
binary system, whereas a single BH in the heart of a star cluster has a good chance of entering
a binary through exchanges.
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Exchanges are expected to result in the creation of more BBH than they can destroy. This
is because the likelihood of an intruder replacing a member of a binary system is negligible
if the intruder is less massive than both members of the binary. However, this probability
increases significantly if the intruder is more massive than at least one of the binary members
(see Hills and Fullerton, 1980). Therefore, BHs, that are among the most massive objects
in a star cluster, are very efficient in acquiring companion via dynamical interactions, and
exchanges are a crucial mechanism in forming BH binaries (see Ziosi et al., 2014).

BBH binaries formed via exchange have several distinguish features:

• Dynamically formed BBH are expected to be more massive than isolated BBH, as
massive BHs are more likely to substitute lighter objects via exchanges or to acquire
companions;

• Exchange BBH are more likely to have high eccentricities, as circularization effects
associated to the binary evolution (see Section 1.2) are not in place. However, GW
emission will later on reduce the orbit eccentricity;

• Dynamically formed BBHs are more likely to have misaligned spins, as they do not
experience stellar tides (see Section 1.2.1). Furthermore, exchanges and other dynam-
ical interactions lead to isotropically distributed spin directions, because dynamical
interactions remove any memory of previous alignments.

It is worth mentioning that this latter effect, as of now, is one of the main properties that
would allow us to distinguish the formation pathway of a merging BBH (see Farr et al., 2017;
Farr, Holz, and Farr, 2018).

1.3.2.3 Ejection

Figure 1.8: Trajectory evolution during a three-body encounter between a binary (1,2) and a single
object (3). After a brief interaction an exchange take place, followed by the ejection of both the newly
formed binary (2,3) and single (1). Because of the dynamical interaction the timescale for a GW merger
is greatly reduced, from tGW > 106 Myr, to few Myr. This dynamic interaction has been integrated with
the few-body code TSUNAMI (see Trani, Fujii, and Spera, 2019; Trani and Spera, 2023), assuming
that all the bodies are 50 M⊙ BHs, the impact parameter is b = 0.6, and v∞ = 0.1 km/s. Figure from

Spera, Trani, and Mencagli, 2022.

During three-body encounters, a portion of the internal energy of a hard binary is converted
into the kinetic energy of the intruders and the binary’s center of mass. Therefore, both the
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binary and the intruder recoil, and both can be ejected from the parent star cluster, as shown in
Figure 1.8 ( Figure from Spera, Trani, and Mencagli, 2022). If this happens, they become field
objects and will continue their evolution as isolated binaries, not participating in the cluster’s
life anymore.

Statistically speaking, most BNSs, BBHs and BH-NS systems are ejected before merging
(see Zwart and McMillan, 1999; Downing et al., 2011; Ziosi et al., 2014; Rodriguez et al.,
2015; Askar et al., 2017). This hampers the formation of massive BHs through hierarchical
mergers, reducing the number of second-generation BHs, especially in an environment with
low escape velocity. In fact, the denser is the environment the higher is the escape velocity
value. Therefore, this effect introduces a selection effect based on the environmental properties,
which affects the efficiency of hierarchical mergers. Recent work by Rodriguez et al., 2019
shows that hierarchical mergers occur only in massive stellar environments such as globular
clusters, nuclear star clusters, and close to the central SMBH.

1.4 Hybrid scenarios

In this Chapter, I presented the evolution of isolated binary, and the various BSE processes,
and the effect of stellar dynamic, which allows the formation of binaries in dense stellar
environment.

However, distinguishing between the isolated binary channel and the dynamical channel
might not be straightforward. This is because stellar evolution and stellar dynamics are
processes that are active simultaneously.

Stellar binaries may evolve in complete isolation, if they are not in a dense environment,
but they can be found in star clusters as well. If that is the case they may be affected by both
dynamical processes and BSE processes at the same time. For instance, Di Carlo et al., 2020a
showed that in YDSCs BBHs are formed via CE evolution of dynamically assembled main
sequence binaries that, at some point of their life, are ejected from the cluster and merge in
the field, appearing as if they had evolved in complete isolation. These systems contribute
to the merger ratio more efficiently than dynamically assembled binaries. These are binaries
that undergo at least a CE phase but also dynamical encounters, and the CE phase may also
be triggered by these latter. Another example of the complex interplay between the isolated
and the dynamical pathway is provided by Trani et al., 2021, as they show that binaries in
YDSCs that are in the post-Ce phase, and are tidally spun up may merge with misaligned
spins, because of three-body encounters.

Therefore, in such a hybrid scenario, a stellar binary may enter certain evolutionary stages
that would not have been possible if it evolved as isolated binaries.
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Chapter 2

Numerical Tools

In this Chapter, I will describe the numerical codes used throughout this thesis. In Section 2.1, I
will describe the code that I used for the hydrodynamical simulation of ccSNe, HYdrodynamic
Ppm Explosion with Radiation diffusION (HYPERION). In Section 2.2, I will present the
rapid population synthesis code Stellar Evolution for N-body (SEVN).

2.1 HYPERION

This Thesis deals with CCSNe studied through 1D numerical simulations. The code used,
called HYPERION (HYdrodynamic Ppm Explosion with Radiation diffusION, see Limongi
and Chieffi, 2020), is capable of simultaneously simulating the ejection of the star’s mantle
and tracking Explosive Nucleosynthesis, solving the equations that describe the hydrodynamic
state of the system and the variation of chemical species.

The equations describing the hydrodynamics of a system under the assumption that energy
transport occurs via radiative diffusion are

∂ρ

∂t
= −4πρ2 ∂r

2v
∂m

∂v
∂t

= −4πr2 ∂P
∂m
−

Gm
r2

∂E
∂t

= −
∂

∂m

(
4πr2vP + L

)
+ ϵ

(2.1)

where ρ is the density, r the radial coordinate, v is the velocity, m is the mass, P is the pressure,
E is the energy per unit mass, which accounts for kinetic, gravitational, and thermal energy
contributions, L is the luminosity associated with radiation, and ϵ represents other added or
subtracted energy terms, for example, energy lost in the form of neutrinos or gained from
nuclear burning reactions.
Assuming that the mean free path of photons is smaller than the characteristic dimensions of
the stellar matter fluid, the luminosity due to photons is obtained in the diffusive limit as:

L = −(4πr2)2λac
3κ
∂T 4

∂m
(2.2)

where a is the radiation constant, c is the speed of light, κ is the Rosseland mean opacity, and
λ is the flux limiter. This can be calculated as Levermore and Pomraning, 1981

λ =
6 + 3R

6 + 3R + R2 (2.3)
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where

R =
4πr2

kT 4

∣∣∣∣∣∣∂T 4

∂t

∣∣∣∣∣∣ (2.4)

The Rosseland mean opacity is calculated according to the abundances of chemical species at
solar metallicity Z = Z⊙ = 1.345 × 10−2.
It is then assumed that the variables P, Eint, ϵ, κ are treated according to the following scheme:

P = P(ρ, T , Xi) Equation of State

Eint = Eint(ρ, T , Xi) Equation of State

ϵ = ϵ(ρ, T , Xi) Cross Section Study

κ = κ(ρ, T , Xi) Opacity Tables

Thus, P and Eint are described by equations of state Morozova et al., 2015, while ϵ is obtained
from cross-section studies and κ using opacity tables Ferguson et al., 2005; Iglesias and
Rogers, 1996.
Furthermore, since E = Eint + Egrav + Ekin depends on v, ρ, T and r, and given that ∂v/∂t =
r, the system of Eq. 2.1, which describes the conservation equations for mass, momentum,
and energy, is a system of 3 equations with 3 unknowns and can therefore, at least in principle,
be solved.
Nucleosynthesis, on the other hand, is tracked by coupling the system of Eq. 2.1 with the set
of equations

∂Yi

∂t

∣∣∣∣∣∣
i=1,...N

=
∑

j

ci( j)Λ jY j +
∑
j,k

ci( j, k)ρNA⟨σv⟩ j,kY jYk+∑
j,k,l

ci( j, k, l)ρ2N2
A⟨σv⟩ j,k,lY jYkYl

(2.5)

Where N is the number of chemical species whose evolution is being followed, thus Eq. 2.5
represents a system of N equations.
The different terms represent, in order:

• β-decay, electron capture, and photo-dissociation processes;

• Two-body reactions;

• Three-body reactions.

The coefficients are obtained as

ci( j) = ± Ni (2.6)

ci( j, k) = ±
Ni

(N j)!(Nk)!
(2.7)

ci( j, k, l) = ±
Ni

(N j)!(Nk)!(Nl)!
(2.8)

Where Ni represents the number of particles involved in the reaction, and Ni! prevents double-
counting of reactions involving identical particles. The sign ± is used if the i-th particle is
created (+) or destroyed (-). Finally, the coefficient λi represents the rate of interaction via
weak interaction or photodissociation, while ⟨σv̄⟩ refers to the cross section of the two- or
three-body process.
The solution of the system of Eq. 2.1 is crucial because once it is solved for a time interval
∆t, given a fixed chemical composition, the values obtained for T and ρ are used to solve the
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system of Eq. 2.5.
The solution of the system of Eq. 2.1 is found numerically using the finite volume method. In
the following, a brief summary of the method is provided before discussing its application to
the specific problem studied in this thesis.

2.1.1 Finite Volume Method

The finite volume method is usually used to solve partial differential equations, such as those
that make up the system of Eq. 2.1.
The idea is to solve the equations not using a grid of points but rather by employing a set of
elementary finite volumes. Thus, in this case, a grid is used from which to derive the individual
elementary volumes, or cells, establishing a grid of points xi. Such points are identified by the
centers of the cells, while their edges, or walls, are identified starting from the grid as

xi+1/2 =
1
2
(xi + xi+1) (2.9)

These cells will serve as elementary volumes, where the conserved quantity qn
i is assumed to

be contained. Since the equations to be solved are conservation equations, this means that the
only way to induce changes in the amount qn

i is if some of it moves to adjacent cells. Similarly,
qn

i can only increase if a part of the conserved quantity is transported into the cell i.
Therefore, a change in qi can be seen as a flux, outgoing or incoming, through adjacent cells.
The flux fi+1/2 can be defined at the interface between two cells, and the change between two
adjacent cells can be defined as

qn+1
i − qn

i

∆t
= −

f n+1/2
i+1/2 − f n+1/2

i−1/2

∆x
(2.10)

Or in explicit form

qn+1
i = qn

i −
∆t
∆x

(
f n+1/2
i+1/2 − f n+1/2

i−1/2

)
(2.11)

The variable of this type of method is related to the spatial average of the unknowns within
the cells, as shown in Figure 2.1.

Figure 2.1: In each cell, the trend of the variable (dashed line) is reduced to its average defined by the
shaded area.

In the case of an equation written in conservative form, such as

∂U
∂t

= −
∂F
∂x

(2.12)

The unknowns are obtained as

⟨U⟩ni =
1

∆x

∫ x−i+1/2

xi−1/2

U(x, tn)dx (2.13)
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where xi±1/2 denote the edges of the single cell. The solution of a conservation equation can
be written as

⟨U⟩n+i
i = ⟨U⟩ni −

∆t
∆x

(
F̃n+1/2

i+1/2 − F̃n+1/2
i−1/2

)
(2.14)

In this way, the solution of the conservation equation must take into account the fluxes F̃n+1/2
i±1/2

through the edges of the volume, calculated as

F̃n+1/2
i±1/2 =

1
∆t

∫ tn+1

tn
F[U(xi±1/2, t)]dt (2.15)

and obtained by calculating the time average within the cells of the variation of the conserved
quantities, as in Figure 2.2.

Figure 2.2: The conserved quantity ⟨U⟩i is modified by incoming and outgoing fluxes, respectively
F̃i−1/2 and F̃i+1/2, noting that ⟨U⟩i is calculated at tn.

The solution for ⟨U⟩i is known only at tn, so an approximation is needed to evaluate the
flux through the cell walls. Indeed, a variation of ⟨U⟩ is observed at the boundary between two
cells, resulting in a sequence of local Riemann problems defined by the initial conditions as

U(x, 0) =

UL for x < xi+1/2

UR for x > xi+1/2
=⇒ U(xi+1/2, 0) =? (2.16)

See Figure 2.3 and Figure 2.4 for a graphical representation of the situation at the boundary
between two cells, respectively, before and after the solution of the local Riemann problem.

Thus, solving the Riemann problem yields the term U(xi+1/2, 0) to be inserted into Eq.
2.15, allowing ⟨U⟩n+1

i to be calculated.

2.1.2 Numerical Solution of the Equations

The integration of the system of Eq. 2.1 is performed using the Piecewise Parabolic Method
(PPM) (see Colella and Woodward, 1984) and is broken down into three steps:

• Interpolation of the profile of the dependent variables ρ, v and P as a function of the
mass coordinate using the interpolation algorithm described in Colella and Woodward,
1984;
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Figure 2.3: Visual representation of a discontinuity at the edge of two cells, before the solution of the
Riemann problem.

Figure 2.4: Visual representation of the implementation of the solution of the Riemann problem.

• Solution of local Riemann problems at the boundary between different cells in order to
calculate time-averaged velocity and pressure values;

• Use of the obtained solutions to calculate the fluxes of conserved quantities.

To do this, ∆m j is defined as the mass contained in the j-th zone, and it is assumed that the
conserved quantities are known, obtained as mass-weighted averages at time tn, so that

Un
j =

∫ m j+1/2

m j−1/2

U(m, tn)dm (2.17)

Where U is a vector representing the three unknowns of the system

U =

ρv
P

 (2.18)

The goal is to calculate Un+1
i , that is, the average of the conserved quantities calculated at

tn+1 = tn + ∆t.
The first step, as mentioned, involves interpolating ρ, v, and P as functions of the mass

coordinate using the interpolation algorithm described in Colella and Woodward, 1984.
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In this specific case, the mass coordinate assumes the role of an independent variable in
constructing a polynomial approximation function a(m) such that

an
j =

1
∆m j

∫ m j+1/2

m j−1/2

a(m)dm with ∆m j = m j+1/2 −m j−1/2 (2.19)

where an
j are an

j = ρ
n
j , vn

j , Pn
j .

In the PPM scheme, a parabolic profile is used in each zone, obtained as

a(m) = aL, j + x
[
∆a j + a6, j(1 − x)

]
x =

m −m j−1/2

∆m j

with m j−1/2 < m < m j+1/2 (2.20)

where
∆a j = aR,J − aL, j a6, j = 6

[
an

j −
1
2

(
aR,J + aL, j

)]
(2.21)

The coefficients aR and aL are obtained as in Colella and Woodward, 1984.
Using this parametrization, an interpolation is then performed, as in Figure 2.5, followed

by integration, as shown in Figure 2.6, both taken from Colella and Woodward, 1984.

Figure 2.5: The Figure shows the interpolation carried out according to the PPM scheme for a generic
transport equation. The initial data are given as mean values of a over the four regions shown,
described by a generic coordinate ξ. The mean values are represented by dashed lines. From these data,
interpolation is performed for the values of a at the cell edges using curves that account for the mean
values in the four zones closest to the cell walls. The interpolating parabola between different cells,
drawn with a solid line, connects the values at the edges. Moreover, if averaged over each region, it

returns the initial mean value in that region. Figure from Colella and Woodward, 1984.

The second step involves obtaining v̄ j+1/2 and P̄ j+1/2, that are the time-averaged values
of the velocity and pressure at the cell boundary. These are obtained by calculating the
averages of the dependent variables over the regions of the spatial domain that can influence
the boundary region, as in Figure 2.7.

The intersection between the spatially averaged states is calculated by solving the Riemann
problem for v̄ j+1/2 and P̄ j+1/2, as in panel c of Figure 2.7.
For this purpose, ρ±j+1/2, v±j+1/2, and P±j+1/2 are defined, which are the average values of the
variables over the regions between m j+1/2 and the point where the ± characteristic profile
intersects the line passing through t = tn. This region for the j-th cell has a size ρn

j ∆Vn, where
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Figure 2.6: The integration carried out according to the PPM scheme is shown. The new means of the
variable a are obtained by integrating the initial distribution shifted by a certain value u∆t. The shifted
distribution is represented with a dashed line, while the result of the integration, that is, the new means

over the new regions, is shown with a solid line. Figure from Colella and Woodward, 1984.

∆V is the volume crossed by the wave in the time ∆t in region j, calculated as

∆V = ⟨S j⟩
n∆rn (2.22)

where ∆rn is the radial dimension of the region, and ⟨S j⟩
n∆ is the average surface area of the

region. The radial dimension is obtained as

∆rn = cn
s, j∆t (2.23)

where cn
s, j is the speed of wave propagation in region j. The average surface area is obtained

as

⟨S j⟩
n∆ =

∆Vn
j

∆rn
j
=

4π
3

(
rn

j+1/2

)3
−

(
rn

j−1/2

)3

rn
j+1/2 − rn

j−1/2
(2.24)

Since in general ⟨S ⟩ = 4π⟨r⟩2, we can define

⟨r j⟩
n =

1
3

[ (rn
j+1/2

)3
−

(
rn

j−1/2

)3

rn
j+1/2 − rn

j−1/2

]1/2

(2.25)

The size of the spatial domain capable of influencing the regions near the boundary of the j-th
cell over the time interval ∆t is thus obtained as

yi = ρ
n
j ∆Vn = ρcn

s, j∆t⟨S j⟩
n =

(
γn

jρ
n
j P

n
j

)1/2
∆t⟨S j⟩

n (2.26)

where the relation cs =

√
γ

P
ρ

has been used, and where γi represents the adiabatic index in

the j-th region.
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Once the size of the regions over which the mean values a±j+1/2 are calculated is fixed,
recalling the parabolic parameterisation of Eq. 2.20, they can be calculated as

a+j+1/2 =
1
yi

∫ m j+1/2

m j+1/2−yi

a(m)dm (2.27)

a−j+1/2 =
1

yi+1

∫ m j+1/2+yi+1

m j+1/2

a(m)dm (2.28)

from which we obtain

a+j+1/2 = aR, j −
x
2

[
∆a j −

(
1 −

2
3

x
)
a6, j

]
with x =

y j

∆m j
(2.29)

a−j+1/2 = aL, j+1 +
x
2

[
∆a j+1 −

(
1 −

2
3

x
)
a6, j+1

]
with x =

y j+1

∆m j+1
(2.30)

(2.31)

where a = ρ, v, P. The values of v̄ j+1/2 and P̄ j+1/2 are then obtained by solving the local
Riemann problem, in which a j+1/2,L = a+j+1/2 and a j+1/2,R = a−j+1/2.

However, before solving the Riemann problem it is necessary to make corrections com-
pared to those obtained in Colella and Woodward, 1984, in order to take into account the
effect of gravity.

Thus, we will have

P j+1/2,L = P+
j+1/2 + ∆t

(
γn

jρ
+
j+1/2P+

j+1/2

)1/2
gn

j (2.32)

P j+1/2,R = P−j+1/2 − ∆t
(
γn

jρ
−
j+1/2P−j+1/2

)1/2
gn

j+1 (2.33)

v j+1/2,L = vR, j +
A+

j+1/2v+j+1/2 − A j+1/2vR, j

1
2

(
A+

j+1/2 + A j+1/2

) (2.34)

v j+1/2,R = vL, j+1 +
A−j+1/2v−j+1/2 − A j+1/2vL, j+1

1
2

(
A−j+1/2 + A j+1/2

) (2.35)

where g j = Gm j/r2
j . Instead, A±j+1/2 are the interpolation coefficients obtained from Eq. 2.28,

calculated with an
j = 4π(rn

j−1/2)
2, aL, j = 4π(rn

j−1/2)
2, aR, j = 4π(rn

j+1/2)
2, and An

j = ⟨S j⟩
n.

The final values of v̄ j+1/2 and P̄ j+1/2 are then obtained by solving the following system of
equations

P̄ j+1/2 − P j+1/2,L

WL
+

(
v̄ j+1/2 − v j+1/2,L

)
= 0 (2.36)

P̄ j+1/2 − P j+1/2,R

WR
+

(
v̄ j+1/2 − v j+1/2,R

)
= 0 (2.37)

W2
L =

(
γ jρ

+
j P+

j+1/2

)[
1 +
γ j + 1

2γ j

(
P̄ j+1/2

P j+1/2,L
− 1

)]
(2.38)

W2
RL =

(
γ j+1ρ

−
j P−j+1/2

)[
1 +
γ j+1 + 1

2γ j+1

(
P̄ j+1/2

P j+1/2,R
− 1

)]
(2.39)

(2.40)

This system is solved using Newton’s method.
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With v̄ j+1/2 and P̄ j+1/2 obtained, we proceed to the third and final step, which involves
numerically solving the system of Eq. 2.1.

The radius of the interface j + 1/2 is updated over the time interval ∆t = tn+1 − tn as

rn+1
j+1/2 = rn

j+1/2 + v̄ j+1/2∆t (2.41)

Simultaneously, the average surface area of the wall at j + 1/2 is also calculated as

Ā j+1/2 =
4π
3

(
rn+1

j+1/2

)3
−

(
rn

j+1/2

)3

rn+1
j+1/2 − rn

j+1/2

(2.42)

The values in the j-th zone are then calculated for density and velocity as

ρn+1
j =

3∆m j

4π
(
rn+1

j+1/2

)3
−

(
rn+1

j−1/2

)3 (2.43)

vn+1
j = vn

j +
1
2

(
Ā j+1/2 + Ā j−1/2

) ∆t
∆m j

(
P̄ j+1/2 − P̄ j−1/2

)
+

∆t
2

(
gn+1

j + gn
j

)
(2.44)

The energy conservation equation is instead linearized as

En+1
j =En

j −
∆t

∆m j

(
Ā j+1/2v̄ j+1/2P̄ j+1/2 − Ā j−1/2v̄ j−1/2P̄ j−1/2

)
−

∆t
∆m j

(
Ln+1

j+1/2 − Ln+1
j−1/2

)
+ ϵn+1

j ∆t
(2.45)

This cannot be solved directly since ϵn+1 and Ln+1 depend on T n+1, which is still unknown at
this stage of the integration. Using the fact that E = Ekin + Eint + Egrav, the previous equation
can be rewritten as

En+1
j = En

int, j +
(
En

kin, j + En
grav, j − En+1

kin, j − En+1
grav, j

)
+ ϵn+1

j ∆t

−
∆t

∆m j

(
Ā j+1/2v̄ j+1/2P̄ j+1/2 − Ā j−1/2v̄ j−1/2P̄ j−1/2

)
−

∆t
∆m j

(
Ln+1

j+1/2 − Ln+1
j−1/2

) (2.46)

In this way, the first two terms do not depend on the temperature at time tn+1; indeed, we
have the term En

int, j, which does not depend on T n+1 since it was calculated at the previous

integration step, as are En
kin, j and En

grav, j. On the other hand, En+1
kin =

1
2
(vn+1

j )2 and En+1
grav, j =

−Gm j/rn+1
j depend on values that have been already computed. Moreover, the third term is

assumed to be composed of previously calculated terms, as ϵn+1 primarily relies on ρ and
T . Given that ρn+1

j has been computed, ϵn+1
j is then derived using ρn+1

j and T n
j , with the

assumption that the latter is constant.
Thus, we define

C j =En
int, j +

(
En

kin, j + En
grav, j − En+1

kin, j − En+1
grav, j

)
−

∆t
∆m j

(
Ā j+1/2v̄ j+1/2P̄ j+1/2 − Ā j−1/2v̄ j−1/2P̄ j−1/2

) (2.47)

We also define
G j = C j + ϵ

n+1
56Ni, j

∆t (2.48)
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We can rewrite Eq. 2.46 as

En+1
int, j = G j −

∆t
∆m j

(
Ln+1

j+1/2 − Ln+1
j−1/2

)
(2.49)

where G j is defined at the center of the cell. Recalling Eq. 2.2 and Eq. 2.4, the luminosity can
be linearized as:

Ln+1
j+1/2 = −Ā2

j+1/2

(
1

κ j+1/2

)n+1 acλn+1
j+1/2

3

(T n+1
j+1 )

4 − (T n+1
j )4

m j+1 −m j
(2.50)

It is also recalled that luminosity is defined at the boundary between two regions, while opacity
κ is defined as a function of ρ and T , and thus at the center of a cell. For this reason, an
approximation for κ is needed to interpolate its value κ j+1/2. This can be obtained as

(
1

κ j+1/2

)n+1

=
(T n+1

j+1 )
4/κn+1

j+1 − (T
n+1
j )4/κn+1

j

(T n+1
j+1 )

4 − (T n+1
j )4

(2.51)

The flux limiter λ is calculated as

λn+1
+1/2 =

6 + 3Rn+1
j+1/2

6 + 3Rn+1
j+1/2 + (Rn+1

j+1/2)
2

(2.52)

where

Rn+1
j+1/2 =

2Ā j+1/2

m j+1m j

∣∣∣(T n+1
j+1 )

4 − (T n+1
j )4

∣∣∣
(T n+1

j+1 )
4 − (T n+1

j )4

(
1

κ j+1/2

)n+1

(2.53)

Substituting Eq. 2.50, Eq. 2.51, Eq. 2.52, and Eq. 2.53 into Eq. 2.49 and recalling that En
int, j

depends only on ρn+1
j and T n+1

j , it can be verified that En+1
int, j is a function of only T n+1

j−1 , T n+1
j ,

and T n+1
j+1 .

Assuming we have a number M of zones with boundary conditions

L1−1/2 = 0 (2.54)

LM+1/2 = LM−1/2 (2.55)

It follows that Eq. 2.49 is a system of M equations for the M unknowns T n+1
j with j = 1, ..., M.

This system is solved using Newton’s method, assuming a value T n+1
j for the temperature,

which implies solving the system

∂En+1
int, j

∂T j
∆T j −

∆t
∆m j

(∂Ln+1
j+1/2

∂T j+1
∆T j+1 +

∂Ln+1
j+1/2

∂T j
∆T j

)

−

(∂Ln+1
j−1/2

∂T j
∆T j +

∂Ln+1
j−1/2

∂T j−1
∆T j−1

)
= −δ j

(2.56)

where
δ j = En+1

int, j −G j −
∆t

∆m j

(
Ln+1

j+1/2 − Ln+1
j−1/2

)
(2.57)

The derivative of the internal energy in Eq. 2.56 is obtained from the equation of state, while
the derivatives of the luminosity are obtained using the value of L obtained from Eq. 2.50,
ignoring the derivative of opacity with respect to temperature.
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Thus, the coefficient matrix of the system is obtained, rewritten as

∆t
∆m j

∂Ln+1
j−1/2

∂T j−1
∆T j−1 +

[∂En+1
int, j

∂T j
−

∆t
∆m j

(∂Ln+1
j+1/2

∂T j
−
∂Ln+1

j−1/2

∂T j

)]
∆T j−

∆t
∆m j

∂Ln+1
j+1/2

∂T j+1
∆T j+1 = −δ j

(2.58)
with coefficient matrix 

b1 c1 0 . . . 0

a2 b2 c2
...

0
. . . . . . . . . 0

... aM−1 bM−1 cM−1
0 . . . 0 aM bM


(2.59)

where

a j =
∆t

∆m j

∂Ln+1
j−1/2

∂T j−1
(2.60)

b j =
∂En+1

int, j

∂T j
−

∆t
∆m j

(∂Ln+1
j+1/2

∂T j
−
∂Ln+1

j−1/2

∂T j

)
(2.61)

c j = −
∂Ln+1

j+1/2

∂T j
∆T j +

∂Ln+1
j−1/2

∂T j−1
(2.62)

This matrix is used by employing the SPARSEKIT2 package (Yousef Saad website).
After inversion, the initial value of T n+1

j is updated to T n+1
j −−−→ T n+1

j + ∆T j+1, and the

process is iterated until
∆T
T

is within the chosen tolerance margin.
It remains to discuss the calculation of the term ϵ, which in general can be separated

into ϵ = ϵnuc + ϵν, with ϵnuc representing the energy generated by nuclear reactions while ϵν
is the energy lost due to neutrino production from thermal and weak interaction processes.
In this version of the code, the only nuclear energy term considered is that associated with
the radioactive decay 56Ni −−−→ 56Co −−−→ 56Fe, consequently ϵnuc = ϵ56Ni. This term is
particularly relevant when calculating the light curves, allowing comparison with known SNe.
It is calculated starting from the radiative transport equation

dIν
dz

= jν − ανIν (2.63)

Where Iν is the energy flowing per unit time, surface area, solid angle, and frequency along

direction z, thus
dIν
dz

represents the variation of this energy along the propagation direction z.

This variation is due to two different contributions:

• jν: energy produced per unit volume, time, solid angle, and frequency;

• αν = nσν represents the absorption coefficient of the energy emitted along the propaga-
tion direction.

In the case of γ-rays produced along the z axis due to the decay of 56Ni, Eq. 2.63 becomes

dIν
dz

= η − κγρI (2.64)

https://people.sc.fsu.edu/~jburkardt/f77_src/sparsekit2/sparsekit2.html
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where the absorption coefficient is calculated as α = κγρ, since the cross-section of the
interactions between radiation and matter is given by the opacity to γ-rays. Similarly, the
energy production term per unit volume jν is due solely to the energy released per unit volume
by the decay of 56Ni, obtained as

η =
XNiϵNiρ

4π
(2.65)

Introducing the optical thickness dτ = −κγρdz and defining

I′ =
4πκγ
ϵNi

I (2.66)

We obtain
dI′

dτ
= I′ − XNi (2.67)

We can now define

I = I′e−τ (2.68)

XNi = XNie−τ (2.69)

Thus, the solution to the radiative transport equation becomes

I(τ j+1) = I(τ j) −

∫ τ j+1

τ j

XNi(τ)dτ (2.70)

Which, in terms of I′ and XNi, assuming the latter is constant between j and j + 1, becomes

I′(τ j+1) = I′(τ j)e−(τ j−τ j+1) + XNi
[
1 − e−(τ j−τ j+1)

]
(2.71)

From Eq. 2.64, it is apparent that the energy deposited locally, in units of erg cm−3 s−1 sterad−1,
is κγρI, which represents the energy absorbed by the medium and, when integrated over the
entire solid angle of emission, provides the measure of the energy injected locally

Ein jected = 4πκγρJ (2.72)

where
J =

1
4π

∫
Ω

I(Ω′)dΩ′ (2.73)

is the specific intensity integrated over the entire solid angle. Using the same change of
variable as in Eq. 2.66, we obtain

J′ = J =
1

4π

∫
Ω

I′(Ω′)dΩ′ =
κγ

ϵNi

∫
Ω

I(Ω′)dΩ′ =
4πκγ
ϵNi

J (2.74)

Thus, Eq. 2.72 becomes

Ein jected = 4πκγρJ = 4πκγρ
ϵNi

4πκγ
J′ = ρϵNiJ′ = ρϵNi

1
4π

∫
Ω

I′(Ω′)dΩ′ [erg cm−3 s−1]

(2.75)
Dividing by ρ, we obtain the energy deposited locally per unit mass and time due to the decay
of 56Ni

ϵ56Ni = ϵNi
1

4π

∫
Ω

I′(Ω′)dΩ′ [erg g−1 s−1] (2.76)
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which can be more compactly written by defining an energy deposition function

d =
1

4π

∫
Ω

I′(Ω′)dΩ′ (2.77)

such that the energy deposited in each grid point per unit mass is defined as

ϵ56Ni = ϵNi d [erg g−1 s−1] (2.78)

where the energy released per radioactive decay can be estimated as

ϵNi = 3.9 × 1010e−t/τNi + 6.78 × 109
[
e−t/τCo + e−t/τNi

]
[erg g−1 s−1] (2.79)

with τNi and τCo representing the mean lifetimes of 56Ni and 56Co, respectively.
Calculating ϵ56Ni in the j-th region requires knowledge of the deposition function d j,

obtained by integrating I′j over the entire solid angle.
Finally, to complete the description of the integration algorithm for the system of Eq. 2.1,

it is necessary to define the boundary conditions.

2.1.3 Boundary Conditions

The PPM method described thus far assumes the presence of six "ghost zones" in the computa-
tional domain. Consider, for example, the first region with j = 7. To perform the integration
in this zone, it is necessary to calculate v̄6+1/2 and P̄6+1/2, and to do so, the states on the right
and left must be defined, respectively a+6+1/2 and a−6+1/2, with a = ρ, v, P.

From Eq. 2.28, it is known that to calculate a+j+1/2, aR,6, ∆aR,6, a6,6 must be known,
which are the polynomial interpolation in region j = 6. In general, to calculate aL, j and aR, j,
the two preceding and two following regions are needed. Specifically, to calculate aL, j, the
regions j − 1, j + 1, j + 2 are required, while to calculate aR, j, the regions j − 2, j − 1, j + 1
are needed. Consequently, to calculate j = 7, three ghost regions are required, corresponding
to j = 4, 5, 6.
In the scheme used, six "ghost zones" were assumed at the inner and outer edges of the
integration domain. The inner boundary conditions are reflective, while the outer boundary is
set to a zero gradient condition.

Specifically, it is assumed that at the outer boundary, all quantities remain constant and
equal to the value in the last "physical" region, except for the pressure, which is set to
P =−24 dyne cm−2. Thus, for any quantity a, we have

a7− j = a7 j = 1, . . . , 6 (2.80)

The radius of these regions is obtained from ρ and dm.
On the other hand, at the inner surface due to the imposition of reflection,

a7− j = sign · a7+ j−1 j = 1, . . . , 6 (2.81)

where

sign = − if a = v (2.82)

sign = + if a , v (2.83)
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2.2 SEVN

SEVN is a rapid binary population synthesis code (Spera, Mapelli, and Bressan, 2015; Spera
and Mapelli, 2017; Spera et al., 2019; Iorio et al., 2023). It can calculate simultaneously both
single stellar evolution (SSE) and binary stellar evolution (BSE) processes. The former are
simulated by interpolating pre-computed stellar tracks (in this Thesis I used the fiducial tracks,
computed with the PARSEC stellar evolution code, see Bressan et al., 2012; Costa et al., 2019;
Costa et al., 2021; Nguyen et al., 2022), which are included in the code in the form of look-up
tables. The latter are implemented with analytical and semi-analytical prescriptions.

Such an implementation has the advantage of being very general and very flexible. One
can easily vary the stellar evolution tracks (e.g., Mapelli et al., 2020 implemented also tracks
from Limongi and Chieffi, 2018), i.e. the details of the stellar evolution, since they are not
hard coded in SEVN. It is sufficient to change the uploaded look-up tables.

In the following, we will briefly present the treatment of SSE, and also the most relevant
BSE processes.

2.2.1 Single star evolution

In the following sections, I will describe the main ingredients that SEVN employs to evolve
a star from the ZAMS to the formation of the final compact remnants or to the binary’s
disruption.

2.2.1.1 Stellar evolution tables

SEVN employs pre-computed stellar evolution tables. Such tables are designed to contain the
evolution of the properties of an ensemble of stellar tracks that are defined as function of their
initial mass MZAMS and metallicity Z. Furthermore, two kinds of look-up tables are required
to ensure the correct functioning of SEVN: one set of tables of stars that start their life at
the ZAMS, i.e. on the hydrogen main sequence (MS), and one set of tables that follow the
evolution of HE-naked stars (hereafter, pure-He stars), i.e. stars that have completely lost their
H envelope. The latter are generated by evolving a set of tracks with PARSEC and removing
the H-rich envelope at the beginning of the central He-burning phase (see Spera et al., 2019).

In Table 2.1, I summarize the tables available in the latest release of SEVN (see Iorio
et al., 2023).

All the stellar evolution models include at least seven tables, which are grouped by
metallicity. Each table contains different stellar properties, with at least seven mandatory
tables (identified in Table 2.1 with an M in the Type column), that provide the main stellar
properties, such as: the time, the stellar phase, mass, luminosity and radius and the star’s HE
and CO-core mass. In all the tables, each row represents a different star for the various values
of MZAMS and Z. Each column provides the table’s property value at the corresponding time
(i.e. same row and column) in the time table. For instance, the first entry on each row in the
mass table represents MZAMS of the star.

Furthermore, there are also optional tables for various other stellar properties. However, if
such tables are not provided, SEVN is able to estimate these properties with various analytic
approximations (see Appendix A1 in Iorio et al., 2023). It is worth mentioning, that such
tables are not mandatory since many stellar evolution codes do not provide these properties.
However, they are crucial to properly model several binary evolution processes (e.g. the nature
of the convective envelope for the stability of the mass transfer).



2.2. SEVN 39

Table 2.1: Summary of the stellar evolution tables used in SEVN. Column 1: property in the table;
Column 2: table’s units; Column 3: it specifies if a table is mandatory (M) or optional (O), as SEVN
includes analytic recipes to replace the optional tables if they are not available; Column 4: Weights
used by SEVN during the property interpolation: rational (R), linear (LIN), log (LOG) (see Section

2.2.1.3). Table rearranged on the basis of Table 1 by Iorio et al., 2023.

Table Units Type Interpolation
Time Myr M R
Phasea Myr M R
Mass M⊙ M LIN
Luminosity L⊙ M LOG
Radius R⊙ M LOG
He-core mass M⊙ M LIN
CO-core mass M⊙ M LIN
He-core radius R⊙ O LOG
CO-core radius R⊙ O LOG
Stellar inertiab M⊙R2

⊙ O LOG
Envelope binding energyb M⊙R−1

⊙ (G−1)* O LOG
Surface abundancesb Mass fraction O LIN
(H, He, C, N, O)

Convective envelope
Mass Normalized to star mass O LIN
Depth Normalized to star radius O LIN
Turnover time yr O LIN

aThe phase table reports the starting time of each SEVN phase (Table 2).
bNot included in the stellar tracks used in this work (Section 3.1).
*The envelope binding energy is normalized over the gravitational constant G (assumed in
solar units and years).

2.2.1.2 Stellar phases

In Spera et al., 2019, it was found that the interpolation from the look-up table is significantly
more efficient if the percentage of life of a star is used instead of the absolute value of time.
This is because, by imposing such a variable for the interpolation, it is ensured that the stars
used for the interpolation are in the same evolutionary phase as the interpolated star.

In the current version of SEVN, the stellar evolution is divided in seven physically
motivated phases, which are reported in Table 2.2.

Phase 0 represents the pre-MS (PMS), is the stellar phase from time t = 0 to the ignition
of central hydrogen burning. Phase 1 is associated with MS, until the formation of an He-
core(He-core mass >0). Once the He core is formed the star enters the Terminal-MS (TMS),
which is identified with phase 2. Phase 3 starts when the central hydrogen core is exhausted
and the star is burning the hydrogen in shells. This phase is called the shell hydrogen burning
(SHB) phase and lasts until the ignition of the central He-burning (CHeB). This latter is the
CHeB phase (or He-MS), with phase id=4, and it is followed, analogously at the H-MS, by
the Terminal-CHeB (TCHe, with phase 5). This latter is distinguished by the beginning of the
formation of a CO-core, with CO-core mass >0. It is followed by the shell He burning phase
(SHeB) marked with phase=6. Such a phase lasts until the formation of the final compact
remnant at the end of a star’s life. This is also the last possible stellar phase, and it is identified
with phase 7.

If a star is stripped by its H-envelope because of stellar winds or binary interactions (see
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Table 2.2: Column 1: SEVN stellar evolutionary phases; Column 2: integer identifiers; Column 3:
Remnant types. Table rearranged on the basis of Table 2 in Iorio et al., 2023

SEVN Phase Phase ID SEVN Remnant subphase Remnant ID
Pre-main sequence (PMS) 0 – 0
Main sequence (MS) 1 – 0
Terminal-age main sequence
(TAMS) 2 – 0

Shell H burning (SHB) 3 – 0
Core He burning (CHeB) 4 – 0
Terminal-age core He burning
(TCHeB) 5 – 0

Shell He burning (SHeB) 6 – 0
Remnant 7 He white dwarf (HeWD)

CO white dwarf (COWD)
ONe white dwarf (ONeWD)
neutron star (ECNS)
neutron star (CCNS)
black hole (BH)
no compact remnant (Empty)

1
2
3
12
13
14
–

Section 2.2.2), it evolves as a pure-He star and its properties are interpolated on the basis of
the pure-He look-up table. It is worth mentioning that in SEVN there are no particular phases
associated with He-naked stars. Thus, the only difference from hydrogen-rich stars is that a
pure-He star will skip phases 0-3 and start its life as a phase 4 star.

2.2.1.3 Interpolation

The properties of each star at any time-step are obtained by interpolating the between four
similar tracks, i.e. the interpolating tracks. The current method implemented in SEVN is
for the interpolation is the one proposed by Iorio et al., 2023. In this section, I will briefly
summarize it.

Upon initialization of a star, SEVN assigns it with four interpolating tracks either for
the hydrogen or pure-He look-up tables. The four tracks have two different metallicities (Z1
and Z2) and four different initial masses masses (MZAMS, 1, MZAMS, 2, MZAMS, 3, and MZAMS, 4,
two per metallicity). The values of Zi and MZAMS, i are chosen such that Z1 ≤ Z < Z2, and
MZAMS, 1/3 ≤ MZAMS < MZAMS, 2/4, where Z, and MZAMS are the initial values for metallicity
and mass of the stars, respectively, that is being interpolated. In the case MZAMS or Z are
equal to the maximum values provided by the look-up tables the intervals are modified as:
Z1 < Z ≤ Z2, and MZAMS, 1/3 < MZAMS ≤ MZAMS, 2/4.

Once the interpolating tracks have been chosen a given property P is computed as:

P =
Z2 − Z
Z2 − Z1

PZ,1 +
Z − Z1

Z2 − Z1
PZ,2 (2.84)

with

PZ,1 = β1PZAMS,1 + β2PZAMS,2 (2.85)

PZ,2 = β3PZAMS,3 + β4PZAMS,4 (2.86)

where PZAMS,i is the property value of the i-th track at the ZAMS, and βi are the interpolation
weights.

In the current public version of SEVN are included three different interpolation weights:
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(i) Linear,

β1/3 =
MZAMS,2/4 −MZAMS

MZAMS,2/4 −MZAMS,1/3
, (2.87)

β2/4 =
MZAMS −MZAMS,1/3

MZAMS,2/4 −MZAMS,1/3
; (2.88)

(ii) Logarithmic,

β1/3 =
log MZAMS,2/4 − log MZAMS

log MZAMS,2/4 − log MZAMS,1/3
, (2.89)

β2/4 =
log MZAMS − log MZAMS,1/3

log MZAMS,2/4 − log MZAMS,1/3
; (2.90)

(iii) Rational,

β1/3 =
MZAMS,1/3 (MZAMS,2/4 −MZAMS)

MZAMS (MZAMS,2/4 −MZAMS,1/3)
, (2.91)

β2/4 =
MZAMS,2/4 (MZAMS −MZAMS,1/3)

MZAMS (MZAMS,2/4 −MZAMS,1/3)
. (2.92)

Logarithmic weights are used in SEVN for properties that are internally stored, such as
radius and luminosity. Rational weights have been introduced in Spera et al., 2019, as they
found that such weights improve significantly the interpolation for the starting time of the
various stellar phases and the star’s life estimate. For all the other quantities, SEVN uses the
linear weights.

Upon initialization of a star, SEVN set the starting time of the stellar phases tstart,p by
using Eq. 2.86 and Eq. 2.84, where PZAMS, i are the phase times from the phase table. The
stellar lifetime is estimated in the same way, assuming that the last element per row in the
SEVN time tables is the stellar lifetime of the interpolating tracks.

The other properties need to be estimated at a given time t, thus the corresponding value
of PZAMS, i needs to be estimated at the same time. However, as previously mentioned, in
SEVN P is estimated on the basis of the residual percentage of life in the stellar phase, rather
than the absolute time value t. The percentage of life in a given phase is computed as:

Θp =
t − tstart,p

tstart,pnext − tstart,p
(2.93)

with tstart,p that indicates the starting time of the current phase, and tstart,pnext indicating the
starting time of the following stellar phase pnext (cfr. Table 2.2). Once Θp is computed, SEVN
computes PZAMS, i at the time;

ti = tstart,pi + Θp∆p,i (2.94)

where tstart,pi and ∆p,i are the starting time and the time duration of the current phase, respec-
tively, for the i-th interpolating track.

Therefore, SEVN chose the various percentages of time in a given phase with Eq. 2.93,
and then linearly interpolates over time to provide estimates for PZAMS, i for all interpolating
tracks. Such an approach is strongly physically motivated, as it ensures that the interpolating
tracks are in the same evolutionary stage. It also reduces the interpolation errors to a few
percent (see Spera et al., 2019).
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2.2.1.4 Final fate of massive stars

In this section, I will briefly present the various treatments included in SEVN for the final fate
of massive stars, and their compact remnants.

Once in SEVN the time over which a star is evolved exceeds the stellar lifetime, it forms a
compact remnant. The nature of the compact remnant (listed in Table 2.2) is determined on
the basis of the final CO-core mass MCO of a star at the end of its life:

• MCO ≤ 1.38 M⊙: the final remnant is a white dwarf (WD). Depending on MZAMS
and on the final He-core mass MHe the WD can be either an helium WD (HeWD, if
MZAMS ≲ 2 M⊙) a carbon-oxygen WD (COWD, if the final value of the He-core mass
is such that MHe ≤ 1.6 M⊙) or an oxygen-neon WD (ONeWD).

• 1.38 M⊙ ≤ MCO < 1.44 M⊙: the final remnant is an electron-capture neutron star
(ECNS), resulting from an electron-capture SN.

• MCO ≥ 1.44 M⊙: the final remnant is the result of a core-collapse SN. It can be either
a NS or a BH, depending on the property of the stellar progenitor at the presupernova
(preSN)-stage.

2.2.1.4.1 Core-collapse Supernovae SEVN includes different prescriptions for the ccSN
processes, based on the work of Fryer et al., 2012, such as the rapid and delayed explosion
mechanisms. The rapid model assumes that the supernova (SN) initiates within 250 ms of the
stellar collapse, while the delayed model involves a longer timescale before shock formation.
These models are based on neutrino-driven and convection-enhanced mechanisms for the
onset of ccSN, the difference being that in the rapid scenario, the SN onset occurs within
250 ms from the collapse of the stellar progenitor, whereas in the delayed scenario, the shock
wave that leads to the eventual SN forms over a longer timescale, exceeding 250 ms. The final
remnant mass in both scenarios is calculated as the sum of the proto-compact object mass and
the fallback material.

Specifically, we adopted the rapid_Gauss and delayed_Gauss routines present in
SEVN, which are based on the rapid and delayed models from Fryer et al., 2012 but draw NS
masses from a Gaussian distribution with mean 1.33 M⊙ and standard deviation 0.09 M⊙, fol-
lowing the fit presented in Özel et al., 2012; Özel et al., 2016. This addition was implemented
to better match the observed properties of the NS population.

We also included the prediction for remnant masses based on the results of Ugolini et al.,
2024. Specifically, we implemented the fitting formula we found in our work on the initial
mass-remnant mass relation (see Chapter 3 for more details).

2.2.1.4.2 Pair-instability supernovae Furthermore, we were interested in the role played
by pair instabilities (PIs) (see Fowler and Hoyle, 1964; Barkat, Rakavy, and Sack, 1967;
Rakavy and Shaviv, 1967) in the final mass spectrum of primary BHs in binary black hole
(BBH) systems that will eventually merge through gravitational-wave (GW) emission (see
Chapter 4). Specifically, we investigated the pulsational pair instabilities (PPIs). The precise
threshold for PPI onset depends on various factors, and different criteria are present in the
literature (e.g., Woosley 2017; Woosley 2019; Farmer et al. 2019; Renzo et al. 2020; Ugolini et
al. 2024). The effect of PIs depends largely on the properties of the stellar progenitor, especially
the CO core mass. More refined criteria for PI onset have been proposed by Marchant et al.,
2019; Renzo et al., 2020; Costa et al., 2021, but they require precise knowledge of the stellar
structure, which is beyond SEVN current capabilities. If a star has a CO core massive enough
to trigger PI, it can undergo one of three possible outcomes (for more details, see Renzo and
Smith, 2024 for a review). For lower-core masses (28 − 38 M⊙ ≤ MCO ≤ 54 − 60 M⊙, with
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the lower limit that depends on the chosen criterion), PIs trigger strong pulsational events,
known as PPISNe, that significantly enhance mass loss. This leads to lighter BHs as the final
compact objects. For CO core masses in the range 54 − 60 M⊙ ≤ MCO ≤ 110 − 120 M⊙, the
progenitor is completely destroyed in a PISN, leaving no remnant. Finally, if the CO core is
≥ 110 − 120 M⊙, PI causes a dynamical instability that results in the direct collapse of the star
into a massive BH.

To account for the uncertainties present in the literature regarding PI onset, we performed
our simulations assuming four different prescriptions for PPI treatment: noPPISN, M20, F19,
and U24. The noPPISN model disables the onset of PPIs, meaning no pulsational pair-
instability supernovae occur, and all massive stars end their lives via ccSNe. The M20 model,
based on Mapelli et al., 2020, was implemented in the previous version of SEVN. This model
uses the fit by Spera and Mapelli, 2017, which is based on the results of 1D hydrodynamical
simulations of PPISNe by Woosley, 2017. In this scenario, a star is assumed to undergo PPI
for 32 M⊙ ≤ MHe ≤ 64 M⊙. The final remnant mass is obtained by applying a corrective factor
α ∈ [0, 1] to the BH mass that would normally be formed through ccSN of the progenitor.

The F19 model has been implemented in the current version of SEVN and is based on
MESA simulations of pure-He stars by Farmer et al., 2019. The model uses the CO core mass
as a proxy for PI onset, which occurs for 38 M⊙ ≤ MCO ≤ 60 M⊙. The final remnant mass in
SEVN is determined using:

MBH = min(MpreS N , MF19) (2.95)

where MpreS N is the mass of the progenitor at the pre-supernova stage, and MF19 is the
remnant mass as determined by Farmer et al., 2019, which depends on both the final CO core
mass and the initial metallicity.

The U24 model is based on the FRANEC tracks presented in Limongi and Chieffi, 2018
and was introduced in Ugolini et al., 2024. We found that FRANEC stellar tracks are stable
for CO core masses ≤ 33 M⊙. We assumed a threshold for PPI onset of MCO = 35 M⊙ to
account for the possibility that PPI may not occur at slightly higher core masses. The compact
remnant mass was estimated by assuming that all stars undergoing PPI lose their hydrogen
envelope and then interpolating CO core masses to match the results obtained by Woosley,
2017 for naked-helium stars. For more details see Chapter 3.

2.2.1.5 Supernova kicks

Finally, in this section we will describe the treatment of natal kicks associated with the birth
of a compact remnant after an ecSN or a ccSN.

In SEVN are included several treatment for natal kicks, here I will present the fiducial
model that was employed in my work. Such a method is based on the work by Giacobbo and
Mapelli, 2020, and the kick velocities are estimated:

Vkick = fH05
⟨MNS⟩

Mrem

Mej

⟨Mej⟩
(2.96)

with ⟨MNS⟩, and ⟨Mej⟩ are the average mass of the NS and of the ejecta from SSE, respectively.
Mrem Mej are the compact object mass and the ejecta mass, respectively. Finally, fH05 is a
random number extract from a Maxwellian distribution, with mean 1 dimensional-root mean
square σkick = 265 km/s (derived from linear fits, see Hobbs et al., 2005).

The values of ⟨MNS⟩, and ⟨Mej⟩ have been calibrated using the SSE function of SEVN,
for a population of stars extracted according to a Kroupa initial mass function (IMF) with
metallicity Z = 0.02.
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The treatment of natal kicks is crucial in a code like SEVN, since natal kicks may change
drastically the orbital properties of a stellar binary. They can modify the relative orbital velocity
and the position of the center of mass, resulting in a tighter or looser binary. Furthermore, if
the semimajor axis becomes <0 and/or the eccentricity of the binary becomes >1, the binary
is considered disrupted as a consequence of the SN explosion. It is worth noting that such a
phenomenon is usually associated to ccSNe, as ecSNe tend to born with weaker natal kicks,
because of the lower amount of ejected material (see Tauris, Langer, and Podsiadlowski, 2015;
Tauris et al., 2017).

2.2.2 Binary stellar evolution

Other than evolving the single stars by means of the interpolation algorithm, SEVN includes
prescription to treat several BSE processes, such as: wind mass transfer, Roche-lobe overflow
(RLOF), common envelope (CE), stellar tides, circularization at the RLO onset, collision at
periastron, orbit decay by GW emission, and stellar mergers. In this section, I will focus on
the processes most relevant to my work, presented in Chapter 4, thus the formalism behind the
treatment of stable/unstable mass transfer and the mechanism for GW-emission. For further
details on the other many processes treated in SEVN I refer the reader to Iorio et al., 2023 and
reference therein.

2.2.2.1 Roche-lobe overflow

A Roche-lobe (RL) is defined as the region of space, around a star in a binary system, within
which the orbiting material is graviationally bound to such star. Therefore, when a star expands
during its life may overfill its RL and as a result parts of its envelope falls back onto the stellar
companion. This process is called RLO. As a consequence of such a process, the parameters
of a binary may vary significantly since it alters both the masses, and therefore the mass ratio,
and both the radii of the two stars, and the semi-major axis of the orbit of the system.

In SEVN a RLO occurs each time the radius of one of the two stars becomes equal to the
radius of the RL (or overcomes it). It is computed using the analytical expression provided by
Eggleton, 1983 at each time-step as:

RL = a
0.49q1/3

0.6q2/3 + ln(1 + q1/3)
(2.97)

where q is the mass ratio of the system of each star with respect to its companion.
Once the RLO is triggered there is a transfer of matter from the star overfilling the RL,

called the donor, to its companion, the accretor that continue until is true for both the stars
radii that r < RL.

However, because of the mass transfer itself, during a RLO phase the mass ratio of the
two stars changes, as well as the semimajor axis of the binary system. This triggers a shrink
or and expansion of the RL. If it changes too rapidly or too slowly, the mass transfer may
become unstable, because of the adiabatic response of the star to the mass-loss. Thus, the
binary may trigger either a stellar merger, or a CE.

To asses the stability of mass loss, SEVN adopts a formalism common to many population
synthesis codes, that is based on the mass ratio q = Md/Ma, where Md, and Ma are the donor
and the accretor masses, respectively. The mass ratio computed in this way is then compared
with some critical value qc, that depends on the stellar evolution phases of the binary. As long
as it is true that q < qc, the mass transfer is considered stable, otherwise it is unstable on the
dynamical timescale. In my work, I relied on the fiducial configuration presented by Iorio
et al., 2023, summarized in Table 2.3 (designed on the basis of Table 3 from Iorio et al., 2023).
Such configuration uses the same qc as Hurley, Tout, and Pols, 2002, but the mass transfer
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is assumed to be always stable for star in the MS or in the Hertzsprung-gap (HG), as they
have radiative envelopes. Moreover, stars with deep convective envelopes have a particular
treatment for qc, that is modeled as:

qc = 0.362 +
1

3
(
1 −

MHe, d

Md

) (2.98)

where MHe, d and Md are respectively the He-core mass and the total mass of the donor star,
respectively. Eq. 2.98 is based on the models by Webbink, 1988.

Table 2.3: Based on Table 3 from Iorio et al., 2023. Critical mass ratios as a function of the donor BSE
stellar type for the fiducial qc model implemented in SEVN. See Table 2 for further details on BSE
types and their correspondence to SEVN phases. The word "stable" indicates that the mass transfer is

always stable. Table rearranged from Table 3 in Iorio et al., 2023.

BSE type of the donor
star QCRS

0 (low mass MS) 0.695
1 (MS) stable
2 (HG) stable
3/5 (GB/EAGB) Eq. 2.98
4 (CHeB) 3.0
7 (HeMS) stable
8 (HeHG) 0.784
>10 (WD) 0.628

2.2.2.2 Stable Mass Transfer

If the mass transfer is deemed stable according to the qc criterion, it is treated as follows. The
donor mass loss rate in SEVN is computed, according to Hurley, Pols, and Tout, 2000, as:

Ṁd = −F(Md)

 ln
( Rd

RL,d

)
3

M⊙ yr−1 (2.99)

where F(Md) is a normalization function, Rd is the donor’s radius and RL,d is the RL of the
donor star. However, SEVN is designed in such a way that the mass transfer may be not
conservative, i.e. the mass accreted by the accretor may me less than the mass lost by the
donor, that is computed as:

Ṁa =

min( ˙MEdd,− fMT Ṁd) if the accretor is a compact object
− fMT Ṁd otherwise

(2.100)

where ˙MEdd is the accretion mass rate onto a compact object in the Eddington limit, and
fMT is the efficiency of the mass accretion. In our work, we kept it at the fiducial value of
fMT = 0.5 assumed in Iorio et al., 2023.

2.2.2.3 Unstable Mass transfer

When the mass transfer becomes unstable, it can trigger either a stellar merger or a common
envelope (CE) phase, depending on the stellar phase of the donor star. Stars with a clear
envelope/core separation (preMS, MS or HeMS) undergo a stellar merger. On the other hand,
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if there is a clear separation between the envelope and the core, i.e. an He core has already
been formed, the binary will undergo a CE phase. Finally, if the donor star is in the HG phase,
it is unclear in the literature if it will trigger a CE (the optimistic scenario by Dominik et al.
2012 and in Vigna-Gómez et al. 2018 the binary system triggers a CE phase) or a stellar
merger (pessimistic scenario in Dominik et al. 2012, Mapelli 2018). In SEVN the default
option is that these cases will also lead to a CE phase.

2.2.2.4 CE evolution

If the binary system enters a CE phase both the stars are stripped of their H-envelope and they
orbit each other in their now shared envelope. This introduce dragging forces in their equation
of motion and as results the orbits shrinks, i.e. the semi-major axis is reduced. At this stage,
the system has two possible evolutionary outcomes, either the CE is expelled or the two cores
merge forming a compact object.

The CE phase is parametrized in SEVN following the α-formalism (see Webbink 1985;
Tout et al. 1997) and to evaluate if the CE is eventually expelled we compute the envelope’s
binding energy at the beginning of the CE as:

Ebind,i = −G
( M1Menv, 1

λ1R1
+

M2Menv, 2

λ2R2

)
(2.101)

where M1(M2) is the mass of the primary (secondary) star, Menv, 1 (Menv, 2) is the mass of the
envelope of the primary (secondary) star, R1 (R2) is the radius of the primary (secondary) star.
Finally, λi is a structural parameter that takes into account the binding energy of each star
envelope and it is computed by following Claeys et al., 2014.

Then, the variation of binding energy of the system during the CE phase is computed as:

∆Eorb =
GMc, 1Mc, 2

2

(
a−1

f − a−1
i

)
(2.102)

where Mc, 1 and Mc, 2 are the cores of the two stars and ai and af are the semi-major axis at
beginning and at the end of the CE phase, respectively. Finally, the post-CE separation is
found by imposing Ebind,i = α∆Eorb. The parameter α represents how efficiently the binding
energy of the system is converted into kinetic energy, that eventually expels the CE. The
original formulation accounted only for α ∈ [0, 1], while in our work we have 0.5 ≤ α ≤ 10.
This is because the α-formalism is a simplified model, and in this way we account also for
the fact that the binding energy is not the only source of kinetic energy that take part into the
ejection of the envelope (see Röpke and De Marco, 2023 and reference therein).

2.2.2.5 Stellar mergers

When the mass transfer becomes unstable for a donor star with unclear envelope/core separa-
tion, in SEVN a stellar merger takes place and from the two star of the binary a new single
object is born. The new star is obtained by simply summing the CE cores, the He cores, and
the total masses of the two progenitor stars. It also has the same phase and stellar phase of the
most evolved of its progenitors.

In the case of a merger between a compact object and a star, it is assumed that the star is
disrupted with the compact object, which does not accrete any matter.

the code sums the CO cores, the helium (He) cores and the envelopes and the resulting
star on has the phase and the remaining percentage of life of the most evolved pre-merger star.
Furthermore, a WD-WD merger provokes a SNIa, that leaves no remnant, and NS-NS merger
results in a BH if the final mass if above 3 M⊙. However, with the exception of WD-WD
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mergers, the final remnant of a merger between two compact object will always be a compact
object with mass equal to the sum of the masses of its progenitors.

2.2.3 Gravitational waves emission

In SEVN it is implemented the formalism for the GW emission impact on a binary, computed
as:

ȧ = −
64G3M1M2(M1 + M2)

5c5a3(1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)

(2.103)

ė = −
304G3M1M2(M1 + M2)

15c5a4(1 − e2)5/2

(
1 +

121
304

e2
)

e (2.104)

accordingly to the formalism developed in Peters, 1964. Eq. 2.103 and Eq. 2.104 are used
to provide an estimate of the GW-merger timescale, allowing to determine if a compact object
binary will merge within a Hubble time.

2.2.4 The algorithm

In this section I will briefly present the algorithm flowchart, especially the decision-making
interface.

2.2.4.1 The adaptive time-step

SEVN employs a prediction-correction method to chose the right time-step for accounting
for the various processes in place during the evolution of a stellar binary. This is crucial to
properly evolve both the individual properties of the two stars and the properties of the binary,
whose timescale for variation ranges across multiple order of magnitudes, with processes that
take place over minutes and processes that lasts tens or thousands of Myr.

Therefore, to chose the time-step, SEVN imposes that any property P, among the all
properties of both the single stars and the binary, does not experience a drastic variation. It
does that by choosing a maximum amount of relative variation δmax such that

max
P ∈ properties

|δP| ≤ δmax (2.105)

where δP is the relative property variation. The default value of for the maximum variation is
δmax = 0.05.

Then, SEVN computes the time-step as:

dtnext = min
P ∈ properties

(
δmax

dtlast

|δPlast|

)
(2.106)

with dtlast/|δPlast| that is the inverse of δPlast time derivative, as dtlast and δPlast are the
previous time-step and the variation of the property P in such a time-step, respectively. If the
value of dtnext is calculated with Eq. 2.106 satisfies the condition of Eq. 2.105 the evolution
proceeds. Otherwise, SEVN predicts a smaller time-scale with Eq. 2.106 updating δPlast and
dtlast, until Eq. 2.105 is satisfied or the newly computed time-step differs from the previous
one by less than 20%.

Furthermore, once a star is close to a phase shift, to ensure that the stellar properties are
correctly evaluated just before and just after the phase shift, SEVN implements an additional
treatment. It reduces the time-step such that the next evolution step brings the star (or the
binary) 10−10 Myr before the phase change. The subsequent step, is devised in such a way
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that moves the star (binary) 10−10 Myr into the next phase. This allow to carefully account for
sharp transitions, such as SNe and WD formation, as for this star the properties of the stellar
progenitor immediately before the phase shift are crucial. Finally, several others controls
are in place for the various time-steps, which guarantees that each stellar phase is correctly
evaluated (at least 10 times per phase), that the interpolation algorithm does not skip more
than two points in the look-up tables, and that the evolution time cannot exceed the simulation
ending time.

By combining all the various control on the time-steps, it results that in SEVN, for a
typical binary, the time-step may vary over 9 to 10 orders of magnitude.

2.2.4.2 Time evolution

In Figure 2.8 (Figure 3 by Iorio et al., 2023), it is summarized the temporal evolution scheme,
its logic, and the various controls in place. At each time-step SEVN evolves the two star
independently, and then it evolves the binary accounting for the property variations ∆P. After
the integration of all the binary-evolution processes, SEVN compute the updated value of the
given binary property P at the time t as:

P(t) = P(t0) + ∆P (2.107)

where P(t0) are the properties at the initial stage of the evolution step and ∆P is the overall
variation of the property P. For each stellar properties, Eq. 2.107 is slightly modified, and
they are computed as:

P(t) = Ps(t) + ∆P (2.108)

where Ps(t) is the expected value for the given property P after a time-step. Thus, in such a
way also the individual properties of each star accounts for the BSE (e.g. mass accreted or
lost during a RLO. Both SSE and BSE processes are repeated until the condition of Eq. 2.105
are satisfied.

Finally, in SEVN there are object whose properties do not vary with time. They are the
compact remnants, that maintain their properties constant over time, and naked-CO stars, that
are treated similarly to compact objects, until they end their life becoming compact objects.

The transition into compact object is modeled to take place at the beginning of a new
time-step, thus in that time-interval also the natal kicks, when needed, will be applied to the
binary. Therefore, during that particular time-step, the binary will take into account in its
evolution also the effect of a possible SN.

Finally, if a RLO circularization, a stellar merger and/or a CE phase takes place, SEVN
assumes an almost instantaneous process, with an arbitrary-small time-step dt = 10−15 Myr.
These processes are then computed during the arbitrary time-step.

Finally, at the beginning of each time-step, SEVN checks if a SNIa will take place or if it
needs to change the interpolating tracks.

2.2.4.3 Jump to different tracks

Because of one of the may binary effects, a star may change significantly its properties.
The property more prone to such a variation is the stellar mass, that may vary because of
mass-loss/accretion (e.g., RLO, stellar mergers, CE). If this is the case, one (or more) of the
interpolating tracks that SEVN chose at the ZAMS may not be the most indicated for the new
star, and SEVN must find a stellar tracks that matches the new star’s properties.

Depending on the phenomenon triggering the stellar variation, several criterion are in
place in SEVN:
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• Stars without a core (MS ore pure-He MS stars): SEVN moves to a new track each
time the total mass loss/accreted (because of binary processes) over time is more than
1% of the star’s total mass;

• Stars with a core (either an He or a CO-core): the core’s properties dictates the stellar
evolution, thus there is a change of interpolating tracks only if the core’s mass varies;

• Stellar merger: when two stars merge there is always a change of interpolating tracks;

• A H-rich star looses its envelope: If a star with mass M and He-core mass MHe is such
that (M −MHe)/M ≲ 0.02, the star becomes a Wolf-Rayet star, and it start evolving as
a pure-He star (i.e. following a pure-He track).

In order to choose the new interpolating track, SEVN searches for the the stellar tracks
with the same Z and in the same evolutionary phase of the current star, that have the mass (or
core-mass, depending on the stellar phase) closer to the current star. SEVN searches such a
track either among the H-rich stars for stars that have an hydrogen envelope or among the
pure-He stars, either for a pure-He star or a star that has been stripped of its H-envelope in
that time-step. For stellar mergers it searches the new interpolating tracks in the H-rich tables
or in the pure-He tables, depending if one of two mergers stars had retained its H-envelope or
not, respectively, at the pre-merger time-step.

For tracks without a formed core, SEVN employs the algorithm described in Spera et al.,
2019.

Let’s define the current mass of the star M and Mp, i, MZAMS, i the values of the masses of
the interpolating tracks currently and at the ZAMS. The new interpolating track is chosen
assuming a linear relation between Mp, i, and MZAMS, i, such that:

M =
Mp, 2 −Mp, 1

MZAMS, 2 −MZAMS, 1
(MZAMS, new −MZAMS, 1) + Mp, 1. (2.109)

This is an iterative process, that starts by assuming MZAMS, 1 = MZAMS, old and MZAMS, 1 =
MZAMS, old + 1.2δM, where δM is the cumulative amount of mass lost/accreted in the binary
processes. Such a process goes on until is true that:

Mp, new −M
M

< 0.005 (2.110)

When this condition is not satisfied, Eq. 2.109 is iterated substituting MZAMS, 1 or MZAMS, 2
with MZAMS,new. Such an iteration is repeated until Eq. 2.110 is satisfied, or after ten iterations
or if MZAMS,new exceeds the possible values in the look-up tables. If SEVN does not find a
value for MZAMS,new that satisfies Eq. 2.110 it chooses the MZAMS,new such that it minimize
Mp, new −M/M < 0.005.

For stars that have formed a core, SEVN looks for the best match in terms of MZAMS,new by
looking at the core masses. It ranges in the interval [max(Mc, MZAMS,min), MZAMS, max], with
the extremes of the interval that are the borders of the mass table, and employs the bisection
method, as in Spera et al., 2019. Also in this case, SEVN performs at most 10 iterations. If
Eq. 2.110 is satisfied within these iterations, a new value of MZAMS,new is found. Otherwise, it
chooses for MZAMS,new the one that best matches the core mass.

Once SEVN establishes MZAMS,new, it jumps on the new track. It applies the same
method for all the four interpolating tracks and it updates all the stellar properties except the
mass-properties (total mass, and He-core and CO-core masses).
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To ensure the convergence of the track-finding algorithm, Spera et al., 2019 forced the
masses of the stars and of the cores to evolve in such a way that:

Mt1 = Mt0 (1 + δm), with δm =
mt1 −mt0

mt0
(2.111)

where Mt1 , and Mt0 are the masses computed at the time t1 and t0. Instead, mt1 , and mt0 are
the masses obtained from the interpolating tracks at the same times t1 and t0.

Therefore, Eq. 2.111 forces the temporal evolution of the mass properties to perform only
small changes per time-step.
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Figure 2.7: Figure from Colella and Woodward, 1984. The figure shows the computation of Lagrangian
fluxes according to the PPM scheme. Panel a: The path of waves arriving at the boundary between
two regions after a time interval is drawn. Panel b: The interpolation of each variable in the domain
cells is replaced with a mass-weighted average. This facilitates computation in the case of nonlinear
interaction between two cells. Panel c: The interaction between the two averaged states is described
by the solution of the local Riemann problem at the boundary between the two cells, indicated in the

figure as P̄ j+1/2.
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Figure 2.8: The schematic outlines the SEVN evolution algorithm. The ’changed too much’ checks
refers to Eq. 2.105, that accounts for variation in stellar and/or binary properties. If SEVN is evolving a
single-star it omits the ’apply binary processes’ and ’update stellar and binary properties’ sections. The
’special case’ check is for instances where SEVN reruns the evolution for specific binary processes, like
common envelope (CE) or stellar mergers. This figure is taken from Iorio et al., 2023, and corresponds

to Figure 3 in their paper.



53

Chapter 3

The initial mass- remnant mass
relation from core-collapse supernovae

This Chapter is based on the paper Ugolini et al., 2024.

3.1 Introduction

Through 1D simulations, several authors have attempted to link the explodability of stellar pro-
genitors to the structural properties of stars at the presupernova (pre-SN) stage (see O’Connor
and Ott, 2011; Fryer et al., 2012; Horiuchi et al., 2014; Ertl et al., 2016; Sukhbold et al., 2016;
Mandel and Fragos, 2020; Patton and Sukhbold, 2020; Patton, Sukhbold, and Eldridge, 2022).
Such prescriptions for the explodability have been adopted in many population synthesis
codes (e.g., Eldridge, Izzard, and Tout 2008; Spera, Mapelli, and Bressan 2015; Agrawal et al.
2020; Zapartas et al. 2021; Fragos et al. 2023), to predict the final fate of massive stars and the
formation and evolution of compact-object binaries in different astrophysical environments.
Such analytical relations for the explodability are usually applied to stellar progenitors that are
different from those employed to compute the prescriptions, and therefore must be adopted
with caution. In addition, we are still far from making any conclusive statement on the final
fate of massive stars. Specifically, the role played by stellar rotation, metallicity, and different
stellar evolutionary models of the progenitors is still mostly unexplored.

In this Chapter, we try to address some of these problems by studying the explosion of
progenitor stars and the formation of compact remnants through the latest version of our
hydrodynamic code HYPERION (HYdrodynamic Ppm Explosion with Radiation diffusION,
see Limongi and Chieffi 2020), which includes a treatment of the radiation transport in the flux-
limited diffusion approximation. We simulate the explosion of an up-to-date homogeneous
set of both rotating and non-rotating progenitor stars provided by Limongi and Chieffi,
2018 (hereinafter, LC18). For the SN explosion, we adopt the thermal-bomb approach and
we calibrate the parameters that describe the energy-injection process by comparison with
SN1987A. We apply our methodology to investigate the distribution of remnant masses as a
function of MZAMS, focusing on the role played by different initial metallicities and different
values of initial stellar rotation.

In Section 3.2, we present our methodology. In Section 3.3 we present the results of our
simulations. In Section 3.4 we investigate the implications of our results, and Section 3.5
contains the conclusions.

3.2 Methods

We use the HYPERION code to simulate the explosion of a set of pre-SN models of massive
stars presented in LC18. The details of the code are discussed in Chapter 2, Section 2.1.
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To induce the explosion, we remove the innermost 0.8 M⊙ of the pre-SN model, and
artificially deposit at this mass coordinate a given amount of thermal energy (Einj). We assume
that Einj is diluted both in space, over a mass interval dminj, and in time, over a time interval
dtinj. Therefore, our numerical approach relies on the three free parameters Einj, dminj, and
dtinj, which need to be calibrated. The details of the calibration are presented in Sec. 3.2.1.

Once the energy is deposited into the pre-SN model, a shock wave forms. The shock
wave starts to propagate outwards and eventually drives the explosion of the star. While
the shock advances, it induces explosive nucleosynthesis and accelerates the shocked matter.
After the initial energy injection, the innermost regions begin to fall back onto the proto-
compact object, which progressively increases its mass. After the end of the fallback phase,
we define the mass cut as the mass coordinate that divides the final remnant from the ejecta.
Depending on the position of the mass cut, we can recognize two possible outcomes of our
simulations: successful explosion, if a substantial fraction of the envelope is ejected during
the explosion (the simulated physical time is of 1 yr, ∼ 3 × 107s, that is sufficient to follow
also the homologous expansion of the ejected matter in the circumstellar medium and the
formation of the light-curve), or failed explosion if essentially the whole star collapses to a
black hole. The former case is presented in Sec. 3.3.1, while the latter is discussed in Sec.
3.3.2.

3.2.1 Calibration of the explosion

During the explosion, the innermost zones of the stellar mantle are heated up by the expanding
shock wave to temperatures high enough to induce explosive nucleosynthesis. One of the
main products of the nucleosynthesis is 56Ni, which is synthesized by the explosive Si burning
in the innermost regions of the mantle (see Thielemann, Nomoto, and Hashimoto, 1996;
Woosley and Weaver, 1995; Arnett, 1996; Limongi, Straniero, and Chieffi, 2000. Therefore,
the location of the mass cut is crucial to constrain the amount of ejected 56Ni: in absence
of mixing, the more external the mass cut, the lower the abundance of nickel in the ejecta.
Another important outcome of our simulations is the final kinetic energy of the ejecta, which
comes from the conversion of a fraction of the thermal energy initially injected into the
progenitor star. The amount of ejected 56Ni and the final kinetic energy of the ejecta depend on
the explosion parameters, i.e. Einj, dminj, and dtinj. We calibrate these parameters considering
SN1987A, which is the most extensively studied ccSN to-date (Arnett et al., 1989; Woosley,
1988). Specifically, our goal is to find the combination of the explosion parameters that match
both the ejected 56Ni and the kinetic energy of the ejecta with the values estimated for the SN
1987A, i.e. m56Ni ∼ 0.07 M⊙ and ∼ 1051 erg = 1 foe (see, e.g., Arnett et al. 1989; Shigeyama
and Nomoto 1990; Utrobin 1993; Utrobin 2006; Blinnikov et al. 2000). To reach our goal, we
simulate the explosions of the stellar progenitor of our grid that best match the helium core of
the progenitor of SN 1987A (i.e., Sk — 69°202 e.g. Woosley 1988; Arnett et al. 1989; Arnett
1996 with MHe ∼ 6 M⊙, e.g. Woosley 1988). We made this choice becauseEejecta and m

56Ni do
not depend on the structure of the hydrogen envelope of the star.

Therefore, we adopt a 15 M⊙-progenitor model with initial solar composition (
[
Fe/H] = 0,

i.e. the model 15a000 in the set of LC18) and, in each simulation, we adopt a different set
of explosion parameters. Figure 3.1 shows the final kinetic energy of the ejecta and the
corresponding amount of ejected 56Ni obtained from our simulations using different explosion
parameters, with Einj ∈ [1.9; 2.1] foe, dminj ∈ [0.05; 0.4] M⊙, and dtinj ∈

[
10−9; 1

]
s.

The combination of explosion parameters that best matches the values of SN1987A is:
dtinj = 0.01 s, dminj = 0.1 M⊙, and Einj = 2.0 foe. We adopt this combination of explosion
parameters in all the simulations presented in this work. Using the calibrated values of Einj,
dminj, and dtinj, we compute the explosion of a subset of the pre-SN models presented in
LC18.
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Figure 3.1: Final kinetic energy of the ejecta as a function of the ejected mass of 56Ni obtained running
various explosion tests (blue crosses) with different values of the initial explosion parameters, Einj,
dminj, and dtinj. The red dot refers to the simulation of the explosion that best matches the properties

of SN1987A (orange star).

3.2.2 Progenitors unstable against pair production

Figure 3.2 shows the mass at the pre-SN stage MpreSN and the CO core mass MCO of the stars
of our simulations grid as a function of MZAMS. The properties of the models for which we
perform the explosions are also summarized in Table A.2 and Table A.3.

In our grid of non-rotating stellar models, we find that at subsolar metallicities the non-
rotating stellar progenitors with MZAMS = 80 M⊙ end their life as ccSNe with CO core
masses of ∼ 30 M⊙, while the 120 M⊙-progenitors become unstable (i.e., the adiabatic index
Γ1 approaches the critical value of 4/3 in a substantial fraction of the core) and start entering
the pair-instability phase (Fowler and Hoyle 1964; Barkat, Rakavy, and Sack 1967; Rakavy
and Shaviv 1967). Thus, the progenitors unstable against pair production start to evolve on the
hydrodynamical timescale and the FRANEC code cannot follow the evolution of the stellar
structure anymore. Furthermore, pulsational pair-instability supernovae (PPISNe) are very
different from the ccSNe HYPERION is designed to deal with, thereby we cannot simulate
the final stages of massive stars that develop pair instabilities.

Finally, the mass resolution of the pre-SN simulated grid does not allow us to determine
the mass threshold for the onset of the PPISNe; from our data, the only thing we know is
that 120 M⊙ progenitors at sub-solar metallicity are unstable against pair production, while
the 80 M⊙ progenitors are not. In order to determine which is the minimum mass of the CO
core that enters the PPISNe regime (MPPISN

CO ) and the minimum one that enters the PISNe
(MPISN

CO ), we can refer to the values provided by Heger and Woosley, 2002 (hereinafter HW02)
and Woosley, 2017 (hereinafter W17), i.e. MPPISN

CO,HW02 = 33 M⊙ and MPPISN
CO,W17 = 28 M⊙,

respectively. These two values are in a good agreement with the LC18 models (MPPISN
CO,LC18 >

33 M⊙), within the theoretical uncertainties. Additionally, it should be noted that, in W17,
the pulses associated with a CO core mass of MCO = 28 − 31 M⊙ are quite weak, and the



56 Chapter 3. The initial mass- remnant mass relation from core-collapse supernovae

first significant pulse occurs at a CO core mass of approximately 33 M⊙. Hence, we adopt
MPPISN

CO,W17 = 33 M⊙ as the minimum CO core mass that enters the PPISN. Furthermore, since
the liming masses obtained in both cases (i.e. HW02 and W17) are compatible with the
results of LC18, in the following we will refer, and use, the results provided by W17. Finally,
following W17, stars with CO core mass ≥ 54 M⊙ are completely disrupted by PISNe. This
value corresponds to an initial mass which is larger than the maximum mass considered in our
SN grid.

Independently of the rotation rate and metallicity, Figure 3.2 shows that MpreSN and MCO
scale linearly with MZAMS.

Therefore, to find the values of MZAMS and MpreSN of the first progenitor unstable against
pair instabilities we assume:

MPPISN
ZAMS =

(
MPPISN

CO − q1
)
/k1 (3.1)

MPPISN
preSN = k2MPPISN

ZAMS + q2

=
k2

k1

(
MPPISN

CO − q1
)
+ q2

(3.2)

where k1 and q1 (k2 and q2) are the slope and intercept of the line MCO vs MZAMS (MpreSN
vs MZAMS).

Therefore, according to both W17 we find MPPISN
ZAMS for the various metallicities and rotation

velocities that are reported in Table A.1. Specifically, in Table A.1 we report, for all the initial
values of metallicity and angular rotation, the values of MPPISN

ZAMS and MPPISN
preSN that we obtain

for the last progenitors stable against pair-instabilities. When the heaviest stars of our pre-SN
grid are stable against pair-production we cannot predict for which values of MZAMS they will
become unstable against pair-instability (i.e. which stellar progenitors will explode as PPISNe
or PISNe), thus MPPISN

ZAMS and MPPISN
preSN are labeled as Not Available (N.A.) in Table A.1.

3.3 Results

In this section, we present the results of the simulations performed in the pre-SN models
described in Figure 2 and Tables 2 and 3 (see also LC18).

We simulate the explosions for all the models with pre-SN CO core masses ≤ 33 M⊙
because these models are considered stable against pair production, as in LC18 (see Section
3.2.2). The results of the simulations are also summarized in Tables A.2 and A.3.

3.3.1 Successful explosions

To illustrate the properties of a typical successful explosion in our simulations, we consider a
typical successful explosion looks like in our simulations, we consider a non-rotating 25 M⊙
star with metallicity

[
Fe/H] = −2. Figure 3.3 shows the chemical structure of the model

which is characterized by an extended H-rich envelope, with a He core mass of 9.87 M⊙ and a
CO core mass of 5.95 M⊙. The ONe shell extends from mass coordinate 1.73 M⊙ to 5.17 M⊙,
while the Si shell, which is enriched by the products of the O-shell burning, is in the range
1.43 M⊙ — 1.73 M⊙. The mass of the iron core is therefore 1.43M⊙.

Figure 3.4 shows the temperature and density profiles of the star at the pre-SN stage.
During the pre-SN evolution, the progenitor loses a negligible amount of mass because of its
initial low metallicity and has a low effective temperature of ∼ 4.7 × 103 K. Thus, it ends its
life as a Red Super Giant (RSG, Limongi and Chieffi 2018).
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Figure 3.2: Mass at the pre-SN stage (top-row panels) and CO core mass (bottom-row panels) as
a function of MZAMS for the non-rotating progenitors (left panels) and progenitors rotating with an
initial velocity of 300 km/s (right panels). Different colors represent different initial metallicities:[
Fe/H] = 0 (dashed light blue line),

[
Fe/H] = −1 (dash-dotted violet line),

[
Fe/H] = −2 (orange

solid line), and
[
Fe/H] = −3 (dotted yellow line).

The density profile (see Figure 3.4) shows gradients at mass coordinates which correspond
to boundaries between shells of different chemical composition. The most prominent density
gradient is at the mass coordinate of ∼ 10 M⊙ and it corresponds to the interface between
the He core and the H envelope. The injection of thermal energy into the iron core results in
the formation of a shock wave that moves outward in mass and compresses, heats up, and
accelerates the overlying layers. Once the shock emerges from the iron core, it propagates
through the outer layers, where it triggers the explosive nucleosynthesis. Figure 3.5 shows
the evolution of the velocity profile of the shock wave at different times after the onset of
the explosion. After ∼ 0.7 s, the shock wave reaches the mass coordinate of ∼ 2.7 M⊙,
where the peak temperature of the shock becomes too low to trigger any other additional
burning. Therefore, from this mass coordinate outward, the chemical structure sculpted by the
hydrostatic evolution will be unaffected by the passage of the shock wave.

After 15.5 s from the beginning of the explosion, while the shock is still moving through
the CO core, some of the innermost layers (i.e. the inner ∼ 2 M⊙) revert their motion because
their velocity is lower than the local escape speed (see the negative values of the orange line
in Figure 3.5).

At ∼ 100 s, the shock reaches the He/H interface at a mass coordinate of ∼ 10 M⊙, where a
strong density gradient (see Figure 3.4) causes the formation of a reverse shock (see Woosley
and Weaver, 1995). From this time onward, the explosion is characterized by a shock wave
moving outward in mass and by a reverse shock, which propagates inward in mass, slowing
down the previously accelerated material. This effect is apparent from the behavior of the
velocity of the shock 1000 s after the onset of the explosion (red dashed line in Figure 3.5),
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Figure 3.3: Chemical composition as a function of the interior mass coordinate of a non-rotating model
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[
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for which we find that the velocity of the outer regions of the shock is smaller than that of
the innermost regions of the shock wave. This happens because the latter have not yet been
affected by the reverse shock at this stage of the explosion.

Furthermore, Figure 3.5 shows also that when the shock reaches the He/H interface, the
compact remnant increases its mass up to ∼ 2 M⊙, since the layers which had negative velocity
when the shock has reached the CO core have now reached zero velocity.

The fallback process eventually ends ∼ 3× 104 s after the onset of the explosion, leaving a
compact remnant with a final mass of 5.77 M⊙ (the purple shaded area in Figure 3.5). It is
worth noting that such a heavy compact remnant includes also the layers where the explosive
nucleosynthesis happened (≲ 2.7 M⊙, i.e. the Si and ONe shells, see Figure 3.3), preventing
their ejection into the interstellar medium unless some mixing of material from the innermost
zones to the outer layers is occurring during the explosion. Finally, ∼ 1.5 × 105 s (i.e. ∼ 1.7
days) after the beginning of the explosion, the forward shock reaches the surface of the star
(shock breakout).

Figure 3.6 shows the kinetic energy, the sum of internal and gravitational energy, and the
total energy of the star as a function of the mass coordinate, at times > 15 seconds after the
onset of the explosion. From this Figure it is apparent that, at each time, some regions are
falling back onto the proto-compact object (i.e. those with negative total energy) and some are
being expelled by the shock wave (i.e. those with positive total energy). The last region with
negative total energy corresponds to the boundary of the final remnant, that is represented in
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Figure 3.6 with a purple shaded area.
We present the whole process in Figure 3.7, which shows the evolution of the radius of

various mass shells (grey, in step of 1M⊙, and dotted red lines, in step of 3M⊙) inside the
stellar progenitor as a function of time. From this Figure we can distinguish the layers of the
star that fall back onto the compact object, i.e., those that form the final remnant (represented
by the dashed yellow line), and those that are successfully ejected at the shock breakout.
Roughly at ∼ 10 s we find that the radius of the mass shells corresponding to the most internal
2 M⊙ of the star (the first two grey lines) revert their trajectory, start to fall back onto the
proto-compact object, and they reach the latter ∼ 100 s after the onset of the explosion.

Figure 3.7 also shows when the fallback ends. The last shell that falls back onto the
compact object reverts its trajectory roughly ∼ 104 s after the onset of the explosion and it
reaches the compact remnant at t = 3× 104 s (consistent with our results reported in Figure 3.5
and in the bottom left panel of Figure 3.6). For t ≥ 3× 104 s, such mass shell has zero velocity
forming the final remnant with mass 5.77 M⊙. In Figure 3.7 all the layers that eventually form
the final remnant are shown to instantaneously drop onto the compact remnant but this is only
a numerical effect, since once they revert their trajectory, falling back onto the BH, we do not
follow their evolution anymore, i.e. we do not observe the free fall trajectories.

In contrast, the outer region is eventually ejected by the shock wave at the shock breakout,
and it keeps moving outward in the interstellar medium with a radial velocity that grows
linearly with time.

3.3.2 Direct collapse

The progenitor model we adopt to describe a typical failed explosion which undergoes a
direct collapse (DC) to BH in our simulations is a non-rotating 80 M⊙-star with metallicity[
Fe/H] = −2. Figure 3.8 shows the chemical structure of the star at the pre-SN stage. The

structure is characterized by an extended H-rich envelope, a He core mass of 38.3 M⊙ and
a CO core mass of 28.9 M⊙. The ONe shell extends between mass coordinate 4.33 M⊙ and
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14.9 M⊙ while the Si shell extends from 1.76 M⊙ to 4.33 M⊙. The mass of the iron core is
1.76M⊙.

Figure 3.9 shows the temperature and the density profile of the progenitor as function of
the mass coordinate. From this Figure it is apparent that the density profile presents various
steep density gradients, each one corresponding to the boundaries between shells of different
chemical composition. As in the previous case of a successful explosion, this star loses a
negligible amount of mass during its life because of its initial low metallicity and it reaches
the pre-SN phase as a RSG, having an effective temperature of 6.3 × 103 K.

In Figure 3.10, we show the velocity profile of the explosion as a function of the mass
coordinate at different times after the onset of the explosion. Figure 3.10 shows that the
velocity of the shock progressively decreases with time. The regions behind the shock wave
begin reverting their trajectory ∼ 1.5 s after the onset of the explosion, since they have
exhausted their initial kinetic energy. Thus, they start falling back onto the proto-compact
object with negative radial velocity. As the shock moves at larger mass coordinates, more and
more internal layers exhaust their kinetic energy, and fall back onto the core, until the velocity
of the shock becomes almost zero at ∼ 36 s after the onset of the explosion. Therefore, in this
case, the shock wave does not have enough energy to eject the mantle of the star.

Figure 3.11 shows the dynamics of the innermost layers of the stellar progenitor. Such
layers undergo a brief acceleration phase when the shock wave reaches them. However,
such acceleration is not sufficient to unbound these regions from the star. In Figure 3.11 we
notice the same behaviour we presented in Figure 3.10: already ∼ 1.5 s after the onset of
the explosion, the innermost layers of the star revert their trajectory, falling back onto the
proto-compact object, reaching the latter only a few seconds later, and becoming part of the
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Figure 3.6: Interior profiles of the kinetic energy (yellow line), the internal energy plus the gravitational
energy ( purple line), and the total energy (dashed light blue line) at various times during the explosion
for a non-rotating stellar progenitor with MZAMS = 25 M⊙ with metallicity

[
Fe/H] = −2. The shaded

purple area in the panels represents the region of the star forming the compact remnant at each time. It
is completely formed at t = 3 × 104s.

final remnant at ∼ 5 s. Furthermore, the acceleration decreases in the outer layers, which start
to collapse again immediately after the passage of the shock wave. Therefore, the latter cannot
reach the surface of the star and the entire progenitor directly collapses into a heavy BH.

3.3.3 Remnants BHs from non-rotating progenitors

Figure 3.12 shows the remnant masses as a function of MZAMS, for non-rotating progenitors
and for various initial metallicities. From Figure 3.12 it is apparent that the remnant mass
increases as a function of MZAMS for all the considered metallicities. Furthermore, the remnant
mass is larger for progenitors at lower metallicities, and does not depend significantly on
metallicity for progenitors with MZAMS ≲ 25 M⊙. The remnant mass curves follow closely
the behavior of the CO core mass (see the bottom-left panel of Figure 3.2).

This happens because the remnant mass depends on the binding energy of the star at the
pre-SN stage, and that comes mainly from the CO core. Moreover, larger CO core masses
imply lower 12C mass fractions at core-He depletion, i.e. a less efficient C-shell burning, which,
in turn, causes a higher contraction of the CO core resulting in a more bound structure. Figure
3.13 shows the mass of the progenitor star at the pre-SN stage and the mass of the compact
remnant as a function of the initial mass of the star, for various metallicities. In our simulations,
we assume that DC occurs if the fraction of the progenitor’s envelope ejected by the shock
wave is less than 10% of the pre-SN mass. For example, the progenitor at solar metallicity with
MZAMS = 60 M⊙ has a pre-SN mass of 16.9 M⊙ and forms a remnant of 16.2 M⊙, ejecting
only 0.7 M⊙ of H envelope, thus we consider it a DC. Following this approach, we find
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progenitor as a function of time. Each grey (dotted purple) line on top encloses 1 M⊙ (3 M⊙) more than
the grey (dotted purple) line immediately below. We also show the evolution of the radius of the final

compact remnant (yellow dashed line).

that stars with MZAMS ≳ 60 M⊙ do not explode and collapse directly to a BH for the initial
metallicities

[
Fe/H] = 0,

[
Fe/H] = −2,

[
Fe/H] = −3. For

[
Fe/H] = −1, the threshold for

DC is MZAMS = 80 M⊙. This happens because the progenitor with MZAMS = 60 M⊙ ends its
life as a RSG. Thus, the shock wave ejects part of the H envelope since this is very loosely
bound to the star. This happens only for this value of metallicity, because at

[
Fe/H] = 0 the

star with MZAMS = 60 M⊙ has already lost all its H envelope at the pre-SN stage, while at[
Fe/H] = −2 and

[
Fe/H] = −3 stellar winds are quenched, i.e. all the H envelope is retained

and the star is much more compact.
The BH masses at the threshold for DC depend on the final mass of the progenitor stars at

the pre-SN stage that, in turn, depends on the mass-loss history during the pre-SN evolution.
The mass-loss rate decreases significantly at low metallicity, where stellar winds are quenched.
Therefore, the models with initial metallicity lower than

[
Fe/H] = −1 evolve approximately

at constant mass. As a consequence, the BH masses correspond to the threshold in MZAMS for
DC (see Table A.1) . Above MPPISN

ZAMS we compute the remnant masses taking into account the
results of W17 (see, e.g., its Table 1) by interpolating on the CO core mass. The results are
reported in Figure 3.13 as yellow diamond points and are connected through the dashed green
yellow lines. From this Figure it is apparent that at

[
Fe/H] = −1 the onset of PPISNe does not

affect significantly the maximum BH mass that forms. This happens because - at the pre-SN
stage - stars have already lost a significant part of their H envelope, thus the mass loss caused
by PPISNe does not affect significantly the final BH mass. In contrast, for

[
Fe/H] = −2, −3,

stars evolve at almost constant mass and end their life with heavy H envelopes. Therefore,
the expulsion of the latter at the onset of PPISN significantly affects the final BH mass. This
effect is apparent in the bottom-row panels of Figure 3.13, where we see a steep variation of
the final remnant mass at the onset of PPISNe.
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Figure 3.8: Chemical composition as a function of the interior mass coordinate of a non-rotating model
with MZAMS = 80 M⊙ and

[
Fe/H] = −2 at the pre-SN stage. We report the abundances of H (long

dash-double dotted black line), He (double dash-dotted red line), 12C (long dashed green line), 16O
(short dashed blue line), 20Ne (dashed magenta line), 28S i (short dash-double dotted orange line), 52Cr

(solid dark red line) and 56Fe (long dash-dotted gray line).

3.3.4 Remnants BHs from rotating progenitors

Figure 3.14 shows the remnant masses as a function of MZAMS, for rotating progenitors and
for various initial metallicities. From Figure 3.14 it is apparent that, at solar metallicity, the
remnant mass does not increase significantly with the initial progenitor mass. In contrast, for[
Fe/H] = −1, −2, −3, the remnant mass curve has a local minimum at 25 M⊙, which occurs

when the stellar winds are strong enough to completely remove the H envelope. Furthermore,
as in the case of the non-rotating progenitors, for MZAMS ≳ 25 M⊙ the remnant masses are
larger at lower metallicities, and follow the behavior of the CO core mass at the pre-SN stage
(see also Section 3.3.3).

Figure 3.15 shows how the remnant mass and the mass of the star in the pre-SN phase
depend on MZAMS, for rotating models with different initial metallicities. We find that most
of the rotating progenitors directly collapse to BHs. This happens because rotating stars end
their life as He-stars, i.e. they end their life with more bound structures at the pre-SN stage
with respect to non-rotating progenitors, thus they are more prone to failed SN explosions and
to form more massive BHs. Specifically, stars with MZAMS ≳ 30 M⊙ collapse directly to a
BH, whereas the fate of stars with MZAMS ≲ 30 M⊙ depends on the initial metallicity.

At solar metallicity, the threshold value of MZAMS for the DC decreases down to ∼ 20 M⊙,
since only the progenitor with MZAMS = 15 M⊙ evolves through a successful SN explosion.
At

[
Fe/H] = −1, the only exploding progenitor is the one with MZAMS = 25 M⊙, and it ejects

all its H envelope, while the less massive progenitors directly collapse to BHs. Although this
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right box .

occurs only for one progenitor in the simulation set, the non-monotonic behaviour for the
explodability is not apparent for non-rotating progenitors (see Figure 3.13). At

[
Fe/H] = −2,

all the progenitors evolve through DC. The progenitor with MZAMS = 20 M⊙ ejects some
material but it is still consistent with our definition of DC, thus the threshold value of MZAMS
for the DC is ∼ 15 M⊙. The stars at

[
Fe/H] = −3 behave similarly to solar metallicity models,

and the only exploding progenitor is the one with MZAMS = 15 M⊙, thus the threshold of
MZAMS for the DC is at ∼ 20 M⊙.

For rotating progenitors, mass loss is enhanced because rotation forces the models to
become red giants and therefore to approach their Eddington luminosity during their redward
excursion in the HR diagram (see LC18). When this happens, a substantial amount of mass is
lost and most of the stellar models loose all their H rich envelope and become Wolf-Rayet stars.
Therefore, progenitors with the same MZAMS and metallicity retain less mass at the pre-SN
stage than non-rotating stars. This is apparent especially at lower metallicities, where stellar
winds for non-rotating progenitors are quenched. This effect is not significant for progenitors
with MZAMS ≤ 30 M⊙, since such stars have weak stellar winds. As a consequence, we obtain
less massive BHs from rotating stellar progenitors than from non-rotating ones.

The BH masses corresponding to the threshold in MZAMS for the DC are ∼ 8 M⊙, ∼ 16 M⊙,
∼ 14 M⊙ and ∼ 20 M⊙ for metallicities

[
Fe/H] = 0,

[
Fe/H] = −1,

[
Fe/H] = −2,

[
Fe/H] =

−3, respectively. The threshold CO core mass for PPISNe, MPPISN
CO ∼ 33 M⊙ are reported in

Table A.1. To estimate the remnant masses of the models with MZAMS ≥ MPPISN
ZAMS we apply

the results of W17, as described in Section 3.3.3. The results of such interpolations are the
diamond yellow points, which are connected through the dashed yellow lines. From Figure
3.15, it is apparent that, for rotating stellar progenitors, there is no major change in the BH
mass due to the onset of PPISNe. This happens because the rotating stars end their life as
naked He stars, thus they have lost their H envelope. Therefore, the rotating stars only lose a
small fraction of their He core at the onset of the PPISNe, because of the pulsational phase,
and then collapse to to BHs.
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Figure 3.10: Same of Figure 3.5 but for a directly collapsing progenitor. The velocity profile is reported
at different crucial times during the explosion: when the explosive nucleosynthesis stops (dotted blue
line), when the layers behind the shock start to fallback onto the compact remnant (dash-dotted orange
line), when the shock enters the CO core (dashed green line) and when the velocity of the shock

becomes negligible (solid red line).

3.4 Discussion

3.4.1 The maximum BH mass

Figure 3.16 shows the maximum BH mass resulting from our simulations as a function of
the initial stellar metallicity, and assuming rotating and non rotating single star models. It
illustrates the impact of the initial metallicity and angular rotation of the stellar progenitor on
the final remnant mass we obtain from single stellar evolution.

For
[
Fe/H] = 0 and

[
Fe/H] = −1, stellar winds play a crucial role as they remove

a significant fraction of mass of the progenitor stars before they DC to BHs. From our
simulations we find that the maximum BH mass we form is ∼ 27.9 M⊙ and ∼ 41.9 M⊙, for[
Fe/H] = 0 and

[
Fe/H] = −1 in the non-rotating case, and ∼ 18.6 M⊙ and ∼ 40.5 M⊙, for[

Fe/H] = 0 and
[
Fe/H] = −1 in the rotating case. All these BHs come from the collapse

of stellar progenitors with MZAMS = 120 M⊙. Therefore, we find that angular rotation
slightly enhances the effects of stellar winds at solar metallicity, while at

[
Fe/H] = −1 the

effect of rotation on the final remnant masses is negligible. For the cases
[
Fe/H] = −2,−3

the heaviest BHs from non-rotating stellar progenitors have mass ∼ 83.3 M⊙ and ∼ 87.0 M⊙
respectively, and they both correspond to stellar progenitors with MZAMS ≃ 87 M⊙ (as reported
in Table A.1). In the rotating case, the maximum BH mass is ∼ 39.9 M⊙ and ∼ 41.6 M⊙ for[
Fe/H] = −2 and

[
Fe/H] = −3, respectively, and they correspond to stellar progenitors

with MZAMS ≃ 65 M⊙ (see Table A.1). Therefore, in the rotating scenario, the initial angular
rotation enhances mass loss and induces the formation of larger convective regions and
therefore larger CO cores (see LC18, Marassi et al. 2019, and Mapelli et al. 2020). As a
consequence, stars are less massive at the pre-SN stage and enter the PPISNe regime at lower
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Figure 3.11: Same of Figure 3.7 but for the most central region of the progenitor with MZAMS = 80 M⊙
and

[
Fe/H] = −2, where we can better appreciate the fallback of the layers right after being accelerated

by the shock wave. We show the behavior of the shell enclosing different values of mass, of 1 M⊙ (each
solid light grey lines) and 5 M⊙ (each dotted purple line), respectively.

initial masses compared to non-rotating progenitors. Such a combination of effects limits
significantly the value of the maximum BH mass.

3.4.2 Implications for the PI mass gap

Figure 3.16 shows that we can form heavy BHs that lie in the upper mass gap predicted by
PISN models, i.e. a dearth of BHs with masses in the range 60 – 120M⊙ (e.g., Woosley 2017;
Spera and Mapelli 2017). This is because we can form BHs in the upper mass gap because the
FRANEC progenitors enter the pair-instability at different initial progenitor masses than those
of other authors (e.g. Woosley 2017; Spera and Mapelli 2017; Farmer et al. 2019; Costa et al.
2021).

Given our choice of the minimum CO core pass for the onset of PPISN of 33 M⊙ (see
Section 3.2.2), we find that, for the non-rotating models at

[
Fe/H] = −3, the MZAMS = 80 M⊙

progenitor which ends its life with a CO core mass of 30 M⊙ is stable against pair production.
Conversely, the MZAMS = 120 M⊙ has a CO core of ∼ 50 M⊙ and develops dynamical
instabilities. To pin down the uncertainty on the maximum BH mass formed we would
need to increase the resolution of our grid of progenitors between MZAMS = 80 M⊙ and
MZAMS = 120 M⊙.

To compare our results with other studies, we show in Figure 3.17 the BH mass as a
function of the pre-SN CO core mass of the progenitor star as obtained in this work (LC18
non-rotating progenitors at

[
Fe/H] = −3), W17 (set D of its Table 2, a set of tracks evolved

from the ZAMS with metallicity of Z = 0.1 Z⊙ taking into account also the hydrogen envelope
and for which they assume zero mass loss), Spera and Mapelli, 2017 (hereinafter S17) for
metallicity of Z = 1.3 × 10−2 Z⊙.
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Figure 3.12: Remnant masses as a function of MZAMS for the progenitors with initial metallicity[
Fe/H] = 0 (dashed light blue line),

[
Fe/H] = −1 (dash-dotted violet line),

[
Fe/H] = −2 ( orange

solid line), and
[
Fe/H] = −3 (dotted yellow line). We do not simulate the explosion of the stellar

progenitors with MZAMS = 120 M⊙ at subsolar metallicities, since they are unstable against pair
production.

To compare the BH mass spectra, we choose the stellar tracks with zero initial angular
velocities, to exclude the effects of chemical mixing and mass loss enhancement, and with the
lowest initial metallicities, to exclude degeneracies caused by different stellar-wind models.

Figure 3.17 shows that the first progenitors that evolve through the pulsational pair-
instability phase (marked with crosses) are those of S17, with a CO core mass of ∼ 24 M⊙.
This happens because, to enter the PPISNe regime, S17 adopted the He core mass criterion
proposed in W17 (He core mass of ∼ 32 M⊙), which corresponds to CO core masses of
∼ 24 M⊙ when used in combination with the S17 stellar evolution tracks from the PARSEC
code (Bressan et al. 2012).

The tracks of W17 enter the PPISNe regime when the CO core mass is ∼ 28 M⊙. It is
important to note that these stellar tracks were evolved suppressing the mass loss phenomena
of a set of stars with initial metallicity of Z = 0.1 Z⊙, and that they were evolved from the
ZAMS to the end of the PPISN regime. Thus, they represent a distinct set from the naked
helium cores we used in Section 3.3.3 and 3.3.4 to infer the final remnant masses of the stars
undergoing PPISNe.

Finally, our stellar progenitors become unstable against pair-instability when the CO core
mass is ≳ 33 M⊙. From Figure 3.17 it is apparent that the BH maximum mass ranges from
∼ 87 M⊙ (this work) to the minimum value of ∼ 53 M⊙ (S17), resulting in a discrepancy of
∼ 38 M⊙ in the maximum mass of the BHs obtained by different authors from the evolution
of an isolated massive star. The discrepancy exists because different authors have different
thresholds in the CO core mass for entering the PPISNe regime (see also Farmer et al.,
2019, hereinafter F19). For instance, if we had used the value of MPPISN

CO from F19 (e.g.,
MPPISN

CO,F19 = 41 M⊙) we would have ended up with BHs more massive than ∼ 100 M⊙, i.e. in
the regime of intermediate-mass BHs.
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Figure 3.13: Pre-SN mass (dash-dotted light blue line), pre-SN mass extrapolated for MZAMS > 120M⊙
(dotted grey line), remnant mass (solid violet line), and the remnant mass for the stars which develop
pair instabilities (dashed yellow line), as a function of MZAMS. The red points represent the stellar
progenitors of the FRANEC grid, while the larger red squares correspond to the last progenitor stable
against pair production, which has been obtained through interpolation (see Section 3.2.2 and Table
A.1). The shaded grey area represents the region of DC, the shaded yellow area shows where stars
undergo PPISNe. The vertical dashed lines represent the threshold values above which stars enter the

PI regions.

Figure 3.18 shows the BH mass spectrum of this work and the results we would obtain
by applying the W17 and F19 criteria for the onset of PPISNe to the S17 stellar evolution
tracks. It shows that even the progenitors from S17, which have the lowest PPISNe entry
point (MPPISN

CO = 24 M⊙), can form BHs as massive as ∼ 70 M⊙ adopting the W17 threshold
for the CO core mass (MPPISN

CO = 28 M⊙) instead of the He core mass criterion. Furthermore,
S17 can form BH as massive as ∼ 90 M⊙ adopting the F19 threshold (MPPISN

CO = 41 M⊙),
without changing the C/O ratio at the He core depletion, which is one of the key parameters to
determine the onset of PPISNe (as shown in F19).

Therefore, adopting a self-consistent criterion to enter the PPISNe regime is crucial to
investigate the BH mass spectrum and to constrain the lower edge of the upper mass gap. It
is worth noting that the value of MPPI

CO is not the only property that affects the position of the
lower edge of the upper mass gap. Besides the roles of DC, stellar winds, and rotation (cf. Sec.
3.3), the convective core overshooting parameter (αov) also has a central role in the formation
of heavy stellar BHs. This is because overshooting dredges extra H from the envelope into the
core during the central H burning, thus it governs the mass of the He core, and - in turn - the
mass of the CO core. Vink et al., 2021 showed that a small value of overshooting (αov ≲ 0.1)
is associated with smaller cores and stars likely end their life as Blue Super Giants (BSGs).
Such stars are very compact, they tend to avoid the PPISNe regime, because they form smaller
CO cores and they experience negligible mass loss during their life. As a consequence, such
stars are likely to form very heavy BHs in the range 74—87 M⊙. In contrast, stars with
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Figure 3.14: Same of Figure 3.12 but for rotating progenitors. We do not simulate the explosion of the
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Figure 3.15: Same as Figure 3.13 but for rotating progenitors.

higher values of αov exhibit more massive cores and likely evolve through the RSG phase,
experiencing significant mass-loss episode. Hence, the stars enter the PPISNe with smaller
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Figure 3.16: Maximum BH mass as a function of the initial metallicity for the non-rotating stellar
progenitors (red line) and the rotating stellar progenitors (blue line) for the non-rotating progenitors.

pre-SN mass, forming less massive BHs.
We do not have conclusive evidences on the value of the core overshooting parameter yet,

with observations providing evidence for higher possible values of the overshooting parameter
than the one used in Vink et al., 2021 (e.g. Vink et al. 2010; Brott et al. 2011; Higgins and
Vink 2019; Bowman 2020; Sabhahit et al. 2023; Winch et al. 2024). Furthermore, other
authors such as Takahashi, 2018; Farmer et al., 2019; Farag et al., 2022; Mehta et al., 2022;
Shen et al., 2023 show that the variation in the C/O ratio at the He core depletion plays a role
in the onset of the PPISNe.

The parameter space of the factors ruling the final fate of massive stars is still mostly
unexplored, and from this analysis it is apparent that there is still room for many future
improvements. We will explore the impact of these different effects on the onset of PPISNe in
a follow-up work.

3.4.3 Remnants mass distribution

Figure 3.19 and 3.20 show the remnants mass distribution we obtain by evolving a population
of 106 isolated single stars with an initial-mass function (IMF) dN/dMZAMS ∝ M−2.35

ZAMS
(Kroupa 2001) and MZAMS ∈ [15 M⊙; 150 M⊙] for non-rotating and rotating progenitors,
respectively. The mass of the remnant formed for each values of

[
Fe/H] and MZAMS is

estimated by interpolating the MBH–MZAMS curve we find in Sec. 3.3.3, 3.3.4.
The panels of Figure 3.19 show several peaks in the remnants mass distribution. The most

apparent peak of the remnants mass distributions is the one that corresponds to compact objects
with mass 0.8—2 M⊙. This peak is a feature of the IMF and it shows up for all the considered
metallicities for the non-rotating stars. It emerges because the majority of stellar progenitors
extracted from the Kroupa IMF lie in the low-mass end with MZAMS ∈ [15 M⊙; 20 M⊙], and
they are expected to form NSs, as result of successful ccSNe.
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Figure 3.17: BH mass spectrum as a function of the CO core mass from various authors. Solid blue
line: this work, non-rotating progenitors at

[
Fe/H] = −3; long dashed orange line: set D of W17 (note

that these models are obtained from stellar tracks computed at Z = 0.1 Z⊙ for which the mass loss
has been inhibited, making these models distinct from those we used to compute the final remnant
masses.); dashed pink line: models from Spera and Mapelli, 2017 with Z = 1.3 × 10−2 Z⊙ (S17).
Circles (crosses) represent the models that are stable (unstable) against pair production, and squares

are the stars disrupted by PISNe.

At
[
Fe/H] = 0 (the top right panel of Figure 3.19), we find two other peaks in the remnant

mass distribution, at BH masses of ∼ 9—13 M⊙ and ∼ 23 M⊙. The first one shows up because
the MBH–MZAMS curve flattens out for MZAMS ∈ [30; 40] causing an accumulation of BHs at
∼ 13 M⊙ (see the top left panel of Figure 3.13). The peak at ∼ 23 M⊙ occurs at the transition
from successfully-exploding progenitors to those that directly collapse to BHs. The heaviest
BHs we obtain have masses ≃ 28 M⊙, consistent with the results presented in Sec. 3.3.3.
At

[
Fe/H] = −1 (top right panel of Figure 3.19) we find two peaks in the remnants mass

distribution at ∼ 13 M⊙ and ∼ 37 − 43 M⊙. The former corresponds to a local flattening of the
MBH–MZAMS curve in the region of progenitors with MZAMS = 30 − 40 M⊙, and the latter is
a degenerate effect due to the combination of the local flattening of the MBH–MZAMS curve
and to the effect of the onset of the PPISNe, which causes significant mass loss and produce
BHs with mass ∼ 37 − 48 M⊙. Furthermore, at this value of metallicity the heaviest BH that
forms has a mass ∼ 44 M⊙, in agreement with the results presented in Sec. 3.2.2, 3.3.3.

At
[
Fe/H] = −2 (bottom left panel of Figure 3.19), we find two peaks in the distribution

for BHs with masses of ∼ 40 M⊙, which again corresponds to the piling-up of BHs we obtain
from the PPISNe, and of ∼ 78 − 84 M⊙. This latter is the result of the piling-up of BHs
from the stellar progenitors with MZAMS between 80 M⊙ and 87 M⊙ where the slope of the
MBH–MZAMS curve decreases. Furthermore, the heaviest BHs that form have mass ∼ 83 M⊙.

As in the case
[
Fe/H] = −2, at

[
Fe/H] = −3 (bottom right panel of Figure 3.19) we

find that BHs pile up at masses ∼ 40 − 43 M⊙ because of PPISNe. We find that above the
threshold for DC, the BH mass distribution follows the IMF distribution, since stellar winds
are quenched and stars directly collapse to BHs with mass equal to MZAMS.
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Figure 3.18: BH mass spectrum as a function of the CO core mass for different PPISN prescriptions.
Solid blue line: this work, non-rotating progenitors at

[
Fe/H] = −3; dash-dotted orange line: F19

PPISN threshold (MPPISN
CO = 41 M⊙) applied to the S17 pre-SN progenitors; dotted green line: W17

PPISN threshold (MPPISN
CO = 28 M⊙) applied to the S17 pre-SN progenitors. Circles (crosses) represent

the models that are stable (unstable) against pair production, and squares represent the first star
exploding as PISNe.

In summary, the features emerging from the BH mass distribution significantly depend
on the adopted model, including the prescriptions for the pulsational pair-instability, and the
details of the SN explosion. Furthermore, we find that the peak in the probability distribution
corresponding to the transition between ccSNe and DC overlaps with the peak due to the
PPISNe for some metallicities (e.g.

[
Fe/H] = −1). Such peaks in the remnants mass

distribution are not only uncertain and model dependent, but also degenerate with the details
of the SN explosion mechanism.

From Figure 3.20 it is apparent that stellar rotation significantly affects the remnants
mass distribution. The peak corresponding to stellar progenitors extracted from the low-mass
end of the Kroupa IMF is now shifted to BH with masses ∼ 4 M⊙ for

[
Fe/H] = 0, −3

(upper left panel and bottom right panel of Figure 3.20, respectively) and ∼ 12 M⊙ for[
Fe/H] = −1, −2 (upper right panel and bottom left panel of Figure 3.20, respectively). This

effect is a degenerate feature of the abundance of stars with MZAMS = 15—20 M⊙ and the
outcome of the SN explosions at different initial metallicities for these stellar progenitors
(see Section 3.3.4). Thus, we find that rotating stellar progenitors cannot produce NSs. At[
Fe/H] = 0, we find that the distribution has a peak corresponding to ∼ 8 M⊙, which is due

to the local flattening of the MBH–MZAMS curve in the interval of MZAMS between 20 M⊙ and
25 M⊙. The heaviest BH we form at solar metallicity has mass ∼ 19 M⊙.

At
[
Fe/H] = −2 we find a peak in the remnants mass distribution corresponding to

BHs masses of ∼ 40 M⊙. This peak comes from the onset of the PPISNe. Such feature
is independent of the details of the SN explosion and depends only on the prescription for
the results of the PPISNe (combination of LC18 and W17 in this work). At

[
Fe/H] =

−3, we find a peak in the remnants mass distribution, which corresponds to BH masses of
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Figure 3.19: Normalized probability distribution of BH masses we obtain from a population of 106

stars whose mass follows a Kroupa, 2001 mass function (dN/dMZAMS ∝ M−2.35
ZAMS, dashed magenta

line in all the panels) in the range MZAMS ∈ [15 M⊙; 150 M⊙] for non-rotating stellar progenitors. The
yellow shaded area represents the mass interval of NSs assuming MNS ∈ [0.8 M⊙; 2.2 M⊙]. The Figure
shows the remnant mass distribution we obtain for

[
Fe/H] = 0 (upper left panel),

[
Fe/H] = −1 (upper

right panel),
[
Fe/H] = −2 (lower left panel), and

[
Fe/H] = −3 (lower right panel).

∼ 13 − 20 M⊙. The piling-up of BHs in this mass region is due to the particular shape of
the MBH–MZAMS curve in the region of MZAMS between 15 M⊙ and ∼ 30 − 40 M⊙. In such
region, the MBH–MZAMS curve has a local minimum at MZAMS = 25 M⊙, which produce a
BH with mass ∼ 13 M⊙. Thus, a wide interval of progenitors piles-up BHs with mass in the
interval ∼ 13 − 20 M⊙ (see also Figure 3.15). Furthermore, we find peaks in the remnant mass
distribution corresponding to BH masses of ∼ 40 M⊙ ∼ 43 M⊙ and ∼ 47 M⊙. The first peak is
a degenerate feature from both the SN explosion details and the prescriptions for the PPISNe.
The latter two depend only on the MZAMS—Mrem curve we assume for the PPISNe. Finally, it
is worth stressing that our results are based only on isolated single stars. Thus, considering
binary stellar systems may significantly affects the results one can found about the BH mass
spectrum.

3.4.4 Prescriptions for Population Synthesis Codes

In this section, we present a set of analytic prescriptions derived from our results. Such fitting
formulae can be implemented in population-synthesis models to calculate the mass of the
remnants, given the physical properties of the progenitor at the pre-SN stage.

The main value that our prescriptions provide is the fraction of mass that falls back onto
the compact remnant during the explosion dM/M, that is:

dM
M

=
Mrem

MpreSN
(3.3)
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Figure 3.20: Same as Figure 3.19 but for rotating progenitors.

with Mrem that is the final remnant mass we obtain from the explosion.
The fraction of ejected mass is parametrized as a function of either the absolute value

of the total energy, the binding energy of the stellar progenitor, or the CO core mass at the
pre-SN stage. The total energy is computed as:

Etot = Ebind + Eint + Ekin (3.4)

where Ebind is the binding energy of the whole progenitor, Eint is the internal energy and Ekin

is the kinetic energy of the stellar matter, over the whole progenitor.
The panels of Figure 3.21 show the linear fit we obtain for the non-rotating (left panels)

and the rotating progenitors (right panels), as a function of the absolute value of the total
energy (top), binding energy (middle), and CO core mass (bottom). For such analysis we
study the fate of the explosion independently of the initial metallicity, thus in each panel we
have all the models with

[
Fe/H] = 0 − 1, −2, −3.

We first consider non rotating progenitor models. We find that we can fit the relation
between dM/M and the absolute value of the total energy as:

dM/M =

aSN |Etot|+ bSN, |Etot| < |Etot|DC

0, |Etot| ≥ |Etot|DC
(3.5)

with aSN = 0.26 foe−1, and bSN = −0.11, and |Etot|DC = 4.17 foe. The latter is the value of
|Etot| for which dM/M = 0, i.e. for the DC.

From the top-left panel of Figure 3.21 it is apparent that two progenitors deviate signifi-
cantly from our best fit. We find one stellar progenitor that directly collapses to BH despite
having |Etot| < |Etot|DC, and one progenitor that explodes with |Etot| > |Etot|DC. The former
star has MZAMS = 60 M⊙ and

[
Fe/H] = 0 and ends its life as a He-star, while the latter has
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MZAMS = 60 M⊙ and
[
Fe/H] = −1, and ends its life as a RSG, and therefore its H envelope

is very loosely bound despite the high absolute value of the total energy. The relation between
dM/M and the binding energy Ebind can be fit as:

dM/M =

cSNEbind + dSN, Ebind < Ebind,DC

0, Ebind ≥ Ebind,DC
(3.6)

With cSN = 0.06 foe−1, and dSN = 0.04, and Ebind,DC = 15.9 foe.
From the central-left panel of Figure 3.21 it is apparent that one progenitor deviates

significantly from the best fit. This is again the model with
[
Fe/H] = −1 and MZAMS =

60 M⊙, which explode as a SN with a binding energy of Ebind = 19.5 foe. If we did not
consider this stellar progenitor, we would find a threshold value of ∼ 10.0 foe for the binding
energy above which the stars DC to BHs.

Finally, the relation between dM/M and the CO core mass MCO can be fit as:

dM/M =

eSNMCO + fSN, MCO < MCO,DC

0, MCO ≥ MCO,DC
(3.7)

With eSN = 0.06 M−1
⊙ , and fSN = −0.03, and MDC

CO = 17.2 M⊙, where again we find that
only the two progenitor stars with MZAMS = 60 M⊙,

[
Fe/H] = −1 (that explodes as a SN

despite having MCO = 21.4 M⊙ > MCO,DC), and with MZAMS = 60 M⊙,
[
Fe/H] = 0 (the

He-star with MCO = 16.6 M⊙ < MCO,DC that directly collapses into a BH) deviate from the
global trend.

In contrast, the right panels of Figure 3.21 show that rotating progenitors do not follow a
linear relation between dM/M and |Etot|, Ebind, or MCO, and that there are no threshold values
of any of these quantities that clearly separate stars which explode as SNe from stars which
DC to BHs. Therefore, we cannot find any linear relation between the properties of rotating
stars at the pre-SN stage and the final-remnant mass.

It is important to stress that - even in the case of non-rotating stellar progenitors - we can
only provide a rough estimate of the thresholds for the transition from stars that successfully
explode as ccSNe and stars that directly collapse to BH. From the left panels of Figure 3.21,
it is apparent that a linear relation is in place below the threshold for the DC, but that some
stars deviate from the expected trends, indicating that this approach fails to fully capture the
complexity of a SN explosion. Our analysis shows that the fate of the collapse of each stellar
progenitor is ruled only by the dynamics of the shock wave, i.e. the micro-physics effects
taking place during the explosion are crucial in determining its outcome.

3.5 Summary and Conclusion

In this Chapter, we studied the explosion of a subset of pre-SN models of massive stars
presented in Limongi and Chieffi, 2018. The subset contains massive stars with masses in
the range 13 − 120 M⊙, initial metallicities

[
Fe/H] = 0, −1, −2, −3, and initial rotation

velocities v = 0 km s−1, 300 km s−1. Using the HYPERION code (Limongi and Chieffi, 2020),
we simulate the explosion by removing the inner 0.8 M⊙ of the iron core, and injecting a
given amount of thermal energy at the edge of this zone. Such approach required a set of
free parameters to model the injection of energy. To fix these parameters, we have performed
several calibration runs of a stellar progenitor similar to the progenitor of SN 1987A (Sk —
69°202), aimed at reproducing the observed kinetic energy of the ejecta (∼ 1.0 foe) and 56Ni
mass (∼ 0.07 M⊙) (Arnett et al., 1989; Utrobin, 1993; Utrobin, 2006; Utrobin, Immler, and
Weiler, 2007; Blinnikov et al., 2000; Shigeyama and Nomoto, 1990).
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Once we have chosen the explosion parameters, we have adopted this combination for
the explosion of all the models of our grid of stellar progenitor, obtaining both successful
and failed explosions (DC to BHs), depending on the initial stellar parameters, i.e. mass,
metallicity and rotation velocity.

We find that:

• The metallicity plays a crucial role in the pre-SN evolution of a star, since it is strongly
connected with the efficiency of stellar winds. For non rotating models, progenitors
with

[
Fe/H] = −2 and

[
Fe/H] = −3 evolve at roughly constant mass during their life,

while for
[
Fe/H] = 0 and

[
Fe/H] = −1 the stellar winds remove a significant fraction

of mass from the stellar progenitor. For these models we find that the threshold masses
above which the stars undergo a DC to BH are MZAMS ≃ 60 M⊙ for

[
Fe/H] = 0, −2, −3

and MZAMS ≃ 80 M⊙ for
[
Fe/H] = −1. The most massive BH has mass of ≃ 91 M⊙,

and comes from the DC of the most massive star at
[
Fe/H] = −3 not undergoing

PPISNe (assuming that MPPISN
CO = 33M⊙, see below).

• The presence of an initial angular rotation enhances the mass loss, and induces the
formation of larger convective regions, and therefore larger CO cores, i.e. more bound
structures. Thus, we find that for rotating stellar progenitors, the transition from a
successful SN explosion to a DC to BHs occurs at lower MZAMS values (∼ 20 M⊙,
∼ 30 M⊙, ∼ 15 M⊙, and ∼ 20 M⊙, for

[
Fe/H] = 0,

[
Fe/H] = −1,

[
Fe/H] = −2,

and
[
Fe/H] = −3, respectively) than for the non-rotating progenitors. In contrast,

because of the enhanced mass loss driven by rotation, even if more stars DC to BHs,
the maximum BH masses formed are lower than for non-rotating stars. In addition,
the chemical mixing induces the onset of the PPISNe at lower values of MZAMS with
respect to the non-rotating progenitors. As a result, the maximum BH mass formed
by rotating progenitors is ∼ 41 M⊙, which comes from the DC of a stellar progenitors
undergoing PPISNe, that we model according to the results of W17 (assuming that
MPPISN

CO = 33 M⊙, see below).

• The maximum BH mass formed is very sensitive to the adopted criterium for the
onset of PPISNe, which can be expressed in terms of the maximum CO core mass
above which stars enter the PPISN regime, MPPISN

CO . From our simulated grid we
find that 30M⊙ < MPPISN

CO < 50M⊙, which is consistent with most of the published
results. However, these vary considerably, from the lowest value adopted by S17,
MPPISN

CO = 24 M⊙, to the highest value adopted by F19, MPPISN
CO = 41 M⊙. Such a

discrepancy results in a significant uncertainty on the maximum BH mass, which can
be as low as ∼ 53 M⊙ in the case of S17, or even as high as ∼ 87 M⊙, which is the case
of this paper.

• We have applied the results of our simulations to a populations of 106 stars whose masses
are distributed accordingly to a Kroupa-IMF. The resulting BH probability distribution
depends on the initial stellar metallicity and rotation rate, and encode information on
the progenitor mass - BH mass relation. We showed that the features emerging in
the BH mass distribution depend significantly on the adopted stellar models and show
significant degeneracies.

• We provide linear relationships between the mass ejected during the explosion dM/M
and the structural properties of the stellar progenitors at the pre-SN stage, such as the
binding energy, the CO core mass and the absolute value of the total energy. Such
relationships have been found only in the case of non-rotating stellar progenitors, even
if some stars deviates from the linear fit. In contrast, we do not find any monotonic
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relationship between dM/M and the progenitor’s properties in the case of rotating stellar
progenitors. We showed that, despite the relations can be adopted for fast population-
synthesis studies, they fail to capture the details of the link between progenitor stars and
their compact remnants.

It is worth mentioning that in this work we calibrate the explosions on the observational
properties of SN1987A (i.e. the kinetic energy of the ejecta, and the mass of 56Ni ejected
into the interstellar medium). In a follow-up study we will a possible improvement will be to
broaden the set of SNe used for the calibration process.
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Figure 3.21: Linear relation between the mass that falls back after the explosions and some structural
properties of the stellar progenitors at the pre-SN stage, such as the absolute value of the total energy
(top panels), the binding energy (central panels) and the CO core mass (bottom panels). We have
performed such analysis both for the non-rotating (left panels) and for the rotating stellar progenitors
(right panels). We study the fate of the explosion independently of the initial metallicity, thus in each
panel we have all the models with

[
Fe/H] = 0 − 1, −2, −3. In each panel the circular orange points

are the stellar progenitors undergoing successful SN explosions and the best fit for dM/M is the solid
red line, while the diamond purple points represents the progenitors which DC to BHs. The black
dashed line corresponds to dM/M = 1 i.e., the value of dM/M for the DC. The red shaded area is the

95% confidency interval for the SN linear regression.
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Chapter 4

Constraining the features of the BBH
mass distribution through population
synthesis simulation

This Chapter is based on Ugolini et al., in prep.

4.1 Introduction

In this Chapter, we aim to reproduce a well-known feature of the black hole (BH) mass
spectrum obtained from gravitational wave (GW) detections, the so-called PPISN-peak at
approximately 34 M⊙ in the distribution of the mass of the primary BHs (Stevenson et al.,
2019; Abbott et al., 2021; Abbott et al., 2023; Karathanasis, Mukherjee, and Mastrogiovanni,
2023).

Our goal is to study the astrophysical processes behind this accumulation of massive
objects at this particular mass, and we addressed this problem in the scenario of isolated
binaries, assuming that all merging BBH binaries originate from massive stars born in binaries
that remain gravitationally bound from their formation until merger.

4.2 Methods

We used catalogs of isolated binaries simulated with the state-of-the-art population synthesis
code SEVN ( see Section 2.2 for further details). SEVN is a highly flexible tool for population
synthesis, utilizing on-the-fly interpolation of pre-computed stellar evolution tracks, making it
both efficient and adaptable for different evolutionary scenarios. In this work we adopted the
standard tracks computed with the PARSEC code (see for more details Bressan et al., 2012;
Costa et al., 2021). We use the latest version of SEVN (Spera and Mapelli, 2017; Spera et al.,
2019; Iorio et al., 2023), described in Iorio et al., 2023.

The code is presented in Section 2.2, in this section I will discuss the initial condition for
the various simulations we performed.

4.2.1 Initial conditions for the simulations

We sample the masses of the primary stars from a Kroupa initial mass function (IMF, Kroupa,
2001), therefore their mass is distributed as:

pdf(MZAMS,1) ∝ M−2.3
ZAMS,1 with MZAMS,1 ∈ [8, 150] (4.1)

The mass ratio is drawn from the distribution found by Sana et al., 2012, based on the
observation of massive stars in young clusters. Thus, we have:
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pdf(q) ∝ q−0.1 with q =
MZAMS,2

MZAMS,1
∈ [qmin, 1.0] (4.2)

qmin = max

 5.0
MZAMS,1

, 0.1

 (4.3)

The masses of the secondary stars is determined simply as:

MZAMS,1 = qMZAMS,2. (4.4)

The lower cutoff for the primary (secondary) distribution, set at 8.0, M⊙ (5.0, M⊙), is slightly
higher than the fiducial values used in Iorio et al., 2023. This adjustment is due to our focus
on BBH (binary black hole) systems, particularly their high-mass end. Finally, also the initial
orbital periods P and eccentricities e are sampled according to Sana et al., 2012 as:

pdf(P) ∝ P−0.55, with P = log(P/day) ∈ [0.15, 5.5] (4.5)

and:
pdf(e) ∝ e−0.42, with e ∈ [0, 0.9] (4.6)

We generated 107 binaries and we used them as initial conditions for all our simulations
(varying the initial metallicity and the combination of the other parameters). The total mass
of the simulated binaries is3.9 × 108 M⊙, with a correction factor that takes into account for
incomplete IMF sampling due to the mass cuts of fcut = 0.185.

For each combination of the SSE and BSE parameters, we performed 60 set of simulations,
combining 15 different metallicities and 5 values of α for a total of 900 possible configurations
(see Table 4.1, for all the other processes, we kept the fiducial assumptions of the SEVN
code, see Iorio et al. 2023) of metallicity Z, CE efficiency α, ccSN and PPISN prescriptions.
Furthermore, we simulated also a scenario where the mass transfer was assumed to be stable
(assuming the delayed_Gauss and M20models for ccSNe and PPISNe, respectively). Finally,
we investigated the impact of a top-heavy IMF (for further details see Section 4.4.4) on the
results of the simulations. Thus, for α = 3, 5, 10 we simulated the evolution of a population
generated according to a Larson IMF (see Larson 1998).

In total, we studied the evolution of 9.6 × 109 binary systems.

Table 4.1: List of all the parameters describing the SSE and the BSE of our systems. See 2 for details
on the ccSN and PPISNe treatment.

Parameters Values
α CE 0.5, 1.0, 3.0, 5.0, 10, MT stable
ccSN treatment delayed_Gauss, rapid_Gauss, U24.
PPISN treatment noPPISN, F19, M20, U24.
Metallicity 2 × 10−4, 3 × 10−4, 4 × 10−4, 5 × 10−4, 7 × 10−4, 1 ×

10−3, 1.4 × 10−3, 2 × 10−3, 3 × 10−3, 4 × 10−3, 5 × 10−3,
7 × 10−3, 1 × 10−2, 1.4 × 10−2, 2 × 10−2.
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4.3 Results

4.3.1 Effect of SSE prescriptions

In this work, we focus on BBH systems that merge within a Hubble time. Figure 4.1 illustrates
the mass distribution of the primary black holes (BHs) of these merging systems, specifically
for a fiducial value of common envelope (CE) efficiency, α = 3. Each row in Figure 4.1
represents a different prescription for core-collapse supernovae (ccSNe): delayed_Gauss
(top row), rapid_Gauss (central row), and SN_U24 (bottom row). Correspondingly, each
column shows different criteria for the onset of PPISNe: noPPISN (first column), M20 (second
column), F19 (third column), and U24 (fourth column), as outlined in Table 4.1. The color
variations in each panel reflect different progenitor metallicities.

From the top row of Figure 4.1, it is evident that the delayed_Gauss prescription yields
an increased production of low-mass BHs (≤ 5 M⊙), accompanied by a notable peak in the
range 15 − 22 M⊙. Additionally, there is a pronounced tail of fewer but more massive BHs
(MBH ≥ 60 M⊙). This distribution pattern indicates that delayed explosions are conducive
to the formation of lower-mass black holes due to increased fallback during the supernova
process. In contrast, the central row shows the rapid_Gauss prescription, which results in
a significant reduction of low-mass BHs. In this scenario, BHs with masses less than 5 M⊙
are rare, while a more prominent pile-up occurs around 10 M⊙. The higher-mass tail is also
less pronounced compared to the delayed_Gauss prescription. These results align with the
known characteristics of the rapid explosion model, where the lack of fallback reduces the
formation of lower-mass black holes (see Fryer et al. 2012).

The bottom row displays the mass distribution for the SN_U24 prescription. At lower
masses, this prescription produces results similar to delayed_Gauss, but with generally
higher-mass BHs, where the peak shifts slightly upward (∼ 20 M⊙). The tail towards higher
masses is also more populated compared to both the delayed and rapid scenarios. This suggests
that the SN_U24 model retains more mass during the collapse, leading to a preference for
slightly heavier remnants.

The different PPISNe prescriptions across columns also significantly impact the primary
BH mass distribution. In the first column (noPPISN), we observe an extended high-mass
tail, with BH masses reaching beyond ∼ 100 M⊙. This absence of PPISNe effects allows
massive progenitors to retain more mass, ultimately collapsing into heavier BHs. For the
M20 prescription, the primary effect is a sharp upper cutoff in BH mass, with a maximum at
approximately 50−60 M⊙. In contrast, both the F19 and U24models (third and fourth columns,
respectively) allow for a tail of BHs with masses extending to ∼ 90 M⊙. The differences
between these models stem from the varying CO core mass thresholds at which pulsational
pair-instabilities are triggered, with U24 and F19 permitting slightly higher thresholds (MCO =
35 M⊙ and MCO = 38 M⊙, respectively) compared to M20 (MCO = 28 M⊙).

From Figure 4.4.2, we can also find broader patterns related to progenitor metallicity. The
contribution to BH masses above ∼ 30 M⊙ primarily originates from low-metallicity progeni-
tors (Z ≤ 5 × 10−4). This behavior is consistent across all SSE and PPISNe prescriptions, as
lower metallicities reduce the impact of stellar winds, allowing more massive stars to form. In
contrast, BHs with masses below 10 M⊙ are produced even at higher metallicities, indicating
that these lighter BHs are less sensitive to metallicity-driven mass loss. Interestingly, the peak
at ∼ 35 M⊙ appears consistently across different prescriptions, with only minor variations
depending on whether PPISNe are included. This suggests a robust astrophysical mechanism
behind the accumulation of BHs at this mass, which we will explore further in Section 4.4.

Overall, the choice of SSE prescription significantly shapes the primary BH mass distri-
bution, particularly at the lower and upper ends of the mass spectrum. The delayed_Gauss
prescriptions favor lower-mass BHs, while the rapid_Gauss treatment produces a dearth of



4.3. Results 83

BHs below 5 M⊙. The SN_U24 model tends to yield heavier remnants, which is reflected in
both the peak mass and the extended high-mass tail.

We show all the distributions for the different values of α in Appendix B.

4.3.2 Effect of BSE prescriptions

In the previous section, we showed the effect of different SSE prescriptions on the primary BH
mass distribution of the merging BBH systems. In this section, we focus on the impact of BSE
processes, particularly the efficiency of the CE phase, on the primary BH mass distribution of
BBHH systems that merge within a Hubble time.

Figure 4.2 presents the mass distribution of primary BHs for merging BBH systems under
different CE efficiencies. We consider a range of values α = 0.5, 1, 3, 5, 10, along with a
scenario where mass transfer (MT) is assumed to be always stable. In the Figure, we fixed
the combination of SSE parameters choosing as treatment for the ccSNe and the PPISNe
delayed_Gauss and M20, respectively. Henceforth, we will refer to this configuration as
"fiducial" model.

In the upper-left panel, we show the primary BH mass distribution distribution of the
merging BBHs as function of metallicity, assuming a CE efficiency α = 0.5. This low
efficiency results in many systems undergoing a CE phase merging before they can successfully
eject the envelope, thereby reducing the number of BBH systems that will merge through
gravitational-wave (GW) emission within a Hubble time. However, for those systems that
do successfully eject the CE, the orbit experiences significant shrinking, which increases
the likelihood of a future merger. In this scenario we notice that the least massive BHs, i.e.
MBH ≲ 10 M⊙ are predominantly produced in more metal-rich environments (Z ≳ 0.0014 =
0.1 Z⊙). On the other hand, the most massive BHs are produced mainlyfrom metal-poor
progenitors (Z ≤ 7 × 10−4 ∼ 0.05 Z⊙).

In the upper middle panel, we show the primary BH mass distribution for α = 1. This
choice assumes that all the binding energy lost by the system due to the orbit shrinking is then
transferred to the envelope, to fuel its ejection mechanism. With this efficiency, we observe an
increased number of BBH mergers compared to α = 0.5. The higher masses in the BH mass
distribution continue to be predominantly formed in metal-poor systems, whereas less massive
BHs (10 ≲ MBH ≲ 20 M⊙) are produced by a mix of metal-rich and metal-poor progenitors.
Finally, low-mass BHs are produced mainly by metal-rich progenitors.

The upper-right panel shows the mass distribution for α = 3. In this scenario ( and in the
following ones, α = 5, 10), the energy injected into the CE is three times the amount produced
by the shrinking binary orbit. This increased efficiency allows more systems to successfully
eject the CE, but also implies that there is an additional source of energy that contributes
to the ejection mechanism. In this scenario, we find a more even distribution of low-mass
BHs (3 M⊙ ≲ MBH ≲ 10 M⊙) across all metallicities. BHs in the mass range 10 − 20 M⊙
are produced mainly from metallicities ≲ 2 × 10−3 ∼ 0.15 Z⊙, whereas the higher-mass BHs
(≥ 20 M⊙) are primarily produced by metal-poor (7 × 10−4 ∼ 0.05 Z⊙) systems.

For α = 5, illustrated in the lower-left panel of Figure 4.2, we find that the trend is similar
to that seen with α = 3. The low-mass BHs are produced across a range of metallicities and
high-mass BHs predominantly formed from low-metallicity progenitors.

In contrast, for α = 10 the CE is ejected so efficiently that this phase does not last long
enough to significantly shrink the binary orbit, resulting in fewer systems merging within a
Hubble time, particularly at higher metallicities. This last result is due to the effect of stellar
winds in loosening the orbit, that, on turn, reduces the BBH merger efficiency. Consequently,
the primary BH mass distribution is dominated by metal-poor systems, since for them the
stellar winds are quenched. The lower-right panel presents the scenario where mass transfer is
assumed to be always stable. In this case, the CE phase is largely suppressed, though it can
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still occur when both stars overfill their RL (see Iorio et al., 2023). When it does occur, the CE
is treated with the fiducial efficiency α = 3. However, for such a choice of the BSE treatment,
we find that rather few low-mass primary BHs are produced. This is because such BHs are
mainly the result of binaries that evolve through a CE phase (see 4.3.2 for further details).
When produced, such BHs are mainly the result of the evolution of metal rich systems, that
dominates the production of primary BHs up to MBH ∼ 10 M⊙. Instead, more massive primary
BHs are mainly produced by metal-poor stars, with Z ≤ 7 × 10−4.

Furthermore, in the various panels of Figure 4.2 we show also the number of BBH mergers
we obtain from the total population. We find that this number is significantly affected by the
efficiency of the CE, growing with α up to α = 3, for which we have the maximum number of
mergers, that then starts decreasing for higher CE efficiencies.

For α = 0.5 we find ∼ 9.5 × 105 BBH merging through GW emission. Thus, this choice
of α implies that we have a substantial number of stellar mergers during the CE phase, as
confirmed also in other works (e.g. Iorio et al. 2023). At a slightly higher efficiency α = 1,
the total number of BBH mergers is 1280657. Thus, we find ∼ 33% more mergers than the
scenario with α = 0.5. This is because the CE phase is shorter and we have less stellar merger
because of the orbital shrinking.

At α = 3, we have the maximum number of BBH merger, ∼ 1.7 × 106 events. This is
the optimal value for the CE efficiency when it comes to producing merging BBHs. This is
because, such an efficiency is strong enough to successfully eject the CE but also not high
enough to prevents the binary from shrinking.

For higher values of the CE efficiency, α = 5, 10 we find that the number of mergers
increasingly decreases. We obtain ∼ 1.4 × 106 and 9.1 × 105 mergers, respectively. This is
because such high level of efficiency of the CE phase means that it does not last enough to
effectively shrink the orbit of the binary systems. Therefore, many of the system that were
shrunk through the CE phase at lower values of α, now remain too loose to merge within a
Hubble time. Finally, in the scenario where we assume the mass transfer to be always stable,
we find ∼ 8.5 × 105 BBH mergers. This represents the smallest number of BBH mergers
among the various BSE simulations and it is due to the inefficiency of the binary shrinking
mechanism: fewer systems experience a common-envelope (CE) phase compared to other
scenarios, while most depend on stable mass transfer (SMT) to decrease the binary’s orbit and
enable a BBH merger.

Overall, the efficiency of the CE phase plays a critical role in shaping the primary BH
mass distribution of merging BBH systems. Lower values of α lead to fewer successful
CE ejections and thus fewer BBH mergers, whereas higher values increase the number
of successful ejections but may reduce the orbital shrinking needed for eventual mergers,
especially at higher metallicities. The scenario with the MS assumed as always stable shows
that even without a dominant CE phase, BBH mergers can still occur, though the resulting
mass distribution differs significantly from those scenarios with frequent CE events.

4.4 Discussion

4.4.1 PPISN contribution to the 35 M⊙ peak

After the release of GWTC-2, and even more clearly after GWTC-3, it became evident from
the inferred primary BH mass distribution that there is a peak. As a result, the POWER LAW
+ PEAK fitting model has become the most commonly used approach for statistical analyses
based on the gravitational wave (GW) signals we recover from BBH mergers (Abbott et al.,
2021; Abbott et al., 2023). This peak appears at primary BH masses of approximately 34 M⊙.
However, the exact value of MBH for this peak is highly dependent on the Bayesian analysis
used, leading to several different proposed values (see Abbott et al., 2021; Abbott et al., 2023;
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Sadiq, Dent, and Wysocki, 2022; Callister and Farr, 2023; Farah, Fishbach, and Holz, 2024,
both from parametric and non-parametric models). Despite these differences, all proposed
values consistently place it within the 32–37 M⊙ mass interval.

Initially, the astrophysical explanation for the accumulation of BHs at this mass was
attributed to the onset of pulsational pair-instability supernovae (PPISNe) in the primary star
(see Talbot and Thrane, 2018; Stevenson et al., 2019; Belczynski et al., 2020; Karathanasis,
Mukherjee, and Mastrogiovanni, 2023; Iorio et al., 2023). This phenomenon significantly
affects the BH mass spectrum of massive stars, as it imposes an upper limit on mass and
provides an additional mechanism for producing BHs in the mass range of 30–40 M⊙. This
degeneracy was believed to be the primary cause of the peak observed in GW data.

However, recent literature (see, e.g., van Son, Justham, and De Mink 2021; van Son et al.
2022; Briel, Stevance, and Eldridge 2023; Hendriks et al. 2023; Farrah et al. 2023; Farah,
Fishbach, and Holz 2024) has highlighted other possible contributing factors to this peak.
We will further discuss the role of these additional contributions in Section 4.4.2. In this
section, we focus specifically on the contribution of PPISNe to the peak in the primary BH
mass distribution.

In Figure 4.3 we show the primary BH mass distribution, obtained by aggregating all the
simulated metallicities, for all the different SSE prescriptions and the fiducial value of the CE
efficiency α = 3.

The left panel shows the mass distribution for the delayed_Gaussmodel for core-collapse
supernovae (ccSNe). The central panel displays results for the rapid_Gaussmodel, while the
right panel presents the SN_U24 model. Each panel includes the results for different PPISNe
prescriptions: noPPISN (solid blue line), M20 (dashed purple line), F19 (dot-dashed orange
line), and U24 (dotted yellow line). Additionally, we show the number of merging BBH
systems with primary masses in the range 32− 37 M⊙, using the corresponding colors for each
PPISNe prescription.

In all panels, it is clear that the lower end of the BH mass spectrum is mainly influenced by
the chosen ccSN model, as BHs with masses ≲ 30 M⊙ form primarily through ccSNe. The left
and middle panels highlight the differences between the two Fryer et al., 2012 prescriptions. In
the delayed_Gauss scenario, we observe the formation of BHs slightly above the upper limit
of the NS (∼ 3 M⊙). In contrast, in the rapid_Gauss model, we see a characteristic gap in the
mass range 3–5 M⊙, followed by a distinct peak at ∼ 10 M⊙, consistent with the predictions of
Fryer et al., 2012. In the right panel, for the SN_U24 model, we find that fewer merging BBH
systems are produced overall, but the distribution is otherwise similar to that obtained from
the delayed_Gauss model. Furthermore, it is apparent that the impact of different PPISNe
prescriptions becomes significant only for BH masses MBH ≳ 30 M⊙, and this influence is
largely independent of the ccSN prescription. This is because PPISNe remnants are expected
to directly collapse into BHs, with the final remnant mass depending only on the criteria for
the onset of PPISNe and the mass loss due to pulsations.

In all panels of Figure 4.3, as discussed in Section 4.3.1, we find that the suppression of
PPISNe (in the noPPISN scenario) results in a significant tail of massive BHs. In this scenario,
BHs as massive as ∼ 80 M⊙ are consistently produced, with some outliers exceeding 100 M⊙.
On the other hand, all PPISNe prescriptions introduce a sharp cut-off around 40 M⊙, resulting
in fewer than 0.5% of primary BHs in merging systems having masses above this threshold.
Furthermore, in the mass range 32–37 M⊙, an overabundance of BHs is consistently observed,
regardless of the PPISNe prescription used. This peak is most pronounced in the M20 model,
which assumes a sharp transition at MHE ≥ 32 M⊙, leading to additional BH accumulation.
However, even in this case, PPISNe contribute only about 30% of BHs in the 32–37 M⊙ mass
range. Additionally, we observe roughly twice as many BHs in this range compared to the
adjacent mass intervals (28–32 M⊙ and 37–42 M⊙). Therefore, there must be an additional
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channel contributing to the formation of BHs in this specific mass range, which we will discuss
in detail in the following section.

4.4.2 Formation channel of BBH in the peak

In the previous section, we discussed the role played by the various SSE prescriptions, focusing
on the influence of the PPISN model on the primary BH mass distribution. We found that
while different PPISNe prescriptions can lead to an accumulation of BHs in the peak-mass
region (i.e. 32 − 37 M⊙), this effect remains secondary.

In this section, we study the role that BSE processes play in shaping the BH mass spectrum.
In Figure 4.4, we show the contributions of the two main evolutionary channels for massive

binary systems — binaries undergoing a CE event (purple lines) and binaries that evolve only
through SMT (blue lines) — to the overall population of merging binaries (black lines). The
Figure also illustrates the contribution of all metallicities in the catalog (solid lines) and the
metal-poor population (dashed lines), defined as stars with Z ≤ 5× 10−4 ∼ 0.03 Z⊙. All panels
represent simulations with the fiducial CE efficiency of α = 3.

Each panel of Figure 4.4 present a different combination of SSE models for ccSNe and
PPISNe. As discussed in Section 4.3.1, these combinations affect the BH mass distribution,
and Figure 4.4 shows that the CE and SMT channels contribute differently to the primary
BH mass distribution across the different models. The CE channel is particularly effective
in producing the low-mass BHs, especially with MBH ≲ 15 M⊙, and its contribution is
relatively independent of metallicity for these lower masses. On the other hand, the SMT
channel becomes significant only for MBH ≳ 10 M⊙, and it surpasses the CE channel for
MBH ≳ 20 M⊙, becoming the main contributor to the more massive BH population.

A distinct behavior emerges for MBH > 30 M⊙. The CE channel produces BHs more
evenly distributed across the mass spectrum, except in the case of the M20 PPISNe model,
as discussed in Section 4.3.1. On the other hand, the SMT channel shows a valley below
∼ 30 M⊙, followed by a bump in the 32–37 M⊙ range. This is suggesting a preference for
forming BHs in this specific mass interval. Such a finding aligns well with the recent work by
van Son et al., 2022; Briel, Stevance, and Eldridge, 2023. We also investigated the effect of
CE efficiency on the primary BH mass distribution. In Figure 4.5, we present the primary BH
mass distribution for the fiducial treatment of ccSNe and PPISNe (delayed_Gauss + M20)
for α = 0.5, 1, 3, 5, 10, as well as for the scenario in which MT is assumed to be always stable.
Note that in this latter scenario, the CE onset is strongly suppressed, although a CE phase may
still be triggered if both stars overfill their RL, in which case the CE efficiency is set to α = 3.

Figure 4.5 shows both CE and SMT channels (purple and blue lines, respectively) for all
simulated metallicities (solid lines) and metal-poor stars (dashed lines). The total primary BH
mass distribution is also represented (black solid line).

In the upper left panel, we show the results for α = 0.5. In this scenario the CE ejection is
not very efficient (see Sec. 4.3.2, resulting in a lower number of BBH mergers. However, the
CE phase is very efficient at shrinking the binary’s orbit, making the CE channel the dominant
mechanism for BBH mergers, and shaping the primary BH mass distribution. Almost all
the primary BHs with MBH ≤ 10 M⊙ are formed in systems that undergo at least one CE
phase. Such systems are mainly produced by the binaries with Z ≥ 5 × 10−4. Furthermore,
the CE channel is also the main contributor to the bump at 32 − 37 M⊙, though only slightly,
as ∼ 53% of the primary BHs contributing to the peak come from binaries with at least
one CE event. It also apparent from Figure 4.5 that the two channels are degenerate in the
mass interval 32 − 34.5 M⊙, while the CE channel produces significantly more BHs with
masses 35 − 37 M⊙. On the other hand, SMT produces an accumulation of BHs in the interval
between ∼ 13 M⊙ and ∼ 22 M⊙, accounting for ∼ 65% of the merging primary BHs formed
through SMT. Furthermore, it is apparent from Figure 4.5 that the 32 − 37 M⊙ mass interval is
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a region where primary BHs, that went through SMT during their life in the binary, tends to
accumulate. In the 32–37 M⊙ range, around 7% of BHs are formed, while the neighboring
intervals (27–32 M⊙ and 37–42 M⊙) contribute around 3% and 2%, respectively.

In the upper middle panel, we show the results we obtain for α = 1. In this scenario,
the CE phase is slightly less efficient in shrinking the binaries compared to α = 1, but more
systems successfully eject the shared envelope. This leads to a greater number of mergers in
general, as we discussed in Sec. 4.3.2.

The behavior for lower-mass BHs is similar to α = 0.5, with the CE channel being
dominant for MBH ≤∼ 12 M⊙ and remaining relevant up to ∼ 14 M⊙. Furthermore, the number
of mergers with primary BHs in the 32 − 37 M⊙ mass interval is increased by ∼ 7%, with
the CE channel again being the dominant contributor, constituting 57% of the systems in the
bump. Nonetheless, as we found for α = 0.5, the two channels are degenerate in the mass
interval 32 − 34.5 M⊙, while the CE channel produces more BHs for MBH ∈ [35, 37.5].

On the other hand, the population of primary BHs produced through the SMT channel
does not depend on the efficiency of CE, since these systems do not undergo CE phases.
Therefore, we retrieve the same properties we found for α = 0.5.

For α = 3 (upper right panel), we fint the maximum number of most merging BBHs,
as discussed in Sec. 4.3.2. However, in the primary BH masses produced by binaries
experiencing at least on CE event, we see a shift toward lower BH masses. The CE remains
the dominant channel up to MBH ∼ 16 M⊙. Furthermore, in this scenario the 32− 37 M⊙ bump
is primarily populated by BHs produced in systems that evolve through the SMT channel.
Such systems now account for 54% of the BHs in the 32 − 37 M⊙ mass interval, with both
channels contributing similarly in the 35 − 37 M⊙ mass range.

In the lower left panel, we show the primary BH distribution for α = 5. In this scenario,
the CE ejection is highly efficient, leading to a reduced efficiency in shrinking binaries.
Therefore, there are fewer BBH mergers compared to previous cases (see also Section 2.2.2).

The CE channel remains the primary contributor for BBH mergers with primary BH masses
≤ 14 M⊙. On the other hand, the SMT channel produces BHs dominates the 16 − 22 M⊙ and
32 − 34.5 M⊙ mass intervals. In this latter, we find that 65% of the systems have evolved
without experiencing a CE phase, i.e. are produced by SMT-binaries. In turn, the system that
populated this mass interval which evolved through CE are decreasing. This is because they
not able to merge within a Hubble time since the CE is promptly ejected, and thus the system’s
semi-major axis remain too big to allow for a BBH merger.

In the lower central panel, we show the results for α = 10. CE-binaries mainly produce
primary BHs with mass ≤ 15 M⊙, while SMT-binaries dominate the at higher mass range,
shaping the primary BH mass distribution. Furthermore, we find that 83% of the systems never
triggered a CE episode. Additionally, the shape of the primary BH mass distribution is very
close to the scenario with α = 0.5, with also a similar number of BBH mergers. The main
difference is the broadness of the primary BH mass peak, that for higher α is concentrated
between 32 M⊙ and 34.5 M⊙, while for lower α extends up to 37 M⊙.

Finally, in the lower right panel we present the scenario where mass transfer is always
assumed to be stable. As discussed in Sec. 4.3.2 this assumption does not entirely prevent CE
phases, which may still occur if both stars overfill their RL. When a CE phase is triggered it
is treated with the usual energy formalism, with an efficiency value α = 3. In this scenario,
the CE channel becomes a secondary contributor, with even the least massive BHs now being
formed through SMT. Interestingly, the CE channel still plays a role in forming the most
massive BHs, contributing 38% of the primary BHs in the bump mass interval.

Therefore, our analysis indicates that the CE and SMT channels play distinct but comple-
mentary roles in shaping the primary BH mass distribution. The CE channel is most effective
for forming lower-mass BHs, while the SMT channel dominates at higher masses, particularly
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in the 32–37 M⊙ peak region. These findings highlight the complex interplay between different
binary evolutionary processes in determining the characteristics of the BH mass spectrum.

4.4.3 Progenitors of the systems in the peak

In the previous section, we showed the role that CE efficiency plays in shaping the primary BH
mass distribution. In this section, we will study the properties of the systems that contribute to
the bump in the 32–37 M⊙ mass range.

In Figure 4.6 and Figure 4.7, we show the distribution of the evolutionary phases of the
two stars of the binary at the onset of the first SMT (blue bars) and of the first CE (purple bars)
event. Figure 4.6 shows the results for the metal-poor population (Z ≤ 5 × 10−4). We find
that the first SMT episode typically occurs when the primary star is a core-helium burning
(CHeB) star and the secondary is still on the main sequence (MS). A secondary, less common
channel occurs when both stars are on the MS at the onset of SMT, accounting for ≲ 30% of
bump-BHs formed through SMT.

On the other hand, the bump-BHs produced through CE experience such a phase mainly
when both stars of the binary are in the CHeB stage. However, as illustrated in the various
panels of Figure 4.6, other combinations of evolutionary phases are also present, even though
they are not significantly influenced by CE efficiency, apart from the number of events (see
Section 4.4.2 for more details). For the various CE efficiencies (upper-row panels and left and
middle panels of the bottom row of Figure 4.6), a fraction of the CE events takes place for
different evolutionary stages of the stars. The most common of these is the combination of a
black hole (BH) and a CHeB star, indicating that the primary has already collapsed into a BH
before the first CE episode which accounts for ≳ 50% of the non CHeB + CHeB events for
α ≤ 5.

Other, less frequent scenarios include, in order of occurrence, terminal core-helium
burning (TCHeB, where the star has begun forming a CO core) + CHeB, CHeB +MS, and
TCHeB +MS. The latter two combinations typically result from stellar collisions, where the
stars’ radii overlap at periastron (see Iorio et al., 2023 for more details). Furthermore, we find
that the CHeB + MS scenario becomes the second most efficient combination for α = 10,
instead of the BH + CHeB scenario.

In the scenario where MT is assumed to be always stable (bottom right panel of Figure
4.6), we retrieve features similar to the case for α = 10, although the number of events is
higher. This is because, even for systems that only experience SMT, a CE event can still be
triggered if both stars fill their Roche lobe (RL), which occurs mainly for CHeB + CHeB
binaries. Figure 4.7 presents the combination of evolutionary stages for the bump-binaries,
now accounting for all simulated metallicities (see Table 4.1).

Comparing Figures 4.6 and 4.7, it is apparent—as previously shown in Figure 4.5—that
systems evolving only through SMT and forming primary BHs in the bump mass range
are primarily produced by metal-poor binaries. On the other hand, bump-primaries formed
through CE events exhibit a metallicity dependence that is coupled with CE efficiency. We
find that for α = 0.5, 1 a significant fraction of the total BHs in the 32 − 37 M⊙ mass interval
are produced by systems with Z ≥ 5 × 10−4. However, for higher values of the CE efficiency
(α = 3, 5, 10) the bump-primary BHs formed through CE episodes are formed mainly by
metal-poor stellar progenitors, a result similar to the scenario where MT is always stable. This
tendency is primarily due to the effect of stellar winds, which influence both the semi-major
axis of the binary’s orbit (see Section 1.2.2) and the stripping of hydrogen envelopes. Together,
these effects prevent both stars from simultaneously filling their RL.

We also studied the mass distribution of the bump-binaries. In Figure 4.8, Figure 4.9, and
Figure 4.10, we show both the primary (solid lines) and the secondary (dashed lines) masses,
both at the ZAMS (first row of each Figure) and at the occurrence of the first event (second row
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of each Figure). The figures show combinations of evolutionary stages that mainly contribute
to the two evolutionary paths: MS + MS in Figure 4.8, and CHeB + MS in Figure 4.9 for
SMT binaries, and CHeB + CHeB in Figure 4.10 for CE binaries. We distinguish also the
evolution channel (either CE or SMT, in purple and blue lines, respectively). Furthermore,
each column shows results for a different CE efficiency α = 0.5, 1, 3, 5, 10, and the scenario
where the MT is assumed to be always stable.

In Figure 4.8, we show the mass distribution of the primary and secondary stars of the
bump-binaries undergoing SMT when both stars are on the MS. For this stars the mass
distribution does not vary significantly, between the ZAMS and the first SMT episode. We find
that the primaries have masses mainly in the 70 − 90 M⊙ mass interval, with the the secondary
stars having masses in the 30 − 50 M⊙ mass interval. Furthermore, primary stars show a tail
towards higher masses, with a non-negligible number of binaries having MZAMS,0 ≥ 100 M⊙.
A similar trend is observed for secondary masses, with a tail extending to MZAMS,1 ≥ 70 M⊙.

In Figure 4.9 we show the mass distributions for CHeB +MS binaries, the most common
bump-producing combination for SMT. These results are similar to the MS +MS scenario,
though the tail towards higher masses is less populated. This is the most populated combination
of bump-binaries that evolve through SMT.

We find that the results for the SMT binaries are close to the MS + MS scenario. The
primary masses at the ZAMS are clustered between 70 − 90 M⊙, while secondary stars have
masses in the interval 30 − 60 M⊙ with a tail that extends to MZAMS,1 ∼ 90. However, at the
onset of the SMT the tail of the primary stars disappears, and all the masses are concentrated
in the 70 − 90 M⊙ mass interval.

The CE systems, though few in number, show a bimodal distribution both at ZAMS and
at the onset of CE events. For α ≤ 1, primary star masses at ZAMS are concentrated in the
intervals 60 − 90 M⊙ and 120 − 140 M⊙, with the secondary masses are distributed roughly
uniformly between 40 M⊙ and 90 M⊙. At the onset of CE, primary mass distributions show
again bimodality, with most masses in the intervals 40 − 60 M⊙ and 70 − 90 M⊙ for α = 0.5
and 40 − 50 M⊙ and 70 − 80 M⊙ for α = 1. The mass distribution of secondary stars exhibits
a similar behavior, with a bimodality around the mass intervals 30 − 50 M⊙ and 70 − 80 M⊙
for α = 0.5 and 30 − 60 M⊙ and 70 − 100 M⊙ for α = 1. On the other hand, for α ≥ 3, the
mass of the primary stars at the onset of the CE is clustered in the interval 30 − 50 M⊙. We
find the same result for the scenario with the MT always stable. Furthermore, for the high CE
efficiencies, we find that the secondary stars are either rather light, clustered around masses of
∼ 20 M⊙ with a secondary peak between 40 M⊙ and 60 M⊙.

In Figure 4.10, we show the mass distributions for CHeB + CHeB bump-binaries. In this
scenario, CE events are always triggered. We find that the mass distributions do not depend
on CE efficiency, either at ZAMS or at the onset of CE.

In Figure 4.10, we show the primary and secondary mass distributions at the ZAMS and
at the onset of the first event for CHeB + CHeB bump-binaries. For this configuration of
evolutionary stages of the two stars, see also Figure 4.6 and Figure 4.7, we have only binaries
that trigger at least one CE episode. We find that mass distributions do not depend on the CE
efficiency, both at the ZAMS and at the onset of the CE. Therefore, we find that to produce
primary BHs in the bump mass interval, both stars must have formed at ZAMS with a mass
ratio close to 1 (see Figure 4.11) and masses in the range 60 − 100 M⊙, primarily clustered
between 70 − 90 M⊙. At the onset of the CE event, the star masses are concentrated between
30 − 50 M⊙, again with mass ratio ∼ 1.

Finally, we studied the mass ratios between primary and secondary stars at the onset of
the first event. In Figure 4.11 we illustrate the results. The mass ratio q is computed as

q =
M0

M1
(4.7)
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where M0 and M1 are the primary and the secondary masses, respectively.
We show the mass ratios at the onset of the first SMT (in blue) or CE(in purple) event,

for the same evolutionary stages (MS + MS, CHeB + MS, and CHeB + CHeB) discussed
in Figure 4.6 and 4.7. The various columns in Figure 4.11 show the results for different CE
efficiencies: α = 0.5, 1, 3, 5, 10, and the stable MT scenario.

In the first row of Figure 4.11, we show the mass ratio distribution for the bump-binaries
that have the first SMT episode at the MS +MS evolutionary stage of the binaries. We find
that mass ratios are clustered in the interval 1 − 2.5, consistent with the mass distribution
of primary and secondary stars (see second row of 4.8), including for the tail towards more
extreme mass ratios.

In the second row of Figure 4.11, we present the mass ratio distribution of SMT and CE
binaries that have the first event as CHeB +Ms. For binaries that undergo SMT, we find that
mass ratios are clustered in the interval 1.5 − 2, without the extreme tails observed in the MS
+MS scenario. This result matches the mass distributions shown in the second row of Figure
4.9, with primary stars concentrated in the 70 − 90 M⊙ mass interval and secondaries stars
between 30 M⊙ and 50 M⊙. For CE binaries, we find a bimodal mass ratio distribution, with a
primary peak centered at q ∼ 1, and a less populated second bump (∼ 10% of CE binaries) at
q ∼ 2. However, this latter peak depends on CE efficiency and is more prominent for α ≥ 3.
Furthermore, some binaries have an inverted initial mass ratio q ∼ 0.5 at the onset of the CE,
indicating a previous SMT episode where the primary was the donor. In the scenario where
MT is always stable, we find a tail towards extreme mass ratios for SMT binaries, while the
second peak in the CE mass ratio distribution is suppressed.

In the third row of Figure 4.11, we show the mass ratio distribution for bump-binaries
that trigger undergo CE as CHeB + CHeB stars. We find that most of the binaries(∼ 85%
of the CHeB+ CHeB binaries in the bump) have q in the interval 1 − 1.25. The secondary
component of the mass ratio distribution correspond to 0.75 ≤ q ≤ 1. These latter are the
system that underwent SMT before the onset of the CE episode.

4.4.4 Effect of a top-heavy IMF

In the previous section, we presented the initial mass distribution of the bump-binaries, both
at the ZAMS and at the onset of the first SMT or CE event. We found that the progenitors
of these systems are massive, with the primary stars having MZAMS ≥ 70 M⊙. Therefore, the
choice of IMF used to generate the initial conditions plays a significant role in determining
the number of primary BHs produced in the 32 − 37 M⊙ mass interval.

In this section, we present the results obtained by generating the stellar population using a
top-heavy IMF. While we chose a Larson IMF (see Larson, 1998), it is worth mentioning that
this IMF is generally used for Population III stars, and applying it across all metallicities in
our simulations may be an extreme assumption. Nevertheless, the Larson IMF allows us to
explore the effects of favoring the formation of massive stars. In this case, Equation 4.1 takes
the form:

pdf(MZAMS,1) ∝ M−2.3
ZAMS,1e−Mc/MZAMS, 1 with MZAMS,1 ∈ [8, 150] (4.8)

where Mc is the mass cut in the exponential termset to Mc = 30 M⊙. This IMF favors the
formation of more massive stars, resulting in more BBH mergers overall, and significantly
more primary BHs in the bump mass interval. Other initial conditions are drawn according to
the fiducial set of parameters (see Section 4.2.1).

In Figure 4.12, we show the primary BH mass distribution of simulations using the Larson
IMF for various CE efficiency, α = 3, 5, 10. We distinguish systems that undergo at least on
CE event (purple lines) from those that only experience SMT (blue lines). We also display the
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aggregated primary BHs population of BBH mergers both for the fiducial Kroupa IMF (black
dashed line) and for the Larson IMF (black solid lines).

In the left panel, we show the results for α = 3. Similar to the Kroupa IMF scenario (see
4.3.2), primary BHs from SMT-binaries accounts for 54% of the bump population, while those
formed through at least one CE phase make up 46% of the BHs in the bump. Furthermore, we
find that the Larson IMF produces significantly more BBH mergers overall - approximately
67% more - particularly in the bump mass interval, where we observe ∼ 3 times as many
mergers. On the other hand, with a Larson IMF the number of low-mass primary BHs
produced does not increase significantly.

In the central panel, we present the primary BHs mass distribution for α = 5. For
this CE efficiency, the evolution of systems contributing to the bump is similar to that of a
population generated using a Kroupa IMF (see Section 4.3.2). Thus, 65% of the primary BHs
in the 32 − 37 M⊙ mass interval are formed in binaries that experience only SMT during their
evolution making them the dominant contributor to the bump. On the other hand, primary
BHs from CE binaries account for 35% of the bump population. However, with a Larson IMF
the absolute number of primary BHs in the 32 − 37 M⊙ mass interval increases significantly.
Similarly to the α = 3 scenario, also for α = 5 we find ∼ 3 times more BHs in the bump-mass
interval, while the total number of mergers increases by 68%.

In the right panel, we show the primary BH mass distribution for α = 10. As found for
the Kroupa IMF (see Section 4.3.2), the 32− 37 M⊙ mass interval is dominated by the primary
BHs produced in binaries that never undergo a CE phase, experiencing only SMT throughout
their life, and they constitute 83% of the primary BHs in the bump-mass interval. Once again,
as for α = 3, 5, we find that the sheer number of primary black holes (BHs) in the 32− 37 M⊙
mass interval is approximately three times the number obtained with a Kroupa IMF, while the
total number of BBH mergers is increased by ∼ 80%.

Therefore, we find that the net effect of a top-heavy IMF, such as the Larson IMF, is to
increase the total number of BBH merger. This effect is particularly pronounced for BHs in
the 32− 37 M⊙ mass interval. With a Larson IMF, we find roughly three times as many BHs in
this interval compared to a population generated using a Kroupa IMF, while the total number
of mergers increases by 67 − 80% depending on α.

4.4.5 A possible metric to estimate astrophysical processes from the primary
BH distribution

In the previous section, we presented the results obtained using a top-heavy IMF. In this
section, we introduce a potential metric that may help in breaking some of the degeneracies
identified in our analysis.

In Figures 2.2.2 and 4.12, we showed the effects of different BSE prescriptions and of
the use of a top-heavy IMF on the primary BH mass distribution. We found that high CE
efficiencies (α ≥ 5) suppress the formation of primary BHs in the bump-mass interval through
CE, leaving only BHs formed by binaries that evolve exclusively through SMT. Moreover, for
α ≤ 1∨ α > 5, we observed that the formation of low-mass primary BHs is also suppressed,
either due to stellar mergers during the CE phase in the former case, or due to insufficient
orbital shrinking during the CE phase in the latter. When using a top-heavy IMF, we observed
similar effects linked to CE efficiency, which partially suppresses the formation of low-mass
BHs (see Section 4.3.2 and 4.4.2).

Furthermore, for a top-heavy IMF the production of BHs in the 32 − 37 M⊙ mass interval
is enhanced, leading to ∼ 3 times more BHs with respect to the fiducial IMF scenario (see
Section 4.4.4).

Therefore, to break the degeneracies between CE efficiency and the IMF, we propose a
metric that combines the total number of BBH mergers with the relative number count of
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Table 4.2: Results of the simulations for various IMF. Column 1: CE efficiency α, Column 2: total
number of BBH mergers, Column 3: number of primary BH in the 5 − 10 M⊙ compared with those in
the 32 − 37 M⊙ mass interval, computed as in eq. 4.9, Column 4: fraction of SMT binaries producing

bump-primary BHs, Column 5: fraction of CE binaries producing bump-primary BHs.

α NBBH δN δNbump, SMT δNbump, CE

Kroupa IMF
3 1703979 21.72 0.071 0.016
5 1472677 20.92 0.071 0.012

10 913100 12.10 0.071 0.009
Larson IMF

3 2854895 10.31 0.098 0.030
5 2486064 9.844 0.098 0.023

10 1647830 5.75 0.098 0.017

BHs in the first and second peaks of the observed BBH population (see Abbott et al. 2023).
Specifically, we compute this value as:

δN =
NBH(5 ≤ MBH ≤ 10)
NBH(32 ≤ MBH ≤ 37)

(4.9)

where NBH(5 ≤ MBH ≤ 10) represents the number of primary BHs with mass in the 5− 10 M⊙
range, and NBH(32 ≤ MBH ≤ 37) is the number of primary BHs with mass in the 32 − 37 M⊙
interval.

We summarize the results of our simulations as function of α (Column 1) and in terms of
number of merging BBH NBBH (column 2) and δN (Column 3) in Table 4.2. In the Table, we
also present the relative abundance, with respect to the number of mergers per channel, of the
SMT and CE-BHs in the 32 − 37 M⊙ mass interval.

From Figure 4.12, and as summarized in Table 4.2, it is apparent that the relative height
of the two peaks is much more pronounced in the Kroupa IMF scenario. On the other
hand, for a Larson IMF we find that δN is approximately half that of the Kroupa IMF
(δNLarson ∼ 0.5δNKroupa). This difference arises because a top-heavy IMF is much more
efficient at producing bump-primary BHs compared to the Kroupa IMF. Furthermore, although
a Larson IMF produce generally more BHs, they are tends to be more massive. Thus, the
production of low-mass primary BHs does not experience the same increase as the bump-
primary BHs. This leads to lower values of δN for the same CE efficiencies.

Therefore, δN provides a metric for distinguishing between different values of α, particu-
larly when used alongside the total number of detected BBH mergers, which serves as a proxy
for the underlying IMF.

4.5 Summary and conclusions

In this Chapter, we have analyzed the features of the primary black hole (BH) mass distribu-
tion for binary black hole (BBH) systems using extensive population synthesis simulations.
Our primary focus was the so-called bump in the primary BH mass spectrum observed at
approximately 32–37, M⊙, a prominent feature in the inferred population of gravitational-wave
(GW) detections. Here, we summarize the main findings of our work:

• Role of PPISNe in Shaping the Bump: We found that pulsational pair-instability
supernovae (PPISNe) are not the sole contributors to the 32–37, M⊙ bump. While
PPISNe contribute by imposing sharp cutoffs at the upper end of the BH mass spectrum,
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their influence accounts for approximately 30% of the primary BHs in this mass range,
depending on the specific prescription used (e.g., M20, F19, or U24). The remaining
BHs in the bump are produced through binary evolution processes, particularly through
binaries that experience either stable mass transfer (SMT) or common envelope (CE)
events.

• Binary Evolution Channels and CE Efficiency: The 32–37, M⊙ mass interval is
shaped by distinct contributions from binaries that experience at least one CE event and
those evolving only through SMT:

– CE Channel: Binaries that evolve through CE events dominate the formation
of primary BHs below 15, M⊙. For α ≤ 1, the CE channel remains a significant
contributor to the bump but primarily for metal-rich progenitors. Higher CE
efficiencies (α ≥ 3) lead to a preference for metal-poor progenitors, as CE ejections
become too efficient, preventing sufficient orbital shrinking for higher-metallicity
systems to merge within a Hubble time.

– SMT Channel: SMT is the dominant evolutionary channel for producing primary
BHs in the bump range when α ≥ 3. For high CE efficiencies (α = 5, 10), 65% to
83% of bump-primary BHs are formed through SMT, indicating the critical role
of this channel in shaping the upper BH mass distribution.

• Progenitor Properties: The progenitors of bump-primary BHs are predominantly
massive stars:

– For binaries evolving through SMT, primary stars typically have zero-age main
sequence (ZAMS) masses in the 70–90, M⊙ range, with mass ratios (q = M1/M2)
between 1 and 2.5.

– For CE binaries, the progenitor stars generally exhibit mass ratios close to unity
and masses clustered in the 60–90, M⊙ range at ZAMS.

• Impact of Initial Mass Function (IMF): A top-heavy initial mass function (IMF),
such as a Larson IMF, significantly enhances the production of primary BHs in the
bump mass interval. Simulations using the Larson IMF yielded approximately three
times more BHs in the 32–37, M⊙ range compared to a Kroupa IMF. However, the
relative abundance of low-mass BHs (5–10, M⊙) to bump-primary BHs was notably
lower, suggesting that the IMF strongly influences the shape of the mass distribution.

• Proposed Metric for Degeneracy Breaking: To distinguish between different CE
efficiencies and IMFs, we introduced a metric, δN, defined as the ratio of primary BHs
in the 5–10, M⊙ mass range to those in the 32–37, M⊙ range. This metric:

– Decreases with higher CE efficiencies, as low-mass BHs are suppressed.

– Is sensitive to the choice of IMF, with top-heavy IMFs producing significantly
lower δN values due to the enhanced production of bump-primary BHs.

• Implications for Astrophysical Modeling: Our results emphasize the complex inter-
play between binary evolution processes, progenitor metallicity, and the initial mass
function in shaping the BBH mass distribution. Specifically:

– The observed 32–37, M⊙ bump likely arises from a combination of PPISNe and
binary evolutionary processes, with SMT playing a critical role for higher CE
efficiencies.
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– The efficiency of CE ejection and the IMF both significantly impact the rela-
tive abundance of low-mass and high-mass BHs, offering potential pathways to
constrain these parameters through GW observations.

– The proposed δN metric, combined with the total number of detected BBH merg-
ers, could serve as a powerful diagnostic tool to disentangle degeneracies between
CE efficiency and IMF.

In conclusion, this Chapter demonstrates the power of population synthesis simulations
in uncovering the underlying astrophysical processes shaping the BBH mass distribution.
By combining theoretical predictions with observational data, we can better constrain key
parameters, such as CE efficiency and the IMF, and gain deeper insights into the evolutionary
pathways leading to BBH mergers.
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Chapter 5

Conclusions

5.1 Results summary

In this Thesis, I explored the formation and evolution of massive BHs from both single and
binary star systems, addressing some critical uncertainties in stellar evolution and compact
object formation.

I employed advanced numerical tools such as the HYPERION code for core collapse
supernova simulations and the SEVN code for population synthesis.

5.1.1 Final fate of massive stars

In the first part of my work, I performed simulations of ccSN explosion starting from a grid of
evolved massive stars, simulated with the FRANEC stellar evolution code (see Chieffi and
Limongi, 2013; Limongi and Chieffi, 2018; Roberti, Limongi, and Chieffi, 2024). The stellar
progenitor had various initial masses, ranging between 13 M⊙ and 120 M⊙, initial metallicities[
Fe/H] = 0, −1, −2, −3, and initial angular velocities v = 0, 300 kms−1. I found that

both metallicity and angular rotation play a major role in determining the final fate of the
explosion and the final mass of the compact remnant. At higher metallicity (

[
Fe/H] = 0 and[

Fe/H] = −1), both for non-rotating and rotating stellar progenitors, stellar winds were strong
enough to completely remove the hydrogen envelope of the star, preventing the formation of
BHs more massive than ∼ 40 M⊙. On the other hand, lower metallicity stars (

[
Fe/H] = −2

and
[
Fe/H] = −3) present very different behaviors depending if they are or not rotating.

Rotating progenitors, however, experienced severe mass loss due to rotation-enhanced stellar
winds, entering the PPISN regime at lower initial masses, thus preventing the formation of
massive BHs. On the other hand, non-rotating stellar progenitors are able to form BHs well
within the upper-mass gap, as the FRANEC code predicts PPISN to appears for CO core
masses ≥ 33 M⊙.

I compared the BH mass results I obtained with predictions from other authors (see
Woosley, 2017; Spera and Mapelli, 2017; Farmer et al., 2019). We found that the lower edge
of the upper-mass gap can vary significantly depending on the chosen criterion for the onset
of PPISNe. While Spera and Mapelli, 2017 suggested that the most massive BHs formed
by an isolated massive star are around 60, M⊙, our method yielded approximately 87, M⊙.
Applying the criterion of Farmer et al., 2019 to stars with a hydrogen envelope, which they
originally applied to naked helium stars, suggested that isolated massive stars could form
intermediate-mass BHs, shifting the lower edge of the upper-mass gap to around 110, M⊙.
Furthermore, I discussed the several factors that have an impact on the onset of PPISNe, such
as different 12C(α, γ)16O reactions rate (see Farmer et al., 2019; Costa et al., 2021) or different
overshooting prescriptions (see Vink, de Koter, and Lamers, 2018).

Next, I studied the compact-object mass distribution by applying the results for ccSNe
and PPISNe to a population of 106 massive stars with MZAMS ∈ [15 Ms, 150 Ms], distributed
according to a Kroupa IMF (Kroupa, 2001). I showed that the features emerging in the BH
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mass distribution depend significantly on the adopted stellar models and show significant
degeneracies.

Finally, I provided fitting formulas to predict the final remnant mass from a ccSN based
on the stellar progenitor properties at the preSN stage. In the case of non-rotating progenitors,
some monotonic linear relationships were identified, though a few stars deviated from the fit.
In contrast, rotating progenitors did not exhibit any linear relationship.

5.1.2 Features of the BBH mass distribution

In the second part of my work, I implemented my findings on ccsNe in the SEVN code (Spera
and Mapelli, 2017; Spera et al., 2019; Iorio et al., 2023) for population synthesis. I simulated
the evolution of 9.6 × 109 binary systems assuming various prescriptions for the IMF, the
initial metallicity, the SN models, both ccSN and PPISN, and for the CE efficiency and mass
transfer stability.

The goal was to address the effects causing a piling up of primary BHs at 32 − 37 M⊙ in
the LVK data (see Abbott et al., 2021; Abbott et al., 2023). Initially, this peak was attributed
to PPISNe, which were thought to cause an accumulation of BHs in this mass range. I
explored this by assuming various ccSN models (delayed_Gauss, rapid_Gauss, SN_U24)
and PPISNe models (noPPISN, F19, M20, U24), for a fiducial CE efficiency α = 3. I found
that the contribution of PPISNe to the peak is highly model-dependent and it strongly depends
on the criterion for the onset of PPISNe. The bump is present even in the extreme noPPISN
scenario, where all the massive stars end their life as ccSN, and only with the M20 criterion
it was found to be more prominent, but still contributing ∼ 30% to the bump-population.
This is because such a criterion predicts a transition He-core mass of ∼ 32 M⊙, that indeed
causes an accumulation of BHs, while other criteria based on the CO core mass allow for the
formation of more massive BHs having threshold masses of ∼ 35 M⊙ and ∼ 38 M⊙, U24 and
F19, respectively.

However, since the peak is present even in a scenario where PPISNe are disabled, we
I inferred that an astrophysical phenomenon linked to the binary systems themselves must
be at play. Recent works by van Son et al., 2022; Briel, Stevance, and Eldridge, 2023,
suggests that the interplay between binaries undergoing CE or SMT may play a role in the
accumulation of BHs in the bump-mass interval. Therefore, we investigated various CE
efficiency α = 0.5, 1.0, 3.0, 5.0, 10 and a scenario assuming always-stable mass transfer. I
found that, depending on the binary processes in place, the channel through which bump-BH
were produced varies. For α ≤ 1, the bump is dominated by binaries that evolve through at
least one CE event, that on turn becomes a subdominant factor for higher CE efficiencies
(α ≥ 3), where most of the bump-BHs are produced by binaries that evolves only through
SMT, without ever triggering a CE phase.

I also analyzed the properties of stellar progenitors contributing to the bump systems.
SMT binaries predominantly have primary star ZAMS masses of 70− 90, M⊙ with mass ratios
in the 1.5 − 2 range, while CE binaries have MZAMS ∼ 60 − 90, M⊙ with mass ratios close to
unity.

I explored different IMFs, particularly top-heavy IMFs favoring massive stars. Using
the Larson IMF in simulations for a fiducial parameter set (delayed_Gauss + M20), I found
approximately three times more BHs in the 32–37, M⊙ range compared to a Kroupa IMF.
However, the relative abundance of low-mass BHs (5–10, M⊙) to bump-primary BHs was
notably lower. To disentangle degeneracies from various CE efficiencies and IMFs, I proposed
a metric, δN, defined as the ratio of primary BHs in the 5–10, M⊙ range to those in the
32–37, M⊙ range. Increasing α suppresses low-mass BH formation, decreasing δN. A top-
heavy IMF also reduces δN but produces more BBH mergers.
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By combining these quantities, we can deduce the astrophysical properties of BBH
progenitors, using GW merger populations detected by LVK as a tool to study astrophysics
rather than to fine-tune population synthesis codes.

5.2 Follow-up works and perspectives

The research presented in this Thesis is relevant to the astrophysical interpretation of gravi-
tational wave signals detected by both current and forthcoming generations of gravitational
wave observatories.

We are on the brink of the data release from the fourth observative run performed by the
LVK collaboration, which will greatly extend the currently known populations of massive
BHs. In this framework, to use these data to infer the astrophysical processes in place and the
possible environments that host GW events, we need the astrophysical model to be as accurate
as possible. Furthermore, in the next decade we expect the third generation GW detectors
to start searching for signals. Einstein Telescope, Cosmic Explorer and LISA will open a
new window on the universe, extending our grasp to an early stage of the universe and to new
kind of processes, from white dwarf binaries to the coalescence of extremely massive BHs.
Therefore, we need to be prepared.

In this Thesis, I presented our instruments and the first results we obtained. However,
we are far from a definitive stage and many improvements are possible, with some of them
hopefully on the way.

5.2.1 ccSN- Future perspective

In Chapter 3, we used the HYPERION code to simulate ccSNe by artificially inducing
shockwave formation. This was achieved by injecting a fixed amount of thermal energy well
within the iron core of massive stars of our grid. This method relies on several calibrated
parameters, which we tuned based on SN 1987A, a well-studied event with reliable estimates
of explosion parameters such as ejecta kinetic energy and 56Ni production. However, there is
debate in literature on the evolution SN 1987A stellar progenitor. However, debates remain
regarding the evolutionary history of SN 1987A’s progenitor. Expanding the calibration set to
include other supernova events, particularly by reproducing their lightcurves, would enhance
HYPERION’s predictive accuracy.

Another approach, that would bring to self-consistently achieved explosion, would be
to change HYPERION paradigm. We are currently investigating the possibility to interface
HYPERION with GR1D (Boccioli, Mathews, and O’Connor, 2021), a 1D hydrodynamics
code that incorporates GR-effects and neutrino energy transport. GR1D operates in the STIR
approximation (see Couch, Warren, and O’Connor, 2020), overcoming traditional limitations
of 1D models by projecting 3D turbulence effects into 1D. By using GR1D’s shockwave
velocity profiles at late explosion times (in its time domain, i.e., few seconds after the core
bounce) as input for HYPERION, we could replace the artificial energy injection paradigm.
This would allow us to distinguish between successful SNe and failed SNe more robustly and
to produce reliable estimates of NS and BH mass distributions alongside their progenitors.
When integrated into population synthesis codes, these estimates will provide more accurate
compact object distributions, aiding in modeling kilonova rates from BNS mergers and the
BBH mass distribution.

5.2.2 Improving the CE formalism

My analysis of primary BH mass distributions shows how BBH population data can be
exploited to infer the properties of binary progenitors and the efficiency of the CE process.
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However, even if this approach seems promising, orthogonal strategies are needed to
validate our results are not artifacts of a specific combinations of parameters in population
synthesis simulations.

With this goal in mind, one should look to the effects of the CE phase on the stellar
binaries. CE outcomes lead either to partial/full ejections of the shared envelope or to a stellar
mergers, after which the previously shared envelope is completely ejected. Therefore, after a
CE we will always expect an envelope ejection.

Furthermore, envelope ejections produce a particular kind of electromagnetic transients,
known as Luminous Red Novas (LRNs, see Pastorello et al., 2019; Pastorello et al., 2021a;
Pastorello et al., 2021b).

The properties of LRN lightcurves—linked to the ejected envelope’s mass and veloc-
ity—offer a theoretically robust method for constraining CE efficiency (see MacLeod et al.,
2017; Metzger and Pejcha, 2017; Matsumoto and Metzger, 2022). However, as emphasized
by Pastorello et al., 2021b, a population-level study is essential. Generating synthetic LRN
lightcurves and their rates across cosmic time would provide a means to cross-validate CE
models. This effort would benefit from the forthcoming LSST campaign by the Vera Rubin
Observatory, offering an extensive dataset for comparison. Improved CE formalism informed
by LRN observations would refine our understanding of binary evolution, directly linking CE
efficiency to GW event modeling.

5.2.3 The role of dynamic

In Chapter 4, I presented results for the 32− 37, M⊙ bump in the primary BH mass distribution
observed in GW detections.

I showed how our result could help constraining the properties of the stellar progenitors
of the BBH, and a possible metric to interpret our detections. However, this work has been
performed under a very strong hypothesis: that all the merging BBH are the results the isolated
binary formation pathway for GW merger.

In Chapter 1, I showed the effects that dynamical interaction have on a population of
massive stars. Furthermore, we know that in dense environments stellar dynamics produce
more massive binaries, both via stellar merger and through dynamical exchanges.

To reproduce the bump, I found that massive systems ZAMS masses ≳ 70 M⊙, and mass
ratios in the range 1 ∼ 2 are required. These systems are challenging to form in isolation but
could arise more naturally in dense environments due to dynamical interactions.

By integrating the catalogs of massive binaries produced in this work into the semi-
analytical code BPOP (see Arca Sedda et al., 2023), I aim to estimate BBH merger rates
self-consistently. This approach will allow us to distinguish between formation pathways and
assess the role of stellar dynamics in producing BHs within the bump-mass interval.
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A.1 Calibration parameters

In Section 3.2.1 we present the calibration of our parameters and the final set we choose to
stimulate the SN explosion in our simulations. In this Appendix we will discuss further the
contribution of the different parameters Einj, dminj and dtinj.

A.1.1 Calibration of Einj
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Figure A.1: The Figure shows the values of Eejecta (red diamonds, whose scale is on the left-hand
y-axes) and m56Ni (blue points, whose scale is on the right-hand y-axis) as function of Einj.

Figure A.1 shows the values that we find for Eejecta and m56Ni for different values of
Einj. We studied the variation of the outcomes of the explosion assuming dtinj = 10−9s and
dminj = 0.1M⊙, and by injecting the thermal energy at the arbitrary mass coordinate of 0.8M⊙.
The values we find for Eejecta and m56Ni are also reported in Table A.4.

We find that increasing the value of thermal energy inducing the explosion, Eejecta and
m56Ni increases as well. This is because the SN is stronger, thus the explosive nucleosynthesis
reaches outer layers of the star, i.e. producing more 56Ni.

We chose Einj = 2.0 foe because above this values we find an overproduction of 56Ni,
while the energy of the explosion is compatible with the value usually assumed in literature
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(see Arnett et al. 1989; Shigeyama and Nomoto 1990; Utrobin 1993; Utrobin 2006; Blinnikov
et al. 2000).

A.1.2 Calibration of dminj
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Figure A.2: The Figure shows the values of Eejecta (red diamonds, whose scale is on the left-hand
y-axes) and m56Ni (blue points, whose scale is on the right-hand y-axis) as function of dminj.

Figure A.2 shows the values that we find for Eejecta and m56Ni for different values of
dminj. We studied the variation of the outcomes of the explosion assuming dtinj = 10−9s and
dEinj = 2.0foe, and by injecting the thermal energy at the arbitrary mass coordinate of 0.8M⊙.
The values we find for Eejecta and m56Ni are also reported in Table A.5.

We find that if we choose to inject the energy in thinner layers, the explosion is more
energetic, and because of this when the shock reaches the silicon shell, the explosive Si-burning
is more efficient, with respect to scenarios with larger dminj. Thus, in these cases we have an
overproduction of 56Ni and the outcome of the explosion do not match the observations of
SN1987A.

Our simulations are in agreement with the observations for dminj = 0.1M⊙ and dminj =
0.4M⊙. We chose dminj = 0.1M⊙, since our goal was to obtain a parameter set in good
agreement with the observation of SN1987A, not the best parameter set because such analysis
would have required a more sophisticated approach, and to calibrate on multiple SN sources.
We will explore this aspect in an upcoming work.

A.1.3 Calibration of dtinj

Figure A.3 shows the values that we find for Eejecta and m56Ni for different values of dminj.
We studied the variation of the outcomes of the explosion assuming dtinj = 10−9s and
dEinj = 2.0foe, and by injecting the thermal energy at the arbitrary mass coordinate of 0.8M⊙.
The values we find for Eejecta and m56Ni are also reported in Table A.6.

we find that the Eejecta is roughly independent on the timescale over which we inject the
energy. On the other hand, the amount of 56Ni produced (i.e. the efficiency of the explosive
Si-burning) is strongly dependent on dtinj. From Figure A.3 we see that m56Ni is constant
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Figure A.3: The Figure shows the values of Eejecta (red diamonds, whose scale is on the left-hand
y-axes) and m56Ni (blue points, whose scale is on the right-hand y-axis) as function of dtinj.

for dtinj ≤ 10−3s, while for longer timescales the efficiency of the explosive nucleosynthesis
increases, resulting in an overproduction of 56Ni with respect to SN1987A. The value of m56Ni
reaches its maximum for dtinj = 0.1s, with m56Ni ∼ 0.085M⊙, while on longer timescales it
start decreasing. This is because the shockwave reaches the Si shell, where the production
of 56Ni takes place, at ∼ 0.2s, thus if the thermal energy is not completely injected before
this moment the shockwave will not have enough energy to trigger the complete explosive
Si-burning. This is apparent from Figure A.3 because for dtinj ≥ 0.2s the amount of 56Ni
produced is about an order of magnitude lower than what we obtain for lower dtinj. Finally,
the values of dtinj that is closer to the observative properties of SN1987A is dtinj = 0.01s,
for which we obtain exactly m56Ni = 0.07M⊙, which is the value one usually can find in the
literature (e.g. Arnett et al. 1989; Shigeyama and Nomoto 1990; Utrobin 1993; Utrobin 2006;
Blinnikov et al. 2000).

A.2 Tables

A.3 Calibration Tables
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Table A.1: Results of the interpolation described in Sec. 3.2.2. Column 1: Metallicity, Column 2:
MZAMS of the first progenitor undergoing PPISN, Column 3: Mass Pre-SN of the first progenitor
undergoing PPISN. If the most massive progenitor of our grid is stable against PPISN we cannot obtain
such information, thus we labeled it as Not Available (NA), Column 4: slope of Eq. 3.1, Column 5:

intercept of Eq. 3.1, Column 6: slope of Eq. 3.2, Column 7: intercept of Eq. 3.2.[
Fe/H] MPPISN

ZAMS(M⊙) MPPISN
preSN (M⊙) k1 q1(M⊙) k2 q2(M⊙)

v=0 km/s
0 N.A. N.A. N.A. N.A. N.A. N.A.
-1 87.43 41.91 0.28 8.3 0.27 18.3
-2 87.66 83.27 0.53 -13.9 0.61 29.8
-3 87.01 87.01 0.48 -9.2 1.0 0.0

v=300 km/s
0 N.A. N.A. N.A. N.A. N.A. N.A.
-1 120.0 40.5 0.18 11.1 0.21 15.3
-2 65.19 39.89 0.39 7.9 0.48 8.6
-3 64.8 41.63 0.37 -0.6 0.37 8.7
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Table A.2: Final properties of stars with various initial metallicities and initial masses for the non-
rotating stellar progenitors. Column 1: MZAMS, Column 2: Pre-SN helium core mass, Column 3:
Pre-SN CO core mass, Column 4: Pre-SN mass, Column 5: Pre-SN binding energy, Column 6: Pre-SN
total energy, Column 7: Final mass of the compact remnant, Column 8: Fraction of mass expelled

during the explosion.

MZAMS(M⊙) MHe(M⊙) MCO(M⊙) MpreSN(M⊙) Ebind(foe) Etot(foe) Mrem(M⊙) dM/M
[Fe/H]=-0 v=0 km/s

13 4.08 2.03 11.9 2.02 -0.93 0.81 0.93
15 4.95 2.78 13.2 2.47 -1.07 0.81 0.94
20 7.29 3.86 7.54 2.59 -1.05 2.21 0.71
25 8.54 6.21 8.54 3.58 -1.35 3.69 0.57
30 10.8 7.91 10.8 6.39 -2.13 8.7 0.19
40 14.1 10.6 14.1 7.60 -2.31 12.3 0.13
60 16.9 13.0 16.9 10.6 -3.04 16.2 0.04
80 22.7 18.0 22.7 17.3 -4.52 22.7 0.00
120 27.9 22.0 27.9 24.4 -6.07 27.9 0.00

[Fe/H]=-1 v=0 km/s
13 4.26 2.13 12.5 1.95 -0.89 0.81 0.94
15 5.22 3.01 14.2 2.73 -1.15 1.66 0.88
20 7.52 4.21 18.3 3.19 -1.26 3.31 0.82
25 10.2 6.82 20.6 5.52 -1.91 7.49 0.64
30 11.9 7.22 28.3 5.95 -1.99 11.8 0.58
40 16.7 10.9 28.7 8.03 -2.39 16.7 0.42
60 26.8 19.6 42.0 19.5 -4.94 36.7 0.13
80 39.2 30.9 39.9 40.0 -9.27 39.9 0.00

[Fe/H]=-2 v=0 km/s
13 4.34 2.14 13 2.25 -1.01 0.81 0.94
15 5.21 2.72 14.8 2.25 -0.95 0.82 0.94
20 7.49 4.23 19.7 3.26 -1.28 3.44 0.83
25 9.87 5.93 24.7 4.05 -1.47 5.77 0.77
30 11.7 6.98 29.9 5.46 -1.84 12.7 0.58
40 16.7 11.2 39.7 8.78 -2.57 25.8 0.35
60 27.2 20.0 59.4 20.7 -5.16 59.4 0.00
80 38.3 28.9 78.6 36.1 -8.18 78.6 0.00

[Fe/H]=-3 v=0 km/s
13 4.22 2.15 13 2.03 -0.92 0.81 0.94
15 5.22 3.09 15 2.92 -1.20 1.85 0.88
20 7.42 4.35 20 3.29 -1.29 3.37 0.83
25 9.84 6.29 25 4.39 -1.56 6.30 0.75
30 12.3 8.08 30 5.71 -1.87 12.7 0.58
40 17.5 12.2 40 10.3 -2.99 32.9 0.18
60 28.5 21.7 60 23.6 -5.80 60 0.00
80 38.9 29.6 80 37.9 -8.56 80 0.00
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Table A.3: Final properties of stars with various initial metallicities and initial masses for the non-
rotating stellar progenitors. Column 1: MZAMS, Column 2: Pre-SN helium core mass, Column 3:
Pre-SN CO core mass, Column 4: Pre-SN mass, Column 5: Pre-SN binding energy, Column 6: Pre-SN
total energy, Column 7: Final mass of the compact remnant, Column 8: Fraction of mass expelled

during the explosion.

MZAMS(M⊙) MHe(M⊙) MCO(M⊙) MpreSN(M⊙) Ebind(foe) Etot(foe) Mrem(M⊙) dM/M
[Fe/H]=-0 v=300 km/s

15 6.23 4.31 6.23 3.95 -1.65 4.29 0.31
20 8.18 5.92 8.18 7.61 -3.16 8.18 0.00
25 9.48 7.16 9.48 6.30 -2.39 8.45 0.11
30 11.2 8.46 11.2 7.07 -2.69 11.2 0.00
40 13.8 10.6 13.8 9.14 -3.06 13.8 0.00
60 16.6 13.0 16.6 11.0 -3.19 16.6 0.00
80 17.5 13.7 17.5 11.6 -3.29 17.5 0.00
120 18.6 14.6 18.6 13.1 -3.63 18.6 0.00

[Fe/H]=-1 v=300 km/s
15 6.50 4.89 11.6 5.85 -2.77 11.6 0.00
20 8.12 6.16 17.1 7.21 -3.21 17.1 0.00
25 12.2 9.73 18.5 8.52 -3.07 12.6 0.32
30 16.0 12.3 16.0 11.9 -3.85 16.0 0.00
40 20.7 16.2 20.7 16.3 -4.7 20.7 0.00
60 27.5 21.4 27.5 23.7 -6.21 27.5 0.00
80 32.1 25.7 32.1 29.8 -7.25 32.1 0.00
120 40.5 33.0 40.5 41.8 -9.33 40.5 0.00

[Fe/H]=-2 v=300 km/s
15 6.47 4.72 13.75 5.85 -2.8 13.75 0.00
20 9.85 6.77 16.8 8.83 -3.45 15.3 0.09
25 13.2 10.4 13.2 9.37 -3.28 13.2 0.00
30 15.1 11.7 15.6 10.5 -3.35 15.6 0.00
40 17.6 18.5 22.9 22.9 -5.24 22.9 0.00
60 37.4 31.0 37.4 42.7 -11.0 37.4 0.00

[Fe/H]=-3 v=300 km/s
15 6.09 4.16 13.8 4.23 -1.81 4.38 0.68
20 7.89 5.29 20 7.28 -3.1 20.0 0.00
25 13.0 10.5 13.3 9.41 -3.22 13.3 0.00
30 16.9 13.1 17.1 11.2 -3.68 17.1 0.00
40 24.5 19.1 24.5 20.1 -5.72 24.5 0.00
60 38.1 29.4 38.1 37.1 -9.24 38.1 0.00

Table A.4: Calibration on Einj. Column 1: Einj, Column 2: Eejecta of the explosion, Column 3: m56Ni
produced in the explosive nucleosynthesis, Column 4: Mrem we find for the explosion.

Einj(foe) Eejecta(foe) m56Ni(M⊙) Mrem(M⊙)
1.9 0.82 0.059 0.835
2.0 0.92 0.067 0.829
2.1 0.99 0.076 0.822
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Table A.5: Calibration on dminj. Column 1: dminj, Column 2: Eejecta of the explosion, Column 3:
m56Ni produced in the explosive nucleosynthesis, Column 4: Mrem we find for the explosion.

Einj(foe) Eejecta(foe) m56Ni(M⊙) Mrem(M⊙)
0.400 0.948 0.073 1.148
0.200 1.070 0.116 0.923
0.100 0.919 0.067 0.829
0.050 0.995 0.111 0.858
0.010 0.999 0.109 0.879
0.005 0.999 0.108 0.897
0.001 0.997 0.104 0.905

Table A.6: Calibration on dtinj. Column 1: dtinj, Column 2: Eejecta of the explosion, Column 3: m56Ni
produced in the explosive nucleosynthesis, Column 4: Mrem we find for the explosion.

dtinj(M⊙) Eejecta(foe) m56Ni(M⊙) Mrem(M⊙)
1 × 100 0.914 0.001 0.801
5 × 10−1 0.914 0.003 0.801
3 × 10−1 0.916 0.004 0.815
2 × 10−1 0.916 0.066 0.801
1.8 × 10−1 0.901 0.072 0.808
1.5 × 10−1 0.883 0.076 0.822
1 × 10−1 0.919 0.085 0.822
1 × 10−2 0.919 0.070 0.822
1 × 10−3 0.919 0.068 0.829
1 × 10−4 0.919 0.067 0.829
1 × 10−6 0.919 0.067 0.829
1 × 10−8 0.919 0.067 0.822
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In Section 4.3.1, we discuss the impact of various SSE prescriptions on the primary BH
mass distribution, presenting results for different ccSN and PPISN prescriptions across all the
metallicities simulated, with a fixed CE efficiency of α = 3. Furthermore, in Section 4.3.2,
we examine the effect of CE efficiency on the primary BH mass distribution, also showing
results for all the simulated metallicities, for the fiducial treatment for SNe.

In this Appendix, we present the results for different ccSN and PPISN prescriptions for
the various CE efficiencies, across all the metallicities simulated.

B.1 Effect of SSE prescriptions for different α

Figure B.1, Figure B.2, Figure B.3, and Figure B.4 show the results for all the possible
combinations of ccSN and PPISN models across all the simulated metallicities for α =
0.5, 1, 5, and 10, respectively. In all the Figures, each row represents a different prescription
for core-collapse supernovae (ccSNe): delayed_Gauss (top row), rapid_Gauss (central
row), and SN_U24 (bottom row). Correspondingly, each column shows different criteria for the
onset of PPISNe: noPPISN (first column), M20 (second column), F19 (third column), and U24
(fourth column), as outlined in Table 4.1. The color variations in each panel reflect different
progenitor metallicities.

In all Figures, we observe the trends discussed in Section 4.3.1 for different SSE prescrip-
tions. Similarly, the effects of varying CE efficiencies align with the discussion in Section
4.3.2. For α ≤ 1, low-mass BHs predominantly originate from metal-rich systems, while for
α = 3 and α = 5, their progenitors are evenly distributed across all metallicities. At α = 10,
low-mass BHs primarily form in metal-poor systems. Across all CE efficiencies, the most
massive BHs are consistently produced by metal-poor progenitors.
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