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ABSTRACT: We present Monte Carlo computer simulations for
melts of semiflexible randomly knotted and randomly concatenated
ring polymers on the fcc lattice and in slit confinement. Through
systematic variation of the slit width at fixed melt density, we
explore the influence of confinement on single-chain conformations
and interchain interactions. We demonstrate that confinement
makes chains globally larger and more elongated while enhancing
both contacts and knottedness propensities. As for multichain
properties, we show that ring−ring contacts decrease with the
confinement, yet neighboring rings overlap more as confinement
grows. These aspects are accompanied by a marked decrease in the
links formed between pairs of neighboring rings. In connection with the quantitative relation between links and entanglements in
polymer melts recently established by us [Ubertini, M. A.; Rosa, A. Macromolecules 2023, 56, 3354−3362], we propose that
confinement can be used to set polymer networks that act softer under mechanical stress and suggest a viable experimental setup to
validate our results.

1. INTRODUCTION
Recent years have witnessed a growing interest in the design of
so-called smart materials, such polycatenanes and polyrotax-
anes,1,2 whose microscopic components are constituted by ring
polymers interlocked to each other by topological links that can
be artificially synthesized following precise chemical routes.
Interestingly similar devices can be also prepared by employing
biological components, mainly DNA plasmid rings3 which
interlock with each other through the action of the enzyme
topoisomerase-II and form a molecular state termed Olympic
hydrogel which was first theorized by de Gennes in 1997.4

Remarkably, similar molecules can be also found in Nature: a
classical example is the kinetoplast DNA5 present in the
mitochondria of certain Trypanosoma parasites.

Similarly to covalent bonds stabilizing the shape of a molecule,
topological links remain stable at room temperature, which
guarantees the corresponding molecule to maintain a relatively
well-characterized spatial conformation. On the other hand,
since the single-ring constituents are not rigid objects but
fluctuate6 as ordinary polymers typically do,7,8 these molecules
display unusual mechanical properties under stress and tunable
viscoelasticity that can be exploited in a wide number of practical
applications (molecular machines and drug delivery,9,10 to name
a few), thus justifying the adjective “smart” employed for these
materials.

The preparation of topological materials with well-designed
properties is a delicate balance between many parameters:
indeed, several numerical studies11−14 have characterized the
topological state of systems made up of randomly concatenated

and knotted polymer rings, and have shown that the resulting
networks can be controlled using experimentally tunable
parameters such as the length of the polymer chain, the density
of the polymer solution, and the bending stiffness of the polymer
fiber. So far, though, geometric conf inement as a way to drive the
synthesis of concatenated ring networks has received consid-
erably less attention. Yet, recent experiments15 performed on
kinetoplast DNA5 at varying degrees of slit conf inement have
foreseen the possibility of exploiting geometric constraints to
bias the synthesis of a DNA-based network, similarly to the one
discussed in ref 3.

In this work, we explore how geometric constraints under the
form of slit confinement can affect the structural properties of
systems of strand-crossing rings. For this purpose, we perform
extensive dynamical simulations of highly entangled systems of
randomly concatenated and knotted rings employing the kinetic
Monte Carlo algorithm introduced by us13 for studying these
systems at bulk conditions. Varying the degree of confinement,
we quantify its influence on the metric properties of the rings,
which present interesting nonmonotonous behavior, as well as
topological ones; in particular, knotting probability is highly
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enhanced by reducing the height of the slit, while the linking
between the rings is diminished. These findings suggest that
geometric confinement can be used as a powerful tool to control
the topology of the resulting networks and their elastic
properties.

This paper is structured as follows. In Section 1, we present
and discuss the Monte Carlo lattice polymer model, introduce
the notation, and explain how to detect and compute topological
invariants for the characterization of knots and links in the
system. In Section 2, we present the main results of our work,
while in Section 3, we provide some discussion and conclusions
regarding the role of slit confinement in shaping both single-
chain and interchain properties of the resulting polymer
networks. Additional figures are included in the Supporting
Information (SI).

2. MODEL AND METHODS
2.1. Polymer Model. We consider polymer melts made of M

randomly concatenated and randomly knotted ring polymers of N =
320 monomers each on the fcc lattice; the fcc unit step a is taken as our
unit length. The simulations are based on the kinetic Monte Carlo
(kMC) algorithm introduced by us in ref 13. Since then, the algorithm
has been variously applied to study melts of nonconcatenated and
unknotted rings16 and the connection between entanglements and
physical links in semiflexible chain melts.14 In this article, we limit
ourselves to summarizing the essential details of the numerical protocol,
while referring the reader to our past works for more details.

Essentially, the polymer model takes into account: (i) chain
connectivity, (ii) bending stiffness, (iii) excluded volume, and (iv)
topological rearrangement of polymer chains. Finally, and for the first
time, in this work, we consider (v) slit confinement in the model. For
the implementation of chain dynamics, the following combination of
MC moves�that automatically take into account excluded volume
interactions�are used:

(a) Topology-preservingmoves (termed Rouse-like and reptation-like,
see ref 13) that automatically enforce excluded volume
interactions. By construction, these moves enable two (and no
more than two) consecutive bonded monomers along each
single chain to occupy the same lattice site: by allowing to store
contour length along the polymer filament, this numerical “trick”
makes the chains locally elastic and facilitates global chain
equilibration. Because of that, the bond length is a fluctuating
quantity with mean value = ⟨b⟩: in particular, the latter is
insensitive to confinement (the measured values for ⟨b⟩ are
reported in Table 1). In this way, the mean polymer contour
length is L = N⟨b⟩ and, similarly, the mean contour length of a
subchain of n monomers is n b= .

(b) Topology-changing moves13 that induce random strand cross-
ings between nearby polymer filaments at a tunable rate: we set
this rate to 104 kMC elementary steps, consistent with our
previous works.13,14,16 Strand crossings between filaments of the
same ring can result in the creation or destruction of knots, while
inter-ring crossings may cause either catenation or decatenation.
The model has been shown to exhibit dynamical behavior
consistent with the experiments,3 specifically dynamic “fluid-
ization” of the rings due to topological violations through strand
crossings. Thus, by performing simulations of strand-crossing
rings, we sample the ensemble of the network structures formed
by randomly concatenated and knotted rings at the given density
and in slit confinement (see below for details).

Then, bending stiffness is modeled in terms of the Hamiltonian (in
Boltzmann units, κBT)

T
cos

i

N b a

i
B

bend
1

/

=
= (1)

where κbend = 2 is the bending stiffness and θi is the angle between
consecutive bonds along the chain, with periodic conditions�due to
ring geometry�assumed for all of the chains. By fixing the monomer
number per fcc lattice site equal to 1.255

4
= ,13,14,16 the chosen bending

stiffness corresponds to the chain Kuhn segment a/ 3.4K = ,16 which is
high enough to guarantee that distinct polymers are in an effective
highly entangled state.

Finally, the ring polymers are subject to slit confinement. This
particular form of constraint is imposed by forcing the chains to move
on the fcc lattice, with periodic boundary conditions on the xy-plane
and hard boundaries in the z-direction placed in z = 0 and z = H. We
vary the height of the box H to study different confinement regimes
while adjusting the lateral box sides Lx = Ly to keep density constant.
The degree of confinement is quantified by the ratio
H H R/ g

2
bulk= , expressing the ratio between the height, or

width, of the slit H and the root-mean-square gyration radius (see
definition 4), R a/ 49.66g

2
bulk = ,16 of rings in bulk conditions.

We investigate the system’s behavior from highly confined (Ĥ ≃ 0:30)
to mildly confined (Ĥ ≃ 2:91) regimes and systematically compare the
results with the corresponding values in bulk. Wherever appropriate, we
have also compared the systems here with melts of unknotted and
nonconcatenated rings in bulk.16 We simulate M ≃ 420 chains,
comprising a total of N × M ≃ 134,400 monomers, with M slightly
adjusted to maintain a constant density (see Table 1 for specific
numbers). Typical melt conformations (with corresponding zoomed-in
views of a single ring and the neighbors to which it is linked) for the two
situations of mild (H/a = 20.51) and tight (H/a = 2.12) confinement
are shown in Figure 1 (panels (a) and (b), respectively).

To assess meaningful chain statistics and as in our other works13,14

on similar polymer systems, we run simulations long enough in order to
get properly equilibrated melts. This is visualized in Figure S1 in the SI,
which shows plots of the monomer time mean-square displacement in
the frame of the center of mass of the corresponding chain (the so-
called g2

18) as a function of the MC simulation time τMC. As known,
provided long enough simulations are available, g2 displays a plateau
that is indicative of the equilibration of the system. All our systems
display corresponding plateaus, demonstrating that equilibration has
been reached for all of the cases considered. Accordingly, the time scale
to reach the corresponding plateau corresponds to the portion of the
trajectory that has been discarded from the computation of the relative
observables.
2.2. Detection of Knots and Links. In order to characterize the

topological states of the rings in the melt, we follow closely the pipeline

Table 1. Values of Physical Parameters for the Ring Polymer
Melts Investigated in This Papera

H/a Ĥ M ⟨b⟩/a
2.12 0.30 420 0.656
3.53 0.50 422 0.658
4.95 0.70 420 0.659
6.36 0.90 427 0.659
7.78 1.10 420 0.660

10.61 1.51 420 0.660
13.43 1.91 422 0.660
17.68 2.51 430 0.660
20.51 2.91 433 0.660
bulk − 420 0.663

aa is the unit distance of the fcc lattice, and the monomer number per
fcc lattice site is equal to 1.255

4
= , see text and refs 13,14,16 for

details. (i) H, height of the slit. (ii) H H

R g
2

bulk
= , ratio between the

height of the slit and the root-mean-square gyration radius of rings in
bulk (i.e., no confinement) conditions. (iii) M, total number of
simulated chains in the melt. (iv) ⟨b⟩, mean bond length.17
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recently developed by us.14 Specifically, we employ a numerical
algorithm that “shrinks” or simplifies each ring to its “primitive” shape,
i.e., without violating topological constraints: in this way, we detect
knots and links at any order, i.e., pairwise links as well as three-chain
links like the Borromean ring configuration 62

3 (see Section 2.3 for knots
and links notations). The algorithm is able to return the irreducible
knotted or linked structure, which we further characterize by computing
their topological invariants. For knots, in particular, we compute the
corresponding Jones polynomial19 using the Python package Topoly.20

Instead, for two-body links we compute the Gauss linking number
(GLN)

r r r r
r r

GLN
1

4
( ) (d d )2 1 2 1

2 1
3

1 2

·
| | (2)

which gives the number of times two closed loops 1 and 2
parametrized, respectively, by coordinates r1⃗ and r2⃗ wind around each
other. While unconcatenated rings have GLN = 0, it is known that
concatenated pairs exist with GLN = 0 (for instance, the so-called
Whitehead link configuration 51

2). In these “pathological” cases, the ones
detected via our shrinking algorithm were successively identified by
computing the Jones polynomial using Topoly again. We compute the
Jones polynomials also for three-chain irreducible links (for instance,
Borromean rings) where a pairwise topological invariant such as the
GLN fails (Section 3.2.2).
2.3. Notation. As for rings’ metric properties, for some observables
which can be expressed as a function of monomers’ coordinates, we

study separately the contributions and , respectively,
perpendicular (or, transverse) and parallel to the plane of the slit
(which, by construction (see Section 2.1), coincides with the xy-plane).

As for rings’ topological properties, in referring to a given knot or link
we employ the conventional notation illustrated in the book by
Rolfsen.21 Namely, a knot or a link is defined by the symbolKi

p, where K
represents the number of irreducible crossings of the knot (or the link),
p is the number of rings that take part in the topological structure (e.g., p
= 2 for two-chain links), and i is an enumerative index assigned to
distinguish topologically nonequivalent structures having the same K
and p.

3. RESULTS
3.1. Single-Chain Properties. 3.1.1. Rings’ Size and

Shape. First, we characterize the impact of slit confinement
on the size and shape of the rings. To this purpose, for each ring
of the system, we compute the 3 × 3 symmetric gyration tensor
Qαβ = Qβα(α, β = x, y, z) defined as

Q
N

r r r r1
( )( )

m

N

m m
1

, CM, , CM,=
= (3)

where rm,α is the α-th Cartesian component of the spatial
position rm⃗ of monomer m and r r

N m
N

mCM
1

1= is the center of
mass of the chain. The mean eigenvalues of Q ordered in
descending order, ⟨λ1

2⟩ ≥ ⟨λ2
2⟩ ≥ ⟨λ3

2⟩, quantify the mean spatial
elongations of the polymers on the corresponding principal axes,
while the mean value of the trace of Q, ⟨trQ⟩ = ∑α = 1

3 ⟨λα
2⟩, is

equal to the mean-square gyration radius or size

R
N

r r Q1
( ) tr

m

N

mg
2

1
CM

2

1

3
2= =

= = (4)

of the chain.
The results for ⟨Rg

2⟩ (eq 4) and the perpendicular and parallel
components, ⟨Rg,⊥

2 ⟩ and ⟨Rg,∥
2 ⟩, are reported in Figure 2. As H

decreases, the transverse component ⟨Rg,⊥
2 ⟩ decreases (green

curve in Figure 2a) as expected. Conversely, the parallel
component ⟨Rg,∥

2 ⟩ grows with confinement (red curve in Figure
2a) because the ring is forced to spread along the plane of the slit.
Together, these two effects produce a characteristic non-
monotonic behavior in the overall ⟨Rg

2(Ĥ)⟩ (blue curve in Figure
2a) with the minimum attained around Ĥ ≃ 0.7, i.e., where
confinement effects are expected to become more pronounced.
Interestingly, for high confinement (≃0.3), the rings are
markedly larger than the bulk reference (blue dotted curve in
Figure 2a). In a previous study22 of randomly concatenated rings
under slit confinement, the nonmonotonic behavior was also
observed but the swelling compared to the bulk state was not
seen. We attribute this discrepancy to the fact that, in the
previous work, rings without excluded volume were considered,
which could have favored more compact conformations.

Beyond average values, we have also computed the
corresponding probability distributions, P(Rg), P(Rg,⊥), and
P(Rg,∥), and represented each of them (see Figure 2, panels (b)
to (d)) in the corresponding scaled variable to ease comparison.
While the distributions of the parallel component of the gyration
radius are fundamentally unaffected by confinement (Figure 2c),
those of the normal components (see Figure 2d) undergo a
significant change in shape as the confinement becomes
stronger, in particular becoming more peaked. Together these
changes produce an interesting effect on the distributions of the
full gyration radius (Figure 2b), which are characterized by
higher tails for the systems under confinement. This suggests
that under confinement rings assume more heterogeneous sizes.

We study then rings’ shapes and anisotropies by looking at the
ratios: (i) ⟨λ1

2⟩/⟨λ2
2⟩, (ii) ⟨λ1

2⟩/⟨λ3
2⟩ and (iii) ⟨λ2

2⟩/⟨λ3
2⟩. The first

ratio indicates the elongation or “asphericity” of the ring mean
shape, while the other two measure the extent to which rings
become effectively flat due to slit confinement. Results are
shown in Figure 3, where it is clear that for mild confinement (Ĥ
≳ 1.5) rings attain the same shape as the bulk ones (dashed
lines). Conversely, for higher confinement (Ĥ ≲ 0.7), the ratios
to the smallest eigenvalues (blue and red curves in Figure 3) are

Figure 1. Ring melt conformations under slit confinement. The figure
illustrates the two extreme cases of mild (H/a = 20.51, panel (a)) and
tight (H/a = 2.12, panel (b)) confinement, where H is the thickness of
the slit and a is the lattice unit (see Section 2.1 for details). On the left
part of each panel, the full melt is shown with each ring in a different
color to ease the visualization. On the corresponding right part, a zoom-
in view of a typical ring conformation (in red) is presented alongside the
neighboring rings (in faint gray) to which the red ring is linked (see
Section 3.2.2).
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described by the same characteristic power-law behavior ∼Ĥ−α

with α = 2 (dotted lines). This exponent can be derived23 by the

following simple blob scaling argument a ̀ la de Gennes:24,25 for
tight confinement and since rings obey ideal statistics13,14 owing
to strand crossings, we do expect ⟨λ3

2⟩ ∼ H2 ∼ a2gH while ⟨λ1
2⟩ ∼

⟨λ2
2⟩ ∼ H2(N/gH) where gH is the mean number of monomers

spanning a distance of the order of H. Together these two
relations imply α = 2, i.e., rings’ flattening is indeed compatible
with the scaling picture. At the same time (ratios ⟨λ1

2⟩/⟨λ2
2⟩,

green curve), the polymers maintain an elongated shape.
3.1.2. Bond-Vector Correlation Function. We investigate

now in more detail how the folding of polymer chains is affected
by confinement by looking at the bond-vector correlation
function

c
t t

t
( )

( ) ( )
( )2

· +
(5)

as a function of the polymer contour length . This quantity gives
useful insight when applied to bulk 3d melts of unknotted and
nonconcatenated rings, in particular its distinct16 anticorrelation
is a symptom of the double folding of the polymer chains at the
entanglement scale (dot-dashed line in Figure 4a). In contrast
(dashed line in Figure 4a), bulk 3d melts of randomly knotted
and concatenated rings exhibit normal exponential decay

Figure 2. (a) Ring mean-square gyration radius (⟨Rg
2⟩) with its parallel (⟨Rg,∥

2 ⟩) and transverse (⟨Rg,⊥
2 ⟩) components as a function of the degree of

confinement Ĥ (see Section 2.1 for details). The dashed lines are for the values of the bulk system (i.e., no confinement). Error bars are smaller than the

symbol’s size. (b−d) Scaling plots for, respectively, distribution functions of the ring gyration radius ( )P R R( / )g g
2 and of its parallel

( )P R R( / )g, g,
2 and transverse( )P R R( / )g, g,

2 components, at different degrees of confinement Ĥ (see legend in panel (b)). The dashed line

in each panel corresponds to the reference distributions under bulk conditions.

Figure 3. Ratios between the mean eigenvalues (⟨λ1
2⟩, ⟨λ2

2⟩, and ⟨λ3
2⟩) of

the ring gyration tensor Q (eq 3) as a function of the degree of
confinement Ĥ (see Section 2.1 for definition). Dotted lines (∼Ĥ−2)
describe the behavior under strong slit confinement, in agreement with
the blob-like picture a ̀ la de Gennes (see Section 3.1.1 for details).
Dashed horizontal lines correspond to the bulk reference values of the
three ratios.
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behavior14 and are not characterized by double folding, hence
the anticorrelation is absent.

To investigate the impact of confinement on chain folding, we
have computed c( ) for the confined rings. Results (Figure 4)
exhibit several noteworthy effects. First (Figure 4a), for confined
rings at small , c( ) decays more slowly than the bulk
counterpart. This is the consequence (Figure 4b) of the increase
of the mean cosine of the angle between consecutive bond
vectors, ⟨cos(θ)⟩, as confinement increases: in other words,
confined rings are slightly stiffer than the bulk reference, and this
confinement-enhanced stiffness grows with the confinement. At
the same time, c( ) develops a characteristic anticorrelation that
exhibits nonmonotonic dependence on Ĥ: in particular the
deepest minimum occurs at Ĥ ≃ 0.7, i.e., the same value at which
the gyration radius (Figure 2a) attains its minimum value.
Moreover, the minimum itself disappears at the highest level of
confinement. This peculiar behavior can be explained by
considering the individual contributions of the parallel and
transverse components of c( ). c ( ) does not exhibit any minima
(Figure 4c), while c ( ) displays a minimum for all values of Ĥ
(Figure 4d). The mismatch in the values of , at which c ( ) is
minimum while c ( ) 0, causes the nonmonotonicity of the
full c( ). The latter goes to zero for similar values of for all Ĥ,
demonstrating that correlations grow mildly with the confine-

ment. In contrast, c ( ) shows a minimum for close to the
thickness of the slit H (Figure 4d, inset). This is due to the back-
folding of the polymer filaments induced by the hitting with the
impenetrable walls of the slit: of course, this effect is more
pronounced under strong confinement conditions, i.e., for
H/ 1K . Thus, the minima in c( ) appear when H has a similar
value to the correlation length of c ( ), indicating the
competition between these two length scales.
3.1.3. Contact Probability. As just shown above, confine-

ment alters the metric properties of the polymers. Then, it is
natural to expect that the consequent reorganization of the
chains modifies the intrachain polymer interactions. To test this
hypothesis, we compute the mean contact probability between
two monomers at contour length separation n b=

p
N

r r r( )
1

( )
i

N

i i nc
1

c= | |
=

+
(6)

where Θ(x) is the Heaviside step function and the “contact
distance” rc is set to the unit lattice size a (notice also that
periodic conditions due to the ring geometry are tacitly assumed
in eq 6).

Results are shown in Figure 5, where ⟨pc⟩ is plotted against the
“effective” variable L(1 / )= in order to reduce26 finite
size effect due to the ring geometry. First, one can notice that in

Figure 4. (a) c( ), bond-vector correlation function as a function of the contour length distance . Colors are for different confinements, dashed and
dot-dashed lines are for bulk melts and melts of nonconcatenated and unknotted rings (see legend). (b) ⟨cos(θ)⟩, mean cosine value between two
consecutive bonds along the chain as a function of the degree of confinement Ĥ. (c) c ( ), contribution to the bond-vector correlation function in the
xy-plane parallel to the slit. (d) c ( ), contribution to the bond-vector correlation function orthogonal to the plane of the slit; in the inset, the same
quantity is represented as a function of the ring contour length normalized by the slit thickness, /H. Colors and symbols in (c) and (d) are as in (a).
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bulk systems, as we let rings perform strand crossings, long-
distance contacts decrease (dashed line) with respect to melts of
nonconcatenated and unknotted rings (dot-dashed line). In
contrast, confinement leads to an increase in the tail of the mean
contact probability compared to that of the bulk reference.
Notably, at Ĥ = 0.30, the tail’s slope is slightly less steep than in
the nonconcatenated state.

To gain more insight, it is interesting to look at the exponent
controlling the asymptotic power-law decay, ⟨pc⟩ ≃ ξ−γ (Figure
5, inset). In bulk, strand-crossing rings attain ideal statistics
characterized by γ ≃1.5, as confirmed by our previous findings.13

In contrast, confinement leads to a decrease in γ which becomes
close to the same asymptotic value as the nonconcatenated state,
γ ≃1.15. Based on mean-field arguments,27 γ = dν, where d is the
space dimension and ν is the metric exponent of the chain
relating7,8 the chain mean linear size to the number of
monomers (i.e., ⟨Rg

2⟩ ∼ N2ν). Strand-crossing rings in bulk
exhibit ideal statistics with ν = 1/2,13 and they are characterized
by 3

2
= in three dimensions. In confined systems, however, the

rings cannot fold freely in three dimensions, effectively reducing
the dimensionality of the system and resulting in a decrease in γ.
3.1.4. Knots Statistics. In our kMC algorithm, two filaments

from the same chain can cross, and this event may induce the
formation of a knot along the chain. Characterization of knots
spectra in confined systems has been addressed so far mostly for
isolated chains,23,28,29 while fewer results are available for
confined systems at melt conditions.

To fill this gap, we have investigated the occurrence of knots
by computing the Jones polynomial of each ring of our systems,
and for simplicity, we present our results based on the number of
irreducible crossings (denoted by K, see Section 2.3).
Specifically, we have computed the probability, Pknot(Ĥ; K), of
finding a knot with K irreducible crossings at given confinement
degree Ĥ and the cumulative knotting probability

P H P H K( ) ( ; )
K

knot
3

knot=
= (7)

which gives the probability that a ring in the melt contains a knot
(of any type). As shown in Figure 6a, Pknot(Ĥ) grows with the

confinement and reaches the maximum value of ≃0.13 for the
smallest Ĥ, resulting in an increase of ≃130% compared to bulk
reference (dashed line). Both in bulk and in confinement, the
most common knot type is the simplest one, namely, the trefoil
knot 31. Overall (Figure 6b), more complex knots are much less
probable for all Ĥ values, yet their abundance increases with
confinement, see Figure 6b for Pknot(Ĥ; K) and Figure S2 in the
SI for the relative population of knot types with K crossings. In
conclusion, our analysis points out that confinement enhances
the probability of knot formation, yet the overall occurrence of
knots (i.e., Pknot) remains relatively low (≲0.13).
3.2. Chain-Chain Correlations. 3.2.1. Chain Neighbors.

The increase of the long-range intrachain contacts seen in Figure
5 may be indicative of the fact that confinement reduces the
overlap between distinct chains or, in other words, ring−ring
contacts should decrease. To test this hypothesis, we introduce
the variable for the number of neighbors of ring i (i = 1, 2, ···, M)

Figure 5. Mean contact probabilities, ⟨pc⟩ (eq 6), as a function of
L(1 / )= , where is the contour length separation between

monomers and L is the ring total contour length. Colors are for different
confinements, dashed and dot-dashed lines are for bulk melts and melts
of nonconcatenated and unknotted rings (see legend). Inset: local

differential exponent
pdlog

dlog
c .

Figure 6. (a) Pknot(Ĥ), ring knotting probability (eq 7) as a function of
the degree of confinement Ĥ. The dashed line corresponds to the value
for the bulk melt. (b) Pknot(Ĥ; K), probability of finding a knot with
crossing number K. Colors are for different confinements, and the
dashed line is for bulk melts (see legend). K = 0 correspond to the
unknot and Pknot(Ĥ; K = 0) = 1 − Pknot(Ĥ) is its corresponding
probability. Knots with >12 crossings cannot be distinguished by
Topoly.20 Composite knots are knots made up of 2 or more irreducible
knots. Here, as well as in Figures S2 and S5 in the SI, error bars have
been estimated by assuming the formula for simple binomial statistics
for the probability of observing a given knot (link, in Figure S5 in the SI)
type in the total population.
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R r r(2 )i
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M

i j
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1
g
2

CM, CM,| |
=

(8)

where Θ(x) is the Heaviside step function, ⟨Rg
2⟩ is the ring mean-

square gyration radius (eq 4), and rC⃗M,j represents the center of
mass position of the jth ring. According to eq 8, two rings are
defined as “neighbor” whenever the spatial distance between
their centers of mass is smaller than twice the root-mean-square
gyration radius of the system. We have measured the
distribution function of ρring, P(ρring), and its mean value, ⟨ρring⟩,
at different confinements, and we study these quantities in
relation to the distribution of spatial distances between the
centers of mass dCM−CM for neighboring rings, P(dCM−CM|
neighbors).

Results are shown in Figure 7a, from which it is evident that
⟨ρring⟩ decreases as confinement increases, with ⟨ρring⟩ being
always smaller with respect to the bulk reference (dashed line)
and even smaller (for the tighter confinements Ĥ ≲ 1.5) with
respect to the nonconcatenated and unknotted case (dot-dashed
line). At the same time (Figure 7b), the distributions of spatial

distances dCM−CM demonstrate that neighboring chains tend to
overlap more with each other under stronger confinement.
Taken together, we can motivate the reason why the interchain
contacts decrease in terms of the geometry of the slit. First,
confinement can prevent the formation of stacked conforma-
tions along the transverse direction (see Figure S3 in the SI), and
this surely reduces the interchain contacts. Moreover, we
observe that, by reducing the width of the slit, inter-ring
distances tend to increase, and this is an effect due to the
increasing asymmetry of the slit as confinement increases (see
Figure S4 in the SI).
3.2.2. Links. The reduction of interchain contacts should also

have consequences on the linking properties of the confined
systems. To explore this aspect, we adopt the approach
developed by us in ref 14 and compute: (a) ⟨n2link(|GLN|)⟩,
the mean number of two-chain links per ring with absolute
Gauss linking number |GLN| and (b) ⟨n3link⟩, the mean number
of distinct three-chain links per ring with given chain topology.

Results for ⟨n2link(|GLN|)⟩ are summarized in Figure 8a. We
notice that ring−ring links are mostly Hopf-like (i.e., with |GLN|
= 1) and that confinement reduces the extent to which the rings
are linked, in agreement with the reported trend of neighbors per
ring (Figure 7a). In general, the appearance of more complex
links decreases exponentially, but the rate of decay depends on
the level of confinement in the system. Chains under stronger
confinement are characterized by a slower decay, which can be
attributed to the fact that neighboring chains penetrate each
other more (see Figure 7b). Additionally, links with |GLN| = 0
(i.e., the so-called Whitehead links) have been found between
those with |GLN| = 2 and 3 at all confinements. We further
classify these links by computing their Jones polynomial and
determining their relative abundances (panel (a) in Figure S5 in
the SI). We found that, even in this case, rings under stronger
confinement form more complex links with greater ease.

To examine three-chain links, it is necessary to distinguish
between two distinct groups of links: those that can be reduced
to two-chain links and irreducible ones.14 The first group
include: (a) poly(3)catenanes, chains made of three rings in
which two nonconcatenated rings are connected to a common
ring, and (b) triangles, triplets of rings which are all pairwise
concatenated. Both (a) and (b) can be detected via pairwise
linking. Instead, irreducible three-chain links cannot be detected
via pairwise linking and can be further divided into two subtypes:
(c) poly(2)catenane+1-ring, structures made of a poly(2)-
catenane plus another ring which is not directly concatenated
(in a pairwise manner) to any of the other two, and (d) Brunnian
links, nontrivial links which become a set of trivial links
whenever one component ring is unlinked from the others (the
so-called Borromean conformation, the link 62

3, constitutes the
easiest example of this kind). By resorting to the shrinking
method described in ref 14, we have detected links belonging to
the last two classes and computed ⟨n3link⟩ for the different types
of three-chain links (Figure 8b). It is clear from ⟨n3link⟩ that links
organize onto a network made almost entirely via pairwise
concatenation both in the bulk and in confinement. Irreducible
three-chain links are much more rare and decrease with the
degree of confinement; for this reason, the next analysis relative
to polymer networks and entanglements (Section 3.2.3) has
been performed by neglecting these three-chain links con-
tributions. A detailed topological classification of these
structures has been reported in Figure S5b in the SI, and even
in this case, three-chain links with higher crossings seem to be
more likely for more confined systems.

Figure 7. (a) Distribution function, P(ρring), of the number of
neighbors per chain ρring. Inset: mean number of neighbors per ring,
⟨ρring⟩. (b) Distribution function of the distances between the centers of
mass of neighboring chains, P(dCM−CM|neighbors), as a function of the
variable normalized to twice the root-mean-square gyration radius,

R2 g
2 (eq 4), of the rings. Colors are for different confinements,

dashed and dot-dashed lines are for bulk melts and melts of
nonconcatenated and unknotted rings (see legend).
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3.2.3. Polymer Network and Entanglements. Concatenated
rings give rise to a fully connected polymer network.14,30 To
characterize this network, we define14 the linking degree LDi of
ring i

CLDi
j

M

ij ij
1

=
= (9)

where the sum runs over the total number of chains in the melt,
and where Cij is the M × M matrix expressing the concatenation
status between rings i and j

C

i j

i j

0, if

1, if and form a two chain link

0, otherwise
ij

l
m
ooooo

n
ooooo

=
=

(10)

The “weight” factor χij takes into account the “complexity” of
two-chain links: χij = |GLN| or K

2
= depending on whether GLN

≠ 0 or GLN = 0, respectively. Here, K is the number of crossings
characterizing the link, or in other words, each crossing of the
link contributes 1/2 to an entanglement point. This quantity is
of special interest as we have recently shown14 that the mean
value LD LD

M i
M

i
1

1= is directly connected to the
entanglement length of the melt, Ne, via the relation ⟨LD⟩ =
N/Ne. To complement this analysis, we have also computed the
distribution of the values LD at the single-ring level, P(LD),
which gives us information about the heterogeneity of the
network.

Results are listed in Figure 9. ⟨LD⟩ (panel (a)) decreases as a
function of the confinement, up to a reduction of ≃60% with
respect to bulk conditions. Then, by looking at the distribution
functions (panel (b)) of the linking degree as a function of X =
LD/⟨LD⟩, we see that the curves at mild confinements display
the same behavior for bulk conditions. Conversely, the tails
become stronger for more confined systems. This is in
agreement with the behavior seen for the distribution functions
of the ring size (Figure 2b), where the tails are higher for
stronger confinements. Fluctuations of ring size may impact
concatenation since smaller rings will be less concatenated,
having less possibility to reach other rings, while bigger rings can
host more contacts and consequently more concatenations. To
sum up, the resulting networks of concatenated rings tend to be

more heterogeneous as the confinement becomes stronger, in
line with the fluctuations of ring size.

4. DISCUSSION AND CONCLUSIONS
Our findings illustrate the impact that slit confinement has on
the spatial structure of randomly concatenated and knotted ring
polymers under melt conditions.

Figure 8. (a) ⟨n2link(|GLN|)⟩, mean number of links per ring with absolute Gauss linking number |GLN|. (b) ⟨n3link⟩, mean number of different three-
chain linked structures per ring. Different colors are for the different confinements, and the dashed line is for the bulk system.

Figure 9. (a) Mean linking degree, ⟨LD⟩, as a function of the
confinement. The horizontal dotted line represents the bulk value. (b)
Distribution functions, P(LD), of the linking degree as a function of the
variable normalized to the corresponding mean value ⟨LD⟩. Different
colors are for the different confinements; the dashed line is for the bulk
system.
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At the single-chain level, our investigation shows that as rings
flatten with increasing confinement, they tend to adopt more
elongated conformations. At the same time, rings become
slightly more rigid with the confinement, a tendency captured by
the increase of the correlation (⟨cos(θ)⟩, Figure 4b) between
consecutive bonds along the chain. We have also demonstrated
that the competition between the Kuhn length of the polymers,
K , and the height of the slight, H, induces a nonmonotonous
behavior on the bond-vector correlation function, c( ) (see
Figure 4a,c,d). In general, the impact of confinement on ring
conformations becomes particularly pronounced with respect to
the formation of long intrachain contacts as the slit narrows (see
Figure 5), resulting in more compact rings. Finally, these
changes have significant repercussions on the knotting
probability which increases with the confinement, and for
which we register an increase of ≃130% compared to the bulk
value (see Figure 6a).

The effects of slit confinement on the interchain statistics are
similarly noteworthy. Specifically, as the level of confinement
increases, the average number of neighbors per ring, ⟨ρring⟩,
experiences a considerable decrease (see Figure 7a). This is
directly connected to the decrease of the mean linking degree,
⟨LD⟩, which displays a total reduction of ≃60% with respect to
bulk conditions.

This finding has relevant implications. Being ⟨LD⟩ directly
related to the mean number of entanglement strands per ring,14

its decrease as confinement grows means that, at fixed monomer
density, confinement alone may alter the entanglement
properties of the system making Ne effectively bigger. This
would explain recent findings31,32 showing that for both linear
chains and rings in two-dimensional melts, the resulting
dynamical quantities display a quite surprising Rouse-like
behavior7,8 which, ultimately, points toward the effective
irrelevance of entanglement effects due to interchain inter-
actions. Along the same lines, it is worth recalling that the elastic
plateau modulus G0, which quantifies the stress−strain relation-
ship of polymeric materials, is related8 to the total number of
entanglement strands of the melt, G

N0
NM

e
. In other words, our

results imply that, as confinement grows, the resulting polymer
network becomes softer (G0 decreases), revealing a fundamental
connection existing between geometric confinement, topology,
and the mechanical properties of the stored network.
Interestingly, this connection appears to be not limited to only
polymer melts but it seems to be a quite general feature
appearing in other notable classes of soft materials like, e.g.,
DNA nanostar hydrogels.33

We conclude by proposing a possible experimental realization
of the systems studied in this work. As discussed in the
Introduction, a first experiment15 on slit-confined kinetoplast
DNA�a naturally occurring catenated network of DNA rings�
at different degrees of confinement has already been performed.
However, there the topology of the kinetoplast was maintained
fixed since the study was focusing on the shape and size
rearrangements of the network once placed under confinement.
Our predictions here could be tested in a relatively simple
variant of this experiment in the following way: as in Krajina et
al.,3 it would be sufficient to introduce suitable amounts of the
enzyme topoisomerase-II and, by doing so, promoting cut-and-
resealing events in the system that would reshape the DNA
network topology. Then, again as described in ref 3, by probing
the system through microrheology, it should be possible to

measure the mechanical properties of the catenated network and
verify the predicted softening under confinement.
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