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Chapter 1

Preface

In the last two decades a lot of effort went into the study of anomalous, superdiffusive,
heat transport and violations of the Fourier law in one-dimensional classical chains.
Reviews on these topics are available in the literature [1, 2]. More recently, there
has been interest in the study of heat transport in long-range interacting systems,
i.e. systems where the interaction between constituents scales as a power-law of their
distance. The long-range version of the XY model was analyzed in [3]: it was shown,
by numerical integration of the equations of motion of the model, that the heat flux
does not scale as the inverse of the system size (as stated by Fourier law), but as
a non-trivial power of the latter which depends on the exponent of the long-range
interaction. Furthermore, it was shown that if the exponent of the long-range inter-
action is between one and zero, then the system acts as an insulator. This puzzling
behaviour was clarified in [4] where it was shown, numerically, that the poor energy
conduction of the system is related to the presence of localized excitations (“discrete
breathers”) whose number is a decreasing function of the long-range exponent.
The long-range Fermi-Pasta-Ulam-Tsingou (FPUT) chain was analyzed for instance
in [5]: thermal conductivity was numerically computed (via molecular dynamics
simulations) and an anomalous scaling was found. Furthermore, it was numerically
shown that, when the long-range exponent is equal to two, the discrete breathers
can move freely across the system, thus boosting energy transport. This picture was
also confirmed in [6]. In [7] the structure factors of the long-range FPUT model were
obtained via numerical simulations of the system. The result is that these struc-
ture factors present several peaks at frequencies ωpeak(k): these are the low-energy,
low-momentum propagating excitation, who were found to have an anomalous disper-
sion law. Furthermore, the numerical computation of the spatio-temporal correlation
function of the energy shows that energy propagation strongly depends on the value
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10 CHAPTER 1. PREFACE

of the long-range exponent, suggesting once again an anomalous scaling of the ther-
mal conductivity. Finally, both the dynamics of the long-range FPUT model and
the long-range XY model when attached to two external heat baths was numerically
simulated in [8]: again the result is that the heat flux does not scale as the inverse
of the system size, but as a non-trivial power of the latter.
From the cursory overview we just exposed, it is evident that the understanding of
anomalous transport in long-range systems is a difficult and unsolved problem, espe-
cially if one wants to obtain analytical results. Given the complexity of this task, we
decided to restrict ourselves to linear long-range chains: even for these, apparently
simple, cases we could not find in the literature any analytical result for transport
quantities, with one exception detailed below. This PhD manuscript thus deals with
the study of heat transport in long-range one-dimensional chains and contains the
results I have obtained in my PhD work in this direction.
There are several methods in the literature to study heat transport in quadratic
systems, like the one based on the Lyapunov equation introduced by Lebowitz [9],
the Green function method by Dhar [2] and the generalized eigenvalue method [10].
As we will see, these methods can all be extended, with appropriate modifications,
to the case of harmonic long-range systems. In particular the latter, which is rarely
mentioned in the literature, will be instrumental to shed some light on the scaling of
the heat flux in the long-range harmonic chain. Despite the apparent simplicity of
these linear models, they exhibit, as we will see, highly non-trivial behaviours. For
example, in the quadratic power-law long-range chain the heat flux scales with the
size of the system with an anomalous exponent which depends on the long-range ex-
ponent of the chain. Furthermore, the model has an highly non-trivial ”fractal-like”
spectral structure.
Let us finally mention that from the study of some quadratic models, it might actually
be possible to infer some qualitative aspects of the behaviour of interacting system.
Indeed, in [11] a nearest-neighbours linear chain with nearest-neighbours stochastic
momentum exchanges (i.e. two adjacent particles exchange their momenta at ran-
dom times) was analyzed and the heat flux was computed. The result is that heat
transport is anomalous, a property that is present only in interacting models for short
range systems [1]. Saito and Tamaki [12] computed the thermal conductivity in a
quadratic long-range chain with stochastic nearest-neighbours momentum exchanges
and found that heat transport is anomalous: I extended their results to the case of
long-range stochastic momentum exchanges.
The content of the manuscript is organized as follows.
In Chapter 2 we describe the main known properties about long-range systems, in
particular we will focus on the consequences of the loss of additivity, the main equi-
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librium properties (Peierls argument, Landau action and critical exponents) and the
existence of a proper continuum limit.
In Chapter 3 we collect and revise the three main methods used in the literature
to study heat transport in quadratic systems in two different contexts. At first, we
consider heat transport in the stationary state of systems brought out of equilibrium
by coupling to two external heat baths: this case can be studied with a method
introduced by Lieb, Lebowitz and Lieb [9] or the so-called Green function method
[2] by Dhar. The final part of the chapter is devoted to the computation of the
thermal conductivity using the Green-Kubo formula in an isolated quadratic system
with stochastic collisions.
In Chapter 4 we consider heat transport in the nonequilibrium steady-state of a
fully-coupled network of N quantum harmonic oscillators, interacting with two heat
reservoirs. We will consider two different cases: one in which the number of particles
coupled to the baths is fixed and another in which it is proportional to N . In both
cases we compute the asymptotic scaling with N of the heat flux and the tempera-
ture profile using the Green function method. This chapter is based on the results
obtained in [13]
In Chapter 5 we study, numerically, the transport properties of a long-range (but not
fully-connected) chain coupled with two heat reservoirs. In particular, we show that
the heat flux scales as a power-law of the system size N and we discuss the relation
between the spectral properties of the system and the value of the scaling exponent.
This chapter is based on the results of [14]
In Chapter 6 we discuss the determination of thermal conductivity using the Green-
Kubo formula in a quadratic long-range chain with stochastic collisions. In particular
we consider both the case of nearest-neighbours collisions, recovering known results,
and then we extend our analysis to the case of long-range collisions which was not
studied before. The results of this chapter will be the focus of a future publication
[15].
In Chapter 7 we present our conclusion and some further lines of development.





Chapter 2

Long-range interacting systems

In this chapter we recall some properties of long-range interacting systems that will be
useful in the other chapters of this manuscript. In section 2.1 we explore some generic
properties of long-range systems related to the loss of additivity with respect to the
usual short-range interactions. In sections 2.2 we briefly describe the peculiarities
of the critical behaviour of long-range systems and in section 2.3 we show how the
properties of the spectrum of a long-range system can drastically change its behaviour
in the thermodynamic limit. Finally, in section 2.4 we recall some examples of
experimental realizations of this kind of systems. For a more detailed picture on the
physics of long-range systems we refer to the reviews [16, 17] for the classical case
and [18, 19] for the quantum case, respectively.

2.1 Extensivity and additvity in long-range sys-

tems

In long-range interacting systems the interaction between two constituents U(r)
scales as a power-law U(r) ∼ r−α for large r, being r the inter-constituent distance.
Consider for instance a gas of long-range-interacting particles in a d-dimensional box
of linear dimension R and volume V ∼ Rd. If we assume that they are distributed
with uniform density ρ, then the energy per particle e can be estimated as [16]:

e =

∫
V

ddr ρU(r) ∼
∫ R

a

ρrd−1dr r−α ∼ ρ

d− α

[
Rd−α − ad−α

]
, (2.1)

where the length a encodes some short-range regularization of the potential, such as
an hard-core interaction which does not affect in any way the long-rage properties
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14 CHAPTER 2. LONG-RANGE INTERACTING SYSTEMS

of the system. As we can see, in the thermodynamic limit we get two different
behaviours for e, (and thus for the total energy E = V e) according to the value of
α:

e ∼
{
Rd−α ∼ V 1−α/d, α < d

R0, α > d
, E ∼

{
V 2−α/d, α < d

V, α > d
. (2.2)

We immediately notice that if α < d the energy is super-extensive and this regime is
called strong-long-range. Irrespective of the long-range nature of the interaction, the
number of accessible states for the systems still scales factorially with the number
of constituents, and thus the entropy is still extensive and can never compete with
the super-extensive energy. It follows that this kind of systems cannot exhibit any
form of phase transition. However, it should also be noted that we typically deal
with finite systems and in the case of long-range interactions we expect the effect of
boundaries to be important. For example, in globular stellar clusters, provided the
temperature is high enough, the TS term can compete with the energy. A simpler
way to study this regime is to make the energy extensive by scaling the interaction
U as U → V α/d−1: this procedure is called Kac rescaling[20], and allows us to study
the system in the usual thermodynamic limit.
For what concerns systems with α > d, it turns out[17] that there is a critical value
α∗ such that if α > α∗ the systems behaves for all purposes as a short-range one
and the non-local nature of the interaction is immaterial. On the other hand, if
d < α < α∗ the non-locality of interactions changes the universality class and the
generic behaviour of the system, for example the velocity of propagation of excitations
can become unbounded (as we discuss in section 2.2.2) and the usual Lieb-Robinson
bound for the spreading of information does not apply [21]. This latter case is called
weak-long-range regime.
It is important to note that, while Kac rescaling allows us to recover extensivity,
systems with α < d remain non-additive, while systems with α > d are additive. We
remind that a system is additive if, after splitting it in two halves, the total energy
is approximately given by the sum of the energies of the two halves. This in turn
means that the surface energy contribution of the interface between the two regions
is negligible and, thus, that the interactions have to decay sufficiently fast. Consider
now for example the Curie-Weiss model:

HCW = − J

2N

∑
ij

σiσj, σi = ±1. (2.3)

This is a fully-connected model with α = 0 which includes the Kac rescaling (in
fact, HCW is extensive). Now we split the system in two halves: in the first all the
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spins are up, σi = 1 and in the other where all spins are down σi = −1. The total
energy is zero, but the energy of each region is −(J/8)N and thus the system is
non-additive. Lack of additivity has a series of dramatic consequences for the ther-
modynamic properties of strong-long-range systems. In particular it can be proven
that non-additivity leads to non-concave entropy and thus ensemble inequivalence.
For example, the microcanonical specific heat can be negative, as is the case of self-
gravitating objects such as stars.
Strong-long-range and weak-long-range systems also differ greatly in the proper-
ties of their dynamics. In particular, strong-long-range systems possess long-lived
metastable states whose lifetime diverges with the system’s size[22], so that they
never thermalize in the thermodynamic limit, a feature that is absent for weak-long-
range systems that thermalize in a time which does not depend on the system’s size.
There are evidences that these metastable states persists also if we couple the system
with external heat reservoirs [23].

2.2 Long-range systems at criticality

In this section we analyze the behaviour of long-range systems near criticality. For
what concerns strong-long-range systems, there are numerical and analytical evi-
dences that the critical exponents are given by the ones of the fully connected case
α = 0 for any 0 < α < d [22].
We will now give a brief overview of what happens for weak-long-range systems, con-
sidering spin models as an example. Since we are considering α > d, it is useful, and
customary in the literature, to define σ = α − d > 0. A first observation is that we
expect ferromagnetic long-range interactions to favour the creation of large magnetic
domains and thus in general to be more ordered than their short-range versions. Let
us see a simple example of this phenomenon.

2.2.1 Peierls argument for the 1d long-range Ising model

One of the first long-range spin model introduced in the literature is the Dyson model
[24], which is essentially a long-range version of the well-known one-dimensional Ising
model :

H = −
∑
ij

Jijsisj, Jij = J |i− j|−α, si = ±1, α > 1. (2.4)

We now apply Peierls argument to this model [25], namely we compute the change
in the free energy of the system after the creation of a domain wall. For instance,
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starting from the configuration with all of the N spins aligned (the ground state),
we create a domain-wall excitation by flipping the first L spins. The energy of this
configuration is:

∆E = 2
L∑
i=1

N∑
j=L+1

Jij = 2J
L+N∑

n=L+2

N−L∑
m=1

m−α ≈ N2−α, (2.5)

where in the step we introduced n = i + j and m = j − i. Since we have N ways
to choose the value of L the entropy associated with the domain-wall excitation is
∆S = kB lnN , which has to be compared with (2.5) in the thermodynamic limit:{

α < 2 : ∆E > ∆S → Tc ̸= 0

α > 2 : ∆E < ∆S → Tc = 0.
(2.6)

We thus see that if α > 2 the system behaves as the short-range Ising model and
there is no phase transition at finite temperature in one dimension. However, if
α < 2, we can have an ordered ferromagnetic phase even in one dimension.

2.2.2 Landau theory and Ginzburg criterion for long-range
interacting systems

In this section we study the Landau theory of a weak-long-range interacting system
with a Z2 symmetry, such as the Dyson model introduced in (2.4), in particular we
want to compute the upper critical dimension using the Ginzburg criterion. As is well
known, Landau theory completely neglects the role of fluctuations: this is in general
correct only for d > dc, where dc is the so-called upper critical dimensions. In order
to analyze the effect of fluctuations and go beyond the mean-field case, it is necessary
to consider a coarse-grained order parameter which depends on the space point x
that we will indicate as φ(x)1. Note that this approach is possible if the system has

1To construct the order parameter φ(x), we first divide the volume V of the system in smaller
cells of volume v. Then, called Nv the number of spins in a given cell and x the center of said cell,
we define the coarse-grained order parameter as:

φ(x) =
1

Nv

∑
i∈v

⟨si⟩ , (2.7)

where the sum runs only on the sites belonging to the cell. Notice that the linear dimension of the
cell must be bigger than the lattice spacing, but smaller than the correlation length, otherwise we
lose the local correlation when we take the average and all of the φ(x) would be uncorrelated.
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a proper continuum description: as we will see in section 2.3 this is possible if α > d.
The Landau-Ginzburg action for the kind of model we are considering is:

S =

∫
ddxddy

φ(x)φ(y)

|x− y|α +

∫
ddx(tφ(x)2 + uφ(x)4), (2.8)

where t is the reduced temperature t = (T − Tc)/Tc and u > 0 is the coupling.
Let us, for the moment, only study quadratic fluctuation and neglect the interacting
term by putting u = 0. It is convenient to work in Fourier space, where the action
(2.8) reads as:

S =

∫
ddq

(2π)d
(t+ ω(q))φ(q)φ(−q), (2.9)

where ω(q) is the Fourier transform of the long-range quadratic interaction:

ω(q) =

∫
|r|>a

ddr|r|−αeiq·r, (2.10)

where a is the lattice spacing that regularizes the integral in the ultra-violet. Since
we are working in the continuum limit, we are interested in the low-momentum
behaviour of (2.10) which is worked out in Appendix 1. The result is:

ω(q) ≈ c3 +

{
c1q

σ, 0 < σ < 2,

c2q
2, σ > 2,

q = |q|, σ = α− d > 0. (2.11)

Notice that if σ > 2 we recover the usual short-range quadratic dispersion relation
and the system falls into the universality class of the short-range Ising model. We
also remark that in section 2.2.1 we found that the value of σ discriminating between
short-range and long-range behaviour is σ = 1. This should not surprise us since
here we are neglecting interactions and it is well known that the short-range Ising
model is not described by the short-range Gaussian model. The same happens in
their long-range counterparts. We also note that the c3 constant is immaterial as
it can be safely absorbed in the critical temperature, while, as it can be seen from
(A.6), c1 and c2 are positive in the region of parameters were they are relevant.
Finally, note that if 0 < σ < 1 the velocity of propagation of excitation diverges at
low momentum.
We now consider the case σ < 2, the action is given by:

S =

∫
ddq

(2π)d
(t+ c1q

σ)φ(q)φ(−q). (2.12)
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From (2.12) we can immediately read the two-point function for the order parameter
as:

⟨φ(x)φ(0)⟩ =
∫
|q|<1/a

eiq·x

t+ c1qσ
. (2.13)

On the other hand, the Landau action per unit volume (that completely neglects the
spatial dependence of the order parameter) is given by:

L = tφ2 + uφ4, (2.14)

where now φ is an homogeneous order parameter which can be thought as the average
of the magnetization over the whole system. The values of the order parameter at
equilibrium are given by the minima of (2.14) and are:

φ̄ =

{
0, t > 0,√

−t/2u, t < 0.
(2.15)

The first one corresponds to the disordered phase and the second one corresponds to
the ordered phase. Now we consider Gaussian fluctuation in the ordered phase near
the critical point (t = 0−), we thus consider the action (2.8) with u = 0 , we expand
the order parameter as:

φ(x) = φ̄+ δφ(x), (2.16)

and we plug it in (2.8) with u = 0 to find the action for the fluctuations. The result,
up to irrelevant constant terms, is:

Sfluct =

∫
ddq(|t|+ c2q

σ)δφ(q)δφ(−q), (2.17)

from which we can immediately read the correlation function of fluctuations:

⟨δφ(x)δφ(y)⟩ =
∫
q<1/a

ddq
eiq·(x−y)

|t|+ c2qσ
→ ⟨δφ(x)2⟩ =

∫
q<1/a

ddq
1

|t|+ c2qσ
∝ |t|d/σ−1

(2.18)
In order to assess whether fluctuations are important we consider the ratio:

ε =
⟨δφ(x)2⟩

φ̄2
∝ |t|d/σ−2, (2.19)

where we used (2.18) and (2.15). If ε ≪ 1 then the fluctuations are negligible and
Landau theory is correct. We then see that if σ < d/2 ≡ σ̄ fluctuations are irrelevant
and the system falls in the mean-field universality class. On the other hand, if
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σ > d/2 then fluctuations are important and the critical exponents are in general
functions of σ which interpolate between mean-field values and short-range values.
These results can also be read the other way around: for d > 2σ the system is mean-
field, and thus the upper critical dimension is dc = 2σ. Notice that for σ = 2 we
recover the short-range result dc = 4.
At the end of this analysis we are thus left with the following picture [26]:

· −d < σ < 0 The universality class is the one of the fully-connected model
σ = −d

· 0 < σ < σ̄ The universality class is the one of the mean-field model obtained
with the Landau action (2.14).

· σ̄ < σ < σ∗ The critical exponents are functions of σ that interpolate between
the mean-field and the short-range values.

· σ > σ∗ The critical exponents are the ones of the short-range model.

In our case we found σ̄ = d/2 and σ∗ = 2, but we worked at the Gaussian level: let us
now consider the full interacting action (2.8). Dimensional analysis tells us that the
field φ(x) has dimension (σ − d)/2. This in turn means that the interaction φ(x)4

has dimension 2(σ − d) and thus it is irrelevant for σ < d/2, so it does not affect
our analysis in the mean-field region. On the other hand, for σ > d/2 interactions
are relevant and can change the critical exponents as it happens, for instance, in the
long-range one-dimensional Ising model we saw in section 2.2.1, where σ∗ = 1. A
pioneering work in this direction was the one by Sak [27], where, by Renormalization
Group techniques, he argued that σ∗ = 2−ηSR, where ηSR is the anomalous dimension
of the short-range model. It should be remarked, however, that Sak criterion has
not been conclusively confirmed numerically. Its consistency has been investigated
numerically in several works, see e.g. [28, 29, 30], finding good agreement, but there
are also works that seem to point at a different value of σ∗ [31].

2.3 Thermodynamic limit of long-range interact-

ing systems

In this section we want to point out another important property of long-range inter-
acting systems, namely the relation between the energy spectrum of the system and
the existence of the continuum limit of the latter [32]. Consider a one-dimensional
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long-range quadratic chain (with periodic boundary conditions):

H =
N∑
l=1

p2l
2m

+
1

Nσ

N∑
l=1

N/2∑
r=1

(xl − xl+r)
2

r1+σ
, (2.20)

where Nσ is the Kac factor defined as:

Nσ =

N/2∑
l=1

l−1−σ. (2.21)

In the large N limit, (2.21) correctly scale to make the Hamiltonian (2.20) extensive:

Nσ ≈


ζ(1 + σ), σ > 1,

ln(N), σ = 0,

−2σ/σNσ, −1 < σ < 0.

(2.22)

Now we move to Fourier space and we find:

H =
∑
n

(
pknp−kn

2m
+
ωkn

2
xknx−kn), kn =

2π

N
n, n = −N/2 + 1, ..., N/2, (2.23)

where the spectrum of the system is given by:

ωkn =
1

Nσ

N/2∑
r=1

4 sin2(knr)

r1+σ
. (2.24)

Now we want to take the thermodynamic limit: we need to distinguish between the
cases σ > 0 and −1 < σ < 0.
If σ > 0 we can replace kn with a continuous variable k ∈ (−π, π] and replace the
sum in (2.24) with an integral:

ωkn → 4

ζ(1 + σ)

∫ ∞

1

dr
sin2(kr)

r1+σ
≡ ω(k), (2.25)

and the spectrum becomes a continuous function of the momentum k. This is the
typical case for “usual” (i.e. short-range) systems. However, let’s now look at the
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case −1 < σ < 0. In this case for large N the spectrum (2.24) becomes:

ωkn =
|σ|2|σ|
Nσ

N/2∑
r=1

4 sin2(2πnr/N)

r1+σ
(2.26)

=
|σ|2|σ|
N

N/2∑
r=1

4 sin2(2πnr/N)

(r/N)1+σ
(2.27)

≈ |σ|2|σ|
∫ 1/2

0

dρ
4 sin2(2πnρ)

ρ1+σ
≡ ωn. (2.28)

So in the strong-long range regime the spectrum remains discrete even in large N
limit. This means that it is not possible in this case to define a continuous momentum
variable and it is thus not possible to give a continuous description of the system[32].
Furthermore, the spectrum is made of isolated points and the only accumulation
point is n = ∞ around which the spectrum ωn goes as:

ωn ∼ N−|σ| (2.29)

so all the eigen-energies of the system accumulate around zero.

2.4 Experimental realizations

We want to emphasize the fact that these systems are not merely an academic cu-
riosity, but they have experimental realizations in a plethora of different contexts,
both classical and quantum. Let us start from the former. The most famous exam-
ples of long-range interactions are the gravitational and Coulombian ones, although
it should be mentioned that the latter are really long-range only in systems such
as one-component plasmas [33], otherwise screening effects make the interaction ef-
fectively short-range. Other cases of long-range interaction in classical systems are
given by the logarithmic interaction between vortices in 2d hydrodynamics [34], or
the stress field around a slit in a plane in the context of 2d elasticity [35].
In the quantum regime, long-range systems can nowadays be realized thanks to the
advancements in experimental techniques in the context of AMO systems. A first
example is given by trapped ions systems. These systems consist in ions interacting
via Coulomb interaction and trapped in an external potential, which are then laser
cooled. At low temperatures, they organize themselves as a Wigner crystal [36].
This crystal is subjected to a spin-dependent optical force, which induces an effec-
tive spin-spin interaction which can be tuned to be a power-law r−α of the distance
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between the spins r, with 0 < α < 3 [37, 38].
Another way to simulate long-range interaction is with quantum gases coupled to
cavity modes. These systems consist in Bose condensates trapped in a cavity inter-
acting with a standing wave laser with frequency far detuned with respect to the
frequency of atomic excitations so that can only be scattered by the condensate.
Furthermore the laser’s frequency is very close to the frequency of a cavity mode, so
that most of the scattered phonons will scatter in that mode. Then the long-range
effective coupling between atoms is mediated by phonons scattering off an atom in
the cavity mode and then off another atom [39]. With this method we can simulate
fully connected systems, since phonon is delocalized over the cavity mode. For exam-
ple, it is possible to simulate the Hamiltonian of the hamiltonian mean-field model
[40], one of the most studied fully-connected model in the literature of long-range
systems [22].



Chapter 3

Heat transport in quadratic
systems

In this chapter we are going to describe several methods to study heat transport in
quadratic systems that we will extend to long-range systems in later Chapters. We
will be interested in the general quadratic Hamiltonian:

H =
∑
i

p2i
2mi

+
1

2

∑
ij

Φijxixj, (3.1)

where the matrix Φ is a symmetric matrix which specifies the form of the interaction
we are considering. We will mainly consider the following protocol to study heat
transport: we attach the system (3.1) to two external baths, one on the left (on the
side of site 1) with temperature TL and one on the right (on the side of site N) with
temperature TR. Then, after a transient, the system will reach a stationary state,
characterized by the presence of a net heat current J flowing through the chain and
a temperature profile Ti. The methods described in sections 3.1, 3.2 and 3.3 are
related to this protocol.
In section 3.4 we introduce a class of systems which, despite being quadratic, are
believed to share some traits with interacting systems. We then describe a method
based on the Green-Kubo formula to compute the thermal conductivity κ.

3.1 Rieder-Lebowitz-Lieb method

One of the first methods to study heat transport in quadratic systems was introduced
by Rieder, Lebowitz and Lieb in their seminal work [9] in order to describe the steady-

23
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state of a nearest-neighbours chain coupled to two external heat baths.
We model the effect of the baths as white noise terms in the equations of motion1:

ẍn = −
∑
j

Φnjxj + δ1,n(ξL − λẋ1) + δN,n(ξR − λẋN) (3.2)

⟨ξR/L(t)ξR/L(t
′)⟩ = 2kBTR/Lλδ(t− t

′
), (3.3)

where λ is the coupling between the system and the baths. We also added friction
terms in order to reach a steady-state in which the fluctuation-dissipation relation
is satisfied. It is convenient to convert the Langevin equations (3.2) into a Fokker-
Planck equation [41]. The result is:

∂P (y, t)

∂t
= Aij

∂

∂yi
(yjP ) +

1

2
Dij

∂2P

∂yi∂yj
, yT = (x1, ...xN , p1, ...pN), (3.4)

where the drift matrix A and the diffusion matrix D are given by:

A =

(
O −I
Φ λR

)
, D =

(
O O
O 2kBλT (R + ηS)

)
, (3.5)

Rij = δij(δi1 + δiN), Sij = δij(δi1 − δiN), (3.6)

T =
TL + TR

2
, η =

TR − TL
T

= ∆T/T. (3.7)

The general solution to equation (3.4) is a Gaussian distribution:

P (y, t) =
1

(2π)N
√

det(C)
exp(−yTC−1y/2), Cij = ⟨yiyj⟩ . (3.8)

where C is the matrix of covariances of the canonical coordinates. Inserting the
ansatz (3.8) into the Fokker-Planck equation (3.4) we get an equation for the matrix
C:

Ċ = D − AC − CAT , (3.9)

which in the stationary state becomes the celebrated Lyapunov equation:

AC + CAT = D. (3.10)

1This is tantamount to neglecting the effect of the dynamics of the system on the baths, see [1]
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Once we solve (3.10) we know all the correlators in the steady-state and we can
compute both the heat-flux and the temperature profile. It is convenient to introduce
the matrices U , V and Z:

C =

(
U Z
ZT V

)
, Uij = ⟨xixj⟩ , Vij = ⟨ẋiẋj⟩ , Zij = ⟨ẋixj⟩ . (3.11)

As a check, note that if the baths have the same temperature TL = TR = T , the
following is a solution of (3.10):

U = TΦ−1, V = T I, Z = 0, (3.12)

which corresponds to the equilibrium solution and energy equipartition among the
normal modes at temperature T . Once we solve the Lyapunov equation (3.10) we
can compute both the heat flux and the temperature profile in the stationary state.
Indeed, the temperature profile can be computed from its kinetic definition:

Ti = ⟨ẋ2i ⟩ = Vii, (3.13)

while the heat flux can be expressed as the rate of energy flowing from the left bath
to the first site:

J = λ(TL − T1) = λ(TL − V11). (3.14)

We conclude with two comments. First, one can relax the condition that the baths
are coupled only to the first and last site. Assume, for example, that the left-hand
bath is coupled to the first NL sites and the right-hand one is coupled to the last NR

sites. Then all one has to do is to change the R matrix defined in (3.4) with:

Rij = δij(δ1iδ2i...δNLi + δN−NR+1,iδN−NR+2,iδNi) (3.15)

Second, it should be noted that, in general, finding analytical solution to the Lya-
punov equation (3.10) is quite difficult. However this method can be easily imple-
mented numerically thanks to the many routines that solve the Lyapunov equation,
such as the one in the SciPy library in Python [42] and one can easily reach system’s
sizes of N ∼ 103.

3.1.1 Nearest-neighbours harmonic chain

One of the few cases where an analytical solution of (3.10) is known is the nearest-
neighbours chain considered by Rieder, Lebowitz and Lieb in [9], which corresponds
to a matrix Φ proportional to the discrete Laplacian:

Φ = ω2G, G = (2δij − δi,j+1 − δi,j−1). (3.16)
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The derivation of the solution to the Lyapunov equation corresponding to (3.16) is
discussed in some detail in Appendix 2. Let φj be the function:

φj =
sinh[(N − j)α]

sinh(Nα)
, eα = 1 +

ω2

2λ2
− ω2

2λ2

√
1 +

4λ2

ω2
. (3.17)

Then the heat flux (3.14) is given by:

J =
ω2kB∆T

2λ2
φ1, (3.18)

which in the thermodynamic limit becomes (using (B.17)):

J =
ω2T

2λ

(
1 +

ω2

2λ2
− ω

λ

√
ω2

4λ2
+ 1.

)
. (3.19)

As we can see, the heat flux is proportional to the difference of the temperatures
of the baths ∆T and not to the gradient ∆T/N . This means that the thermal
conductivity, defined according to Fourier law:

J = −κ∆T
N

, (3.20)

diverges in the thermodynamic limit as κ ∼ N . This is a consequence of the fact
that, being the system quadratic, transport is ballistic and is mediated by phonons
that propagate unperturbed along the chain. In the thermodynamic limit, the heat-
flux is a non-monotonous function of ω/λ (see the left panel of Figure 3.1) with a
maximum at λmax =

√
3ω/2.

The temperature profile can also be expressed in terms of the function φ:
T1 = TL − ω2

2λ2φ1∆T,

Ti = T − ω2

2λ2φ2j−1∆T, 1 < j < N/2

Ti = T + ω2

2λ2φ2N−2j−1∆T, N/2 < j ≤ j < N

TN = TR + ω2

2λ2φ1∆T.

(3.21)

The plot of (3.21) is reported in the right-hand panel in figure 3.1. The first thing
that we notice is that the profile is flat in the bulk, in stark difference with the linear
ramp predicted by Fourier law. Indeed, as we already mentioned, transport in this
quadratic system is ballistic and not diffusive. Furthermore, we notice the curious
fact that the temperature of the second site goes below the bulk value and then
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Figure 3.1: In the left panel we report the plot of the adimensional heat flux
J/(ωkBT ) as a function of the a-dimensional ratio ω/λ. In the right panel we report
the plot of the temperature profile (3.21) for N = 16 for ω2/λ2 = 0.05, 0.2, 1 as the
solid, dotted and dashed lines, respectively. The picture on the right is taken from
[1].

relaxes exponentially fast to the bulk value (this can be seen from equations (3.17)
and (3.21)).
Analytical solutions to the Lyapunov equation (3.10) have been found also for other
systems, in particular Nazakawa extended [43] the solution for the nearest-neighbours
harmonic chain to the case of free boundary conditions and to the case in which each
particle moves in a pinning potential.

3.2 Green function method

In this section we are going to describe another method to study heat transport
in quadratic systems, the so-called Langevin equation and Green function (LEGF)
method [2, 44]. The philosophy behind this method is reminiscent of the one behind
the celebrated Caldeira-Legget mechanism to induce dissipation in quantum systems
and indeed the LEGF method itself can be used to tackle both quantum and classical
problems.
The main difference with respect to the RLL method described in section 3.1 is
that the baths are modeled as two one-dimensional chains of (quantum) harmonic
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oscillators with NL and NR sites, respectively. At the initial time t0 we switch
on a linear interaction between the oscillators (that we assume to be at thermal
equilibrium at temperatures TL and TR) and the system. The Hamiltonian for this
extended system can thus be written as:

H = Hsys +HL +HR +Hint. (3.22)

Hsys is the Hamiltonian of the chain (3.1), HL and HR are the Hamiltonians for the
baths:

HL =
∑
i

p2L,i
2mL,i

+
1

2

∑
i

ω2
L,ix

2
L,i, HR =

∑
i

p2i
2mR,i

+
1

2

∑
i

ω2
R,ix

2
R,i, (3.23)

where {ωL,R} are the frequencies of the harmonic oscillators of the baths and Hint is
the linear interaction Hamiltonian:

Hint =
∑
ij

VL,ijxixL,j +
∑
ij

VR,ijxixR,j, (3.24)

where the matrices VL and VR encode the couplings between the sites of the system
and the ones of the baths. The equations of motion of the full Hamiltonian (3.22)
are:

miẍi =
∑
j

(Φijxj + VR,ijxR,j + VL,ijxL,j) (3.25)

mL,iẍL,i = −ω2
L,ixL,i +

∑
j

VL,jixj, mR,iẍR,i = −ω2
R,ixR,i +

∑
j

VR,jixj. (3.26)

The idea is now to solve the equations of motion for the baths (3.26) treating the
system as a source and plug this solution into (3.25) to obtain an equation containing
only the degrees of freedom of the system. The details of this calculation are reported
in section C.1 in Appendix 3. The final result is:

miẍi(t) = −
∑
ij

Φijxj(t)+ξL,i(t)+

∫ t

t0

dτ
∑
jl

VL,ijgL,j(t−τ)m−1
L,jVL,ljxl(τ)+(L→ R),

(3.27)
where we defined:

ξa,i(t) = −
∑
j

Va,ijfa,j(t− t0)xL,j(t0) + ga,j(t− t0)ẋL,j(t0), (3.28)
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and functions f and g are defined by:

fa,i(s) = cos(ωa,is)θ(s), ga,i(s) =
sin(ωa,is)

ωa,i

θ(s), a = L,R, (3.29)

Looking at equation (3.27), we see that the only contribution of the initial conditions
of the baths is in the ξ terms. Furthermore, these terms are linear combinations of an
extensive number of periodic functions (NL,R are supposed to be large) with random
coefficients extracted from the distribution describing the thermal equilibrium of
the baths. It follows that the ξ functions behave effectively as a noise and we can
replace the average over the initial conditions of the baths with an average over the
realization of ξ: equation (3.27) is thus called a quantum Langevin equation. The
convolution term in equation (3.27) encodes the dissipation and memory effects in
the dynamics induced by the baths, in particular it is convenient to introduce the
memory kernel:

Σa,ij(s) = Va,ijga,j(s)m
−1
a,jVa,lj, a = L,R. (3.30)

Assuming the oscillators in the bath are described by a Bose-Einstein distribution
at time t0, the correlation of the noise is given by2:

⟨ξa,i(t)ξa,j(τ)⟩ =−
∑
l

Va,ilVa,lj

[
ℏ

2ma,lωa,l

cos(ωa,l(t− τ)) coth

(
ℏωa,i

2kBTa

)
− i

ℏ
2ma,iωa,i

sin(ωa,i(t− τ))

]
, a = L,R. (3.31)

For what follows, it will be useful to write (3.27) and (3.31) using a vector notation:

M ẍ(t) = −Φx(t) + ξL(t) +

∫ t

t0

dτΣL(t− τ)x(τ) + (L→ R), (3.32)

⟨ξa(t)ξa(τ)⟩ = −Va
[

ℏ
2MaΩa

cos(Ωa(t− τ)) coth

(
ℏΩa

2kBTa

)
− i

ℏ
2MaΩa

sin(Ωa(t− τ))

]
V T
a , a = L,R. (3.33)

where we introduced:

xT = (x1, ..., xN), ξTa = (ξ1, ..., ξN) xT
a = (xa,1, ..., xa,Na), Mij = miδij, (3.34)

Ωa = ωa,iδij, fa,ij(s) = fa,i(s)δij, ga,ij(s) = ga,i(s)δij, (3.35)

Σa(s) = Vaga(t− τ)M−1
a V T

a , a = L,R (3.36)

2The proof is reported in section C.2 of Appendix 3.
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We now recall that we are interested in the properties of the stationary state that
the system will reach after a transient. Therefore, we can take t0 → −∞ and move
to Fourier space with the following convention for the Fourier transforms:

x̃i(ω) =

∫ ∞

−∞

dt

2π
xi(t)e

iωt, (3.37)

ξ̃a,i(ω) =

∫ ∞

−∞

dt

2π
ξa,i(t)e

iωt, (3.38)

g̃a,i(ω) =

∫ ∞

−∞
dtga,i(t)e

iωt, f̃a,i(ω) =

∫ ∞

−∞
dtfa,i(t)e

iωt (3.39)

The Langevin equation (3.32) trivially becomes:

−ω2M x̃ = −Φx̃+ ΣL(ω)x̃+ ξ̃L + (L→ R). (3.40)

This equation can be solved in terms of the Green function G(ω):

x̃(ω) = G(ω)(ξ̃L(ω) + ξ̃R(ω)), G(ω) = [−ω2M + Φ− ΣL(ω)− ΣR(ω)]
−1. (3.41)

By computing the Fourier transform of the noise-noise correlator3 we find:

⟨ξa(ω)ξa(ω′)T ⟩ = ℏ
π
δ(ω + ω′)Γa(ω)(1 + f(Ωa, Ta)), Γa(ω) = Im[Σa(ω)] (3.42)

which is a form of the fluctuation-dissipation relation.

3.2.1 Heat flux and temperature profile in the stationary
state

The heat flux in the stationary state is given by the rate of work done by one of the
baths, say the left-hand one, on the system. Since the force exerted by the bath on
a the i-th particle in the chain is −(VLxL)i, the total rate of work is:

J = −⟨ẋTVLxL⟩ . (3.43)

As explained in section C.4 of Appendix 3, this expression depends only on the Green
function (3.41) and the imaginary part of the Fourier transform of the memory kernel
Γa(ω) defined in (C.23):

J =
1

π

∫ ∞

−∞
dωTr[G(ω)ΓL(ω)G(ω)

†ΓR(ω)]ℏω[f(ω, TL)− f(ω, TR)], (3.44)

3The details of the calculation are reported in section (C.3) of Appendix 3.



3.2. GREEN FUNCTION METHOD 31

notice that it correctly vanishes if the temperature of the baths are equal, TL = TR In
a similar fashion, it can be proved that the temperature Ti, i.e. the velocity-velocity
correlator, can be expressed as:

Ti = k−1
B m ⟨x2i ⟩ =

TL
π

∫ ∞

−∞
dω(G(ω)ΓL(ω)G

†(ω))ii
ℏω3

2
coth

(
ℏω

2kBTL

)
+ (L→ R)

(3.45)
In the classical limit ℏω/kBTL,R ≪ 1, equations (3.44) and (3.45) become:

J = J =
∆T

π

∫ ∞

−∞
dωTr[G(ω)ΓL(ω)G(ω)

†ΓR(ω)] (3.46)

Ti =
TL
π

∫ ∞

−∞
dω(G(ω)ΓL(ω)G

†(ω))ii + (L→ R). (3.47)

The integrand in the expression of the heat flux (3.46) is called transmission coeffi-
cient T (ω):

T (ω) =
1

4π
Tr[G(ω)ΓL(ω)G(ω)

†ΓR(ω)]. (3.48)

Notice that we did not specify the form of Γa(ω), which encodes the properties of
the bath. The most common choice is the so-called Ohmic bath, which corresponds
to a purely imaginary Σa(ω) = iΓa(ω) with:

Γa,ij = λωRij, (3.49)

where the matrix Rij is the coupling matrix (3.15). If the baths are only coupled to
the first and last site, the R matrix is given by the one in (3.4) and the Langevin
equation of motion for the system becomes:

miẍi = −
∑
ij

Φijxj − λẋ1 − λẋN + ξL,1 + ξR,N . (3.50)

The noise-noise correlation (3.42) also reduces to the Gaussian one in the classical
limit. Notice that this choice in the classical limit reproduces the dynamics studied
using the RLL method in section 3.1. Indeed, in [44] the LEGF method has been
applied to a nearest-neighbours chain (which corresponds to a Φ matrix given by
(3.16)) with pinning potentials. The full analytical computation of the heat flux and
temperature profile were performed and the results of Lebowitz [9] and Nazakawa
[43] were recovered in the relevant limiting cases. A closed expression for the heat
flux in the quantum case was also obtained.
The Green function method has been applied to a variety of systems, ranging from
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chains subject to magnetic fields [45, 46], disordered systems [47], and also purely
quantum systems such as fermionic chains [48]. More recently it has been applied to
a chain coupled to active baths [49].

3.3 Generalized eigenvalue method

In this section we describe a method to study transport which is closely-related to
the Green function method described in section 3.2, which was introduced in [50] to
study heat transport in quantum crystals. As we saw, the method relies on the inver-
sion of the matrix G−1(ω) = −ω2I+Φ−ΣL(ω)−ΣR to compute the Green function
(3.41). However, this operation can be sometimes difficult to perform analytically.
From the numerical point of the view, since we are interested in the thermodynamic
limit, we need to invert a very large matrix, which is computationally expensive.
The method that we describe in this section essentially replaces the inversion of the
N ×N matrix with the solution of a 2N × 2N eigenvalue problem.

We now consider the Green function (3.41), but for convenience we take the
Laplace transform and not the Fourier one4 :

G(s) = [s2 + Φ+ sλR]−1, (3.51)

where for simplicity we take all the masses equal to one. To compute the inverse
of a matrix polynomial of degree two (such as the one in (3.51)), we can refer to
the theory of the so-called generalized quadratic eigenvalue problem. We remind
that the standard generalized eigenvalue problem consists in finding the zeroes of
a matrix T (s) = A + sB, where A and B are matrices. The generalized quadratic
eigenvalue problem consists in finding the zeroes of a quadratic matrix polynomial
P (s) = As2 + Bs + C: we see from (3.51) that G−1(s) has precisely this form. As
we show in Appendix 4 the Green function G(s) can be expressed as:

G(s) =
2N∑
i=1

si
s− si

x(i)x(i)T , G−1(si)x
(i) = 0, ∀i = 1...2N, (3.52)

where the poles si and the vectors x(i) can be obtained by solving the 2N × 2N
eigenvalue problem [51](D.10). Equation (3.52) has several consequences. First of

4We remind that, since we are considering the stationary state we neglect the initial conditions,
and thus the relation between the Fourier transform f̃(ω) and the Laplace one f̄(s) is simply
f̃(iω) = f̄(s).
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all, it gives a way to easily access the poles of the Green function, which, as we are
going to see in Chapter 4, are sometimes crucial to understand the properties of the
system. Furthermore, we can plug (3.52) into the integrals (3.44), (3.45), (3.46) and
(3.47) to obtain an alternative expression for the heat flux and temperature profile
that involves only sums over the {si}2Ni=1. For example we consider the classical flux
(3.46) with baths coupled only to the first and last site (so that the matrix R is
given by (3.4) and the memory kernel is given by (3.49). Then, if we plug (3.52) into
(3.46) we obtain:

J =
γ2kB∆T

π

∫ ∞

−∞
G1N(ω)G

†
N1(ω)dω (3.53)

= 2kB∆Tγ
2

2N∑
ij=1

s2i sj
si + sj

x
(i)
1 x

(i)∗
N x

(i)∗
1 x

(i)
N . (3.54)

This method has also been generalized to Ohmic baths with a soft cut-off [10], in
which case the inverse of the Green function is a cubic matrix polynomial and thus
one needs to consider the cubic eigenvalue problem.

3.4 Stochastic exchanges

In the previous sections of this chapter, we considered the dynamics of an otherwise
deterministic system and then introduced a stochastic component to this dynamics
by coupling the system to two heat reservoirs. In this section we consider a different
class of quadratic models where the stochastic part of the dynamics comes from a
momentum-exchange mechanism. In particular we will consider models described
by Hamiltonian (3.1) (where we put mi = 1 ∀i for simplicity) and at random times
we exchange the momenta of two randomly-selected particles. We call this process
a collision, as we can imagine it as a collision between the particles the outcome of
which is the momentum exchange. More specifically, let us call {pl}Nl=1 the set of the
momenta of all the particles at time t. Then, assuming there is a collision at time
t + τ , we randomly pick two particles with a probability Wn,m and exchange their
momenta:

(pn, pm) → (pm, pn) ≡ (p
′

n, p
′

m), (3.55)

where the prime denotes a quantity immediately after the collision. The inter-
collision times τ are sampled randomly from a given distribution with a finite mean
τ .
This momentum exchange mechanism was introduced as a way to mimic the effect
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of nonlinear interactions, while keeping the model solvable as the quadratic one [52].
Heat transport in the nearest-neighbours chain with nearest-neighbours momentum
exchange (i.e. only the momenta of adjacent particles are exchanged) was studied by
coupling the chain to external baths in [53, 11] and it was found that the heat flux
scales as J ∼ N−1/2 at stark variance with the deterministic system studied in 3.1.
This scaling of the heat flux corresponds to a divergence of the heat conductivity
κ ∼ N1/2 and in this case the transport is called anomalous [1].
More recently Tamaki and Saito [12] computed the thermal conductivity in a long-
range harmonic chain with stochastic collisions between nearest neighbours particles
using the Green-Kubo formula. In Chapter 5 we will apply the methods presented
in this section to recover their result and to extend the computation to the thermal
conductivity in the case of long-range collisions. In this section we recap the analysis
presented in [54]: we study the dynamics of the uncoupled system and we will later
obtain the thermal conductivity via the Green-Kubo formula. In particular, we want
to obtain an equation for the time evolution of the “energy modes” of the system.
The main ingredients of this discussion will be the normal modes of the matrix Φ
and since we will consider only traslational-invariant lattices, these are given by the
standard Fourier modes:

Φχν = ω2
νχ

ν , χν
l =

e−ikν l

√
N
, kν =

2πν

N
, ν = −N

2
+ 1, ...,

N

2
. (3.56)

We now expand both positions and momenta on the eigenbasis of Φ:{
qi =

∑
ν Qνχ

ν∗
i , pi =

∑
ν Pνχ

ν∗
i ,

Pν =
∑

i piχ
ν
i , Qν =

∑
i qiχ

ν
i , P ∗

ν = P−ν , Q∗
ν = Q−ν

(3.57)

so that the Hamiltonian (3.1) becomes:

H =
1

2

∑
ν

(|Pν |2 + ω2
ν |Qν |2). (3.58)

After a collision which exchanges the momenta of particles n and m the change in
Pν is given by:

∆Pν =
∑
l

(p
′

l − pl)χ
ν
l = (pn − pm)(χ

ν
n − χν

m) = (χν
n − χν

m)
∑
µ

(χµ∗
m − χµ

n)Pµ∗ (3.59)

= −2
∑
µ

VνV
∗
µPµ. (3.60)
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where we introduced the vector V
(n,m)
µ :

V (n,m)
µ =

χµ
n − χµ

m√
2

=
eikµn − eikµm√

2N
. (3.61)

Note that the entries of this vector are random variables that depend on which
particle we select for the exchange of momenta. We now switch to a vector notation
by collecting the Pν in a vector P , so that equation (3.59) becomes:

∆P = −2V V †P , (3.62)

and we thus see that there are two contributions to the dynamics of P : the deter-
ministic one regulated by the Hamiltonian (3.58) and the stochastic one (3.62).

3.4.1 Action-angle variables

It is convenient to switch to the classical counterparts of the creation-annihilation
operators:

A = i(2Ω)1/2Q+ (2Ω)−1/2P , Ã
∗
= −i(2Ω)1/2Q+ (2Ω)−1/2P , (3.63)

where Ãν = A−ν . The inverse of (3.63) is given by:

P =
1

2
(2Ω)1/2(A+ Ã

∗
), Q =

1

2i
(2Ω)−1/2(A− Ã). (3.64)

Using (3.62) we find that after a collision A is given by:

A
′
= (1−M)A−MÃ

∗
, M = Ω−1/2V V †Ω1/2, (3.65)

which can also be written as an expression containing only A :

A
′
= A−U(W †A+W TA∗), Uµ = Vµ

√
2

ωµ

, Wµ = Vµ
√
2ωµ. (3.66)

Equation (3.66) is the one that we use in the numerical implementation of this
scheme: it is particularly convenient since it allows to reduce the effect of collisions
to a matrix multiplication.
In order to get the full time evolution we also need to take into account the deter-
ministic dynamics between times t and t + τ . It can be easily proven using (3.58)
and (3.63) that:

A(t+ τ) = eiωτA(t). (3.67)
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Combining equations (3.67) and (3.65) we get time full evolution of A between time
t and immediately after the first collision at time t+ τ :

A
′
(t+ τ) = (1−M)eiωτA(t)−Me−iωτÃ

∗
(t). (3.68)

Now we switch to the action and angle variables Iν , θν defined as Aν =
√
Ive

iθν . The
variation of these variables following a collision is:

I
′

ν = Iν

∣∣∣∣1− 2Vνe
−iθν

√
Iν

Z

∣∣∣∣2, (3.69)

sin θ
′

ν =

√
I − ν

I ′
ν

sin θν − 2
Im(Vν)√
I ′
νων

, (3.70)

Z = Re(
∑
µ

√
Iµωµ(Vµe

−iθµ). (3.71)

Taking into account also the deterministic part of the dynamics (3.67) we get:

I
′

ν(t+ τ) = Iν(t) + ∆Iν({I}, {θ}), (3.72)

θ
′

ν(t+ τ) = θν(t) + ωντθν(t) + ∆θν({I}, {θ}), (3.73)

where ∆I and ∆θ can be read off (3.69) and (3.70). We thus see that the action
variable change only due to the stochastic collisions and are conserved by the deter-
ministic quadratic dynamics. We now consider the so-called kinetic limit:

N → ∞, ⟨τ⟩ → 0, γ =
1

N ⟨τ⟩ , (3.74)

with γ finite. This limit corresponds to a finite probability of having a collision
per site and thus on the time-scale T = 1/γ the total number of collisions becomes
macroscopic. As we can see from (3.73) for a large number of collisions the phases
θν are randomized much faster than the action variables thanks to the presence of
the ωντ term. We therefore take the average of (3.72) over a uniform distribution of
the angles. The result is:

Ī
′

ν = (1− 2|Vν |2)Īν + 2
|Vν |2
ων

∑
µ

Īµωµ|Vµ|2 . (3.75)

This equation can be converted into an equation for the energy modes Eν :

Eν = Iνων = ων |Aν |2, (3.76)
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by inserting (3.76) into (3.75):

E
′

ν = Eν +
∑
µ

KνµEµ, K(n,m)
µν = −2|V (n,m)

ν |2δµν + 2|V (n,m)
ν |2|Vµ|2, (3.77)

where we wrote explicitly the dependence of V on the choice of the colliding particles
n,m. From the definition of K (3.77) we see that the constant vector Ev = Eeq is an
eigenvector of K with zero eigenvalue: this vector does not evolve and corresponds
to the equilibrium state.
Note that the matrix K has random entries that depend on the choice of the particles
(n.m) that take part in the collision: we therefore need to compute the average of
Eν over the collisions occurring between a given time t and t+ T , where T = 1/γ is
the time scale after which we expect the number of collision to be macroscopic. To
begin with, from equation (3.77) we get:

Eν(t+ T ) =
∑
µ

( ∏
{(n,m)}

(I+K(n,m))

)
νµ

Eµ(t), (3.78)

where the product runs over all the collision between t and t+ T . Now we make the
assumption that a single collision only alters the energies Eµ by a small amount5.
We can then linearize equation (3.78):

Eν(t+ T )− Eν(t) =
∑
µ

∑
{(n,m)}

K(n,m)
νµ Eµ(t). (3.79)

The sum over the collisions in the left-hand side of (3.79) is given by the average
over the stochastic process Wn,m:

1

N

∑
{(n,m)}

K(n,m) =
∑
n,m

Wn,mK
(n,m) ≡ K̄, (3.80)

while the right-hand side of (3.79) can be written as a time-derivative:

Eν(t+ T )− Eν(t) ∼ Ėν(t)/γ. (3.81)

5This condition is satisfied when the normal modes χν are given by the Fourier modes or are
otherwise extended, in which case their components scale as N−1/2 due to the normalization con-
dition. If the eigenmodes are localized this condition might not be true, but we will not deal with
such cases.
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Inserting (3.80) and (3.81) into (3.79) we finally get an equation for the time evolution
of the energy modes Eν which can be written as a master equation:

Ėν =
∑
µ

(RνµEµ −RµνEν), Rµν = 2γN |Vν |2 |Vµ|2. (3.82)

The properties of the time evolution of the energy modes are thus given by the
eigenvalues of the matrix R. We already saw that one of them is zero and corresponds
to the equipartition state. The non-vanishing eigenvalues represent the relaxation
rates of the various energy modes to this state:

Eν(t)− Eeq = Eeqe
−|µν |t. (3.83)

We will consider only cases where Wn,m = W|n−m|. Then, using the definition of Vµ
(3.61) we get:

Rµν = γ
∑
l>0

Wl

[
− 4 sin2 kµl

2
δµν +

8

N
sin2 kµl

2
sin2 kνl

2

]
. (3.84)

In the large N limit the off-diagonal entries of Rµν are small with respect to the
diagonal ones and we thus neglect them (this also means to neglect the coupling
between the various energy modes). In this approximation theRµν matrix is diagonal,
and its eigenvalues µν are trivially given by:

µν = −4γ
∑
l>0

Wl sin
2 kµl

2
. (3.85)

In [54] the exponential relaxation of the energy modes (3.83) is tested numerically
for a series of clean and disordered systems finding a good agreement. Furthermore,
this method is numerically very convenient since all the interesting quantities can be
expressed in terms of the Aν (e.g. the energy modes (3.76)) whose time evolution is
implemented by a matrix multiplication (3.68).
In chapter 5 we will use (3.83) to compute the current-current correlation and extract
the thermal conductivity via the Green-Kubo formula.

3.4.2 Thermal conductivity for short-range chains

In this subsection we recover the results of [11] for the thermal conductivity in a
nearest-neighbours quadratic chain with nearest-neighbours collisions. This model
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corresponds to a matrix Φ given by (3.16), the eigenfrequencies ων , the probabilities
Wn,m and the rates µ(k) are given by:

ων = 4 sin2(kν/2), Wn,m = δ|n−m|,1, µ(kµ) = −4γ sin2 kµ
2
. (3.86)

In order to compute the thermal conductivity we use the Green-Kubo formula:

κ =

∫ t∗

0

dtCN(t), CN(t) =
J(t)J(0)

N
, N ≫ 1, t∗ = N/v∗ (3.87)

where we introduced a cut-off time t∗ and v∗ is the typical velocity of propagation
of energy excitations [1]. Basically, we are integrating only up to the time in which
energy has propagated through the linear dimension of the system. The reason
we introduce this cut-off is that in anomalous transport the thermal conductivity
would, strictly speaking, diverge for N = ∞ due to the fact that the self-correlation
of the current has long-living power-law tails. Integrating up to time t∗ allows us
to convert this diverge in time into a divergence with the system’s size. Note also
that the average in (3.87) is a micro-canonical average, but since we are considering
a local system there is ensemble equivalence and we can replace it with a canonical
average.
We now turn to the computation of the current-current correlations. Let us begin
by introducing the Hamiltonian density hl:

H =
∑
l

hl, hl =
1

2

(
p2l +

1

2
(xl+1 − xl)

2 +
1

2
(xl−1 − xl)

2

)
, (3.88)

where we symmetrized the potential energy following a common convention in the
literature [1] The variation of hl in an infinitesimal time dt defines the energy current
through the continuity equation:

dhl = −djl + djl−1, (3.89)

where the d stands for the variation of a quantity in an infinitesimal time dt. The
infinitesimal time evolution of the canonical coordinates is given by:

dxl =
∂H

∂pl
dt = pldt, (3.90)

dpl = −∂H
∂xl

+ dnl(pl+1 − pl) + dnl−1(pl−1 − pl)

= −2xl + xl−1 + xl+1 + dnl(pl+1 − pl) + dnl−1(pl−1 − pl), (3.91)
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where we introduced the Poisson variable dnl which can be either 0 or 1 with average
[12]:

⟨dnl⟩ = γdt (3.92)

Using equations (3.90) and (3.91) to compute the differential of (3.88) and comparing
it to (3.89) we get:

djl =
1

2
(pl+1 + pl)(xl+1 − xl)dt+ dnl

1

2
(p2l+1 − p2l ) ≡ j

(det)
l dt+ dj

(sto)
l . (3.93)

Notice that the current (3.93) is composed of two terms. The first one represents
the rate of work done by a particle on the adjacent ones: we will call this term
“deterministic”. The second one stems from the stochastic collisions due to the fact
that colliding particles trade their kinetic energy with each other and this exchange
contributes to energy transport: we will call this second term “stochastic”. We can
further split the stochastic term by writing the Poisson process dnl in terms of its
fluctuation around the average value:

dj
(sto)
l =

1

2
(p2l+1 − p2l )γdt+

1

2
(p2l+1 − p2l )(dnl − γdt) ≡ jsl dt+ djl. (3.94)

When we sum over l to compute the total current, the jsl term stems a telescopic
sum that sums to zero so it does not contribute to the total current which reads:

J = J (det) + dJ, J (det) =
∑
l

j
(det)
l , dJ =

∑
l

djl (3.95)

In [55] it has been rigorously proved that, when integrated over time to get the
thermal conductivity (3.87), the mixed correlation ⟨J (det)(t)dJ(0)⟩ vanishes and the
auto-correlation of dJ yields a constant contribution to κ. Thus we only need to
compute the correlation ⟨J (det)(t)J (det)(0)⟩: in order to do so, we write J (det) in terms
of the normal modes variables introduced in section 3.4 by using the definitions of
the normal modes (3.57) and (3.63) into (3.95) we get:

J (det) =
∑
µ

sin(kµ)|Aν |2 =
∑
µ

vµEµ, (3.96)

where we used (3.76) and vµ = ∂kµωµ with ων given by (3.86). Notice that the
formula on the left of the second equality in (3.96) is actually well-known in the
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literature [1]. Now we can compute the correlator:

CN(t) = N−1 ⟨
∑
µ

vµ(Eµ(t)− ⟨Eν⟩)
∑
ν

vνEν(0)⟩ (3.97)

= N−1
∑
µν

vνvµ ⟨Eµ(0)Eν(0)⟩ eµ(kµ)t (3.98)

= N−1(kBT )
2
∑
µ

v2µe
µ(kµ)t, (3.99)

where in the first step we subtracted the value of the current at equilibrium (which is
zero), in the second one we used (3.83) and in the final one we used ⟨Eµ(0)Eν(0)⟩ =
(kBT )

2δµν . Now we take the continuum limit and find:

CN(t) → C(t) =
4(kBT )

2

π

∫ π

2π/N

dkv(k)2eµ(k)t. (3.100)

Since we are interested in the late-time power-law tails we also take the large-t limit.
In this limit the integral in (3.100) is dominated by the low-k region and we can send
the upper extremum to ∞ with exponentially small error:

C(t) =
4(kBT )

2

π

∫ π

2π/N

dkv(k)2eµ(k)t ∼ t−1/2. (3.101)

Finally, we insert (3.101) into (3.87) and we recover the scaling κ ∼ N1/2 in the
large N limit i.e. the result of [11]. In Chapter 6 we will extend this analysis to a
long-range harmonic chain with long-range stochastic collisions.





Chapter 4

Heat transport in a
fully-connected chain

In this chapter we apply the Green function method of section 3.2 to study heat
transport in a fully-connected harmonic network. This model provides an example
of long-range system in which transport properties can be computed analytically
both in the classical and quantum regime with different configurations of coupling
with the baths. This chapter is based on the paper [13].
The Hamiltonian of the system is given by:

H =
1

2m

N∑
i=1

p2i +
k

2N

∑
ij

(xi − xj)
2 =

1

2m

N∑
i=1

p2i +
1

2

N∑
i,j=1

Φijxixj, (4.1)

where k is the coupling constant, N is the Kac factor (2.21) in the fully connected
limit σ = −1 and Φ is given by:

Φij = 2k

(
δij −

1

N

)
. (4.2)

We immediately remark that since the system is fully connected there is no notion
of spatial ordering: despite this we will continue to refer to the “left-hand” bath
and “right-hand” bath to fix the notation. Furthermore, since we are considering a
long-range system it seems appropriate to consider both the case in which the baths
are coupled only to sites 1 and N (that we will call intensive coupling) and the case
where the baths are coupled to an extensive fraction of the system (that we will call
extensive coupling). Furthermore, we will only consider the case where a site can be
coupled at most with one bath, i.e. NL +NR ≤ N . The matrices ΓL(ω) and ΓR(ω)

43
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introduced in section 3.2 are given by:

ΓL,ij(ω) = λωδijδi1, ΓR,ij = λωδijδ1N , (4.3)

ΓL,ij(ω) = λωδij

NL∑
k=1

δjk, ΓR,ij = λωδij

N∑
k=N−NR+1

δjk, (4.4)

where (4.3) and (4.4) refer to the intensive coupling and extensive coupling, respec-
tively. In both cases the Green function can be computed exactly. These calculations
are performed in sections E.1 and E.2 of appendix 5 for the intensive and extensive
case, respectively. In conclusion we have four cases to consider: classical and quan-
tum regimes with intensive and extensive coupling. In particular, in the quantum
regime we will always work in the linear response approximation ∆T ≪ T and the
heat flux (3.44) reduces to:

Jq =
∆T

π

∫ ∞

−∞
dωTr[G(ω)ΓL(ω)G

†(ω)ΓR(ω)]
∂f(ω, T )

∂T
. (4.5)

We organize the chapter in the following way: in sections 4.1 and 4.3 we consider
the classical case with intensive and extensive couplings respectively. Sections 4.2
and 4.4 are devoted to the intensive and extensive coupling in the quantum regime,
respectively. In all of these cases we will be able to analytically extract the scaling of
all quantities with the system’s size N for large N . Throughout the chapter, we will
denote classical and quantum quantities with the subscript cl and q, respectively.
Furthermore we will denote with the superscript int and ext quantities related to
the intensive and extensive coupling case, respectively.

4.1 Intensive coupling, classical case

Inserting (4.3) into formulae (3.46) and (3.47) we get:

J int
cl =

kB∆T

π
λ2
∫ ∞

−∞
dω ω2|G1N(ω)|2, (4.6)

T int
cl,i =

λmTL
π

∫ ∞

−∞
dωω2|Gi1(ω)|2 +

λmTR
π

∫ ∞

−∞
dωω2|GiN(ω)|2.. (4.7)

The Green function G(ω) (3.41) for the intensive coupling case is computed in section
E.1.
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4.1.1 Heat flux

Inserting the expression for G1N (E.10) into (4.6) we get:

J int
cl =

kB∆T
√

2k/m

2π
I1(k1, N), (4.8)

where the function I1 is given by the following integral (y = ω
√
2k/m):

I1(k1, N) =
2k21
N2

∫ ∞

−∞

(y2 − 1)2

(y2 − 1)2 + k21y
2

dy

y2(y2 − 1)2 + k21(y
2 − 2

N
)2
, (4.9)

where the dimensionless coupling constant k1 is given by:

k21 =
λ2

2mk
. (4.10)

Integral (4.9) is plotted as a function of k1 in figure 4.1a: its dependence on the cou-
pling is qualitatively the same of the short-range one reported in figure 3.1. However
the heat flux now depends on the system’s size N in the thermodynamic limit: in
order to prove this, we compute the integral (4.9) in the large N limit. Consider the
second factor of the denominator of the integrand in (4.9), as a polynomial in s = y2:

s(s− 1)2 + k21(s− 2/N)2, (4.11)

as N → ∞, (4.11) has a vanishing root which for large N is given by:

s0(k1, N) = −4k21/N
2. (4.12)

By decomposing the integrand in (4.9) in partial fractions, it is easy to see that the
dominant contribution for large N is the one coming from (4.12):

I1 =
2k21
N2

∫ ∞

−∞

dy

y2 + 4k21/N
2
=
πk1
N

, (4.13)

and so the heat flux at leading order in N−1 reads as:

J int
cl = kB∆T

√
2k/m

k1
2N

. (4.14)

Notice that this result does not agree with the numerical one plotted in figure (4.1)a.
To understand the problem, we also plot NI1(k1, N) as a function of k1 in figures
4.1a and 4.1b for different values of N : as N grows, the region of agreement between
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Figure 4.1: In panel (a) we report the plot of I1(k1, N) for N = 100, 200, 300, 400, 500
from top to bottom, respectively. Notice how the flux reaches a maximum value
and then decreases. In panel (b) we report the plot of NI1(k1, N) for N =
1000, 2000, 3000, 4000, 5000, respectively. Note how the agreement with the ana-
lytical prediction (represented by the dashed black line) gets better and better as N
grows.

the predicted scaling with N and dependence on k1 4.13 grows as well. This fact can
be understood in the following way: as N grows the maximum of I1 moves to the
right on the k1 axis, as can be seen from figure 4.1 so when N → ∞ the maximum
is virtually at k1 = ∞ so that only the linear region of I1(k1, N) is visible.
We also remark that, even if the heat flux scales as N−1, the system does not follow
Fourier law: since the model is quadratic there can’t be any diffusion mechanism.
Indeed, as we are going to see in section 4.1.2, the temperature profile is flat in the
bulk.

4.1.2 Temperature profile

Inserting the relevant Green function elements in (4.7) we derive an integral expres-
sion for temperature profile analogous to the one that we obtained for the heat flux
(4.8), however we need to distinguish between the sites coupled to the baths and the
uncoupled ones. For the first site, i = 1, using the expression for G11 (E.10)in the
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large N limit we get:

T1 =
λmTL
π

∫ ∞

−∞

ω2

(mω2 − 2k)2 + λ2ω2
+O(N−1) = TL +O(N−1).

The same formula also holds for the last site i = N , with L → R. For all the other
uncoupled sites, i ̸= 1, N , the temperature profile is given by (using (E.11)):

Ti =
TL + TR

2π
I2(k1, k2, N), (4.15)

where the integral I2 is given by:

I2(k1, N) =
4k1
N2

∫ +∞

0

dy

y2(y2 − 1)2 + k21(y
2 − 2

N
)2
. (4.16)

Note that the temperature profile (4.15) is flat, confirming the fact that Fourier law
is violated. The integral (4.16) can be decomposed in partial fractions and dealt with
in the same way as I1: the result is that at leading order for large N we have:

I2 = I1/k1. (4.17)

It follows that the temperature of the generic i-th site is given by:

T int
cl,i =

TL + TR
2π

I1
k1

=
TL + TR

2N
. (4.18)

According to the result (4.18) the temperature of bulk oscillators does not equilibrate
to the average of the temperatures of the baths, but vanishes in the thermodynamic
limit. As we are going to see in the next paragraph, this behaviour is a peculiarity
of the model and depends on the choice of the initial conditions.

4.1.3 Analysis of the equations of motion in the stationary
regime

As we saw in Chapter 2 the equations of motion of the system coupled to Ohmic
baths are given by (3.50) :

ẍi = −
∑
j

Φijxj + δi1(ξL − λẋi) + δi1(ξL − λẋi), (4.19)
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where now Φ is given by (4.2) and we set all the masses m = 1. If we now introduce
the center-of-mass coordinate M(t) =

∑
i xi/N , and S = x1 + xN the equations of

motions can be cast in the following form:

S̈ = −λS − 2kS + 4kM + ξ, (4.20)

M̈ = (ξ − λṠ)/N, (4.21)

ẍi = −2kxi + 2kM, i = 2, ..., N − 1. (4.22)

Switching to Fourier space, we find the following solution for M̃(ω) and the position
x̃i(ω) of the uncoupled sites:

M̃(ω) =
2k − ω2

Nω2(ω2 + iλω − 2k)− 4ikλω
ξ̃(ω), (4.23)

x̃i(ω) =
2kM̃(ω)

2k − ω2
. (4.24)

Note that the pole on the proper frequency of the system ω2 = 2k does not give any
contribution, as if the baths were unable to properly interact with the system. It is
convenient to recast equation (4.24) as:

x̃i(ω) =
Q(ω)

ω
ξ̃(ω), Q(ω) ≡ −2k

N

1

ω(ω2 − 2k) + iλ(ω2 − 4k/N)
, (4.25)

so that it is evident that there is no pole on the dispersion law ω2 = 2k. Considering
now the mean square velocity ⟨x2i ⟩, we can write the temperature of the ith site as:

Ti = λ
TL + TR

π

∫
dω|Q(ω)|2, (4.26)

which reproduces exactly formula (4.15).
To get a better understanding of the physics of the model, let us introduce the relative
coordinates zi = xi+1 − xi. Then, equation (4.22) entails that:

z̈i = −2kzi, i = 2, ..., N − 2. (4.27)

So the relative coordinates of the uncoupled particles describe an harmonic motion
without being influenced by the baths. This, in turn, means that the initial condi-
tions of the system are essential to determine the properties of the stationary state at
long times. Indeed, to solve the equations of motion we should use the Laplace, and
not the Fourier, transform. When we used the Fourier transform in section 3.2 we
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Figure 4.2: Temperature temperature obtained from simulations of the Langevin
equation of motion for N = 32, intensive baths with TL = 1.5, TR = 0.5, λ = 0.5.
Upper panel: zero initial conditions xi(0) = ẋi(0) = 0 corresponding to the choice
adopted in the analytical calculations. Lower panels: random initial conditions where
xi(0) and ẋi(0) are drawn from a Gaussian distribution with zero average and variance
(TL + TR)/2. Averages are over trajectories of 105 time units.

assumed that the value of the initial condition would be irrelevant in the stationary
state. Quantitatively we implicitly assumed xi(0) = ẋi(0) = 0 for i = 2, ..., N−2: all
our results presented in this chapter are thus valid provided we make this assump-
tion on the initial conditions. To support the above considerations in figure 4.2 we
report the kinetic temperatures measured in a Langevin simulation of the equation
of motion for two different initial conditions. In the case xi(0) = ẋi(0) = 0 the
results coincide with the result (4.18). On the other hand, for random initial data
the temperatures of the particles not coupled with the baths remain at their starting
value and do not thermalize at all.
We remark that the crucial point is the cancellation of the pole in the dispersion

relation of the system, which stems from two properties of the model. The first one is
the linearity of the system, that allows the equations of motion to be solved exactly,
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in terms of the Green’s function, which in this analysis is given by Q(ω)/ω.
The second one is the conservation of the total magnetization M in absence of ex-
ternal baths, which originates from the mean-field nature of the system: from a
mathematical point of view, this is related to the (N − 1)-fold degeneracy of the
spectrum of the matrix Φ. The second ingredient is the linearity of the system, that
allows the equations of motion to be solved exactly in terms of the Green’s function,
which in this analysis is given by Q(ω)/ω. By lifting either of these properties, the
temperature profile flattens on the average of the temperatures of the baths.
In order to demonstrate that the breaking of the matrix Φ may suffice to restore
thermalization, we considered the following quadratic models:

H1 =
∑
i

p2i
2

+
k

2Nσ

N∑
ij=1

(xi − xj)
2

|i− j|1+σ
, Nσ =

N∑
l=1

l−1−σ (4.28)

H2 =
∑
i

p2i
2

+
k

2N

N∑
ij=1

(xi − xj)
2 +

g

2

∑
i

(xi+1 − xi)
2. (4.29)

The first one (4.28) corresponds to a long-range power-law chain and will be the
focus of chapter 4 while in the second one (4.29) we added a nearest-neighbours
coupling to the fully-connected model (4.2). In both cases, we can apply the method
described in section 3.1 and solve numerically the Lyapunov equation (3.10). The
results for the temperature profile are plotted in figure 4.3: in both cases the profile
is flat and given by the average temperature of the baths.
In [56] the authors computed numerically the temperature profile for random, graded
and identical masses: in the first two cases the degeneracy is broken and indeed they
find that the uncoupled particles thermalize to the average temperature of the baths.
The result of this section is that heat flows directly between the sites coupled with
the baths, completely bypassing the others, at least at leading order in N . This
also explains why the temperature of the uncoupled sites vanishes, since they do
not exchange energy with the baths. We also remark that in numerical analysis
performed on interacting long-range chains, the temperature profile flattens to the
average temperature of the baths in the fully-connected limit [3, 8].

Finally, we note that one can repeat the analysis presented in this subsection
even if the baths induce a coloured noise: the result is once again that the residue
related to the pole on the proper frequency of the system vanishes.
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Figure 4.3: Numerical result for the temperature profile T int
cl,i for the Hamiltonians

(4.28) and (4.29) on the left and on the right, respectively. We used the following
values for the parameters:TL = 1.5, TR = 0.5 k = g = 1, σ = −0.5.

4.2 Intensive coupling, quantum case

The heat flux and temperature profile in the quantum regime for intensive couplings
can be obtained by inserting (4.3) into (4.5):

J int
q =

ℏλ2∆T
π

∫ +∞

−∞
dω ω3|G1N(ω)|2

∂f(ω, T )

∂T
, (4.30)

T int
q,i =

mλ

kBπ

∫ ∞

−∞
dω

[
|Gi1|2

ℏω3

2
coth

(
ℏω

2kBTL

)
+ |GiN |2

ℏω3

2
coth

(
ℏω

2kBTL

)]
.

(4.31)

Note that the temperature profile is not yet expressed the linear response regime:
we will perform the relevant expansion after having substituted in (4.31) the explicit
expression of the Green function.

4.2.1 Heat flux

We insert the expression for G1N (E.10) into (4.30) and we find:

J int
q =

kB∆T
√
2k/m

4
I3(k1, θ;N), (4.32)

where we introduced a dimensionless temperature θ as:

θ =
2kBT

ℏ
√
m/2k, (4.33)
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Figure 4.4: In panel (a) we report I3 as a function of θ with k1 = 3 and N =
500, 1000, 2000 from top to bottom, respectively. In panel (b) we plot the function
g(x) defined in (4.36).

and the the function I3(k1, θ, N) is given by:

I3 =
4

π

k21
θ2N2

∫ ∞

−∞
dy

(y2 − 1)2

(y2 − 1)2 + k21y
2

y2/ sinh2(y/θ)

y2(y2 − 1)2 + k21(y
2 − 2/N)2

(4.34)

The integral I3 (4.34) is plotted as a function of θ in figure 4.4: as expected, the heat
flux vanishes in the low temperature region and saturates in the high temperature
region. In appendix 6 we compute I3 in the large N limit, and the final result is:

J int
q =

kB∆T

2N
k1

√
2k

m
g

(
TN(k1)

T

)
, (4.35)

where the function g(x) is given by:

g(x) =
x2

π2

[
ψ(1)

(
1 +

x

π

)
− ψ(1)

(
1− x

π

)]
+

x2

sin2(x)
− 2x, (4.36)

ψ(1)(z) =
d2

dz2
log Γ(z),

being Γ(z) the Euler Gamma function. The temperature TN(k1) is the intrinsic
temperature scale of the system, below which quantum effects are important. It is
given by:

TN(k1) =
k1
N

ℏ
kB

√
2k

m
. (4.37)
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To compare the quantum heat flux (4.32) and the classical one (4.8) we consider
their ratio r = J int

q /J int
cl . For large N , this ratio is given by the function g(x) (4.36).

Its low and high temperature asymptotics are given by:

g

(
TN
T

)
=


1, T ≫ TN ,

π

3

T

TN
∼ TN, T ≪ TN ,

where we used the asymptotic formulas for the digamma function. We can see that at
high temperature the quantum flux correctly converges to the classical one, while at
low temperature it vanishes linearly with T . In figure 4.5 we plot the aforementioned
ratio as a function of θ for several values of N : as N increases, the saturation to the
classical value takes place at lower values of T . Finally, note that the flux (4.35) at
low temperature does not depend on the coupling k1:

J int
q =

(
π2k2BT

3h

)
∆T. (4.38)

Furthermore, the quantity in parentheses depends only on universal constants and
corresponds to the quantum of thermal conductance introduced in the context of
transport in quantum harmonic wires in [57]

4.2.2 Temperature profile

As we did in the classical case we need to distinguish between the temperature of
the sites coupled to the baths and the one of uncoupled ones. For site 1 in the large
N limit we substitute (E.10) into (4.31):

T1 =
mℏλ
2kBπ

∫ ∞

−∞

dω

(mω2 − 2k)2 + λ2ω2
ω3 coth

(
ℏω

2kBTL

)
, (4.39)

and the same expression also holds for site N with L → R. The integral (4.39) is
logarithmically divergent at large frequencies. This problem is unrelated with the
long-range properties of the interaction and it is present even if we couple a single
oscillator to two ohmic baths (see for example [58]). The divergence stems from
the implicit hypothesis that the bath is able to excite arbitrarily high frequencies,
which hidden in the choice Γ ∼ λω. If we consider a cut-off at high frequencies the
divergence vanishes. To compute the temperature of the sites not coupled with the
baths we need to insert (E.11) into (4.31) and then expand up to the first order in
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Figure 4.5: We report the plot of the ratio J int
q /J int

cl as a function of θ for k1 = 3 and
N = 500, 1000, 2000 from bottom to top, respectively.

∆T . Note that since the square modulus of the Green function entries is an even
function of ω the first-order term vanishes and thus in the linear response regime the
bulk temperature profile is given by:

Ti =
ℏλ

2mkB
I4, (4.40)

where I4 is given by:

I4 =
1

N2

∫ ∞

0

dy
y coth(y/θ)

y2(y2 − 1)2 + k21(y
2 − 2/N)2

. (4.41)

The integral I4 cannot be computed exactly, however we can compute its asymptotic
behaviour at low temperature and we do it in section F.2 of appendix F . The result
is:

T int
q,i =

ℏλkB
2m

[
I4(θ = 0) +

π2

48

θ2

k21

]
, (4.42)

where zero-temperature value of I4 is given by:

I4(θ = 0) =
1

2N2

[
2 ln

(
N

2k1

)
+

R√
1−R2

(
π

2
+ arctan

(
R√

1−R2

))]
, (4.43)

being R the real part of the non-vanishing roots of (4.11). The I4(θ = 0) term, which
is non-vanishing even at zero temperature, can be interpreted as the contribution to
the temperature of the zero-point energy of the system.
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Figure 4.6: Plot of I4 as a function of θ for k1 = 3 and N = 1000. In the inset we
plot I4 at low temperatures.

4.3 Extensive coupling, classical case

The classical heat flux and temperature profile in the extensive case are found by
inserting (4.4) into (3.46) and (3.47):

Jext
cl =

kB∆T

π

∫ +∞

−∞
dω(λω)2

N∑
i=N−NR+1

NL∑
l=1

|Gil|2 (4.44)

T ext
cl,i =

mλTL
π

∫ ∞

−∞
dωω

NL∑
i=1

|Gik(ω)|2 +
mλTR
π

∫ ∞

−∞
dωω

N∑
i=N−NR+1

|Gik(ω)|2. (4.45)

The main difference between the intensive case formulae (4.6) and (4.7) is that now
we need to sum over the Green function elements related to the sites coupled with
the baths.

4.3.1 Heat flux

In order to compute the heat flux (4.44) we need to sum over all the Green function
entries connecting two sites coupled to the baths. Inserting the result for the entries
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of the Green function (E.20) into (4.44) we get:

Jext
cl =

kB∆T
√
2k/m

2π
I5(k1, αL, αR), (4.46)

where we defined I5 as:

I5 = k21(2αLαR)

∫ ∞

−∞
dy

(y2 − 1)2

[(y2 − 1)2 + k21y
2] [y2(y2 − 1)2 + k21(y

2 − (αR + αL))2]
,

(4.47)
where we introduced the fraction of coupled sites NL,R = αL,RN . In the derivation of
(4.46) it is useful to note that the sum over the coupled sites collapses to NRNL|Gil|2
since due to the symmetry of the model all of these entries are equal (see (E.20). As
a check of (4.46), the heat flux reduces to the flux(4.8) of the intensive case if we set
αR = αL = 1/N in (4.47).
In figure 4.7 we report the plot of I5 as a function of k1 for some fixed values of αL

and αR: its qualitative behaviour is the same as in the intensive case, the heat flux
vanishes for both small and strong coupling. It is also interesting to note that in the
extensive case the flux does not depend on N (although it decreases if we decrease
the fractions of coupled sites), in contrast with the N−1 scaling of the intensive flux
(4.14). This difference in scaling can be explained with the fact that, by coupling
an extensive number of sites to the baths, we are increasing the energy pumped into
the system by a factor N .

4.3.2 Temperature profile

As in the intensive case, we get different results if we consider the temperature Ti
of a site which is directly coupled to a bath or not. If i is coupled to the left/right
bath we insert (E.20) into (4.45) and we get at leading order T ext

cl,i = TL/R, as in the
intensive case. If i is not coupled to any bath, we insert (E.20) into (4.45) and we
get:

T ext
cl,i =

αLTL + αRTR
πN

I6(k1, αL, αR), (4.48)

where we introduced the integral I6:

I6 = k1

∫ ∞

−∞
dy

1

[(y2 − 1)2 + k21y
2] [y2(y2 − 1)2 + k21(y

2 − αL − αR)2]
. (4.49)

If we set αL = αR = 1/N we recover the result of intensive case (4.15). Note that
even in this case the temperature of the uncoupled sites scales as N−1: indeed, the
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Figure 4.7: Plot of I5 as a function of k1 with αL = 1/6, αR = 1/10 and αL = αR =
1/2. The first choice of parameters corresponds to the curve with larger maximum.

same argument used in section 4.1.2 for the intensive coupling case holds also in the
extensive case as can be seen by replacing S with the sum of the positions of the
sites coupled to the baths.

4.4 Extensive coupling, quantum case

The quantum heat flux and temperature profile in the extensive coupling case are
obtained by inserting (4.4) into (4.5) and (3.45):

Jext
q =

kB∆T

π

∫ +∞

−∞
dω(λω)2

N∑
i=N−NR+1

NL∑
l=1

|Gil|2
∂f

∂T
, (4.50)

T ext
q,i =

mλ

kB

[ ∫ ∞

−∞
dωω

NL∑
i=k

|Gik(ω)|2
ℏω
π

coth

(
ℏω

2kBTL

)

+

∫ ∞

−∞
dωω

N∑
i=N−NR+1

|Gik(ω)|2
ℏω
π

coth

(
ℏω

2kBTR

)]
. (4.51)
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Figure 4.8: In panel (a) we plot I7 (4.53) as a function of θ for k1 = 3, αL =
1/20, 1/3, 1/2 and αR = 1/20, 1/5, 1/2 from bottom to top, respectively. In panel
(b) we plot I7 for low θ with αL = αR = 1/3 and k1 = 5, 10, 15 from bottom to top,
respectively. The black dashed line is the linear approximation (4.55).

4.4.1 Heat flux

Inserting the Green function elements (E.20) into (4.50) we get:

Jext
q =

kB∆T
√

2k/m

π
I7(k1, θ, αL, αR), (4.52)

where the integral I7 is given by:

I7 = αLαR
k21
θ2

∫ ∞

−∞
dy

(y2 − 1)
2

(y2 − 1)2 + k21y
2

y2/ sinh(y/θ)

y2 (y2 − 1)2 + k21 (y
2 − (αL + αR))

2 . (4.53)

In figure 4.8a we plot I7 as a function of θ with fixed αL + αR: as expected, the
heat flux vanishes at low temperature, while it saturates at high temperature.While
it is not possible to compute I7 (at variance with the intensive case I3 (4.34)), we
can obtain an estimate for the low-temperature behaviour using the following repre-
sentation of the delta function:

lim
θ→0

3

π2θ3
y2

sinh2(y/θ)
= δ(y), (4.54)

so that I7 for small θ is given by:

I7 =
π2

3

αRαL

(αR + αL)2
θ. (4.55)
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The heat flux thus vanishes linearly with the temperature, like in the intensive case
(4.35). In figure 4.8b, we report the numerical plot of I7 and its low-temperature
approximation (4.55) for several values of k1. Looking at 4.8b we see that the value
of θ below which the linear approximation is valid decreases as a function of k1.
Since we are not able to solve (4.53) exactly we cannot provide an expression for
this temperature scale in the extensive case. As in the intensive case (4.2.1), at
low temperature the flux can be expressed in terms of the quantum of thermal
conductance:

Jext
q =

(
π2k2BT

3h

)
4αRαL

(αR + αL)2
∆T, (4.56)

where now we also have a “geometrical factor” that depends on the fraction of coupled
sites. Note that for αL = αR we recover the intensive result (4.2.1).

4.4.2 Temperature profile

The temperature of the sites directly coupled to the baths (i.e. i = 1, ..., NL and
i = N − NR + 1, ..., N) diverges as in the intensive case due to the non-physical
contribution of high frequencies. The temperature of the uncoupled sites(i.e. i =
NL + 1, ...N −NR) is obtained by inserting (E.21) into (4.51):

T ext
q,i =

ℏλ
2πNmkB

[
αLI8(θ

L, k1, αL,R) + αRI8(θ
R, k1, αL, αR)

]
, (4.57)

where θL,R = 2kBTL,R/ℏ
√

2k/m the integral I8(θ, k1, αL, αR) as:

I8 =

∫ ∞

−∞
dy

y coth(y/θ)

y2(y2 − 1)2 + k21(y
2 − αL − αR)2

. (4.58)

In the linear response regime we must Taylor expand (4.57) around ∆T = 0 for
TL,R = T ±∆T/2:

T ext
q,i =

ℏλ
2πNmkB

[
(αL + αR)I

(0)
8 +

kB∆T

ℏ
√
2k/m

(αL − αR)I
(1)
8

]
, (4.59)

where:

I
(0)
8 =

∫ ∞

−∞
dy

(y2 − 1)2y coth(y/θ)

[y2(y2 − 1)2 + k21(y
2 − αR − αL)2]

, (4.60)

I
(1)
8 = θ−2

∫ ∞

−∞
dy

y2/ sinh2(y/θ)

[y2(y2 − 1)2 + k21(y
2 − αR − αL)2]

. (4.61)
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Figure 4.9: In panel (a) we report the plot of I8 as a function of θ with k1 = 3 and
αL + αR = 0.4, 0.8 respectively. In panel (b) we report the plot of I8 as a function of
θ with k1 = 3 and αL + αR = 0.4.

In figure 4.9a we report the plot of I
(0)
8 : note that it does not vanish as the tem-

perature goes to zero. Indeed, I
(0)
8 (k2 = 0) can be interpreted as the contribution

to the temperature of the zero-point energy of the system. We can compute the
low-temperature of I

(1)
8 by using once again (4.54):

I
(1)
8 =

π2

3k21(αL + αR)2
θ. (4.62)

In figure 4.9b we report the plot of I
(1)
8 and (4.62) and we see that there is good

agreement between the exact plot of I8 and the approximation (4.62). Expression
(4.59) entails that, if we couple the same fraction of sites to the left and to the right
bath, the term proportional to ∆T vanishes. This explains why in the intensive
case αL = αR = 1/N the term proportional to ∆T vanishes. Finally one can check

numerically that I
(0)
8 goes as θ2 for small θ and thus the temperature profile for small

T (4.59) behaves as :

T ext
q,i =

ℏλ
2πNmkB

[
(αL + αR)I

(0)
8 (θ = 0) +

kB∆T

ℏ
√
2k/m

π2

3k21

(αL − αR)

(αL + αR)2
θ

]
. (4.63)

In this chapter we studied heat transport in a fully-coupled harmonic network by
computing the heat flux and the temperature profile both in the intensive and exten-
sive coupling cases. Since we studied several cases, we recapitulate for convenience
our results in table 4.1
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Coupling Quantity Classical Quantum

Intensive

J int J int
cl ∼ ∆T/N J int

q ∼ T∆T

T int
i T int

cl,i ∼ T/N T int
q,i ∼ T 2 +O(lnN/N2)

Extensive

Jext Jext
cl ∼ ∆TN0 Jext

q ∼ T∆T

T ext
i T ext

cl,i ∼ N−1 T ext
q,i ∼ const/N + T/N

Table 4.1: Summary of main results about thermal transport in the fully-connected
harmonic network (4.2). We report the low-temperature behaviour of the quantum
results.





Chapter 5

Heat flux in a power-law
long-range chain

In this chapter we study the heat flux in the stationary state of a power-law long-
range chain which is coupled on site 1 and N to two ohmic heat baths. The Hamil-
tonian of the system is given by:

H =
1

2

∑
i

p2i +
1

2

∑
ij

xiΦijxj, (5.1)

where the interaction matrix Φ is given by:

Φij =

(
2δij −

1

Nσ

1

|i− j|1+σ

)
, Nσ =

N∑
l=1

l−σ, (5.2)

and Nσ is the Kac factor defined in (2.21).
In order to compute the heat flux we are going to use both the RLL method, the
LEGF method and the generalized eigenvalues method, described in sections 3.1, 3.2
and 3.3, respectively. We remark that, at variance with the nearest-neighbours chain
or the fully connected network, the analytical implementation of the aforementioned
methods presents significant challenges. The main problem is that the matrix Φ
is neither tridiagonal (as in the nearest-neighbours case (3.16)) nor has a structure
which allows us to easily invert (3.52) using a known formula, such as in the fully-
coupled case (4.2). We also remark that not even the spectrum of (5.2) is exactly
known in the literature: in the continuum limit it would correspond to the spectrum
of the fractional Laplacian with open boundary condition, which is not known in
general and does not correspond to the usual sinusoidal waves [59]. For all these
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reasons, our analysis will be purely numerical: the main result of this chapter is that
heat transport is super-diffusive and the heat flux scales as a power of the system’s
size N . The determination of the scaling exponent, however, is hindered by the
presence of strong finite-size effects.
In section 5.1 we will report the results for the heat flux obtained with the RLL
method for small coupling λ and we compare them with known perturbative results
valid for generic quadratic systems. In section 5.2 we report our results for generic
values of the coupling. The main conclusion is that the heat flux scales as a power
law of the system size J ∼ N−γ, however the determination of the exponent γ is
hindered by the presence of strong finite-size effects. Finally, in section 5.3 we study
the structure of the transmission coefficient (i.e. the integrand of the heat flux) and
we see how its properties can be used to infer the scaling of the heat flux with the
size of the system.

5.1 Heat flux for small coupling

For small values of the chain-bath coupling λ it is possible to perform a power-
series expansion of the heat flux J . Retaining only the leading term yields so-called
Matsuda-Ishii’s formula, J = JMI [60, 1]:

JMI = λ∆T
∑
k

ψ2
k,1ψ

2
k,N

ψ2
k,1 + ψ2

k,N

, (5.3)

where ψk,,n denotes the n component of the kth eigenvector of the matrix Φ de-
fined in (5.2). For an homogeneous and mirror-symmetric model, as the one we are
considering ψk,1 = ψk,N for k = 1...N and the above expression simplifies to

JMI =
λ∆T

2
. (5.4)

We thus see that for small λ heat transport is ballistic.
In the short-range case σ → ∞, this result applies for λ ≪ λ0 ≈ O(1). In

the long-range case, however, the situation is more complicated. In figure 5.1, we
compare formula (5.4) and the numerical solution of the Lyapunov equation (3.10)
with the ϕ matrix given by (5.2). As we can see, (5.4) holds for λ smaller than a
certain threshold λ0(σ,N), that depends both on N and on σ. More specifically,
λ0 decreases with σ and with N . On the other hand, for σ > 0 the perturbative
approximation holds well in the considered range of λ.
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Figure 5.1: Plots of the ratio between the heat flux J , computed numerically with
the RLL method, and the Matsuuda-Ishii heat flux (5.4) versus the system size N
for several values of σ and λ in the weak coupling regime.
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Figure 5.2: Plots of the spacing between the imaginary parts of the poles of the
Green’s function Im(sk+1)− Im(sk) (circles) and the real parts of the poles Re(sk)
(crosses) for σ = −0.5. Different colors correspond to different system’s size: N =
256, 512, 1024 in blue, orange, green, respectively.

We remark that usually the perturbative approach is justified assuming that the
separation of the unperturbed normal mode frequencies is smaller than the typical
dissipation caused by the coupling with the baths [61]. This assumption can be
checked by examining the poles of the Green function sa, which we will analyze in
detail in section 5.3. In particular, we compare the spacings between the position
of consecutive poles, given by Im(sa+1 − sa) and the real parts of the poles Re(sa),
which encode the strength of dissipation1. As we can see from figure 5.2, the former
is always much larger than the latter: the perturbative expansion is thus justified in
the small λ limit.

1Note that, since we are working using Laplace transform and with the Fourier one, the usual
role of the imaginary and real part of the poles of the Green function is reversed.
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5.2 Heat flux for generic value of the coupling

We now want to understand how the flux scales with the system size N for larger
coupling. In order to so, we computed the heat flux using the RLL method for several
values of N and σ for λ = 1. As shown in figure 5.3 the data can be fitted with a
power law J ∝ N−γ. The result of this fit is reported in figure 5.4a
The application of the Green function method is more problematic. Indeed, in order
to compute the heat flux using (3.46) we need to numerically invert the matrix (3.41)
to obtain the Green function G(ω). This operation is computationally heavy for a
dense matrix such as (5.2). Furthermore, in order to compute the integral over the
frequency we need the Green function G(ω) for several value of ω: this sampling has
to be fine, especially if the transmission coefficient is rapidly oscillating (as is our
case, as we will see). For all these reasons with this method we can study system’s
sizes at most of order N ∼ 102.
Even if the direct computation of the Green function is computationally heavy, we
can easily compute its poles solving the 2N × 2N eigenvalue problem (D.10), com-
pute the heat flux using formula (3.54) and fit a power law. In figure 5.4b we report
both the exponents fitted with the generalized eigenvalues method and with the RLL
method. As we can see, they are qualitatively in agreement.
Looking at the fitted exponents in figure 5.4, we can identify three regions. The
region close to the mean-field case σ = −1 and the one close to the short-range
case σ > 1, where finite-size effects are almost absent, and an intermediate region in
which finite-size effects are quite strong. We also note that γ seems to be converging
to the short-range value γ = 0 while σ goes to 1. In conclusion, even if we are not
able to extract the exact values of the exponents, it is clear that the flux scales with
some nontrivial power of the system’s size N .

5.2.1 Transmission coefficient

In this section we compute the quantity (λω)2|G1N(ω)|2, which is basically the trans-
mission coefficient (3.48), for the power-law chain (5.2): as we are going to see its
properties are crucial to understand the scaling of the heat flux.
In figure 5.5 we report our results for several values of σ. We can see that the trans-
mission coefficient is characterized by a rather complicated peak structure which
consists of N − 2 peaks (as can be checked numerically). Notice G(−ω) = G(ω)∗,
as can be seen from (3.41). Thus, since the transmission coefficient depends on the
square modulus of G(ω) , we will consider only the case ω > 0. Let us denote by ωk,
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Figure 5.3: Log-log plot of the heat flux J versus the system’s size N for λ = 1 and
different values of the long-range exponent σ. The flux is computed using the RLL
method as described in the text.
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Figure 5.4: Plot of the scaling exponent of the flux γ, defined as J ∝ N−γ, (a), we
report the exponents obtained by fitting a power law on the heat flux obtained with
the RLL method. To check the finite-size effects, each data set corresponds to a fit
over different length ranges, 50 ≤ N ≤ 1600 (circles), 500 ≤ N ≤ 2000 (squares),
1500 ≤ N ≤ 7500 (triangles). Panel (b), comparison between the exponents obtained
by the RLL method (circles) and the generalized eigenvalue method (triangles).
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Figure 5.5: Panels a), b), c), d) : transmission coefficient λ2ω2|G1N(ω)
2 for different

values of the range exponent σ = −0.7, 0.5, 0.1, 0.5 and for a chain with N = 100.
Only positive frequencies are reported. Panels e), f), g), h): rescaled cumulative
function NγF (ω), for N = 80, 100, 120, 140 and σ = −0.7,−0.5,−0.1, 0.5 in panels
a), b), c), d) respectively. The values of γ are taken from the blue points in figure 5.4a.
The abrupt increase of the cumulative function in panels e) and f) at ω ≈ 1.3 is due
to the dominant contribution of the first peak in panels a) and b. The subsequent,
smaller, jumps are due to the contributions of the other peaks.

k = 1, 2 . . . the location of the peak frequencies for positive ω. As it is evident from
5.5, the peaks accumulate at a band-edge frequency ωB < 2. Furthermore, upon
approaching ωB, the width of the peaks decreases. This is the reason why it is im-
portant to finely sample the Green’s function in ω, especially in the proximity of the
band edge: we used a logarithmic sampling in order to increase the sampling points
near ωB. It can be checked numerically that the first few peaks are Lorentzian with
amplitude ∆k ≈ N−1, exactly like the only peak present in the in the fully-connected
case (4.13). The subsequent peaks are too narrow to be resolved. For positive values
of σ the situation becomes even more complicated, as a curve emerges below the
peaks, as we can see in figure 5.5d) for σ = 0.5.
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For the reasons outlined above, it seems more convenient to consider the cumu-
lative function F (ω), that is, the integral in (4.6), performed up to frequency ω. In
figures 5.5 from e) to h) we report the function F (ω), for several values of N of
order 102 and σ, rescaled by Nγ, where γ is the exponent obtained with the RLL
method for values of N of order 102 : 103. As we can see, the curves nicely collapse
for σ = −0.7,−0.5, but for higher values of σ, such as σ = −0.3, the collapse is not
as good due to the finite-size effects, as expected.

5.3 Poles of the Green’s function

To get a better understanding of the peak structure we compute the poles of the
Green function using the generalized eigenvalue method: As we already mentioned,
the positions ωk of the peaks in figure 5.5 are given by the absolute value of the imagi-
nary part of sa, while the absolute value of the imaginary part should be proportional
to their widths ∆k.

In particular, we consider all the peaks as Lorentzian – for simplicity, but also
because all the peaks that we were able to resolve are actually very well approximated
by a Lorentzian – with width given by ∆k(N) = Re(sk). In this approximation, as
far as scaling with the size is concerned, the heat flux can be estimated as the sum of
the widths of the peaks ∆k(N). Furthermore, from the numerics the height of each
peak results to be λ2/4 (indeed, note that in figure 5.5, in which λ = 1, the heights
of the peaks are all the same and equal to 1/4). Thus, we replace the transmission
coefficient with a sum of normalized Lorentzian peaks, and we get:

J

∆T
≈
∫ ∞

−∞

dω

π

N−2∑
k=1

λ2∆k(N)2/4

(ω − ωk)2 +∆k(N)2
=
λ2

4

N−2∑
k=1

∆k(N). (5.5)

The relevant information should thus be contained in the dependence of the ∆k on k
and N . Physically, this is the effective damping of plane waves due to the coupling
with the thermal reservoirs.

The dependence of ∆k on N is reported in figure 5.6, where we plot the real parts
of the poles as a function of the imaginary ones, for negative and positive values of σ,
respectively. Since the resonances accumulates at the band-edges, it is convenient to
report the frequencies as a function of their relative distance from ωB. Let us focus
on the case of negative σ, to begin with. From the leftmost panels of figure 5.6, it is
seen that the poles can be grouped in two sets, each having different dependencies
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Figure 5.6: Real parts of the poles of the Green’s functions sa versus the distance
of their imaginary parts from the band-edge. Leftmost panel: σ < 0, vertical axis
rescaled by Nϕ with ϕ ≈ 1 − σ. The inset in panel (a) demonstrates the different
scaling the collapse for the widths of the first peaks (the first 80, 160, 320, 640, 1280
for N = 256, 512, 1024, 2048, 4096, respectively) rescaled by N . For the other values
of σ, we get the same scaling for the first peaks. Rightmost panel: same for σ > 0,
with vertical axis rescaled by N . Note that such scaling works for the whole spectrum
in this case.
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on ωk and N . Empirically, this is accounted for by the following scaling:

∆k(N) ≈
{
dk/N, k < ko

dk/N
ϕ, k > ko,

(5.6)

where ko << N and dk do not depend N . We do not have a theoretical estimate of
ϕ, but we find that there is a good collapse upon choosing ϕ ≈ 1 + |σ|.
Furthermore, as we can see from 5.6 there are a few poles whose widths do not follow
this scaling and fall consistently well outside the collapsed curve. It actually turns
out that there are two degenerate eigenvalues between the sas that do not follow the
scaling law. However this is inconsequential, as one can check that the contribution of
the these eigenvalues to the heat flux (3.54) vanishes. Heuristically, this is because
the eigenvectors related to these eigenvalues are localized at the endpoints of the
chain and therefore do not contribute to transport. This also explains why the peaks
in figure 5.5 are N − 2 instead of N . We can therefore infer the following scaling law
for the heat flux plugging (5.6) into (5.5):

J ≈
∑ko

k=1 dk
N

+

∑N
k=ko

dk

Nϕ
∝ N1−ϕ. (5.7)

The first term scales as N−1, since ko does not scale with N (as can be inferred from
figure 5.6). On the other hand, the second term scale as N1−ϕ since each dk is of order
1 and thus their sum scales as N . Finally, since ϕ > 0, we get the reported scaling
for the heat flux. For positive σ, the scaling of ∆k is reported in the right-most
panels of figure 5.6: as we can see in this case ∆k ≈ N−1, over the entire spectrum.
Therefore, the estimate the heat flux yields

J ≈
∑N

k=1 dk
N

≈ O(1). (5.8)

So the heat flux for positive σ behaves as the heat flux for σ = ∞ (the nearest-
neighbours case), that is, it does not scale with N .

To summarize, according to approximation (5.5) and the numerical estimate of
ϕ extracted from the data, we find that the heat flux scales as:

J ∝ N−γ̃, γ̃ ≈
{
1− ϕ, σ < 0,

0, σ > 0.
(5.9)

As we already mentioned, see figure 5.6, we found a good collapse of the imaginary
part of the poles of the Green’s functions for ϕ ≈ 1− |σ|. So this yields

γ̃ ≈ −σ (5.10)
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for negative σ. Admittedly, this estimate accounts only qualitatively for the be-
havior of the exponents as given in figure 5.4. The deviations are sizeable and the
dependence of γ on σ appears to be non-linear. While this could be due to the
aforementioned finite-size effects, the discrepancy is present even for values of σ for
which the exponent γ has basically converged (for example σ = −0.7,−0.5). A more
likely possibility is that, while the widths of the peaks of figure 5.5 are indeed related
to the real parts of sa on general grounds, they are not exactly equal. On the other
hand, we point out that, since the sa are related to the widths of the peaks, the
transition in the scaling of the ∆ks at σ = 0 suggests that the scaling of the heat-flux
between the short-range and the long-range behaviour has to occur at σ = 0.



Chapter 6

Long-range stochastic collisions

In this chapter we consider a power-law long-range harmonic chain with stochastic
collisions and we compute the thermal conductivity using the Green-Kubo formula
as described in section 3.4. The case of nearest-neighbours collision was studied in
[12]: we will consider the more general case of long-range collisions. This model is
interesting because it provides an example of analytically solvable long-range model
which is not fully-connected, at variance with the open-boundary condition power-
law chain that we studied in Chapter 5. Furthermore, as we already said in section
3.4, the quadratic chains with stochastic collision are believed to share some proper-
ties with anharmonic chains and thus this model could provide some insight on the
behaviour of interacting long-range systems.
In section 6.1 we introduce the model making contact with the formalism described
in section 3.4, in section 6.2 we describe the splitting of the current in a deterministic
and a stochastic term like we did in section 3.4.2, and in section 6.3 we compute the
correlation of the deterministic current and the scaling with the system’s size of the
thermal current.

6.1 The model

The deterministic part of the dynamics is generated by the Hamiltonian:

H =
N∑
l=1

p2l
2

+
1

Nδ

N∑
l=1

N/2∑
r=1

(xl − xl+r)
2

rδ
=

N∑
l=1

p2l
2

+
1

2

∑
ij

Φijxixj, (6.1)
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where (in this chapter the long-range exponent in the Hamiltonian is denoted by δ
and not by 1 + σ):

Φij = 2δij −
1

Nδ

1

(min(|i− j|, N − |i− j|))δ (6.2)

and Nδ is the Kac factor (2.21). Note the difference between the Φ matrix (6.2) and
the one corresponding to the chain with open boundary conditions (5.2). Since (6.2)
is circulant it can be diagonalized using Fourier modes (3.56) and the frequencies
and velocities of the excitations are given by:

ω2
µ =

1

Nδ

N/2∑
r=1

4 sin2(kµr/2)

rδ
, vµ =

1

Nδωµ

N/2∑
r=1

sin(kµr)

rδ−1
, (6.3)

where we remind that the Fourier wave-numbers kν assume the values (3.56):

kν =
2πν

N
, ν = −N

2
+ 1, ...,

N

2
. (6.4)

At variance with the short-ranged stochastic collisions examined in section 3.4.2,
we now consider long-range collisions, i.e., using the notation introduced in section
3.4,the probability of having a collision between the particle on site i and the one on
site j is given by:

Wij =
1

Nα|i− j|α , N−1
α =

N/2∑
r=1

r−α. (6.5)

Using (6.5) and (3.85) we see that the decay ratio µν of the energy mode Eν is given
by:

µν =
4γ

Nα

N∑
l=1

sin2(kνl/2)

lα
. (6.6)

We will consider the range of values of α and δ which lead to a well-definite large-N
limit, namely δ > 2 and α > 1. The second of these conditions is the usual condition
for having additive interactions, while the first is required to have a finite current
correlation function, as we see below. For these values of δ and α we can express ων ,
vν and µν as functions ω(k), v(k), µ(k) of the momentum k in the thermodynamic
limit by sending N → ∞ in (6.3) and (6.6). The resulting series can be computed
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in terms of polylogarithm functions 1:

ω2(k) =
2

ζ(δ)

[
2ζ(δ)− Liδ(e

ik)− Liδ(e
−ik)

]
, (6.8)

v(k) =
1

ζ(δ)ωk

1

2i

[
Liδ−1(e

ik)− Liδ−1(e
−ik)

]
, (6.9)

|µ(k)| = 2γ

ζ(α)

[
2ζ(α)− Liα(e

ik)− Liα(e
−ik)

]
, (6.10)

Since we are considering the large time limit, the integral in (3.100) will be dominated
by the low-k region: it is thus useful to extract the low-momentum behaviours of
(6.8), (6.9) and (6.10). In order to do that we use the following formula:

Lis(e
z) = Γ(1− s)(−z)s−1 +

∞∑
m=0

ζ(s−m)

m!
zm, s /∈ N (6.11)

Lin(e
z) =

zn−1

(n− 1)!
(Hn−1 − ln(−z)) +

∞∑
k=0,̸=n−1

ζ(k − n)

k!
zk, n ∈ N, (6.12)

which are valid for |z| < 2π.2 The results for non-integer values of δ, are:

ω2(k) ≈
{
aδ|k|δ−1, 1 < δ < 3,

bδk
2, δ > 3,

v(k) ≈


√
aδ

(
δ − 1

2

)
|k|(δ−3)/2sign(k), 1 < δ < 3,

2
√
bδsign(k), δ > 3.

,

(6.14)

and

µ(k) ≈
{
aαγ|k|α−1, 1 < α < 3,

bαγk
2, α > 3.

(6.15)

1The polylogarithm Lia(z) is defined as:

Lia(z) =

∞∑
n=1

zn

na
. (6.7)

2Here Hn is the nth harmonic number, defined as:

Hn =

n∑
k=1

1

k
. (6.13)
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where we defined:

as =
−2

ζ(s)
Γ(1− s) sin

(πs
2

)
bs =

ζ(s− 2)

ζ(s)
. (6.16)

We also recall that for purely nearest-neighbours collisions the decay rate of the
energy modes are given by (3.86), which for low-momentum behaves as:

µ(k) ∼ −γk2 (6.17)

6.2 Expression of the heat current

As we did in section 3.4.2 we want to define the energy current, starting from the
continuity equation (3.89). The Hamiltonian density hl related to (6.1) is given by:

hl =
p2l
2

+
1

2Nδ

N/2∑
r=1

[
(xl+r − xl)

2

2rδ
+

(xl−r − xl)
2

2rδ

]
. (6.18)

The stochastic infinitesimal evolution of the canonical coordinates is instead given
by:

dxl = pldt, (6.19)

dpl =
1

Nδ

N/2∑
r=1

xl+r + xl−r − 2xl
rδ

dt+

N/2∑
r=1

[
dnl,l+r(pl+r − pl) + dnl,l−r(pl−r − pl)

]
,

(6.20)

where dnl,l′ are random Poisson variables which can be either 0 or 1 with average:

⟨dnl,l′⟩ = γ|l − l′|−αdt. (6.21)

The limit α → ∞ corresponds to the nearest-neighbours collisions described in sec-
tion 3.4.2 and indeed in this limit equations (6.18), (6.20) and (6.21) reduce to their
counterparts (3.88), (3.91) and (3.92), respectively. The heat current is defined in
terms of the continuity equation (3.89), and it can be decomposed in a deterministic
and a stochastic term, as in section 3.4.2:

djl = jdetl dt+ djstol , djstol = jSl γdt+ djl. (6.22)
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The deterministic current jdetl is given by:

j
(det)
l = − 1

Nδ

l+N/2∑
m=l+1

N/2∑
r=l−m

1

2rδ
(xm − xm−r)(pm + pm−r), (6.23)

while the stochastic terms are given by:

jsl = − 1

Nα

N/2∑
r=1

(
p2l+r − p2l

2

)
, djl = − 1

Nα

N/2∑
r=1

dml,l+r

(
p2l+r − p2l

2

)
, (6.24)

where dm represent the fluctuation of the process dn around its average:

dml,l+r = dnl,l+r − ⟨dnl,l+r⟩ . (6.25)

The limit δ → ∞, α → ∞ corresponds to the nearest-neighbours chain with nearest-
neighbours collisions studied in section 3.4.2, while the limit α → ∞ corresponds
to the long-range chain with nearest-neighbours collisions studied by Saito in [12].
Notice that in the α → ∞ limit, bα = 1. As in the nearest-neighbours collisions
case, the sum

∑
l j

s
l is telescopic and sums to zero, therefore the total current is

once again given by (3.95) with j
(det)
l and djl given by (6.23) and (6.24) respectively.

Furthermore, the argument used in [55] to prove the vanishing of the contribution of
the cross correlation

〈
J (det)dJ

〉
to the thermal conductivity relies only on the oddness

of the current under time-reversal, which holds also in our model. In conclusion, the
only contributions to the thermal conductivity are given once again only by the
auto-correlations of J (det) and dJ: the former will be computed in next section. For
what concerns the latter, it is known [55] that in the case of nearest-neighbours
momentum exchanges it gives a constant contribution in N to thermal conductivity.
In the long-range case one could argue that, since the probability that two particles
collide decreases with their distance r as r−α with α > 1, the contribution to the
total energy current coming from this process should be small. On the other hand,
no matter how far the colliding particles, the exchange of their momenta induces a
finite energy transfer. The analysis of the autocorrelation of the stochastic current
is postponed to a future development of this manuscript.

6.3 Correlation of J (det)

In this section we compute the correlation of the deterministic current J (det) using
formula (3.100). We remind that the validity of such formula rests on the assumption
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of equivalence between microcanonical and canonical ensemble, which holds for the
values of δ and α we are considering. Will consider two different cases: long-range
dynamics and short-range collisions (which corresponds to α > 3) and long-range
dynamics and long-range collisions. In the first case we expect to recover the same
scalings obtained in [12], while the latter contains new results.

6.3.1 2 < δ < 3, α = ∞
This case corresponds to a long-range deterministic dynamics with nearest-neighbours
collisions. The auto-correlation of the deterministic current J (det) is obtained by in-
serting (6.9) and (6.17) into (3.100):

CN(t) ≈
2

π

∫ ∞

2π/N

dkaδ

(
δ − 1

2

)2

kδ−3e−γk2t (6.26)

=
aδ
4π

(δ − 1)2(γt)1−δ/2Γ

(
δ

2
− 1, 4π2 γt

N2

)
, (6.27)

where we used the expression for the incomplete Gamma function:

Γ(s, x) =

∫ ∞

x

duus−1e−u. (6.28)

We kept the N dependence in the lower extremum to compute the corrections for
large-but finite-N . Expanding (6.26) in the scaling variable t/N2 we get:

CN(t) ≈
(δ − 1)Γ(2− δ) sin(πδ/2)Γ(δ/2− 1)

2πζ(δ)
(γt)1−δ/2 + SN(t) (6.29)

SN(t) =
2(2π)δ−3(δ − 1)Γ(2− δ) sin(πδ/2)

ζ(δ)N δ−2

∞∑
m=0

(−1)m+1(2π)m

δ − 2 + 2m

(
γt

N2

)m

. (6.30)

It is important to note that there is time-independent term corresponding to m = 0
given by:

Θ(δ,N) ≡ c0 = −2(2π)δ−3(δ − 1)Γ(2− δ) sin(πδ/2)

ζ(δ)(δ − 2)N δ−2
. (6.31)

If we strictly take N = ∞ then this term has no influence on the result and we
recover the results of [12]. However in numerical simulations one can never really
consider infinite systems and furthermore the decay of c0 with N is rather slow since
0 < δ − 2 < 1. Therefore one has to subtract c0 from the result of the numerical
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simulation in order to see a power law. The, significant, effect of this subtraction is
reported in figure 6.1 where we compare the numerical results for the full correlation
function CN(t) (panel a)) and CN(t) − Θ(δ,N) (panel (b)). As it is evident from
the figure the result is that, in order to see the expected power-law tail, we need to
subtract Θ(δ,N) from CN(t).

6.3.2 δ > 3, α = ∞
This case corresponds to an effectively short-range dynamics with nearest-neighbours
collisions. The group velocity is constant at low momenta (see (6.9)) and the corre-
lation at large times is given by:

CN(t) ≈
2

π

∫ ∞

2π/N

dkbδe
−γtk2 =

Erfc(2π
√
γt/N)√

πγt
, (6.32)

where we introduced the complementary error function Erfc:

Erfc(x) = 1− 2√
π

∫ x

0

ds e−s2 . (6.33)

Noting that once again the scaling variable is γt/N2, expanding in series we find:

CN(t) =
ζ(δ − 2)√
πζ(δ)

1√
γt

+ SN(t) (6.34)

SN(t) =
4ζ(δ − 2)

ζ(δ)N

∞∑
m=0

(−1)m+1(2π)2m

2m+ 1

(
γt

N2

)m

. (6.35)

Once again we have a constant term given by:

c0 = −4ζ(δ − 2)

ζ(δ)N
. (6.36)

Notice that the decay with N is much faster than the decay of the constant term
with 2 < δ < 3, and we do not expect this term to affect the numerical data. In the
N = ∞ limit we recover the results of [11, 12].
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6.3.3 2 < δ < 3, 1 < α < 3

This case corresponds to a long-range dynamics with long-range collisions. The
correlation is given by:

CN(t) ≈
2

π

∫ ∞

2π/N

dkaδ

(
δ − 1

2

)2

kδ−3e−γaαkα−1t (6.37)

=
2aδa

(2−δ)/(α−1)
α

α− 1
(γt)(2−δ)/(α−1)Γ

(
δ − 2

α− 1
, aα(2π)

α−1 γt

Nα−1

)
. (6.38)

Now the scaling variable encoding the finite-size corrections is γt/Nα−1. Expanding
in series we get:

CN(t) =
2

π

aδa
(2−δ)/(α−1)
α

α− 1
(γt)(2−δ)/(α−1))) + SN (6.39)

SN =
(δ − 1)Γ(2− δ)(2π)δ−2

πζ(δ)
sin

(
πδ

2

)
N2−δ

∞∑
m=0

(2π)m(α−1)(−1)m+1

m![δ − 2 +m(α− 1)]

(
γtaα
Nα−1

)m

.

(6.40)

The constant term is thus given by:

c0 = −2δ−2(δ − 1)Γ(2− δ)(2π)δ−2

πζ(δ)(δ − 2)
sin

(
πδ

2

)
N2−δ. (6.41)

Note that it does not depend on α: we do not yet have a heuristic explanation of
this fact.

6.3.4 δ > 3, 1 < α < 3

This case corresponds to a short-range dynamics with long-range collisions. The
correlation is given by:

CN(t) =
2

π

∫ ∞

2π/N

dkbδe
−γtaαkα−1

(6.42)

= 4Ei

(
α− 2

α− 1
,
−(2π)α

πζ(δ)
Γ(1− α) sin

(πα
2

) γt

Nα−1

)
ζ(δ − 2)

(α− 1)ζ(δ)N
, (6.43)

where we introduced the Integral Exponential Ei(a, x) as:

Ei(a, x) =

∫ ∞

1

dt
et(−x)

ta
. (6.44)
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The series expansion now reads as:

CN(t) = 2
α−2
α−1

ζ(δ − 2)Γ( α
α−1

)

πζ(δ)

[
Γ(1− α) sin

(πα
2

)]1/(1−α)
(

γt

ζ(α)

)1/1−α

+ SN (6.45)

SN =
4ζ(δ − 2)

ζ(δ)

∞∑
m=0

[
(2π)αΓ(1− α) sin(πα/2)

πζ(α)

]m
(−1)m+1

m!(mα−m+ 1)

(
γt

Nα−1

)m

.

(6.46)

Notice that the scaling correctly matches with the case 2 < δ < 3 putting δ = 3. The
constant term is the same as in the case of the short-range dynamics and nearest-
neighbours collisions:

c0 = −4ζ(δ − 2)

ζ(δ)N
. (6.47)

We can obtain the scaling of the thermal conductivity κ with the system size in
the thermodynamic limit as explained in section 3.4.2. The results are:

κ ∼


N2−δ/2, 2 < δ < 3, α = ∞,

N1/2, δ > 3, α = ∞,

N (α−δ+1)/(α−1), 2 < δ < 3, 1 < α < 3,

N (α−2)/(α−1), δ > 3, 1 < α < 3.

(6.48)

Note that the scaling exponent is negative in the last case in (6.48) if 1 < α < 2: this
means that the integral over time in the Green-Kubo formula converges even if we
send the upper extremum of the time integral to ∞ and thus the thermal conductiv-
ity does not scale with N in the thermodynamic limit and transport is qualitatively
ballistic. The results for the case α > 3 can be obtained from the ones of the case
α = ∞ by replacing γ → bαγ as can be seen by comparing (6.6) and (6.17):the
scaling of the thermal conductivity is thus the same in both cases.
In figure 6.2 we report the comparisons between our analytical predictions and nu-
merical simulations for the scaling exponent of the thermal conductivity β (κ ∼ Nβ).
As we can see, the agreement is rather good, apart from the region near integer values
of the exponents (where logarithmic corrections should be taken into account).
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Figure 6.1: We report the results for the current-current correlation function CN(t)
in the case of nearest-neighbours collisions analyzed by Saito to show the effect of the
constant term (6.31). In panel a) we report the current-current correlation function
CN(t) for a ring of N = 512 oscillators and for δ = 2.1 (yellow), 2.3 (blues), 2.5
(green), 2.7 (red), and 2.9 (grey). On the the right-hand panel we report the same
correlation functions as in panel a), shifted by the constant Θ(δ,N). The inset
shows the deviations of the numerically determined scaling exponent (βN) of the
correlations CN(t) ∼ t−β, from the analytical solution β = δ/2 − 1 first derived by
Saito in [12]. Courtesy of Carlos Mejia- Monasterio [15].
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Figure 6.2: We report the values of the scaling exponent β of the current-current
correlation function C(t) ∼ t−β. The values are obtained from numerical simulation
of the stochastic dynamics (6.20) following the scheme described in section 3.4. Black
dashed lines represent the analytical predictions while the points are the results
of numerical simulations for a ring of N = 512 particles. The right-hand panel
corresponds to the case of nearest-neighbours collisions and we report the behaviour
of β as a function of δ. As we can see, the agreement is rather good for small and
large values of δ. Near the transition point (δ = 2) between the long-range and
short-range phases of the Hamiltonian the the data are affected by strong finite-size
corrections that cause a disagreement with the N → ∞ analytical result. On the
left-hand panel, we consider the case of long-range collisions and report the behaviour
of β as a function of α for fixed δ = 2.6. In this case the agreement between the
numerical results and the analytical ones is good for all the non-integers values of
α with the exception of a little overshoot for large values of α. Courtesy of Carlos
Mejia- Monasterio [15].





Chapter 7

Conclusions

In this PhD thesis I have studied heat transport in harmonic long-range chains. As
we are going to recap below, despite the linearity of the chains, we still find anomalous
transport, a feature absent in short-range quadratic systems. The computation of
transport quantities in long-range harmonic chains can be performed using techniques
already present in the literature and applied, up to now, to short-range harmonic
systems. In some cases, such as the fully connected chain, these techniques can be
extended and fully applied to long-range systems. In other cases, such as the power-
law harmonic chain, they can be applied but the long-range character of the model
does not allow to reach a complete analytical solution. Despite this, we are still able
to show that the heat flux in the power-law chain is anomalous, although the exact
value of the scaling exponent is still to be determined. Finally, we extended Saito
and Tamaki analysis of the power-law chain with stochastic momentum exchanges to
the case of long-range exchanges (i.e. two particles at distance r can exchange their
momenta at random times with probability r−α), finding an interesting interplay
between the long-range exponent of the Hamiltonian dynamics of the system and
the one of the probability of exchanging the momentum of two particles. We remark
that this model allows for a complete analytical computation of the scaling exponent
of the thermal conductivity, while not being fully connected, at variance with the
power-law chains analyzed before.
In Chapter 4, we started from the apparently simple case of a fully-connected chain:
we considered both the case in which only the two boundary sites are coupled to
the baths and also the one in which an extensive portion of the system is coupled to
the external reservoirs. In both cases we analytically computed the scaling of both
the heat flux and the temperature profile with the system size N , in the classical
and quantum cases. In the classical regime, the heat flux scales as N−1 in the
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intensive case. On the other hand in the extensive coupling case the heat flux does
not depend on N in the thermodynamic limit. Our physical explanation for this
behaviour is that if we couple the baths extensively to the systems, we pump an
extensive amount of energy in the latter. Thus the flux in the extensive case gets
a factor of N with respect to the flux in the intensive coupling case. One peculiar
result of our analysis is that the classical temperature profile in the bulk is flat and
vanishes as N−1, both in the intensive and in the extensive case. We find that the
reason for this peculiar behaviour lies in the decoupling of the dynamics of the sites
not connected to the baths which stems from the degeneracy of the model. Indeed,
as we checked numerically, breaking the degeneracy of the model, e.g. by adding a
pinning potential, makes the temperature profile flatten to the average temperature
of the baths in the thermodynamic limit. For what concerns the quantum regime, in
the intensive case we computed exactly the heat flux in the linear response regime.
We found that it is given by a nontrivial function of the ratio between the average
temperature of the baths and a characteristic temperature of the system TN . The
latter vanishes for large N as N−1. For T > TN the heat flux scales as N−1 and
thus the system qualitatively behaves as in the classical case. On the other hand for
T < TN the heat flux does not depend on N and vanishes linearly with T . It should
be noted that, since TN vanishes as N grows, in the thermodynamic limit quantum
effects are relevant only in a vanishing region of the temperature. We also computed
the temperature profile for low T : the leading order is given by a constant term
(which can be interpreted as a zero-point energy contribution to the temperature
profile) and a term which vanishes as T 2.
In the extensive coupling case we were unable to analytically compute the heat flux,
nonetheless we obtained an integral expression for it. By plotting the latter it is
evident that, like in the intensive case, there is a proper temperature scale of the
system which discriminates between a quantum and a classical region, although at
this stage we are unable to compute it. The only information that we know about
this temperature scale is that it does not vanish in the thermodynamic limit: this is
an important difference with the intensive coupling case, since it means that quantum
effects are important in a finite, non-vanishing, range of temperatures even when N
is very large. Chapter 4 is based on the results obtain in the paper [13]. While the
latter was in preparation, the manuscript [56] was published: here the authors study
heat transport for the classical fully connected chain and their results agree with ours.
They also consider the case of disordered and graded masses (which completely break
the degeneracy of the model) and, in agreement with our conclusions, in these cases
the temperature profile is finite and flattens to the average temperature of the baths.
In Chapter 5 we moved to the more complicated setting of a long-range chain with
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power-law decaying coupling to understand whether in long-range systems it would
be possible to have anomalous transport also in the case of linear systems (at variance
with what happens in short-range chains [11]). We thus focused on the computation
of the heat flux to understand it scaling with N . In this case we were not able to get
any analytical results, despite the apparent simplicity of the model. The reason for
this is that the quadratic form of the potential energy is given by a matrix which is
dense and thus we cannot easily solve the Lyapunov equation as it can be done for
the short-range chain. Similarly, the Green function associated to the chain cannot
be analytically computed as we are unable to perform the required matrix inversion.
We thus proceeded numerically: both the Lyapunov equation and the Green function
method unequivocally show that the heat flux scales as a power law of the system
size. However, both methods are hindered by strong finite-size effects and thus we
cannot use them to extract the exact value of the scaling exponent.
We managed to get some insights on the value of the exponent by analyzing the
spectral properties of the system via the numerical computation of the poles of
the Green function. This computation was performed via the generalized eigenvalue
method, which is seldom used in the literature. The main result of this analysis is the
presence of a sharp transition in the behaviour of the system at σ = 0, 1+σ being the
exponent of the power-law interaction. We also provided an estimate of the scaling
exponent of the flux. Chapter 5 is based on the results obtained in the publication
[14]. A further development of this analysis would be of course a more accurate
analysis of the finite-size effects to be able to properly compare our estimate of the
scaling exponent of the heat flux with the numerical results. On the analytical side,
a computation of the Green function of the chain would be invaluable to compute
the heat flux: as we mentioned in chapter 4, this problem could be related with the
definition of the discrete fractional Laplacian with open boundary conditions [59].
In chapter 6 we considered a different setup to study heat transport: at variance with
the preceding models, in which the chain was coupled to the heat baths, we considered
again the power-law chain, but we added a stochastic dynamics via random collisions
between the particles. The case of nearest-neighbours collisions was already solved
by Saito: we extended the analysis to the case of long-range collisions computing
thermal conductivity via the Green-Kubo formula obtaining an analytical prediction
for its scaling with system size. In most cases this scaling leads to a divergence
of thermal conductivity with N , a trait typical of anomalous transport. It should
be noted that our results are obtained by considering only the deterministic part
of the current, disregarding the contribution coming from the stochastic exchange
of the kinetic energy between particles: the latter assumption could be checked via
numerical simulations of the stochastic current which we plan to do in the future.
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The results of this chapter will be contained in a future publication [15].
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Appendix A

Fourier transform of (2.10)

In this appendix we compute the Fourier transform of the Fourier interaction (2.10):

ω(q) =

∫
|r|>a

ddr|r|−αeiq·r. (A.1)

To begin with, we switch to spherical coordinates and we orient the z-axis along the
vector q, so that the only angular dependence in the integrand is on the polar angle
θ:

ω(q) = Ωd−2

∫
r>a

∫ π

0

dr dθ sin θrd−1−αeiqr cos θ =
2Ωd−2

q

∫ ∞

a

rd−α−2 sin(qr)dr (A.2)

The factor Ωd−2 is the volume of a d − 2-dimensional hypersphere coming from the
integration on the other angles. This integral can be computed exactly in terms of
an hypergeometric function:

ω(q) = 2Ωd−2

[
− qσ cos(

πσ

2
)Γ(−1− σ)

+
a−σ

σ 1F 2(−
σ

2
;
3

2
, 1− σ

2
,−a

2q2

4
)

]
. (A.3)

Since we are interested in the low-momentum regime, we can expand the hypergeo-
metric function:

1F 2(−
σ

2
;
3

2
, 1− σ

2
,−a

2q2

4
) ≈ 1− l2 (q2s)

6(s− 2)
, (A.4)

and we get for ω(q):
ω(q) = c1q

σ + c2q
2 + c3, (A.5)
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where a, b and c are constants that can be read off (A.3) and (A.4):

c1 = −2Ωd−2 cos(
πσ

2
)Γ(−1− σ), c2 =

a2−σσ

6(σ − 2)
, c3 = −1/σ. (A.6)

The constant term c3 can be reabsorbed in the value of the critical temperature. We
note also that if σ > 2 the dominant behaviour is qσ and the coefficient c1 is positive,
while for σ > 2 the dominant term is q2 and c2 > 0.



Appendix B

Solution of the Lyapunov equation
(3.10)

In this appendix we outline the procedure used by Rieder, Lebowitz and Lieb [9] to
obtain the solution to the Lyapunov equation (3.10) for the nearest-neighbours chain
(3.16).
To begin with we express the matrices U , V , Z in terms of their deviations from the
equilibrium solution (3.12), X, Y , W :

U =
kBT

ω2

(
G−1 +

∆T

T
X

)
, (B.1)

V = kBT

(
I+

∆T

T
Y

)
, (B.2)

Z =
kB∆T

λ
W. (B.3)

Inserting this ansatz into the Lyapunov equation (3.10) we get three equations for
X, Y and W :

XT = X, Y T = Y, W T = −W, (B.4)

Y = XG+WR, (B.5)

2S − Y R−RY = (ω/λ)2[G,W ]. (B.6)

We now consider equation (B.6). By inserting the explicit expressions for the matrices
R and S(3.6) we notice that the left-hand side of equation (B.6) has non-zero entries
only on the “border”1, i.e. 2Sij − (Y R + RY )ij ̸= 0 only if either i, j = 1, N . It

1Matrices with this property are called bordered matrices

95



96 APPENDIX B. SOLUTION OF THE LYAPUNOV EQUATION (3.10)

follows that [G,W ] has the same property. In particular, writing the left-hand side
of equation (3.10) we get (recall the definition of G (3.16)) :

Wi,j+1 +Wi,j−1 −Wi+1,j −Wi−1,j = 0, ∀i, j ̸= 1, N. (B.7)

Taking into account also the anti-symmetry of W expressed by (B.4), the solution
to (B.7) is given by:

Wij = φ|i−j|sign(j − i), Wii = 0, (B.8)

where the function φk must be determined by the border components of (B.6):

(ω2/λ2)φj = δj1 − Y1,j = δj,1 + YN,N−j+1, (B.9)

with the convention φN = 0. The other matrices X and Y can be expressed in
terms of the function φ as well. In order to determine matrix X we anti-symmetrize
equation (B.5):

[G,X] = WR +RW. (B.10)

The right-hand side of (B.10) is non-zero only at the border, so the components of
X satisfy the same equation as the components of W (B.7), with the difference that
now the matrix X is symmetric. One possibility is to take Xab = fa+b, where f is an
unknown function that must be determined by considering the border components
of (B.10), which yield:

fk = φk−1, fN+k+1=−φN−k=fN+1−k
, 1 < ks < N. (B.11)

In particular, from equations (B.11) it follows that the matrix X is anti-symmetric
with respect to the anti-diagonal:

Xij =

{
φi+j−1, i+ j < N + 1,

−φ2N+1−i−j, i+ j > N + 1.
(B.12)

We now turn to the matrix Y . If we plug the expressions for the components of Z
(B.8) and X (B.12) into equation (B.5) we can express Yij in terms of the φj. This
expression is not very illuminating, but if we insert it in equation (B.9) we get a
recursive equation for φj:

(ω/λ)2φj = −2φj − φj−1 − φj+1 + δ1,j, (B.13)

with the boundary conditions φ0 = φN = 0. If we now plug back this condition into
the expression of Yij we mentioned above we can show that:

Y = S − (ω/λ)2X. (B.14)
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The final step is to compute the solution of (B). The form of suggests a power-law
ansatz φj = aj, substituting in equation (B) we find two solutions a±:

a± = 1 +
ω2

2λ2
± ω2

2λ2

√
1 +

4λ2

ω2
. (B.15)

The solution to (B) is thus of the form φj = c1a
j
+ + c2a

j
−, where c1 and c2 are

constants constrained by the boundary conditions. The final result is:

φj =
sinh[(N − j)α]

sinh(Nα)
, eα = a−, (B.16)

eventually we will take the thermodynamic limit and (B.16) reduces to:

φj = eαj. (B.17)

If we now plug (B.16) into the expression for Y (B.14) we can compute the heat
flux and temperature profile using (3.14) and (3.13) obtaining the results (3.19) and
(3.21) quoted in the main text.





Appendix C

Derivation of the results used in
section 3.2

In this appendix we discuss several calculations related to the derivation of the for-
mulas for the heat flux and temperature profile in the LEGF method described in
section 3.2.

C.1 Derivation of equation (3.27)

In this section we provide the solution for the equation of motion for the baths (3.26):
since both equations have the same form we will consider only the equation for the
left-hand bath:

ẍL,i = −ω2
L,ixL,i −m−1

L,i

∑
j

VL,jixj, (C.1)

which is a linear in-homogeneous equation. As is well known its solution is given by:

xL,i = x
(0)
L,i + x̄L,i, (C.2)

where x
(0)
L,i is the general solution to the homogeneous equation (obtained from (C.1)

by setting VL = 0) and x̄L,i is a solution of the full in-homogeneous equation. Since
the homogeneous equation is just the standard harmonic oscillator equation, we have:

x
(0)
L,i = cos(ωL,i(t− t0))xL,i(t0) +

sin(ωL,i(t− t0))

ωL,i

ẋL,i(t0), (C.3)

where we also imposed the initial conditions at time t0. The particular solution of the
in-homogeneous equation can be found with the method of variation of parameters
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and the final result is:

x̄L,i =

∫ t

t0

dτ
sin(ωL,i(t− τ)

ωL,i

m−1
L,i

∑
j

VL,jixj(τ). (C.4)

Summing (C.3) and (C.4) we get the full solution to (C.1):

xL,i = fL,i(t− t0)xL,i(t0) + gL,i(t− t0)ẋL,i(t0) +

∫ t

t0

dτgL,i(t− τ)
∑
j

mL,iVL,jixj(τ),

(C.5)
where we defined the quantities:

fa,i(s) = cos(ωa,is)θ(s), ga,i(s) =
sin(ωa,is)

ωa,i

θ(s), a = L,R, (C.6)

and θ(s) is the Heaviside theta function. The solution for the equation of motion for
the right-hand bath has the same form as (C.5) with L→ R. Inserting the solutions
xL,i(t) and xR,i(t) in the equation of motion for the system (3.25) we finally get
equation (3.27).

C.2 Derivation of the noise correlators

We will derive the noise correlation for the left-hand bath: as usual, to get the
corresponding expression for the right-hand bath we just need to replace L with R.
The Hamiltonian of the baths (3.23) is given by:

H =
1

2

∑
i

p2i + ω2
x,ix

2
a,i, a = L,R. (C.7)

which can be expressed in terms of the usual creation/annihilation operators:

H =
∑
i

ℏωa,i(b
†
a,iba,i + 1/2), ba,i =

√
ma,iωa,i

ℏ
xa,i +

i√
2ωa,iℏ

, a = L,R. (C.8)

Assuming the left-hand and right-hand bath are respectively described by a Bose-
Einstein distribution at temperature TL TR we have the following thermal averages:

⟨b†a,iba,j⟩ = f(ωa,i, Ta)δij, f(ω, T ) =
1

eβℏω − 1
, β = 1/(kBT ), (C.9)
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from which, using definition given in (C.8) we get the correlators of the canonical
coordinates (with ẋ = p/m):

⟨xa,ixa,j⟩ =
ℏ

2ma,iωa,i

coth

(
ℏωa,i

kBTa

)
, (C.10)

⟨ẋa,ixa,j⟩ = −i ℏ
ma,i

δij, (C.11)

⟨ẋa,iẋa,j⟩ =
ℏωa,i

2ma,i

coth

(
ℏωa,i

kBTa

)
. (C.12)

Since at time t0 the baths are assumed to be a thermal equilibrium we can compute
the correlators between the ξ functions defined in (3.28) and we get equation (3.31)

C.3 Fourier transform of the noise correlator (3.31)

The Fourier transform of the noise correlator

⟨ξa,i(t)ξa,j(τ)⟩
(3.31) is given by:

⟨ξ̃a,i(ω)ξ̃a,j(ω′)⟩ =
∫ ∞

−∞

dt

2π

∫ ∞

−∞

dτ

2π
⟨ξa,i(t)ξa,j(τ)⟩ (C.13)

=

∫ ∞

−∞

dt

2π

∫ ∞

−∞

dτ

2π

∑
l

Va,ilVa,lj

[ −ℏ
2ma,lωa,l

cos(ωa,l(t− τ)) + i
iℏ
ma,i

sin(ωa,i(t− τ))

]
.

(C.14)

Using the following elementary integrals:∫ ∞

−∞

dt

2π

∫ ∞

−∞

dτ

2π
cos(ω0(t− τ))eiωt+iω′τ = δ(ω + ω′) [δ(ω + ω0) + δ(ω − ω0)] ,

(C.15)∫ ∞

−∞

dt

2π

∫ ∞

−∞

dτ

2π
cos(ω0(t− τ))eiωt+iω′τ = −iδ(ω + ω′) [δ(ω + ω0)− δ(ω − ω0)] ,

(C.16)

we get:

⟨ξ̃a,i(ω)ξ̃a,j(ω′)⟩ = −ℏδ(ω + ω′)(1 + f(ω, Ta))∑
l

[Va,ilVa,lj[δ(ω + ωa,l)− δ(ω − ωa,l)]] . (C.17)
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The factor (1 + f(ω, Ta)) encodes thermal fluctuation: we thus expect the other
factor in (C.17) to encode dissipative effects. Dissipation is typically expressed by
the imaginary part of the Fourier transform of the memory kernel (3.30):

Σa,ij(ω) =

∫ ∞

−∞
dtΣa,ij(t)e

iωt =
∑
l

Va,ilVa,lj
ma,l

∫ ∞

−∞
dtga,l(t)e

iωt, (C.18)

(C.19)

where the ga,l function is defined in (C.6). Using the following integral1 :∫ ∞

−∞
dt sin(ω0t)θ(t)e

iωt =
ω

ω2 − ω2
0

− iπ

2
(δ(ω + ω0)− δ(ω − ω0), (C.21)

we thus get:

Σ̃a,ij(ω) =
∑
l

Va,ilVa,lj
ma,l

1

ω2 − ω2
a,l

− iπ
∑
l

Va,ilVa,lj
ma,lωa,l

(δ(ω + ωa,l)− δ(ω − ωa,l). (C.22)

It is convenient to define the matrix Γa,ij given by the imaginary part of Σ̃a,ij(ω):

Γa,ij(ω) = Im[Σ̃a,ij(ω)] = −π
∑
l

Va,ilVa,lj
ma,lωa,l

(δ(ω + ωa,l)− δ(ω − ωa,l)), (C.23)

so that the noise-noise correlator (C.17) can be written as in equation (3.33).

C.4 Derivation of heat flux and temperature pro-

file

In this appendix we report the steps to compute the heat flux (3.44) and the tem-
perature profile (3.45). The first thing to do is to compute the correlator (3.43). We
begin by taking the Fourier transform of the solution of the equation of motion of
the baths (C.5) and multiplying it on the right by Va:

Vax̃a(ω) = ξa(ω) + Σa(ω)x̃(ω), a = L,R, (C.24)

1The integral can be computed by inserting a regulator e−ϵt in the integrand and the taking the
ϵ → 0 limit using the Shotoski formulas:

1

x+ iϵ
= P.V.

1

x
− iπδ(x), (C.20)

where P.V. stands for “principal value” and is omitted in the main text.
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where we used the definitions of ξL,R (3.28) and ΣL,R (3.30). Inserting this result
into (3.43) we obtain, after some algebra and using the correlators (3.42), formula
(3.44).
In order to obtain the temperature profile (3.45) we start from the velocity-velocity
correlator:

⟨ẋ(t)ẋT (t)⟩ = −
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ ωω′e−i(ω+ω′)t ⟨x̃(ω)x̃T (ω′)⟩ . (C.25)

Now insert the solution of the Langevin equation of motion for the system (3.41)
and using the noise-noise correlator (3.31) we obtain (3.45).





Appendix D

Generalized eigenvalue method

D.1 Derivation of equation (3.52)

In this appendix we analyze the generalized eigenvalue problem following the review
[51]. The generalized quadratic eigenvalue problem consists in finding the set of the
complex number si such that:

det(P (si)) = 0, P (s) = As2 +Bs+ C = 0, (D.1)

where A, B and C are N ×N complex matrices and we will assume that the matrix
P is non-singular, i.e. its determinant is not identically vanishing. Furthermore we
assume that detA ̸= 0: in this case the determinant of P is a polynomial of degree
2N , as can be seen by considering the limit of large s. The set of the si is called the
spectrum of P (s) and they are related to the eigenvectors of P (s) y(i)1 :

P (si)y
(i) = 0. (D.2)

Now the main idea is to linearize (D.1), that is, to reduce the quadratic problem to
a linear one. The problem is similar to the reduction of a second-order differential
equation to two first-order ones:

ay
′′
+ by

′
+ c = 0 →

{
az

′
+ bz + c = 0

z = y
′
.

(D.3)

In our case, we want to find a 2N × 2N matrix linear in s, D + sE, such that:(
P (s) O
O I

)
= F (s)(D − Es)G(s), (D.4)

1we will assume that the right and left eigenvectors are equal: this hypothesis can be easily
relaxed.
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where det(F (S)) and det(G(s)) are non-zero constants. Taking the determinant of
equation (D.4) it is easy to see the values si that satisfy (D.1) are those and only
those that satisfy the condition det(D + Esi) = 0. This linearization is not unique,
we are going to use the following one [51]:

D =

(
O N

−K −C

)
,

E =

(
N O
O M

)
,


F (s) =

(
−(C + sA)N−1 −I

N−1 O

)
,

G(s) =

(
I O
sI I

)
.

(D.5)

Using this linearization D − Es with some algebra one can prove that:

P (s)−1 = −(I,O)(D − sE)(I,O)T . (D.6)

Furthermore the eigenvectors of D − siE are closely related to the ones of P (s):

(D − siE)z
(i) = 0, z(i) =

(
y(i)

siy
(i)

)
, (D.7)

and is convenient to organize the eigenvectors in a matrix:

Z =

(
X
SX

)
, Y = [y(1), ...y(N)], S = diag(s1, ..., sN). (D.8)

If s ̸= si ∀i = 1...N we have (D − sE)−1 = Z(S − sI)Z† and finally we obtain a
formula for P (s)−1 in terms of the eigenvectors si and the eigenvectors y(i):

P (s)−1 = −(I,O)(D − sE)(I,O)T

= −(I,O)Z(S − sI)Z†(I,O)T

= −Y (S − sI)SY † =
∑
i

siy
(i)y(i)T

s− si
. (D.9)

Taking A = I, B = R and C = Φ we can apply this obtain equation (3.52). Note
that equation (D.7) becomes:[(

O I
−R −Φ

)
− s

(
I O
O I

)](
y(i)

siy
(i)

)
= 0, (D.10)

so that the set of si and y(i) can be obtained by solving a standard eigenvalue
problem.



Appendix E

Green function for the
fully-connected chain

E.1 Computation of the Green function for the

fully-connected network: intensive coupling

In this section we compute the Green function (3.41) for the fully-connected harmonic
network analyzed in Chapter 3 in the intensive coupling case. Inserting (4.2) and
(4.3) into (3.41) we can write the Green function as G = Zint−1 where:

Zint
ij =


−mω2 − iλω + 2k(1− 1/N), i = j = 1, N

−mω2 + 2k(1− 1/N), i = j ̸= 1, N

−2k/N, i ̸= j

, (E.1)

which can be written as −Zint = Dint + uuT , with:

Dint
ij =


mω2 + iλω − 2k, i = j = 1, N,

mω2 − 2k, i = j ̸= 1, N,

0, i ̸= j,

, ui =
√

2k/N ∀i (E.2)

(E.3)

We can now invert the matrix −Zint using the Sherman-Morrison formula [62]: given
a matrix A =M + uvT , the inverse A−1 is given by:

A−1 =M−1 +
A−1uv TA−1

1 + v TA−1u
. (E.4)
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Using (E.4) we can write the Green function as:

G(ω) = Z−1 = −
(
D−1 +

D−1uuTD−1

1 + uTD−1u

)
, (E.5)

and using (E.2) we can compute:

1 + uTD−1u = 1 + (2k/N)
∑
i

D−1
ii (E.6)

=
N(mω2 + iλω − 2k)(mω2 − 2k)

N(mω2 + iλω − 2k)(mω2 − 2k)− 4iλkω
, (E.7)

and

(
D−1uuTD−1

)
=

2k

N


d21 d1d2 · · · d1d2
d1d2 d22 · · · d1d2
...

...
. . .

...
d1d2 d1d2 · · · d21

 , (E.8)

d1 = (mω2 + iλω − 2k)−1, d2 = (mω2 − 2k)−1. (E.9)

Finally we can write the various elements of the Green function:

G1N = G11 = GNN =
mω2 − 2k

mω2 − iλω − 2k

−2k/ω

mNω (mω2 + iλω − 2k)− 4iλk
, (E.10)

G1j = GNj = Gi1 = GiN =
2k/ω

N(mω2 + iλω − 2k)mω − 4iλk
, i, j ̸= 1, N, (E.11)

Gij =
mω2 + iλω − 2k

mω2 − 2k

2k/ω

mNω (mω2 + iλω − 2k)− 4iλk
, i, j ̸= 1, N. (E.12)

E.2 Computation of the Green function for the

fully-connected network: intensive coupling

To compute the Green function in the extensive coupling case we insert (4.2) and
(4.4) into (3.41). We can then write the Green function as G = Zext−1 where:

Zext
ij = (−mω2I+ Φ− ΣL − ΣR)ij (E.13)

=


−mω2 − iλω + 2k(1− 1/N), i = j = 1...nL, N − nR + 1...N,

−mω2 + 2k(1− 1/N), i = j, otherwise,

−2k/N, i ̸= j.

(E.14)



E.2. COMPUTATION OF THEGREEN FUNCTION FOR THE FULLY-CONNECTED NETWORK: INTENSIVE COUPLING109

Once again this matrix can be decomposed, in order to apply the Sherman-Morrison
formula, as −Zext = Dext + uuT , where u is the same vector of (E.2) and:

Dext
ij =


mω2 + iλω − 2k, i = j = 1...nL, N − nR + 1...N,

mω2 − 2k, i = j, otherwise,

0, i ̸= j.

(E.15)

The denominator of the fraction in Sherman Morrison formula is given by:

1 + uTDext−1u =
N(mω2 + iλω − 2k)(mω2 − 2k)

Nmω2(mω2 + iλω − 2k)− 2k(NL +NR)iλω
. (E.16)

Notice that if NL = NR = 1 we recover the result of the intensive case (E.6). We
now define the set of the sites coupled to the baths IL and IR:

IL = (1, ..., NL), IR = (N −NR + 1, ..., NR), I = IL + IR. (E.17)

With this notation, the numerator in the Sherman-Morrison formula is given by:

(
Dext−1uuTDext−1

)
ij
=

2k

N


d21, (i, j) ∈ (Ia, Ib), a, b = L,R,

d1d2, i ̸= IL, IR, j ∈ Ia, a = L,R,

d1d2, j ̸= IL, IR, i ∈ Ia, a = L,R,

d22, (i, j) ̸= (Ia, Ib),

(E.18)

where d1 and d2 are defined in (E.8). Note that the values of
(
Dext−1uuTDext−1

)
ij

are the same of the intensive case (E.8), so the values of the entries of the Green
function can be obtained simply by replacing

4iλkω → 2i(NL +NR)λkω, (E.19)
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into (E.10), (E.11) and (E.12). We finally get:
Gij =

mω2 − 2k

mω2 − iλω − 2k

−2k/ω

mNω (mω2 + iλω − 2k)− 2i(NL +NR)λk
,

(i, j) ∈ (Ia, Ib), a, b = L,R,

(E.20)


Gij =

2k/ω

N(mω2 + iλω − 2k)mω − 2i(NL +NR)λk
,

i ̸= IL, IR, j ∈ Ia, a = L,R,

(E.21)


Gij =

mω2 + iλω − 2k

mω2 − 2k
2k/ω

mNω(mω2+iλω−2k)−2i(NL+NR)λk
,

(i, j) ̸= (Ia, Ib), a, b = L,R.

(E.22)

The Green function entries (E.20) connect two sites coupled with the baths, entries
(E.21) connect one site coupled to the baths to an uncoupled one and finally entries
(E.22) connect two sites which are not coupled to the baths.



Appendix F

Calculation of I3 and I4

F.1 Calculation of I3

In this appendix we will compute the integral (4.34) in the large N limit. Since the
denominator of the integrand in (4.34) is the same as the one in (4.9) we can once
again exploit the presence of the vanishing root (4.12). In the large N limit, the
dominant contribution to I3 is:

I3 =
2

π

k1a

N

∫ ∞

−∞

dx

x2 + a2
x2

sinh2(x)
, (F.1)

where we conveniently made the change of variable x = y/k2 and a is given by:

a =
2k1
k2N

= TN/T, TN =
ℏk1
√
2k/m

kBN
. (F.2)

As in the classical case (4.9), we cannot directly take the limit N → ∞, because in
this limit a = 0 and (F.1) diverges. To compute (F.1) we employ contour integration
and Cauchy’s theorem. Let us introduce the following function of complex variable
z:

f(z) =
z2

z2 + a2
1

sinh2(z)
, (F.3)

The poles of f are all located on the imaginary axis, at the following positions (with
the corresponding residue):

zn = inπ, n ∈ Z{0}, Resn = 2iπa2n
(a2−π2n2)2

, (F.4)

z±a = ±ia, Res±a = ∓ ia
2 sin2(a)

. (F.5)
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Re(z)

Im(z)

+

+

||

+

+

Cn

za

z1

zn

zn+1

−R R

Γn

Figure F.1: The contour Γn used to compute the integral I3

Consider now the contour Γn plotted in figure F.1: it is composed by a segment
[−R,R] and a semicircle Cn of radius R, which is such that Γn contains the first n zk
poles and the one in za. Let now be IR the integral of f(z) over the aforementioned
segment. Then, by the residue theorem, we have:

IR =

∫ R

−R

dxf(x) = −
∫
Cn
dzf(z) + 2πi

[
n∑
k

Resk +Res+a

]
. (F.6)

I3 can then be obtained by taking the limit R → ∞ of IR as follows:

I3 =
2

π

k1a

N
lim
R→∞

IR. (F.7)

We now have to compute the limit R → ∞, which also entails the limit n → ∞ of
the right-hand side of (F.6). For large R the integral of f over Cn is:

∫
Cn
dzf(z) ≈ iR

∫ π

0

eiθdθ

sinh2(Reiθ)
= iR(−2i coth(R)/R) → 2. (F.8)

The sum over the residues becomes a series that can be resummed. We can thus
finally express I3 as:

I3 =
2k1
N
g(a), (F.9)
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where the function g(x) is given by:

g(x) =
x2

π2

[
ψ(1)

(
1 +

x

π

)
− ψ(1)

(
1− x

π

)]
+

x2

sin2(x)
− 2x, (F.10)

ψ(1)(z) =
d2

dz2
Γ(z), (F.11)

where Γ(z) is the Euler Gamma function.

F.2 Low-temperature behaviour of I4

In this section we compute the low-temperature of integral I4 (4.41). We start by
expanding the hyperbolic cotangent in (4.41) using the following series, valid for
large x:

coth(x) = 1 + 2
∞∑
n=0

e−2(n+1)x. (F.12)

The integral of the first term is:

I4(θ = 0) =
1

N2

∫ ∞

0

dy
y

y2(y2 − 1)2 + k21(y
2 − 2/N)2

=
1

2N2

∫ ∞

0

ds
1

s(s− 1)2 + k21(s− 2/N)2
. (F.13)

Note that the denominator in (F.13) is the polynomial (4.11). Let R be the real part
of the non-vanishing roots which is the same for both of them since they are complex
conjugate. Then, using standard partial fraction decomposition we get:

I4(θ = 0) =
1

2N2

[
2 ln

(
N

2k1

)
+

R√
1−R2

(
π

2
+ arctan

(
R√

1−R2

))]
. (F.14)

We now turn to the integral of the second term in (F.12):

2

N2

∫ ∞

0

fy

∞∑
n=0

ye−2(n+1)y

y2 + a2
. (F.15)

Consider the integral of the generic term of the series (F.12) which can be written
as:

2

∫ ∞

0

dy
ye−2(n+1)y

y2 + a2
= sin(2a(n+ 1))(π − 2Si(2a(n+ 1)))− 2 cos(2a(n+ 1))Ci(2a(n+ 1))

≈ 1

2n2a2
, (F.16)
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where a is given by (F.2), Si and Ci are the exponential sine and cosine. Expanding
the result (F.16) for small a we get:

2N−2

∫ ∞

0

dy
ye−2(n+1)y

y2 + a2
≈ 1

2n2a2
. (F.17)

We can finally sum over n (F.17) and we get:∫ ∞

0

dy

∞∑
n=0

2e−2(n+1)yy

y2 + a2
≈ π2

12a2
, (F.18)

where we used
∑

n(n+ 1)2 = π2/6. In conclusion by summing (F.14) and (F.18) we
get (4.59).
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[18] Nicolò Defenu, Tobias Donner, Tommaso Macr̀ı, Guido Pagano, Stefano Ruffo,
and Andrea Trombettoni. Long-range interacting quantum systems, 2021.
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