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We knew the world backwards and forwards
So small it fit in a handshake
So easy it could be described in a smile
As plain as the echoes of old truths and a prayer

History did not greet us with triumphant fanfare
It flung dirty sand in our eyes
Ahead of us were distant roads leading nowhere
Poisoned wells, bitter bread

The spoils of war is our knowledge of the world
So large it fits in a handshake
So hard it could be described in a smile
As strange as the echoes of old truths and a prayer.

— Wisława Szymborska, 1945

translated by Joanna Trzeciak





A B S T R A C T

Spacetime singularities are a generic prediction of general relativity.
They are believed to mark the breakdown of the theory and, for this
reason, they represent one of the main drivers for the search for al-
ternative theories of gravity; in particular, it is commonly expected
that the formation of singularities will be prevented in a full theory
of quantum gravity. In this view, it is reasonable to assume that non-
singular — or regular — metrics can provide an effective description
of the outcome of gravitational collapse and a credible alternative to
general-relativistic black holes.

In this thesis, we explore such hypothesis by providing strategies
for constructing regular geometries of various kinds: simply and mul-
tiply connected, with and without horizons — thus exhausting all of
the qualitatively different alternatives. The approach is largely theory-
agnostic, with particular emphasis being placed on rotating models.

Ample room is devoted to a specific family of regular geometries
known as black bounces. They represent wormholes that may or may
not exhibit horizons, depending on the value of one parameter. The
thesis describes the construction of the black-bounce counterparts
to the Kerr and Kerr–Newman geometries; scalar test-field perturb-
ations to one of these metrics are then examined by computing the
quasi-normal modes and the superradiant amplification factors.

The discussion is then specialised to the context of a compelling
candidate quantum theory of gravity: non-projectable Hořava grav-
ity. In particular, regular black holes and horizonless ultra-compact
objects are constructed under the assumption of staticity and spher-
ical symmetry, and analysed through the lenses of the theory’s low-
energy limit. In preparation to the addition of rotation, a Kerr black
hole solution is then examined in the closely related Einstein–æther
theory.

This thesis thus contributes to the investigation of alternative de-
scriptions for astrophysical black holes beyond general relativity, par-
ticularly with regards to regular black holes and horizonless black-
hole mimickers. Therefore, it naturally aligns with the research pro-
gramme of quantum gravity phenomenology.
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1
I N T R O D U C T I O N

E ora noi lo vediamo. Non staccare l’occhio dal
telescopio, Sagredo. Quello che stai vedendo è che non

esiste differenza tra il cielo e la terra. Oggi, 10 gennaio
1610, l’umanità scrive nel suo diario: abolito il cielo!

— Vita di Galielo, Bertolt Brecht

The first two decades of the XXI century have been generous in
momentous achievement for gravitational physics. On the wave of
these successes, expectations are high for the coming years, as the
near future has the potential for breaking current records.

Gravitational waves are the prime source of this excitement. The
groundbreaking first detection [126] has been a watershed: there was
physics before GW150914, and there is physics after GW150914. The
new physics is characterised by multimessenger observations, start-
ing with GW170817 [123–125]; and rich catalogues of gravitational-
wave transients [2, 127, 128], comprising 90 events to date. Mean-
while, as LIGO, Virgo and KAGRA enter their fourth observing run,
the planning of future ground-based [76, 217, 254, 299, 302, 311] and
space-born [18, 40] gravitational-wave detectors is well under way.

Furthermore, recent results from NANOGrav [337–341] and other
pulsar timing array collaborations provide evidence for a low-fre-
quency background of gravitational waves.

Most gravitational-wave events — including, most likely, those sourc-
ing the stochastic background — are associated to astrophysical BHs.
These dark and ultra-compact objects are characterised by the most
intense curvatures found in the present-day universe, and for this
reason they represent the best hope for testing our current under-
standing of gravity [365].

Notably, BHs can additionally be probed through electromagnetic
observations. In this cases, the BHs are surrounded by matter, e. g. in
an accretion disk [6], that emits radiation at different wavelengths [28],
from the X-ray [30] all the way to the millimetre and below. By study-
ing such emission, the Event Horizon Telescope collaboration man-
aged to compose the first “picture” of (the shadow of) the super-
massive BH M87* [329–336]; soon thereafter, the same techniques
were applied to our own Sgr A* [155–160].

The centre of the Milky Way is particularly well observed, since
the innermost stars orbiting Sgr A* — the S-star cluster — have
been tracked for decades. Notably, the passage of the star S2 by
its pericentre, located at a distance of approximately 1400 Schwarz-

1



2 introduction

schild radii from Sgr A*, allowed to measure two hallmark gravita-
tional effects, namely redshift of light [121, 142] and pericentre pre-
cession [122].1

Hence, there is hope that the next decades will bring new obser-
vational insight [8, 35, 59] to guide the research on the many theoret-
ical and conceptual issues that the existence of BHs, as general relativ-
ity (GR) conceives them, brings about. One such issue is the predic-
tion that BHs conceal a spacetime singularity and that such singular-
ities unavoidably form during gravitational collapse under mild and
generic assumptions.

Despite its observational successes, reasons to doubt GR abound.
One among the many: GR cannot be quantised perturbatively in any
way similar to other fundamental interactions and, as of yet, there is
no fully consistent and “definitive” theory of quantum gravity. For
this reason, there is a widespread belief within the community of re-
searchers who specialise in gravity that whatever “new physics” lies
beyond GR, it will solve the puzzles pertaining spacetime singularit-
ies.

Though such solution might come in different forms, considerable
effort has been directed into investigating the simplest of such forms:
namely, that singularities will be regularised through mechanisms that
can be captured effectively within the standard tools of differential
geometry. In this view, astrophysical BHs should be better described
by non-singular — or regular — models. These models may display
horizons, hence describe regular black holes (RBHs), or not, in which
case they represent horizonless (exotic) compact objects [107].

This thesis is devoted to exploring this hypothesis and its con-
sequences. We will do so by providing general guiding principles
for building regular models; then construct and analyse at length few
specific examples.

Countless other examples exist, as the past years have witnessed
the birth of a thriving industry around the construction of regular
models that could mimic astrophysical BHs — among which, RBHs

and wormholes will be particularly relevant for what follows. Provid-
ing a comprehensive account of the numerous alternatives, if ever
possible, lies beyond the scope of the thesis. The bibliography we
provide will thus not do justice to the richness of the current literat-
ure.

The thesis comprises three parts: part i collects background mater-
ial on the topic of spacetime singularities and explains how these can
be avoided in the simplest settings; part ii is devoted to the analysis
of a specific family of regular models known as black bounces, which
describe a wormhole possibly with horizons; finally, part iii contex-
tualises regular models in the framework of specific modifications of

1 Cf. the motivation for the 2020 Nobel prize in physics to Reinhard Genzel and An-
drea Ghez.



introduction 3

GR characterised by violations of local Lorentz invariance, namely
Hořava gravity and Einstein–æther theory.

Specially, chapter 2 reviews different notions and rigorous defini-
tions of spacetime singularities. It then recalls the reasons why sin-
gularities are a generic prediction of GR and the multiple ways in
which their existence is “problematic”. The chapter closes by address-
ing the (putative) role that new physics beyond GR might play in
resolving the issue: remarkably, under the fairly generic assumption
that such new physics will regularise singularities, a complete tax-
onomy of regular geometries can be compiled. Such taxonomy hap-
pens to be surprisingly short, as it consists of essentially two large
classes: simply connected geometries, representing exotic star-like ob-
jects or RBHs with multiple horizons; and multiply connected geomet-
ries, representing wormholes whose throat might be cloaked by one
or multiple horizons.

Chapter 3 introduces some common strategies to build regular
models. It focuses on the simplest settings of all by assuming staticity
and spherical symmetry. On the basis of said taxonomy, it describes
well-known examples of simply and multiply connected regular geo-
metries — including the so called Simpson–Visser (SV) metric, the
prototypical black-bounce spacetime.

Chapter 4 addresses the issue of rotation — a key feature of any
model that aims at describing the phenomenology of astrophysical
BHs. It presents a technique, known as the Newman–Janis procedure
(NJP), for endowing the models of the previous chapter with spin.
The chapter closes with a brief review of past applications of this
technique, focusing on open issues.

Chapter 5 opens part ii by presenting the construction of the rotat-
ing counterpart to the SV metric: the black-bounce–Kerr geometry.
The resulting spacetime is explored and described at length. The
chapter follows very closely [270].

Chapter 6 expands the previous chapter by discussing the inclusion
of an electric charge. The chapter is based on [166].

Chapter 7 furthers the analysis of the black-bounce–Kerr geometry
by investigating its stability against small scalar perturbations. Quasi-
normal modes (QNMs) and superradiance amplification factors are
computed. The chapter follows [165].

This part is closed by chapter 8, which collects a few appendices to
the previous chapters.

The following chapter 9 is an interlude. It remains on the issue of
stability analysed in chapter 7 but detaches from the main line of reas-
oning by leaving black bounces aside. Rather, it focuses on the phe-
nomenon of mass inflation, which notoriously renders inner horizons
unstable and is therefore particularly relevant for simply connected
RBHs. After introducing the topic, the chapter describes a proof-of-
concept example of simply connected RBH whose inner horizon is
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engineered so to be stable against mass inflation. The chapter follows
[167].

Chapter 10 opens part iii by discussing the construction of static
and spherically symmetric regular geometries, BHs or exotic horizon-
less compact objects, in the context of non-projectable Hořava gravity
and specifically of its low-energy version, khronometric theory. Fo-
cusing on Hořava gravity is motivated by the fact that this theory
is constructed to be manifestly power-counting renormalisable; how-
ever, its equations of motion are extremely complicated and searching
for regular solutions with standard methods is so far out of reach. For
this reason, we focus on the low-energy regime and construct regular
models following the strategies of chapter 3. The chapter is based on
[271].

Extending the results of chapter 10 to include rotation would be
tempting and logically the obvious next step. However, this research
programme faces an immediate obstacle in that no rotating BH solu-
tion is known, as of yet, in khronometric theory. Rotating BHs have
been constructed numerically in the closely related Einstein–æther
theory, a scalar-vector-tensor extension of GR characterised by the ad-
dition of a vector field called æther. These solutions however present
the puzzling feature that their horizons are not KHs.

Chapter 11 thus examines a configuration in which the metric is
that of Kerr and the æther is determined so that the two give a solu-
tion of Einstein–æther theory in a specific corner of the parameters
space. The discussion in this chapter is based on ongoing work and
is therefore open-ended.

Finally, chapter 12 collects our final comments and closes the thesis.

conventions The signature of the metric is (−,+,+,+) except
for chapter 10, in which the opposite signature is used. The Riemann
tensor is defined as in Wald’s book [359]. Spacetime indeces run from
0 to 3 and are denoted with Greek letters µ, ν, . . .

We use “geometrodynamics units” units in which c = G = 1. How-
ever, the effective stress-energy tensor is typically defined through
Gµν = Teff

µν , i. e. with a factor of 8π mismatch with respect to the usual
stress-energy tensor; chapter 6 is an exception, since the factor 8π

is restored there. Anyhow, the appropriate convention is specified in
the text whenever needed.

on computer algebra software This thesis would have been
much shorter had all computations be done by hand. Fortunately,
researchers can now rely on several pieces of software to aid their
work [248]. In particular, the current author has extensively employed
the xAct bundle for Mathematica, specifically the packages xTensor,
xCoba, and to a minor extent xPert [78, 258–260].

http://www.xact.es/index.html
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2
S PA C E T I M E S I N G U L A R I T I E S I N M E T R I C
T H E O R I E S O F G R AV I T Y

This thesis is mostly concerned with the regularisation of spacetime
singularities, particularly those arising from the gravitational collapse
of a localised distribution of matter beyond a trapping horizon —
i. e. BH singularities.

It thus seems wise to start the discussion by addressing two fairly
basic questions: (i) What are spacetime singularities? and (ii) Why
are they believed to be “probemeatic”? Though seemingly innocent
at first glance — after all, the topic of singularities is touched upon in
most introductory textbooks on BHs —, these questions soon reveal
their non-trivial character.

These questions will be addressed in section 2.1, drawing from sev-
eral standard references [120, 184, 212, 359]. The following section 2.2
will deal with the (putative) role of quantum and/or modified gravity
in solving the puzzles of singularities.

2.1 what are singularities and why are they problem-
atic?

Our intuition on the subject of spacetime singularities arises from
the analysis of a few simple examples, such as the Schwarzschild
solution, and the analogy with other (classical) theories of long-range
interactions, such as Maxwell’s electrodynamics.

In both of these examples, there exist some local observable quant-
ities whose (position-dependent) value “blows up” in the vicinity of
a certain point. In the Schwarzschild case, one such quantity is the
Kretschmann scalar RµνρσRµνρσ, which is ∝ r−6; in the Maxwell’s case,
one can think of the energy density associated to the electrostatic field
of a point charge, whose magnitude is ∝ r−4. Both quantities diverge
in the limit r → 0.

It is generally believed, with reason, that infinity cannot be the
outcome of a physical measurement process. So, the fact that these
theories predict an infinite value for some observables should be con-
sidered as a pathology, a singularity, pointing to a deficiency in the
theory.

2.1.1 Curvature singularities

The previous intuition can be translated into a technical definition.

7
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In GR, all the relevant information pertaining the geometry is en-
coded in the metric tensor. Because of the theory’s invariance under
diffeomorphisms, however, one cannot build any (non-trivial) local1

observable out of the metric alone, nor out of its first derivatives.
In fact, the components of the metric and of its first derivatives at
a given point are entirely contingent on the choice of coordinates;
in particular, one can always find Riemann normal coordinates in a
neighbourhood of a point x such that

gµν(x) = ηµν and ∂ρgµν(x) = 0 . (1)

The second derivatives of the metric, instead, cannot be trivialised by
a change of coordinates, and indeed it is these derivatives that carry
information on the local curvature of spacetime.

Hence, the local observables whose unboundedness will be the tell-
tale of a singularity must be built out of the second derivatives of the
metric. More specifically, they will be built out of the Riemann tensor.

Clearly, these arguments apply equally well to alternative theories
of gravity in which the metric remains the only carrier of informa-
tion: we will refer to such theories as metric theories , to distinguish
them from theories in which additional ingredients are needed in or-
der to fully describe the geometry. So, for instance, higher-derivative
theories like f (R) are metric; while metric–affine gravity is not, since
the connection is there an independent field. Other notable examples
of non-metric theories are the Lorentz-violating Einstein–æther and
khronometric theories, to which part iii is devoted. As it will become
clear in due time, these cases require a dedicated discussion.

One possibility is to look directly at the components of the Riemann
tensor. Consider a curve, and an orthonormal frame that is parallely
propagated along the curve;2 the components of the Riemann tensor
in this frame are the tidal forces, experienced by a putative observer
moving along the curve, in the direction of the frame’s legs. If any
of these components is unbounded along the curve, we say that the
curve reaches a p. p. curvature singularity (“p. p.” for “parallely propag-
ated”).

The above definition is independent on the choice of frame, since
any two frames are related by a Lorentz transformation and unboun-
dedness in one frame implies unboundedness in all frames; but it is
quite laborious in practice. An alternative is to look at the scalars built
out of the Riemann tensor, the metric and the Levi-Civita completely
antisymmetric tensor. If any of them becomes unbounded along a
curve, we say that the curve approaches an s. p. curvature singular-

1 Clearly, one can build diff-invariant non-local observables out of the metric alone:
the length of a curve connecting two points is an example.

2 If the curve is not a geodesic, the proper way of propagating the frame would be
Fermi, rather than parallel, transport; using parallel transport, however, seems the
standard choice.
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ity (“s. p.” for “scalar polynomial”, since these scalars are, roughly
speaking, polynomials in the Riemann).

The relationship between the two definitions is subtle. Clearly, if
the components of the Riemann and of the metric are bounded, so
are all scalar polynomials. In contrast, it is possible to have diverging
components with bounded scalars.

2.1.2 Curve incompleteness

Neither of the previous intuitive definitions is very useful in proving
theorems concerning singularities. As is well known, a definition in
terms of the incompleteness of certain classes of curves turns out to
be much more effective.

In particular, an inextendible spacetime is said to be singular if it
contains at least one incomplete curve. By inextendible spacetime we
mean one that is not isometric to a proper subset of a larger spacetime;
by incomplete curve we mean one of finite generalised affine length
which has no endpoint in the spacetime, i. e. one which cannot be
extended beyond a finite value of its generalised affine parameter.

A spacetime that is singular in this sense is said to be b-incomplete
(“b” for “bundle”). Clearly, when the curve is a geodesic the defini-
tion above reduces to the usual definition of e. g. [359], in terms of
which the singularity theorems are formulated. However, for future
reference we shall let the curve be arbitrary.

Note that the notion of b-incompleteness brings about a very differ-
ent way of looking at singularities. Indeed, in the curvature approach
the singularity is a genuine point in spacetime, at which some (com-
binations) of the dynamical fields entering the theory happen to be
ill-behaved.3 Here, instead, the incomplete curve reaches an end, cor-
responding to the maximum (finite) value of its generalised affine
parameter, that does not belong to the spacetime. In this view, the sin-
gularity is a “missing point” at which spacetime is not defined.

(It is possible to extend the spacetime by complementing it with
a suitable boundary, containing the endpoints of curves that are in-
complete in the spacetime, which would make it possible to speak
of singularities as points in some manifold. This can be achieved in
several ways, one being the so called b-boundary construction; all of
which are somewhat problematic.)

This difference notwithstanding, it would be desirable that the two
notions of singularity, based on unbounded curvatures and incom-
plete curves respectively, agreed in general. A little hope seems to be
provided by a paper by Clarke [119], whose abstract reads:

3 A note is in order. Usually, one defines curvature singularities as unboundedness
along an incomplete curve. In this perspective, singularities would always be defined
in terms of curve incompleteness and curvature singularities would constitute a
particular subcase. Our definition is thus somewhat loose from a technical point of
view, but it serves the purpose of the discussion.
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“A singularity reached on a timelike curve in a globally hyperbolic
space-time must be a point at which the Riemann tensor becomes infinite

(as a curvature or intermediate singularity) or is of type D and
[electrovacuum].”

However, the Schwarzschild, Reissner–Nordström, Kerr and Kerr–
Newman solutions are all electrovacuum and type D everywhere;
actually, all spherically symmetric spacetimes are type D, an so are
all the Kerr-like spacetimes that are usually used to model RBHs —
see section 4.3 and [343, 345] —; in fact, the only non-type-D space-
times mentioned in this thesis are those belonging to the rotating
black bounce family.

So, unfortunately, this theorem rarely applies; indeed, for all prac-
tical purposes, the two notions are to be considered different.

2.1.3 Singularity theorems

The definition based on curve incompleteness, and more specifically
on geodesic incompleteness, is particularly well-suited for a mathem-
atical investigation of singularities.

Such investigation, which started during the so-called renaissance
of GR [67] and stretched throughout the 1960s and ’70s, consolidated
the notion that spacetime singularities are not born out of unphys-
ically restrictive symmetry assumptions; rather, they are a genuine
prediction of GR under reasonable and generic assumptions.4

The main results are distilled into a series of singularity theorems, a
set of statements in the form “if. . . then . . . ” that clarify under what
circumstances the formation of a singularity is inevitable [315].

Here, we shall focus on the first of said theorems (by Penrose in
1965 [295]), since it deals with BHs and is reasonably simple. Our
goal is not to report the proof of the theorem, which is textbook ma-
terial [184], but rather to point out some key points that will become
relevant later, when we will discuss the possibility of avoiding the
formation of singularities.

The statement of the theorem is the following [184, p. 263]:

A spacetime (M, gµν) cannot be null geodesically complete if:

1. Rµνkµkν ≥ 0 for all null vectors kµ;

2. there is a non-compact Cauchy surface;

3. there is a closed trapped surface.

Assumption 1. is sometimes referred to as the “convergence con-
dition” [316]. Using Einstein’s equations, it can be translated into a
condition on the matter content of the spacetime: the energy density

4 Cf. the motivation for the 2020 Nobel Prize in Physics awarded to Sir Roger Penrose.
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measured along any null curve must be non-negative (null energy
condition).

Assumption 2. is equivalent to saying that the spacetime is globally
hyperbolic, i. e. its complete history is predictable given appropriate
Cauchy data local to an achronal surface.

Assumption 3. means, roughly speaking, that a BH horizon has
formed. A trapped surface is a closed two-dimensional spacelike sur-
face such that the two null congruences, ingoing and outgoing, ortho-
gonal to the surface have both negative expansions. It is trapped in
the sense that its area shrinks as one moves along both congruences.

The proof of the theorem comprises two parts: the first is “kinemat-
ical” while the second is “geometrical”.

The kinematical part consists in a lemma that often goes by the
name of focusing or convergence theorem [316]. It entails proving, by
means of Raychaudhuri’s equation, that if a closed trapped surface
exists, then the null geodesic congruences that cross it must reach
a point of finite affine parameter at which they focus. Such focus-
ing point is a caustic, i. e. a point of infinite negative expansion. This
kinematical part will play a central role in the classification and con-
struction of non-singular geometries in subsection 2.2.1.

The geometric part, instead, consists in proving, by contradiction,
that if the focusing point were part of the manifold, hence not a singu-
larity, the boundary of the causal future of the trapped surface would
be compact and without boundary, which is incompatible with as-
sumption 2.

Note that the only use of Einstein’s equations is in translating as-
sumption 1. into a statement on the matter content of the spacetime,
which is a non-essential step. So, Penrose’s theorem actually holds
in all of the theories that we called metric, irrespective of their field
equations, and with suitable adaptations also in non-metric theories.
This remark constitutes the foundations for the discussion in subsec-
tion 2.2.1 and, in fact, for the rest of this thesis.

2.1.4 Conceptual issues with singularities

Having spelled out some definitions of singularities and discussed
their ubiquity, we are now in the position to elaborate on the concep-
tual issues that the existence of singularities entails [131, 132]. The
problematic aspects touched upon herein serve as a motivation for
the following section 2.2, in which we will investigate the possibility
that some new physics, possibly related to quantum gravity, might
play a role in solving them.

Let us start with the curvature approach. As already commented
before, the fact that there exist local measurements of curvature that
become unbounded along some curves is clearly problematic: curva-
ture is a legitimate observable in the theory and it is hard to think how
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the statement “infinite curvature” could be given a sensible meaning
in any operational sense.

One might argue in favour of a permissive attitude, whereby un-
boundedness on non-causal curves could be tolerable, since these
curves do not correspond to physical trajectories; moreover, unboun-
dedness on non-geodesic causal curves might also be acceptable, since
these trajectories are “artificially” accelerated in the context of GR. A
p. p. singularity along a timelike geodesic, on the other hand, entails
that a freely falling observer would measure infinite tidal forces —
what this might mean is unclear.

On a more technical note, an s. p. singularity strongly suggests that
the gravitational action might not be finite when evaluated on shell.
In GR, the action contains the Einstein–Hilbert term

SEH =
1

16π

∫
d4x

√
−gR , (2)

where the Ricci scalar R can possibly blow up: it does not for e. g. the
Schwarzschild solution, which is a vacuum solution, but it will in
more general situations.5

Furthermore, if one extends GR in an effective-field-theory spirit,
one is forced to add to eq. (2) all the terms compatible with diffeo-
morphism invariance and up to a given order in a derivative expan-
sion. In the case of a s. p. singularity, some of these terms will diverge
and the finiteness of the action becomes a fine tuning problem.

The incompleteness approach brings about issues that are even
more disturbing. In this setting, the singularity does not belong to
the spacetime, so in principle one might avoid warring about the pos-
sible unboundedness of observables. (Although it is not clear how
that problem could be avoided in practice.)

As before, incompleteness of non-causal curves, and to a lesser ex-
tent of causal non-geodesic curves, could arguably be tolerated. But
the incompleteness of timelike geodesics really means that observ-
ers can reach the singularity in a finite amount of proper time, and
then disappear from existence, since their worldlines cannot be exten-
ded past that value of proper time. (We assumed that the singularity
is at the future endpoint. Observers might also “pop up”, seemingly
out of nowhere, if it is at the past endpoint.) In other words, curve
incompleteness entails a loss of predictability of the theory.

These and similar motivations, presented here filtered through the
present author’s personal views, are what leads many practitioners
to believe that spacetime singularities represent a breakdown of GR
and of our understanding of gravity.

5 Even in Ricci-flat spacetimes, if the manifold has a boundary, one needs to “renor-
malise” the gravitational action, since the Gibbons–Hawking–York term typically
diverges. Such renormalisation is usually achieved by subtracting the contribution
one would find in a flat spacetime, but if the Lagrangian density diverges this might
not be sufficient.
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2.2 the role of “new physics”

The (not completely explained) coincidence between the two approach-
es to singularities, curvature- and incompleteness-based, is particu-
larly suggestive. If one treats GR in the spirit of effective field theor-
ies, this coincidence entails that singularities appear in a regime, that
of high curvatures, in which the higher-order “corrections” to GR are
strong.

This suggests that the formation of singularities might be avoided
in beyond-GR theories. Indeed, the equations of motion of these the-
ories can typically be cast in the form6

Rµν −
1
2

Rgµν = Teff
µν , (3)

where Teff
µν is an effective stress-energy tensor encoding the effect of

higher-order terms. Such effective stress-energy tensor can, in general,
violate the null energy condition [91], which is one of the assump-
tions in Penrose’s theorem. Hence, singularity theorems as they are
usually formulated might be evaded and the end state of gravitational
collapse might be a geometry that is regular, i. e. free of singularities.

This possibility seems even more convincing when pondering about
quantum effects. Indeed, it seems reasonable to expect that quantum
gravity, whatever that might be, will shed light on the issues related
to singularities. Clearly, there is no guarantee that this will be the case:
quantum gravity might very well have nothing to say on the matter;
and, even if it were the case, it might not be possible to phrase the
answer in the usual language of differential geometry.

(Actually, one might argue for a strong stance in the opposite direc-
tion and demand that quantum gravity “solves” singularities, in some
sense — meaning that a candidate theory that did not address the
issues would have to be considered unviable.)

Nonetheless, a scenario as the one we just presented does seem a
sensible working assumption — which we will adopt for the rest of
this thesis. Specifically, we will work under the following hypotheses:

1. GR is extended by the inclusion of some “new phyics”, possibly
but not necessarily related to quantum gravity;

2. gravitational phenomena can be described, in an effective sense,
in terms of the usual tools of pseudo-Riemannian geometry,
namely a spacetime manifold and a Lorentzian metric;7

3. the spacetime is geodesically complete and free of curvature
singularities.

6 We omit the conventional 8π factor in the Einstein’s equations.
7 The manifold is assumed to be four-dimensional, connected, Hausdorff and para-

compact; it is equipped with a metric-compatible connection. All structures are as-
sumed to be suitably differentiable.
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We shall not dwell much longer on this point, but we wish to stress
that these are assumptions and that the possible alternatives might
look counter intuitive. For instance, [194] has argued that not all sin-
gularities should be cured, since some of them are useful in that they
allow to discard unphysical solutions.

Notably, however, several approaches to quantum gravity seem to
converge in supporting a scenario based on the aforementioned as-
sumptions. Representative examples are loop quantum gravity [182,
308] and asymptotic safety [70].

2.2.1 Classification of geodesically complete geometries

The assumptions above are useful insofar as they allow for a classific-
ation of all possible non-singular geometries. Such classification was
carried out first in [97, 98] (see also [140]; cf. [100] for an extension
to Lorentz-violating theories of gravity) and is purely kinematical,
i. e. oblivious to the dynamics of the regularisation.

Specifically, the authors of [97, 98] assume

• the assumptions above;

• global hyperbolicity;

• spherical symmetry.

They then turn their attention to the kinematical part of Penrose’s
singularity theorem and discuss how it can be evaded.

The first obvious possibility is that no closed trapped surface exists,
i. e. there is no BH. The formation of a trapping horizon in GR typ-
ically happens in a regime of relatively low curvature, at which the
effects of new physics are expected to be negligible — at least at the
classical level. Yet, the inclusion of semiclassical effects (in the sense
of quantum field theory in curved spacetimes) might drastically alter
the picture, possibly leading to the formation of an horizonless com-
pact object [15–17, 55, 92, 297]. A notable particular example of similar
objects are gravastars [244, 267–269, 278, 355, 357]. Such horizonless
(exotic) compact objects thus remain viable alternatives to GR BHs

[107]
If, on the other hand, a closed trapped surface exists, the only

option is to violate the assumption on the convergence condition
(i. e. the null energy condition, assuming Einstein’s equations). Then
the outgoing null congruence is not bound to reach a focusing point
in a finite affine distance anymore; there are therefore three alternat-
ives:

1. the focusing point is pushed to infinite affine distance;

2. the focusing point is replaced by a defocusing point, which is
reached at infinite affine distance;
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3. the focusing point is replaced by a defocusing point, which is
reached at finite affine distance;

A defocusing point is one at which the expansion of the outgoing
congruence becomes zero. These cases can be further subdivided into
subcases according, roughly speaking, to the sign of the expansion of
the other (ingoing) congruence at the defocusing point — for further
details, see [97].

The outcome of this analysis is that, under the assumptions, the
taxonomy of non-singular geometries is remarkably short. Moreover,
one can argue that most options are to be discarded for reasons that
are spelled out in [97]. The taxonomy essentially comprises only two
options: “evanescent horizons” and “one-way hidden wormholes” —
and limiting cases thereof.

evanescent horizons The defocusing point is reached at finite
affine distance and the ingoing congruence has negative expansion
there. An inner trapping horizon forms inside of the outer trapping
horizon; the two horizons merge in a finite time, leaving no BH be-
hind. This scenario thus corresponds to a BH that lives for a finite
amount of time and remains regular throughout. The limiting case in
which the two horizons merge in infinite time is dubbed everlasting
horizon in [97].

one-way hidden wormholes The defocusing point is reached
at finite affine distance, as before, but the expansion of the ingoing
congruence is non-negative there, meaning that it must be zero some-
where along the congruence between the closed trapped surface and
the defocusing point. This means that the two-spheres orthogonal to
the two null congruences cannot be shrunk to a point; rather their
radius has a local minimum as a function of the affine parameters
along the two congruences. Such minimum is a (dynamical) worm-
hole throat but, since the throat lies behind a trapping horizon, the
wormhole is “hidden” (and the throat can only be traversed in one
way). The limiting case in which the throat is infinitely far away is
dubbed asymptotic hidden wormhole in [97].

These two classes can encompass geometries that are quite com-
plex. For instance, in the evanescent horizon case there could be more
than two horizons, nested one inside the other; still, these horizons
must come in pairs and disappear in a finite amount of time. Simil-
arly, the hidden wormhole scenario could display multiple horizons
(on both sides of the throat), as well as multiple throats. However,
the key features of these classes are well displayed by two “minimal”
representatives: a geometry with one outer/inner horizon pair for the
evanescent horizons class; and a geometry with one horizon enclos-
ing a single throat for the hidden wormhole case.
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One crucial difference between these two cases is the overall topo-
logy of the spacetime. This is always assumed to be path-connected
and in the case of evanescent horizons it is also simply connected;
i. e. the topology is the same as Mikowski spacetime. In the hid-
den wormhole case, instead, the existence of a throat entails that the
spacetime cannot be simply connected, since a closed path that winds
around the throat cannot be shrunk to a point; the spacetime is said
to be multiply connected.

Since these geometries are assumed to result from gravitational col-
lapse, the topology of the constant-time slices is assumed to be simply
connected in the far past. In order to form an hidden wormhole, there-
fore, a change of topology has to take place. Whether this is at all pos-
sible, at least in quantum gravity, is an open issue (see [353] for some
discussion and further references on the topic), hence we take an ag-
nostic stance and explore this option as a viable possibility. (Note, in
passing, that simply connected RBHs too typically imply a change of
topology of some sort [74].)

Horizonless geometries can still be, in principle, either simply or
multiply connected, so we will make this distinction even in that case.

The taxonomy of viable non-singular geometries arising from grav-
itational collapse can therefore be summarised, under the assump-
tions, in the following two-entry table:

Horizon Topology

simply con. multiply con.

with multihorizon evanescent RBH hidden wormhole

without (exotic) compact object naked wormhole

Table 1: Taxonomy of viable non-singular geometries.

2.2.2 Towards phenomenology

The classification we just presented is remarkably short and, although
it could encompass arbitrarily complicated geometries, its key fea-
tures are well captured by two fairly simple alternatives. This sug-
gest that explicit examples could be built without excessive hurdles.
By studying such “effective models” of regular geometries, then, one
might hope to gain new insights into the process of singularity regu-
larisation.

Ideally, these models would have to be reasonably simple, since phe-
nomenological applications typically add layers of complexity and
one would wish to keep as much control over the computations as
possible. In practice, we will assume a high degree of symmetry
(e. g. spherical or axial symmetry).
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Moreover, since this classification is intended as a taxonomy of vi-
able outcomes of gravitational collapse, these models should not dif-
fer too drastically from the astrophysical BHs that we observe in the
sky — i. e. they should be reasonably good “mimickers” of GR BH.8 Spe-
cifically, they should be asymptotically flat and with a well-defined
Newtonian limit, so that at large distances test particles move in a
Newtonian potential; furthermore, they should be compact enough
to possess a light ring. Preferably, they ought to account for rotation.

In the spirit of simplicity, we will further assume that these models
are stationary. This seems a reasonable assumption, since one would
expect all the dynamical “hair” carrying information on the details
of the collapse to be quickly radiated away, thus leaving behind an
object that is not evolving anymore. This is what happens in GR, and
indeed stationary geometries (namely, the Kerr geometry) provide a
good description of isolated astrophysical BHs — at least as far as cur-
rent observations can tell. (In this sense, stationarity is an additional
requirement for a “good” mimicker.)

Yet, this assumption is less innocuous than it seems, since the tax-
onomy of table 1 comprises geometries that are intrinsically non-
stationary (viz. the evanescent horizons). Hence, the description pro-
vided by stationary models should be regarded as approximate and
valid only over appropriate timescales. Interestingly, the models will
“remember” such pitfall in that globally hyperbolicity will be in doubt.
In particular, the stationary counterpart of the evanescent horizons is
going to be a RBH with “eternal” outer and inner horizons: similarly
to the Reissner–Nordström and Kerr solutions, the inner horizon will
also be a Cauchy horizon and these spacetimes will not be globally
hyperbolic. In the multiply connected case, global hyperbolicity will
also be quite subtle. For this reason, some care is needed when con-
sidering global characterisations of eternal spacetime, such as Carter–
Penrose diagrams.

Finally, since astrophysical BHs are never really in a vacuum, one
should make sure that the addition of a small amount of matter does
not result in a disruptive change in the geometry. For instance, an
initially small perturbation should not be allowed to grow indefinitely
in amplitude as time progresses. In other words, these models should
be stable — at least on astrophysical timescales.

The following chapters in this part expand this line of reasoning
by explaining how effective models that satisfy the aforementioned
desiderata can be built in practice: chapter 3 focuses on the simplest
situation possible, in which staticity and spherical symmetry are as-
sumed; chapter 4 describes a recipe for adding rotation to spherically

8 This represents an additional requirement that some might want to lift because they
consider more exotic possibilities at least as appealing: surely this is an option, which
however lies outside of the scope of this thesis.
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symmetric metrics and discusses some examples that have appeared
in the literature.



3
B U I L D I N G M O D E L S O F R E G U L A R B L A C K H O L E S

As explained in subsection 2.2.1, if there exists some new physics that
prevents the formation of spacetime singularities, gravitational col-
lapse may possibly result in only two classes of geometries, simply
and multiply connected, which may or may not exhibit horizons
(cf. table 1).

In this chapter, we show how explicit examples of each kind can be
built. We focus on the simplest possible situation by assuming stati-
city and spherical symmetry. We start with a rather general discussion
in section 3.1. Soon enough, it will become clear that the simplest way
to build models that satisfy the desiderata of subsection 2.2.2 is to “reg-
ularise” a singular solution of GR, i. e. to apply some specific changes
to the metric in order to obtain a regular one — the obvious starting
point is going to be Schwarzschild. Section 3.2 will explain how to do
so maintaining the spacetime simply connected; section 3.3 will do
the same for the multiply connected alternative.

The subject matter of this chapter, in particular with regards to
simply connected RBHs, has been at the centre of great scientific activ-
ity. Apart from the cited literature, the interested reader may consult
the newly published collection [29], or the reviews [12, 232, 249, 313].

3.1 a spacetime of sufficient generality

Staticity means that the spacetime can be foliated by hypersurfaces
orthogonal to the Killing vector field that is timelike at infinity, which
we will call χµ. Spherical symmetry entails that these hypersurfaces
can themselves be foliated by two-dimensional spheres. One can there-
fore choose a coordinate t associated to the orbits of χµ, and two co-
ordinates θ and ϕ analogous to the usual spherical coordinates on the
spheres.

One can then introduce a fourth coordinate r to label the differ-
ent spheres within a constant-t hypersurface (see [359, ch. 6.1]). Such
coordinate will be called “radius”, for obvious reason, although in
general it has no direct physical interpretation. Consistently with this
terminology, the asymptotically far limit is assumed to be |r| → ∞,
and the point r = 0 is interpreted as the “centre” of the spacetime.

In these coordinates the metric is diagonal and reads

ds2 = − f (r)dt2 +
dr2

g(r)
+ h(r)dΩ2 , (4)

where dΩ2 = dθ2 + sin2 θ dϕ2 is the usual round metric on the two-
sphere, while f (r), g(r) and h(r) are free functions.

19
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This form of the metric is quite redundant, since one can always
redefine the radial coordinate to “gauge away” one between g and h.

A very common choice consists in measuring the radius in terms of
the area of two-spheres. Since, according to eq. (4), such area is given
by 4πh(r), this choice amounts to setting h(r) = r2 — the resulting
radius is known as aerial radius. However, since we wish to give a
unified description of simply and multiply connected spacetimes, it
is more useful to let h(r) appear as an arbitrary function in the metric.
We will only assume h(r) ≥ 0, to ensure that the area of spheres is
never negative.

Often, we will instead set

g(r) = f (r) . (5)

This condition is such that the resulting Ricci tensor has vanishing ra-
dial null-null component [199]; our motivation for imposing it, how-
ever, is merely simplicity and analogy with the Schwarzschild solu-
tion.

The requirement of asymptotic flatness and that there exists a well-
defined Newtonian limit translate into simple conditions on the free
functions f , g and h. Specifically, we demand that at large |r|

f (r) = 1− 2M
|r| +O

(
|r|−2

)
= g(r)

and h(r) = |r|2
[
1 +O

(
|r|−3

)]
, (6)

where M is a positive constant that plays the role of the Newtonian
mass and can be identified with the Arnowitt–Deser–Misner (ADM)
or Komar masses (they coincide in this simple setting).

3.1.1 Horizons

Intuitively, horizons should be given by the zeroes of g(r). In order
to formally characterise them, we introduce two null congruences,
one ingoing and one outgoing, and study their focusing properties.
Though somewhat of an overkill, this method is very close in spirit
to the reasoning involved in the singularity theorems.

The two congruences are specified by their tangent vectors lµ and
nµ, which are null and taken to be future-pointing and normalised as
lµnµ = −1.

For consistency with chapters 4 and 5, we take

lµ∂µ =
1√
f g

∂t + ∂r
|r|→∞−→ ∂t + ∂r , (7)

nµ∂µ =
1
2

√
g
f

∂t −
g
2

∂r
|r|→∞−→ ∂t − ∂r

2
, (8)
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so lµ is outgoing and nµ ingoing. These vectors are geodetic, although
in general they are not affinely parametrised,1 and parallely transpor-
ted one along the other up to the non-affine parametrisation, i. e.

lν∇νnµ ∝ nµ and nν∇νlµ ∝ lµ . (9)

Their expansions are defined as

θ(X) = pµν∇µXν with X ∈ {l, n} , (10)

where

pµν = gµν + lµnν + lνnµ (11)

is the projector onto the two-dimensional surfaces orthogonal to both
lµ and nµ.2 These surfaces are spacelike and closed; they are nothing
but the constant-t and -r spheres.

When the expansion of a given congruence is positive, the area of
such spheres increases as one moves along the congruence; we say
that the congruence is diverging or expanding. If instead the expan-
sion is negative, the spheres shrink along the congruence, which is
then said to be converging or focusing.

A quick computation gives

θ(l) =
h′(r)

h
and θ(n) = − g(r)h′(r)

h(r)
(12)

(the prime stands for a derivative with respect to r, here and through-
out this chapter). Two other interesting quantities are the Lie derivat-
ives

L nµ

[
θ(l)
]
= − g

2

(
h′(r)
h(r)

)′
, (13)

L lµ

[
θ(n)

]
= −

(
g(r)h′(r)

h(r)

)′
. (14)

Let us first consider the case in which h(r) is a monotonic function
of the radius, so that h′/h > 0. The outgoing congruence is always ex-
panding; the ingoing congruence, instead, is converging when g > 0
but becomes diverging if g < 0. Hence, all the two-spheres with radii
such that g < 0 are past trapped surfaces [185]. The spheres corres-
ponding to g(r) = 0, in particular, are marginally trapped surfaces;
there, we have

L lµ

[
θ(n)

] ∣∣∣∣
MTS

= −g′
h′

h
, (15)

1 lµ is affinely parametrised if f (r) = g(r) [199].
2 Note that if lµ and nν were affinely parametrised, it would be θ(X) = ∇µXµ.
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so the marginally trapped surface is outer or inner if g′ evaluated
at the surface is positive or negative, respectively. The three dimen-
sional hypersurfaces foliated by marginally trapped surfaces are then
trapping horizons.

Our choice of null vector (eq. (7)) allowed us to identify past trap-
ping horizons, i. e. white-hole horizons. However, since the spacetime
is static, it is symmetric under time inversion, and the past trapping
horizons have a future counterpart as well — i. e. BH horizons. We
could have avoided this slight complication by choosing different null
vectors.

If h(r) is not monotonic, the expansions have additional zeroes at
its local extrema. In general, both congruences change sign at points in
which h′ = 0: this is a local characterisation of a wormhole throat [186,
342]. Further details on wormhole geometries can be found e. g. in [27,
33, 85, 133, 134, 193, 257, 276, 277, 327].

Note that the condition f (r) < 0 only determines an ergoregion,
i. e. a region in which the Killing vector χµ becomes spacelike. In
principle, this notion is unrelated to the trapping of light rays; how-
ever, in spherical symmetry we can always pick a gauge such that
f = g, in which the ergoregion and the trapped region trivially coin-
cide. By doing so, however, the interpretation of the radial coordinate
might change. This proves, incidentally, that under the assumption
of staticity and spherical symmetry the trapping horizons are KHs

— a conclusion that holds true also under the weaker assumption of
stationarity, as per Hawking’s rigidity theorem [117].

3.1.2 Effective matter content

According to the assumptions of section 2.2, the effective models we
aim at constructing need not be solutions of GR. However, Einstein’s
equations can still be used to characterise the geometries and, in par-
ticular, to quantify the deviations from vacuum GR. Indeed, our mod-
els are supposed to describe, to a first degree of approximation, isol-
ated astrophysical objects and any deviation from vacuum GR should
be attributed to the putative new physics that is assumed to prevent
the formation of the singularity — not, for instance, to the presence
of ordinary matter.

Hence, in the following we will often compute the Einstein’s tensor
and equate it to the stress-energy tensor of what we will call effective
sources. This terminology is chosen because it is handy and intuitive,
but it should be clear that we never assume the existence of any ac-
tual matter source. So, in particular, one should not be alarmed if the
effective sources were found to be “exotic”, for instance because some
energy conditions were violated. Indeed, from our point of view, the
violation of the energy conditions is not a drawback but rather a ne-
cessary feature of singularity regularisation.
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When the metric is that of eq. (4), the Einstein’s tensor is diagonal.
Its components can therefore be interpreted as the energy density ε

and the pressures p∥ and p⊥ of an anisotropic fluid, as measured in a
frame associated to the coordinates one is using. Specifically, we have

p⊥ = Gθ
θ = Gϕ

ϕ , (16)

while

−ε =

Gt
t in untrapped regions

Gr
r in trapped regions

(17a)

and

p∥ =

Gr
r in untrapped regions

Gt
t in trapped regions

; (17b)

the distinction between trapped and untrapped regions is necessary
because the energy density is typically associated to the timelike ei-
genvector of the stress-energy tensor: in an untrapped region, such
eigenvector is the one associated to the t-t eigenvalue, while in a
trapped region the eigenvector is the one associated to the r-r direc-
tion. (As mentioned, we will usually omit the conventional 8π factor
in the Einstein’s equations, i. e. we will write

Gµν = Teff
µν ; (18)

however, we will not be entirely consistent with this choice, since the
8π’s will appear explicitly in chapter 6.)

Note that, in the absence of spherical symmetry, the simple inter-
pretation in terms of energy density and pressures is not always
possible. Indeed, in rotating spacetimes Gµν will typically be non-
diagonal, at least in the coordinates that are most often used. As a
matrix, Gµν is real and symmetric in its indeces, so one might be temp-
ted to diagonalise it and interpret the eigenvalues as energy density
and pressures. However, the eigenvactors one would find in this way
are not covariant vectors and the eigenvalues are not generally cov-
ariant scalars. Such characterisation is therefore highly reliant on the
coordinates chosen.

To write a generally covariant eigenvector equation, one needs to
rise an index:

Gµ
ν vν = λvµ , (19)

but now Gµ
ν, when seen as a matrix, needs not be symmetric, hence

its eigenvalues might be complex. Usually, the eigenvectors are nor-
malised so as to form an orthonormal tetrad.

For this reason, Hawking and Ellis have introduced a classification
of stress-energy tensors based on the character of their eigenvalues
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[184, ch. 4] (see also [262]). The classification results in four different
types: type-I stress-energy tensors, in particular, have four real eigen-
vectors — this is the familiar case that admits a fluid interpretation,
to which most “reasonable” matter fields belong.

In this thesis, we will therefore often refer to the “Hawking–Ellis
type” when analysing a given spacetime. However, we will also in-
vestigate alternative ways of characterising the effective matter con-
tent, for instance by focusing on specific observers and computing
the energy density as measured by them.

As mentioned already, in the models considered in this thesis the
effective sources will always violate at least some of the (classical)
energy conditions. The terminology we will follow is standard [184,
353]. Specifically, the null energy condition is the requirement that

Tµνkµkν ≥ 0 (20)

for all null vectors kµ; i. e. ε + pi ≥ 0 for all energy densities and
principal pressures. The weak energy condition is the same as eq. (20)
with kµ a timelike vector; i. e. ε + pi ≥ 0 and ε ≥ 0. The strong energy
condition requires(

Tµν −
1
2

Tgµν

)
kµkν ≥ 0 , (21)

with T being the trace of Tµν, for all timelike kµ; i. e. ε + pi ≥ 0 and ε +

∑ pi ≥ 0. Finally, the dominant energy condition is the weak energy
condition plus the requirement that

Tµνkµ ≥ 0 (22)

for all timelike kµ; i. e. ε ≥ 0 and |pi| ≤ ε for all principal pressures.
Note that if the null energy condition is violated, all pointwise en-
ergy conditions are violated too. These pointwise definitions can be
integrated to yield averaged energy conditions [353].

In closing this discussion on effective sources, we point out that
it is often possible to find classical theories that have these effective
models as solutions. Typically, these theories are GR supplemented
with some version of non-linear electrodynamics, i. e. one whose Lag-
rangian is a non-linear function of the Maxwell’s scalar FµνFµν; and
possibly a phantom scalar field, i. e. one whose kinetic terms has the
opposite sign with respect to the usual scalar fields [19, 20, 25, 68, 69,
79, 80, 83, 86, 89, 135, 244, 306]. Moreover, solutions as these have been
obtained in some explicit alternative theories of gravity [154, 214, 215,
280, 288]. This is an interesting line of research which however we
will not pursue here.

3.1.3 Assessing regularity

In static and spherically symmetric spacetimes, the Kretschmann scalar
is a sum of squares and is therefore non-negative definite. In can be
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shown that this entails the following: in a static and spherically sym-
metric spacetime, the Kretschmann scalar is bounded if and only if
all the components of the Riemann tensor in an orthonormal frame
are bounded [245, 320].

Therefore, in a spacetime described by eq. (4), the boundedness of
the Kretschmann scalar is enough to ensure that all the scalar poly-
nomials built out of the Riemann tensor (plus the metric and the
Levi-Civita completely antisymmetric tensor) are bounded too.

As soon as the stationarity and axisymmetry assumptions are lifted,
things become decisively more complicated. In a generic spacetime,
there exist seventeen (or sixteen, depending on how they are counted)
algebraically independent curvature invariants [325, sec 9.1]. A com-
plete set was given by Zakhary and McIntosh [370]. (See also [147,
app. A.1] and references therein, as well as [318].) In principle, the
boundedness of all of them should be checked before claiming that
the spacetime is free of scalar polynomial curvature singularities.

Luckily, the effective models considered in this thesis are highly
symmetric and this tedious exercise will usually not be necessary. For
example, the most common simply connected rotating RBHs are of
Petrov type D and Segre type [(1, 1), (1 1)]: for these spacetimes, the
number of independent invariants is reduced to four — see section 4.3
and [343]. Similarly, in multiply connected models the regularisation
is typically performed in such a way that boundedness is immediate:
usually (e. g. in part ii), some curvature invariants are reported for
completeness but the result extends trivially to all of them.

Note, however, that if one resolves to extend GR in a way that en-
tails higher derivatives, one might have to check that invariants built
out of derivatives of the Riemann tensor are bounded too. Not surpris-
ingly, the number of these “higher-order” (i. e. higher than second-
order) invariants grows with the number of derivatives. This is there-
fore a stronger version of regularity, which will translate into more
restrictive regularity conditions than those we will consider in the
following.

3.2 simply connected regularisation

Having set the stage with the previous section, we can now move on
to discuss the first class of non-singular models: simply connected
geometries.

Without loss of generality, we choose coordinates so that g(r) =

f (r). For convenience and in analogy with the Schwarzschild metric,
we will write

f (r) = 1− 2m(r)
r

. (23)
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The function m(r) is usually called Misner–Sharp mass function, since
it measures the amount of “mass” within a sphere of radius r. By
asymptotic flatness, we require that

lim
r→∞

m(r) = M . (24)

The defining characteristic of a simply connected spacetime is that
any closed path can be contracted to a point; therefore, the spheres
centred at the origin will also be contractible to a point, which cannot
be anything but the origin r = 0. Hence, it must be h(0) = 0.

Consistently with this remark, and in the spirit of simplicity, we
further set h(r) = r2. This is however not a gauge choice and it entails
a loss of generality. The examples of simply connected regular geo-
metries that we present herein, therefore, are “minimal”, in the sense
that they most resemble the Schwarzschild metric; by making differ-
ent choices on the function h(r) one can build non-minimal models.

An explicit computation yields Gt
t = Gr

r. In the anisotropic fluid
interpretation, we thus have

−ε = p∥ = −
2m′(r)

r2 , (25a)

p⊥ = −m′′(r)
r

. (25b)

An equation of state of this kind can be mimicked by a non-linear
version of Maxwell’s electrodynamics [19, 20, 25, 69, 79, 83, 161, 306].

The Kretschmann scalar evaluates to

RµνρσRµνρσ =
[

f ′′(r)
]2

+ 4
[ f ′(r)]2

r2 + 4
[1− f (r)]2

r4 . (26)

As argued in subsection 3.1.3, in spherical symmetry the bounded-
ness of the Kretschmann scalar is all that is needed to ensure the
absence of curvature singularities. Hence, the demand of regularity
translates on a condition on the behaviour of the Misner–Sharp mass
close to r = 0. Specifically, one needs

m(r) = cℓ−2r3 +O
(

r4
)

; (27)

here c is a dimensionless number of order one and ℓ is a (non-negative)
length scale. Deep in the core, i. e. at small r, the metric reads

ds2 =−
[
1− 2cℓ−2r2 +O

(
r3)]dt2

+
[
1 + 2cℓ−2r2 +O

(
r3)]dr2 + r2 dΩ2 , (28)

which is the metric of a de Sitter (dS), if c > 0, or an anti de Sit-
ter (AdS) universe, if c < 0, expressed in the static patch. Indeed, the
Einstein’s tensor becomes that corresponding to a (effective) cosmolo-
gical constant3

Λeff =
6c
ℓ2 . (29)

3 We use again the convention Gµν = Teff
µν and Teff

µν = Λgµν.
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Model m(r)

Bardeen [43] M r3

(r2+ℓ2)3/2

Hayward [187] M r3

r3+2Mℓ2

Dymnikova [144] M
[
1− exp

(
− r3

ℓ3

)]
Fan–Wang [161] M r3

(r+ℓ)3

Asymptotically Minkowski [323] Me−ℓ/r

Table 2: Some of the most popular RBH models. .

When instead c = 0, the curvatures vanish and the core geometry is
asymptotically Minkowski.

Note, incidentally, that these geometries are certainly non-singular,
in general, only for r ≥ 0. If one allows the coordinate r to become
negative, one might still encounter spacetime singularities [231, 373]
— in the form of divergences in the curvatures or in the sense of
geodesic incompleteness. In order to interpret these metrics as RBHs,
therefore, one must limit the domain of r to [0,+∞). Clearly, this is
coherent with the interpretation of r as a radius, and with the fact
that r = 0 is, at any given v, a point (i. e. a degenerate, zero-radius
sphere).

Some popular choices for m(r) are summarised in table 2. More
examples can be found e. g. in [173, 229, 230, 347]. All these models
depend continuously on two parameters: M, the ADM mass, and ℓ, a
regularisation parameter. The Schwarzschild metric is recovered for
ℓ → 0, in which limit the regularisation is undone. For this reason,
these models are said to be “regularisations” of the Schwarzschild
spacetime.

Horizons are determined by the roots of f (r) = 0. Since f (r) → 1
both at infinity and at the centre, the continuity of f (r) implies that
horizons generically come in pairs: any time an (outer) KH is present,
an inner KH must exist too. The outer horizon is the event horizon,
while the inner horizon is a Cauchy horizon. The only exception is
the particular case in which the two horizons coincide. Note that this
property is generic to all simply connected RBHs and does not de-
pend on the specific choice of the model — consistently with the
discussion in subsection 2.2.1.

In the models of table 2, whether f (r) = 0 has solutions or not de-
pends on the value of ℓ: the metric describes a BH only if ℓ ∈ [0, ℓ∗] for
some model-dependent threshold ℓ∗. This means, incidentally, that
these RBHs cannot have an arbitrarily small mass, since for any fixed
ℓ they satisfy

M ≥ ℓ/ℓ∗ ; (30)
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in other words, there is a mass gap.
For ℓ = ℓ∗ the two horizons degenerate into a single horizon, which

is extremal in the sense that its surface gravity vanishes.
For ℓ > ℓ∗ there are no horizons, but the metric remains perfectly

viable: it represents a spacetime containing a non-singular horizon-
less exotic compact object, supported by matter whose equation of
state tends to that of a cosmological constant deep in the core [99].
When the core is dS, in particular, these objects closely resemble
gravastars [268, 278, 279].

For the Hayward model [187]

m(r) = M
r3

r3 + 2Mℓ2 , (31)

for instance, f (r) = 0 reduces to

r3 − 2M(r2 − ℓ2) = 0 . (32)

The cubic equation has real non-negative solutions for 0 ≤ ℓ ≤ ℓ∗
with

ℓ∗ =
4M√

27
. (33)

(The cubic polynomial always has at least one real root, which in this
case is negative and for this reason we discard it; in this range of ℓ
the other two roots are real and positive.)

Since, for small r,

m(r) =
r3

2ℓ2 +O
(
r3) , (34)

the core geometry is asymptotically dS. The Penrose diagram relative
to this geometry can be found in the original publication [187]: it is
analogous to that of the Reissner–Nordström spacetime, except for
the fact that the line corresponding to r = 0 is not a singularity.

3.3 multiply connected regularisation

As before, we work in the gauge g(r) = f (r). Contrary to the previ-
ous case, however, in a multiply connected spacetime the aerial radius√

h can never be zero. We will assume that it connects two asymptot-
ically flat regions through one global minimum, which without loss
of generality we locate at r = 0; we thus allow r to take positive
as well as negative values, i. e. r ∈ (−∞,+∞), and identify the two
asymptotically flat ends with r → ±∞. Then

h′(0) = 0 and h′′(0) ≥ 0

but h(0) = ℓ2 , (35)
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with ℓ some length scale.
For simplicity, we further assume that

f (r) = 1− 2M√
h

. (36)

As in the previous case, this choice represents a loss of generality
yielding a model that is “minimal”.

The Einstein’s tensor appears more messy than in the simply con-
nected case. It evaluates to

Gr
r =

(h′)2 − 4h
4h2 , (37a)

Gθ
θ = Gϕ

ϕ = −
(

1− M√
h

)
(h′)2 − 2hh′′

4h2 , (37b)

Gt
t = Gr

r −
(

1− 2M√
h

)
(h′)2 − 2hh′′

2h2 . (37c)

Such Einstein’s tensor arises in GR in the presence of both non-linear
electrodynamics and a phantom scalar field [80].

The Kretschmann scalar is

RµνρσRµνρσ =
3 f 2 (h′)4

4h4 +
[

f ′′
]2 − f (h′)2 2 + f ′h′ + 2 f h′′

h3

+
4 + ( f ′)2 (h′)2 + 2 f f ′h′h′′ + 2 f 2 (h′′)2

h2 . (38)

The expressions above are not particularly transparent, yet it should
be clear (and fairly intuitive) that no singularity appears as long as
h(r) ̸= 0. In this case, the core geometry depends on the choice of
h(r) but is in general not that of a maximally symmetric space.

As in the simply connected case, horizons are determined by the
zeroes of f (r), i. e. by the solutions of the equation√

h(r) = 2M . (39)

The present case, however, displays additional features since, accord-
ing to the discussion in subsection 3.1.1 and to eq. (35), the hypersur-
face r = 0 is the throat of a wormhole.

Such throat may be located outside or inside of a trapped region,
depending on the sign of f (0). If the throat lies in an untrapped re-
gion, it is a timelike hypersurface which can therefore be crossed in
both ways by causal curves: we thus call it a traversable throat. If, on
the other hand, the throat lies in a trapped region, it is a spacelike hy-
persurface and can therefore be traversed in one way only by causal
curves. This case is thus better described as a (cosmological) bounce
[255]; however, in order to avoid an excessive proliferation of terms,
we will speak of wormhole in this case too.

In the particular case in which the throat coincides with the locus
of point at which f (r) = 0, such hypersurface is null and therefore
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traversable in only one direction. As before, with a slight abuse of
terminology we will speak of a wormhole with a null throat, or null
wormhole for short.

Note that one could have a timelike throat which happens to be
shielded by an even number of horizons. Such throat would be sim-
ilar to the singularity of the Reissner–Nordström (or Kerr) spacetime,
which is timelike because it lies inside of the inner horizon — hence
in an untrapped region. Although in this case the throat is technic-
ally traversable, an observer that crosses it in one direction and then
crosses it again in the opposite direction would still never be able to
reach asymptotic infinity.4 So, for all practical purposes, this space-
time contains a BH.

We will therefore distinguish the two cases: when the throat is
cloaked by horizons we will speak of a hidden wormhole and specify
whether the throat is timelike or spacelike; when instead the (time-
like) throat is “naked”, we will speak of a traversable or naked worm-
hole. Only this last definition corresponds to the most proper notion
of wormhole, the one familiar from science fiction.

A particular example of this kind of regularisation was proposed
by Alex Simpson and Matt Visser in [322]. (Similar ideas appeared in
[69, 81, 82].) Their choice consists in a very simple “trick”: whenever a
component of a singular metric has an explicit r dependence, replace
that r with

√
r2 + ℓ2. They first applied this trick to the Schwarzschild

metric, thus introducing what has become known as the SV metric:

ds2 = −
(

1− 2M√
r2 + ℓ2

)
dt2 +

dr2

1− 2M√
r2+ℓ2

+
(
r2 + ℓ2)dΩ2 . (40)

Clearly, this metric is the particular case of the general form con-
sidered so far with h(r) = r2 + ℓ2.

Similarly to the examples of the simply connected case, the metric
depends on two real parameters: the ADM mass M, and a regularisa-
tion parameter ℓ. The Schwarzschild metric is recovered in the limit
ℓ → 0, in which the regularisation is undone. The limit M → 0 cor-
responds to the metric of the Ellis wormhole [152].

Eq. (40) is symmetric under the inversion r 7→ −r and therefore
describes two identical “universes”, corresponding to positive and
negative r respectively, connected by a throat whose spherical cross
sections have area 4πℓ2. We will often refer to the positive-r region as
our universe and to the negative-r region as the other universe.

4 More precisely, the observer might still be able to reach some asymptotic infinity,
but such infinity would not be the same as the one reached by observers that never
crossed the outer horizon.
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Horizons may exist or not, depending on the value of ℓ. Their loca-
tion is determined by√

r2 + ℓ2 = 2M . (41)

When ℓ > 2M this equation has no real root and the spacetime thus
contains a traversable wormhole; when instead ℓ < 2M the equation
has two solutions located at

r = ±rH , with rH =
√

4M2 − ℓ2 ; (42)

they correspond to two horizons, one located in our universe and one
in the other universe; the spacetime thus contains a (regular) BH and
a hidden wormhole, called a black bounce5 in the original paper [322].
In the degenerate case ℓ = 2M the two solutions coincide and the res-
ulting single horizon is extremal (in the sense that it has zero surface
gravity); such horizon coincides with the throat, which is therefore
null.

The original paper [322] presents Penrose diagrams for each case.
Roughly speaking: that of the naked wormhole is identical to the
diagram of Minkowski spacetime, except that the right and left halves
of the diamond correspond to different universes; that of the black
bounce, in contrast, is an infinite tower of Schwarzschild-like blocks
stacked one on top of the other an glued where the singularity would
be.

The SV metric eq. (40) is very simple and yet surprisingly rich. For
this reason, it gained a rather substantial popularity and many other
applications of the “SV trick” have been investigated by numerous re-
searchers, including the present author. Examples can be found in [86,
237, 238, 245, 246, 307, 319, 321]. For further details, Alex Simpson’s
PhD thesis offers an excellent overview [320].

3.4 on the meaning of ℓ

We have seen that the regularisation of the singularity typically brings
about a new length scale ℓ which controls the curvature of the region
close to the would-be singularity: in the simply connected case, ℓ2

is proportional to the inverse of the effective cosmological constant
that corresponds to the dS or AdS core geometry; in the multiply
connected case, instead, ℓ2 is the area of the (cross sections of the)
throat that replaces the singularity.

To better understand the meaning of this regularisation scale, we
can consider the gravitational collapse of some energy density and

5 In the following, we will use the term black bounce to refer to the family of spacetimes
obtained by generalising the SV metric, regardless of whether the throat is spacelike
or not.
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assume, somewhat simplistically, that the collapse proceeds as pre-
dicted by GR until a certain threshold is met, after which new-physics
effects become dominant.

If this new physics is related to quantum gravity, one might be
tempted to identify ℓ with a quantity related to the Planck scale —
which, according to common lore, is the scale of quantum gravity.
Deciding which Planck-scale quantity to choose, however, requires
making specific assumptions on the behaviour of quantum gravity.

A very natural option seems to be ℓ ∼ ℓP, which corresponds to a
scenario whereby quantum effects become dominant when the radius
of the collapsing object is of order of the Planck length. This choice is
in agreement with a standard result in perturbative quantum gravity
asserting that the quantum fluctuations of the metric become O(1)
at length smaller than the Planck length — more technically, the the-
ory becomes strongly coupled at an energy scale given by the Planck
mass.

An interesting alternative, suggested by results in loop quantum
cosmology, consists in identifying the threshold with the attainment
of Planckian density [182, 308]. In this scenario ℓ ∼ ℓP (M/mP)

1/3,
where M is the mass of the collapsing matter. This choice would thus
entail a substantially larger value of tℓ, compared to the previous one.

In either scenario, however, for astrophysically relevant masses, one
would expect ℓ ≪ M. Indeed, using mP ≃ 2.18× 10−8 kg and M⊙ ≃
1.99× 1030 kg, we find

ℓ ∼ 1.10× 10−38M⊙ in the first case, and (43)

ℓ ∼ 4.93× 10−26M⊙ (M/M⊙)
1/3 in the second. (44)

These should be compared with the typical masses of astrophysical
BHs: between approximately 3M⊙ and O

(
102M⊙

)
for stellar BHs vis-

ible by LIGO-Virgo-Kagra, and up to 1010M⊙ for supermassive BHs.
In scenarios of this kind, therefore, gravitational collapse will al-

ways lead to the formation of a BH whenever GR predicts it does.
More precisely, some initial conditions will lead to the formation of
an horizon while others will result in the dispersion of the infalling
matter: the two sets of initial data coincide with the corresponding
sets in GR.6 Moreover, the geometry of the BHs is probably going to
be very similar to that of the corresponding GR solutions, and devi-
ations from GR are likely to be too small to ever be observable.

The assumptions behind these scenarios, however, might be too
simplistic. For instance, a regularisation at the Planck scale might
be followed by a dynamical process, after which the structure settles
down to one of the configurations that we are considering [255]. If this
is the case, there is no reason for ℓ to be linked to the scale of quantum

6 Note: solutions near the threshold that separates the two sets often display critical be-
haviour [179]. Understanding the faith of such critical behaviour in theories beyond
GR would be extremely interesting.
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gravity. Such process might preserve or destroy the horizon, so that
the remnant object might correspondingly consist of a (regular) BH
or an horizonless configuration.

Yet another possibility is that new physics, unrelated to quantum
gravity, appears way before the collapse reaches a Planckian regime.
If this is the case, the formation of the horizon might be prevented
altogether [15–17, 55, 92, 297].

Therefore, since the goal of these regularised models is that of
providing a reasonable phenomenological description of astrophys-
ical BHs, one can (and probably should) be agnostic on the scale of
new physics. In particular one can (and should) consider values of ℓ
that can be large, i. e. comparable with or larger than the mass of the
object.

We close this section with a side remark. The decision to consider a
scale with dimensions of length is somewhat arbitrary. It is motivated
by the fact that, in units c = G = 1, length and mass/energy have the
same dimensions and it is natural to associate the new physics re-
sponsible for the regularisation with some ultraviolet — high-energy
and/or small-distance — extension of GR; moreover, length is often
regarded as a rather fundamental concept compared to e. g. areas or
volumes. However, what the regularisation seems to require is in fact
an area scale, ℓ2 rather than ℓ, corresponding roughly speaking to the
upper bound of the curvature.

Incidentally, this resonates with similar remarks made by Hal Hag-
gard in his introductory lectures to loop quantum gravity, as part of
the “Basics of Quantum Gravity” series by the International Society
for Quantum Gravity: in his view, the natural scale of quantum grav-
ity has dimensions of area rather than length. This and all lectures in
the series are available online.

https://www.youtube.com/watch?v=HJozaKfzNDY&t=6765s




4
A D D I N G R O TAT I O N : T H E N E W M A N – J A N I S
P R O C E D U R E

Astrophysical BHs rotate. Though accurately measuring their spin
can be tricky [303], the fact that their angular momentum is generic-
ally non-zero is now well established. Hence, any model of compact
objects that aims to be phenomenologically relevant ought to include
rotation [256].

Dealing with rotation, however, brings about considerable hurdles
already in GR. As an example, think of the problem of finding the
metric describing a star: in spherical symmetry, Birkhoff’s theorem
ensures that in vacuum — i. e. outside of the star — the metric is
that of Schwarzschild, so one really has to solve Einstein’s equations
only for the interior. When the symmetry is merely axial, in contrast,
one has no guarantee that the exterior metric is that of Kerr, since
no equivalent of Birkhoff’s theorem exists in this case. Moving away
from GR, the extent of the complications can only increase, and build-
ing rotating models from scratch is indeed difficult.

Since working in spherical symmetry is comparatively simpler, it
would be very appealing to find some kind of procedure whereby a
given non-rotating metric can be “spun up”. In this way, one could
carry out the model-building in spherical symmetry, for instance by
regularising a known GR solution as in chapter 3; then add rotation
and study the ensuing phenomenology. Luckily, though with many
caveats, one such procedure exists: it is the Newman–Janis procedure
(NJP).

The NJP [286] is a five-step method for constructing stationary and
axially symmetric spacetimes: given any static and spherically sym-
metric “seed” metric, the method provides its rotating counterpart.
Such counterpart depends continuously on a real parameter a, which
can be interpreted a posteriori with the spin, and reduces to the seed
metric in the limit a→ 0.

The NJP was originally discovered in the 1960s as a way of relat-
ing the Schwarzschild solution with the Kerr one. Soon thereafter, it
was used to construct the Kerr–Newman metric, starting from the
Reissner–Nordström [285] one. In its original version, the procedure
says nothing about the electromagnetic field, which had to be solved
for using the electrovacuum Einstein–Maxwell’s equations. An inter-
esting historical account of the events is provided by Newman him-
self in the Scholarpedia article on the Kerr–Newman metric [287]; for
a somewhat different perspective, cf. Kerr’s version of the story [220].

35
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Since then, several extensions have been proposed to treat gauge
fields or other charges, see [153] for a summary. Notably, it has been
used quite extensively to generate rotating solutions in alternative the-
ories of gravity [90] (although see [183]) and rotating RBHs, starting
with [31].

Despite its successes, the method encodes some puzzling arbitrari-
ness — on which we will elaborate further below — and a true under-
standing of its working is still lacking. Some solid ground has been
established in [326] and further understanding came with [51, 52, 162,
300, 301]; recently, some new insight has come from the study of scat-
tering amplitudes [13, 178]. This notwithstanding, the status of the
NJP is highly disputed to this day: while some authors consider it
little more than a trick, or perhaps an Ansatz, others are ready to
grant it the name of algorithm and employ it as a genuine solution-
generating technique.

Our use of the term procedure is meant to signify that we take an
agnostic stance on the matter: in our view, the spacetimes constructed
by means of the NJP are well motivated, particularly if one reasons
in “effective” terms and is mostly interested in phenomenological
applications; still, the limitations inherent in the method are real and
cannot be disregarded.

In the following, we will first present the “traditional” version of
the NJP (section 4.1), then move on to a modern variant (section 4.2).
Finally, we will briefly discuss some early day applications to RBHs

(section 4.3).

4.1 traditional njp

The starting point of the NJP is a “seed” metric that is supposed to
be static and spherically symmetric. As mentioned in chapter 3, such
a metric can always be cast in the form

ds2 = − f (r)dt2 +
dr2

g(r)
+ h(r)dΩ2 , (45)

which is however quite redundant, since one between g and h can be
reabsorbed by redefining r.

We will present the application of the NJP to the general form
eq. (45), since this will lead to an equally general stationary and axi-
ally symmetric metric that can be easily specified to any particular
case. The procedure goes as follows.

As a step I, write the metric in outgoing (or, equivalently, ingoing)
Eddington–Finkelstein coordinates (u, r, θ, ϕ). The retarded time u is
defined in terms of the tortoise coordinate r∗, as usual, by

du = dt− dr∗ = dt− dr√
f (r)g(r)

, (46)
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so

ds2 = − f du2 − 2

√
f
g

du dr + h dΩ2 . (47)

Then (step II) introduce a null tetrad {lµ, nµ, mµ, mµ} (the overline
marks complex conjugation) satisfying

lµnµ = −mµmµ = −1 and (48a)

lµmµ = nµmµ = 0 , (48b)

in terms of which the inverse metric can be written as

gµν = −lµnν − lνnµ + mµmν + mνmµ . (49)

These conditions do not determine the tetrad uniquely. For instance,
one could rescale

lµ 7→ αlµ provided nµ 7→ nµ

α
; (50)

and similarly one could multiply mµ by a complex phase, provided
one multiplies mµ by the complex conjugate of the same phase. How-
ever, this ambiguity is inconsequential for what follows. Typically,
one uses

lµ = δ
µ
r , nµ =

√
g(r)
f (r)

δ
µ
u −

g(r)
2

δ
µ
r ,

mµ =
1√

2h(r)

(
δ

µ
θ +

i
sin θ

δ
µ
ϕ

)
. (51)

As a step III, define

r̃ = r + ia cos θ, ũ = u− ia cos θ, θ̃ = θ, ϕ̃ = ϕ , (52)

where a is a real parameter to be identified, a posteriori, with the
spin; even though r̃ and ũ are complex, these relations define a vi-
able change of coordinates. The usual vector transformation law thus
yields a transformed tetrad:

l̃µ = δ
µ
r̃ , ñµ =

√
g(r)
f (r)

δ
µ
ũ −

g(r)
2

δ
µ
r̃ ,

m̃µ =
1√

2h(r)

[
δ

µ

θ̃
− ia sin θ̃

(
δ

µ
r̃ − δ

µ
ũ
)
+

i
sin θ̃

δ
µ

ϕ̃

]
, (53)

where r is now meant as a scalar function of r̃ and θ̃ (not a coordinate).
Correspondingly, one also gets a transformed metric:

ds2 = − f dũ2 − 2

√
f
g

dũ dr̃ + h dθ̃2 + 2a sin2 θ̃

√
f
g

dr̃ dϕ̃

+ 2a sin2 θ̃

[
f −

√
f
g

]
dũ dϕ̃

+ sin2 θ̃

[
h + a2 sin2 θ̃

(
− f + 2

√
f
g

)]
dϕ̃2 . (54)
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To obtain a new, axially symmetric metric, one needs (step IV) to
replace the old functions f , g and h with new f̃ , g̃ and h̃; the latter
are required to be real-valued, though of complex variable, and to
coincide with the former when evaluated on the real axis.

This replacement, in the standard NJP, is performed in a rather par-
ticular way but is, nonetheless, arbitrary. For example, in the Schwar-
zschild geometry one has

f (r) = g(r) = 1− 2M
r

, h(r) = r2 ; (55)

to derive the Kerr solution, f̃ , g̃ and h̃ are given by replacing (“com-
plexifing”)

1
r
7→ 1

2

(
1
r
+

1
r

)
=

1
2

r + r
r r

and r2 7→ r r (56)

in f and h, i. e.

f (r) 7→ f̃
(
r̃, θ̃
)
= 1− 2Mr̃

r̃2 + a2 cos2 θ̃
,

g(r) 7→ g̃
(
r̃, θ̃
)
= f̃

(
r̃, θ̃
)

,

h(r) 7→ h̃
(
r̃, θ̃
)
= r̃2 + a2 cos2 θ̃ (57a)

— all other prescriptions fail. These replacements have no real jus-
tification, except that, in GR, they map vacuum and electrovacuum
solutions onto vacuum and electrovacuum solutions.

To improve the flow of the exposition, we presented steps III and
IV as separate. In principle, however, they should be carried out at
the same time, as described in [326], because the complex coordinate
change of step III is, in fact, as arbitrary as the complexification of step
IV. Indeed, the particular form of eq. (52) is not particularly motivated
and a priori nothing forbids to choose a different one.

In any case, our choice is coherent with what seems to be the com-
mon practice. In fact, in most applications step III is carried out as in
eq. (52), and the true ambiguity lies in the choice of f̃ , g̃ and h̃.

The complexification produces a metric with several off-diagonal
components. To eliminate all of them except one, one needs to per-
form an additional transformation to Boyer–Lindquist-like coordin-
ates (step V). The desired change is of the form

dt̃ = dũ + F
(
r̃, θ̃
)

dr̃ , dϕ′ = dϕ̃ + G
(
r̃, θ̃
)

dr̃ , (58)

with

F =

√
g̃
f̃
h̃
(
r̃, θ̃
)
+ a2 sin2 θ̃

g̃
(
r̃, θ̃
)

h̃
(
r̃, θ̃
)
+ a2 sin2 θ̃

, (59a)

G =
a

g̃
(
r̃, θ̃
)

h̃
(
r̃, θ̃
)
+ a2 sin2 θ̃

. (59b)
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However, this transformation is not always possible. Indeed, to in-
tegrate the above relations one needs F and G to be independent
from θ̃: this is the case, for instance, in Schwarzschild and Reissner–
Nordström, but examples of the contrary exist.

When a Boyer–Lindquist form exists, the resulting metric takes the
form

ds2 = − f̃ dt̃2 +
h̃

g̃h̃ + a2 sin2 θ̃
dr̃2 + h̃ dθ̃2

− 2a sin2 θ̃

− f̃ +

√
f̃
g̃

dt̃ dϕ′

+ sin2 θ̃

h̃ + a2 sin2 θ̃

− f + 2

√
f̃
g̃

dϕ′2 . (60)

Note that the tildes and primes have been kept throughout the
exposition in order to avoid confusions. However, in practical applic-
ations it is customary to change names to the coordinates, dropping
all decorations already in intermediate steps.

If the spherically symmetric seed is asymptotically flat, one may
want to choose a complexification that does not spoil this property.
That is, the new f̃ , g̃ and h̃ should behave, at large |r̃|, as the old f , g
and h do for large |r| — cf. eq. (6). In particular, if at large |r̃|

f̃ = 1− 2M
|r̃| +O

(
|r̃|−2

)
and h̃ = |r̃|2

[
1 +O

(
|r̃|−3

)]
, (61)

then eq. (60) becomes

ds2 = −
(

1− 2M
|r̃|

)
dt̃2 +

dr̃2

1− 2M
|r̃|

+ |r̃|2
[
dθ̃2 + sin2 θ̃ dϕ′

2
]

− 4aM sin2 θ̃

|r̃| dt̃ dϕ′ , (62)

and we understand that aM plays the role of the spacetime’s ADM
angular momentum.

We will use this traditional form of the NJP to construct the rotating
generalisation of the SV metric, which we will call the black-bounce–
Kerr spacetime, in chapter 5.

4.2 modified njp

Many tweaks to the original NJP have been proposed over the years,
improving on some technical aspects but without affecting the overall
spirit of the procedure.

One more radical modification is due to Azreg-Aïnou [21, 22] (see
also [23]). His version of the procedure, which we will call modified
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Newman–Janis procedure (MNJP), is such that the final metric can al-
ways be cast into a Boyer–Lindquist form, by construction. Moreover,
this version does not rely on any complexification, neither of the
coordinates nor of the metric components. Rather, the arbitrariness
inherent in the traditional NJP is encoded in a single free function
Ψ(r, θ), which appears as a multiplicative factor in front of the line
element.

This free function can then be constrained invoking new phys-
ical arguments, for instance by postulating the existence of a matter
source with a physically reasonable stress-energy tensor. Note that,
since Ψ appears as a conformal factor, it has no effect on the motion
of light [241].

For the details, we refer the reader to the original papers [21, 22].
Here we only report the final form of the rotating metric, which reads

ds2 =
Ψ
Σ

[
−
(

1− 2H
Σ

)
dt2 +

Σ
∆

dr2 + Σ dθ2

+
A sin2 θ

Σ
dϕ2 − 4Ha sin2 θ

Σ
dt dϕ

]
, (63)

where

Σ = K + a2 cos2 θ , 2H(r) = K− g(r)h(r) ,

∆ = g(r)h(r) + a2 , A = (K + a2)2 − a2∆ sin2 θ ,

K(r) = h(r)

√
g(r)
f (r)

. (64)

(With respect to eq. (60), we have dropped tildes and primes.)
Clearly, a very natural choice seems to be Ψ = Σ, and indeed this is

what one has to impose to recover Kerr when starting from Schwar-
zschild. Moreover, if the seed metric can be interpreted as a solution
of some non-linear electrodynamics (like the simply connected RBHs

of section 3.2), the field equations imply Ψ = Σ.
More generally, one might want to impose that the original seed

metric is recovered in the limit of vanishing spin, which entails

lim
a→0

Ψ(r, θ) = r2 . (65)

However, this condition is very loosely restrictive and different choices
of Ψ are certainly allowed. Indeed, such freedom will be exploited in
chapter 9 to build a rotating model of simply connected RBH in which
the properties of the inner horizon are disentangled from those of the
region close to r = 0.

4.3 some early applications to rbhs

Both versions of the NJP can be applied to the spherically symmetric
RBHs of sections 3.2 and 3.3. The traditional form, in particular, has
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been used several times on simply connected RBHs — see [343] for a
recent review.

In this approach, the non-trivial step consists in finding a suitable
complexification. Since the simply connected RBHs typically have

f (r) = g(r) = 1− 2m(r)
r

and h(r) = r2 , (66)

the most obvious choice is to take

f̃ = g̃ = 1− 2m̃(r, θ)r
r2 + a2 cos2 θ

and h̃ = r2 + a2 cos2 θ , (67)

where m̃(r, θ) is an arbitrary function of r and θ. The corresponding
metric is therefore similar to Kerr, and can be obtained from it, form-
ally, by replacing the mass parameter M with m̃.

The simplest and most frequent choice is to drop the angular de-
pendence in m̃, and to maintain the same functional dependence on
the radius. That is, m̃(r, θ) is taken to be m(r) — though technically
the meaning of r changes in passing from the static to the stationary
metric. Note however that there might be good reasons to keep the
angular dependence [147–149].

The result is known as Gürses–Gürsey metric [181] and it reads

ds2 = −
(

1− 2m(r)r
Σ

)
dt2 +

Σ
∆

dr2 + Σ dθ2

− 4m(r)a sin2 θ

Σ
dt dϕ +

A sin2 θ

Σ
dϕ2 (68)

where

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2m(r)r

A = (r2 + a2)2 − ∆a2 sin2 θ . (69)

The first investigation of the rotating Hayward and Bardeen models
appeared in [31]; several other examples followed soon thereafter. [31,
218, 264, 345, 346] The general properties of RBHs based on eq. (68)
have been investigated in [146]. Few criteria for preferring some mod-
els over others have been discussed in [249].

All these models are reasonably simple and therefore particularly
amenable to phenomenological applications, e. g. the computation of
the electromagnetic shadow’s shape; some examples can be found
in [3, 34, 174, 230, 347, 360]. Notably, when the spherical seed can
be interpreted as a solution of some non-linear electrodynamics, the
Gürses–Gürsey counterpart can too [145, 346, 349].

Interested readers are encouraged to consult the cited literature for
further details; here, we limit ourselves to some general remark.

Spacetimes that, like eq. (68), are Petrov type D and not spherically
symmetric have four independent second-order curvature invariants.
So, checking that the Kretschmann scalar is bounded is not sufficient
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to assess regularity. Note that, since these spacetimes are regular-
isations of Kerr, dangerous behaviour might arise at r = 0 only for
θ = π/2; this “point” is in fact a ring lying on the equatorial plane,
as can be seen by changing to Kerr–Schild coordinates [362].

Remarkably, the conditions that guarantee regularity in the spher-
ical case ensure regularity in the rotating case as well. In particular,
one needs

m(0) = m′(0) = m′′(0) = 0 , (70)

i. e. m(r) = O
(
r3) close to r = 0.

However, if m(r) = cℓ−2r3 +O
(
r4) — as in the Bardeen and Hay-

ward case, for example —, the curvature invariants exhibit a rather
bizarre behaviour at the would-be singularity (i. e. on the ring). Spe-
cifically, the results one typically finds have the form

∝
r2

r2 + a2 cos2 θ
+ . . . , (71)

meaning that the limit r → 0, θ → π/2 formally does not exist.
Indeed, if one takes the limit r → 0 at any fixed θ ̸= π/2 one gets
zero; while if one takes θ → π/2 first and then r → 0 one gets a
finite non-zero results. In other words, the curvature invariants are
bounded but not continuous at the would-be singularity.

Moreover, since r = 0 is a ring that can be traversed for all θ ̸= π/2,
the maximal analytical extension of these spacetimes typically ex-
tends to the negative values of r — as it happens for the Kerr space-
time. In such region, the Killing vector associated to the rotational
isometry may become timelike: since its orbits are closed by defini-
tion, this entails that the spacetime can contain closed timelike curves.
Additionally, several commonly used choices of m(r) formally display
poles in the r < 0 region, which might correspond to (new) spacetime
singularities [231, 373].

The non-continuity of curvature scalars and the possible existence
of closed timelike curves are thus two unpleasant, yet fairly common
features of such rotating simply connected RBHs [344]. Though these
drawbacks might not be relevant for phenomenological applications,
they render these models less appealing from a theoretical point of
view and motivate us to seek alternatives.

The next chapters 5 to 8 — which together form part ii — are de-
voted to the investigation of one such alternative, belonging to the
multiply connected class: the black bounce family of spacetimes.
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5
T H E B L A C K - B O U N C E – K E R R S PA C E T I M E

We are now in the position to construct a rotating extension of the SV
metric eq. (40) — which we report here for the reader’s convenience:

ds2 = −
(

1− 2M√
r2 + ℓ2

)
dt2 +

dr2

1− 2M√
r2+ℓ2

+
(
r2 + ℓ2)dΩ2 . (72)

Not surprisingly, such extension will be a one-parameter deformation
of the Kerr metric which, with no stretch of imagination, we will call
rotating SV or black-bounce–Kerr.

The presentation will start off with a step-by-step application of
the NJP (section 5.1). The resulting metric, eq. (80), is the core result
of this chapter. We will then investigate the causal structure in sec-
tion 5.2; and characterise the effective matter content in section 5.3.
Finally, in section 5.4 we will describe how some features of the ex-
ternal geometry differ from their Kerr counterparts. Section 5.5 will
close the chapter with a few remarks.

We will often resort to the handy notation ϱ =
√

r2 + ℓ2 to improve
the looks of long expressions.

5.1 building the metric

To apply the NJP to the SV metric eq. (72), we need to specify the
steps described in section 4.1 to the particular case

f (r) = 1− 2M√
r2 + ℓ2

= g(r), h(r) = r2 + ℓ2 . (73)

The definition of the null coordinate u (step I), the introduction of
the null tetrad {lµ, nµ, mµ, mµ} (step II) and the complex coordinate
transformation to (ũ, r̃) (step III) are immediate.

Step IV instead is non-trivial: we need to provide a prescription
for the complexification that will yield the new functions f̃ and h̃
and, in turn, the new metric. This prescription is arbitrary but, as we
discussed, in GR only one actually works.

Here, however, we are not solving any equations and we have no
way of telling if a choice is “right”. Luckily, there is one choice that
seems natural. Indeed, since the components of the SV metric are de-
rived from those of Schwarzschild by writing

√
r2 + ℓ2 instead of r,

one is tempted to use ϱ =
√

r2 + ℓ2 and complexify it as would be
appropriate for Schwarzschild’s radial coordinate. Namely

ϱ 7→ ϱ̃ = ϱ + ia cos θ, (74)

45



46 the black-bounce–kerr spacetime

so that

h(r) = ϱ2 → h̃(r̃) = ϱ̃ϱ̃ = r̃2 + ℓ2 + a2 cos2 θ (75)

and

f (r) = 1− 2M
ϱ
→ f̃ (r′) = 1−M

(
1
ϱ̃
+

1
ϱ̃

)
= 1− 2M

√
r̃2 + ℓ2

r̃2 + ℓ2 + a2 cos2 θ
. (76)

Assuming this complexification, we are only left with step V, the
transformation

dt̃ = dũ + F dr̃ , dϕ′ = dϕ̃ + G dr̃ (77)

to Boyer–Lindquist-like coordinates. Plugging the right expressions
into eq. (59), we find

F =
r̃2 + ℓ2 + a2

r̃2 + ℓ2 + a2 − 2M
√

r̃2 + ℓ2
, (78)

G =
a

r̃2 + ℓ2 + a2 − 2M
√

r̃2 + ℓ2
; (79)

these expressions do not depend on θ and one can safely integrate
them to get t̃(u, r̃), ϕ′(u, r̃). (From now on we drop tildes and primes.)

Thus, the metric obtained by applying the NJP to the SV seed does
have a Boyer–Lindquist form. Note that this is obvious, in hindsight,
since the functions F, G above are the same that one would get start-
ing from a Schwarzschild seed, provided one replaces the coordinate
radius r with

√
r2 + ℓ2, and a Boyer–Lindquist form certainly exists

in that case.
The metric ensuing from the application of the NJP with the choices

above is our proposal for the rotating counterpart to the SV metric
eq. (72):

ds2 = −
(

1− 2M
√

r2 + ℓ2

Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2

− 4Ma sin2 θ
√

r2 + ℓ2

Σ
dtdϕ +

A sin2 θ

Σ
dϕ2 (80)

with

Σ = r2 + ℓ2 + a2 cos2 θ , ∆ = r2 + ℓ2 + a2 − 2M
√

r2 + ℓ2 ,

A = (r2 + ℓ2 + a2)2 − ∆a2 sin2 θ .

It reduces to the SV metric when a = 0 and to the Kerr metric when
ℓ = 0. Formally, its components can be derived from those of the Kerr
metric by replacing the Boyer–Lindquist radius r with

√
r2 + ℓ2, but
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without changing dr; i. e. the metric eq. (80) is not related to Kerr by
a change of coordinates.

The result eq. (80) obtained with the standard NJP is confirmed
by the application of the MNJP, provided the arbitrary function Ψ
be fixed equal to Σ. This choice is coherent with requiring that the
spinning metric coincides with Kerr when ℓ = 0, as it must.

We can now move on to characterise the metric eq. (80) and the
spacetime it describes.

5.2 metric analysis and spacetime structure

As in the non-spinning case, r may take positive as well as negative val-
ues. Our negative-r region, however, should not be confused with the
one deriving from analytically extending the Kerr spacetime beyond
its ring singularity: indeed, the metric eq. (80) is symmetric under the
reflection r 7→ −r and the spacetime it describes is thus composed of
two identical portions glued at r = 0.

Some intuition can be gained by noting that the surface r = 0 is an
oblate spheroid of size (Boyer–Lindquist radius) ℓ. When ℓ = 0, the
spheroid collapses to a ring at θ = π/2 and the usual singularity of
the Kerr geometry is recovered. When instead ℓ ̸= 0 the singularity
is excised and r = 0 is a regular surface of finite size, which observ-
ers may cross: the metric eq. (80) thus describes a wormhole with
throat located at r = 0. The nature of such throat (timelike, spacelike
or null) depends on ℓ and a. Actually, |a| is the relevant parameter,
thus, without loss of generality, we only consider a > 0 here and
throughout.

The values of ℓ and a also determine whether the metric has co-
ordinate singularities. When this is the case, the singularities are
given by ∆ = 0 and located at

r± =

[(
M±

√
M2 − a2

)2
− ℓ2

]1/2

. (81)

By calling

ϱ± = M±
√

M2 − a2 , (82)

we immediately see that r+ is real only if ℓ ≤ ϱ+ and, similarly, r− is
real only if ℓ ≤ ϱ−. Thus, depending on the values of the parameters,
we may have two (if a < M and ℓ < ϱ−), one (if a < M and ϱ− <

ℓ < ϱ+) or no singularity at all (if a < M and ℓ > ϱ+, or if a > M).
The cases in which equalities hold are extremal or limiting versions
of the above. As the analysis in the following subsection will prove,
these coordinate singularities are horizons of the spacetime.
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Figure 1: Parameter space and corresponding spacetime structure. Ac-
ronyms are spelled out in the text.

5.2.1 Phase diagram

For the sake of practicality, we summarise the spectrum of possible
cases with the aid of a “phase diagram" in figure 1: each spacetime
structure is associated with a region in (a constant-M slice of) the
parameter space under consideration. We defer a thorough discussion
of each case to subsection 5.2.3, but lay out our terminology here:

woh traversable wormhole;

nwoh null WoH, i. e. one-way wormhole with null throat;

rbh-i RBH with one horizon (in the r > 0 side, plus its mirror image
in the r < 0 side);

rbh-ii RBH with an outer and an inner horizon (per side);

erbh extremal RBH (one extremal horizon per side);

nrbh null RBH-I, i. e. a RBH with one horizon (per side) and a null
throat.

We point out, in passing, that a similar “phase diagram” has been
derived in [75] by applying the NJP to a seed metric inspired by loop
quantum gravity.

5.2.2 Null rays and horizon structure

To check that the singularities at ∆ = 0 are coordinate artefacts, one
can introduce ingoing null coordinates

dv = dt +
ϱ2 + a2

∆
dr , dψ = dϕ +

a
∆

dr , (83)
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and notice that the resulting metric is indeed regular at r = r± except
perhaps when v = ±∞; equivalently, one could adopt outgoing null
coordinates

du = dt− ϱ2 + a2

∆
dr , dψ̃ = dϕ− a

∆
dr , (84)

and confirm the same result except perhaps at u = ±∞. Either patch
covers the region on which the other is not defined, thus proving that
geodesics can be extended beyond r = r±. The same deduction holds
for −r±.

We further investigate the nature of the surfaces r = ±r± by plot-
ting the null rays v = cst, u = cst, in figure 2. We choose for simplicity
θ = 0. The horizontal axes represents the Boyer–Lindquist radius r,
while the time coordinate on the vertical axes tv

∗ is defined by

dtv
∗ = dv− dr , (85)

so that

v = cst⇒ tv
∗ = −r + cst , (86)

u = cst⇒ tv
∗ = −

∫ r (
1− 2

ϱ2 + a2

∆

)
dr′ + cst . (87)

The peeling of outgoing rays shows that the surfaces v = cst and r =
±r± are indeed horizons: r+ and −r− are black-hole horizons, while
r− and −r+ are white-hole horizons. An analogous analysis adapted
to outgoing rays, in which these appear as straight lines while ingoing
rays present peeling, shows that the surfaces ±r± and u = cst have
the opposite nature with respect to their v = cst counterparts: r+ is a
white-hole horizon, r− a black-hole horizon, etc.

5.2.3 Carter–Penrose diagrams

The analytical extension of the metric eq. (80) across the horizons
can be performed by standard methods (see e. g. [113]), by changing
to suitable Kruskal-like coordinates U, V (a redefinition of ϕ is also
required), defined in terms of u, v by an exponential mapping in-
volving the surface gravity of the horizon under consideration and
compensating for the peeling of null rays off of it.

The only practical difference between the textbook case of Kerr
and our own lies in the functional relation between, e. g. the Boyer–
Lindquist radius r and the tortoise coordinate r∗. Such difference is
inconsequential as far as analytic continuation is concerned; for in-
stance, curves UV = cst correspond to curves r = cst in Kerr as well
as in this case.

We construct Carter–Penrose diagrams for the maximal extension
of the six cases identified in section subsection 5.2.1 and report them
in figures 3 and 4. A detailed description of each case follows.
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(a) Traversable wormhole (WoH).
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(b) Null wormhole (nWoH).
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(c) Regular black hole, one horizon
(RBH-I).
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(d) Regular black hole, two horizons
(RBH-II).

-r+ r = 0 r+

r/M

t*
v/M

(e) Extremal regular black hole, one
horizon (eRBH).

-r+ r = 0 r+

r/M

t*
v/M

(f) Null regular black hole, one hori-
zon (nRBH).

Figure 2: Ingoing (red) and outgoing (black) null rays close to ±r± for the
different cases in the phase diagram. Particular values of a and ℓ
have been picked.
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our universe
"other" universe

(a) WoH, corresponding to ℓ > ϱ+
and a < M, or a > M. The throat
r = 0 is a timelike surface, travers-
able in both ways.

(b) nWoH, corresponding to ℓ = ϱ+
(and a < M). The throat r = 0 is
a null surface and is an extremal
event horizon.

(c) RBH-I, corresponding to ϱ− < ℓ <
ϱ+ (and a < M). The throat is
spacelike and cloaked by an event
horizon.

(d) eRBH, corresponding to a = M
and ℓ < ϱ− = ϱ+. The throat is
timelike and the event horizon is
extremal.

Figure 3: Carter–Penrose diagrams for different spacetimes represented by
the metric (80). The lines r = 0 correspond to the throat of the
wormhole, which is a regular surface of finite area.
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(a) RBH-II, corresponding to ℓ < ϱ− (and a < M). r = 0 lines of the same
colour, representing the wormhole throat, are identified.

(b) nRBH, corresponding to ℓ = ϱ− (and a < M). Coloured r = 0 lines are
identified as indicated by dotted-dashed lines: they represent the worm-
hole throat, which in this case is also an extremal (inner) horizon.

Figure 4: Carter–Penrose diagrams (cont.). As in figure figure 3, r = 0 cor-
responds to the regular, finite area throat.
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woh is a traversable, two-way wormhole with a timelike throat. The
Penrose diagram of this spacetime is the same as Minkowski’s,
provided one distinguishes the regions r > 0 — “our universe"
— and r < 0 — the “other universe" —, since a priori they are
different.

nwoh is a one-way wormhole with a null throat, which is an ex-
tremal event horizon. The analytically extended diagram con-
tinues indefinitely above and below the portion we show.

rbh-i is a spacetime containing an eternal black hole whose singu-
larity is replaced by the (regular) throat of a spacelike worm-
hole. The diagram consists of infinitely many Schwarzschild-
like blocks stacked one on top of the other and glued at the
throats.

rbh-ii is a regular black hole with two horizons per side. The Carter–
Penrose diagram consists of two Kerr-like patches glued at the
throats. The throats are timelike and can thus be traversed in
both ways, yet the horizons are event horizons and an observer
that crosses the throat twice can in no case return to the asymp-
totically flat region from which they left. Note that, from the
point of view of an observer in “our universe", the inner hori-
zon appears as a Cauchy horizon, as it does in the Kerr space-
time; here however, initial data cannot be specified in “our uni-
verse" only: Cauchy surfaces must be defined as disjoint unions
of hypersurfaces that would be Cauchy in each of the Kerr-like
patches. When one does so, one realises that r− (and −r−) is not
a Cauchy horizon and the spacetime is indeed globally hyper-
bolic.

erbh is the extremal version of RBH-II, i. e. a regular black hole
whose two horizons coincide. The surface gravity of the ensuing
horizon is zero.

nrbh is the limiting case of RBH-I in which the throat becomes null;
equivalently, it can be seen as the limiting case of RBH-II in
which the throat coincides with the inner horizon. The diagram
however looks markedly different from either case: it continues
indefinitely above and below, as well as to the right and left; it
consists of infinitely many fundamental blocks glued together
at the throat. The null throat is an extremal (inner) horizon.

Note that the first three cases have already been analysed in [322],
while the last three are inherent to the rotating generalisation.
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5.2.4 Algebraic properties and surface gravity

The tetrad {lµ, nµ, mµ, mµ} resulting from the NJP coincides, in the
case ℓ = 0, with the well-known Kinnersleay tetrad of the Kerr space-
time. The vector lµ, in particular, is geodetic and indeed tangent to the
outgoing null rays analysed previously. nµ is also geodetic but not af-
finely parametrised. One can use these vectors to build the tensor

Kµν = Σ (lµnν + lνnµ) + ϱ2gµν . (88)

In Kerr, this is a Killing tensor; one can easily verify that it remains
Killing even when ℓ ̸= 0. When contracted with a geodetic vector,
it gives rise to a quantity that is conserved along the geodesic and
can be used to define a generalisation of the Carter constant — see
section 8.2 for details. As a consequence, the equations of motion for
test particles are separable.

One can further contract the tetrad with the Weyl tensor in order to
determine the algebraic properties of this spacetime. We find1 [325]

Ψ0 = Cµναβlµmνlαmβ = 0 (89)

(which agrees with [326], see proof of Theorem 2) and

Ψ4 = Cµναβnµmνnαmβ = 0 , (90)

but

Ψ1 = Cµναβlµnνlαmβ =
aℓ2
√

1− χ2
√

2iΣ2(ϱ + iaχ)
, (91a)

Ψ2 = Cµναβlµmνmαnβ = − M
ϱΣ3

[
ϱ2 (ϱ2 − 3a2χ2)

+ iaχ
√

ϱ2 − l2
(
3ϱ2 − a2χ2) ]+ ℓ2

6ϱ3Σ3

[
2a2ϱ2(χ2(ϱ

− 4M)− 2ϱ
)
− a4Mχ4 + ϱ4(9M− 2ϱ)

]
, (91b)

Ψ3 = Cµναβlµnνmαnβ = − aℓ2
√

1− χ2∆
2
√

2i(ϱ− iaχ)Σ3
, (91c)

where χ = cos θ. Thus this spacetime is not algebraically special.
The surface gravity that enters the analytic extension of subsec-

tion 5.2.3 is

κ± =
1
2

d
dr

(
∆

ϱ2 + a2

)∣∣∣∣
r±

= κKerr
±

dϱ

dr

∣∣∣∣
r±

= κKerr
±

√
1− ℓ2

ϱ2
±

. (92)

The expression above gives the so-called peeling surface gravity. One
can easily check that it agrees with the alternative, normal definition

κ±normal Ξµ

∣∣∣∣
H±

= −1
2
∇µ

(
ΞνΞν

)∣∣∣∣
H±

, (93)

1 The expression appearing in [270] (eq. 3.7) has a typo.
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where H± are the horizons and

Ξµ∂µ = ∂t + Ω ∂ϕ, with Ω =
a

ϱ2 + a2 , (94)

is null and Killing at the horizons. Note in particular that the hori-
zons are Killing and hence such coincidence of different definitions
of surface gravity is expected [130].

5.3 stress-energy and energy conditions

In the context of GR, wormholes are typically associated with viol-
ations of the energy conditions [353]. We thus characterise the dis-
tribution of “effective" matter entailed by the metric eq. (80) via the
Einstein equations. We do so in two complementary ways: by focus-
ing on particular geodesics (first a null congruence, then those of
a timelike observer) and by diagonalising the Einstein tensor. The
former method is more physical, in the sense that it sheds light on
the energy density that actual observers would measure when orbit-
ing these compact objects; the latter method is more systematic, in
that it does not hinge on the particular choice of observer.

Note that the throat is an extremum for the energy density, however
defined. Indeed, for any ε(r),

dε

dr
=

dϱ

dr
dε

dϱ
=

r
ϱ

dε

dϱ
(95)

and r = 0 is automatically a zero when dε
/

dϱ is finite. The sign of
the second derivatives determines whether the extremum is a (local)
minimum or maximum: denoting with a prime differentiation with
respect to ϱ, we have

d2ε

dr2 =
r2

ϱ2 ε′′ +
ℓ2

ϱ3 ε′ . (96)

5.3.1 Energy density for infalling observers

null geodesics Consider again the congruence lµ: being null
and geodetic, these vectors are tangent to trajectories that fall towards
the centre. Assuming GR holds, the contraction Gµνlµlν is the energy
density measured along these trajectories. A straightforward compu-
tation shows that

Gµνlµlν = −2ℓ2

Σ2 . (97)

This quantity is negative, hence the null energy condition is viol-
ated. Thus exotic matter is encountered everywhere in the spacetime,
in an amount that decreases as 1/r4 and is maximal at r = 0. Note
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that the limit ℓ→ 0 is zero at all radii and angles but r = 0, θ = π/2,
where it is infinite; in fact

Gµνlµlν

∣∣∣∣
r=0

= − 2ℓ2

(ℓ2 + a2 cos2 θ)2 . (98)

Such behaviour is not surprising, since in the limit ℓ→ 0 one recovers,
at r = 0, θ = π/2, the standard ring singularity of the Kerr geometry.

timelike observer Consider now a timelike observer moving
along a geodesic with tangent vector uµ. Because of the symmetries of
this spacetime, the components ut = −E and uϕ = Lz are constants of
motion, corresponding respectively to the observer’s energy per unit
mass and to the projection along the rotation axis of the observer’s
angular momentum per unit mass. Moreover, the existence of the
Killing tensor eq. (88) yields a third constant of motion, in terms of
which uθ can be expressed. The remaining component ur is fixed by
the normalisation uµuµ = −1.

We can restrict for definiteness to motion on the equatorial plane
θ = π/2, and compute again the double contraction with the Einstein
tensor. We find:

εu = Gµνuµuν

∣∣∣∣
θ=π/2

=− ℓ2

ϱ7

[
M(Lz − aE)2 − 2ϱ(L2

z − a2E2)

− ϱ3(1− 2E2)
]
. (99)

Thus — assuming GR holds — observers with, say, Lz = aE measure
a negative energy density at all radii when their energy is such that
E2 > 1/2. The weak energy condition is therefore violated (and, con-
sequently, the dominant energy condition too). Again, the limit ℓ→ 0
yields zero except at the throat.

The sign of the second derivative of εu at r = 0 is the sign of
(x = Lz − aE)

ε′u

∣∣∣∣
r=0

= ℓ2 7Mx2 − 4ϱ[6axE + 3x2 + ϱ2 (1− 2E2)]
ϱ8

∣∣∣∣∣
ϱ=ℓ

. (100)

Thus, observers with x = 0 and E2 > 1/2 measure at r = 0 a (local)
maximum of the energy density.

5.3.2 Eigenvalue analysis

To characterise the distribution of stress-energy in an observer-inde-
pendent way, we diagonalise the Einstein tensor in mixed form —
cf. eq. (212) in section 8.1. We find four distinct real eigenvectors,
which in Boyer–Lindquist coordinates and up to multiplicative di-
mensionful constants are:

vµ
0 = (a + ϱ2/a, 0, 0, 1) , vµ

1 = (0, 1, 0, 0) , (101a)

vµ
2 = (0, 0, 1, 0) , vµ

3 = (a sin2 θ, 0, 0, 1) . (101b)
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We identify as minus the energy density −ε the eigenvalue relative
to the timelike eigenvector (vµ

0 when ∆ > 0, vµ
1 otherwise); and as

pressures pi (i = 1, 2, 3) the other eigenvalues. We find

ε =
ℓ2

Σ3

{
ϱΣ− 2a2Mχ2

ϱ
− 2∆H

(
∆
)}

, (102a)

p1 =
ℓ2

Σ3

{
a2[2Mχ2 − ϱ(χ2 − 2)] + ϱ2(ϱ− 4M)

ϱ

− 2∆H
(
∆
)}

, (102b)

p2 =− ℓ2

Σ3

{
a2ϱ2[4Mχ2 + ϱ(χ2 − 2)] + a4Mχ4

ϱ3

+ ϱ(M− ϱ)

}
, (102c)

p3 =
ℓ2

Σ3

{
−M(2a2χ2ϱ2 + Σ2) + Σϱ3

ϱ3

}
, (102d)

where H(·) is Heaviside’s function. Note that the density and pres-
sures so defined are continuous at the horizon, but their derivatives
are generically not.

In the remainder of this section, we will analyse the null (ε+ pi ≥ 0)
and weak (null + ε ≥ 0) energy conditions. Note however that

ε + p1 = −2|∆|ℓ2

Σ3 ≤ 0 (103)

and this suffices to prove that all energy conditions are violated (ex-
cept possibly at the horizons). The other ε + pi have less wieldy ex-
pressions and we therefore not report them here.

Note that the expressions in eq. (102) depend on the polar angle θ

in a rather involved way but only through χ2 = cos2 θ ∈ [0, 1]. We do
not expect this dependence to induce dramatic features in the angular
profiles of ε and pi; in particular, such dependence should be marked
only at small radii and rapidly die out at spatial infinity.

We confirm this intuition by studying ε, pi as functions of χ, both
analytically and graphically. The energy density, for instance, has an
extremum at χ = 0 (either a minimum or a maximum, depending on
the values of the parameters); in addition, it may have at most two
more extrema, symmetric with respect to χ = 0. Similar considera-
tions apply to ε + pi: χ = 0 is always an extremum and at most two
other extrema, symmetric with respect to χ = 0, can exist. For ε + p1,
in particular, χ = 0 is the only extremum; at large radii it is a min-
imum — but can become a maximum at smaller radii, depending on
the parameters.
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Figure 5: Energy conditions, averaged over the polar angle, as a function
of r. Different colours represent different choices for the spin a,
while different line styles stand for different values of ℓ. Given the
difference of scales, one particular value of ℓ is plotted in an inset.

Hence, if we aim at characterising the radial distribution of stress
and energy, a marginalisation over the angular variable is justified.
Thus, for a generic quantity X, we resolve to consider

⟨X⟩ = 1
2

∫ +1

−1
dχ X . (104)

In figure 5 we plot ⟨ε⟩ and ⟨ε + pi⟩ for selected values of a and ℓ.
Notice that the stress-energy content of this spacetime is localised
close to the origin: inspection of eq. (102) indeed confirms that energy
density and pressures all scale as 1/r4.

To quantify the amount of violation of the energy conditions in the
whole spacetime, we adopt the strategy proposed in [219, 282, 356].
That is, we compute the so-called volume integral quantifier

E =
∫

dr dθ dϕ
√
|g| ε , (105a)

E + Pi =
∫

dr dθ dϕ
√
|g| (ε + pi) , (105b)

where g is the determinant of the four-dimensional metric.
We draw contour plots of these quantities for varying values of

the parameters a, ℓ and report the results in figure 6. Note that the
amount of effective matter varies substantially as the parameters vary
and can be made very small by trimming them carefully.
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Figure 6: Contour plots of the volume integral quantifier in the (a, ℓ)-plane.
Negative values of E + Pi entail violations of the (averaged) null
energy condition; negativity of E or E + Pi further entail violations
of the (averaged) weak energy condition.

5.4 features of the exterior geometry

The exterior of a Kerr black hole is rich in noticeable features, which
largely determine the phenomenology of these objects. In this sec-
tion, we focus on the exterior (r ≥ 0 and outside any horizon) of
our geometry and study how switching on the parameter ℓ affects
it. In particular, we describe the ergoregion and, schematically, the
orbits, focusing on equatorial light ring and innermost stable circular
orbit (ISCO).

5.4.1 Ergoregion

An ergoregion is a region inside of which no static observer can exist.
Its boundary, the ergosurface, is the locus of points where gtt = 0. In
our metric, the roots of this equation correspond to values of ϱ given
by

ϱ±erg = M±
√

M2 − a2 cos2 θ . (106)
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(a) WoH with a < M. The ergoregion is
limited to a crescent-shaped region
about the equator. The dashed blue
line represents the would-be outer
horizon and is plotted for reference:
the wormhole is traversable as long
as the throat is “larger than the hori-
zon”, otherwise the object is a regu-
lar black hole (figure figure 8).

(b) WoH with a > M. Note that the
two branches ϱ+erg and ϱ−erg, plot-
ted in red and orange respectively,
only exist for |cos θ| ≤ a/M and
join smoothly, thus producing an
ergoregion of such peculiar shape.

Figure 7: Traversable wormhole with ergoregion, corresponding to values
of ℓ such that ϱ+ < ℓ < ϱ+erg. Each plot is a slice at fixed ϕ, the
angle with the vertical axis is θ and the distance from the centre
is ϱ. The hatched region is the ergoregion. The black dotted line
represents the throat r = 0; the grey region is therefore excised
from the spacetime.

Clearly, this expression coincides with what one finds in Kerr. Con-
trary to what is usually assumed in that case, however, here we do
consider arbitrarily high spins. Therefore, the radicand in eq. (106) is
not always positive and the ergosurface has markedly distinct shapes
in the a > M and a < M cases. An ergosurface exists when at least
one of the quantities

r±erg =
√(

ϱ±erg
)2 − ℓ2 (107)

is real. Note, incidentally, that

min
θ∈[0,π]

(
ϱ+erg

)
= ϱ+ and max

θ∈[0,π]

(
ϱ−erg

)
= ϱ− . (108)

Hence, if ℓ ≥ ϱ+erg there is no ergoregion. When this is the case, the
object under consideration is a traversable wormhole (WoH case of
section section 5.2), since ϱ+erg ≥ ϱ+; note that these wormholes may
have arbitrary spin.

If, on the contrary, ℓ < ϱ+erg, an ergoregion is indeed present. This
eventuality encompasses all cases of section 5.2, though with marked
differences.

Indeed, when the object is a traversable wormhole — i. e. if a > M,
or a < M and ℓ > ϱ+ —, the throat intercepts the ergosurface at
some angle θ ̸= 0, π; therefore, the ergoregion is limited to a region
that is coaxial with the wormhole and whose longitudinal section is
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(a) RBH-I (nWoH and nRBH are qual-
itatively similar). The ergoregion ex-
tends across the horizon and to the
throat. The innermost dashed blue
line represents the would-be inner
horizon and is plotted for reference:
the case in which the throat is “smal-
ler than the inner horizon” is depic-
ted in 8b.

(b) RBH-II (eRBH is qualitatively similar:
the two horizons coincide and the
inner and outer ergosurfaces touch
at the poles). The ergoregion ex-
tends across two horizons, and to
the throat or the inner ergosurface;
within the white lobes gtt < 0, hence
these regions do not belong to the er-
goregion.

Figure 8: Ergoregion in regular black holes, i.e. when ℓ ≤ ϱ+. As in figure
figure 7, each plot is a slice at fixed ϕ, the angle with the vertical
axis is θ and the distance from the centre is ϱ. The hatched region
is the ergoregion. The black dotted line represents the throat r = 0;
the grey region is therefore excluded from the spacetime.

shaped as a crescent — see figure 7a and figure 7b. (This is a common
feature of other rotating traversable wormholes, cf. e. g. [327]). Note
however that the throat is technically not an edge of the ergoregion,
which in fact continues in the “other universe” as far as the mirrored
ergosurface.

When instead the object is a RBH — i. e. if a < M and ℓ ≤ ϱ+ —
, the ergoregion extends all the way to the horizon and its external
portion is thus tantamount to that of Kerr.

For completeness, however, we describe the structure of the ergore-
gion inside the horizon, too. If ϱ− ≤ ℓ < ϱ+, viz. in the cases nWoH,
RBH-I and nRBH, the ergoregion stretches as far as the throat — see
figure 8a. If instead ℓ < ϱ−, that is in the RBH-II and eRBH cases, the
ergoregion has an inner ergosurface; this surface is intercepted by the
throat at some angle θ: thus the only portions of the spacetime, close
to the throat, that do not belong to the ergoregion are lobes enclos-
ing the poles — see figure 8b. Note that, as before, the throat is not
an edge of the ergoregion, in the sense that gtt does not change sign
upon crossing it.

5.4.2 Notable orbits

The study of orbits can proceed as for the Kerr geometry. More detail
can be found in section 8.2; here we focus on the most relevant case
of equatorial circular motion.
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Indeed, the t- and ϕ-motion are readily integrated by exploiting the
conservation of the test particle’s energy E and angular momentum
Lz (per unit mass) along the rotation axis. Thus, setting θ = π/2, the
problem is effectively one-dimensional and governed by

ϱ2ṙ = ±
√
R (109)

where the dot marks differentiation with respect to the affine para-
meter along the geodesic and R is the same potential one finds for
a Kerr spacetime mapped by a Boyer–Lindquist radius that has been
called ϱ:

R = [E(ϱ2 + a2)− aLz]
2 − ∆[µ2ϱ2 + (Lz − aE)2], (110)

with µ2 = 0, +1 for null and timelike orbits, respectively (the expres-
sion for generic θ can be found in section 8.2).

Circular orbits satisfy simultaneously

R = 0 and
dR
dr

= 0 . (111)

Note that

dR
dr

=
dϱ

dr
dR
dϱ

=
r
ϱ

dR
dϱ

, (112)

hence Kerr’s circular orbits readily correspond to circular orbits of
our spacetime. Since r = 0 does not generically satisfy the above re-
lations, the mapping between Kerr equatorial circular geodesics and
our own is onto.

Thus, in particular, to any pair Ec, Lc
z there corresponds a solution

ϱc of eq. (111) as long as

ϱ2
c − 3Mϱc ± 2a

√
Mϱc ≥ 0 , (113)

where the plus (minus) sign refers to prograde (retrograde) orbits.
When the equality holds, the equation has formally three real solu-
tions for a < M and only one for a > M. In the former case, however,
the smallest of such roots lies inside the horizon and, therefore, does
not correspond to any orbit; the other two correspond to the familiar
unstable circular photon orbits ϱph, one prograde and one retrograde,
of the Kerr spacetime. In the latter case, the corresponding orbit con-
nects smoothly to the retrograde branch of the a < M case. These
orbits of the Kerr spacetime translate into orbits of our spacetime,
located at

rph =
√

ϱ2
ph − ℓ2 . (114)

Notice that for ℓ > 3M we find no prograde photon circular orbit,
at any spin; these wormholes however do have a retrograde circular
orbit, if they spin fast enough.
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Timelike circular orbits are stable as long as

ϱ2
c − 6Mϱc ± 8a

√
Mϱc − 3a2 ≥ 0 . (115)

Once again, the equality gives rise to two branches of solutions for
a < M, the prograde and retrograde branches, one of which (the ret-
rograde) continues to the a > M region. In the Kerr spacetime, these
solutions represent the ISCOs. In our spacetime, they are located at

rISCO =
√

ϱ2
ISCO − ℓ2 . (116)

Note that, for ℓ > 6M, these wormholes do not present prograde
ISCO. They may have a retrograde ISCO, if they spin fast enough.

5.5 chapter wrap-up

In this chapter, we have constructed a rotating generalisation of the
SV metric, applying the NJP. Depending on the values of a and ℓ,
it may represent a traversable wormhole, a RBH with one or two
horizons, or three limiting cases of the above. The global properties
of the ensuing spacetime have been discussed at length. We further
characterised our metric by describing the violations of the energy
conditions and found that the exotic matter is localised in the vicinity
of the throat. Finally, we investigated some relevant features of the
exterior geometry: an ergoregion exists when ℓ < 2M, whatever the
value of the spin; a (retrograde) circular photon orbit exists for ℓ <

3M and a (retrograde) ISCO for ℓ < 6M, again independently on the
spin.

The metric of eq. (80) thus describes a family of good mimickers
of the Kerr BH, suitable for serious phenomenological inquiry. In-
deed, black bounces have received considerable attention from the
community and several applications have been considered. For in-
stance, their electromagnetic shadows have been computed, and of-
ten compared with observed ones, in [177, 205, 242, 317, 350]. Other
examples, including strong lensing and scattering of scalars, can be
found e. g. in [26, 118, 138, 172, 195, 209, 213, 239, 348, 367–369].

Notably, X-ray emission spectra from known astrophysical BHs and
gravitational-wave inspiral data have been used to put bounds on the
parameter ℓ in [304, 305]. These constraints are quite impressive, as
they are as strong as ℓ/M < 0.39 (at 90% confidence level).

These and similar results raise novel questions concerning the epi-
stemology of the stream of research that deals with RBHs and other
effective models. Indeed, though there might be reasons to prefer
some of these models over others, all of them — including black
bounces — are constructed by hand and thus reflect the (arbitrary)
choices made by their inventors. In the author’s view, this means that
the prior degree of belief on e. g. the black-bounce–Kerr metric — or
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the rotating Hayward metric, or any other model in particular — is
essentially zero. Still, analyses that use actual data to constrain and
possibly rule out some specific models are extremely interesting and
compelling insofar as they showcase the capabilities of current data,
in terms of sensitivity and constraining power. It would be extremely
interesting to devise strategies for constraining classes of models, thus
bypassing the ambiguities inherent to any one of them.

Coming back to the black-bounce–Kerr, another compelling ques-
tion concerns its stability against small perturbations. Indeed, the ex-
istence of an ergoregion is known to lead to interesting new phe-
nomenology, particularly in the absence of an horizon. This question
will be addressed in chapter 7; before moving to that, however, we
will investigate further the ductility of the SV trick by applying it to
the Kerr–Newman spacetime in chapter 6.



6
T H E B L A C K - B O U N C E – K E R R – N E W M A N
S PA C E T I M E

Given the demonstrated existence of the black-bounce–Schwarzschild
[81, 82, 245, 246, 319, 322], and the black-bounce–Kerr [240, 270, 317]
geometries, it is intuitive to suspect that analogous black-bounce vari-
ants of both the Reissner–Nordström and Kerr–Newman spacetimes
will exist [366]; and that they would be amenable to reasonably tract-
able general-relativistic analyses.

Such charged black-bounce geometries would probably be of lim-
ited phenomenological interest, since astrophysical BHs are believed
to be electrically neutral. Indeed, if they did have a charge, they
would preferentially accrete matter of the opposite charge until they
became neutral.

Yet, charged spacetimes exhibit additional structures with respect
to their neutral counterparts and for this reason they are of great the-
oretical interest. For instance, they exhibit a non-trivial electromag-
netic field, whose faith upon regularisation is unclear.

For this reason, this chapter will present the construction and the
subsequent analysis of the black-bounce–Kerr-Newman spacetime.
When appropriate, we will specify results to the non-rotaing case,
i. e. to the black-bounce–Reissner–Nordström spacetime.

The discussion will loosely follow that of [166], though the nota-
tions have often been adapted for coherence with the rest of the thesis.

6.1 black-bounce–kerr–newman geometry

To build the black-bounce–Kerr–Newman geometry, start from Kerr–
Newman in standard Boyer–Lindquist coordinates [354, 362]

ds2
KN = −

(
1− 2Mr

ΣKN

)
dt2 +

ΣKN

∆KN
dr2 + ΣKNdθ2

− 4Mra sin2 θ

ΣKN
dtdϕ +

AKN sin2 θ

ΣKN
dϕ2 , (117)

where

ΣKN = r2 + a2 cos2 θ , (118a)

∆KN = r2 + a2 − 2Mr + Q2 , (118b)

AKN = (r2 + a2)2 − ∆KNa2 sin2 θ . (118c)

Then apply the SV regularisation procedure as usual: any time the
metric components have an explicit dependence on r, replace r 7→√

r2 + ℓ2; without touching the object dr.

65
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The result is the following line element:

ds2 = −
(

1− 2M
√

r2 + ℓ2

Σ

)
dt2 +

Σ
∆

dr2 + Σdθ2

− 4Ma sin2 θ
√

r2 + ℓ2

Σ
dtdϕ +

A sin2 θ

Σ
dϕ2 , (119)

where now Σ, ∆ and A are

Σ = r2 + ℓ2 + a2 cos2 θ , (120a)

∆ = r2 + ℓ2 + a2 − 2M
√

r2 + ℓ2 + Q2 , (120b)

A = (r2 + ℓ2 + a2)2 − ∆a2 sin2 θ . (120c)

(Eq. (119) is formally the same as eq. (80), except the electric charge
Q now appears in the definition of ∆.)

The natural domains of the angular and temporal coordinates are
unaffected, while the natural domain of the r coordinate expands
from r ∈ [0,+∞) to r ∈ (−∞,+∞). Both manifest axisymmetry and
asymptotic flatness are preserved by the regularisation.

Setting a = 0 yields the static and spherically symmetric black-
bounce–Reissner–Nordström geometry

ds2 = − f (r)dt2 +
dr2

f (r)
+
(
r2 + ℓ2)dΩ2 ,

f (r) = 1− 2M√
r2 + ℓ2

+
Q2

r2 + ℓ2 . (121)

6.2 horizons , surface gravity and ergosurfaces

Horizons are associated to the roots of ∆ and they are located at

rH = S1

√(
M + S2

√
M2 −Q2 − a2

)2
− ℓ2 . (122)

Here S1, S2 = ±1, and choice of sign for S1 dictates which universe
we are in, whilst the choice of sign on S2 corresponds to an outer/in-
ner horizon respectively.

The spacetime structures are analogous to those of the uncharged
case. Specifically:

• For ℓ < M −
√

M2 − a2 −Q2, the geometry has two horizons
in the r > 0 region and two in the r < 0 region; the throat is
timelike and the maximally extended spacetime has the Carter–
Penrose diagram of figure 9. This case is qualitatively identical
to the RBH-II case of the black-bounce–Kerr spacetime, discussed
in section 5.2.

• For M −
√

M2 − a2 −Q2 < ℓ < M +
√

M2 − a2 −Q2, there is
only one horizon per universe; the throat is spacelike and the



6.2 horizons , surface gravity and ergosurfaces 67

th
ro
a
t

th
ro
a
t

th
ro
a
t

th
ro
a
t

Figure 9: Penrose diagram for a regular black hole with outer and inner
horizons, corresponding to ℓ < m−

√
m2 − a2 −Q2. Vertical lines

of the same colour are identified, as the right-hand (left-hand) part
of the diagram represents the r > 0 (r < 0) universe; the diagram
continues indefinitely above and below the portion shown. Here
r+ (resp. r−) is rH with S2 = +1 (−1); the sign in front of it is S1.

Carter–Penrose diagram is that of figure 10. This case corres-
ponds to the RBH-I case of section 5.2.

• For ℓ > M +
√

M2 − a2 −Q2, there are no horizons; the throat
is timelike and traversable, hence the Carter–Penrose diagram
resembles that of Minkowski spacetime. This case corresponds
to the WoH case of section 5.2.

As usual, the intermediate cases correspond to some horizon becom-
ing extremal.

Note that, in the Kerr–Newman geometry, one must demand Q2 +

a2 ≤ M2 to avoid the possibility of naked singularities. In our case,
we need not worry about this eventuality and may consider arbit-
rary values of spin and charge. Thus, if Q2 + a2 > M2, the space-
time has no horizon and is therefore analogous to the case ℓ > M +√

M2 −Q2 − a2.
This classification holds for the non-rotating case too, provided one

sets a = 0 in the expressions above.
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throat

throat

throat

Figure 10: Penrose diagram for a regular black hole with only outer ho-
rizons, corresponding to m −

√
m2 − a2 −Q2 < ℓ < m +√

m2 − a2 −Q2. The lower (upper) portion of the diagram cor-
responds to the r > 0 (r < 0) universe; the diagram continues
indefinitely above and below the portion shown by repetition of
this fundamental block. Here, r+ is rH with S2 = +1; the sign in
front of it is S1.
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If horizons are present, their surface gravity is given by

κS2 =
1
2

d
dr

(
∆

r2 + ℓ2 + a2

)∣∣∣∣
rH

= κKN
S2

√
r2

H
r2

H + ℓ2
, (123)

where κKN
S2

is the surface gravity relative to the inner, when S2 = −1,
or outer, when S2 = +1, horizon of a Kerr–Newman black hole with
mass M, spin a and charge Q.

The ergosurface is determined by gtt = 0, which is a quadratic
equation in r. The roots are given by:

rerg = S1

√(
M + S2

√
M2 −Q2 − a2 cos2 θ

)2
− ℓ2, (124)

where S1, S2 are as before.

6.3 stress-energy tensor

We can now move on to characterise the effective matter content. As
usual, we will do so by assuming a specific geometrdynamics, namely
that of GR.

The (mixed) Einstein tensor Gµ
ν can be diagonalised over the real

numbers: its four eigenvectors {eµ̂}µ=t,r,θ,ϕ form a globally defined
tetrad [284] and have explicit Boyer–Lindquist components(

et̂
)µ

=
1√
Σ|∆|

(
r2 + ℓ2 + a2, 0, 0, a

)
, (125a)

(
er̂
)µ

=

√
|∆|
Σ

(0, 1, 0, 0) , (125b)(
eθ̂

)µ
=

1√
Σ
(0, 0, 1, 0) , (125c)

(
eϕ̂

)µ
=

1
sin θ
√

Σ

(
a sin2 θ, 0, 0, 1

)
. (125d)

Eigenvectors are defined up to multiplicative, possibly dimension-
ful constants. This choice of normalisation ensures that the tetrad
{eµ̂} is orthonormal and that, in the limit a → 0, it reduces to what
one would read off directly from the black-bounce–Reissner–Nordström
metric eq. (121). Components of tensors expressed in this tetrad will
be denoted by hatted indeces.

The tetrad of eq. (125) may be used to characterise the distribution
of stress-energy in our spacetime. Assuming standard GR holds, the
Einstein tensor is proportional to the stress-energy tensor: we may
thus interpret the one component of Gµ̂ν̂ that corresponds to the time-
like direction as an energy density ε, and all the other non-zero com-
ponents as principal pressures pi. Contrary to other chapters, here we
normalise the effective stress-energy tensor as

Gµν = 8πTeff
µν . (126)
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In particular, outside any horizon (technically, whenever ∆ > 0),
we have

ε = −
ℓ2 (2a2ϱ + 2MΣ− 6Mϱ2 + 2ϱ3 − Σϱ

)
8πΣ3ϱ

−
Q2 (3ℓ2 − Σ

)
8πΣ3 , (127a)

p1 =
ℓ2 [Σ(2M− ϱ)− 2Mϱ2]

8πΣ3ϱ
+

Q2 (ℓ2 − Σ
)

8πΣ3 , (127b)

p2 =
ℓ2 [−MΣ2 + Σϱ2(ϱ− 2M) + 2Mϱ4]

8πΣ3ϱ3 +
Q2 (Σ− ℓ2)

8πΣ3 , (127c)

p3 =
ℓ2 [2a2ϱ3 + M

(
−Σ2 − 2Σϱ2 + 2ϱ4)− Σϱ3 + 2ϱ5]

8πΣ3ϱ3

+
Q2 (Σ− ℓ2)

8πΣ3 . (127d)

The expressions above prove, incidentally, that our black-bounce–Kerr–
Newman spacetime is Hawking–Ellis type I [184, 261–263].

Note that

ε + p1 = − ℓ2∆
8πΣ3 . (128)

This is the same result one gets in the black-bounce–Kerr spacetime,
modulo the redefinition of ∆. Thus, in particular, the null energy con-
dition is violated. Note that on the horizon ∆ = 0 so (ε + p1)|H = 0.
This on-horizon simplification is a useful consistency check [262, 272,
273, 352].

Since the effective sources depend explicitly on the electric charge
Q, it seems reasonable to characterise the spacetime by means of some
variant of curved-spacetime Maxwell-like electromagnetism, that is,
by assuming that some variant of Maxwell’s equations hold.

6.3.1 Interpreting the black-bounce–Reissner–Nordström stress-energy

We start from the non-rotating case, which is simpler. We may write

1
8π

Gµ̂
ν̂ = [Tbb]

µ̂
ν̂ + [TQ]

µ̂
ν̂ , (129)

where [Tbb]
µ̂

ν̂ is the stress-energy tensor for the original electrically
neutral black-bounce spacetime from [322], and

[TQ]
µ̂

ν̂ =
Q2r2

8π(r2 + ℓ2)3 diag
(

2ℓ2

r2 − 1,−1, 1, 1
)

=
Q2r2

8π(r2 + ℓ2)3

[
diag (−1,−1, 1, 1)

+ diag
(

2ℓ2

r2 , 0, 0, 0
) ]

(130)
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is the charge-dependent contribution to the stress-energy.
The first term of eq. (130) above can be interpreted as the usual

Maxwell stress-energy tensor [275]

[TMaxwell]
µ̂

ν̂ =
1

4π

[
−Fµ̂

α̂Fα̂
ν̂ −

1
4

δµ̂
ν̂F2
]

, (131)

while the second term can be interpreted as the stress-energy of a
“charged dust”, with the density of the dust involving both the bounce
parameter ℓ and the total charge Q. Overall we have

[TQ]
µ̂

ν̂ = [TMaxwell]
µ̂

ν̂ + Ξ Vµ̂Vν̂ . (132)

The vector Vµ̂ is the normalised unit timelike eigenvector of the stress-
energy, which in the current situation reduces to the normalised time-
translation Killing vector, while the dust density Ξ has to be determ-
ined. We obtain

[TQ]
t̂

t̂ = −εem = [TMaxwell]
t̂

t̂ − Ξ = − 1
8π

E 2 − Ξ . (133)

Comparing with eq. (130), we find for the electric field strength E

E =
Qr

(r2 + ℓ2)3/2 = ERN

[
r3

(r2 + ℓ2)3/2

]
, (134)

where ERN is the electric field strength of a Reissner–Nordström black
hole. For the density of the dust Ξ we find

Ξ = − 1
4π

Q2ℓ2

(r2 + ℓ2)3 . (135)

All told, we have the following form for the electromagnetic stress-
energy tensor for our regularised Reissner–Nordström spacetime

[TQ]
µ̂

ν̂ =
1

4π

[
−Fµ̂

α̂Fα̂
ν̂ −

1
4

δµ̂
ν̂F2
]
− 1

4π

Q2ℓ2

(r2 + ℓ2)3 Vµ̂Vν̂ . (136)

Finally, the electromagnetic potential is easily extracted by integ-
rating eq. (134), and in view of asymptotic flatness we may set the
constant of integration to zero, yielding

Aµ = (Φem(r), 0, 0, 0) = − Q√
r2 + ℓ2

(1, 0, 0, 0) . (137)

Note that this really is simply the electromagnetic potential from
standard Reissner–Nordström spacetime, −Q/r, under the map r 7→√

r2 + ℓ2.
It is easy to verify that the electromagnetic field-strength tensor

Fµν = ∇µ Aν −∇ν Aµ satisfies F[µν,σ] = 0. The inhomogeneous Max-
well equation is, using ϱ =

√
r2 + ℓ2,

∇µ̂Fµ̂ν̂ =
Qℓ2

ϱ6

√
ϱ2 − 2mϱ + Q2 (1, 0, 0, 0) . (138)
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The rotating case is significantly more involved. We can still isolate
the Q-dependent contribution to the total stress-energy

[TQ]
µ̂

ν̂ =
1

8π

Q2 (Σ− ℓ2)
Σ3

[
diag (−1,−1, 1, 1)

+
2ℓ2

Σ−ℓ2 diag (1, 0, 0, 0)
]

. (139)

This is structurally the same as what we saw happening for the
black-bounce–Reissner–Nordström spacetime, cfr. eq. (130), with the
substitutions

Q2r2

(r2 + ℓ2)3 ←→
Q2 (Σ− ℓ2)

Σ3 and
2ℓ2

r2 ←→
2ℓ2

Σ−ℓ2 . (140)

The first term in eq. (139) is structurally of the form of the Maxwell
stress-energy tensor, and the second term is structurally of the form
of charged dust. At first sight this seems to suggest that a similar treat-
ment as the one presented for the black-bounce–Reissner–Nordström
spacetime should lead to a consistent picture. However, as we shall
soon see below, the rotating case will prove much trickier.

6.3.2 Black-bounce–Kerr–Newman electromagnetic potential

The first step in carrying on the same interpretation for the stress-
energy tensor as in the non-rotating case is to introduce the electro-
magnetic potential. Clearly, there is no obvious way to derive such
potential, since we are not a priori specifying the equations of motion
for the electromagnetic sector. Therefore, we shall choose to modify
the Kerr–Newman potential in a minimal way, as we did for the black-
bounce–Reissner–Nordström, i. e. we shall perform the usual substitu-
tion r 7→

√
r2 + ℓ2. Thus, our proposal in Boyer–Lindquist coordinates

reads

Aµ = −Q
√

r2 + ℓ2

Σ
(
1, 0, 0,−a sin2 θ

)
. (141)

In the orthonormal basis one has

Aµ̂ = eµ̂
ν Aν = −Q

√
r2 + ℓ2√
Σ|∆|

(1, 0, 0, 0) . (142)

This is a minimal modification in the sense that, when we put a → 0,
the corresponding electrostatic potential is that of the black-bounce–
Reissner–Nordström spacetime eq. (137), and when ℓ → 0 we regain
the usual result for standard Kerr–Newman. The potential eq. (141)
is also compatible with the NJPs as outlined in [153] and as applied
to the black-bounce–Reissner–Nordström geometry.
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We can now compute the electromagnetic field-strength tensor Fµν.
In the orthonormal basis, its only non-zero components are

Ft̂r̂ = −Fr̂t̂ = −
Q
Σ2

√
r2

r2 + ℓ2 (r
2 + ℓ2 − a2 cos2 θ) , (143a)

Fθ̂ϕ̂ = −Fϕ̂θ̂ =
2aQ cos θ

√
r2 + ℓ2

Σ2 . (143b)

The homogeneous Maxwell equation is trivially satisfied F[µν,σ] = 0.
For the inhomogeneous Maxwell equation we find

∇µ̂Fµ̂ν̂ = Jν̂

=
Qℓ2

Σ7/2ϱ

(
−

∆
(
Σ2 + 2Σϱ2 − 4ϱ4)

ϱ2
√
|∆|

, 0, 0, 2a sin θ
(
Σ− 2ϱ2)) .

(144)

We interpret the right-hand side of eq. (144) as an effective electromag-
netic source. Note that in terms of the (orthonormal) components of
the electric and magnetic fields we have Er̂ = Ft̂r̂ and Br̂ = Fθ̂ϕ̂. It
is then easy to check that this implies that the Maxwell stress-energy
tensor eq. (131) is diagonal in this orthonormal basis and that

[TMaxwell]
µ̂

ν̂ =
E 2

r̂ +B2
r̂

8π
diag (−1,−1, 1, 1) (145)

independently of the specific values of Er̂ and Br̂. It is also useful to
check that

E 2
r̂ +B2

r̂ =
Q2

Σ2
r2

r2 + ℓ2 +
4Q2ℓ2a2 cos2 θ

ρ8 . (146)

6.3.3 Interpreting the black-bounce–Kerr–Newman stress-energy

All of the above treatment is a relatively straightforward generalisa-
tion of the Reissner–Nordström case and also provides the correct
limits for ℓ→ 0 and/or a→ 0. However, when one attempts to inter-
pret eq. (139) as the sum of the Maxwell stress-energy tensor eq. (145)
and a charged dust, an inconsistency appears in the form of extra
terms. Assuming some generalisation of the energy density of the
charged dust and working out the needed electromagnetic potential
also does not lead to satisfactory results.

In what follows, we shall present two alternative interpretations of
the stress-energy tensor, one based on a generalisation of the Maxwell
dynamics to a non-linear one, the other consisting of a generalisation
of the charged dust fluid to one with anisotropic pressure.

non-linear electrodynamics An alternative to identifying a
Maxwell stress-energy tensor in eq. (139) consists in generalising the
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decomposition of the charged part of the stress energy tensor adopted
in the Reissner–Nordström case to

[TQ]
µ̂

ν̂ = A [TMaxwell]
µ̂

ν̂ + Ξ Vµ̂Vν̂ . (147)

The multiplicative factorAwill soon be seen to be position-dependent,
and to depend on the spin parameter a and regularisation parameter
ℓ, but to be independent of the total charge Q. This sort of beha-
viour is strongly reminiscent of non-linear electrodynamics where
quite generically one finds [TNLED]

µ̂
ν̂ ∝ [TMaxwell]

µ̂
ν̂. The contribu-

tion Ξ Vµ̂Vν̂ is again that appropriate to charged dust. The 4-velocity
Vµ̂ is now the (non-geodesic) unit vector parallel to the timelike leg
of the tetrad.

If we now compare eq. (145) with [TQ]
µ̂

ν̂ as defined in eq. (147) we
identify

A =
Q2(Σ− ℓ2)/Σ3

E 2
r̂ +B2

r̂
=

Σ(Σ− ℓ2)(r2 + ℓ2)

Σ2r2 + 4a2ℓ2(r2 + ℓ2) cos2 θ
. (148)

We note that at small ℓ

A = 1−
a2 cos2 θ

(
3r2 − a2 cos2 θ

)
r2(r2 + a2 cos2 θ)2 ℓ2 +O

(
ℓ4
)

. (149)

So in the limit as ℓ → 0, we see that A → 1, restoring standard
Maxwell electromagnetism as would be expected for ordinary Kerr–
Newman.

Also, we observe the large distance limit

A = 1− 3ℓ2a2 cos2 θ

r4 +O
(
r−6) . (150)

That is, at sufficiently large distances, [TQ]
µ̂

ν̂ can safely be approx-
imated as a Maxwell-like contribution plus a charged dust, while at
small r we have

A =
ℓ2 + a2 cos θ2

4ℓ2 +O
(
r2) . (151)

This indicates a simple rescaling of the Maxwell stress-energy, (sim-
ilar to what happens in non-linear electrodynamics), deep in the core
of the black bounce.

Indeed, it is possible to further characterise the departure from
Maxwell-like behaviour by decomposing A = 1− a2ℓ2F , where

F =
cos2 θ

[
4(r2 + ℓ2)− Σ

]
Σ2r2 + 4a2ℓ2 cos2 θ(r2 + ℓ2)

. (152)

The motivation for doing so is to make utterly transparent the correct
limiting behaviour for A both for a→ 0, and for ℓ→ 0.
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anisotropic fluid As an alternative to the non-linear electro-
dynamics interpretation, we can instead generalise the pressureless
dust fluid we had introduced in the Reissner–Nordström case and
impose

[TQ]µ̂ν̂ − [TMaxwell]µ̂ν̂ = diag
(
ε f ,−p f , p f , p f

)
, (153)

which can be satisfied if

ε f =
Q2ℓ2

ϱ2Σ4

(
4ϱ4 − 7ϱ2Σ + Σ2

)
,

p f =
Q2ℓ2

ϱ2Σ4

(
4ϱ4 − 5ϱ2Σ + Σ2

)
. (154)

This implies that the right-hand side of eq. (153) can be interpreted,
formally, as the stress-energy of an anisotropic fluid. Specifically, it
can be written as

ε f Vµ̂Vν̂ +
p f

3
(

gµ̂ν̂ + Vµ̂Vν̂

)
+ πµ̂ν̂ (155)

with Vµ̂ = (1, 0, 0, 0) — i. e. (et̂)
µ̂ — the velocity of the fluid and

πµ̂ν̂ =
2p f

3
diag (0,−2, 1, 1) (156)

the (traceless) anisotropic shear [184]. Note that

p f ∝
(

4ϱ4 − 5ϱ2Σ + Σ2
)
=
(
4ϱ2 − Σ

) (
ϱ2 − Σ

)
∝ a2 cos2 θ. (157)

So in the limit a → 0 this anisotropic fluid reduces to the usual
charged dust.

6.4 geodesics and equatorial orbits

Having characterised the spacetime in terms of the effective matter
content, we shall now describe few notable orbits.

Consider a test particle with mass µ, energy E, component of an-
gular momentum (per unit mass) along the rotation axis Lz and zero
electric charge. Its trajectory xµ(τ) is governed by the following set of
first-order differential equations (see e. g. ref. [169]):

Σ
dt
dτ

= a(Lz − aE sin2 θ)

+
(r2 + ℓ2) + a2

∆
[E(r2 + ℓ2 + a2)− Lza] , (158a)

Σ
dr
dτ

= ±
√
R, (158b)

Σ
dθ

dτ
= ±
√

Θ , (158c)

Σ
dϕ

dτ
=

Lz

sin2 θ
− aE +

a
∆
[E(r2 + ℓ2 + a2)− Lza] , (158d)
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where

R = [E(r2 + ℓ2 + a2)− Lza]2

− ∆[µ2(r2 + ℓ2) + (Lz − aE)2 +Q], (159)

Θ = Q− cos2 θ

[
a2(µ2 − E2) +

L2
z

sin2 θ

]
, (160)

and Q is a generalised Carter constant associated to the existence of
a Killing tensor discussed in subsection 6.4.1 below.

In view of the existence of the Killing tensor, there exist orbits that
lie entirely on the equatorial plane θ = π/2. Exploiting the conserved
quantities, their motion is effectively one-dimensional and governed
by the effective potential R: circular orbits, in particular, are given by

R = 0 and
dR
dr

= 0 ; (161)

when, in addition,

d2R
dr2 > 0 , (162)

the orbits are stable.
Solutions to eq. (161) can be easily found by exploiting known res-

ults on the Kerr–Newman geometry [111, 285, 354, 362]. Indeed, writ-
ing eq. (159) in terms of ϱ =

√
r2 + ℓ2, one immediately recognises the

textbook result for a Kerr–Newman spacetime in which the Boyer–
Lindquist radius has been given the uncommon name ϱ. Moreover,

dR
dr

=
dϱ

dr
dR
dϱ

, (163)

so

dR
dϱ

= 0 =⇒ dR
dr

= 0 . (164)

Furthermore, at the critical point

d2R
dr2 =

(
dϱ

dr

)2 d2R
dϱ2 . (165)

So stability (or lack thereof) is unaffected by the substitution r ↔ ϱ.
Therefore, suppose ϱc is such that

R(ϱc) = 0 and
dR(ϱc)

dϱ
= 0 ; (166)

that is, suppose the Kerr–Newman spacetime has a circular orbit at
radius ϱ = ϱc, then the black–bounce-Kerr–Newman spacetime has a
circular orbit at r = rc =

√
ϱ2

c − ℓ2. Clearly, this mapping is allowed
only if ϱc ≥ ℓ.
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As a particular example, we report the coordinate location of the
light ring and the ISCO in the non-rotating limit, since these can easily
be found analytically — for the details of the computations, see [166].
For the light ring, we find (in our universe):

rph =

√
M
2

(
9M + 3

√
9M2 − 8Q2

)
− 2Q2 − ℓ2 ; (167)

in the limit as Q, ℓ → 0 we reproduce the standard Schwarzschild
result, rph = 3M, as expected. For the ISCO (again, in our universe),
we find:

rISCO =
1

MB

[
9M4Q4 − 6M2Q2

(
B2 + 2BM2 + 4M4

)
+
(

B2 + 2BM2 + 4M4
)2
− B2ℓ2M2

]1/2

(168)

where now

B =
[
2M2Q4 + M2 (±C− 9M2)Q2 + 8M6

] 1
3

,

C =
√

4Q4 − 9M2Q2 + 5M4 ; (169)

it is easily verified that in the limit as Q, ℓ → 0, rISCO → 6M, as
expected for Schwarzschild.

Non-circular and non-equatorial orbits, instead, require a more
thorough analysis: see section 8.2 for some further details.

6.4.1 Killing tensor and non-existence of the Killing tower

The existence of the generalised Carter constant Q introduced in the
previous section is guaranteed by the fact that the tensor

Kµν = Σ
(
lµnν + lνnµ

)
+
(
r2 + ℓ2) gµν (170)

is a Killing tensor; it is easy to explicitly check that K(µν;λ) = 0. Here

lµ =

(
r2 + ℓ2 + a2

∆
, 1, 0,

a
∆

)
and nµ =

1
2Σ
(
r2 + ℓ2 + a2,−∆, 0, a

)
(171)

are a pair of geodesic null vectors belonging to a generalised Kinners-
ley tetrad — see subsection 5.2.4.

Based on proposition 1.3 in [175], it has been established [24] that
when one defines the Carter operator KΦ = ∇µ (Kµν∇νΦ) and wave
operator □Φ = ∇µ (gµν∇νΦ) one has

[K,□]Φ =
2
3
(
∇µ [R, K]µ ν

)
∇νΦ . (172)
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This operator commutator will certainly vanish when the tensor
commutator [R, K]µ ν = Rµ

αKα
ν − Kµ

αRα
ν vanishes, and this tensor

commutator certainly vanishes for the black-bounce–Kerr–Newman
spacetime considered herein. Hence the wave equation (not merely
the Hamilton–Jacobi equation) separates on the black-bounce–Kerr–
Newman spacetime.

In the Kerr–Newman spacetime we started from, the Killing tensor
is part of a “Killing tower” which ultimately descends from the exist-
ence of a closed conformal Killing–Yano tensor — called a principal
tensor for short [171]. Such a principal tensor is a rank-2, antisymmet-
ric tensor hµν satisfying (in four spacetime dimensions) the equation:

∇µhνα =
1
3

[
gµν∇βhβα − gµα∇βhβν

]
. (173)

In the language of forms, h = hµν dxµ ∧ dxν is a non-degenerate two-
form satisfying

∇Yh = Y ∧ X , X =
1
3
∇ · h (174)

with Y any vector. (The equation above implies, incidentally, that h is
closed: dh = 0, so that locally h = db.) The Hodge dual of a principal
tensor is a Killing–Yano tensor, i. e.

f = ∗h is such that ∇µ fνα +∇ν fµα = 0 . (175)

A Killing–Yano tensor, in turn, squares to a tensor

kµν = fµα f α
ν (176)

that is a Killing tensor; k(µν;λ) = 0.
We may thus wonder whether the Killing tensor eq. (170) derives

from a principal tensor, as in the Kerr–Newman case. Naively, one
may want to apply the usual trick r 7→

√
r2 + ℓ2 to the Kerr–Newman

principal tensor, or to the potential b (the two options are not equival-
ent). By adopting the first strategy, one finds a “would-be” Killing–
Yano tensor that does indeed square to eq. (170) but fails to satisfy
eq. (175). The second approach also fails.

In fact, one can prove that no principal tensor can exist in this
spacetime. The system eq. (173) is overdetermined and has a solu-
tion only if a certain integrability condition is satisfied: this condi-
tion implies that the corresponding spacetime be of Petrov type D.
However, the discussion in subsection 5.2.4 proves that the black-
bounce–Kerr spacetime is not algebraically special, hence neither can
the black-bounce–Kerr–Newman spacetime be algebraically special.
More prosaically, the non-existence of the Killing tower can be seen
as a side effect of the fact that our black-bounce–Kerr–Newman geo-
metry does not fall into Carter’s “off shell” two-free-function distor-
tion of Kerr [171].
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For reference, here is the would-be Killing–Yano tensor:

fµν =


0 −a cos θ 0 0

a cos θ 0 0 −a2 cos θ sin2 θ

0 0 0 0

0 a2 cos θ sin2 θ 0 0



+ ϱ sin θ


0 0 a 0

0 0 0 0

−a 0 0 (ϱ2 + a2)

0 0 −(ϱ2 + a2) 0

 . (177)

This would-be Killing–Yano tensor is taken from [171, eq. (3.22), p. 47],
with coordinates changed to Boyer–Lindquist form, and with the sub-
stitution r 7→

√
r2 + ℓ2 in the tensor components. It is easy to check

that “ f 2 = K”, but

∇(µ fν)α =
(√

r2 + ℓ2 − r
)
× [tensor, finite as ℓ→ 0] . (178)

(This manifestly vanishes when ℓ → 0, as it should to recover the
Killing–Yano tensor of the Kerr–Newman spacetime.) Its divergence
is in fact particularly simple:

∇µ f µν =

[(√
r2 + ℓ2 − r

) 2a cos θ

Σ

]
(1, 0, 0, 0) . (179)

(This again manifestly vanishes when ℓ→ 0, as it should.)
Note that if one instead takes

bµdxµ = −1
2
(r2 + ℓ2 − a2 cos2 θ)dt

− 1
2
[
−r2 − ℓ2 + (r2 + ℓ2 + a2) cos2 θ

]
adϕ, (180)

as in ref. [171, eq. (3.21), p. 47], converted to Boyer–Lindquist coordin-
ates, and subjected to the substitution r 7→

√
r2 + ℓ2, one finds

fµν ̸= ∇µbν −∇νbµ . (181)

(This is not surprising since derivatives are involved.)

6.5 chapter wrap-up

We have seen that adding an electromagnetic charge to the black-
bounce–Kerr metric leads to the black-bounce–Kerr–Newman metric,
which is a minimal, one-parameter deformation of the entire Kerr–
Newman family with the desirable properties that it simultaneously
(i) passes all weak-field observational tests, (ii) is globally regular (no
curvature singularities), and (iii) neatly interpolates between a RBH
and a charged traversable wormhole.
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While adding an electromagnetic charge to the black-bounce–Kerr
spacetimes in this manner is maybe not of direct astrophysical import-
ance (since in any plausible astrophysical situation |Q|/M ≪ 1), it is
of considerable theoretical importance, as it gives us an entirely new
class of relatively clean everywhere regular BHs to work with. Indeed,
we have seen that such geometries present interesting theoretical fea-
tures such as the existence of a Killing tensor without the presence
of the full Killing tower (principal tensor, Killing–Yano tensor) or the
fact that the charge-dependent component of the stress-energy for
the black-bounce–Kerr–Newman spacetime has a rather non-trivial
physical interpretation. In particular, we found that it can either be
interpreted as charged dust together with a non-linear modification
to standard Maxwell electromagnetism, or as standard Maxwell elec-
tromagnetism together with an anisotropic fluid.

While there is no simple way to remove this ambiguity, we can how-
ever notice that it appears at least problematic to justify from a phys-
ical point of view the introduction of a non-linear electrodynamics
for the black-bounce–Kerr–Newman spacetime, given that the latter
is not required for consistency with GR of the black-bounce–Reissner–
Nordström or the black-bounce–Kerr spacetime. This seems to sug-
gest that the anisotropic fluid interpretation might be more natural.



7
S C A L A R P E RT U R B AT I O N S O N
B L A C K - B O U N C E – K E R R S PA C E T I M E S

At the end of chapter 5 we mentioned that one compelling question
concerning the black-bounce–Kerr is whether it can be stable over as-
trophysical timescales when perturbed by a small amount of matter.
Indeed, as hinted to at the end of subsection 2.2.2, observations sug-
gest that isolated astrophysical BHs, though never really in a vacuum,
are well described by vacuum solutions of GR, meaning that the back-
reaction of matter onto the geometry is often negligible. Hence, we
said that stability is a necessary requirement for any effective model
that aims to be phenomenologically viable.

A simple and popular test of stability consists in the computation
of quasi-normal modes (QNMs) [56, 222, 225, 253, 289]. Such com-
putation is typically performed in the context of perturbation theory,
whereby a test perturbation field is made to propagate “on top” of
a fixed background geometry, and is therefore relatively insensitive
to the specific theory the geometry is a solution of. It is however
sensitive to the boundary conditions one imposes at infinity and at
the horizon (or at the throat, in the case of a wormhole). Hence any
modification to the near-horizon geometry is expected to affect the
QNM spectrum.

In Kerr BHs, all QNMs are decaying functions of time, meaning
that in this geometry small perturbations are dissipated away — the
Kerr spacetime is therefore perturbatively stable. That the same is
true for other BHs is not obvious; even less so if the spacetime is hori-
zonless but possesses an ergoregion. This is because, in the absence of
an horizon, negative-energy modes are (partially) reflected by the ob-
ject and can therefore accumulate inside the ergoregion — producing
the so-called ergoregion or superradiance instability [9, 77, 102, 168, 191,
298]. For instance, a very compact and rapidly rotating BH mimicker
with a highly reflective surface would be prone to such instability
[108, 109, 139, 250, 251, 292, 372], although absorption by the object’s
surface might quench the effect.

Notably, QNMs are also of great observational interest, since they
describe a geometry’s response to a localised perturbation. Moreover,
they characterise the ringdown following the merger of multiple ob-
jects. In this respect, the most (and so far the only) interesting QNMs

are those of gravitational (helicity-2) perturbations, which can be de-
tected in gravitational-wave signals. However, vector (helicity-1) and
scalar (helicity-0) perturbations are often considered too, because they
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are simpler to deal with and their behaviour often mirrors that of
gravitational perturbations.

Measuring multiple QNMs originating from the same object, such
as a remnant resulting from a binary merger, would thus allow for
testing GR and deviations thereof, as well as the no-hair conjecture
and the Kerr hypothesis — a program that goes by the name of BH
spectroscopy [5, 60, 105, 110, 112, 227, 252, 254]. Moreover, QNMs from
an horizonless object might get repeatedly reflected by the surface
and by the potential barrier, thus generating a train of “echoes” that
could in principle be detected in ringdown signals [4, 11, 84, 87, 103,
104, 106, 107, 274, 281, 351].

The BH spectroscopy programme has recently come into question,
as it was realised that the QNM spectrum is generically unstable,
i. e. small changes in the geometry, possibly due to environmental ef-
fects, can result in very large changes in the frequencies [115, 207, 208].
The relevance of this findings for time-domain gravitational-wave sig-
nals is however still debated [58].

This chapter is thus devoted to the study of scalar test-field per-
turbations on top of a black-bounce–Kerr spacetime. Specifically, we
first describe some general properties of the scalar wave equation
on this background in section 7.1. Then, in section 7.2, we compute
the QNMs for massless perturbations; when the background is a tra-
versable wormhole, we further search for unstable modes. Finally, in
section 7.3, we endow the field with a mass and study superradiance
by computing the spectrum of the amplification factors.

7.1 scalar perturbations

In studying perturbations, it is convenient to upgrade the quantity
ϱ =

√
r2 + ℓ2 to a coordinate and work with the following form of

the metric

ds2 =−
(

1− 2Mϱ

Σ

)
dt2 +

Σ
δ∆

dϱ2 + Σ dθ2

− 4Maϱ sin2 θ

Σ
dt dϕ +

A sin2 θ

Σ
dϕ2 (182)

with now

Σ = ϱ2 + a2 cos2 θ, ∆ = ϱ2 − 2Mr + a2, δ = 1− ℓ2

ϱ2 , (183a)

A =
(
ϱ2 + a2)2 − ∆a2 sin2 θ . (183b)

With these coordinates (t, ϱ, θ, ϕ) we recognise the metric in eq. (182)
as a particular case of the Johannsen family [210, 211]. Recall that
ϱ ≥ ℓ, with ϱ = ℓ representing the wormhole throat; and that hori-
zons, if any, are located at ϱ = ϱ± with

ϱ± = M±
√

M2 − a2 . (184)
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As discussed in chapter 5, the deviations from GR, quantified by
the effective sources, fall off very quickly as one moves away from the
object. Namely, the effective energy density and pressures all scale as
∼ ϱ−4 (technically, as r−4 = (ϱ2 − ℓ2)−2). Therefore, for all practical
purposes the spacetime is effectively vacuum.

This means that a test scalar field Φ, with mass mΦ = ℏµ, will
evolve according to the Klein–Gordon equation □Φ = µ2Φ — where
d’Alembert’s □ operator is determined by eq. (182).

Assuming the decomposition1 Φ = eimϕe−iωtS(θ)R(ϱ), with m and
ω being the azimuthal number and the frequency of the perturbation,
the Klein–Gordon equation separates (cf. the discussion in chapter 6)
into an angular equation

1
sin θ

d
dθ

(
sin θ

dS
dθ

)
+

(
a2 (ω2 − µ2) cos2 θ + Alm −

m2

sin2 θ

)
S = 0 , (185)

which is the spheroidal harmonics equation, whose eigenvalues Alm
are characterised by the harmonic number l; and a radial equation

√
δ

d
dϱ

(√
δ∆

dR
dϱ

)
+

(
K2

∆
− µ2ϱ2 − λ

)
R = 0 , (186)

where K =
(
ϱ2 + a2)ω − am and λ = Alm − 2amω + a2ω2. Eq. (185)

is exactly what one would find in the Kerr geometry, while eq. (186)
is a distortion of its Kerr analogue due to the presence of δ.

In the non-rotating limit, eq. (185) reduces to the spherical har-
monics equation with eigenvalues Alm = l(l + 1). More generally,
eq. (185) must be solved perturbatively in aω or numerically [57]. In
our computations, we have evaluated the angular eigenvalue both
numerically with the Leaver method [234] and approximately with a
high-order expansion in aω.

For the radial equation, on the other hand, two limits are worth con-
sidering: one corresponding to spatial infinity, i. e. ϱ→ ∞, and one to
the near-horizon or near-throat region, depending on the background
geometry.

At spatial infinity, the radial function has the following asymptotic
behaviour

R(ϱ) ∼ 1
ϱ

eqϱϱM(µ2−2ω2)/q , q = ±
√

µ2 −ω2 . (187)

The sign of the real part of q determines the behaviour of the wave-
function at ϱ → ∞. If Re(q) > 0 the solution diverges, while for

1 Contrary to other chapters, here the symbol R denotes the radial wavefunction and
not the Ricci scalar; similarly, the symbol S stands for the angular wavefunction
and not the action. These minor inconsistency should not generate confusion, as the
meaning of the symbols is clear from context.
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Re(q) < 0 the solution tends to zero. The general solution will be a
linear combination of both cases.

In the massless case, eq. (187) reduces to a simpler form,

R(ϱ) ∼ 1
ϱ

e±iωϱϱ±2iMω (188)

where the plus (minus) sign corresponds to outgoing (ingoing) waves.
It is to be noted that the asymptotic solution at spatial infinity is
independent of the parameter ℓ, but for determining the near-horizon
or near-throat asymptotic solution, ℓ would play an important role,
which we explore now.

When the regularisation parameter ℓ satisfies ℓ < ϱ+, the metric in
eq. (182) describes a RBH and the two independent solutions close to
the event horizon behave as

R(ϱ) ∼ (ϱ− ϱ+)
±iσ ,

σ =
am− 2Mωϱ+
γ (ϱ+ − ϱ−)

, γ =

√
1− ℓ2

ϱ2
+

. (189)

For traversable wormholes with regularisation parameter ℓ > ϱ+,
close to the throat the two linearly independent solutions are asymp-
totic to

R(ϱ) ∼ exp

(
±

iω̃
(
a2 + ℓ2)√2ℓ(ϱ− ℓ)

∆(ℓ)

)
,

ω̃2 =

(
ω− am

a2 + ℓ2

)2

−
∆(ℓ)

(
ℓ2µ2 + λ

)
(a2 + ℓ2)2 − ∆(ℓ)2

(a2 + ℓ2)3 , (190)

where ∆(ℓ) means ∆ evaluated at ϱ = ℓ.
In the particular case in which the throat of the wormhole becomes

a null surface and coincides with the black-hole horizon, i. e. for ℓ =

ϱ+, the corresponding solutions are of the form

R(ϱ) ∼ exp

(
±i

am− 2Mωϱ+
ϱ+ − ϱ−

√
2ℓ

ϱ− ℓ

)
. (191)

In eqs. (189) to (191) the plus (minus) sign corresponds to outgoing
(ingoing) waves.

7.1.1 Boundary conditions

For determining the QNMs or the superradiant amplification factors,
one needs to supplement eq. (186) with appropriate boundary condi-
tions. Such boundary conditions define the physical problem at hand
and depend on whether the spacetime contains a BH or not.

QNMs encode the scalar’s late-time response to an initial perturb-
ation that is localised in space. For this reason, we demand purely
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outgoing waves at spatial infinity. In the RBH case, we further de-
mand that no radiation comes out of the horizon. The null throat
case is analogous to the RBH, in this respect: As can be deduced
by inspecting the conformal diagrams of figure 3b, in this case the
wormhole throat coincides with the horizon and is therefore a causal
boundary. (The only causal curves that reach ϱ = +∞ after having
crossed ϱ = ℓ originated from the “other universe” in the past ana-
lytical extension of the spacetime.) Hence, we impose purely ingoing
boundary conditions at the null throat. When ℓ > ϱ+, instead, the
throat is traversable in both directions and the “two universes” are
causally connected. Since the geometry on the two sides of the worm-
hole is symmetric, we assume that the scalar field will inherit the
symmetry of the background. This assumption translates into perfect
reflection at the throat, which we implement by demanding R(ℓ) = 0.
Alternatively, one can require the derivative of the radial function to
vanish at the throat; such Neumann boundary conditions are associ-
ated to another family of QNMs, whose computation is beyond our
scope.

Superradiance is, in essence, a scattering experiment whereby an
ingoing wave is sent in from infinity, it scatters off the compact object
and is then measured again at infinity. As both ingoing and outgoing
radiation must be present at spatial infinity, we allow for both solu-
tions of eq. (190). For RBHs and null wormholes, the conditions at
the inner boundary (i. e. at the horizon) are the same we impose for
the QNMs computation. In the traversable wormhole case, however,
the assumption of perfect reflection at the throat is no longer justi-
fied. Indeed, that assumption would entail that the same scattering
experiment is performed simultaneously in the “two universes”. We
rather resolve to study superradiance from the perspective of “our
universe” alone, thus assuming no ingoing radiation at infinity in
the “other universe”; of course, it is possible to do otherwise, but
that investigation lies beyond the scope of this chapter. Under this
circumstance, a simple argument — which we report in section 7.3
— ensures that no superradiant amplification can occur, regardless of
the exact boundary conditions imposed at the throat. Our choice of
boundary conditions is summarised in table 3.

Clearly, other choices of boundary conditions are possible. For in-
stance, the symmetry between the “two universes” could easily be
broken, e. g. by the presence of some matter on one side of the worm-
hole but not the other; if this were the case, perfect reflection at the
throat could not be justified. Alternatively, one could imagine a situ-
ation in which the background is still symmetric but the perturbation
is not, as in a scattering problem whereby a wavepacket is prepared in
“our universe” and sent towards the object; in such a case, boundary
conditions at the throat might not be needed at all. Finally, one might
envisage a scenario in which the exotic matter that keeps the worm-
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Inner boundary

regular black hole (ℓ < ϱ+) pure absorption, cf. eq. (189)

null-throat wormhole (ℓ = ϱ+) pure absorption, cf. eq. (191)

traversable wormhole (ℓ > ϱ+) (QNMs) pure reflection, R(ℓ) = 0

Infinity, cf. eqs. (187) and (188)

QNMs purely outgoing

superradiance ingoing and outgoing

Table 3: Behaviour of the radial function close to the inner boundary, i. e. the
horizon for regular black holes and the throat for wormholes, and
asymptotically, according to the physical problem under investiga-
tion.

hole open is not transparent to the perturbation; this would make
the dynamics non-conservative even at the test-field level. All these
possibilities, though interesting, lie beyond the scope of this work.

7.2 qnms and (in)stability

QNMs can be obtained by various analytical methods but the com-
plicated form of the potential makes it difficult to solve the perturb-
ation equation without added assumptions or imposing restrictions
on the parameter space. In this section, we focus on obtaining the
QNMs numerically by the direct integration and shooting techniques.
This approach is valid both for the BH and the wormhole branches.
For the RBHs, the QNMs can also be approximated using the more
analytic Wentzel–Kramers–Brillouin (WKB) approach [197, 312], and
its generalisation to rotating backgrounds [221, 314]. Below we first
detail the two methods, then present our results.

7.2.1 Methods

7.2.1.1 Direct integration

The direct integration technique [114] works as follows. First, consider
the non-rotating case. For the BH, we integrate eq. (186) supplied
with the correct boundary conditions both from infinity and from
the horizon to an intermediate point (typically the maximum of the
scalar potential) and then we shoot for the value of ω such that the
radial function and its derivative are continuous at the intermediate
point. The same procedure is followed for the null-throat wormhole,
though this case is technically more subtle — we provide more detail
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in section 8.4. For the wormhole, we only integrate from infinity and
shoot for the value of ω such that the solution is zero at the throat.

In practice, infinity is taken to be at some large value of ϱ — e. g. 75M.
Similarly, the integration must start or stop a small distance away
from the horizon or the throat, since the coefficients of the differen-
tial equation diverge there. These parameters, along with the location
of the intermediate point, are varied by small amounts in order to
assess the stability of our numerical results, which are stable within a
numerical accuracy of, typically, order 10−3 or less. Moreover, shoot-
ing requires an initial guess for the value of the QNM frequency ω. In
the BH case, we looked for solutions in the vicinity of the tabulated
value of the corresponding fundamental QNM of Kerr. The worm-
hole case requires a more thorough mapping of the solutions to the
eigenvalue problem.

For the rotating case, starting with a small value of a/M, we start
by considering the non-rotating QNM frequencies as initial guess val-
ues and then we solve for the angular eigenvalue. Next, we integrate
the radial equation as in the non-rotating case and we shoot for the
frequency ω. We repeat this procedure as long as the frequency ω con-
verges to a constant value; in practice, this is often achieved within
five iterations. The QNM frequencies for configurations with higher
values of a/M are determined by using the previous frequency as
initial guess and following their behaviour as a function of the spin
parameter.

7.2.1.2 WKB

Alternatively, for RBHs and null-throat wormholes, the QNMs can be
determined with the WKB approach.

Let us begin with the non-rotating case again. In a nutshell, the
WKB approximation connects two solutions in a matching region,
and gives the best results when the matching region is around the
maximum of the scalar potential, which in this case does not de-
pend on the frequency of the perturbation. Hence, the potential can
be Taylor-expanded around the maximum of the potential and, at
leading order, the QNM frequencies are given by

ω2 = V0 − i
√
−2V ′′0

(
n +

1
2

)
, n = 0, 1, . . . , (192)

where a prime represents a derivative with respect to the tortoise co-
ordinate, and the subscript “0” means evaluated at the maximum of
the potential. The integer n is the overtone number and the QNM
with n = 0 is called the fundamental mode. Higher-order correc-
tions to this equation have been computed, as well as approaches
to increase its accuracy [196, 197, 223, 226, 266]. In our computations,
good agreement with the numerical results are achieved considering
a fourth-order approximation. This is also motivated by the fact that
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for scalar perturbations in a Kerr background, especially for the low-
est l values, agreement of order 3% with numerical results requires at
least a fourth-order WKB approximation [226].

The rotating case is more involved, as the scalar potential and the
angular eigenvalues do depend on the frequency. The strategy in this
case is to work perturbatively in powers of aω. For aω sufficiently
small, we expect to obtain good accuracy with this truncated series.
In our computations, we have considered orders up to the sixth —
the highest for which analytical results are available. This choice al-
lows us to explore intermediate values of the spin parameter. The
procedure to determine the QNM frequency is then, in essence, equi-
valent to the WKB method in the non-rotating case, and we need to
numerically solve an equation of the form

ω2 = f (a, ω, ℓ, n, l, m) , (193)

in order to determine ω, given a, ℓ, n, l and m. Generically, eq. (193)
will contain a number of spurious roots which we discard by starting
with the well-defined solution for a = 0 and following the roots for
increasing a/M.

7.2.2 Results

7.2.2.1 Regular black holes

Some of our results are presented in figure 11, where solid lines are
obtained with the direct integration method, while dashed lines come
from the WKB method. We verified that the results are not affected
significantly by changes in the parameters entering our numerical
routines (i. e. the locations of the numerical infinity, of the numerical
horizon and of the intermediate point). Clearly, the two methods are
in good agreement for a ≲ 0.5M, although less so for the l = m = 0
mode. This is not surprising, as the WKB approximation is expected
to hold best for values of l larger than the spin of the perturbation
(l > 0 in this case). In the non-rotating limit, our results are also in
agreement with those in [118], obtained both with the WKB and time-
domain methods. The fundamental QNM frequencies, as presented
in figure 11, show a clear dependence on the regularisation parameter
ℓ, though the relative variations in their magnitude are rather mild.
Each fundamental mode is accompanied by a whole tower of over-
tones which can in principle be computed with the same methods.

7.2.2.2 Null-throat wormholes

As mentioned before and as explained in detail in section 8.4, the
null-throat case is technically more involved than the RBH one. The
structure of the space of solutions is also more complex, as multiple
modes (all stable) lie close to one another. As a result, we need higher
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Figure 11: QNMs for RBHs and null-throat wormholes (empty circle for the
ℓ = r+ case): real (top panels) and imaginary parts (bottom pan-
els) of the QNM frequencies have been plotted as functions of
the dimensionless regularisation parameter (ℓ/M), for the first
few l = m modes, for selected values of the spin parameter. The
solid lines arise out of the direct integration scheme; while the
dashed lines correspond to the WKB approximation, valid up to
a/M ≲ 0.5.

accuracy in our numerical routines and very precise initial guesses
for the shooting. Otherwise, it is possible for small variations in the
spacetime and in the integration parameters to cause the numerical
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routine to “jump” between nearby modes, e. g. from the fundamental
mode to an overtone.

Despite the hurdles, a solid qualitative picture does emerge: worm-
holes with a null throat are stable, in the sense that their QNMs have
negative imaginary part; and in all of the cases we have studied there
exists a mode that can be reached along the curves of figure 11, the
empty circle, in the limit ℓ → ϱ+

2. In other words, wormholes with
a null throat seem to be phenomenologically akin to RBHs, and a
limiting case thereof, in all respects hereby considered.

7.2.2.3 Wormholes

Given the different boundary conditions, there is no reason to expect
that the curves of figure 11 will cross over smoothly to the wormhole
branch. Lacking guidance from known results, the frequency space
had to be spanned more broadly in order to confidently identify
the QNMs. More specifically, we considered a rectangular grid of
points in the Im(ω)-[Re(ω) > 0] space, wide enough to enclose our
rough expectations for the QNM frequency, and computed the quant-
ity arg[R(ℓ)]. A plot of this quantity permits to visually locate the
zeroes of R(ℓ) in the frequency space, since the argument yields a
recognisable pattern around them.3 In this way, we were able to pick
accurate guesses for our shooting routine.

As a result of this investigation, we were able to pinpoint a “funda-
mental” QNM, which we tracked under changes of the rotation para-
meter a and regularisation parameter ℓ — see figure 12. This mode is
stable and is the least damped of a family of stable modes, which we
identify as the overtones.

In addition to these, for high enough values of the spin parameter,
and for Re(ω) < mΩH, being ΩH the would-be horizon angular ve-
locity, a second family of QNMs appears. All of the modes in this
second family are unstable; the imaginary parts of their QNM frequen-
cies are very small, but positive, and span several orders of magnitude,
between approximately 10−6/M and 10−15/M, corresponding to in-
stability timescales in the approximate range 10 to 1010 (M/M⊙) s.
For some specific cases, a few of these modes have been presented in
figure 13.

Once again, the qualitative picture presented herein is unaffected
by changes in the parameters that specify the numerical routines (the
values of the numerical infinity and of the numerical throat). How-
ever, as in the null-throat wormhole case, high accuracy and precise
initial guesses for the QNM frequencies are required in our numer-
ical routine, otherwise the numerical value of the QNM frequencies
found with the shooting technique could not converge. Furthermore,

2 In same cases, the empty circle seems not to lie on the BH curve: this is due solely
to numerical precision.

3 This is analogous to what the Mathematica’s ComplexPlot function does.
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Figure 12: QNMs for rotating wormholes: real (top panels) and imaginary
parts (bottom panels) of the QNM frequencies have been plotted
as a function of the dimensionless parameter ϵ = (ℓ/ϱ+)− 1, de-
picting how much the wormhole throat is shifted from the would-
be black-hole horizon. We have presented the QNM frequencies
for the first few l = m modes, for selected values of the spin para-
meter.

when changing the spacetime parameters for not-so-close-by config-
urations, the shooting can jump from the fundamental mode to an
overtone, meaning that we had to consider a quite narrow paramet-
ers grid. Despite these numerical difficulties, our results clearly show
that there are unstable modes for the traversable wormhole configur-
ations.

Our results on the instability timescale are compatible with those
in [109], where Kerr-like wormholes are modelled by the Kerr metric
with a mirror at finite Boyer–Lindquist radius larger than the would-
be horizon.

7.3 superradiance for regular black holes

The existence of an ergoregion, and the fact that some of its features
depend on ℓ, motivate an investigation into the phenomenon of super-
radiance: bosonic waves propagating on top of a Kerr BH background
can get amplified at the expense of the hole’s rotational energy. It is
reasonable to expect that the same will happen in a black-bounce–
Kerr background, though to a different degree — cf. [168]. In what



92 scalar perturbations on black-bounce–kerr spacetimes

a/M=0.5

l=m=1
l=m=2

0.001

0.005
0.010

0.050
0.100

R
e
[ω
M
]

5×10-4 10-3 5×10-3 10-2

10-15
10-14
10-13
10-12
10-11
10-10
10-9

ϵ

Im
[ω
M
]

a/M=0.9

l=m=1
l=m=2

0.05

0.10

0.20

0.50

R
e
[ω
M
]

0.001 0.01 0.05
10-10

10-9

10-8

10-7

ϵ

Im
[ω
M
]

a/M=0.99

l=m=1
l=m=2

0.01

0.05

0.10

0.50

1

R
e
[ω
M
]

0.001 0.01 0.050.1

10-9

10-8

10-7

10-6

ϵ

Im
[ω
M
]

Figure 13: Unstable QNMs for rotating wormholes: real (top panels) and
imaginary parts (bottom panels) of the QNM frequencies have
been presented as a function of the dimensionless regularisation
parameter ϵ = (ℓ/ϱ+)− 1, for the first few unstable l = m modes
for selected values of the spin parameter. As evident, the imagin-
ary part of the QNM frequencies are positive, signalling instabil-
ity.

follows we first build an intuition on the relevant physics by analys-
ing the Penrose process in the vicinity of a black-bounce–Kerr RBH,
then compute the spectrum of superradiant amplification, for mass-
less and massive scalar fields and for different values of ℓ.

We do not repeat the same analysis for the wormholes, as these
are known to yield no supperadiant amplification according to an
argument presented in [224]. To understand why, think of a scattering
experiment whereby a monochromatic wave, with amplitude I, is
sent from past null infinity in our universe towards the wormhole:
part of the radiation will be reflected and part will be transmitted,
will cross the throat and reach the future null infinity in the other
universe. Let the amplitudes of the reflected and transmitted waves
— as read off at infinity — be R and T, respectively. As a consequence
of the equation of motion, one can write the following relation

−iωour(|I|2 − |R|2) = −iωother|T|2 (194)

(the two sides of the equation are nothing but the Wronskian, which
is ϱ-independent, computed at infinity in our universe, on the left,
and in the other, on the right). Crucially, because of the symmetry of
the spacetime the frequency of the wave at infinity in our and in the
other universe coincide, ωour = ωother. Hence |R|2 ≤ |I|2, i. e. superra-
diant amplification cannot happen. As already mentioned in discuss-
ing boundary conditions in subsection 7.1.1, alternative scenarios can
be conceived; their exploration however lies beyond the scope of this
chapter.
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7.3.1 The Penrose process around regular black holes

Classical analyses of the maximal efficiency of the Penrose process [294]
are summarised in [113] — see also [44, 228, 358]. In this framework,
one typically considers particles on the equatorial plane and splitting
at their turning points, i. e. with vanishing radial velocities; and fur-
ther notices that the most efficient extraction of energy requires both
decay products to be photons. One finds

η =
Eoutput − Einput

Einput
=

1
2

(√
1 + gtt − 1

)
, (195)

where gtt must be evaluated at the point of splitting. Hence, the max-
imal efficiency is achieved for particles splitting at the inner edge of
the ergoregion and its value is governed by the magnitude of gtt at
that point. (For an extremal Kerr black hole one finds η ≈ 20%.)

Since in our spacetime the component gtt is the same as in Kerr, we
must conclude

ηmax =
1
2

(√
2M

ϱ̃
− 1

)
where ϱ̃ = max(ϱ+, ℓ); (196)

i. e. the maximal efficiency of the Penrose process is completely in-
sensitive to ℓ as long as this is smaller than ϱ+.

This argument, however, does not provide a complete picture of the
energetics of the Penrose process. Indeed, if we aim at using it to gain
insight into other processes linked to the ergoregion, we cannot limit
our attention to its maximal efficiency and the many assumptions that
this brings about. In particular, we should consider decays that take
place at any point in the ergoregion, not just its inner edge, and —
crucially — away from the turning point.

Let us stick to equatorial motion. Take a particle with energy (per
unit mass) E and angular momentum (per unit mass) along the ro-
tation axis Lz; let µ = 1 if the particle is massive and µ = 0 if it is
massless. Its motion is effectively one-dimensional and governed by

ϱ2ϱ̇2

δ
= T (197)

where the dot denotes differentiation with respect to an affine para-
meter along the geodesic and

T = τ1E2 − 2τ2E + τ3 , (198)

τ1 = ϱ4 + a2(ϱ2 + 2Mϱ), (199)

τ2 = 2aMLzϱ, (200)

τ3 = L2
za2 − ∆(µ2ϱ2 + L2

z) . (201)

We may write eq. (197) as

τ1E2 − 2τ2E + τ̃3 = 0 (202)
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with τ̃3 = τ3 − ϱ2ϱ̇2/δ, which has formally two roots

V± =
τ2 ±

√
τ2

2 − τ1τ̃3

τ1
= ΩLz ±

√
Ω2L2

z − τ̃3/τ1 ; (203)

here Ω = −gtϕ/gϕϕ is the angular velocity of frame dragging. Actu-
ally, only the root V+ is acceptable, since it must be E > ΩLz for the
particle’s momentum to be future-directed.

Since δ ≤ 1, we have that τ̃3 ≤ τ̃3
∣∣
ℓ=0 and therefore V+ ≥ V+

∣∣
ℓ=0.

Thus, particles moving in this spacetime are generically more energetic
than their counterparts in Kerr. When in particular E < 0, i. e. for Pen-
rose’s negative energy states, |E| ≤ |E|

∣∣
ℓ=0: these are “less negative”

than their Kerr counterparts, ceteris paribus.
We would like to emphasise that the above analysis involving the

Penrose process is a warm up exercise, while our main aim is to study
superradiance. Our results demonstrate that there are certain quant-
ities associated with the Penrose process, e. g. maximal efficiency,
which are independent of the parameter ℓ, while some others, e. g. en-
ergy extraction by a particle in radial motion with a fixed angular mo-
mentum, predict smaller values, in the same coordinate chart as Kerr.
Of course, this is not conclusive and does not exhaust all possible
scenarios involving the Penrose process, but is one indication towards
less amount of energy being extracted from such RBHs. This prompts
us to study the superradiance of the black-bounce–Kerr spacetime in
detail.

7.3.2 Numerical results

Consider first an incident massless wave with amplitude I coming
from infinity and producing a reflected wave with amplitude R. The
asymptotic solution to eq. (186) can be written as

R ∼ I e−iωϱϱ−2iMω−1 +R eiωϱϱ2iMω−1 . (204)

The black-bounce–Kerr spacetime is asymptotically indistinguish-
able from the Kerr spacetime, hence the energy fluxes of scalar fields
at infinity can be defined by the above asymptotic behaviour exactly
as in the Kerr spacetime [328]. In particular, the ingoing and outgoing
fluxes are proportional to the modulus of the amplitudes, and we can
define a quantity Z0,l,m which gives the amplification or absorption
factor for scalar waves with quantum numbers (l, m) off a BH. In this
case,

Z0,l,m =
dEout

dEin
− 1 =

|R|2
|I|2 − 1 . (205)

In the Kerr spacetime, for massless scalar fields, this quantity can be
positive only for frequencies satisfying [77]

ω < mΩH , (206)
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Figure 14: Spectra of the amplification factor for a massless scalar with
l = m = 1 off a RBH with a = 0.99M for selected values of
the regularisation parameter.

where ΩH is the horizon angular velocity. The same reasoning can be
applied to our case yielding an identical result. The angular velocity
of the horizon of the RBH in the black-bounce–Kerr scenario, is still
given by

ΩH =
a

2Mϱ+
, (207)

as in Kerr. Thus, we expect the superradiant interval not to depend
on ℓ.

For generic values of the frequency, the angular and radial equa-
tion must be integrated numerically. For each couple (l, m) and value
of aω we first compute the angular eigenvalue and then we integrate
the radial equation for a fixed value of ℓ from the horizon with ingo-
ing boundary conditions until a sufficiently large radius. Our numer-
ical solution is compared to the expansion in eq. (204) to extract the
amplitudes and finally determine the amplification factor Z0,l,m. To
increase the accuracy of these computations, we have used a higher-
order expansion near the horizon and at infinity.

To obtain a spectrum of the amplification factor, we repeat the
routine for several values of ω for different values of the BH para-
meters and the scalar field quantum numbers. An example of our
results is shown in figure 14 for an l = m = 1 scalar wave scattered
off a highly spinning BH with a/M = 0.99 and selected values of the
regularisation parameter ℓ.

Similarly to what happens for a Kerr BH, the amplification factor is
larger for higher values of the spin parameter and for the minimum
allowed value of l = m, i. e. l = m = 1. Modes with m ≤ 0 are not su-
perradiant while the phenomenon is less pronounced for other values
of (l, m). Figure 14 confirms the general arguments in subsection 7.3.1
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on the Penrose process and shows that superradiance is reduced for
ℓ ̸= 0 and vanishes for ℓ→ ϱ+. Note, incidentally, that this behaviour
disproves the intuition according to which the spatial extent of the er-
goregion determines the amount of superradiance. Indeed, as shown
in section 8.3, both the volume of the ergoregion and the area of the
ergosurface actually increase with ℓ. We also notice that, although the
superradiant threshold frequency does not depend on ℓ, the position
and the maximum value of Z0,l,m do. In particular we observe a drift
of position of the maximum towards smaller frequencies for larger
values of ℓ/M. For values of the frequency larger than the superradi-
ant threshold, the amplification factor approaches rapidly the value
−1.

In the non-rotating limit superradiance disappears and our results
agree with those of [239] on the scalar absorption cross section.

These results can easily be extended to massive scalar fields. Once
the appropriate boundary conditions are taken into account, the nu-
merical procedure is identical. In figure 15 we show spectra of the
amplification factor for an l = m = 1 scalar wave scattered off a RBH
with a/M = 0.99 and selected values of the regularisation parameter
ℓ and the mass parameter µ. Massive waves can be superradiant in
the frequency range µ < ω < mΩH, while they are trapped near the
horizon and exponentially suppressed at infinity for ω < µ. We no-
tice that even in this case superradiance is reduced both for larger
values of ℓ/M and µM. Moreover, there could be a degeneracy in the
sense that the spectrum of a massive wave off a Kerr BH might look
like the spectrum of a massive (but also massless) wave off a RBH
with the same spin.

7.4 chapter wrap-up

In this chapter we have studied and analysed some phenomenolo-
gical aspects of scalar test-field perturbations on top of the black-
bounce–Kerr spacetime.

First, we have computed the QNMs for massless perturbations. For
the RBH spacetime, we have used both the WKB approximation, as
well as the direct integration of the scalar perturbation equation. Our
analysis demonstrates that there is a deviation of the QNM spectrum
from that of Kerr BHs due to the non-zero value of the regularisation
parameter ℓ. Wormholes with a null throat (which coincides with the
horizon) phenomenologically behave as BHs and their QNMs are in
continuity with those of RBHs. On the other hand, the presence of the
throat for traversable wormholes modifies the boundary conditions,
and hence the QNM spectra. In particular, we have imposed Dirichlet
boundary conditions at the throat obtaining QNM frequencies with
greatly suppressed imaginary parts as compared to the BH case; in
some scenarios, the imaginary parts were found to be positive. This
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Figure 15: Spectra of the amplification factor for a massive scalar with l =
m = 1 off a RBH with a = 0.99M: different colours distinguish
among choices of the mass parameter, while linestyles mark the
values of the regularisation parameter (solid ℓ/M = 0, dashed
ℓ/M = 0.3, dotted ℓ/M = 0.6, dash–dotted ℓ/M = 0.9).

seems to indicate that rotating traversable wormholes are unstable
to small perturbations. This is somewhat expected for rotating hori-
zonless objects, albeit this instability could be tamed by relaxing the
purely reflective conditions at the throat and allowing for partial ab-
sorption.

Second, we have studied the phenomenon of superradiance for
both massless and massive test scalar fields around rotating RBHs.
It turns out that both the Penrose process and superradiance are sup-
pressed by the regularisation parameter ℓ. For example, in the Pen-
rose process, the particles’ energies become less negative, compared
to their counterparts in Kerr, as ℓ gets larger. Similarly, for superra-
diance, the amplification of the modes depends on ℓ: the larger ℓ/M
the smaller the amplification factor, meaning that ℓ actually stabilises
the BH against superradiant instability. In the BH-to-wormhole limit
ℓ → ϱ+, the amplification factor gets suppressed and it vanishes for
the null-throat wormhole, while in the wormhole branch there cannot
be superradiant amplification, at least as long as the wormhole is sym-
metric and the throat can be modelled by a purely reflective surface.
Relaxing these conditions at the throat and allowing for partial ab-
sorption, might also resolve the instability of traversable wormholes
against small perturbations. Clarifying this issues is however beyond
the scope of this thesis.





8
A P P E N D I C E S O N B L A C K B O U N C E S

This chapter gathers a few additional results concerning the black-
bounce family of spacetimes. Its purpose is not to further the discus-
sion in any way, but rather to complement what has already been
said so far. Indeed, most of these sections’ material has appeared as
appendices to [165, 166, 270].

8.1 curvatures

In the black-bounce–Kerr–Newman spacetime, the Ricci scalar is given
by (recall ϱ =

√
r2 + ℓ2)

R = 2ℓ2 M
(
Σ2 − 2ϱ4)+ Q2ϱ3 + ϱ3 (Σ− 2∆)

Σ3ϱ3 . (208)

It is clearly finite in the limit r → 0, i. e. ϱ→ ℓ. So are the Kretschmann
scalar and the invariants RµνRµν and CµνρσCµνρσ.

In particular, for Q = 0, i. e. for the black-bounce–Kerr spacetime,
the Kretschmann scalar reads:

RµνλσRµνλσ =
48M2

Σ6 K0 +
16ℓ2M

Σ6 K1 +
4ℓ4

ϱ6Σ6 K2 , (209)

with

K0 = (ϱ2 − a2χ2)
[(

ϱ2 + a2χ2)2 − 16a2ϱ2χ2
]

, (210a)

K1 = ϱ3 [4a2 + ϱ(2ϱ− 9M)
]
− 2a2ϱχ2 [6a2 + ϱ(4ϱ− 31M)

]
+ a4χ4(6ϱ− 41M) , (210b)

K2 = ϱ6
[
2a2ϱ(2ϱ− 11M) + 4a4 + ϱ2 (33M2 − 16Mϱ + 3ϱ2)]

+ 2a2ϱ5χ2 [2a2(5M− ϱ)− 26M2ϱ + 5Mϱ2 + ϱ3]
+ 2a6Mϱ2χ6(6M− ϱ) + a4ϱ3χ4[2a2M+

ϱ
(
34M2 − 16Mϱ + 3ϱ2) ]+ a8M2χ8 , (210c)

The only potentially dangerous behaviour arises from the denom-
inators, which, in the r → 0 limit, take the form

1
ℓ2(ℓ2 + a2 cos2 θ)6 . (211)

As long as ℓ ̸= 0, therefore, these quantities are never infinite.
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Using the tetrad eq. (125), the components of the Einstein tensor
are

Gt̂t̂ = sign ∆

{
ℓ2 [2M

(
ϱ2 − Σ

)
+ ϱ (Σ− 2∆)

]
Σ3ϱ

+
Q2ϱ

(
Σ− ℓ2)

Σ3ϱ

}
, (212a)

Gr̂r̂ = − sign ∆

{
ℓ2 [2M

(
ϱ2 − Σ

)
+ Σϱ

]
Σ3ϱ

+
Q2ϱ

(
Σ− ℓ2)

Σ3ϱ

}
, (212b)

Gθ̂θ̂ =
ℓ2 [M (

−Σ2 − 2Σϱ2 + 2ϱ4)+ Σϱ3]
Σ3ϱ3

+
Q2ϱ3 (Σ− ℓ2)

Σ3ϱ3 , (212c)

Gϕ̂ϕ̂ =
ℓ2 [M (

−Σ2 − 2Σϱ2 + 6ϱ4)+ ϱ3 (2∆− Σ)
]

Σ3ϱ3

+
Q2ϱ3 (Σ− 3ℓ2)

Σ3ϱ3 . (212d)

We note that

Gt̂t̂ + Gr̂r̂ = − sign ∆
2ℓ2∆
Σ3 (213)

which is well-behaved at ∆ = 0.
The Ricci tensor is clearly diagonal in this tetrad, too:

Rt̂t̂ = sign ∆
Mℓ2 (−Σ2 − 2Σϱ2 + 4ϱ4)+ Q2ϱ3 (Σ− 2ℓ2)

Σ3ϱ3 ,

(214a)

Rr̂r̂ = sign ∆

{
ℓ2 (M

(
Σ2 + 2Σϱ2 − 4ϱ4)− 2∆ϱ3)+ Q2ϱ3 (2ℓ2 − Σ

)
Σ3ϱ3

+
Q2ϱ3 (2ℓ2 − Σ

)
Σ3ϱ3

}
, (214b)

Rθ̂θ̂ =
Q2

Σ2 −
2ℓ2

Σ3

[
∆ +

Σ(M− ϱ)

ϱ

]
, (214c)

Rϕ̂ϕ̂ =
2Mℓ2 (2ϱ2 − Σ

)
+ Q2ϱ

(
Σ− 2ℓ2)

Σ3z
. (214d)

Similarly, we note that

Rt̂t̂ + Rr̂r̂ = − sign ∆
2ℓ2∆
Σ3 (215)
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which is well-behaved at ∆ = 0.
From these expressions one immediately notices that the curvature

tensors are rational polynomials in the variable ϱ =
√

r2 + ℓ2, which
is strictly positive, and their denominators never vanish. The same
is true for the Riemann and Weyl tensors; we thus conclude that the
spacetime is free of curvature singularities.

A notable corollary to the previous remark is that the throat r = 0 is
an extremum point — a local maximum or minimum — for the com-
ponents of the curvatures, as wall as for the scalars constructed with
them. Clearly, this is a consequence of the symmetry of the metric
under the parity transformation r 7→ −r.

8.2 a note on geodesics

We focus on the black-bounce–Kerr spacetime, but everything can
be translated to the black-bounce–Kerr–Newman case in a straight-
forward manner. Geodesics can be described in terms of the Hamilton–
Jacobi method [113, 169], whereby the equations of motion descend
from

∂S
∂τ

= −1
2

gµν ∂S
∂xµ

∂S
∂xν

, (216)

with S the action and τ an affine parameter along the geodesic. Separ-
ability, foretold in subsection 5.2.4, motivates the Ansatz

S =
1
2

µ2τ − Et + Lzϕ + Sr(r) + Sθ(θ) ; (217)

here µ2, E and Lz are arbitrary constants: µ2 = 0 for null geodesics
and +1 for timelike geodesics; the other two can be interpreted as the
energy (per unit mass) and the projection of the angular momentum
(per unit mass) along the rotation axis, respectively.

Inserting Ansatz eq. (217) in eq. (216), one obtains relations among
the functions t(τ), r(τ), θ(τ) and ϕ(τ); and, differentiating with re-
spect to τ, the following system of first-order, ordinary differential
equations:

Σ
dt
dτ

= a(Lz − aE sin2 θ) +
ϱ2 + a2

∆
[E(ϱ2 + a2)− Lza] , (218a)

Σ
dr
dτ

= ±
√
R , (218b)

Σ
dθ

dτ
= ±
√

Θ , (218c)

Σ
dϕ

dτ
=

Lz

sin2 θ
− aE +

a
∆
[E(ϱ2 + a2)− Lza] , (218d)

where

R = [E(ϱ2 + a2)− Lza]2 − ∆[µ2ϱ2 + (Lz − aE)2 +Q], (219)

Θ = Q− cos2 θ

[
a2(µ2 − E2) +

L2
z

sin2 θ

]
, (220)
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Here Q is the Carter constant already hinted to in subsection 5.3.1. Its
existence derives from the Killing tensor eq. (88) via the constant

K = Kµν
dxµ

dτ

dxν

dτ
, (221)

as Q = K − (aE − Lz)2. Its expression in this spacetime coincides
with its Kerr homonym’s:

Q = u2
θ + cos2 θ

[
a2(1− E)2 − Lz

sin2 θ

]
. (222)

Note that the system (eq. (219)–eq. (220)) looks almost identical to
its Kerr analogue: indeed, the right-hand sides are precisely those one
would find performing the same analysis in a Kerr spacetime, charted
by the Boyer–Lindquist coordinates (t, ϱ, θ, ϕ).

Hence, one might expect that our metric and Kerr’s share the same
geodesics. Namely, given a Kerr geodesic

(
t(τ), ϱ(τ), θ(τ), ϕ(τ)

)
,

one could guess that the curve
(
t(τ), r(τ) =

√
ϱ(τ)2 − ℓ2, θ(τ), ϕ(τ)

)
might be a geodesic of our spacetime (charted by r as Boyer–Lindquist-
like radius) — at least as long as ϱ(τ) ≥ ℓ.

This however is not true, in general. Clearly, the reason is that the
relation between r and ϱ is not a mere shift:

dr
dτ

=
dϱ

dτ

dr
dϱ

=
dϱ

dτ

ϱ

r
(223)

and therefore

Σ
dϱ

dτ
= ±
√
R (Kerr geodesic)

⇏ Σ
dr
dτ

= ±
√
R (rotating SV geodesic). (224)

Rather, using the Kerr-like coordinate ϱ, test particles in our space-
time feel a distorted effective potential in the radial direction:

Σ
dϱ

dτ
= ±

√
1− ℓ2

ϱ2

√
R . (225)

Note however that, analogously to what happens in Kerr, circular
orbits do exist on the equator θ = π/2 with Q = 0 — hence our
analysis in subsection 5.4.2 is justified.

8.3 properties of the ergoregion

Superradiance and the ensuing instability are linked to the existence
of an ergoregion, i. e. a portion of the spacetime in which the Killing
vector associated to time translations — which is timelike at spatial
infinity — becomes spacelike. With this appendix, we aim at spelling
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out some of its relevant details in Kerr–black-bounce spacetimes. A
quick inspection of the metric in eq. (182) allows to identify the er-
goregion with the locus of points for which Σ− 2Mϱ ≤ 0. Equality is
met at

ϱ = ϱ±erg(θ) = M±
√

M2 − a2 cos2 θ . (226)

When a > M — a case we usually neglect — there are no horizons
and the curves ϱ±erg(θ), along with the throat ϱ = ℓ, mark the bound-
ary of the ergoregion; note that for ℓ > 2M no ergoregion exists.
When instead a ≤ M, the ergoregion stretches between ϱ+erg(θ) and
the horizon, if there is one, or the wormhole throat. When ℓ > ϱ+, in
particular, the ergosurface does not extend to the poles but is limited
to polar angles θ ∈ [θ∗, π − θ∗], with

θ∗ = arccos

(√
ℓ(2M− ℓ)

a

)
; (227)

i. e. it is a solid of revolution whose section is shaped as a crescent
and whose axis coincides with the axis of symmetry of the spacetime.
At any given time, the area of the ergosurface is given by the integ-
ral [293]

Aerg =
∫

dθ dϕ
√

A (228)

where ϕ ∈ [0, 2π], θ ∈ [0, π] or θ ∈ [θ∗, π − θ∗] when ℓ > ϱ+ and A is
the determinant of the two-dimensional induced metric. Specifically,
we have

A =

[
gϱϱ

(
dϱerg

dθ

)2

+ gθθ

]
gϕϕ

= Σ

[
1 +

a2 cos2 θ

δ(ϱ2
erg −M2)

]
2 sin2 θ

(
Mϱerg + a2 sin2 θ

)
, (229)

which should be evaluated at ϱ = ϱerg.
Since δ ≤ 1, as long as ℓ < ϱ+, we expect Aerg ≥ Aerg

∣∣
ℓ=0, i. e.

that the area be larger than its Kerr analogue; for ℓ > ϱ+, instead,
Aerg is a continuously decreasing function of ℓ that reaches zero for
ℓ = 2M. Note, incidentally, that surfaces of constant ϱ, such as the
horizon, have the same area in our spacetime as they have in Kerr:
the ℓ-dependence comes in as soon as different radii are spanned.

The volume of a constant-t slice of the ergoregion is given by

Verg =
∫

dϱ dθ dϕ
√

h (230)

where ϱ ∈
[
max(ϱ+, ℓ), ϱerg

]
, θ ∈ [0, π] when ℓ ≤ ϱ+ or θ ∈ [θ∗, π − θ∗]

otherwise, and ϕ ∈ [0, 2π]. We have

h = gϱϱgθθ gϕϕ =
ΣA sin2 θ

∆δ
. (231)
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The integrand in eq. (230) has poles at ϱ = ϱ+ and ϱ = ℓ, i. e. along
the inner edge of the ergoregion. The integral itself is usually con-
vergent, unless ℓ = ϱ+: in this case the two poles coincide and the
integral diverges logarithmically. Something analogous happens for
extremal Kerr BHs, see [292]. In any case, since δ ≤ 1, the volume of
the ergoregion will be larger than that of the corresponding Kerr as
long as ℓ < ϱ+; for larger values of ℓ, instead, the volume will strictly
decrease and reach zero for ℓ = 2M.

The fact that both the area of the ergosurface and the volume of the
ergoregion increase with increasing ℓ, while superradiant amplifica-
tion gets tamed (cf. section 7.3), disproves the intuitive notion that a
larger ergoregion entails “more superradiance”. A better understand-
ing of the physics of this phenomenon is provided by the analysis of
the Penrose process in the equatorial plane given in subsection 7.3.1.

8.4 singularities of the radial equation for scalars

In this appendix, we elucidate some subtleties concerning the beha-
viour of the solution to the radial eq. (186) close to its singular points.
(Note: in this subsection, as in chapter 7, the symbol R denotes the
radial wavefunction of a test scalar field, not the Ricci scalar.) First of
all, write eq. (186) in canonical form:

R′′ + α(ϱ)R′ + β(ϱ)R = 0 , (232)

where

α(ϱ) =

(√
δ∆
)′

√
δ∆

, (233)

β(ϱ) =
1

δ∆2

([(
ϱ2 + a2)ω− am

]2

∆
− λ− µ2ϱ2

)
. (234)

Note that

α(ϱ) =
1
2

[
1

ϱ + ℓ
+

1
ϱ− ℓ

]
− 1

ϱ
+

1
ϱ− ϱ+

+
1

ϱ− ϱ−
. (235)

The poles of the coefficients α and β are singular points for the differ-
ential equation. Following standard terminology [53], we call irregular
those singular points where α(ϱ) or β(ϱ) have a pole of order higher
than one or two, respectively, and regular the singular points where
the divergences of α(ϱ) and β(ϱ) are less severe. According to this
convention, we find

• regular singular points at ϱ = ϱ+, ϱ−, 0, +ℓ (and −ℓ, technic-
ally) when ℓ ̸= ϱ±, and

• an irregular singular point at ϱ = ∞.
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As ℓ→ 0, the three poles of α located at ϱ = ±ℓ, 0 exactly cancel each
other out and the two poles ϱ = ±ℓ in β also disappear; the resulting
equation (second-order ordinary differential equation with two regu-
lar and one irregular singular points) is of the confluent Heun type.
The “confluent” case in which ℓ = ϱ± is particularly nasty, as two
regular singular points merge into an irregular singular point.

Using the throat-penetrating coordinate r instead of the Johannsen
coordinate ϱ does not change the picture: δ disappears from the equa-
tion but ∆ is not a polynomial of degree two and its zeroes have a
more complicated structure.

In the vicinity of a regular singular point ϱ0, the equation admits
a (possibly divergent) power-series solution of the form (Frobenius’
method)

R(ϱ) = (ϱ− ϱ0)
s ∑

n∈N

an(ϱ− ϱ0)
n (236)

with s satisfying the indicial equation

s(s− 1) + α0s + β0 = 0 ; (237)

here

α0 = lim
ϱ→ϱ0

(ϱ− ϱ0)α(ϱ) and β0 = lim
ϱ→ϱ0

(ϱ− ϱ0)
2β(ϱ) . (238)

Close to ϱ = ϱ+, we have s = ±i am−2Mωϱ+
(ϱ+−ϱ−)γ

, hence eq. (189). Similarly,
close to ϱ = ℓ, we find s = 0, 1/2, although s = 0 must be excluded
since it does not give rise to a solution.

Close to an irregular singular point, one can construct a general-
isation of Frobenius’ series. The solution will consist of an exponen-
tial prefactor, encoding the leading divergent behaviour, and a power
series in the variable (ϱ − ϱ0)c, with c some number. Proceeding in
this way, one can recover the standard result of eq. (187). More in-
terestingly, in the particular case ℓ = ϱ+, close to ϱ = ℓ the solution
turns out to be

R(ϱ) = exp

(
±i

am− 2Mωϱ+
ϱ+ − ϱ−

√
2ℓ

ϱ− ℓ

)
∑

n∈N

an(ϱ− ℓ)n/2 , (239)

(hence, in particular, c = 1/2). Such behaviour renders the numerical
integration of the null-throat wormhole case particularly difficult.
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I N T E R L U D E : M A S S I N F L AT I O N I N S TA B I L I T Y

The discussion of chapter 7 represents an example of stability ana-
lysis: by studying the dynamics of test perturbations, we found that
they decay in time when the background is a BH, but we also found
evidence for exponentially growing modes when the background is a
rapidly rotating wormhole.

Technically, the computations of chapter 7 are specific to the black-
bounce–Kerr metric and the results do not necessarily carry over to
other spacetimes. Yet, if we understand the physical origin of a given
behaviour, stable or unstable, we might be able to formulate general
arguments with reasonable confidence. For instance, we have argued
that the unstable behaviour of rotating wormhole is most likely due to
the existence of an ergoregion and the concomitant lack of an horizon;
and for this reason it is probably general to all geometries that share
the same features.

Clearly, in order to prove this statement quantitatively one would
have to repeat the same computations for virtually all conceivable
models — an impossible and uninteresting task. When dealing with
instabilities, however, the qualitative argument is sufficient and, being
more general, it is also more interesting.

The mass inflation instability, to which this chapter is devoted, in-
volves a similar kind of reasoning. It is a phenomenon related to the
infinite blueshift experienced by matter perturbations at an inner BH
horizon: since all simply connected RBHs have an inner horizon, they
are all generically plagued by this instability. The quantitative details
of such phenomenon depend on the model, but the qualitative charac-
ter of the instability does not. (See also [101] for possible phenomen-
ological consequences of this phenomenon.)

The goal of this chapter — which is slightly off the thesis’s main
line of reasoning — is to discuss how the instability related to mass
inflation could be quenched. We will do so by constructing a rotating
model of a RBH whose inner horizon has been appropriately engin-
eered. The resulting “inner-extremal” RBH is admittedly somewhat
artificial, and it should be considered as a proof of concept that mod-
els of RBHs without mass inflation are in principle viable.

We will start by recalling some basic notions on mass inflation in
section 9.1, then discuss a “new” strategy for regularising the sin-
gularity (section 9.2) — slightly different from those presented in
chapter 3. Section 9.3 explains how the properties of the inner horizon
can be trimmed; the metric of our “inner-extremal” RBH is reported
in eq. (270). Finally, section 9.4 analyses and describes the spacetime.
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9.1 preliminaries

The term mass inflation refers to the unbounded growth of the mass
due to the presence of perturbations at an inner horizon. Compu-
tations are often carried out in either of two simplified models: the
“double-shell” model due to Poisson and Israel [296] and a variant
due to Ori [291].

In the double-shell scenario, perturbations to a spherically symmet-
ric background geometry are modelled as two null shells, one ingo-
ing and the other outgoing. The two shells cross at some point, where
one imposes junction conditions on the components of the metric to
ensure their continuity. Such junction conditions, together with an as-
sumption on the late-time behaviour of the ingoing shell (e. g. that
they satisfy Price’s law), suffice to prove that the Misner–Sharp mass
in the region between the two shells blows up as the crossing point
approaches an inner horizon. Such divergence, which percolates to
the curvatures, is exponential and its timescale is set by the inner
horizon’s surface gravity.

In the Ori model, the ingoing null shell is replaced by a somewhat
more realistic continuous influx of null dust. The analysis is similar
and leads to analogous results. Hence, it is generally believed that, in
GR, the backreaction of the perturbations onto the geometry makes
the inner horizon shrink all the way to r = 0.

Both models were devised to investigate the stability of Reissner–
Nordström’s inner horizon, but they apply equally well to RBHs with
inner horizons. As we have said multiple times, all simply connected
RBHs fall in this class and are therefore potentially unstable.

Some authors [71] have claimed that some RBHs exhibit a diver-
gence that is not exponential but merely polynomial — hence much
milder; this seems to be even more true when one takes into account
Hawking evaporation [72, 73]. Other authors have repeatedly pointed
out that, although the divergence might look polynomial at late times,
it is always preceded by a phase in which it proceeds exponentially
[94, 95, 141].

It is beyond the scope of this thesis to delve deeper into this debate;
the present author’s take is that, very likely, simply connected RBHs

cannot be considered stable end states of gravitational collapse; at
most, they could be approximations valid in an intermediate (likely
short) stage of a process that is truly dynamical. This is in accord, by
the way, we the discussion of subsection 2.2.1.

Moreover, the classical mechanism described herein has a semiclas-
sical counterpart that seems to be leading to drastically different con-
clusions [41, 42]. Indeed, when accounting for the backreaction of
quantum perturbations onto the geometry, the inner horizon appears
to be pushed outwards. Hence, the fate of perturbed inner horizons
is far from clear.
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The fact that the timescale of the mass inflation instability is set by
the inner horizon’s surface gravity suggests a possible way by which
the instability could be quenched: if the surface gravity happens to be
very small, the instability will correspondingly take longer to develop.
If the surface gravity is exactly zero, the instability is absent — at least
when analysed through the two models mentioned above.

Ideally, one would like to turn off the inner horizon’s surface grav-
ity without disrupting the outer horizon’s properties: namely, its sur-
face gravity should remain non-zero and the two horizons should re-
main separate. That is, one would like to consider situations different
from an extremal BH.

In spherical symmetry a RBH model that achieves this goal can eas-
ily be constructed. The issues is thoroughly discussed in [96], which
also reports the computations that show the absence of mass inflation.

Extending the result to include rotation, using a Gürses–Gürsey
metric, is not quite trivial — at least if one insists in keeping m(r) ∝ r3

close to the centre. Moreover, these metrics suffer from the issues that
we have detailed in section 4.3.

The metrics that result from the application of the MNJP, instead,
have a particularly suggestive form. We remind the reader that the
MNJP yields a metric that is Kerr-like — and in particular it can
be written as a Gürses–Gürsey metric —, up to a free multiplicative
function Ψ(r, θ):

ds2 =
Ψ
Σ

ds2
GG . (240)

Ψ can be, and usually is, constrained by some physical arguments.
In particular, if the seed metric can be interpreted as a solution of
some non-linear electrodynamics, the field equations imply Ψ = Σ.
Moreover, within the Newman–Janis framework, in the a → 0 limit,
the line element eq. (240) must reduce to the seed metric — that is,
lima→0 Ψ(r, θ) = r2. The choice Ψ = Σ thus seems the most natural,
but it entails all the issues we discussed.

On the other hand, a large body of work in the context of conformal
gravity (e. g. [32, 89, 216, 283]) has shown that appropriate choices for
the conformal factor can lead to geodesically complete spacetimes. In
light of this fact, eq. (240) looks particularly promising, as it encodes a
significantly larger amount of freedom than the Gürses–Gürsey met-
ric eq. (68). In particular, when Ψ/Σ ̸= 1 it becomes possible to dis-
entangle the regularisation of the central singularity from the choice
of m(r), which instead determines the location and properties of the
horizons.

In this chapter, we will show how one can exploit such freedom
to build a RBH that is free from mass inflation, and from all the
issues of section 4.3. In our proposal, Ψ will be used to improve the
appearances of the spacetime close to r = 0, while m(r) will be chosen
so as to trim the properties of the inner horizon.
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Note, incidentally, that adding a conformal factor to eq. (68) is by
no means disruptive: the spacetime described by the metric eq. (240)
is of Petrov type D, exactly as eq. (68), with double null directions
given by

lµ =

√
Σ
Ψ

1
∆
(
r2 + a2, ∆, 0, a

)
,

nµ =

√
Σ
Ψ

1
∆
(
r2 + a2,−∆, 0, a

)
; (241)

these two null vectors can be complemented with

mµ =

√
Σ
Ψ

1√
2 (r + ia cos θ)

(ia sin θ, 0, 1, i csc θ) (242)

and its complex conjugate m̄µ to form a Kinnersley-like tetrad. When
Ψ(r, θ) = ψr(r) + ψθ(θ) (i. e. it is “separable”), the geometry admits
the non-trivial Killing tensor

Kµν = Ψ(r, θ)
[
lµnν + lνnµ

]
+ ψr(r)gµν . (243)

In this case, the equations of motion for a test particle of Killing en-
ergy per unit mass E and Killing angular momentum along the axis
of rotation per unit mass L are

ṫ =
1

Ψ∆
[AE− 2m(r)arL] , (244)

ϕ̇ =
1

Ψ∆

[
L

sin2 θ
(Σ− 2m(r)r) + 2m(r)arE

]
, (245)

Ψ2ṙ2 =
[
(r2 + a2)E− aL

]2 − ∆ (µψr + K) , (246)

Ψ2θ̇2 = K− µψθ −
(

aE sin θ − L
sin θ

)2

= Q + cos2 θ

(
E2a2 − L2

sin2 θ

)
− µψθ , (247)

where µ = 0 for massless particles and µ = 1 for massive ones,
while K is the conserved quantity associated to the Killing tensor
of eq. (243), K = Kµν ẋµ ẋν, and Q = K − (Ea − L)2. Clearly, planar
equatorial orbits are possible only if ψθ(π/2) = 0.

In the more general case in which Ψ is not separable, the equations
of motion are more involved and not separable. Motion with θ̈ =

θ̇ = 0 can take place on the equator and on the axis of symmetry if
∂θΨ = 0 there. Note that, if Ψ is a function of Σ only, this is always
the case, since ∂θΨ = Ψ′∂θΣ = 2a2 cos θ sin θΨ′.

9.2 regularising the singularity with Ψ

In this section we discuss how the function Ψ can regularise the space-
time, regardless of the specific choice of m(r). We assume such Ψ
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will satisfy a very minimal set of requirements, namely: Ψ(r, θ) > 0
everywhere, in order to ensure that no additional singularities are
introduced; and

Ψ
Σ

= 1 +O
(

1
r2

)
as r → ∞ , (248)

so that the spacetime ADM mass and specific angular momentum are
still given by the parameters M = limr→∞ m(r) and a, respectively —
this is tantamount to a slightly stricter version of the usual asymp-
totic flatness condition. (Note, in particular, that we do not follow the
physical interpretation of [21–23] and hence we do not impose the
partial differential equations that descend from that reasoning.)

Let us now look for a Ψ that regularises the singularity of the Kerr
BH, i. e. one for which

ds2 =
Ψ
Σ

ds2
Kerr (249)

is the line element of a spacetime free of scalar polynomial curvature
singularities. The same Ψ will also regularise more general metrics
characterised by a generic (analytic) m(r). As will become clear mo-
mentarily, the function Ψ can also “remove” regions of the spacetime
with undesirable features.

A simple example of such Ψ is

Ψ = Σ +
b

r2z , (250)

with z a real number, which we will further constrain in a moment,
and b a positive constant with dimensions [M]2z+2. Note that if b→ 0
as M → 0 or as a → 0 one may recover respectively the Minkowski
or the Schwarzschild metric. The Ricci scalar has the form

R = − 6b r2z

r2Σ2 (b + r2zΣ)3 Pz (r, cos θ) , (251)

where Pz (r, cos θ) is an expression (a polynomial in r and cos θ when
z is an integer) that goes to zero at least as fast as Σ2 in the limit
r → 0, θ → π/2. Hence, the Ricci scalar never blows up for z ≥
1. However, z = 1 still does not yield a well-defined limit, while
for z > 1 the limit exists and is zero, irrespective of the path taken
to reach the would-be singularity in the r–θ space. Similar remarks
hold for the Ricci tensor squared RµνRµν and the Kretschmann scalar
RµνρσRµνρσ.

The Ansatz in eq. (250) can be written as ψr(r) + ψθ(θ), i. e. it is
“separable” in the terminology introduced at the end of section 9.1,
and hence has the advantage of leading to separable equations of
motion.

Note that, with z > 1, Ψ is divergent on the whole disk r = 0
— which will have consequences for closed timelike curves. The fact
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that this divergence can in fact cancel the divergences in the curvature
scalars is quite remarkable. For these reasons, eq. (250) is the choice
we will mostly explore in the remainder of the chapter: in particular,
we will often consider the “minimal” choice z = 3/2, corresponding
to the smallest integer exponent of r that yields a well defined limit.

It is also worth mentioning that, if one focuses on the non-spinning
case only, lower values of the exponent z are required. Indeed, in
order to regularise the metric

ds2 =
Ψ
r2 ds2

Schw , (252)

with the a→ 0 limit of eq. (250)

Ψ = r2 +
b

r2z , (253)

one must have z ≥ 1/2.
Finally, before moving on, let us add that an interesting alternative

to eq. (250) can be represented by the Ansatz

Ψ = Σ +
b

Σz . (254)

In this case it is easy to check that the Ricci scalar tends to zero for
r → 0, θ → π/2 for any z > 1. The same holds true for the Ricci
tensor squared and the Kretschmann scalar, hence eq. (254) seems
equivalent to eq. (250). Notably, however, in this second case z = 1
too yields a well-defined, and finite, limit

lim
Σ→0

R = −24a2

b
(255)

and similar results can be found for RµνRµν and the Kretschmann.1

With this choice, Ψ only diverges on the ring r = 0, θ = π/2, but not
on the disk r = 0, θ ̸= π/2. Eq. (254) will be juxtaposed to eq. (250)
in subsection 9.2.1 to highlight the properties that make us prefer the
latter.

9.2.1 The spacetime close to r = 0

Although the scalar curvatures we computed are everywhere finite,
the components of the metric still diverge for Σ = 0. Previous works
[32] have argued that the resulting spacetime is in fact geodesically
complete, since the would-be singularity is reached in infinite proper
time. Since our choice of conformal factor is slightly different from
that discussed in [32], we sketch the relevant computations below.

Consider first a particle moving on the equatorial plane θ = π/2
and falling radially towards r = 0. With E and L being the particle

1 To our knowledge, those built with a Ψ are the only examples of rotating RBHs
whose curvature scalars are continuous and non-zero at the would-be singularity.
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energy and angular momentum per unit mass, its radial velocity sat-
isfies

Ψ2ṙ2 = RKerr − µ∆(Ψ− r2) . (256)

Here µ = 0 or 1 for massless or massive particles respectively, and
RKerr is the right-hand side of eq. (246) with Ψ = Σ. The proper time
it takes for the particle to fall from r0 to r is

∆τ = −
∫ r

r0

Ψ

[RKerr − µ∆(Ψ− r̃2)]1/2 dr̃ . (257)

For both our Ansätze (eq. (250) or eq. (254)), one finds that on the
equatorial plane Ψ − r2 = b r−2z > 0 ; therefore the infall time for
massless particles (µ = 0) is shorter than that for massive particles
(µ = 1). (Obviously, this is true as long as RKerr − µ∆(Ψ − r2) > 0,
i. e. only where the trajectory is classically allowed: where the condi-
tion is not met, such motion cannot take place.)

Let us then focus on massless particles. At r = 0, RKerr = a2(Ea−
L)2, while Ψ diverges at least as fast as 1/r2. We conclude that mass-
less particles reach the would-be singularity in an infinite amount of
proper time. Given the inequality above, the conclusion remains true
for massive particles.

Next, consider a particle that falls along the axis of symmetry θ = 0.
Such particle could reach the disk r = 0 without encountering the
would-be singularity, and potentially cross it through its centre. On-
axis motion requires L = 0, so the radial velocity now satisfies

Ψ2ṙ2 = −µΨ∆ + E2(r2 + a2)2 (258)

where Ψ is now evaluated at θ = 0. The infall proper time becomes
in this case

∆τ = −
∫ r

r0

Ψ√
(r̃2 + a2)2 E2 − µ∆Ψ

dr̃ . (259)

First of all, we can see that it is still true that massless particles fall
in a shorter time than massive ones, therefore we again focus on the
former. We have

E∆τlight = −
∫ Ψ

r2 + a2 dr (260)

and with our Ansatz we have

Ψ
r2 + a2 = 1 + b

(r2 + a2)−1r−2z for eq. (250)

(r2 + a2)−(z+1) for eq. (254).
(261)

In the first case, the integrand diverges faster than r−2 as r → 0,
hence the particle will reach the would-be singularity in an infinite
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time. In the second case, instead, the integrand is everywhere finite.
For massive particles, one can show that the infall time remains finite
in the second case but, according to the inequality above, it is infinite
in the first.

Therefore, the two choices of Ψ lead to a very different structure
of the region close to the would-be singularity: in the first case, the
whole disk r = 0 is (regularised and) “sent to infinity”; in the second
case, only the ring r = 0, θ = π/2 is pushed away, so that particles
can still cross the disk inside the ring. This is a non-negligible dif-
ference as in the case of Ansatz eq. (250) we end up precluding, to
light or matter, access to that region of the Kerr geometry (r < 0)
characterised by the presence of close timelike curves.

Let us stress that while usually such a region is taken to be non-
physical in the Kerr geometry, due to the fact that it is shielded
by a Cauchy horizon which is widely (albeit non-unanimously) con-
sidered unstable, the same region would represent a problem for us
once we shall have proceeded to stabilise the RBH inner horizon. It is
henceforth even more pressing for a stable RBH to choose an Ansatz
such as eq. (250) over one like eq. (254).

9.3 stabilising the inner horizon with m(r)

As shown in [96], the mass inflation instability can be turned off if the
surface gravity of the inner horizon κ− is made to vanish thanks to
a wise choice of the mass function. The problem with extending this
idea to the rotating case is that we wish to impose several conditions
at the same time. Indeed, we want to: remove the ring singularity;
avoid close timelike curves; have a well-defined limit at the would-be
singularity; and have an inner horizon with vanishing surface gravity.
Making all these conditions coexist seems a daunting task. While we
do not have a no-go theorem in this sense, it is rather clear to a first
investigation that, even if viable, such regular metrics would be too
cumbersome for any phenomenological application.

We shall then pursue a different path, hinging on the realisation
that if we regularise the singularity with the conformal factor as
above, the functional form of m(r) is left with very few constraints
(namely it must be everywhere finite and it must reduce to the ADM
mass M at infinity), and can be easily shaped so to stabilise the inner
horizon.

The surface gravity of the inner horizon r− depends on the mass
function as

κ− ∝ ∂r∆|r=r− . (262)

assuming m(r) is a rational function, the vanishing of κ− is achieved
if the inner horizon is a degenerate root of ∆

∆ = r2 − 2m(r)r + a2 = 0⇒ (r− r+)(r− r−)d = 0 , (263)
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for some d ∈N≥2. d = 2 is not viable, since it implies that m(r) has a
pole at some positive r. Thus the minimal choice ends up being d = 3
which implies (given also the required asymptotic behaviour) a mass
function of the form

m(r) = M
r2 + αr + β

r2 + γr + δ
. (264)

From eq. (263), it can been shown that β cannot be zero and thus the
limit of m(r) for r → 0 is not zero but the finite value Mβ/δ. In this
form, m(r) is parameterised by four coefficients, two of dimension
[M] (α and γ) and two of dimension [M]2 (β and δ). However, through
eq. (263), they can all be expressed as functions of the position of the
two horizons

α =
a4 + r3

−r+ − 3a2r−(r− + r+)
2a2M

, (265a)

β =
a2(2M− 3r− − r+) + r2

−(r− + 3r+)
2M

, (265b)

γ = 2M− 3r− − r+ , (265c)

δ =
r3
−r+
a2 . (265d)

If we choose r+ = M +
√

M2 − a2, i. e. the outer horizon to coincide
with its Kerr analogue, our family of metrics can be parameterised in
terms of r− only.

It is quite remarkable, and very relevant for phenomenological
studies, that in spite of being located beyond a trapping horizon, the
position of the inner horizon can matter for observable in the outside
geometry. An example of this can be exposed by looking at the large-r
behaviour of the mass function:

m(r) ∼ M +
M(α− γ)

r
+O

(
1/r2) , (r → ∞) . (266)

The second term in the above expansion could be interpreted as an
electric charge, and could lead to a different quadrupole moment
with respect to a Kerr BH.

The choice α = γ must be discarded as it forces the inner horizon
to coincide with that of Kerr, and in turn implies a non-zero κ− (actu-
ally the usual one for the Kerr geometry) making the conformal Kerr
metric still unstable to mass inflation.

Nonetheless, we can introduce a parameter controlling the differ-
ence between the inner-horizon position in our geometry and in Kerr.
This parameter will in turn control the difference α− γ. Let us write
then

r− =
a2

M + (1− e)
√

M2 − a2
, (267)
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with e ̸= 0 and e < 2 in order to ensure 0 < r− < r+. Further
requiring the mass function to have no poles implies

−3− 3M√
M2 − a2

< e < 2 , (268)

where in the positive (negative) part of the interval r− is larger (smal-
ler) than the Kerr inner horizon.

With the above choice, it follows that α− γ = O
(
e3) — the same

holds true for all the other coefficients in the large-r expansion. This
suggests that sizeable deviations of r− from its Kerr value could trans-
late into measurable differences in the value of the quadrupole mo-
ment, or in the periastron precession and the orbital frequency in
a binary system [309]. Such differences would all be O

(
e3), which

entails that values of |e| close to one or smaller might be phenomen-
ologically favoured; but the possible impact of e on astrophysical ob-
servables certainly deserves further scrutiny, which we leave for the
future.

Let us also note that, with the parametrisation eq. (267), the mass
function becomes m(r) = M +O

(
e3) and in particular m(r+) = M.

This entails, among other things, that the outer-horizon angular velo-
city is the same as in Kerr, while its surface gravity is

κ+ =
∂r∆(r+)

2(r2
+ + a2)

= κKerr
+ +O

(
e3) . (269)

Moreover, e → 2 is an extremal limit similar to a → M, since in this
limit r− → r+ and κ+ → 0.

Of course, choices for r− different from eq. (267) are in principle
possible but they are strongly limited by a series of sanity require-
ments: the inner horizon must lie within the outer horizon for all
values of a; m(r) must go to M asymptotically; the denominator of
m(r) must have no zeros (for all r > 0), that is γ2 < 4δ; all the coef-
ficients of m(r) must be finite for all values of a; the extremal limit
a→ M should remain thermodynamically unattainable and thus also
the surface gravity of r+ should become zero in this limit — indeed
this is possible only if r− → r+ for a→ M.

In conclusion, the complete form of our rotating “inner-degenerate”
metric is

ds2 =
Ψ
Σ

[
−
(

1− 2m(r)r
Σ

)
dt2 − 4a m(r)r sin2 θ

Σ
dt dϕ

+
Σ
∆

dr2 + Σ dθ2 +
A sin2 θ

Σ
dϕ2

]
, (270)

with m(r) given in eq. (264) and

Ψ = Σ +
b
r3 , Σ = r2 + a2 cos2 θ,

∆ = r2 − 2m(r)r + a2, A = (r2 + a2)2 − ∆a2 sin2 θ , (271)
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where for the power law of Ψ we have chosen the lowest integer that
makes the curvature scalars continuous and finite (see section 9.2).

Fixing r+ = rKerr
+ and choosing r− as in eq. (267), this metric rep-

resents a family of stable, rotating, close-timelike-curve-free, regular
spacetimes with two free parameters (beyond the usual spin one): the
“Kerr-deviation parameter” e and the “regularisation parameter" b.
Notice that for a→ M the metric becomes conformal to the extremal
Kerr, while for a→ 0 the metric becomes conformal to Schwarzschild.

9.4 the rotating “inner-degenerate” regular black hole

as a kerr black hole mimicker

In this section we investigate the extent to which our metric eq. (270)
can mimic a Kerr BH: first we describe the causal structure; then the
effective matter content; the position of ergosurfaces; and finally the
location of the light rings and the ISCOs.

9.4.1 Causal structure

To study the casual structure of this spacetime we introduce ingoing
null coordinates

dv = dt +
r2 + a2

∆
dr , dψ = dϕ +

a
∆

dr , (272)

that are regular at the horizons. In figure 16 we plot the equatorial
principal null geodesics in the r–tv

∗ plane where tv
∗ is defined as

dtv
∗ = dv− dr . (273)

We see that, even if the inner horizon has zero surface gravity, we
still have peeling of geodesics there, the difference with respect to
Kerr being in the rate of peeling. Since κ− ∝ ∂r∆|r− = 0 and ∂2

r ∆|r− =

0 this peeling is no longer exponential but scales as 1/
√

t. In fact, for
the principal null geodesics

dr
dt

= ± ∆
r2 + a2 , (274)

and near the inner horizon we have

dr
dt

= ± ∂3
r ∆|r−

r2
− + a2

(r− r−)3 +O(r− r−)
4 . (275)

The causal structure of the spacetime is summarised by the Penrose
diagram of figure 17. The diagram is completely analogous to that of
the Kerr spacetime, except for the fact that the surface r = 0 — which
is timelike — is not a singularity and it can be reached only after an
infinite amount of proper time by any infalling observer. In order to
hint at these differences, we choose to represent r = 0 as a branch of
hyperbola instead of a straight line.
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Figure 16: Ingoing (gray) and outgoing (blue) null rays near the horizons
for selected values of the “Kerr-deviation parameter” e compared
with the Kerr ones in the bottom right panel. The spin parameter
is set to a = 0.9M.

9.4.2 Effective matter content

Clearly, the metric we are considering is not a vacuum solution of GR.
Yet, as discussed, the Einstein’s equations can be used to characterise
the spacetime by interpreting the Einstein tensor Gµ

ν = Rµ
ν − 1

2 R δ
µ
ν

as an effective stress-energy tensor; this allows to quantify deviations
of our candidate spacetime from the Kerr one.

To properly characterise the effective matter content, one first needs
to project the Einstein tensor onto an orthonormal tetrad, e. g. the one
of [21–23]. The behaviour of the orthonormal components close to
spatial infinity is particularly relevant: since the spacetime is asymp-
totically flat, they must all tend to zero as r → ∞, but they do so at
different rates.

In particular, the slowest decaying (non-zero) components are those
on the diagonal, all the others being of higher order in powers of
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Figure 17: Penrose diagram of the rotating RBH in eq. (270). The hypersur-
face r = 0 is timelike, but reached in infinite proper time by any
infalling observer: for this reason it is drawn not as a straight line
but as a curve.

1/r. Such components, at infinity, are the effective energy density and
pressures:2

ε = −pr = pθ = pϕ = −2M(α− γ)

r4 +O
(
1/r5) . (276)

Note that these quantities fall off quickly as r → ∞, meaning that
deviations from vacuum GR are sizeable only in a region close to
the object. Moreover, they are O

(
e3) and do not depend on b; the

next-to-leading order O
(
1/r5) also does not depend on b.

Eq. (276) can lead to violations of the null energy condition, which
requires ρ + pi ≥ 0, if α − γ > 0. When the null energy condition

2 Technically, the energy density and pressures are defined in terms of the eigenvalues
of the orthonormalised Einstein tensor, when these are real. In asymptotically flat
spacetimes, this procedure and the one presented in the text agree at leading order.
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is violated, all the other classical energy conditions are violated too.
When instead γ > α, not only the null but also the weak (null + ρ ≥ 0)
and dominant (ρ ≥ |pi|) energy conditions are met; the strong energy
condition (null + ρ + 3pi ≥ 0) instead is always violated. Notice also
that the above effective matter distribution does not correspond to
any simple realistic matter content. This is not surprising, as this ef-
fective stress-energy tensor gives an insight into putative new physics
beyond GR.

Moving closer to r = 0, the simple interpretation in terms of energy
density and pressures is not always viable, since there are regions in
which the Einstein tensor cannot be diagonalised over the real num-
bers: in these regions, the effective matter content is of type IV in the
Hawking–Ellis classification [184]. (The existence of these regions is
entirely due to the presence of the conformal factor: when Ψ = Σ, the
effective stress-energy tensor is of Hawking–Ellis type I for any m(r).)

In order to circumvent this problem, we select particular geodesics
and investigate the effective matter content as measured along them.
We focus first on null geodesics: calling kµ their tangent vector, the
contraction

Gµνkµkν (277)

is always real and can be interpreted as the energy density measured
along the geodesic. When this quantity is non-positive, the null en-
ergy condition is violated. For simplicity, we choose a geodesic that
lies on the equatorial plane (kθ = 0) and that falls towards the BH
with zero angular momentum (L = 0) — cf. eqs. (244) to (247). Clearly,
this choice represents a loss of generality, but is sufficiently illustrat-
ive for our purposes.

The result is displayed in figure 18, for a/M = 0.9 and some choices
of the parameters e and b. The effective energy density measured
along the null geodesic is mostly negligible outside of the BH; inside
the outer horizon, it becomes large and negative, signalling a sub-
stantial violation of the null energy condition; and it is exactly zero
at r = 0 (although that point is reached only at infinite affine para-
meter). The plot of figure 18a is representative of all the cases |e| ≳ 1:
increasing e slightly moves the negative trough to the right; increas-
ing b, instead, tends to smooth out the trough; but the overall shape
of the curve is not greatly affected. When |e| ≲ 1, the curves exhibit
additional features close to the inner horizon, signalling that the limit
e → 0 is not smooth. Lowering the spin suppresses the height of all
the features just described.

We then move on to timelike geodesics, whose tangent vector we
name uµ. As before, we choose them to lie on the equatorial plane
and to fall into the BH with zero specific angular momentum (uθ =
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Figure 18: Effective energy density as measured along a null equatorial tra-
jectory, with L = 0, that falls into a RBH with spin a/M = 0.9.
Each plot is relative to a particular choice of the deviation para-
meter e and displays curves corresponding to three values of the
regularisation parameter b. The two vertical lines mark the loca-
tion of the inner and outer horizons.

0, L = 0); we further choose the radial velocity to be zero at infinity
(E = 1). The contraction

Gµνuµuν (278)

yields radial profiles that are qualitatively similar to those of figure 18

and for this reason we do not report them here. When this quantity is
negative, the weak energy condition is violated. Finally, we comple-
ment the analysis by computing

Rµνuµuν. (279)

Assuming the Einstein equations, Rµν ∝ Tµν − (T/2)gµν, hence when
eq. (279) is negative the strong energy condition is violated. Some
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Figure 19: Contraction of the Ricci tensor with the tangent vector of a par-
ticular timelike equatorial trajectory (L = 0, E = 1) that falls into
a RBH with spin a/M = 0.9. Each plot is relative to a particular
choice of the deviation parameter e and displays curves corres-
ponding to three values of the regularisation parameter b. The
two vertical lines mark the location of the inner and outer hori-
zons.

results are reported in figure 19, again for a/M = 0.9 and a few il-
lustrative choices for e and b. As in the null case, these observers
measure an effective matter content that is practically zero outside
of the outer horizon. Large violations of the strong energy condition
are measured inside of the inner horizon. At variance with the null
case, now the curves exhibit a second positive bump before reaching
zero at r = 0. Similarly to the previous case, increasing the value of
e pushes the large negative trough to the right but does not substan-
tially affect its depth, which is instead controlled by b; the height of
the positive bump increases with e. Moreover, for |e| ≲ 1 additional
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Figure 20: Embedding in Euclidean space of the horizons (green and blue
surfaces) and ergosurfaces (red and purple surfaces) for a/M =
0.95 and e = 1.

features appear close to the inner horizon. As before, lowering the
spin suppresses the magnitude of all these features.

9.4.3 Ergosurfaces

The ergosurfaces are defined by the roots of gtt = 0, or equivalently
of r2 − 2m(r)r + a2 cos2 θ = 0, whose solution can be given in closed
form. Since the result is cumbersome, in figure 20 we show the em-
bedding in Euclidean space of the horizons and ergosurfaces for some
illustrative choice of the parameters. The main difference with respect
to a Kerr BH is the shape of the inner ergosurface around the poles:
values of e closer to the upper and lower bounds in eq. (268) corres-
pond to a more pronounced cuspid around the poles; for values of
e closer to the lower bound, the inner horizon and ergosurface move
close and eventually touch also at the equator; for values of e closer
to the upper bound the horizons move closer as previously said. The
conformal factor does not affect the ergosurfaces at all.

Finally, let us notice that, since with our choice m(r+) = M, the text-
book expression for the maximal efficiency of the Penrose process [44,
228, 294, 358] seems to yield the same result as in Kerr:

ηmax = 1− 2m(r+)
r+

= 1− 2M
M +

√
M2 − a2

. (280)

Checking whether this is actually the case would require a more care-
ful analysis of the motion of test particles in our spacetime — an in-
teresting question which however lies outside the scope of this work.
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9.4.4 Notable equatorial orbits

In order to characterise the spacetime and its deviations away from
Kerr from a phenomenological point of view, we compute the co-
ordinate location of the light ring and the ISCO. We focus on the
equatorial plane, where the radial motion is governed by the func-
tion (cf. eq. (246))

R = E2r2(r2 + a2)− r2L2 + 2m(r)r(aE + L)2 − µΨ∆ , (281)

with µ = 0 or 1 for null and timelike geodesics, respectively. Circular
orbits correspond to R = R′ = 0 and are stable if R′′ ≤ 0. Since the
analytical expressions are not particularly illuminating, the values of
rLR (“LR” for “light ring”) and rISCO are computed numerically.

The location of the light ring, which is a null geodesic, does not
depend on Ψ. Its fractional deviation from its Kerr anal is shown in
figure 21, as a function of the spin, for some choices of the parameter
e. The extrema and sign changes displayed by the curves of figure 21

are ultimately determined by the behaviour of the function m(r) (and
its derivative), which is not monotonic.

The analogous plot for the ISCO is reported in figure 22. Contrary
to the previous case, rISCO depends on Ψ, hence the curves in the fig-
ure correspond to specific choices of b. In fact, varying the parameter
b substantially affects the location of the ISCO, particularly for high
spin. The peculiar spike associated to prograde orbits and high spins,
in particular, can be entirely explained in terms of the behaviour of Ψ:
since, as the spin increases, the prograde ISCO shrinks, rISCO enters
deeper into the region where Ψ is markedly different from r2.

In order to further explore the parameter space in the high-spin re-
gime, we set a = 0.998M (roughly the Thorne limit) and let the para-
meters vary in the ranges b ∈ [0, 1] and e ∈ [−3− 3M/

√
M2 − a2, 2],

thereby producing the contour plots of figure 23. Despite the much
larger interval spanned by e, the gradient of the deviation is domin-
ated by the b component: this is clear for prograde orbits (figure 23a),
but is also true for retrograde orbits (figure 23b) if e is restricted to
take reasonably small values as in figure 23c. Note, however, that
even for spins as high as a = 0.998M, except for rather extreme val-
ues of the parameters, the ISCO moves less than a few percent in the
prograde case and less than a few per mil in the retrograde case.

9.5 chapter wrap-up

In this chapter, we built and studied a new regular alternative to
Kerr BHs that is stable under mass inflation. To construct it, we com-
bined two common tools for regularisation in a novel way: we used
a mass function to construct a degenerate (zero-surface gravity) —
and thus stable — inner horizon; and a conformal factor to regularise
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Figure 21: Relative difference in the position of the light ring as a function
of the spin between Kerr and our spacetime with e = 0.9 (dotted
lines), e = 1 (dashed lines) and e = 1.1 (continuous lines). We do
not need to specify a value for the regularisation parameter b as
null geodesics are insensitive to the conformal factor Ψ. While we
display only values of e near 1, corrections to the light-ring pos-
ition actually grow very fast with e and they can be up to order
60% for e → 2. Note also that the extrema and sign changes dis-
played by the curves are ultimately determined by the behaviour
of the function m(r) (and its derivative), which is not monotonic.

the singularity. In general, this procedure leads to a family of metrics,
depending on the precise choice of the conformal factor and of m(r).

We decided to focus on a particular form of the conformal factor
that accomplishes the regularisation in a minimal way and at the
same time ensures the non-existence of close timelike curves and the
separability of the equations of motion for test particles. With this
choice, the curvature scalars are continuous and tend to zero on the
would-be singularity3 thereby solving a long-standing issue that af-
fects many rotating RBHs. The regularisation is controlled by a scale
that we parameterise in terms of the quantity b, with dimensions
[M]5.

We further took an Ansatz for m(r) that is again minimal, in a
suitable sense, and fixed the coordinate location of the outer horizon
so that it coincides with its Kerr analogue. The resulting mass func-
tion can be expressed entirely in terms of the coordinate location of
the inner horizon, whose deviation from that of Kerr is encoded by
the dimensionless quantity e. In the limit e → 0 we obtain the con-
formal Kerr metric that, though regular, is characterised by the usual
surface gravity at the inner horizon (as it should be, given that the
surface gravity is conformally invariant) and hence is again unstable
under mass inflation. However, it is important to notice that our met-
ric cannot indefinitely deviate from the conformal Kerr one since the

3 With a slightly different choice, however, the limit can also be made non-zero.
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Figure 22: Difference in the position of the ISCO between Kerr and our
spacetime with e = 1 and b/M5 = 0.8 (continuous lines),
b/M5 = 1 (dashed lines) and b/M5 = 1.2 (dotted lines). The pro-
grade orbit, being in the more internal region of the spacetime
where the conformal factor is greater, presents larger deviations,
particularly for high spin.
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(a) Prograde orbits.
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gion |e| < 1 of figure 23a.

Figure 23: Fractional deviation of the ISCO from its Kerr analog, computed
as rISCO/rKerr

ISCO − 1 . Spin a/M = 0.998.

deviation parameter e must lie in a specific interval in order for the
mass function to be everywhere finite and for the horizons to be well
ordered (0 < r− < r+).
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Our metric thus depends on a total of four real parameters: the
ADM mass M, the spin a, the regularisation parameter b and the
deviation parameter e. The two additional parameters b and e can
be constrained by observations, at least in principle. In particular, e
enters at low order in the parameterised post Newtonian expansion
of this object’s gravitational field and thus influences its multipolar
structure; moreover, it affects the orbits of massless test particles and
therefore shifts the position of the light ring. Finally e and b both
affect the motion of massive test particles, with b having the dominant
effect on the location of the ISCO (at least when e is taken to vary in
reasonably small ranges) especially at high spins.
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R E G U L A R B L A C K H O L E S A N D U LT R A - C O M PA C T
O B J E C T S I N L O R E N T Z - V I O L AT I N G G R AV I T Y

In the previous chapters we always assumed that some new physics
would regularise singularities, but we never framed the discussion
within any specific proposal for extending GR. Here, we aim at recti-
fying such deficiency, though only partially.

We resolve to consider theories of gravity in which Lorentz in-
variance is broken. Admittedly, this choice looks exotic, given the
astounding accuracy to which Lorentz invariance has been tested in
the matter sector [235, 236]; however, several independent approaches
to quantum gravity seem to point to the possibility that Lorentz in-
variance might be broken at high energies, only to be recovered acci-
dentally in the infrared [265].

In particular, we focus on a few intimately related theories: (non-
projectable) Hořava gravity; its low-energy limit, khronometric the-
ory; and later on Einstein–æther theory, a close relative of the latter
which however is general enough to be considered an effective field
theory for all theories of gravity with a dynamical preferred frame.

The low-energy theories admit BH solutions that are singular; it
is reasonable to expect that, by properly accounting for high-energy
effects, those BHs will be regularised. This motivates us to carry out
an analysis akin to those of previous chapters.

Note: solely for this chapter, the signature of the metric will be (+,−,−,−).

10.1 invitation : why violating lorentz invariance?

Historically, the most important obstacle to the quantisation of gravity
has probably been the perturbative non-renormalisability of GR [1,
176]. Nowadays the perspective on the issue is somewhat different
[88, 143] and several other aspects of the problem, arguably deeper in
nature, have been identified — see e. g. [247, 361].

Still, an approach to quantum gravity that remains actively invest-
igated to this day consists in deforming Einstein–Hilbert’s action by
the addition of terms that contain higher-order derivatives of the met-
ric — an example being quadratic gravity [310, 324]. Indeed, higher
derivatives improve the ultraviolet behaviour of propagators and can
ameliorate loop divergences. However, the inclusion of these terms
changes the spectrum of the theory by introducing new degrees of
freedom, some of which are Ostrogradski ghost [364]. These theories
are therefore generically unstable, since classically their Hamiltonian
is unbounded below.

131
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To circumvent the issue, Hořava [192] proposed a field theory of
gravity in which the additional terms contain higher-order spatial de-
rivatives only and therefore do not give rise to ghosts. In his pro-
posal, power-counting renormalisability is manifest; but it comes at
the price of breaking diffeomorphism invariance and, locally, Lorentz
invariance, as this construction distinguishes time from space at a
fundamental level.

In the years following Hořava’s paper, several improvements to the
original idea have been proposed, including a “healthy” extension
known as non-projectable Hořava gravity [63, 64, 66]. There are now
strong indications — [45–50] and references therein — that this ver-
sion of the theory is perturbatively renormalisable: if this property is
confirmed, non-projectable Hořava gravity will represent an example
of a consistent quantum theory of gravity in (3+ 1) spacetime dimen-
sions.

Note, incidentally, that another version of Hořava gravity, dubbed
projectable in [63, 64, 66], has already been proven to be renormalisable
[45] in (2 + 1) [46] and (3 + 1) [48] dimensions. So, projectable Hořava
gravity is an ultraviolet-complete quantum theory of gravity. This state-
ment is so remarkable it deserves to be repeated: projectable Hořava
gravity is an ultraviolet-complete quantum theory of gravity.

However, the projectable theory is considered to be too restrictive
to be able to account for the gravitational phenomena we observe in
our universe. For instance, it does not admit BHs. For this reason, it
is often regarded as an interesting but phenomenologically unviable
example.

A recent review on the status of renormalisation in Hořava gravity
can be found in [188].

10.2 hořava and khronometric theory

Hořava’s theory is most naturally written in an ADM (3 + 1) decom-
position, whereby spacetime is foliated by three-dimensional space-
like hypersurfaces. In this framework, space and time are thus distin-
guished explicitly and one can easily add higher spatial derivatives
while being sure not to introduce ghosts. Renormalisability requires
derivatives up to sixth order in (3 + 1) dimensions — see [188] for a
more accurate version of this statement.

However, the theory can be reformulated in a fully covariant fash-
ion via the introduction of a Stückelberg compensator field T(x). Such
field, called khronon, encodes information on the “preferred” foliation,
which is identified with the hypersurfaces

T(x) = cst . (282)

The action of the theory is thus built out of the geometric quantities
that describe the embedding of these hypersurfaces into spacetime.
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In particular, the khronon itself will never appear in the action,
which will instead be constructed out of its normalised timelike gradi-
ent

uµ = N∇µT with N =
(√
∇νT∇νT

)−1
; (283)

such (co)vector is dubbed æther for reasons that will become clear
momentarily, while the normalisation factor N is the lapse of the pre-
ferred foliation. Note that uµ is invariant under reparametrisations
of the khronon and, being orthogonal to the constant-khronon hyper-
surface, it is irrotational. The æther thus identifies, at each spacetime
point, a preferred time direction within the tangent space.

Schematically, the action can be written as

S = − 1
16π

∫
d4x

√
−g
[

R + L2 +
1

M2
∗
L4 +

1
M4
∗
L6

]
, (284)

where each of the Ln contains derivatives of order n and M∗ is a mass
scale.

At low energies, much smaller that M∗, one can neglect L4 and
L6. The resulting action, which defines a theory mostly known as
khronometric theory, explicitly reads

S = − 1
16π

∫
d4x

√
−g
[
R + λ(∇µuµ)2 + β∇µuν∇νuµ

+ αaµaµ

]
, (285)

where aµ = uν∇νuµ is the æther’s acceleration while α, β and λ are
three dimensionless couplings.

The parameters α, β, λ are tightly constrained by observations
[163]: |β| ≲ 10−15 and either |α| ≲ 10−7 with λ unconstrained or
|α| ≲ 0.25 × 10−4 with λ ≈ α/(1 − 2α). Moreover, λ > 0 to avoid
ghosts. Since α and β seem both very small, one may at times con-
sider a “minimal khronometric theory” in which they are set to zero
exactly, while λ remains free.

Incidentally, note that the action eq. (285) coincides with a partic-
ular case of the scalar-vector-tensor modification of GR known as
Einstein–æther theory [200, 204]. Such theory is constructed in terms
of an everywhere timelike and unit-norm vector field which the au-
thors of [204] decided to call æther; that æther needs not be hypersur-
face orthogonal, but when it is constrained to be so at the level of the
action, then one gets eq. (285) [201, 203]. For this reason, the vector
uµ of khronometric theory is unanimously called æther, too.

However, hypersurface orthogonality restricts the number of phys-
ical degrees of freedom in the spectrum. The two theories are there-
fore different, though closely related. In particular, they happen to
share some solutions — namely, all hypersurface-orthogonal solutions
of Einstein–æther, e. g. those that are spherically symmetric, are solu-
tions of khronometric theory too. But the two sets of solutions are



134 rbhs in lorentz-violating gravity

nonetheless distinct. The relationship between the two theories is
therefore quite subtle [37, 38].

10.2.1 Black holes

Although the action eq. (284) is generally covariant, the fact that the
khronon identifies a preferred foliation opens the door to the exist-
ence of non-linear dispersion relations that schematically take the
form

ω2 (k) = k2 + η4
k4

M2
∗
+ η6

k6

M4
∗

. (286)

The higher powers of the spatial momentum descend directly from
the higher-order spatial derivatives and are a manifestation of the
anisotropic scaling that characterises Hořava gravity in the ultraviolet.
Their presence entails that signals may propagate faster than light.
Moreover, the theory “propagates” an istantaneous mode, i. e. one
whose equation of motion has an elliptic character, which persists
even at low energy [66].

There seems to be no room for BHs in such a context. Remarkably,
this conclusion turns out to be incorrect. Indeed, the presence of su-
perluminal signals simply entails that the light cones associated with
the metric do not characterise the causal structure. In theories with a
preferred notion of time, however, it is this preferred time that rules
causality [93].

Specifically, a curve is said to be causal if it only intersects each
leaf of the foliation once [62]; i. e. if it moves forward or backwards
in the preferred time, without ever turning back nor standing still. In
terms of these curves one can rephrase the usual definitions of casual
infinities; in particular, a suitable notion of BHs does in fact exist [36–
39, 54, 61, 65, 150, 206, 290].

However, the characterisations of horizons normally used in GR
fail to pinpoint the boundary of such BHs. Rather, the role of the
event horizon, in these theories, is played by the so-called UH. This is
a constant-khronon surface, i. e. a leaf of the preferred foliation, that
happens to be compact. Such leaf does not close to the same point
at infinity as the non-compact ones, and neither will the leaves in its
causal future — which will therefore be causally disconnected from
the future causal infinity.

When the spacetime is stationary, calling χµ the timelike (at infinity)
Killing vector, the UH is characterised by the conditions [62]

uµ χµ

∣∣∣∣
UH

= 0 and aµ χµ

∣∣∣∣
UH
̸= 0 . (287)

(The latter condition amounts to saying that UHs cannot be extremal;
it was introduced in [62] for technical reasons but could in principle
be relaxed [164].)
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UHs are thus leaves of the preferred foliation that are orthogonal to
the Killing vector of stationarity. Further note that the quantity uµχµ

can play the role of the lapse function of the preferred foliation 1 and
its vanishing means that the preferred time infinitely “slows down”
as one approaches the UH. Moreover, UHs are Cauchy horizons as
defined appropriately for this context. Hence, it is not completely
obvious that extending the spacetime beyond a UH makes sense —
we will work under the assumption that it does.2 If this is the case, it
can be shown that the lapse must change sign upon crossing the UH
[137].

UHs are different, in general, from the more familiar KHs — defined
as hypersurfaces on which a Killing vector becomes null. However,
the two notions are somewhat related since the existence of a UH
generically implies that of a KH: roughly speaking, since uµ is always
timelike, uµχµ = 0 entails that χµ must be spacelike at the UH; but
since it is timelike at infinity it must also become null somewhere in
between.

Note, incidentally, that dispersion relations like eq. (286) are con-
ceivable in Einstein–æther theory, too. Thus, one might conjecture
that UHs exist in that context as well. Whether the characterisation of
eq. (287) makes sense in the absence of hypersurface orthogonality is,
however, unclear. We will come back to this point in chapter 11.

10.2.2 A static and spherically symmetric infrared solution

Let us focus on the low-energy limit, i. e. khronometric theory, and
investigate its static and spherically symmetric solutions.

The equations of motion obtained by varying eq. (285) with respect
to δgµν and δT can be written as:

Gµν = 0 , (288)

∇µ (NAµ) = 0 . (289)

Eq. (288) is the equivalent of the Einstein’s equation, indeed one
can write Gµν = Gµν − Tæ

µν, with Gµν the Einstein’s tensor and Tæ
µν the

stress-energy tensor of the æther. Eq. (289) is the equation of motion
of the khronon:3 the vector Aµ is built out of uµ and its derivatives
and is orthogonal to the æther uµAµ = 0.

To include matter, one can add the matter action Smat to eq. (285)
(or eq. (284)). This yields source terms that appear on the right-hand
side of eqs. (288) and (289).

1 More precisely, the quantity uµχµ is the lapse when one makes the gauge choice
χµ∇µT = 1 — cf. eq. (283).

2 More precisely, such extension seems justified — and arguably necessary — in a
context like Einstein–æther theory, which is defined in terms of the æther and does
not require a foliation; in khronometric theory, the issue is less transparent.

3 This equation actually follows from the Einstein’s equation as a consequence of the
(generalised) Bianchi identities [202].
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Since in eqs. (288) and (289) the metric and the æther appear to
be coupled, it is natural to expect that the isometries of the metric
will extend to symmetries of uµ. Hence, when assuming staticity and
spherical symmetry, we also assume that the æther is Lie-dragged
along the corresponding Killing vectors. Thus, in particular, the an-
gular components of uµ will vanish, and the remaining components
will not depend on the Killing time.

(The terminology static æther has appeared in the literature, e. g. [151],
to refer to an æther that is everywhere aligned with the Killing vec-
tor; however, this assumption implies the non-existence of UHs and
is therefore too restrictive for our purposes.)

We will adopt in-going Eddington–Finkelstein coordinates, and write
the metric and the æther as

ds2 = f (r)dv2 − 2 dv dr− h(r)dΩ2 , (290)

uµ∂µ = Y(r)∂v + y(r)∂r . (291)

Note that, despite the change in signature, the metric is in the general
form of eq. (4) with the gauge choice g(r) = f (r). Moreover, since the
æther has unit norm, the four functions are not all independent, as
the following relation holds:

y = −1−Y2 f
2Y

. (292)

In these coordinates, the Killing vector of staticity is

χµ∂µ = ∂v , (293)

hence its projection along the æther reads

uµ χµ =
1 + Y2 f

2Y
= f Y− y (294)

(eq. (292) has been used in passing from the first line to the second).
An exact solution can be found quite easily by setting α = 0 [54],

which is compatible with current observational bounds.4 In the para-
metrisation above, it is given by f = fsing., h = hsing. and y = ysing.

with

fsing.(r) = 1− r0

r
− β

r4
æ

r4 , hsing.(r) = r2 , (295)

ysing.(r) = −
r2

æ
r2 , (296)

where r0 is twice the ADM mass of the spacetime and ræ is another, a
priori independent, integration constant. One can then easily compute

Ysing.(r) =
1

fsing.(r)

[
− r2

æ
r2 ±

√
fsing.(r) +

r4
æ

r4

]
(297)

4 Another exact solution can be found for β + λ = 0.
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and

(
uµ χµ

)
sing = ±

√
fsing(r) +

r4
æ

r4 . (298)

(Note that reference [54] only reports the plus sign in front of the
square root, although the constraint actually allows for both. How-
ever, sticking to a single sign would lead to a kink-like behaviour at
the zeroes of uµ χµ, whose derivative would thus be discontinuous.
Indeed, [137] showed that the lapse must change sign upon crossing
a UH.)

Depending on the relative magnitude of r0 and ræ, the quantity
under the square root in eqs. (297) and (298) may become negative,
thus rendering

(
uµ χµ

)
sing complex. This undesirable circumstance

can be avoided imposing a suitable inequality between r0 and ræ. In
particular, if one imposes the fine-tuned choice

ræ =
r0

4

(
27

1− β

)1/4

, (299)

the lapse function has one isolated zero and the solution thus de-
scribes a BH. (When ræ is larger than this value the solution is still
acceptable, but does not describe a BH; in fact, it describes a naked
singularity.)

The UH is located at

rUH =
3
4

r0 . (300)

Moreover, the lapse can be written as

(
uµ χµ

)
sing. =

1
r2

(
r− 3

4
r0

)√
r2 +

r0

2
r +

3r2
0

16
. (301)

The signs have been chosen so that this quantity tends to one at spa-
tial infinity but changes sign upon crossing the UH — as it must [137].
This corresponds to choosing the plus sign in eq. (297) outside of the
UH and the minus inside.

The UH has an associated surface gravity that sets the temperature
of the analogue of Hawking’s radiation, in a way similar to the sur-
face gravity of horizons in GR (see e. g. [136, 137, 189] and references
therein). It is defined as

κUH = −1
2

aµ χµ , (302)

which on the solution evaluates to

κ
sing.
UH =

2
√

2
3
√

3r0
√

1− β
. (303)
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The metric also exhibits a KH, associated with the zero of fsing(r).
Clearly, when β = 0 the metric reduced to that of Schwarzschild
and the KH is located at rKH = r0. More generally, one can write
fsing(r) = 0 as

r3(r− r0)−
[

27
256

β

1− β
r4

0

]
= 0 ; (304)

hence, one can deduce that the KH moves towards larger values of r
as β increases (we always assume β < 1), i. e. rKH ≥ r0. Thus, the KH
always encloses the UH, as it must. The equation does not have any
more roots. Further note that Ysing(r) is well-behaved at the KH, as
can be verified by expanding close to r = rKH:

Ysing(r) =
r2

KH
2r2

æ
+O

(
(r− rKH)

2
)

. (305)

Notably, however, this metric is singular at r = 0, as one can check
e. g. by evaluating the Kretschmann scalar:

RµνρσRµνρσ = 12
r2

0r6 + 10βr0r4
ær3 + 39β2r8

æ

r12 . (306)

The components of the æther also seem ill-defined at that point, al-
though this statement relies on the choice of coordinates. To check
that the æther flow is in fact singular at r = 0 one should characterise
it in terms of scalar quantities. Since the æther constitutes a timelike
non-geodesic congruence, a rather natural choice is to describe it in
terms of its optical scalars:5 the expansion, the square of the sym-
metric shear and the square of the antisymmetric twist. The explicit
computations are carried out in subsection 10.8.1.

10.2.2.1 Causal structure

As mentioned in subsection 10.2.1, in the presence of Lorentz viola-
tions the light cones associated to the metric do not characterise the
causal structure, since signals that are superluminal in the preferred
frame can still be causal. If the theory is such that there exists a fi-
nite maximum speed of propagation, then one can define a new met-
ric whose “light” cones do characterise the causal structure. Notably,
such light cones will be wider than those of the original metric.

In theories like Hořava gravity, however, there exists an istantan-
eous mode and the propagation speed is unbounded. In a sense, this
situation can be seen as a limiting case of the former, whereby the
maximum speed is sent to infinity. Correspondingly, the “light” cones
of the auxiliary metric that determines causality open up to become
the hypersurfaces orthogonal to the æther, i. e. the constant-khronon
surfaces.

5 The term “optical scalars” is usually reserved for null geodesic congruences. We are
abusing this terminology, hopefully without confusion.
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Figure 24: Causal structure for the infrared singular solution: æther flow
(left) and constant-khronon surfaces (right).

Hence, one can represent pictorially the flow of the æther through
spacetime, or equivalently the embedding of the preferred foliation,
in order to visualise causal relationships in a way very similar to
what one does in GR. Specifically, in such plots the constant-khronon
surfaces will play a role analogous to light rays in GR.

In the following, we will often resort to plots of this kind. In order
to ease the future discussion, we introduce them here for the partic-
ular solution eqs. (295) and (296). This case will therefore serve as a
baseline, departures from which will be described in due time

Thanks to spherical symmetry, the dependence on the angles is
always trivial and we can thus limit the analysis to an appropriate
time–radius plane. As usual, the most natural definition of time is
given in terms of the null coordinate v as

dtv
∗ = dv− dr ; (307)

this is a (Killing-)“horizon-penetrating” Killing time. The more famil-
iar time t, given by dt = dv− dr/ f , would not be appropriate, since
the components of the metric and of the æther are singular at the
KHs when expressed in terms of it.

The æther flow can then be portrayed as in the left panel of fig-
ure 24: a stream of arrows, whose components are proportional to
those of the æther. Specifically, the æther is taken to be in its covari-
ant form, hence the horizontal components of the arrows is ur = ysing.

while the vertical component is utv
∗ =

(
uµ χµ

)
sing..

Furthermore, the right panel of figure 24 reports plots of several
constant-khronon surfaces in the (tv

∗, r) plane. Since the æther is by
definition orthogonal to constant-khronon hypersurfaces, the inform-
ation provided by the two plots is not independent but complement-
ary. We report both, hoping this will benefit the reader.

Looking at figure 24, we notice that at large r the æther is almost
vertical, and the constant-khronon lines are also lines of constant
Killing time tv

∗. This is because, at infinity, the æther is aligned with
the Killing vector — whose flow would be a stream of vertical arrows,
since the Killing vector is orthogonal to constant-tv

∗ surfaces.
As one approaches to smaller r, however, the æther tilts inwards.

Nothing remarkable happens at the KH, whose location is depicted
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for reference by a dashed vertical line. Somewhere inside the KH, at
a location marked by the solid vertical line, the æther becomes ho-
rizontal, hence orthogonal to the Killing vector: this defines the UH.
Correspondingly, the constant-khronon lines have a vertical asymp-
tote at the UH and exponentially recede away from it in its vicinity
— i. e. they peal off, in an amount that is controlled by the surface
gravity, exactly as null rays would do at a trapping horizon.

Note that behind the outer UH the æther points downwards, mean-
ing that it flows in the opposite direction with respect to the Killing
vector. These plots end at r = 0, which as argued is a spacetime sin-
gularity.

10.2.3 Goal of the chapter

The rationale guiding this chapter should now be intuitively clear. It
is reasonable to think that the low-energy singular solution eqs. (295)
and (296) will be regularised when the effects of the higher-order
terms in L4 and L6 are taken into account.

However, L4 and L6 contain all the operators that, at that order in
derivatives of the metric and the æther, are compatible with the sym-
metries. Since the number of such operators is very high, listing them
all is already a non-trivial exercises. Therefore, solving the equations
of motion for the full theory is likely going to be very difficult.

(Note that RBHs have been searched for, but not found, in the pro-
jectable version of Hořava gravity in [233]. That analysis however did
not allow for the running of the couplings.)

Luckily, as parts i and ii have made clear, some progress can be
made without actually solving those equations. Indeed, general argu-
ments analogous to those of subsection 2.2.1 lead us to predict that
the regular solutions of said equations will fall into one of very few
classes. These classes are characterised by certain qualitative features,
which can be captured by effective models like those of sections 3.2
and 3.3. Hopefully, studying examples of such effective models will
guide the search for exact regular solutions.

The rest of the chapter is thus structured similarly to several oth-
ers in this thesis: we will first describe the implementation of some
common regularisation prescriptions in section 10.3; then analyse ho-
rizons (section 10.4) and the ensuing causal structure (section 10.5);
finally, we will characterise the deviations from the vacuum of the
infrared theory by computing the effective sources through khrono-
metric theory’s equaitions of motion (section 10.6).
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10.3 regularisations of the singularity

With some technical adaptions, the classification of subsection 2.2.1
applies to the case of Hořava gravity as well. Specifically, we will
distinguish simply connected and multiply connected regularisations:
the simply connected regularisations will generically exhibit multiple
UHs; the multiply connected regularisations instead will sport a worm-
hole throat6 at their centre.

The difference with respect to parts i and ii is that here the met-
ric is not the only ingredient needed to fully characterise the geo-
metry. Indeed, in Hořava gravity the preferred foliation plays a genu-
inely physical role. Consequently, ensuring that the metric is free of
curvature singularities and that the spacetime is curve-complete is
not enough to claim regularity — one also has to make sure that
the æther field describes a well-behaved flow throughout the whole
spacetime.

Somewhat surprisingly, the simple regularisation of the metric de-
scribed in sections 3.2 and 3.3, suitably implemented, lead very nat-
urally to regularisations of the æther, too.

10.3.1 Simply connected regularisation

As usual, to build a simply connected regularisation we replace the
parameter r0 with a function r0(r). If we assume the fine-tuned choice
eq. (299), this replacement will percolated to the parameter ræ, which
will become a function as well:

ræ(r) =
r0(r)

4

(
27

1− β

)1/4

. (308)

So, the æther will inherit the regularisation of the metric.
Specifically, the regularised metric and æther will be described by

the general form eqs. (290) and (291) with f = fSC, h = hSC and
y = ySC with

fSC(r) = 1− r0(r)
r
− β

r4
æ(r)
r4 , hSC(r) = r2 , (309)

ySC(r) = −
r2

æ(r)
r2 , (310)

6 Examples of wormholes in Hořava gravity are given in [116, 243].
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so that

YSC(r) =
1

fSC(r)

[
− r2

æ(r)
r2

+
1
r2

(
r− 3

4
r0(r)

)√
r2 +

r0(r)
2

r +
3r2

0(r)
16

]
, (311)

(
uµ χµ

)
SC =

1
r2

(
r− 3

4
r0(r)

)√
r2 +

r0(r)
2

r +
3r2

0(r)
16

. (312)

(SC stands for simply connected.)
As usual, the function r0(r) is arbitrary except for a minimum set

of requirements (cf. section 3.2) [12, 170, 249, 313]:
r0(r) = cℓ−2r3 +O

(
r4) close to r = 0 ,

limr→∞ r0(r) = r0 ,

r0(r) “well-behaved”, e. g. r0(r) > 0 .

(313)

The metric is regular, as discussed in section 3.2. The components
of the æther are now manifestly regular, too. In particular,

ySC(r) = O
(
r3) and YSC(r) = 1 +

cℓ−2

2
r2 +O

(
r3) , (314)

i.e. in the limit r → 0 the æther coincides with the Killing vector, up
to corrections of order O

(
r2). This is precisely the trivial æther flow

that one would expect in a maximally symmetric space. The first de-
rivatives of fSC(r) and YSC(r) are similarly well-behaved close to r = 0,
which ensures that all the optical scalars characterising the æther con-
gruence are regular too — details can be found in subsection 10.8.1.

In what follows, we will present calculations for Hayward’s choice
of r0(r) [187],

r0(r) = 2M
r3

r3 + 2Mℓ2 , (315)

but the features we will describe are generic: other well-studied ex-
amples, e.g. the Bardeen [43] or Dymnikova [144] metrics, yield very
similar results.

10.3.2 Multiply connected regularisation

Unsurprisingly, to build a multiply connected regularisation we re-
sort again to the SV trick and replace, in eqs. (295) and (296), any



10.4 horizons 143

instance of r with
√

r2 + ℓ2. The result takes the form of eqs. (290)
and (291) with f = fMC, h = hMC and y = yMC

fMC(r) = 1− r0√
r2 + ℓ2

− β
r4

æ
(r2 + ℓ2)2 , hMC(r) = r2 + ℓ2 ,

(316)

yMC(r) = −
r2

æ
r2 + ℓ2 , (317)

so that (using again ϱ =
√

r2 + ℓ2)

YMC(r) =
1

fMC(r)

[
− r2

æ
ϱ2

+
1
ϱ2

(
ϱ− 3

4
r0

)√
ϱ2 +

r0

2
ϱ +

3r2
0

16

]
,

(
uµ χµ

)
MC =

1
ϱ2

(
ϱ− 3

4
r0

)√
ϱ2 +

r0

2
ϱ +

3r2
0

16

]
. (318)

(MC stands for multiply connected.) We are still assuming ræ =

271/4(1− β)−1/4(r0/4), without rdependence, as in the singular solu-
tion (eq. (299)). As usual, since the metric and the æther are invariant
under r 7→ −r, one can extend the domain of the coordinate r to
(−∞,+∞). We will then have the familiar “two universes”, connec-
ted by a throat located at r = 0.

In this example, regularity is manifest, since all components of
both the metric and the æther approach a finite non-zero limit as
r → 0. (Details on the æther’s optical scalars can be found in subsec-
tion 10.8.1.)

10.4 horizons

The regularised metrics introduced above, similarly to the singular
solution, exhibit KHs located at the solutions of f (r) = 0. These hori-
zons are still surfaces of infinite redshift/blueshift for matter that is
minimally coupled to the metric and uncoupled to the æther. How-
ever, because of the breaking of local Lorentz invariance, they are
not causal horizons since, as mentioned before, the presence of su-
perluminal signals affects the causal structure [93]. The role of causal
horizons is instead played by UHs.

Nonetheless, the two notions are related insofar as the existence
of a UH implies that of a KH too. We hinted at this fact already in
subsection 10.2.1 and argued that this is indeed the case in subsec-
tion 10.2.2. Here we have yet another example, since in both simply
and multiply connected regularisations we have(

uµ χµ
)2

= f (r) + positive function of r : (319)
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Figure 25: Plot of Hayward’s choice of r0(r) for three values of the parameter
ℓ. Intersections with the straight (dashed) black line correspond
to UHs (KHs) in the minimal theory α = β = 0.

both uµ χµ and f are positive at infinity, hence the lapse can reach
zero only in a region in which f (r) is negative — i. e. in what in GR
would be a trapped region.

Moreover, since in both cases f (r) becomes positive again — at
r = 0 in the simply connected case and at r = −∞ in the multiply
connected case — KHs as well as UHs generically come in pairs.

Thus, RBH geometries typically exhibit a nested structures of KHs

and UHs. In the following subsections we will describe this structure
in detail for the specific examples that we are exploring, but the above
considerations can be proven to be general by exploiting the notion
of the degree of a map. Moreover, in subsection 10.8.2 we present an
alternative, local characterisation of UHs in terms of the expansions
of two congruences, in a language that makes contact with [100].

10.4.1 Horizons — Simply connected regularisation

We start by setting β = 0, for simplicity. KHs are given by r = r0(r)
and UHs by 4r/3 = r0(r). Whether these equations admit solutions
or not is a model-dependent question. When r0(r) is that of Hayward,
eq. (315), for example, the answer depends on the value of the para-
meter ℓ.

As an illustration, in figure 25 we plot Hayward’s r0(r) for three
values of ℓ; the plot also reports two straight lines, with slope equal
to one (dashed line) and 4/3 (solid line) respectively: the intersections
of r0(r) with these lines determine the horizons. When ℓ is small, we
can count two intersections with the dashed line and two with the
solid one. Hence, this configuration presents two KHs and two UHs;
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coming from infinity, they are met in the following order: outer KH,
outer UH, inner UH, inner KH. As ℓ is increased, the curve relative
to r0(r) moves towards the bottom-left corner of the picture: inner
and outer horizons thus approach each other. They keep approaching
until the two UHs merge into a single, degenerate UH; this happens
at a threshold value of ℓ = M/2 above which no UH exist. Similarly,
the KHs keep approaching until they merge into a degenerate KH
and then disappear: this second threshold corresponds to a higher
value of ℓ∗ = 4M/(3

√
3) — cf. section 3.2.

Therefore, we can distinguish three qualitatively different regimes:
a RBH regime, characterised by an inner/outer UH pair (as well as an
inner/outer KH pair); an intermediate regime in which there are two
KHs but no UHs; and a star-like regime with no horizons. Although
technically a BH is present only in the first regime, an object in the
intermediate regime would still appear “almost black”, given that
low energy modes would linger for an extremely long time at the KH
before being able to escape to infinity.

Reinstating the parameter β does not greatly distort this picture,
since its only effect is that of displacing the KHs. Eq. (304) remains
valid upon replacing r0 with r0(r), so increasing the value of β shifts
the outer KH outwards. The inner KH, instead, moves inwards. That
is, increasing β has the effect of pushing KHs further apart; this is the
opposite effect one has by increasing the regularisation parameter ℓ,
which instead pushes KHs closer together. The location of UHs is
unaffected by β.

In the BH regime, the UHs each have a surface gravity. Plugging
eq. (310) in the definition eq. (302), we get

κSC
UH =

4− 3r′0(r)
3
√

6r0
√

1− β

∣∣∣∣∣
UH

, (320)

which should be evaluated at each of the UHs. Note that when r′0 = 0
we recover the result for the singular solution eq. (303).

In the BH and in the intermediate regime, the horizon radii provide
an intuitive way of telling the “size” of the compact object. It would be
useful to extend this notion to the star-like regime by defining an ap-
propriate effective radius. A particularly simple choice is to pick the
unique r⋆ for which f ′(r⋆) = 0. This is the radius of maximum (met-
ric) redshift and thus quantifies the compactness of the star. Moreover,
in the limit in which ℓ approaches (from above) the threshold value
for the KH’s formation, r⋆ approaches the (degenerate) horizon ra-
dius.

Explicitly, we have

f ′SC = −
( r0

r

)′ [
1 + 4

27
256

β

1− β

( r0

r

)]
, (321)
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hence f ′SC = 0 reduces to

r0(r)− r r′0(r) = 0 , (322)

independently on β. For Hayward’s choice, we find

r⋆ =
(
4Mℓ2)1/3

. (323)

10.4.2 Horizons — Multiply connected regularisation

As in the previous case, the existence and location of horizons is,
strictly speaking, a model-dependent question. In the simple example
that we are considering, the answer is determined by the only free
parameter ℓ. The discussion becomes particularly simple if one re-
sorts to ϱ =

√
r2 + ℓ2.

KHs are solutions of

ϱ3(ϱ− r0)−
[

27
56

β

1− β
r4

0

]
= 0 , (324)

which is formally the same as eq. (304). Call ϱKH the (unique) solution;
in the r coordinates, this corresponds to

r2
KH = ϱ2

KH − ℓ2 . (325)

Hence, for ℓ < ϱKH the spacetime has one KH per each universe,

located at r = ±rKH with rKH =
√

ϱ2
KH − ℓ2; when instead ℓ > ϱKH

the spacetime has no KHs; the limiting case ℓ = ϱKH corresponds to
the two horizons coinciding with the wormhole throat, which in this
case is null. Similarly to the simply connected configuration, one can
easily check that increasing ℓ makes the KH shrink, while increasing
β makes it larger.

For what concerns the UHs, instead, they are located at

ϱUH =
3
4

r0 . (326)

That is, when ℓ < 3r0/4 there is one UH per each universe, located

at r = ±rUH with rUH =
√

ϱ2
UH − ℓ2; when instead ℓ > 3r0/4 there

are no UHs. As before, the equality corresponds to a degenerate case
for which the throat of the wormhole coincides with the UH. Analog-
ously to the previous case, increasing ℓ makes the UH shrink while β

has no effect at all; note that rUH < rKH.
The surface gravity of the UH has a particularly simple form:

κUH = κ
sing.
UH

√
1− ℓ2

ϱ2
UH

, (327)

where κ
sing.
UH is the surface gravity for the singular solution written in

eq. (303). Thus, for ℓ = ϱUH = 3r0/4 the UH is “degenerate” and the
BH is extremal, in the sense that its UH’s surface gravity vanishes.
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(f) ℓ = 1.3M.

Figure 26: Hayward RBH: æther flow (left) and constant-khronon surfaces
(right). Black solid lines mark UHs, dashed lines KHs; the dotted
line signals the star’s effective radius. The first row depicts the
case with outer and inner KHs and UHs, the middle row the case
with only two KHs, the bottom row the case of an ultracompact,
horizonless, object. The insets are a zoom-in to the small-r region.

10.5 causal structure

We repeat the analysis of subsection 10.2.2.1 for both the simply and
multiply connected regularisations.

10.5.1 Causal structure — Simply connected regularisation

The causal structure corresponding to the Hayward-like regularisa-
tion is summarised in figure 26. Each row corresponds to a different
value of ℓ and therefore to a different regime: the top row represents
a RBH, the second row the intermediate regime and the third row the
star-like regime.

In the outer regions, these pictures are analogous to those in fig-
ure 24: at infinity the æther is aligned with the Killing vector and it
tilts inwards as one moves to smaller r; then it becomes horizontal at
the outer UH, where the familiar peeling structure appears.
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Figure 27: Black bounce: æther flow (left) and constant-khronon surfaces
(right). Black solid lines mark UHs, dashed lines KHs; the dot-
ted line signals the throat. The first row depicts a black bounce
with a UH and a KH per side, the second row represents a con-
figuration with just one with KHs per side but no UHs, the third
row portraits a naked (without horizons) traversable wormhole.

Inside the UH, the æther flows in the opposite direction with re-
spect to the Killing vector until it becomes horizontal again at the
inner UH. Correspondingly, the constant-khronon lines pile up expo-
nentially — as null rays would do at an inner trapping horizon.

Inside the inner UH the æther points again in the same direction as
the Killing vector. Close to r = 0, the flow becomes identical to that
of large r, i. e. to that of flat space.

Nothing remarkable takes place at the either of the KHs.

10.5.2 Causal structure — Multiply connected regularisation

The æther flow and constant-khronon lines for the black-bounce-like
regularisation are displayed in figure 27. As before, each row corres-
ponds to a different regime: the first to a black bounce with UHs, the
second to one with KHs but no UHs and the third to one without
horizons.
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The æther, which is aligned with the Killing vector at infinity, tilts
inwards as one moves closer to r = 0. At the UH it becomes hori-
zontal, it flows in the opposite direction until it becomes horizontal
again at the UH in the other universe and then returns aligned with
the Killing vector at r = −∞. The constant-khronon curves pile off
the UH in our universe and pile up at the UH in the other universe.
Note that the KHs and the throat look like any other location to the
æther.

10.6 effective sources

Having described the structure of the regularisations we presented,
we now wish to understand the extent to which they deviate from
the vacuum of the infrared theory. As customary, we will do so by
plugging the regular metrics (and æther) into khronometric theory’s
equations of motion.

Not surprisingly, we will find that such effective sources are size-
able only in the proximity of the would-be singularity and decay very
rapidly as one moves to larger radii. For all practical purposes, there-
fore, the spacetime surrounding our regular objects can be considered
vacuum and their phenomenology can thus be studied using stand-
ard low-energy physics.

Let us start by noticing that the equation of motion for the khronon
eq. (289) can be written as

NJ = 0 with J =
[
∇µAµ − aµAµ

]
. (328)

The lapse N can be chosen (almost) arbitrarily, since it depends on
how the khronon is parametrised; the scalar quantity J instead only
depends on the æther and can be computed unequivocally. Thus, four
our purposes J will serve as the khronon’s effective source.

Similar considerations hold for the Einstein’s equations eq. (288).
Since the components of Gµν clearly depend on the choice of coordin-
ates, one first needs to find a coordinate-independent way of charac-
terising the source. One way to achieve this goal would be to compute
its eigenvalues, which are scalars under general coordinate transform-
ations. When the eigenvalues are real, they can be interpreted as en-
ergy density and principal pressures of some non-perfect fluid. Un-
fortunately, while this characterisation works for the Einstein’s tensor,
it fails for the stress-energy tensor of the æther, since there are re-
gions in the spacetime where the eigenvalues are complex (i. e. the
æther’s stress-energy tensor is of Type IV in the Hawking–Ellis clas-
sification [184]).

However, since in the framework of Hořava gravity there exists a
preferred foliation and therefore a preferred observer, it makes sense
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to characterise the effective sources as measured by such observer.
Hence, we compute the projection

ε(u) = Gµνuµuν , (329)

which we could interpret as the energy density measured by an ob-
server that is comoving with the æther. We then pick another vector
sµ that is spacelike, outward-pointing, of unit norm and orthogonal
to uµ and use it to define a radial pressure as

p(s) = Gµνsµsν . (330)

We use

sµ∂µ = Y∂v + w∂r with w = +
1 + Y2 f

2Y
. (331)

Finally, we could define a tangential pressure in an analogous way, or
simply as

p⊥ = −Gθ
θ = −G

ϕ
ϕ . (332)

Since the parameters α, β, λ enter the action as coupling constants,
all the scalars that we have just introduced share the same simple
structure. Consider ε(u) as an example: it can be written as

ε(u) = ε
(u)
G + α ε

(u)
α + β ε

(u)
β + λ ε

(u)
λ . (333)

Here, ε
(u)
G derives from the Einstein’s tensor while each of ε

(u)
α , ε

(u)
β ,

ε
(u)
λ derives from the operators that appear in the action multiplied

respectively by α, β and λ. Clearly, each of them still depends on β

(and on ℓ), since the explicit form of the metric and of the æther does;
but not on α nor λ. We will use analogous notations for the decom-
positions of p(s), p⊥ and J, with the only difference that J has no “JG

part”. One can check that p(s)α = −p⊥α in all the cases that we consider.
A remark is in order, at this point. The singular geometry presented

in eqs. (295) and (297) is a solution of the equations of motion only
for α = 0. Indeed, as will be made explicit in the next two subsections,
the effective sources proportional to α generically do not vanish — not
even in the limit ℓ → 0, in which the singular geometry is retrieved.
Hence, one might worry that allowing α ̸= 0 in the analysis of the
non-singular configurations is not consistent.

Here, however, we choose to keep α ̸= 0. The reason is that, in the
absence of some custodial symmetry that protects it against running,
the higher-order operators in the action of Hořava gravity will gener-
ically affect the value of α (as well as that of β and λ) at the level of
the effective field theory. Hence, we cannot presume it to be zero at
this stage.

Still, at low energies, the effect of higher-order operators is negli-
gible and the value of α is the one set by (low-energy) observations:
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α ≲ O
(
10−4) — cf. section 10.2. One should bear in mind, therefore,

that at large distances the effective sources proportional to α are highly
suppressed.

10.6.1 Effective sources — Simply connected regularisation

Here, we remain agnostic on the specific choice of r0(r) for as long
as possible; however, the explicit results are often cumbersome and
not particularly enlightening. For this reason, we specialise to Hay-
ward’s choice and discuss, in particular, the asymptotic behaviour of
the effective sources.

khronon’s equation One finds that Jβ = Jλ; clearly, these are
zero when ℓ = 0. Jα instead is non-zero even in the limit in which
the regularisation parameter vanishes, since the singular solution we
started with is an exact (vacuum) solution only for α = 0. The expli-
cit expressions are not particularly enlightening and we hence omit
them here. We can however get useful insights by looking at their
asymptotic behaviour.

At infinity, we find

J = α Jα + (β + λ)Jβ,λ

= α

[
−6
√

3

√
1

1− β

M4

r5 +O
(
r−6)]

+ (β + λ)

[
540
√

3

√
1

1− β

M3ℓ2

r6 +O
(
r−7)] . (334)

The different scaling between Jα and Jβ,λ is not surprising, since the
former does not vanish in the ℓ→ 0 limit — as previously argued. In
any case, it is easy to see from the above expression that the effective
source vanishes rapidly as one moves away from the object.

The sources may be large at intermediate radii, but become very
small in the opposite limit, small r, and vanish exactly at r = 0. In-
deed, expanding around this point, we find

J = α

[
27
√

3
4

√
1

1− β

r5

ℓ6 +O
(
r6)]

+ (β + λ)

[
27
√

3

√
1

1− β

r3

ℓ4 +O
(

r4
)]

. (335)

Hence, the connected non-singular configuration is almost a solu-
tion of khronometric theory at very large and very small distances
from the centre.
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einstein’s equations Plugging in the general form of eqs. (309)
and (310), we find a series of additional identities:

ε
(u)
G = −p(s)G , (336a)

p⊥λ = p(s)λ , (336b)

ε
(u)
G + βε

(u)
β =

r′0
r2 + βε

(u)
λ , (336c)

p(s)G + βp(s)β = − r′0
r2 + βp(s)λ , (336d)

p⊥G + βp⊥β = − r′′0
2r

+ βp⊥λ (336e)

Hence, we can write

ε(u) =
r′0
r2 + (β + λ)

27r2
0

128(1− β)

[
r′0
r2

]2

+ α ε
(u)
α , (337a)

p(s) = − r′0
r2 − (β + λ)

27r2
0

128(1− β)r5

[
2r(r′0)

2 + r0(rr′′0 − 2r′0)
]

+ α p(s)α , (337b)

p⊥ = − r′′0
2r
− (β + λ)

27r2
0

128(1− β)r5

[
2r(r′0)

2 + r0(rr′′0 − 2r′0)
]

− α p(s)α . (337c)

The expressions of ε
(u)
α and p(s)α are slightly more involved and we

omit them here.
Focusing on Hayward’s choice, we can read off the asymptotic be-

haviours. At large r we have

ε(u) =

[
12M2ℓ2

r6 +O
(
r−9)]+ (β + λ)

[
243M6ℓ4

2(1− β)r12 +O
(

r−15
)]

+ α

[
M2

2r4 +O
(
r−5)] , (338a)

p(s) = −
[

12M2ℓ2

r6 +O
(
r−9)]+ (β + λ)

[
243M5ℓ2

2(1− β)r9 +O
(

r−12
)]

+ α

[
M2

2r4 +O
(
r−5)] , (338b)

p⊥ =

[
24M2ℓ2

r6 +O
(
r−9)]+ (β + λ)

[
243M5ℓ2

2(1− β)r9 +O
(

r−12
)]

− α

[
M2

2r4 +O
(
r−5)] . (338c)

Clearly, these effective sources display “tails” that extend, in principle,
up to infinity; the tails however decrease very rapidly, hence for all
practical purposes the spacetime surrounding the object can be con-
sidered empty. Further note that, as anticipated, these sources do not
vanish in the limit ℓ→ 0 because of the terms ∝ α. This is simply due
to the fact that the singular configuration is a solution only for α = 0.
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At r = 0, the following expansions hold:

ε(u) =

[
3
ℓ2 +O

(
r3)]+ (β + λ)

[
243r6

128(1− β)ℓ8 +O
(
r7)]

+ α

[
3
ℓ2 +O(r)

]
, (339a)

p(s) = −
[

3
ℓ2 +O

(
r3)]− (β + λ)

[
243r6

64(1− β)ℓ8 +O
(
r7)]

+ α

[
r2

2ℓ4 +O
(
r3)] , (339b)

p⊥ = −
[

3
ℓ2 +O

(
r3)]− (β + λ)

[
243r6

64(1− β)ℓ8 +O
(
r7)]

− α

[
r2

2ℓ4 +O
(
r3)] . (339c)

Note that the Einstein’s tensor presents a dS form.
Focusing on the minimal theory (α = β = 0), the analytic expres-

sions become more tractable. We report them for completeness:

ε
(u)
G = −p(s)G =

12M2ℓ2

(r3 + 12Mℓ2)2 ,

p⊥G = −24M2ℓ2(Mℓ2 − r3)

(r3 + 2Mℓ2)3 , (340a)

ε
(u)
λ =

243M6ℓ4r6

2(r3 + 2Mℓ2)6 ,

p(s)λ = p⊥λ =
243M5ℓ2r6(r3 − 2Mℓ2)

2(r3 + 2Mℓ2)6 ; (340b)

and provide their plots in figure 28.
In order to produce the figures, we exploit a self-similarity prop-

erty that these functions enjoy: when written in terms of the variable
x = r

(
Mℓ2)−1/3, they only depend on ℓ through a multiplicative

factor, which we can remove. Thus, the curves in figure 28 are ℓ-
independent: the ℓ-dependence can be reinstated by simply rescaling
the axes appropriately.

The location of the horizons in the x coordinate depends markedly
on ℓ: for reference, figure 28 reports an illustrative example. It also re-
ports the location of the star’s effective radius, which is defined only
for ℓ > 4M/(3

√
3) but has an otherwise ℓ-independent x-coordinate:

r⋆ =
(
4Mℓ2)1/3 7→ x⋆ = 41/3 ≃ 1.59 . (341)

The fact that x⋆ does not depend on the regularisation parameter
might sound suspicious, as it seems to suggest that the value of the
effective sources at the star’s radius is always the same, irrespective
of the value of ℓ. Physical intuition would suggest the opposite: the
sources corresponding to large stars should be “dilute” with respect
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(a) Energy density and principal pressures deriving from the Einstein’s
tensor.
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(b) Energy density and principal pressures derived from the æther’s SEMT.
These curves should be multiplied by λ.

Figure 28: Components of the energy density and the principal pressures,
as measured by an observer comoving with the æther, for the
Hayward non-singular configuration in the minimal theory α =
β = 0. The position of the horizons in this coordinate strongly
depends on ℓ: the vertical black lines mark UH (solid) and KH
(dashed) for ℓ = 0.25M; the dotted line corresponds to the star’s
effective radius (which coincides with the degenerate KH in the
extremal case).

to those of more compact stars. Physical intuition does indeed paint
the correct picture: the value of each of the effective sources at the
star’s radius is given by a constant (of order one in appropriate units)
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divided by ℓ2. So increasing ℓ does suppress the deviations away from
vacuum.

Inspecting the figure, we realise that the effective sources are typ-
ically negligible at the scale of the outer horizon. They are still small,
though less so, at the scale of the star’s radius, and become almost
zero very rapidly as one moves outwards. We deduce that most of
the phenomenologically relevant phenomena involving these non-
singular objects take place, for all practical purposes, in vacuum.

10.6.2 Effective sources — Multiply connected regularisation

In the multiply connected case, we only analyse the specific example
provided by the black bounce spacetime. The analytic expressions are
often reasonably compact: when this is the case, we report them in
full. However, as in the previous section, we will put the emphasis on
the more informative asymptotic behaviours.

khronon’s equation We find that Jλ = 0 identically. This means
that, remarkably, the khronon’s equation of motion is satisfied in the
minimal theory α = β = 0. For the more general cases, Jα and Jβ can
be written as

Jα = r
[
Mϱ2P5(ϱ) + ℓ2P6(ϱ)

]
jα(ϱ) (342a)

Jβ = rℓ2 jβ(ϱ) , (342b)

where jα and jβ do not depend on ℓ while P5(ϱ) and P6(ϱ) are poly-
nomials of degree five and six, respectively, in ϱ.

At infinity, one finds the following expansions:

J = α

[
−6
√

3

√
β

1− β

M4

ϱ5 +O
(
ϱ−6)]

+ β

[
12
√

3

√
β

1− β

M2ℓ2

ϱ5 +O
(
ϱ−6)] , (343)

so even in this case the effective sources go to zero very rapidly.
As the expressions in eq. (342) make explicit, these functions are
O(r) close to r = 0, for all nonzero values of ℓ. Note that the limit
ℓ→ 0 is, as expected, singular.

einstein’s equations We find that the term proportional to λ

in Gµν vanishes identically: this means that, in the minimal theory
α = β = 0, the only deviations from vacuum come from the Einstein
tensor. In other words

ε
(u)
λ = p(s)λ = p⊥λ = 0 . (344)
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The analytic expression of the effective energy density is

ε(u) = − ℓ2

8ϱ8

(
8ϱ4 − 32ϱ3M + 27M4

)
+ α

[
M

ϱ2MP4(ϱ) + ℓ2P5(ϱ)

8ϱ8 (4ϱ2 + 4ϱM + 3M2)

]
, (345)

where the Pn are polynomials of degree n in ϱ; note in particular that
nothing depends on β — ε

(u)
G and ε

(u)
β separately do, but the sum

ε
(u)
G + βε

(u)
β does not. For the pressures, we find

p(s) = − ℓ2

8ϱ8

(
8ϱ4 + 27M4

)
+ α

[
M2r2 (4ϱ2 + 6ϱM + 9M2)2

8ϱ8 (4ϱ2 + 4ϱM + 3M2)

]
, (346a)

p⊥ =
ℓ2(ϱ−M)

ϱ5 − α

[
M2r2 (4ϱ2 + 6ϱM + 9M2)2

8ϱ8 (4ϱ2 + 4ϱM + 3M2)

]
; (346b)

as before, the β-dependence cancels out.
Once again, we focus on the asymptotic behaviour. At infinity

ε(u) =

[
− ℓ2

ϱ4 +O
(
ϱ−5)]+ α

[
−M2

2ϱ4 +O
(
ϱ−5)] , (347a)

p(s) = −p⊥ +O
(
ϱ−5) = ε(u) +O

(
ϱ−5) . (347b)

Note that the fall-off rate of the tails is still rather fast. Again, it is
easy to see that even for ℓ→ 0 one does not recover vacuum if α ̸= 0.
As in the previous case this is simply due to the fact that only for
α = 0 the considered singular BH spacetime is an exact solution of
the field equations in vacuum.

At r = 0, instead, the values of the sources are nonzero and con-
trolled by the regularisation parameter ℓ:

ε(u) = −8ℓ4 + 27M4 − 32ℓ3M
8ℓ6 + α

[
27M4 − 8Mℓ3

8ℓ6

]
, (348a)

p(s) = −8ℓ4 + 27M4

ℓ6 , (348b)

p⊥ =
ℓ−M
ℓ3 . (348c)

For symmetry reasons, the throat is an extremal point (either a local
minimum or maximum) for these functions.

Finally, we again focus on the minimal theory and provide plots
of the nonzero sources. As the analytic expressions make clear, once
the coordinate ϱ is employed the dependence on ℓ is trivial, since this
parameter only enters as a multiplicative factor. For this reason, we
decide to plot, in figure 29, the ℓ-independent part only, as a function
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Figure 29: Energy density and principal pressures, as measured by an
observer comoving with the æther, for the black-bounce non-
singular metric in the minimal theory α = β = 0. The black ver-
tical lines mark the UH (solid) and KH (dashed), which may be
present or not depending on the value of ℓ. Dotted lines signal
the position of the mouth for two choices of ℓ, corresponding to
a hidden (ℓ = 0.25M) and a traversable (ℓ = 2.5M) wormhole
respectively. Recall that, since ϱ =

√
r2 + ℓ2, the region ϱ < ℓ is

unphysical and should be removed; for this reason it is shaded.

of ϱ. For reference, dotted lines mark the location of the wormhole
mouth for two specific choices of ℓ, corresponding to a hidden and a
traversable wormhole respectively.

We remind the reader that, although the plot extends to ϱ = 0,
min(ϱ) = ℓ. Hence, for any given choice ℓ, the region ϱ < ℓ does not
belong to the spacetime and should therefore be removed: in figure 29

this is rendered by shading. The curves should thus be cut off at ϱ = ℓ

and joined smoothly with a mirror copy of themselves; moreover, they
should be multiplied by ℓ2.

The upshot of this analysis is that the deviations away from va-
cuum are sizeable only in a region close to the throat, but decay very
fast as one moves away from the object. Therefore, the physics in the
surrounding of the black bounce is well described by the equations
of vacuum khronometric theory.

10.7 chapter wrap-up

In this chapter, the arguments on RBHs presented in the previous
parts of the thesis have been specified to the framework of Lorentz-
violating gravity and, in particular, to Hořava gravity.
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Specifically, since the low-energy version of Hořava gravity admits
singular BHs, we have hypothesised that such BHs will be regular-
ised when higher-order corrections are taken into account. Given that
searching for regular solutions to the full theory is so far out of reach,
we have built regular effective models that capture their key qualit-
ative features. We have then analysed such effective models through
the lenses of the low-energy theory.

These models consist of a regular metric and a regular æther field.
They belong to either of two classes: simply connected and multiply
connected spacetimes. They are remarkably simple and thus the per-
fect testbed for further inquiries on the phenomenology of Lorentz-
violating alternatives to GR.

For instance, modified dispersion relations are known to slow down
the mass inflation instability that arises at inner KHs; however, one
may wonder whether an analogous instability will develop at an in-
ner UH.

The most obvious follow-up to the discussion presented herein
would be the inclusion of rotation. Unfortunately, we are unable to
pursue such goal, at the moment, for a very simple reason on which
we will elaborate in the following chapter.

Before moving on, we include two appendices that complement the
material of this chapter.

10.8 appendices

10.8.1 Appendix: Optical scalars

A coordinate-independent way to characterise the æther congruence
is through the optical scalars:

expansion θ = ∇µuµ , (349a)

shear squared σ2 with σµν = ∇(µuν) − u(µaν)

− θ

3
Pµν , (349b)

twist squared ω2 with ωµν = ∇[µuν] − u[µaν] , (349c)

where

Pµν = gµν − uµuν (350)

is the projector onto the hypersurfaces orthogonal to the æther.
Other interesting scalars are uµ χµ and aµ χµ, as they are associated

with properties of the UHs.
Since the æther is hypersurface-orthogonal, Frobenius’ theorem im-

plies that the twist vanishes. (Note that ω2 ∝ (u[µ∇νuρ])
2.) Moreover

aµ χν =
√
−a2 = y

(
uµ χµ

)′ . (351)
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When evaluated on the Ansatz of eqs. (290) and (291), one finds

θ = y′ + y
h′

h
(352)

and a similar, though lengthier, expression for σ2. All this quantities
thus depend algebraically on the functions f (r), h(r), y(r) and their
first derivatives, in a way that renders the following statement mani-
festly true: when f (r), h(r), y(r) are of class C1 and bounded, all
the scalars introduced above are C1 and bounded. We have computed
them explicitly for the singular solution and found that they are ill-
behaved at the origin; and then on the simply connected and on the
multiply connected non-singular configurations, checking that they
are indeed well-behaved everywhere — in particular, at the origin, at
the UHs and at the KHs.

10.8.2 Appendix: 2D expansions

In order to make contact with the arguments of [100], we comple-
ment our analysis with a discussion on the local characterisation of
horizons.

We start by considering a closed, spacelike 2-surface S 2. The sub-
space of the tangent space that is orthogonal to the tangent space
of S 2 is spanned by two vectors that can be taken timelike, future-
pointing and spacelike, outward-pointing — respectively. In our case,
a simple choice for S 2 is any sphere centred at the origin. The two
vectors are then the æther and the vector sµ of eq. (331) used to define
the tangential pressure.

The induced metric on S 2 is

hµν = gµν − uµuν + sµsν (353)

and can be used to define the scalars

θ(X) = hµν∇µXν with X = {u, s} . (354)

These are expansions, but should not be confused with the optical
scalar θ, which is defined in terms of a three-dimensional transverse
metric. θ(u) and θ(s), and in particular their signs, determine whether
S 2 is a universal (marginally) trapped surface.

With our Ansätze of eqs. (290) and (291), we have

θ(u) = y
h′

h
and θ(s) = (uµ χµ)

h′

h
. (355)

Recall that y < 0. Hence, on the singular solution eqs. (295) and (297),
θ(u) is always negative, i. e. the future-directed congruence is always
converging, while θ(s) has the sign of uµ χµ. Thus, uµ χµ = 0 marks a
universal trapping horizon.
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Note that both expansions diverge as r → 0, meaning that r = 0 is
a caustic. Penrose’s theorem then implies that this is in fact a singu-
larity, in the sense that the spacetime is not geodesically complete.

On the simply connected configurations of eqs. (309) and (310) we
still have that θ(u) < 0 and that θ(s) has the sign of uµ χµ, but we
know that in this case uµ χµ = 0 has multiple roots and in particular
it is positive in a neighbourhood of r = 0. Hence there exist multiple
universal trapping horizons. Further note that in this case r = 0 is not
a caustic anymore, since θ(u) → 0 and θ(s) → 1 as r → 0.

In the multiply connected configuration the sign of the two expan-
sions depends also on h′/h, which is positive in our universe but
negative in the other. I. e. both congruences vanish and change sign
at the wormhole mouth r = 0.
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K E R R B L A C K H O L E S I N E I N S T E I N – Æ T H E R
T H E O RY

Having constructed static and spherically symmetric regular effective
models of BHs and exotic ultracompact objects in khronometric the-
ory, the obvious next step would be to investigate their rotating coun-
terparts. Besides being coherent with the reasoning of this thesis, such
step is necessary in moving closer to phenomenological applications.

Unfortunately, our best intentions are frustrated by a simple, yet
substantial impediment: there are no known rotating BH solutions
in khronometric theory. Slowly rotating solutions have been found
numerically [37, 38], but extensions to high spins are still lacking.
Most importantly, analytical solutions are unexpectedly elusive.

One might still be tempted to apply the NJP to the models presen-
ted in the previous chapter, but this would be rather imprudent. In-
deed, as we said, the procedure never really has a strong justification,
but in its standard uses one could at least gain some confidence by
noting that the rotating metrics are very similar to Kerr — which
is a solution of GR. Here, instead, vacuum solutions offer no guid-
ance. Moreover, in this context constructing a rotating metric would
be useless unless one finds a way to “spin up” the æther too. So, this
strategy seems impracticable.

Interestingly, rotating BH solutions are known numerically in the
closely related Einstein–æther theory. They were first constructed in
the slow rotation regime [39], while the extension to higher spin is
recent [7].

Although numerical solutions are not particularly suitable for our
purposes, understanding them is nonetheless important. A notable
feature of the results of [7] is that, at least in a regime in which the
coupling constants are small, the solutions resemble GR BHs with an
æther that is “painted” on top of them. However, the BHs of [7] have
horizons that are not Killing.

A clear research programme thus seems to be emerging. In order
to reach the long-term goal of investigating rotating (and hopefully
regular) BH solutions in Hořava gravity, one would probably need to
first build regular effective models of rotating BHs in khronometric
theory. Reaching this intermediate goal is hindered by the lack of ro-
tating BH solutions in khronometric theory, which are instead known
numerically in the closely related Einstein–æther theory. These solu-
tions however exhibit unexpected features that require understand-
ing.

161
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This chapter is a first step in this direction. We begin by noting that
there exists a “minimal” corner of Einstein–æther‘s parameter space
in which the Kerr metric is a solution of the equations of motion when
complemented with a suitable æther. Then we analyse such solution.

This chapter reports on the first steps in this directions. The results
presented here should be considered preliminary as they are subject
of ongoing investigation.

11.1 einstein–æther theory

Einstein–æther theory [200, 204] is a generally covariant theory of
gravity in which the metric is coupled to a vector field uµ, the æ-
ther, which is constrained to be everywhere timelike and unit-norm.
The æther can therefore never vanish and thus provides a preferred
reference frame, in violation of Lorentz symmetry.

This theory is thus closely related to Hořava (and khronometric)
gravity. It is however more general, in the sense that it is constructed
following the spirit of effective field theories [14, 363]. Up to second
order in derivatives, the Lagrangian reads

L = R + Læ + ζ
(

gµνuµuν + 1
)

, (356)

where ζ is a Lagrange multiplier introduced to implement the unit-
norm constraint, while the æther Lagrangian can be written as

Læ = −1
3

cθ θ2 − cσ σ2 − cω ω2 + ca a2 , (357)

where

aµ = uν∇νuµ , (358a)

θ = ∇µuµ , (358b)

σµν = ∇(µuν) + u(µaν) −
θ

3
Pµν , (358c)

ωµν = ∇[µuν] + u[µaν] (358d)

are the æther’s acceleration, expansion, shear, and twist — respect-
ively. The tensor

Pµν = gµν + uµuν (359)

is a projector onto the subspace of the (co)tangent space orthogonal
to the æther.

Several other parametrisations of the æther Lagrangian have ap-
peared in the literature; here we follow [203], though we use the op-
posite signature for the metric: (−,+,+,+) as in the rest of the thesis,
but unlike chapter 10.

If the twist vanishes, ωµν = 0, then by Frobenius theorem the æ-
ther is hypersurface orthogonal. The Lagrangian eq. (357) can then
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be rewritten as that of khronometric theory eq. (285) — modulo the
signature change. Indeed, khronometric theory can be obtained as the
limit cω → ∞ of Einstein–æther theory [203].

The couplings cθ , cσ, cω and ca are tightly constrained by obser-
vations — see e. g. [7, 180] and references therein. In particular, the
concomitant detection of the gravitational wave signal GW170817

[125], produced by the coalescence of two neutron stars, and of the
gamma ray burst GRB 170817A [124] allowed to constrain the differ-
ence between the speed of gravitational waves and that of light to
within 10−15; this translates directly into a bound cσ ≲ 10−15.

To date, only two regions of the parameter space have not been
ruled out. In the first, cω is unconstrained and possibly large, while
cθ and ca are small and equal up to even smaller corrections. In the
second region, both cω and cθ can be somewhat large, while ca is very
small. In either case, cσ is constrained to be so small that it is usually
set to zero in computations.

As said, there exist BH solutions in Einstein–æther theory. Spher-
ically symmetric BHs can be found analytically for special values of
the couplings [54], one of which was described in subsection 10.2.2;
numerical solutions were reported in [36, 150]. The Schwarzschild
spacetime with an appropriate æther flow is also a solution of a spe-
cial class of Einstein–æther gravity [371].

Finding rotating solutions is more challenging. In the phenomen-
ologically relevant sector, with small coupling constants, these solu-
tions are expected to be parametrically “close” to the Kerr spacetime.
This expectation is realised in the slow rotation limit [39]; and in the
numerical rotating solutions found in [7]. Notably, these solutions ex-
hibit metric horizons that are not Killing horizons.

To better understand the nature of rotating BHs in Einstein–æ-
ther theory, we may push this expectation to the extreme and look
for solutions in which the metric is exactly Kerr. This strategy is mo-
tivated by the following remark: if one restricts the theory by setting

cω = cσ = ca = 0 , (360)

i. e. by switching off all couplings except cθ , then any vacuum solu-
tion of general relativity is a solution of this theory too, provided the
expansion of the æther vanishes. Hence, in particular, the Kerr metric
will be a solution if one can find an æther such that ∇µuµ = 0 (and
possibly some further constraints). For the purpose of this chapter,
we will refer to this restricted version of Einstein–æther theory as the
“minimal æ-theory”.

11.1.1 The minimal æ-theory theory

Setting cω = cσ = ca = 0 is a drastic reduction of arbitrariness. One
might wonder, therefore, if the resulting theory is still relevant and
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viable. We argue that the answer is in the positive, although further
investigation on the matter is required.

The full Einstein–æther theory contains gravitational modes of three
kinds: the familiar helicity-2 mode, corresponding to the transverse
and traceless part of the metric; a helicity-1 mode; and a helicity-0
mode. Each mode propagates at a speed (cT, cV , cS for the tensor,
vector and scalar mode respectively) that can be computed studying
linear perturbations around flat spacetime and is set by the couplings
of the theory.

A computation along the lines of [198] seemingly yields

c2
T = 1 and c2

S = 0 , (361)

i. e. the tensor mode moves at the speed of light, while the scalar is
“frozen” and does not propagate.

The vector mode instead is non-dynamical and can be gauged away.
Roughly speaking, this is a consequence of the fact that, in the min-
imal theory, the æther only couples through the expansion scalar and
the æther’s “gauge freedom” is correspondingly enlarged with re-
spect to the non-minimal theory.

The minimal æ-theory is highly reminiscent of what the authors of
[163] have called minimal khronometric theory — the phenomenologic-
ally motivated restriction of khronometric theory whereby (cf. eq. (285))
α = β = 0. The difference between the two minimal theories is that
in the æ-theory the twist coupling cω is set to zero, while in the khro-
nometric theory the æther is hypersurface orthogonal and its twist
therefore vanishes by construction.

Such minimal khronometric theory has been shown to be indis-
tinguishable from GR in all phenomenological applications so far
considered. In particular, in spherically symmetric stars and BHs the
khronon is found to have a non-trivial profile and yet not to backreact
on the geometry. See the relevant discussion in [163] and references
therein.

Hence, our preliminary conclusion is that the minimal æ-theory
is motivated and phenomenologically viable, though caution is ad-
vised. For the purpose of this chapter, however, the simplifications of
the minimal theory are only needed insofar as they render the equa-
tions tractable analytically. More generally, one could think of these
solutions as the zeroth order of an expansion in the other coupling
constants. Thus, the pressing question becomes to understand if the
solutions of the full theory can in fact be expressed in such a Taylor-
series fashion; or, alternatively, if e. g. the limit cω → 0 is continuous
on the solutions.

These questions are matter of ongoing investigation.
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11.2 the solution

Henceforth we focus on the minimal æ-theory and assume the metric
is that of Kerr. We choose Boyer–Lindquist coordinates, so that the
spacetime’s two Killing vectors are

χµ = (1, 0, 0, 0) , (362)

ψµ = (0, 0, 0, 1) . (363)

Explicitly, the metric reads

ds2 = −
(

1− 2Mr
Σ

)
dt2 − 4Mra sin2 θ

Σ
dt dϕ

+
Σ
∆

dr2 + Σ dθ2 +
A sin2 θ

Σ
dϕ2 , (364)

where

∆ = r2 + a2 − 2Mr , Σ = r2 + a2 cos2 θ ,

A = (r2 + a2)2 − ∆a2 sin2 θ . (365)

We wish to find an æther whose expansion vanishes:

∇µuµ = 0 . (366)

As argued, this will result in a solution of the minimal æ-theory. We
assume that the components of the æther depend on r and θ only,
so that uµ is Lie-dragged along the Killing vectors. Then eq. (366)
becomes

∂r (∆ur) +
1

sin θ
∂θ (uθ sin θ) = 0 . (367)

This equation is under-determined. Since separation of variables is
possible, one can write a general solution and then constrain it by
imposing suitable boundary conditions.

A particularly simple solution is given by

ur = −
M2Θ(θ)

∆
, uθ = 0 , (368)

where Θ(θ) is an arbitrary function. The factor M2 is purely conven-
tional, while the sign is such that if Θ is taken to be positive then ur

is negative at infinity. Note that, at infinity, ur ∼ r−2.
With this æther it is impossible to satisfy the hypersurface-orthogonality

constraint u[µ∇νuρ] = 0. This solution therefore exhibits a non-vanishing
twist.

We can then solve the unit-norm constraint to express one of the
two remaining components in terms of the other. For simplicity, let
uϕ = 0, then

u2
t =

Σ∆ + M4Θ2

A
(369)
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and ut = ±
√

u2
t : the minus sign ensures that the æther is aligned with

the timelike Killing vector at infinity, as is usually assumed; however,
if ut has a zero somewhere, than it must change sign upon crossing
it in order to ensure that the æther be of class C1.

The full solution thus reads

uµ =

(
∓
√

Σ∆ + M4Θ2

A
,−M2Θ

∆
, 0, 0

)
, (370)

or, raising the index,

uµ =

(
− A

∆Σ
ut,−

M2Θ
Σ

, 0,−2Mra
∆Σ

ut

)
. (371)

Note that the choice uϕ = 0 means that an observer comoving with
the æther has zero Killing angular momentum, uµψµ = 0; still, this
æther is rotating, in some sense, since uϕ ̸= 0. Note that

uϕ

ut =
2Mra

A
= Ω(r) , (372)

where Ω(r) is the angular velocity of frame dragging.
The component ur appears singular at the Killing horizons, where

∆ = 0. As is well known, some components of the metric also appear
ill-behaved at those points, but this singularity is merely a coordinate
artefact and can be removed by changing coordinates. A coordinate
chart in which the æther is manifestly regular at the outer KH is
the one provided by ingoing Kerr coordinates, in which the metric is
regular at the future Killing horizon. In these coordinates, however,
the æther is still singular at the inner horizon; it becomes regular
there when expressed in the closely related outgoing Kerr coordin-
ates, which also render the metric regular at the past KH.

A further check that the æther flow is in fact regular consists in
computing θ, σ2, ω2 and a2. These quantities completely characterise
the flow and, being scalars, do not depend on the particular choice
of coordinates. Except for θ, which vanishes by construction, their
explicit expressions are rather cumbersome and for this reason we
omit them here; however, we have checked that they are finite at ∆ =

0.
These scalars do reveal the existence of a singularity, at which they

diverge, located at Σ = 0. This is exactly the location of Kerr’s ring-
like singularity.

11.3 fixing Θ(θ )

The function Θ(θ) is arbitrary. Since it was introduced via separation
of variables, it must not depend on any of the coordinates except for
θ; however, it might depend on the spin a.
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One might restrict the admissible forms of Θ by demanding that
eq. (370) reduces to a known solution in the limit of vanishing spin. In
spherical symmetry (and in general whenever the twist vanishes), the
minimal æ-theory coincides with the minimal khronometric theory, a
solution of which is given by the BH of eqs. (295) and (296), analysed
in subsection 10.2.2, with β = 0.

Demanding that our solution reduces to that of eqs. (295) and (296)
amounts to

lim
a→0

M2Θ(θ) = r2
æ . (373)

We remind the reader that, in the spherical solution, ræ is an integ-
ration constant, whose value had to satisfy an inequality in order for
the æther to be real-valued; in particular, when its value is fine tuned
to be proportional to the mass, the spacetime contains a UH.

In the rotating case, too, u2
t in eq. (369) could become negative des-

pite being a square, thus rendering ut complex. This may happen for
r > 0, as we will discuss at length momentarily. Moreover, it will ne-
cessarily happen for r < 0, since there exists a domain in which the
denominator A is negative while the numerator remains positive.

The region r < 0 corresponds to a portion of spacetime which one
is forced to include when analytically extending past Kerr’s ring sin-
gularity. Since ψµψµ = A sin2 θ/Σ, such region is associated to the ex-
istence of closed timelike curves. Thus, the fact that the æther cannot
be real-valued there constitutes a natural motivation for discarding
the entire negative-r region. This result, though somewhat serendip-
itous, agrees with the expectation that theories with a preferred time
direction should not admit closed causal curves.

Coming back to the r > 0 region, we may ensure that u2
t ≥ 0 by

demanding that Θ(θ) satisfies a certain bound, in complete analogy
with the spherically symmetric case. Namely, we need

min(M4Θ2) ≥ −min(∆Σ) . (374)

Remarkably, this bound is satisfied by the trivial choice

M2Θ = r2
æ , (375)

if ræ satisfies the corresponding bound for the spherically symmetric
case. When in particular ræ = 271/4M/2, the zero-spin limit has a UH
while a ̸= 0 implies u2

t > 0 for all r. That is, the UH in this case is an
“accident” of spherical symmetry.

However, we wish to consider a different choice — admittedly a
more complicated but arguably more interesting one. A graphical
inspection of the function ∆Σ reveals a Mexican-hat-like shape: at any
given θ, the function has a minimum in the radial direction located at
one of the roots of the cubic equation

∂r (∆Σ) = 0 . (376)
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The root corresponding to the minimum, which we will call rPT, is a
continuous function of θ (actually, of a2 cos2 θ). Henceforth, we will
use the subscript “PT” to indicate that a quantity is evaluated at r =

rPT(θ) — the meaning of the acronym will become clear in due time.
We thus propose to choose

M2Θ =
√
−ΣPT∆PT . (377)

In this way, (Σ∆ + M4Θ2)PT = 0 and therefore (uµχµ)PT = 0.
Incidentally, note that

[∇µ(Σ∆ + M4Θ)]PT = 0 but [∇µ(uνχν)]PT ̸= 0 . (378)

11.4 interpreting the “pt” surface

As mentioned in subsection 10.2.1, in theories with a preferred foli-
ation, such as Hořava gravity, the condition

uµχµ = 0 (379)

locally characterises a UH.
In general, Einstein–æther is not endowed with a preferred foli-

ation, but merely with a preferred threading, i. e. a preferred time
direction. Indeed, the solution we are focusing on displays a non-
vanishing twist and is therefore not hypersurface orthogonal.

Still, even in Einstein–æther theory one can envisage non-linear
dispersion relations of the form of eq. (286). Hence, in order to salvage
the concept of BH, UHs ought to exist in this context too. Whether the
condition eq. (379) remains a meaningful characterisation of UHs in
the absence of hypersurface orthogonality, however, is far from clear.

An argument in favour of eq. (379) relies, once again, on studying
the behaviour of two-dimensional expansions, in line with subsec-
tion 10.8.2 and [100]. Consider a unit spacelike vector sµ, orthogonal
to uµ and such that its integral curves are purely radial and “outgo-
ing” at infinity. Explicitly

sµ =

(
−ur

√
− grr

gtt ,−ut

√
− gtt

grr , 0, 0

)
. (380)

The quantity

θ(s) = (gµν + uµuν − sµsν)∇µsν (381)

measures the rate of change, along sµ, of the cross-sectional area of
the two-surfaces that are orthogonal to both uµ and sµ. When θ(s) < 0,
these surfaces are “trapped”, since they shrink as one moves “out-
wards” in the æther frame. Hence, θ(s) = 0 is an alternative local
characterisation of the UH which seems not to rely on hypersurface
orthogonality, at least explicitly.
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For any circular metric [190] and for any æther flow such that uθ =

uϕ = 0, we have

θ(s) = −(uµχµ)
∂r
√gθθ gϕϕ√−g

, (382)

so the zeroes of θ(s) coincide with those of uµχµ. The surface r =

rPT(θ) thus seems a good candidate for a UH.
This interpretation is strengthened by inspecting the slowly rotat-

ing limit: eq. (376) gives

rPT =
3
2

M +O
(
a2) (383)

and

uµ =

(
∓
√

1− 2M
r

+
27
16

M4

r4 ,− 3
√

3M2

r(r− 2M)
, 0, 0

)
+O

(
a2) , (384)

which coincide with the corresponding spherically symmetric analyt-
ical solution up to O

(
a2).

A closed-form expression for rPT(θ) could be found, but since it
is not particularly enlightening we omit it here. However, since the
radial minimum of ∆Σ must be located where ∆ < 0, we can guess
that rPT will lie between Kerr’s KHs — i. e. in a region that in GR
would be trapped. More specifically, since eq. (376) can be written as

∆PT = −ΣPT
rPT −M

rPT
, (385)

we deduce that rPT ≥ M; moreover, yet another rewriting of eq. (376)
tells us that

rPT =
3
2

M− a2
(

1 + cos2 θ
rPT −M

rPT

)
≤ 3

2
M . (386)

To summarise,

M = lim
a→M

rPT < rPT ≤ lim
a→0

rPT =
3
2

M . (387)

For arbitrary values of the spin, the surface r = rPT(θ) acquires a
non-trivial dependence on θ which introduces considerable complic-
ations. A plot of such surfaces for several values of the spin is presen-
ted in figure 30. Differentiating eq. (376) with respect to θ gives

drPT

dθ
= −d(a2 cos2 θ)

dθ

[
4rPT(rPT −M)2 −M∆PT

(rPT −M)2

]
, (388)

which vanishes at θ = 0, π/2, π but is non-zero otherwise. (Note that
the quantity in square brackets is positive).
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Figure 30: Plots of rPT(θ) for several values of the spin a. The north pole
(south) is the uppermost (lowermost) point of each curve. The
dotted line, which is reported for reference, corresponds to r =
2M, i.e. to the KH’s radius of a Schwarzschild black hole of the
same mass as our solution. Note that the curves look circles but,
generically, they are not.

Crucially, however, the surface r = rPT(θ) is not orthogonal to the
æther: its normal vector nµ = ∇µ(uνχν) can be written as

nµ = 2∇[µuν]χ
ν

= − (aνχν) uµ + (uνχν) aµ + 2ωµνχν

PT
= − (aνχν) uµ + 2ωµνχν . (389)

We have checked that nµnµ < 0, so r = rPT(θ) is a spacelike hy-
persurface generated by the two Killing vectors χµ and ψµ, and by
ρµ = (0, drPT

dθ , 1, 0).
Had the æther been hypersurface orthogonal, the normal vector

would have been proportional to the æther itself and the proportion-
ality constant could have been interpreted as a surface gravity (up to
a conventional normalisation factor). In our case, instead, the normal
is misaligned with the æther by an amount that is controlled by the
twist.

This strongly suggests that r = rPT(θ) cannot be interpreted as a UH.
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Indeed, the hypersurface generated by the integral curves of vec-
tors that are orthogonal to the æther are hypersurfaces of simultan-
eity with respect to the preferred time. This is true by definition in
khronometric theory, and also in Einstein–æther theory — the tech-
nical difference being that, in the absence of hypersurface orthogon-
ality, these hypersurfaces do not constitute immersed submanifolds
(cf. [359, app. B.3]). Heuristically, we might regard these surfaces as
generated by “infinitely fast” trajectories, i. e. as ordinary causal tra-
jectories in the limiting case in which their speed in the preferred
frame goes to infinity.

The fact that the surface r = rPT(θ) is not one such hypersurface
means that causal curves can cross it in both directions.

To better understand why, consider a generic curve xµ(σ) with as-
sociated tangent vector kµ = dxµ

/
dσ . Assume that the curve has

“infinite speed”, in the sense that uµkµ = 0. With an abuse of termin-
ology, we will refer to it as a trajectory.

The vector sµ (eq. (380)) can be complemented with(
eθ̂

)µ
=

1
√

gθθ
(0, 0, 1, 0) and(

eϕ̂

)µ
=

1
√gϕϕ

(0, 0, 0, 1) (390)

to obtain an orthonormal basis of the subspace of the tangent space
that is orthogonal to uµ. Together with uµ, these three vectors span
the whole tangent space. We may thus decompose

kµ = kssµ + kθ̂

(
eθ̂

)
µ
+ kϕ̂

(
eϕ̂

)
µ

, (391)

where ks, kθ̂ , kϕ̂ are given by the scalar product of kµ with sµ,
(

eθ̂

)
µ

and
(

eϕ̂

)
µ
, respectively.

If kr ̸= 0, the map r(σ) is invertible and r can be used as a coordin-
ate along the trajectory in lieu of σ. We may focus on the (t, r)-plane,
where the most interesting motion happens, and neglect the angular
motion. The trajectory has tangent derivative

dt
dr

=
dt
dσ

dσ

dr
=

kt

kr . (392)

Specifically, since
(

eθ̂

)t
=
(

eϕ̂

)t
= 0,

kt

kr =
ksst

kssr

= −ur

ut
; (393)
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Figure 31: Integral lines of the vector sµ, at different angles θ. The vertical
lines mark r = rPT(θ). The spin is a = 0.9M.

in passing from the first to the second line, we have used the fact that

uµsµ = 0⇒ st

sr = −ur

ut
. (394)

Hence, the trajectory has an asymptote at ut = 0, which is universal
in the sense that it does not depend on kµ as long as kr ̸= 0. In
particular, curves starting in the region ut > 0, i. e. at r < rPT, can
never cross r = rPT(θ) it in the outward direction.

Figure 31 displays the integral curves of sµ in the (t, r) plane in the
vicinity of r = rPT (since these coordinates are ill-behaved at the KHs,
a coordinate change is needed if one wishes to extend these plots
beyond those surfaces).

The remaining case kr = 0, corresponds to “particles” moving only
in the angular directions. There exist curves that start at r < rPT and,

moving only in the direction of
(

eθ̂

)µ
, cross r = rPT outwards. By

continuity, it seems possible that there also exist causal curves that
similarly exit r = rPT.

Let us characterise these instantaneous trajectories. First of all, note
that

kr = kssr . (395)

Since sr ∝ ut, this component can be zero at r = rPT even if ks ̸= 0.
Leaving this particular case aside, for all r ̸= rPT we have that kr =

0⇔ ks = 0.
Because of the symmetries of the spacetime, there are two constants

of the motion, each associated to one of the Killing vectors.1 The two

1 This point is subtle. These trajectories are not geodesics, so it is not obvious that the
Killing vectors generate conserved quantities. In the present case, they do in a sense
that is made precise in [129].
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quantities are kµχµ = kt = −E and kµψµ = kϕ = L. Note that kϕ̂ =

kϕ/√gϕϕ.
Consider in particular the conservation equation for kt = −E:

−E = ksst + kϕ̂

(
eϕ̂

)
µ

= ksst − LΩ , (396)

where Ω = −gtϕ/gϕϕ as above. If we set ks = 0 at some point, since E
and L are constant while Ω is a function of θ (and r, which however
we assume fixed), the only option is that L = 0 and therefore also
E = 0. But this entails that ks must vanish everywhere along the
curve and therefore the curve can never reach infinity. Moreover, if ks

vanishes, then kt = 0 everywhere too, i. e. this curve never advances
in the Killing time.

The upshot of this discussion is that the status of the surface r =

rPT(θ) is unclear. It is not a UH, yet it exhibits some characteristic
features of one. For this reason, and for lack of a better terminology,
we have called this surface “PT” as in “partially trapping”.

11.5 a note on the surface gravity

UHs in globally foliated manifolds seem to emit Hawking radiation
in a way similar to horizons in GR. The temperature of such radiation
is set by the horizon’s surface gravity, defined as

−2κh.o. = (aµχµ)UH (397)

(the suffix “h.o.” stands for “hypersurface-orthogonal”). Since, in that
context, UHs are leaves of the preferred foliation, their surface gravity
is necessarily constant and a zeroth law of BH mechanics automatic-
ally holds.

Clearly, it is not obvious that the surface gravity of a UH with non-
vanishing twist — supposing it exists — should be defined in the
same way. Indeed, not surprisingly, the quantity κh.o. computed for
our solution is not constant on the surface r = rPT.

The decomposition of the normal vector eq. (389) suggests an al-
ternative definition

2κn =

[(
nµ

√
−nαnα

)
∇µ(uνχν)

]
PT

=
√
−nνnνPT (398)

(the suffix “n” now stands for “normal”). Clearly,

κ2
n = κ2

h.o. − κ2
ω (399)

where

κ2
ω =

[
ωµνχνω

µ
ρχρ
]

PT . (400)
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Figure 32: Relative difference of the two definitions of surface gravity, as a
function of position on the surface r = rPT(θ). The spin is a =
0.9M.

In the slowly rotating limit, we find

−2κh.o. =
2

3M

√
2
3

[
1 +
−17 + cos2 θ

27M2 a2 +O
(

a4
)]

(401)

−2κn = −2κh.o. +O
(

a4
)

, (402)

while

κω = O
(
a2) . (403)

The definition (398) is not constant along r = rPT either, but it has
the advantage of encoding information on the twist in an obvious way.
The two definitions coincide at the poles and at the equator, where the
twist vanishes. For arbitrary angles, their difference can be computed
numerically: though growing with the spin, the relative difference is
always ≲ 1%. An example for a = 0.9M is plotted in figure 32.

11.6 chapter wrap-up

In this chapter, he have constructed a solution of a restricted version
of Einstein–æther theory that we called minimal æ-theory. The solu-
tions is such that the metric is exactly that of Kerr and the æther has
vanishing expansion scalar. The solution has a free function, Θ(θ),
that only depends on the polar angle. We proposed to fix such free
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function in a somewhat involved but consequential way. The resulting
æther flow happens to be orthogonal to the Killing vector of staticity
at a surface r = rPT(θ), which exhibits features characteristic of UHs

without being one. Namely, it displays somewhat universal peeling
properties.

Admittedly, the preceding discussion has opened up more ques-
tions than it has answered. In the present author’s view, this is par-
tially due to the fact that the results presented herein are preliminary;
and partially a consequence of the relatively unexplored nature of
rotating BHs in Lorentz-violating theories of gravity.

Indeed, although Hořava gravity and Einstein–æther theory can
hardly be considered new proposals, the relevance of some of their
implications — particularly in regards to BHs — is just starting to be
appreciated. This is not surprising, since the very existence of BHs is,
in such theories, serendipitous. It remains to be understood, therefore,
to what extent the physics of GR BHs carries over to this context.





12
C O N C L U S I O N S A N D O U T L O O K

The narrative of this thesis revolves around a single unifying theme:
the construction of regular effective models for describing the dark and
compact objects that we observe in the sky and that we call BHs.
These models are motivated by the idea that new physics beyond GR
will “regularise” spacetime singularities by preventing their forma-
tion.

We have been deliberately vague on what such new physics might
be. Clearly, however, the most natural candidate is quantum gravity,
in any of its many proposed realisations. Thus, the natural context
in which this thesis should be collocated is that of quantum gravity
phenomenology [8, 10].

Quantum gravity phenomenology is a relatively new framework
whereby features that are common to multiple approaches to quantum
gravity, e. g. violations of Lorentz invariance, are parametrised and
tested. In the author’s very partial opinion, this programme is already
reshaping the general disposition towards quantum-gravity research.

Figuratively speaking, a pervasive attitude had quantum gravity la-
belled as hic sunt dracones:1 a remote territory, stretching beyond the
borders of current understanding, insidious and perilous to the oc-
casional wanderer; but one whose affairs are ultimately inconsequen-
tial to the world’s History — since quantum-gravitational effects sup-
posedly become sizeable only at the Planck scale. Thus, in this per-
spective quantum gravity would easily become a sort of Arcadia felix:2

a mythical land where all the problems and currently open issues in
high-energy physics necessarily find their solution. (The two views
seem in contradiction but are, in fact, quite coherent.)

The contents of this thesis challenge this point of view, since they
demonstrate that it is possible to formulate reasonably precise as-
sumptions concerning the behaviour of quantum gravity and trans-
late them into concrete models whose theoretical consistency and
phenomenological viability can then be tested.

Namely, we have argued that if quantum gravity is such that space-
time singularities are regularised in a way that can be captured in
terms of pseudo-Riemannian geometry, then gravitational collapse
necessarily results in any of a few qualitatively different classes of ob-
jects: simply connected RBHs with multiple horizons, simply connec-

1 Hic sunt dracones (or leones) is a phrase apocryphally attributed to medieval carto-
graphers, who purportedly used it to mark uncharted territories.

2 Arcadia is a popular utopia whose inhabitants live in a perennial state of bliss and
harmony with nature. (It is also a region of Greece, whose inhabitants probably face
hurdles as all human beings.)
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ted horizonless (exotic) compact objects, multiply connected hidden
wormholes, and multiply connected naked wormholes.

We reviewed the rationale of such taxonomy, along with other pre-
liminary notions on the topic of spacetime singularities, in chapter 2.
In chapter 3, we presented general prescriptions for building met-
rics that describe simply and multiply connected regular geometries
under the assumption of staticity and spherical symmetry; then dis-
cussed a common strategy for endowing such models with rotation
in chapter 4.

With part ii, we focused on a particular family of multiply con-
nected models known as black bounces. These represent wormholes
whose throat may or may not be cloaked by horizons, depending on
the value of a parameter ℓ.

In chapter 5, we built the black-bounce analogue of the Kerr metric
by applying the NJP to the prototypical static and spherically sym-
metric black bounce — also known as SV metric. We described the
causal structure of the resulting spacetime by investigating the tra-
jectories of null rays and by drawing Carter–Penrose diagrams. Since
the spacetime is not a solution of vacuum GR, we characterised the
effective matter content in two complementary ways. Finally, we com-
pared this object with a Kerr BH by detailing the extent to which the
ergoregion, the light ring and the ISCO differ in the two cases.

In chapter 6 we extended the analysis of the previous chapter by
building the black-bounce analogue of the Kerr–Newman spacetime
— i. e. by adding an electric charge to the black-bounce–Kerr. We then
investigated the ensuing spacetime in a way similar to what had been
done for the electrically neutral case. Notably, we proposed a regu-
larised version of the electromagnetic potential and suggested two
alternative interpretations for the stress-energy tensor.

In chapter 7 we investigated the phenomenological viability of the
black-bounce–Kerr as a Kerr-BH mimicker by studying scalar test-
field perturbations. Specifically, we computed the fundamental (mass-
less) QNMs and tracked its variation under changes in the parameter
ℓ: in the BH branch, the results, obtained with two independent meth-
ods, are in qualitative accord with those of Kerr; in the naked worm-
hole branch, instead, we found evidence for unstable modes. This
lead us to conjecture that rapidly rotating and very compact worm-
holes might generically be unstable. Finally, we computed the super-
radiance amplification factors, in both the massless and massive case,
and found that they are suppressed by the increase of ℓ.

In chapter 9 we departed from the black-bounce family to consider
another generic source of instability: mass inflation. Since the time-
scale of such instability is set by the inner horizon’s surface gravity,
we built a simply connected rotating RBH whose inner horizon is en-
gineered so to have vanishing surface gravity and hence avoid mass
inflation. This proposal should be considered as a proof of concept
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that mass inflation can be quenched even in the presence of rotation;
however, this example reiterates the argument that stability is gener-
ically an issue for all these effective models.

The upshot of the discussion, up to that point in the thesis, is thus
that building regular models that mimic GR BHs is simple in the-
ory; however, self consistency and phenomenology heavily constrain
possible alternatives. Moreover, these models will generically sport
deviations from vacuum GR at scales possibly much larger than the
Planck scale — e. g. outside of the horizon, if there is one. Improv-
ing the accuracy of horizon-scale observations of astrophysical BHs

is therefore of paramount importance.
In order to build models that are even more realistic, however, it

will be necessary to go beyond the assumption of stationarity and
consider situations that are truly dynamical. In this way, it will be-
come possible to describe e. g. the formation process of such regular
objects — a largely unexplored issue.

Note, incidentally, that these models are already being constrained
through real observational data. For instance, shadow images, X-ray
emission spectra and gravitational-wave inspirals have been used to
bound the value of the parameter ℓ in black-bounce–Kerr spacetimes.
Although these models were not quite built with this intent, analyses
of this kind are extremely informative on the constraining power of
current observations.

The thesis then continued with part iii, which is dedicated to put-
ting the discussion on regular effective models in the context of some
specific alternative theories of gravity. Namely, we focused on the
quantum-gravity motivated Hořava gravity: since its infrared limit ad-
mits BH solutions that are singular, we conjectured that these would
be regularised in the full theory.

Searching for such regular solutions by solving the theory’s equa-
tions of motion is out of reach at the moment. For this reason, we
resolved to apply the general prescriptions of chapter 3 to build ef-
fective regular models in the context of the infrared theory. The differ-
ence with respect to the standard case is that Hořava gravity is built
in terms of an æther field which specifies a preferred foliation and
needs to be regularised together with the metric.

The construction and investigation of these models was carried
out in chapter 10. Their overall structure was found to be similar
to what one has in metric theories of gravity — a conclusion that
is not entirely trivial since KHs do not constitute causal horizons
when Lorentz invariance is broken. Rather, the role of event horizons
is played by UHs. Notably, the classification in terms of simply and
multiply connected geometries remains relevant in this case too.

Logically, the most immediate extension of the results of chapter 10

would be the addition of rotation. However, since no rotating solu-
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tion is known in the infrared limit of Hořava gravity, such extension
could not be carried out right away. We thus turned our attention
to a closely related theory, Einstein–æther gravity, for which rotating
BHs have been found numerically. We focused on a narrow corner in
the theory’s parameter space and investigated, in chapter 11, a solu-
tion in which the metric is that of Kerr and the æther has vanishing
expansion.

Several questions remain unanswered and deserve further scrutiny.
For instance, the analysis of the rotating solution brought to light a
possible limit in the usual characterisation of UHs, as this fails to
capture cases in which the æther is hypersurface orthogonal: it is not
clear that UHs exist in this case, although one would expect they
did. More generally, the stability of UHs is far from ascertained in
both Einstein–æther and Hořava gravity. Concerning Hořava gravity,
in particular, it would be extremely important to check the validity
of the conjecture that motivated chapter 10 and understand whether
the inclusion of L4 and L6 really leads to the regularisation of the
singularity. Hopefully, the effective models of chapter 10 will facilitate
such investigation.

This last remark, in particular, alludes to what is probably the most
ambitious goal of the quantum gravity phenomenology programme:
providing guidance to aid the search for a quantum theory of gravity.
This question, perhaps the most important of all, remains entirely
open.
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Singularity Resolution by Nonlinear Electrodynamics’ (2022).
arXiv:2206.07064 (cit. on p. 24).

[69] S. V. Bolokhov, K. A. Bronnikov and M. V. Skvortsova. ‘Mag-
netic Black Universes and Wormholes with a Phantom Scalar’.
Class. Quantum Grav. 29.24 (2012), p. 245006. arXiv:1208.4619
(cit. on pp. 24, 26, 30).

[70] A. Bonanno and M. Reuter. ‘Renormalization Group Improved
Black Hole Spacetimes’. Phys. Rev. D 62.4 (2000), p. 043008.
arXiv:hep-th/0002196 (cit. on p. 14).

[71] Alfio Bonanno, Amir-Pouyan Khosravi and Frank Saueressig.
‘Regular Black Holes with Stable Cores’. Phys. Rev. D 103.12

(2021), p. 124027. arXiv:2010.04226 (cit. on p. 108).

[72] Alfio Bonanno, Amir-Pouyan Khosravi and Frank Saueressig.
‘Regular Evaporating Black Holes with Stable Cores’. Phys.
Rev. D 107.2 (2023), p. 024005. arXiv:2209.10612 (cit. on p. 108).

[73] Alfio Bonanno and Frank Saueressig. Stability Properties of Reg-
ular Black Holes. 2022. arXiv:2211.09192 (cit. on p. 108).

https://doi.org/10.1103/PhysRevD.98.064010
https://doi.org/10.1103/PhysRevD.98.064010
https://doi.org/10.1103/PhysRevD.98.064010
https://arxiv.org/abs/1806.00142
https://doi.org/10.1088/0264-9381/33/23/235003
https://doi.org/10.1088/0264-9381/33/23/235003
https://doi.org/10.1088/0264-9381/33/23/235003
https://arxiv.org/abs/1509.01558
https://doi.org/10.1088/1126-6708/2009/10/029
https://doi.org/10.1088/1126-6708/2009/10/029
https://doi.org/10.1088/1126-6708/2009/10/029
https://arxiv.org/abs/0906.3046
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://doi.org/10.1103/PhysRevLett.104.181302
https://arxiv.org/abs/0909.3525
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1103/PhysRevD.84.124043
https://doi.org/10.1103/PhysRevD.84.124043
https://arxiv.org/abs/1110.2195
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1007/JHEP04(2011)018
https://doi.org/10.1007/JHEP04(2011)018
https://arxiv.org/abs/1007.3503
https://doi.org/10.1002/andp.201600105
https://doi.org/10.1002/andp.201600105
https://doi.org/10.1002/andp.201600105
https://doi.org/10.1002/andp.201600105
https://arxiv.org/abs/2206.07064
https://doi.org/10.1088/0264-9381/29/24/245006
https://doi.org/10.1088/0264-9381/29/24/245006
https://doi.org/10.1088/0264-9381/29/24/245006
https://arxiv.org/abs/1208.4619
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1103/PhysRevD.62.043008
https://doi.org/10.1103/PhysRevD.62.043008
https://arxiv.org/abs/hep-th/0002196
https://doi.org/10.1103/PhysRevD.103.124027
https://doi.org/10.1103/PhysRevD.103.124027
https://doi.org/10.1103/PhysRevD.103.124027
https://arxiv.org/abs/2010.04226
https://doi.org/10.1103/PhysRevD.107.024005
https://doi.org/10.1103/PhysRevD.107.024005
https://doi.org/10.1103/PhysRevD.107.024005
https://doi.org/10.1103/PhysRevD.107.024005
https://arxiv.org/abs/2209.10612
https://arxiv.org/abs/2211.09192


bibliography 187

[74] Arvind Borde. ‘Regular Black Holes and Topology Change’.
Phys. Rev. D 55.12 (1997), pp. 7615–7617. arXiv:gr-qc/9612057
(cit. on p. 16).

[75] Suddhasattwa Brahma, Che-Yu Chen and Dong-han Yeom. ‘Test-
ing Loop Quantum Gravity from Observational Consequences
of Non-Singular Rotating Black Holes’ (2020). arXiv:2012.08785
(cit. on p. 48).

[76] Marica Branchesi et al. ‘Science with the Einstein Telescope: A
Comparison of Different Designs’. J. Cosmol. Astropart. Phys.
2023.07 (2023), p. 068. arXiv:2303.15923 (cit. on p. 1).

[77] Richard Brito, Vitor Cardoso and Paolo Pani. ‘Superradiance
– the 2020 Edition’. Lecture Notes in Physics, Berlin Springer
Verlag 971 (2020). arXiv:1501.06570 (cit. on pp. 81, 94).

[78] David Brizuela, José M. Martín-García and Guillermo A. Mena
Marugán. ‘xPert: Computer Algebra for Metric Perturbation
Theory’. General Relativity and Gravitation 41.10 (2009), p. 2415

(cit. on p. 4).

[79] K. A. Bronnikov. ‘Nonlinear Electrodynamics, Regular Black
Holes and Wormholes’. Int. J. Mod. Phys. D 27.06 (2018), p. 1841005.
arXiv:1711.00087 (cit. on pp. 24, 26).

[80] K. A. Bronnikov. ‘On Black Bounces, Wormholes and Partly
Phantom Scalar Fields’. Phys. Rev. D 106.6 (2022), p. 064029.
arXiv:2206.09227 (cit. on pp. 24, 29).

[81] K. A. Bronnikov, H. Dehnen and V. N. Melnikov. ‘Regular
Black Holes and Black Universes’. Gen Relativ Gravit 39.7
(2007), pp. 973–987. arXiv:gr-qc/0611022 (cit. on pp. 30, 65).

[82] K. A. Bronnikov and J. C. Fabris. ‘Regular Phantom Black
Holes’. Phys. Rev. Lett. 96 (2006), p. 251101. arXiv:gr-qc/0511109
(cit. on pp. 30, 65).

[83] Kirill A. Bronnikov. ‘Regular Magnetic Black Holes and Mono-
poles from Nonlinear Electrodynamics’. Phys. Rev. D 63.4 (2001),
p. 044005. arXiv:gr-qc/0006014 (cit. on pp. 24, 26).

[84] Kirill A. Bronnikov and Roman A. Konoplya. ‘Echoes in Brane
Worlds: Ringing at a Black Hole–Wormhole Transition’. Phys.
Rev. D 101.6 (2020), p. 064004. arXiv:1912.05315 (cit. on p. 82).

[85] Kirill A. Bronnikov, Roman A. Konoplya and Thomas D. Pap-
pas. ‘General Parametrization of Wormhole Spacetimes and
Its Application to Shadows and Quasinormal Modes’ (2021).
arXiv:2102.10679 (cit. on p. 22).

[86] Kirill A. Bronnikov and Rahul Kumar Walia. ‘Field Sources for
Simpson-Visser Spacetimes’. Phys. Rev. D 105.4 (2022), p. 044039.
arXiv:2112.13198 (cit. on pp. 24, 31).

https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://doi.org/10.1103/PhysRevD.55.7615
https://arxiv.org/abs/gr-qc/9612057
https://arxiv.org/abs/2012.08785
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://doi.org/10.1088/1475-7516/2023/07/068
https://arxiv.org/abs/2303.15923
https://doi.org/10.1007/978-3-030-46622-0
https://doi.org/10.1007/978-3-030-46622-0
https://doi.org/10.1007/978-3-030-46622-0
https://arxiv.org/abs/1501.06570
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1007/s10714-009-0773-2
https://doi.org/10.1142/S0218271818410055
https://doi.org/10.1142/S0218271818410055
https://doi.org/10.1142/S0218271818410055
https://arxiv.org/abs/1711.00087
https://doi.org/10.1103/PhysRevD.106.064029
https://doi.org/10.1103/PhysRevD.106.064029
https://doi.org/10.1103/PhysRevD.106.064029
https://arxiv.org/abs/2206.09227
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1007/s10714-007-0430-6
https://doi.org/10.1007/s10714-007-0430-6
https://arxiv.org/abs/gr-qc/0611022
https://doi.org/10.1103/PhysRevLett.96.251101
https://doi.org/10.1103/PhysRevLett.96.251101
https://arxiv.org/abs/gr-qc/0511109
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://doi.org/10.1103/PhysRevD.63.044005
https://arxiv.org/abs/gr-qc/0006014
https://doi.org/10.1103/PhysRevD.101.064004
https://doi.org/10.1103/PhysRevD.101.064004
https://doi.org/10.1103/PhysRevD.101.064004
https://doi.org/10.1103/PhysRevD.101.064004
https://arxiv.org/abs/1912.05315
https://arxiv.org/abs/2102.10679
https://doi.org/10.1103/PhysRevD.105.044039
https://doi.org/10.1103/PhysRevD.105.044039
https://doi.org/10.1103/PhysRevD.105.044039
https://arxiv.org/abs/2112.13198


188 bibliography

[87] Pablo Bueno, Pablo A. Cano, Frederik Goelen, Thomas Hertog
and Bert Vercnocke. ‘Echoes of Kerr-like Wormholes’. Phys.
Rev. D 97.2 (2018), p. 024040. arXiv:1711.00391 (cit. on p. 82).

[88] C. P. Burgess. ‘Quantum Gravity in Everyday Life: General
Relativity as an Effective Field Theory’. Living Rev. Relativ.
7.1 (2004), p. 5. arXiv:gr-qc/0311082 (cit. on p. 131).

[89] Pedro Cañate and Santiago Esteban Perez Bergliaffa. ‘Trans-
forming Singular Black Holes into Regular Black Holes Sourced
by Nonlinear Electrodynamics’. Annals of Physics 454 (2023),
p. 169358. arXiv:2203.03088 (cit. on pp. 24, 109).

[90] Rosangela Canonico, Luca Parisi and Gaetano Vilasi. ‘The New-
man Janis Algorithm: A Review of Some Results’. Proceedings
of the Twelfth International Conference on Geometry, Integrability
and Quantization. Institute of Biophysics and Biomedical En-
gineering, Bulgarian Academy of Sciences, 2011, pp. 159–169

(cit. on p. 36).

[91] Salvatore Capozziello, Francisco S. N. Lobo and José P. Mimoso.
‘Energy Conditions in Modified Gravity’. Physics Letters B 730
(2014), pp. 280–283. arXiv:1312.0784 (cit. on p. 13).

[92] Raúl Carballo-Rubio. ‘Stellar Equilibrium in Semiclassical Grav-
ity’. Phys. Rev. Lett. 120.6 (2018), p. 061102. arXiv:1706.05379
(cit. on pp. 14, 33).

[93] Raul Carballo-Rubio, Francesco Di Filippo, Stefano Liberati
and Matt Visser. ‘Causal Hierarchy in Modified Gravity’. J.
High Energ. Phys. 2020.12 (2020), p. 55. arXiv:2005.08533 (cit.
on pp. 134, 143).

[94] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati,
Costantino Pacilio and Matt Visser. ‘On the Viability of Reg-
ular Black Holes’. J. High Energ. Phys. 2018.7 (2018), p. 23.
arXiv:1805.02675 (cit. on p. 108).

[95] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati,
Costantino Pacilio and Matt Visser. ‘Inner Horizon Instability
and the Unstable Cores of Regular Black Holes’. J. High Energ.
Phys. 2021.5 (2021), p. 132. arXiv:2101.05006 (cit. on p. 108).

[96] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati,
Costantino Pacilio and Matt Visser. ‘Regular Black Holes without
Mass Inflation Instability’ (2022). arXiv:2205.13556 (cit. on
pp. 109, 114).

[97] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati
and Matt Visser. ‘Geodesically Complete Black Holes’. Phys.
Rev. D 101.8 (2020), p. 084047. arXiv:1911.11200 (cit. on pp. 14,
15).

https://doi.org/10.1103/PhysRevD.97.024040
https://doi.org/10.1103/PhysRevD.97.024040
https://doi.org/10.1103/PhysRevD.97.024040
https://doi.org/10.1103/PhysRevD.97.024040
https://arxiv.org/abs/1711.00391
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.12942/lrr-2004-5
https://doi.org/10.12942/lrr-2004-5
https://arxiv.org/abs/gr-qc/0311082
https://doi.org/10.1016/j.aop.2023.169358
https://doi.org/10.1016/j.aop.2023.169358
https://arxiv.org/abs/2203.03088
https://doi.org/10.1016/j.physletb.2014.01.066
https://doi.org/10.1016/j.physletb.2014.01.066
https://arxiv.org/abs/1312.0784
https://doi.org/10.1103/PhysRevLett.120.061102
https://doi.org/10.1103/PhysRevLett.120.061102
https://doi.org/10.1103/PhysRevLett.120.061102
https://arxiv.org/abs/1706.05379
https://doi.org/10.1007/JHEP12(2020)055
https://doi.org/10.1007/JHEP12(2020)055
https://doi.org/10.1007/JHEP12(2020)055
https://doi.org/10.1007/JHEP12(2020)055
https://arxiv.org/abs/2005.08533
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1007/JHEP07(2018)023
https://doi.org/10.1007/JHEP07(2018)023
https://arxiv.org/abs/1805.02675
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1007/JHEP05(2021)132
https://arxiv.org/abs/2101.05006
https://arxiv.org/abs/2205.13556
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.101.084047
https://doi.org/10.1103/PhysRevD.101.084047
https://arxiv.org/abs/1911.11200


bibliography 189

[98] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati
and Matt Visser. ‘Opening the Pandora’s Box at the Core of
Black Holes’. Class. Quantum Grav. 37.14 (2020), p. 145005.
arXiv:1908.03261 (cit. on p. 14).

[99] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati
and Matt Visser. A Connection between Regular Black Holes and
Horizonless Ultracompact Stars. 2022. arXiv:2211.05817 (cit. on
p. 28).

[100] Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati
and Matt Visser. ‘Geodesically Complete Black Holes in Lorentz-
violating Gravity’. J. High Energ. Phys. 2022.2 (2022), p. 122.
arXiv:2111.03113 (cit. on pp. 14, 144, 159, 168).

[101] Vitor Cardoso, João L. Costa, José Natário and Zhen Zhong.
‘Energy Extraction from Bouncing Geometries’. Phys. Rev. D
108.2 (2023), p. 024071. arXiv:2304.08520 (cit. on p. 107).

[102] Vitor Cardoso, Oscar J. C. Dias, Jose’ P. S. Lemos and Shijun
Yoshida. ‘The Black Hole Bomb and Superradiant Instabilities’.
Phys. Rev. D 70.4 (2004), p. 049903. arXiv:hep-th/0404096 (cit.
on p. 81).

[103] Vitor Cardoso, Edgardo Franzin and Paolo Pani. ‘Is the Gravitational-
Wave Ringdown a Probe of the Event Horizon?’ Phys. Rev.
Lett. 116.17 (2016), p. 171101. arXiv:1602.07309 (cit. on p. 82).

[104] Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palen-
zuela and Paolo Pani. ‘Echoes of ECOs: Gravitational-Wave
Signatures of Exotic Compact Objects and of Quantum Correc-
tions at the Horizon Scale’. Phys. Rev. D 94.8 (2016), p. 084031.
arXiv:1608.08637 (cit. on p. 82).

[105] Vitor Cardoso, Seth Hopper, Caio F. B. Macedo, Carlos Palen-
zuela and Paolo Pani. ‘Gravitational-Wave Signatures of Exotic
Compact Objects and of Quantum Corrections at the Horizon
Scale’. Phys. Rev. D 94.8 (2016), p. 084031 (cit. on p. 82).

[106] Vitor Cardoso and Paolo Pani. ‘Tests for the Existence of Ho-
rizons through Gravitational Wave Echoes’. Nat Astron 1.9
(2017), pp. 586–591. arXiv:1709.01525 (cit. on p. 82).

[107] Vitor Cardoso and Paolo Pani. ‘Testing the Nature of Dark
Compact Objects: A Status Report’. Living Reviews in Relativ-
ity 22.1 (2019), p. 4 (cit. on pp. 2, 14, 82).

[108] Vitor Cardoso, Paolo Pani, Mariano Cadoni and Marco Cavaglia.
‘Ergoregion Instability of Ultra-Compact Astrophysical Objects’.
Phys. Rev. D 77.12 (2008), p. 124044. arXiv:0709.0532 (cit. on
p. 81).

https://doi.org/10.1088/1361-6382/ab8141
https://doi.org/10.1088/1361-6382/ab8141
https://doi.org/10.1088/1361-6382/ab8141
https://arxiv.org/abs/1908.03261
https://arxiv.org/abs/2211.05817
https://doi.org/10.1007/JHEP02(2022)122
https://doi.org/10.1007/JHEP02(2022)122
https://doi.org/10.1007/JHEP02(2022)122
https://arxiv.org/abs/2111.03113
https://doi.org/10.1103/PhysRevD.108.024071
https://doi.org/10.1103/PhysRevD.108.024071
https://doi.org/10.1103/PhysRevD.108.024071
https://arxiv.org/abs/2304.08520
https://doi.org/10.1103/PhysRevD.70.049903
https://doi.org/10.1103/PhysRevD.70.049903
https://doi.org/10.1103/PhysRevD.70.049903
https://arxiv.org/abs/hep-th/0404096
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://arxiv.org/abs/1602.07309
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.94.084031
https://arxiv.org/abs/1608.08637
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1103/PhysRevD.94.084031
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1038/s41550-017-0225-y
https://arxiv.org/abs/1709.01525
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.77.124044
https://doi.org/10.1103/PhysRevD.77.124044
https://doi.org/10.1103/PhysRevD.77.124044
https://arxiv.org/abs/0709.0532


190 bibliography

[109] Vitor Cardoso, Paolo Pani, Mariano Cadoni and Marco Cavaglia.
‘Instability of Hyper-Compact Kerr-like Objects’. Class. Quantum
Grav. 25.19 (2008), p. 195010. arXiv:0808.1615 (cit. on pp. 81,
91).

[110] Zack Carson and Kent Yagi. ‘Parameterized and Inspiral-Merger-
Ringdown Consistency Tests of Gravity with Multi-Band Grav-
itational Wave Observations’. Phys. Rev. D 101.4 (2020), p. 044047.
arXiv:1911.05258 (cit. on p. 82).

[111] Brandon Carter. ‘Global Structure of the Kerr Family of Grav-
itational Fields’. Phys. Rev. 174 (1968), pp. 1559–1571 (cit. on
p. 76).

[112] Sumanta Chakraborty, Elisa Maggio, Anupam Mazumdar and
Paolo Pani. ‘Implications of the Quantum Nature of the Black
Hole Horizon on the Gravitational-Wave Ringdown’. Phys. Rev.
D 106.2 (2022), p. 024041. arXiv:2202.09111 (cit. on p. 82).

[113] S. Chandrasekhar. The Mathematical Theory of Black Holes. Walton
Street, Oxford: Oxford University Press, 1983 (cit. on pp. 49, 93,
101).

[114] S. Chandrasekhar and Steven L. Detweiler. ‘The Quasi-Normal
Modes of the Schwarzschild Black Hole’. Proc.Roy.Soc.Lond.A
344 (1975), pp. 441–452 (cit. on p. 86).

[115] Mark Ho-Yeuk Cheung, Kyriakos Destounis, Rodrigo Panosso
Macedo, Emanuele Berti and Vitor Cardoso. ‘The Elephant
and the Flea: Destabilizing the Fundamental Mode of Black
Holes’ (2021). arXiv:2111.05415 (cit. on p. 82).

[116] Jan Chojnacki and Jan Kwapisz. ‘Finite Action Principle and
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