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On the Convergence of Nekrasov Functions

Paolo Arnaudo, Giulio Bonelli and Alessandro Tanzini

Abstract. In this note, we present some results on the convergence of
Nekrasov partition functions as power series in the instanton counting
parameter. We focus on U(N) N = 2 gauge theories in four dimensions
with matter in the adjoint and in the fundamental representations of the
gauge group, respectively, and find rigorous lower bounds for the conver-
gence radius in the two cases: if the theory is conformal, then the series
has at least a finite radius of convergence, while if it is asymptotically free
it has infinite radius of convergence. Via AGT correspondence, this im-
plies that the related irregular conformal blocks of WN algebrae admit a
power expansion in the modulus converging in the whole plane. By spec-
ifying to the SU(2) case, we apply our results to analyze the convergence
properties of the corresponding Painlevé τ -functions.
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1. Introduction

The study of the analytic structure in the coupling constant of partition func-
tions and correlation functions in quantum field theory (QFT) is a theme of
paramount importance in this subject since its birth [1,2]. Having control on
the exact general coefficient of these complete expansions is very rare, but
nonetheless crucial to study in depth quantum field theories beyond their in-
complete perturbative definition. To this end, the control on non-perturbative
effects is very important.

The aim of this paper is to focus on the convergence properties of instan-
ton effects in a case in which these can be calculated explicitly. This happens
for BPS partition functions of supersymmetric enough QFTs so that, due to
no renormalization theorems, higher loop corrections vanish because of boson-
fermion cancellation. This happens for N = 2 gauge theories in D = 4 where
the coefficients of the instanton expansion are exactly known, so that one can
precisely estimate the radius of convergence of the series.

The resulting instanton series, known as Nekrasov functions [3], have
many applications in mathematical physics problems, ranging from quantiza-
tion of integrable systems [4], relation to conformal blocks of Virasoro algebra
[5], isomonodromic deformation theory [6,7], non-perturbative approaches to
the quantization of integrable systems [8,9] and Heun functions [10,11]. Also
from these perspectives, a rigorous analysis of the convergence properties of
the Nekrasov functions is important.

In this paper, we prove some theorems on the convergence of Nekrasov
functions as power series in the complexified gauge coupling q = e2πiτ , with
τ = θ

2π + i4π
g2 , as Zinst =

∑
k≥0 qkzk. The general coefficient zk of the series

for the theory with U(N) gauge group is the equivariant volume of the moduli
space Mk,N of k-instantons in U(N) gauge theory. This can be computed
via equivariant localization formulae as a sum over the fixed points of the
algebraic torus action (C∗)N+2 on Mk,N . From the gauge theory viewpoint,
the associated equivariant weights ai, i = 1, . . . , N and ε1, ε2 are the vevs of the
Higgs field and the parameters of the so-called Ω-background, respectively. The
fixed points are classified by coloured partitions of k, described by a collection of
N Young diagrams with total number of boxes k. The equivariant parameters
of line bundles over Mk,N describe the masses of the matter content of the
theory. The coefficients zk turn out to be rational functions of the equivariant
parameters. Therefore, to analyze the convergence properties of the partition
functions, one needs to estimate uniformly in the equivariant parameters the
behavior at large k of these intricate rational functions. We will adapt to
the case at hand some known combinatorial results to prove some—physically
meaningful—estimates for the convergence radius of these partition functions.
In short, we will prove that

• if the theory is asymptotically free, then the multiinstanton series has
infinite radius of convergence;

• if the theory is conformal, then the multiinstanton series has at least a
finite radius of convergence.
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More precisely, we can establish the above results in a number of cases and
under some genericity assumptions on the background parameters. We analyze
the cases of the gauge theory where an N = 2 U(N) vector multiplet is coupled
to a massive hypermultiplet in the adjoint representation (that is N = 2∗

theory) and the case in which it is coupled to Nf ≤ 2N hypermultiplets in the
fundamental. These two cases are, respectively, split between Sects. 2 and 3 of
the paper.

Natural genericity assumptions on the Higgs field vacuum expectation
values—which are taken to be immeasurable with respect to the Ω-background
parameters—are imposed in order to avoid potential poles in the rational func-
tions coefficients zk, while mass parameters are not constrained. In Sect. 2, we
analyze N = 2∗ theory by assuming generic Ω-background parameters, while
in Sect. 3 the study of the gauge theory with matter in the fundamental rep-
resentation of the gauge group is performed in the self-dual Ω-background
ε1 + ε2 = 0.

In Sect. 2, we prove Theorem 2.1 stating that the instanton partition
function of the N = 2 U(N) gauge theory with an adjoint multiplet with mass
m and Arg(ε1/ε2) �= 0 is a power series converging absolutely within the disk

|q| <

(

1 +
|m|

D(�a, ε1, ε2)

)−2(N−1)

, (1.1)

where

D(�a, ε1, ε2) = min
1≤i�=j≤N

{

min
p∈Zε1+Zε2

{|ai − aj − p|}
}

.

In Sect. 3, we consider the instanton partition function of the N = 2 U(N)
gauge theory with Nf ≤ 2N multiplets in the fundamental representation and
self-dual Ω-background, with ε1 = −ε2 = ε. For Nf = 2N , we prove that, as a
power series in q, it converges absolutely within a disk whose radius depends
on the values of the Higgs vacuum expectation values ai = εαi as

|q| <
∏

{(i,j)∈{1,...,N}2 | i�=j}

[
24

min{1, |αi − αj |}
(

1 +
|αi − αj |
Cij(�α)

)]−1

, (1.2)

where

Cij(�α) = min
n∈Z

|αi − αj − n|.
This is the main content of Theorem 3.1. By standard holomorphic decoupling,
one finds that asymptotically free cases Nf < 2N have instead infinite radius
of convergence as power series in the corresponding renormalization group
invariant scale.

In Sect. 4, we apply our results to analyze the convergence properties of
some Painlevé τ -functions. The Kiev formula conjectured in [12] states that
Painlevé τ -functions can be expressed as discrete Fourier transforms of suitable
full SU(2) Nekrasov partition functions. Generically,

τP (q; a, s) ∝
∑

n∈Z

snq(a+n)2Z1loop(a + n)Zinst(q, a + n)
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where Z1loop(a) is the perturbative 1-loop contribution while a and s parame-
trize the initial conditions of the Painlevé flow. The study of the convergence
of the Fourier series is done applying the above theorems and shows that the
absolute convergence bounds on Zinst(q, a) extend to τP (q; a, s). Our result
generalizes the one for PIII3 equation obtained in [13].

By AGT correspondence [5], the instanton partition function is identified
with the Virasoro, and more in general W -algebras [14], conformal blocks.1 In
particular, the N = 2∗ theory corresponds to one point conformal blocks on the
torus, while the N = 2 with Nf = 2N fundamentals corresponds to four-point
conformal blocks on the Riemann sphere. The cases Nf < 2N instead involve
correlators with WN irregular states [15–18]. In this context, our results provide
a lower bound for the convergence radius of the regular conformal blocks of
W -algebrae and establish that irregular conformal blocks expansion has an
infinite radius of convergence. We remark that the latter result is in line with
the expectations coming from special choices of external momenta for which the
correlator reduces to known functions [19]. For the regular conformal blocks
analogous reasoning and modular invariance of the correlators leads to the
expectation that the radius of convergence is actually one. Our estimate from
brute force direct inspection of the combinatorial formulae for the coefficients is
therefore not optimal and could be hopefully improved using other arguments
related to S-duality properties of the corresponding supersymmetric gauge
theories. Let us remark that some results for the particular case of Virasoro
algebra and non-generic background parameters have been recently derived by
using a probabilistic approach2 in [21,22]. Previous studies on the convergence
radius of the instanton series for pure N = 2 Super Yang-Mills with SU(2)
gauge group appeared in [13] which discussed the ε1 + ε2 = 0 case for the four-
dimensional gauge theory, and in [23,24] where the case of five-dimensional
gauge theory on R

4×S1 was addressed for non-generic values of Ω-background
parameters.

There are several interesting questions to be further investigated.
Notice that the bound we found after the proof of theorem 2.1 regularly

extends to the excluded ray Arg(ε1/ε2) = 0. It is therefore conceivable that
it could be proved, with other techniques, for any non-zero value of the Ω-
background parameters.

For technical reasons, the case of fundamental matter was analyzed for
ε1 +ε2 = 0 Ω-background, but we believe that our results can be extended also
to generic values of the εs. For example, one should be able to extend formula
(3.10) in order to study the case ε1/ε2 ∈ Q<0.

It would be also very interesting to be able to extend the study of
Nekrasov function combinatorics in the Nekrasov–Shatashvili limit ε1 = 0
[4], corresponding to the classical limit of conformal blocks.

1 The Liouville central charge is c = 1+6Q2, Q = b+1/b, b =
√

ε1
ε2

. Liouville momenta are

parametrized as α = Q/2 + ia, where a ∈ R is a Cartan or a mass parameter.
2See also [20] at http://www.math.columbia.edu/∼remy/files/Modular Equation.pdf.

http://www.math.columbia.edu/~remy/files/Modular_Equation.pdf
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Regarding the above issues, complementing our analysis with blow-up
equations for the Nekrasov partition functions [25] could improve our results.

The results we obtained provide an explanation of the unreasonable ef-
fectiveness of instanton counting also in strongly coupled phases, such as the
N = 1 confining vacua [26]. One would be then tempted to apply to Argyres–
Douglas superconformal points [27], with the caveat that these are reached via
a double scaling limit where the parameters appearing in the coefficients of
the instanton series, in particular the vevs of the Higgs field, are redefined. We
did not address this issue in this paper.

One obvious extension of our analysis is to linear and circular quiver
gauge theories in general Ω-background, which, on the two-dimensional CFT
counterpart, correspond to conformal blocks with several insertions on the
sphere and on the torus, respectively.

It would also be interesting to extend the approach and results of this
paper to the corresponding five-dimensional gauge theories on a circle.

As mentioned above, it would be interesting to complement our analysis
basing on electromagnetic duality and the induced modular properties of the
BPS partition functions, from which one expects that the radius of convergence
for the conformal cases is |q| < 1 for generic values of the mass parameters.
For an exhaustive analysis of their analytic properties, one could exploit the
relation of these partition functions with the solutions of isomonodromic de-
formation problems (a.k.a. differential equations of Painlevé type) and their
singularity theory. Let us remark that Fredholm determinant representations
of the related τ -functions have been derived [28] and their analysis could be
used to provide a proof of the desired convergence properties.

2. Convergence of U(N) Instanton Partition Function with
Adjoint Matter

We begin our analysis with the study of the convergence properties of the
instanton partition function of N = 2∗ U(N) gauge theory

Z
N=2∗,U(N)
inst =

∑

k≥0

qk
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

(

1 − m

−ε1LYi
(s) + ε2(AYi

(s) + 1)

)

(

1 − m

ε1(LYi
(t) + 1) − ε2AYi

(s)

)

∏

1≤i�=j≤N

∏

s∈Yi

(

1 − m

ai − aj − ε1LYj
(s) + ε2(AYi

(s) + 1)

)

∏

t∈Yj

(

1 − m

−aj + ai + ε1(LYi
(t) + 1) − ε2AYj

(t)

)

.

(2.1)
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We refer to Appendix A for the notations used. In the products above, we
collected first the pairs with i = j (in what follows we will call these contribu-
tions diagonal), and then the pairs (i, j) with i �= j (in what follows we will call
these contributions nondiagonal). From a direct inspection of (2.1), one can
see that the coefficients of the series are well defined under the assumptions

Arg
(

ε2
ε1

)

�= 0 and ± (ai − aj) /∈ Λ(ε1, ε2) ∀1 ≤ i < j ≤ N, (2.2)

where Λ(ε1, ε2) is the 2-dimensional lattice

Λ(ε1, ε2) = {z ∈ C |z ∈ ε1Z + ε2Z}, (2.3)

which we will use in the proof of the

Theorem 2.1. The instanton partition function of the N = 2∗ U(N) gauge
theory, as a power series in the complex parameter q, is absolutely convergent
at least for

|q| <

(

1 +
|m|

D(�a, ε1, ε2)

)−2(N−1)

, (2.4)

where m is the mass of the adjoint multiplet, and

D(�a, ε1, ε2) = min
1≤i�=j≤N

{

min
p∈Λ(ε1,ε2)

{|ai − aj − p|}
}

. (2.5)

From this result, two corollaries can be proved. The first comes from the
fact that the N = 2∗ instanton partition function reduces to the N = 2 SYM
instanton partition function in the double scaling limit q → 0 and m → ∞
with Λ = qm2N kept finite.

Corollary 2.2. The instanton partition function of the U(N) pure gauge theory,
as a power series in the complex parameter Λ, is convergent over the whole
complex plane.

The second corollary comes from the fact that if the mass of the adjoint
multiplet goes to zero, m → 0, the N = 2∗ instanton partition function reduces
to the N = 4 instanton partition function.

Corollary 2.3. The instanton partition function of the N = 4 U(N) gauge
theory, as a power series in the complex parameter q, is convergent in the
region |q| < 1.

Remark 2.1. By using known analytic properties of the partition function
(2.1), one can lift (2.2) to milder conditions for the values of the a-parameters.
Indeed, the second condition, which we imposed to a priori get rid of the pos-
sible poles in the non-diagonal part, can be reduced to the set of actual poles
as classified in [29–31].

Remark 2.2. The content of Corollary 2.2 is an higher rank generalization of
an observation about the SU(2) SYM N = 2 instanton partition function given
in [13].

Remark 2.3. Corollary 2.3 is trivial. Indeed, it is well known that the N = 4
partition function is equal to φ(q)−N , φ(q) being the Euler function.
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2.1. Proof of Theorem 2.1

It will be useful to divide the assumption

Arg
(

ε2
ε1

)

�= 0 (2.6)

in the two subcases:
1. Im

(
ε2
ε1

) �= 0;
2. Re

(
ε2
ε1

)
< 0.

2.1.1. First Subcase. Suppose

Im
(

ε2
ε1

)

�= 0.

Let δ > 0 be a real number such that

min
{∣
∣
∣
∣Im
(

ε2
ε1

)∣
∣
∣
∣,

∣
∣
∣
∣Im
(

ε1
ε2

)∣
∣
∣
∣

}

> δ.

Notice that δ ≤ 1.
We first analyze the products over the boxes of one of the diagrams, say

Y1, whose contributions come from the diagonal factors, namely we look for a
bound on
∣
∣
∣
∣

∏

s∈Y1

(

1 − m

−ε1LY1(s) + ε2(AY1(s) + 1)

)(

1 − m

ε1(LY1(t) + 1) − ε2AY1(s)

) ∣
∣
∣
∣.

(2.7)

An analogous reasoning will also hold for the diagonal contributions of the
other diagrams Y2, . . . , YN .

We begin by estimating the denominators in the previous product. Let
us fix a box s ∈ Y1, and let us consider the term

1
| − ε1LY1(s) + ε2(AY1(s) + 1)| . (2.8)

By recalling the definition of hook length, hY1(s) = LY1(s) + AY1(s) + 1, we
can without loss of generality suppose

AY1(s) ≥ hY1(s) − 1
2

.

Then, if we collect a factor of ε1, we have

| − ε1LY1(s) + ε2(AY1(s) + 1)| = |ε1| · |LY1(s) − ε2
ε1

(AY1(s) + 1)|

≥ |ε1| ·
∣
∣
∣
∣Im
(

ε2
ε1

)∣
∣
∣
∣ · (AY1(s) + 1)

≥ |ε1| · δ · hY1(s) + 1
2

≥ |ε1| · δ · hY1(s)
4

.

(2.9)
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Analogously, for the term

1
|ε1(LY1(s) + 1) − ε2AY1(s)|

, (2.10)

we have

|ε1(LY1(s) + 1) − ε2AY1(s)| = |ε1| · |LY1(s) + 1 − ε2
ε1

AY1(s)|

≥ |ε1| ·
∣
∣
∣
∣Im
(

ε2
ε1

)∣
∣
∣
∣ · AY1(s)

≥ |ε1| · δ · hY1(s) − 1
2

.

(2.11)

Notice that, if hY1(s) = 1, then both LY1(s) = AY1(s) = 0, and the previous
term is simply |ε1| = |ε1|hY1(s) ≥ |ε1| · δ · hY1 (s)

4 , and, if hY1(s) ≥ 2, then
(hY1(s) − 1)/2 ≥ hY1(s)/4. Therefore, also this term is always bounded by
|ε1| · δ · hY1 (s)

4 .
If we instead considered a box s for which

AY1(s) <
hY1(s) − 1

2
,

we would have

LY1(s) ≥ hY1(s) − 1
2

.

In this case, we collect factors of ε2 from both terms to obtain

| − ε1LY1(s) + ε2(AY1(s) + 1)| ≥ |ε2| · δ · hY1(s)
4

,

|ε1(LY1(s) + 1) − ε2AY1(s)| ≥ |ε2| · δ · hY1(s)
4

.

(2.12)

Now, fix

|ε| = min{|ε1|, |ε2|}. (2.13)

Then,

1
| − ε1LY1(s) + ε2(AY1(s) + 1)| ≤ 4

|ε| · δ · hY1(s)
,

1
|ε1(LY1(s) + 1) − ε2AY1(s)|

≤ 4
|ε| · δ · hY1(s)

.

(2.14)
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Therefore, we have that

∣
∣
∣
∣

∏

s∈Y1

(

1 − m

−ε1LY1(s) + ε2(AY1(s) + 1)

)(

1 − m

ε1(LY1(t) + 1) − ε2AY1(t)

)∣
∣
∣
∣

=
∣
∣
∣
∣

∏

s∈Y1

(

1 +
m2 − m(ε1 + ε2)

[−ε1LY1(s) + ε2(AY1(s) + 1)][ε1(LY1(t) + 1) − ε2AY1(t)]

)∣
∣
∣
∣

≤
∏

s∈Y1

(

1 +
16|m2 − m(ε1 + ε2)|

δ2|ε|2hY1(s)2

)

=
∏

s∈Y1

⎛

⎝1 +
16|m2−m(ε1+ε2)|

δ2|ε|2
hY1(s)2

⎞

⎠ .

(2.15)

We now consider the remaining terms, which come from the nondiagonal
contributions. We analyze the products over the boxes of Y1, coming from the
pairs (1, 2) and (2, 1). The products over the boxes of the diagram Y2 in the
same pairs will be analogous, and the same will hold for any other couple of
pairs (i, j), (j, i).

The terms we consider are then
∣
∣
∣
∣

∏

s∈Y1

(

1 − m

a1 − a2 − ε1LY2(s) + ε2(AY1(s) + 1)

)

(

1 − m

−a1 + a2 + ε1(LY2(s) + 1) − ε2AY1(s)

)∣
∣
∣
∣. (2.16)

With our assumptions on the vev parameters ai, we have that the denominators
are never zero. Let us define

Dij(�a, ε1, ε2) = min
p∈Λ(ε1,ε2)

{|ai − aj − p|}. (2.17)

We have that
∣
∣
∣
∣

∏

s∈Y1

(

1 − m

a1 − a2 − ε1LY2(s) + ε2(AY1(s) + 1)

)

(

1 − m

−a1 + a2 + ε1(LY2(s) + 1) − ε2AY1(s)

)∣
∣
∣
∣

≤
∏

s∈Y1

(

1 +
|m|

|a1 − a2 − ε1LY2(s) + ε2(AY1(s) + 1)|
)

×
(

1 +
|m|

| − a1 + a2 + ε1(LY2(s) + 1) − ε2AY1(s)|
)

≤
(

1 +
|m|

D12(�a, ε1, ε2)

)2|Y1|
.

(2.18)
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Putting the bounds (2.15) and (2.18) together, we can conclude
∣
∣
∣
∣

∑

k≥0

qk
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

(

1 − m

−ε1LYi
(s) + ε2(AYi

(s) + 1)

)(

1 − m

ε1(LYi
(t) + 1) − ε2AYi

(s)

)

×
∏

1≤i�=j≤N

∏

s∈Yi

(

1 − m

ai − aj − ε1LYj
(s) + ε2(AYi

(s) + 1)

)

∏

t∈Yj

(

1 − m

−aj + ai + ε1(LYi
(t) + 1) − ε2AYj

(t)

) ∣
∣
∣
∣

≤
∑

k≥0

|q|k
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

⎛

⎝1 +

16|m2−m(ε1+ε2)|
δ2|ε|2

hYi
(s)2

⎞

⎠
N∏

i=1

∏

j �=i

(

1 +
|m|

Dij(�a, ε1, ε2)

)2|Yi|
.

(2.19)

Now, let us define

D(�a, ε1, ε2) = min
1≤i�=j≤N

{Dij(�a, ε1, ε2)}. (2.20)

The following result (which is Theorem 1.2 in [32]) will be useful:

Proposition 2.4. For any complex number z, the following holds:

∑

Y ∈Y

x|Y | ∏

s∈Y

(

1 − z

(hY (s))2

)

=
∞∏

j=1

(1 − xj)z−1 = φ(x)z−1, (2.21)

where φ is the Euler function.

We remind that φ(x) is convergent for |x| < 1. Then,

∑

k≥0

|q|k
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

⎛

⎝1 +

16|m2−m(ε1+ε2)|
δ2|ε|2

hYi
(s)2

⎞

⎠
N∏

i=1

∏

j �=i

(

1 +
|m|

Dij(�a, ε1, ε2)

)2|Yi|

≤
∑

k≥0

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]k ∑

|�Y |=k

N∏

i=1

∏

s∈Yi

⎛

⎝1 +

16|m2−m(ε1+ε2)|
δ2|ε|2

hYi
(s)2

⎞

⎠

=
∑

Y1,...,YN ∈Y

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]∑N

i=1 |Yi| N∏

i=1

∏

s∈Yi

⎛

⎝1 +

16|m2−m(ε1+ε2)|
δ2|ε|2

hYi
(s)2

⎞

⎠

=

⎧
⎨

⎩

∑

Y ∈Y

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]|Y | ∏

s∈Y

⎛

⎝1 +

16|m2−m(ε1+ε2)|
δ2|ε|2

hY (s)2

⎞

⎠

⎫
⎬

⎭

N

= φ

(

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
)N

(

− 16|m2−m(ε1+ε2)|
δ2|ε|2 −1

)

,

(2.22)

where in the last line we used (2.21) with x = |q|
(
1 + |m|

D(�a,ε1,ε2)

)2(N−1)

and

z = − 16|m2−m(ε1+ε2)|
δ2|ε|2 .
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Hence, we can conclude that the instanton partition function is conver-
gent in the region defined by

|q| <

(

1 +
|m|

D(�a, ε1, ε2)

)−2(N−1)

. (2.23)

2.1.2. Second Subcase. Suppose otherwise that

Re
(

ε2
ε1

)

< 0,

and let

β = −Re
(

ε2
ε1

)

> 0.

Again, we start by analyzing the products over the boxes of one of the dia-
grams, say Y1, coming from the diagonal contributions, that is, we look for a
bound on
∣
∣
∣
∣

∏

s∈Y1

(

1 − m

−ε1LY1(s) + ε2(AY1(s) + 1)

)(

1 − m

ε1(LY1(t) + 1) − ε2AY1(s)

) ∣
∣
∣
∣.

(2.24)

We begin by estimating the denominators. For every box s ∈ Y1, we have

| − ε1LY1(s) + ε2(AY1(s) + 1)| = |ε1| ·
∣
∣
∣
∣LY1(s) − ε2

ε1
(AY1(s) + 1)

∣
∣
∣
∣

≥ |ε1| ·
∣
∣
∣
∣Re
[

LY1(s) − ε2
ε1

(AY1(s) + 1)
] ∣
∣
∣
∣

= |ε1| ·
∣
∣
∣
∣LY1(s) − (AY1(s) + 1)Re

(
ε2
ε1

) ∣
∣
∣
∣

= |ε1| ·
∣
∣
∣
∣LY1(s) + β(AY1(s) + 1)

∣
∣
∣
∣.

(2.25)

Fix γ = min{β, 1}. Then,

1
| − ε1LY1(s) + ε2(AY1(s) + 1)| ≤ 1

|ε1|
1

γhY1(s)
. (2.26)

Analogously, for the other term in the product, we have

1
|ε1(LY1(s) + 1) − ε2AY1(s)|

≤ 1
|ε1|

1
γhY1(s)

. (2.27)
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Then,
∣
∣
∣
∣

∏

s∈Y1

(

1 − m

−ε1LY1(s) + ε2(AY1(s) + 1)

)(

1 − m

ε1(LY1(t) + 1) − ε2AY1(s)

) ∣
∣
∣
∣

=
∣
∣
∣
∣

∏

s∈Y1

(

1 +
m2 − m(ε1 + ε2)

[−ε1LY1(s) + ε2(AY1(s) + 1)][ε1(LY1(t) + 1) − ε2AY1(t)]

)∣
∣
∣
∣

≤
∏

s∈Y1

(

1 +
|m2 − m(ε1 + ε2)|

|ε1|2γ2hY1(s)2

)

=
∏

s∈Y1

⎛

⎝1 +
|m2−m(ε1+ε2)|

|ε1|2γ2

hY1(s)2

⎞

⎠ . (2.28)

An analogous bound holds for all diagrams Y2, . . . , YN . For the nondiagonal
contributions, we will use the same bound (2.18) of the previous subsection.
Therefore, in this case we have
∣
∣
∣
∣

∑

k≥0

q
k
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

(

1 − m

−ε1LYi
(s) + ε2(AYi

(s) + 1)

)

(

1 − m

ε1(LYi
(t) + 1) − ε2AYi

(s)

)

∏

1≤i�=j≤N

∏

s∈Yi

(

1 − m

ai − aj − ε1LYj
(s) + ε2(AYi

(s) + 1)

)

∏

t∈Yj

(

1 − m

−aj + ai + ε1(LYi
(t) + 1) − ε2AYj

(t)

) ∣
∣
∣
∣

≤
∑

k≥0

|q|k
∑

|�Y |=k

N∏

i=1

∏

s∈Yi

⎛

⎝1 +

|m2−m(ε1+ε2)|
|ε1|2γ2

hY1(s)
2

⎞

⎠
N∏

i=1

∏

j �=i

(

1 +
|m|

Dij(�a, ε1, ε2)

)2|Yi|

≤
∑

k≥0

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]k ∑

|�Y |=k

N∏

i=1

∏

s∈Yi

⎛

⎝1 +

|m2−m(ε1+ε2)|
|ε1|2γ2

hY1 (s)
2

⎞

⎠

=
∑

Y1,...,YN ∈Y

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]∑N

i=1 |Yi| N∏

i=1

∏

s∈Yi

⎛

⎝1 +

|m2−m(ε1+ε2)|
|ε1|2γ2

hY1(s)
2

⎞

⎠

=

⎧
⎨

⎩

∑

Y ∈Y

[

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
]|Y | ∏

s∈Y

⎛

⎝1 +

|m2−m(ε1+ε2)|
|ε1|2γ2

hY (s)2

⎞

⎠

⎫
⎬

⎭

N

= φ

(

|q|
(

1 +
|m|

D(�a, ε1, ε2)

)2(N−1)
)N

(

− |m2−m(ε1+ε2)|
|ε1|2γ2 −1

)

,

(2.29)

where in the last line we used (2.21) with x = |q|
(
1 + |m|

D(�a,ε1,ε2)

)2(N−1)

and

z = − |m2−m(ε1+ε2)|
|ε1|2γ2 . Hence, as in the previous case, the instanton partition

function is convergent in the region defined by

|q| <

(

1 +
|m|

D(�a, ε1, ε2)

)−2(N−1)

. (2.30)

Remark 2.4. Let us note that in the case ε2/ε1 ∈ R<0 the 2-dimensional lat-
tice Λ(ε1, ε2) degenerates into a 1-dimensional lattice. Therefore, if we move
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sufficiently away from the line spanned by ε1 in the complex plane, that is, if,
for every i �= j, ai − aj has a big enough distance from the set {z ∈ C | z =
rε1, r ∈ R}, the constant D(�a, ε1, ε2) can become very large and the radius of
convergence tends to 1.

2.2. Corollary 2.2: from N = 2∗ to N = 2 SYM

The results on the convergence of the N = 2 instanton partition function can
be deduced from the ones on the N = 2∗ instanton partition function. Indeed,
if one considers the double scaling limit in which the mass of the adjoint
multiplet m becomes large m → ∞ and the instanton parameter q becomes
small, q → 0, in such a way that Λ := qm2N remains finite, the instanton
partition function of the N = 2∗ U(N) theory (A.8) reduces to (A.9) in the
expansion parameter Λ instead of q.

From (2.30), we find

|m|2N |q| ≤
(

1 +
|m|

D(�a, ε1, ε2)

)2( 1
|m| +

1
D(�a, ε1, ε2)

)−2N

(2.31)

which in the above limit reduces to |Λ| < ∞.

2.3. Corollary 2.3: from N = 2∗ to N = 4
The instanton partition function of the N = 4 U(N) gauge theory can be
written as:

Z
N=4,U(N)
inst =

∑

k≥0

qk
∑

|Y |=k

1 =
∑

k≥0

qkpN (k) =
∞∏

j=1

1
(1 − qj)N

= φ(q)−N ,

(2.32)

which is convergent in the region |q| < 1.
This result can also be obtained from the analysis of the N = 2∗ U(N)

theory setting to zero the mass of the adjoint multiplet, as it is obvious from
(2.30).

3. U(N) Instanton Partition Functions with Fundamental
Matter

Also in this case, we will work under the assumptions (2.2). Moreover, we
assume ε1 + ε2 = 0 and set

ε := ε1 = −ε2, αi := ai/ε, μr := mr/ε. (3.1)

In this notation, the instanton partition function reads



P. Arnaudo et al. Ann. Henri Poincaré

Z
U(N) Nf

inst =
∑

k≥0

(
qεNf −2N

)k

∑

|�Y |=k

N∏

i,j=1

∏

(m,n)∈Yi

1
αi − αj − hYi

((m,n)) + (Y ′
i )m − (Y ′

j )m

∏

(m,n)∈Yj

1
αi − αj + hYj

((m,n)) − (Y ′
j )m + (Y ′

i )m

N∏

i=1

∏

(m,n)∈Yi

Nf∏

r=1

[αi + μr + m − n] .

(3.2)

We observe that in this case (2.2) reduces to αi − αj /∈ Z for every 1 ≤ i <
j ≤ N .

The main result we find is

Theorem 3.1. The instanton partition function of the U(N) gauge theory with
Nf = 2N fundamental multiplets has at least a finite radius of convergence.

The instanton partition function of the U(N) gauge theory with Nf < 2N
fundamental multiplets is absolutely convergent over the whole complex plane.

We will consider in (3.2) the sum starting from k ≥ 1, as it does not
change the convergence properties of the series.

There will be many steps necessary to arrive at our final result, so it will
be useful to divide the coefficient functions into simpler factors and analyze
them separately.

We start by considering the products over the boxes of one specific Young
diagram, let us take Y1, which are

∏

(m,n)∈Y1

∏Nf

r=1 [α1 + μr + m − n]
hY1((m,n))2

∏

j �=1

∏

(m,n)∈Y1

1
(α1 − αj − hY1((m,n)) + (Y ′

1)m − (Y ′
j )m)2

. (3.3)

We first analyze the Nf = 2N case of the theorem, in which we have the same
number of factors in the numerator and denominator of (3.3). In particular,
we can factor (3.3) in two types of products:

∏

(m,n)∈Y1

α1 + μr + m − n

hY1((m,n))
with r ∈ {1, . . . , Nf}, (3.4)

and
∏

(m,n)∈Y1

α1 + μr + m − n

α1 − αj − hY1((m,n)) + (Y ′
1)m − (Y ′

j )m

with r ∈ {1, . . . , Nf} and j ∈ {2, . . . , N}. (3.5)

The key result on the first kind of product is the following
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Lemma 3.2. For every Young diagram Y with k ≥ 1 boxes and for every fixed
complex number z, the following inequality holds

∏

(i,j)∈Y

∣
∣
∣
∣
z + i − j

hY ((i, j))

∣
∣
∣
∣ <

√
k + 2max{1, |z|}√k − 1
2πk(2max{1, |z|}√k − 1)

(

1 +
2
√

k max{1, |z|} − 1
k

)k

(

1 +
k

2
√

k max{1, |z|} − 1

)2 max{1,|z|}√
k−1

× exp

(
1

12(k + 2
√

k max{1, |z|} − 1)

− 1
12k + 1

− 1
12(2

√
k max{1, |z|} − 1) + 1

)

.

(3.6)

We will denote f(z, k) the function on the right-hand side of (3.6).
The key result on the second kind of product is the following

Lemma 3.3. For every pair of diagrams (Y1, Y2) with |Y1| + |Y2| = k ≥ 1 and
for every pair of fixed complex numbers z1, z2, the following inequality holds

∏

(i,j)∈Y1

∣
∣
∣
∣

z1 + i − j

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

∣
∣
∣
∣

∏

(i,j)∈Y2

∣
∣
∣
∣

z2 + i − j

α1 − α2 + hY2((i, j)) − (Y ′
2)i + (Y ′

1)i

∣
∣
∣
∣

≤
(

16
min{1, |α1 − α2|}

(

1 +
|α1 − α2|
C12(�α)

))k

f(z1, k)f(z2, k),

(3.7)

where

Cij(�α) = min
n∈Z

|αi − αj − n| > 0. (3.8)

We will use the notation

gij(�α) =
16

min{1, |αi − αj |}
(

1 +
|αi − αj |
Cij(�α)

)

. (3.9)

3.1. Proofs of Lemmas 3.2 and 3.3

We start by proving Lemma 3.2. The following results will be important in the
proof. First, the following formula, that appears in equation 7.207 of exercise
7.50 of [33], is crucial:

Proposition 3.4. For a Young diagram Y with k boxes, if c(σ) denotes the
number of cycles in the permutation σ ∈ Sk, and χY (σ) is the character of the
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irreducible representation of Sk associated to the partition Y of k and evaluated
in the element σ ∈ Sk, then

∏

(i,j)∈Y

z + i − j

hY ((i, j))
=

1
k!

∑

σ∈Sk

χY (σ)zc(σ). (3.10)

This holds as a polynomial identity for all z ∈ C.
Moreover, we will use also the following result, that is Lemma 5 of [34]:

Proposition 3.5. Let Y be a partition of k ≥ 1. Let sq(Y ) be the side length of
the largest square contained in Y ; that is, the largest j such that Yj ≥ j. Let
σ ∈ Sk be a permutation with c(σ) cycles. Then

|χY (σ)| ≤ (2sq(Y ))c(σ). (3.11)

Finally, from [35,36] and references therein, the following holds

Proposition 3.6. For every natural number m, the expectation value of mc(σ),
over all the permutations of Sk weighted uniformly, is equal to

E(mc) =
(

k + m − 1
k

)

. (3.12)

This result can be extended to noninteger m by considering the right-
hand side of the equation as the generalized binomial coefficient.

Proof of Lemma 3.2. From the identity (3.10), it follows that
∏

(i,j)∈Y

∣
∣
∣
∣
z + i − j

hY ((i, j))

∣
∣
∣
∣ =
∣
∣
∣
∣
1
k!

∑

σ∈Sk

χY (σ)zc(σ)

∣
∣
∣
∣ ≤

1
k!

∑

σ∈Sk

|χY (σ)| · |z|c(σ).

(3.13)

Moreover, using (3.11) and the fact that one has always

sq(Y ) ≤
√

k, (3.14)

we can conclude

|χY (σ)| ≤ (2
√

k)c(σ), (3.15)

so that
∣
∣
∣
∣

∏

(i,j)∈Y

z + i − j

hY ((i, j))

∣
∣
∣
∣ ≤

1
k!

∑

σ∈Sk

[2
√

k|z|]c(σ) ≤ 1
k!

∑

σ∈Sk

[2
√

k max{1, |z|}]c(σ).

(3.16)

Now, the expression
1
k!

∑

σ∈Sk

[2
√

k max{1, |z|}]c(σ) (3.17)

is the expectation value of [2
√

k max{1, |z|}]c(σ) with the uniform measure,
where all permutations have the same probability, given by 1/k!. From Propo-
sition 3.6, we can use the generalized binomial coefficient in order to obtain

∣
∣
∣
∣

∏

(i,j)∈Y

z + i − j

hY ((i, j))

∣
∣
∣
∣ ≤
(

k + 2
√

k max{1, |z|} − 1
k

)

. (3.18)
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We can write

(
k + 2

√
k max{1, |z|} − 1

k

)

=
Γ(k + 2

√
k max{1, |z|})

Γ(k + 1)Γ(2
√

k max{1, |z|})
. (3.19)

Using Stirling approximation in the form

√
2πn
(n

e

)n

e
1

12n+1 < Γ(n + 1) <
√

2πn
(n

e

)n

e
1

12n , (3.20)

we have

(
k + 2

√
k max{1, |z|} − 1

k

)

<

√
2π(k + 2max{1, |z|}√k − 1)

√
2πk
√

2π(2max{1, |z|}√k − 1)

(k + 2max{1, |z|}√k − 1)k+2 max{1,|z|}√
k−1eke2 max{1,|z|}√

k−1

kk(2max{1, |z|}√k − 1)2 max{1,|z|}√
k−1ek+2 max{1,|z|}√

k−1

× exp(
1

12(k + 2
√

k max{1, |z|} − 1)
− 1

12k + 1

− 1
12(2

√
k max{1, |z|} − 1) + 1

)

=

√
k + 2max{1, |z|}√k − 1
2πk(2max{1, |z|}√k − 1)

(

1 +
2
√

k max{1, |z|} − 1
k

)k

(

1 +
k

2
√

k max{1, |z|} − 1

)2 max{1,|z|}√
k−1

× exp
(

1
12(k + 2

√
k max{1, |z|} − 1)

− 1
12k + 1

− 1
12(2

√
k max{1, |z|} − 1) + 1

)

.

(3.21)

�

Remark 3.1. Let us remark that the binomial coefficient (3.19) is increasing
in k. Indeed, considering the ratio of the binomial coefficient with k = r + 1
and k = r, we have that
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(
r+1+2

√
r+1 max{1,|zl|}−1

r+1

)

(
r+2

√
r max{1,|zl|}−1

r

) ≥
(
r+2

√
r max{1,|zl|}

r+1

)

(
r+2

√
r max{1,|zl|}−1

r

)

=
r + 2

√
r max{1, |zl|}
r + 1

≥ 1. (3.22)

Therefore, when we consider a N -tuple of Young diagrams Y1, . . . , YN with
|Yi| = ki and

∑N
i=1 ki = k ≥ 1, we can bound the quantity

∏
(m,n)∈Yi

z+m−n
hYi

((m,n))

with f(z, k). This bound holds also if the diagram Yi is empty, since f(z, k) > 1
if k ≥ 1.

In order to prove Lemma 3.3, we need some further preliminary results
which we now discuss. Since we have found a sharp bound for the products of
the form

∏

(i,j)∈Y1

z + i − j

hY1((i, j))
, (3.23)

we can write the second type of product (3.5) as (we fix j = 2 in (3.5) for
simplicity)

∏

(i,j)∈Y1

z + i − j

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

=
∏

(i,j)∈Y1

z + i − j

hY1((i, j))
hY1((i, j))

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i
, (3.24)

and so we can reduce to estimate the products of the form

∏

(i,j)∈Y1

hY1((i, j))
α1 − α2 − hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

. (3.25)

Let us fix a pair of Young diagrams Y1, Y2 with |Y1| + |Y2| = k ≥ 1. Let
us consider first the product over the boxes of Y1. We will suppose Y1 to be
nonempty, otherwise the product would clearly be bounded with 1, and the
final estimate would also include that case. Let us divide the set of boxes of
Y1 in two subsets: we call B1(Y1) the set of boxes of Y1 for which hY1((i, j)) =
(Y ′

1)i − (Y ′
2)i, and B2(Y1) the set of boxes of Y1 for which hY1((i, j)) �= (Y ′

1)i −
(Y ′

2)i. We have then

∏

(i,j)∈Y1

hY1((i, j))

α1 − α2 − hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

=
∏

(i,j)∈B1(Y1)

hY1((i, j))

α1 − α2 − hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

×
∏

(i,j)∈B2(Y1)

hY1((i, j))

α1 − α2 − hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i
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=
∏

(i,j)∈B1(Y1)

hY1((i, j))

α1 − α2

∏

(i,j)∈B2(Y1)

hY1((i, j))

α1 − α2 − hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

×
∏

(i,j)∈B2(Y1)

−hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

−hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

=
∏

(i,j)∈B1(Y1)

(Y ′
1 )i − (Y ′

2 )i

α1 − α2

∏

(i,j)∈B2(Y1)

−hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

α1 − α2 − hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i

×
∏

(i,j)∈B2(Y1)

hY1((i, j))

−hY1((i, j)) + (Y ′
1 )i − (Y ′

2 )i
. (3.26)

We will consider the three products in the last line one by one.

Lemma 3.7. The first product in the last line of (3.26) can be bounded as fol-
lows

∏

(i,j)∈B1(Y1)

∣
∣
∣
∣
(Y ′

1)i − (Y ′
2)i

α1 − α2

∣
∣
∣
∣ ≤

2k

min{1, |α1 − α2|}k
. (3.27)

Proof. See Appendix B. �

Remark 3.2. Since for every fundamental hypermultiplet there is an identical
product over the boxes in B1(Y2), we notice that, for a given index i of the
box, only one of the two equalities hY1((i, j)) = (Y ′

1)i − (Y ′
2)i and hY2((i, j)) =

(Y ′
2)i − (Y ′

1)i can be satisfied, since the left-hand sides are always positive, but
the right-hand sides are one the opposite of the other. Therefore, for a fixed
index i, only one of the factors

(Y ′
1)i − (Y ′

2)i

α1 − α2
and

(Y ′
2)i − (Y ′

1)i

α1 − α2

appears in the product over the boxes in B1(Y1) and over the boxes in B1(Y2),
so the previous estimate actually bounds the product of the two products of
the first kind (the one for Y1 and the one for Y2).

We now pass to the second product in (3.26).

Lemma 3.8. The second product in the last line of (3.26) can be bounded as
follows

∏

(i,j)∈B2(Y1)

∣
∣
∣
∣

−hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

∣
∣
∣
∣ ≤
(

1 +
|α1 − α2|
C12(�α)

)|Y1|
,

(3.28)

where

C12(�α) = min
n∈Z

|α1 − α2 − n|.
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Proof. We have
∏

(i,j)∈B2(Y1)

−hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

=
∏

(i,j)∈B2(Y1)

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i − (α1 − α2)
α1 − α2 − hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

=
∏

(i,j)∈B2(Y1)

(

1 − α1 − α2

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

)

,

(3.29)

and so
∏

(i,j)∈B2(Y1)

∣
∣
∣
∣

−hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

∣
∣
∣
∣ ≤
(

1 +
|α1 − α2|
C12(�α)

)|Y1|
,

(3.30)

where

C12(�α) = min
n∈Z

|α1 − α2 − n|.
�

We finally bound the third product.

Lemma 3.9. The third product in the last line of (3.26) can be bounded as
follows

∏

(i,j)∈B2(Y1)

∣
∣
∣
∣

hY1((i, j))
−hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

∣
∣
∣
∣ ≤ 8|Y1|. (3.31)

Proof. See Appendix C. �

Remark 3.3. Referring to the proof in the appendix and considering the anal-
ogous product over the boxes in Y2, we would have to bound the product

∏

(i,j)∈B2(Y2)∩i th row ofY2

∣
∣
∣
∣

hY2((i, j))
hY2((i, j)) − [(Y ′

2)i − (Y ′
1)i]

∣
∣
∣
∣. (3.32)

But then, for a fixed i, we have either (Y ′
1)i − (Y ′

2)i = 0, (Y ′
1)i − (Y ′

2)i > 0 or
(Y ′

2)i − (Y ′
1)i > 0. If we are in the first case, both products over the boxes in

the ith row of Y1 and over the ith row of Y2 are bounded by 1. If we are in the
second case, the product over the boxes in the ith row of Y2 is bounded by 1,
and, if we are in the third case, the product over the boxes in the ith row of Y1

is bounded by 1. Therefore, for every i, only one product has to be considered
to give an upper bound. Hence, the previous bound, with |Y1| replaced by k,
is a bound for the product of the two products of the third kind (the one for
Y1 and the one for Y2).

We are now finally ready to prove Lemma 3.3.
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Proof of Lemma 3.3. Putting together (3.27), (3.28) and (3.31), and using the
remarks after the previous lemmas, we conclude that

∏

(i,j)∈Y1

∣
∣
∣
∣

hY1((i, j))
α1 − α2 − hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

∣
∣
∣
∣

×
∏

(i,j)∈Y2

∣
∣
∣
∣

hY2((i, j))
α1 − α2 + hY2((i, j)) − (Y ′

2)i + (Y ′
1)i

∣
∣
∣
∣

≤
(

16
min{1, |α1 − α2|}

(

1 +
|α1 − α2|
C12(�α)

))k

.

(3.33)

To conclude the proof of lemma 3.3, it only remains to include the bounds of
the products of the form analyzed in lemma 3.2, both for Y1 and Y2. Since the
inequality

∏

(i,j)∈Yl

zl + i − j

hYl
((i, j))

≤ f(zl, k) (3.34)

holds for both l = 1, 2, we can write the following estimate
∏

(i,j)∈Y1

∣
∣
∣
∣

z1 + i − j

α1 − α2 − hY1((i, j)) + (Y ′
1)i − (Y ′

2)i

∣
∣
∣
∣

×
∏

(i,j)∈Y2

∣
∣
∣
∣

z2 + i − j

α1 − α2 + hY2((i, j)) − (Y ′
2)i + (Y ′

1)i

∣
∣
∣
∣

≤
(

16
min{1, |α1 − α2|}

(

1 +
|α1 − α2|
C12(�α)

))k

f(z1, k)f(z2, k).

(3.35)

�
3.2. Proof of Theorem 3.1

In the Nf = 2N case, using Lemma 3.2 and Lemma 3.3, we can arrange the
products in the numerator and denominator of the coefficients of the instanton
partition function (3.2) to conclude that

|ZU(N) Nf =2N
inst | ≤

∑

k≥1

|q|kpN (k)

⎡

⎣
N∏

i=1

Nf =2N∏

r=1

f(αi + μr, k)

⎤

⎦

∏

{(i,j)∈{1,...,N}2 | i�=j}
gij(�α)k, (3.36)

where pN (k) denotes the number of N -coloured partitions of the integer k. If
p(k) denotes the number of partitions of k, we can bound pN (k) with p(k)N+1,
since the former can be seen as the number of partitions of N integers whose
sum equals k, and so any of these N numbers has to be smaller than k. More-
over, we can use the following estimate, known as Ramanujan–Hardy formula
[37]:
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Proposition 3.10. If p(k) is the number of partitions of the natural number k,
the following holds:

p(k) ∼ 1
4
√

3k
exp

(

π

√
2k

3

)

, for k → ∞. (3.37)

Therefore, applying the root test to (3.36), and using that

lim
k→∞

p(k)1/k = lim
k→∞

(
1

4
√

3k
exp(π

√
2k

3
)

)1/k

= 1

lim
k→∞

(f(αi + μr, k))1/k = 1 ∀i = 1, . . . , N ∀r = 1, . . . , Nf ,

(3.38)

we conclude that the radius of convergence of the right-hand side is given by

∏

{(i,j)∈{1,...,N}2 | i�=j}
[gij(�α)]−1 =

∏

{(i,j)∈{1,...,N}2 | i�=j}
[

16
min{1, |αi − αj |}

(

1 +
|αi − αj |
Cij(�α)

)]−1

.

(3.39)

Therefore, we can conclude the first part of the theorem, that is the fact that
the instanton partition function of the U(N) gauge theory with Nf = 2N
fundamental multiplets with the Omega background ε1 + ε2 = 0 is absolutely
convergent at least for

|q| <
∏

{(i,j)∈{1,...,N}2 | i�=j}

[
16

min{1, |αi − αj |}
(

1 +
|αi − αj |
Cij(�α)

)]−1

. (3.40)

The case Nf < 2N can now be easily proved by noticing that the decoupling
limit of fundamental hypermultiplets is achieved with the double scaling limit
in which q → 0 and one of the masses, say m1, goes to infinity m1 → ∞, in
such a way that Λ̃ = qm1 remains finite. Indeed, from the expression (A.10),
one can see that in this limit the function becomes

Z
U(N), Nf

inst =
∑

k≥0

(qm1)
k
∑

|�Y |=k

N∏

i,j=1

∏

(m,n)∈Yi

1
ai − aj − ε1LYj

((m,n)) + ε2 (AYi
((m,n)) + 1)

∏

(m,n)∈Yj

1
ai − aj + ε1 (LYi

((m,n)) + 1) − ε2AYj
((m,n))
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N∏

i=1

∏

(m,n)∈Yi

[

1 +
ai + ε1(m − 1) + ε2(n − 1)

m1

]

N∏

i=1

∏

(m,n)∈Yi

Nf∏

r=2

[ai + ε1(m − 1) + ε2(n − 1) + mr] →

∑

k≥0

Λ̃k
∑

|�Y |=k

N∏

i,j=1

∏

(m,n)∈Yi

1
ai − aj − ε1LYj

((m,n)) + ε2 (AYi
((m,n)) + 1)

∏

(m,n)∈Yj

1
ai − aj + ε1 (LYi

((m,n)) + 1) − ε2AYj
((m,n))

N∏

i=1

∏

(m,n)∈Yi

Nf∏

r=2

[ai + ε1(m − 1) + ε2(n − 1) + mr] ,

(3.41)

which is the instanton partition function with one fundamental hypermultiplet
less. The radius of convergence of this latter series in Λ̃ can be obtained by
multiplying (3.40) by m1 and letting m1 → ∞, which means that the series
is absolutely convergent for any Λ̃. The proof for lower Nf is obtained by
repeated application of the above argument. �

4. On the Convergence of Painlevé τ -Functions

The Kiev formula conjectured in [12] states that Painlevé τ -functions can be
expressed as discrete Fourier transforms of suitable full Nekrasov partition
functions. This is the core issue of Painlevé/gauge theory correspondence [7].
Concretely, according to the Kiev formula, the PVI τ -function is related to the
Nekrasov function as follows

τVI(q;α, s) = q−θ2
0−θ2

t (1 − q)θ1θt

∑

n∈Z

snq(α+n)2Z
U(2) Nf =4
1loop

(α + n)ZU(2) Nf =4
inst (q, α + n), (4.1)

where

Z
U(2) Nf =4
1loop (α)

=

∏
σ,σ′=± G(1 + θt + σθ0 + σ′(α + n))G(1 + θ1 + σθ∞ + σ′(α + n))

G(1 + 2(α + n))G(1 − 2(α + n))
(4.2)

is the one-loop contribution to the full partition function written in terms
of Barnes G functions, and the re-scaled masses (3.1) are related to the θ-
parameters by

μ1 = θ1 − θ∞, μ2 = θ0 − θt, μ3 = θ0 + θt, μ4 = θ1 + θ∞.



P. Arnaudo et al. Ann. Henri Poincaré

The τ -function (4.1) is the one associated to the isomonodromic deformation
problem for the Riemann sphere with four regular singularities, with θs pa-
rameterizing the associated monodromies.

In order to study the convergence properties of the series (4.1), we can
make use of the results obtained in the previous Sect. 3 together with the
asymptotic behavior of the one-loop coefficients. The latter can be determined
from the reflection formula:

G(1 − z) =
G(1 + z)

(2π)z
exp
(∫ z

0

πz′ cot(πz′)dz′
)

(4.3)

and the asymptotic formula for z → ∞ [38]

log(G(1 + a + z)) =
z + a

2
log(2π) + ζ ′(−1) − 3z2

4
− az

+
(

z2

2
− 1

12
+

a2

2
+ az

)

log(z) + O
(

1
z

)

, (4.4)

which holds for all a ∈ C and where ζ ′(−1) is a known ζ-constant. From this,
we have that, for a ∈ C and Z � n → ∞,

log(G(1 + a + n)) =
n2

2
log(n) − 3n2

4
+ O(n log(n)). (4.5)

To evaluate the n → ∞ limit of the other set of Barnes functions, we note that
the integral in the reflection formula is given by
∫ z

0

πz′ cot(πz′)dz′ =
πz log(1 − exp(2πiz)) − i

2

(
π2z2 + Li2(exp(2πiz))

)

π
.

(4.6)

Since the asymptotic of the above integral is given by − i
2πn2 +O(n), we have

that, for every b ∈ C and for Z � n → ∞,

log(G(1 − b − n)) =
n2

2
log(n) − 3n2

4
− i

2
πn2 + O(n log(n)). (4.7)

Therefore, neglecting terms of order n log(n), which are subleading, the one-
loop coefficient in the limit Z � n → ∞ reads

∏
σ,σ′=± G(1 + θt + σθ0 + σ′(α + n))G(1 + θ1 + σθ∞ + σ′(α + n))

G(1 + 2(α + n))G(1 − 2(α + n))

→
(
n

n2
2 exp(− 3n2

4 )
)8 (

exp(− iπn2

2 )
)4

(
(2n)

(2n)2
2 exp(− 3(2n)2

4 )
)2 (

exp(− iπ(2n)2

2 )
) =

1
24n2 .

(4.8)

This immediately implies that the convergence radius of the τVI-function se-
ries is driven by the one of the Zinst coefficient, for which we derived the lower
bound (3.40) in Theorem 3.1. Actually, as already mentioned in the Intro-
duction, one expects from modularity that the true radius of convergence is
|q| < 1.
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The τ -functions for Painlevé V and IIIi i = 1, 2, 3 equations are obtained
by implementing in the gauge theory the suitable coalescence limits. These
correspond to the holomorphic decoupling of fundamental masses, already dis-
cussed in the previous Sect. 3 for the instanton sector. As far as the one-loop
coefficient is concerned, the holomorphic decoupling lowers the number of fac-
tors in the numerator of (4.2), which implies even stronger convergence prop-
erties driven by the denominator, as one can see from (4.8). We therefore
conclude that the corresponding Painlevé τ -functions have an infinite radius
of convergence. Actually, this was already shown to hold for the PIII3 equation
in [13].

The above, together with Theorem 3.1, provide a proof of the following

Theorem 4.1. Let 2α /∈ Z. The τ -function for PVI equation has at least a finite
radius of absolute and uniform convergence, while those of PV and PIIIi i =
1, 2, 3 equations have an infinite radius of absolute and uniform convergence.

Let us also mention that an extension of Kiev formula for the isomon-
odromic deformation problem on the torus was introduced in [39,40]. For the
one-punctured torus, the corresponding equations are given by Manin’s elliptic
form of PVI equation with specific values of the monodromy parameters, and
the related τ -function is obtained in terms of the partition function of the U(2)
N = 2∗ theory

τU(2) N=2∗
(q;α, s) = ZD/Ztwist, (4.9)

where

Ztwist = qα2
η(q)−2θ1(ατ + ρ + Q(τ))θ1(ατ + ρ − Q(τ))

is given in terms of the solution of the corresponding Painlevé equation Q(τ)
and

ZD =
∑

n∈Z

snq(α+n)2Z
U(2) N=2∗

1loop (α + n)ZU(2) N=2∗

inst (q, α + n) (4.10)

with s = e2πiρ and q = e2πiτ . The one-loop coefficient is given by

Z
U(2) N=2∗

1loop =
G(1 − μ − 2(α + n))G(1 − μ + 2(α + n))

G(1 + 2(α + n))G(1 − 2(α + n))
, (4.11)

where μ = m/ε is the re-scaled adjoint mass.

Theorem 4.2. Let 2α /∈ Z. The τ -function (4.9) has at least a finite radius of
absolute and uniform convergence.

Proof. With the same asymptotic formulas used before, see Appendix 4, we
have that, as n → ∞,

G(1 − μ − 2(α + n))G(1 − μ + 2(α + n))
G(1 + 2(α + n))G(1 − 2(α + n))

∝ (2n)μ2
(

sin(π(μ + 2α))
sin(2πα)

)2n

(4.12)

up to 1/n corrections, where the proportionality constant is independent on
n. This does not get worst the convergence radius of the instanton sector and
the proof follows from Theorem 2.1. �
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A Conventions and Notations

In this appendix, we fix the conventions that we use in the main part of the
work. We will mostly follow the notations of [5,41].

Definition A.1. A partition of a positive integer k is a finite non-increasing
sequence of positive integers Y1 ≥ · · · ≥ Yr > 0 such that

∑r
i=1 Yi = k.

We denote the number of partitions of k as p(k). The Yis that appear in
a given partition are called parts of the partition.

Definition A.2. We say that a partition is N -coloured if each part of the par-
tition can have N possible colours.

We denote the number of N -coloured partitions of k as pN (k).
We introduce some important functions related to the partitions of inte-

gers. Let τ be a complex number with Imτ > 0, and let q = e2πiτ .

Definition A.3. The Dedekind η function is defined as

η(q) = q
1
24

∞∏

n=1

(1 − qn).

The requests on τ and q are justified by the following:

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition A.4. The infinite product
∞∏

n=1

(1 − qn)

converges absolutely if |q| < 1.

Definition A.5. The Euler function is defined as

φ(q) =
∞∏

n=1

(1 − qn).

Note that the Euler function coincides with the Dedekind η function up
to a factor q

1
24 .

Proposition A.6. For every N ≥ 1, the generating function for pN (k) is given
by

∞∑

k=0

pN (k)qk =
∞∏

j=1

1
(1 − qj)N

. (A.1)

In the text, we will always identify a partition of a natural number k with
a Young diagram Y with k boxes, arranged in left-justified rows, with the row
lengths in non-increasing order, such that the parts Y1 ≥ Y2 ≥ · · · ≥ Yr > 0
of Y (such that Y1 + · · · + Yr = k) denote the heights of the columns of the
diagram. Moreover, we will denote with Y ′

1 ≥ Y ′
2 ≥ · · · ≥ Y ′

s > 0 the lengths
of the rows of Y . We will denote with Y the set of all Young diagrams.

If every box s is labeled with a pair of indices (i, j), with 1 ≤ i ≤ Yj and
1 ≤ j ≤ Y ′

i , that denotes its position in the diagram, we define the arm length
and the leg length of s as

AY (s) = Yj − i,

LY (s) = Y ′
i − j,

(A.2)

respectively.
Moreover, we will use the following

Definition A.6. If Y is a Young diagram, and s = (i, j) is one of its box, we
call hook of s the set of boxes with indices (a, b) such that a = i and b ≥ j or
a ≥ i and b = j.

We denote with hY ((i, j)) or hY (s) the number of boxes in the hook of s
in Y . It is easy to see that, if s ∈ Y , then

hY (s) = AY (s) + LY (s) + 1. (A.3)

For a box s = (i, j), we define the following quantities, crucial for the
definitions of the instanton partition functions:

E(a, Y1, Y2, s) = a − ε1LY2(s) + ε2(AY1(s) + 1)

ϕ (a, s = (i, j)) = a + ε1(i − 1) + ε2(j − 1).
(A.4)
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We are now ready to define the useful contributions for the U(N) instanton
partition functions [41,42]. We begin with the contribution of a bifundamental
hypermultiplet of mass m:

zbifund(�a, �Y ;�b, �W ;m) =
N∏

i,j=1

∏

s∈Yi

(E(ai − bj , Yi,Wj , s) − m)

∏

t∈Wj

(ε1 + ε2 − E(bj − ai,Wj , Yi, t) − m),
(A.5)

where with �Y we denote an N -tuple �Y = (Y1, . . . , YN ) of Young diagrams, and
the same for �W , while �a = (a1, . . . , aN ) and �b = (b1, . . . , bN ) denote the vevs
of the scalar component of the vector multiplets on the Coulomb branch.

From this, the contributions of an adjoint hypermultiplet of mass m and
of a vector multiplet can be written as

zadj(�a, �Y ,m) = zbifund(�a, �Y ,�a, �Y ,m),

zvect(�a, �Y ) = [zadj(�a, �Y , 0)]−1.
(A.6)

Finally, the contributions for fundamental and antifundamental hyper-
multiplets read as follows:

zfund(�a, �Y ,m) =
2∏

i=1

∏

s∈Yi

(ϕ(ai, s) − m + ε1 + ε2),

zantifund(�a, �Y ,m) = zfund(�a, �Y , ε1 + ε2 − m).

(A.7)

We finally recall the expressions of the instanton partition functions an-
alyzed in the text.

The instanton partition function of the N = 2∗ gauge theory with gauge
group U(N) can be written as

Z
N=2∗,U(N)
inst =

∑

k≥0

qk
∑

|�Y |=k

N∏

i,j=1

∏

s∈Yi

ai − aj − ε1LYj
(s) + ε2(AYi

(s) + 1) − m

ai − aj − ε1LYj
(s) + ε2(AYi

(s) + 1)

∏

t∈Yj

−aj + ai + ε1(LYi
(t) + 1) − ε2AYj

(t) − m

−aj + ai + ε1(LYi
(t) + 1) − ε2AYj

(t)
,

(A.8)

where the sum over |�Y | = k means that we are summing over N -tuples of
Young diagrams (Y1, . . . , YN ) such that the sum of the number of the boxes in
all the diagram is equal to k.
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The instanton partition function of the N = 2 super Yang–Mills gauge
theory with gauge group U(N) can be written as

Z
N=2,U(N)
inst =

∑

k≥0

qk
∑

|�Y |=k

N∏

i,j=1

∏

s∈Yi

1
ai − aj − ε1LYj

(s) + ε2(AYi
(s) + 1)

∏

t∈Yj

1
−aj + ai + ε1(LYi

(t) + 1) − ε2AYj
(s)

.

(A.9)

For what concerns the instanton partition function of the U(N) gauge
theory with Nf (anti)fundamental hypermultiplets, our analysis does not de-
pend on whether the matter is in the fundamental or antifundamental rep-
resentation, and in order to simplify the notation we will restrict to consider
only the antifundamental matter. Hence, we can write

Z
N=2 U(N), Nf

inst =
∑

k≥0

qk
∑

|�Y |=k

N∏

i,j=1

∏

(m,n)∈Yi

1
ai − aj − ε1LYj

((m,n)) + ε2 (AYi
((m,n)) + 1)

∏

(m,n)∈Yj

1
ai − aj + ε1 (LYi

((m,n)) + 1) − ε2AYj
((m,n))

N∏

i=1

∏

(m,n)∈Yi

Nf∏

r=1

[ai + ε1(m − 1) + ε2(n − 1) + mr] ,

(A.10)

where mr, r = 1, . . . , Nf , are the masses of the antifundamental hypermulti-
plets.

B Proof of Lemma 3.7

We know that the boxes in B1(Y1) satisfy hY1((i, j)) = (Y ′
1)i − (Y ′

2)i. This
can happen at most for one box in each row of Y1, since the left-hand side
strictly decreases moving on the right on a fixed row of the diagram, while
the right-hand side remains constant. Therefore, we can bound the product as
follows:

∏

(i,j)∈B1(Y1)

∣
∣
∣
∣
(Y ′

1)i − (Y ′
2)i

α1 − α2

∣
∣
∣
∣ =

∏
(i,j)∈B1(Y1)

|(Y ′
1)i − (Y ′

2)i|
|α1 − α2||B1(Y1)|

≤ max{1, |(Y ′
1)1 − (Y ′

2)1|} · · · max{1, |(Y ′
1)(Y1)1 − (Y ′

2)(Y1)1 |}
|α1 − α2||B1(Y1)| ,

(B.1)
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where we bounded the product in the numerator with the product of all the
differences between rows’ lengths ((Y1)1 is the height of the first column of
Y1, that is the number of rows of Y1), and we modified the factors taking the
maximum with 1, because it could happen that, in a fixed row i of Y1, there
is not a box which is in B1(Y1) and (Y ′

1)i = (Y ′
2)i holds, and we want to avoid

that the right-hand side vanishes for this reason.
From the last term in (B.1), we can bound the numerator using the

geometric-arithmetic mean inequality:

max{1, |(Y ′
1)1 − (Y ′

2)1|} · · · max{1, |(Y ′
1)(Y1)1 − (Y ′

2)(Y1)1 |}

≤
(

max{1, |(Y ′
1)1 − (Y ′

2)1|} + · · · + max{1, |(Y ′
1)(Y1)1 − (Y ′

2)(Y1)1 |}
(Y1)1

)(Y1)1

≤
(

k

(Y1)1

)(Y1)1

≤
(

k

(Y1)1

)

≤ 2k,

(B.2)

where we used that for the binomial coefficient, for every 1 ≤ k ≤ n, the
following bounds always hold

(n

k

)k

≤
(

n

k

)

<
(n · e

k

)k

.

For the denominator, we have to distinguish the cases in which |α1 − α2| ≥ 1
and |α1 − α2| < 1. In the first case, we simply bound the fraction with the
bound of the numerator; in the second case, we have that, since (Y1)1 ≤ k,
|α1 − α2||B1(Y1)| ≥ |α1 − α2|k. Therefore,

∏

(i,j)∈B1(Y1)

∣
∣
∣
∣
(Y ′

1)i − (Y ′
2)i

α1 − α2

∣
∣
∣
∣ ≤

2k

min{1, |α1 − α2|}k
. (B.3)

C Proof of Lemma 3.9

Let us first find a bound on the product over the boxes in B2(Y1) in one fixed
row of Y1. After that, we will multiply the bounds on all the rows of Y1. We
can write

∏

(i,j)∈B2(Y1)∩i th row of Y1

∣
∣
∣
∣

hY1((i, j))
−hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

∣
∣
∣
∣

=
∏

(i,j)∈B2(Y1)∩i th row of Y1

∣
∣
∣
∣

hY1((i, j))
hY1((i, j)) − [(Y ′

1)i − (Y ′
2)i]

∣
∣
∣
∣.

(C.1)

Note that the denominator is different from 0 for all the factors, since we are
only multiplying over the boxes in B2(Y1).

We will suppose (Y ′
1)i > (Y ′

2)i for every i, since otherwise the previous
product would be clearly bounded by 1 in the ith row.
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Then, for a given row i, the product over the boxes in the ith row of Y1

can be splitted in two parts: the product over the boxes for which hY1((i, j))−
[(Y ′

1)i − (Y ′
2)i] is positive, and the product over the boxes for which the same

quantity is negative. Note that, since we are assuming (Y ′
1)i − (Y ′

2)i > 0,
the latter product is present if and only if in the ith row there is a box, let us
denote it with (i, j∗), such that hY1((i, j

∗)) = [(Y ′
1)i−(Y ′

2)i], since the quantity
hY1((i, j))− [(Y ′

1)i − (Y ′
2)i] is strictly decreasing moving to the right on a fixed

row.
Therefore, we first consider the product over the boxes for which that

quantity is positive (that correspond to the boxes at the left of (i, j∗) if this
box is present in the ith row). We can rewrite the factors of this first part of
the product as

hY1((i, j))
hY1((i, j)) − [(Y ′

1)i − (Y ′
2)i]

=
[(Y ′

1)i − (Y ′
2)i] + (Y ′

2)i − j + AY1((i, j)) + 1
(Y ′

2)i − j + AY1((i, j)) + 1
,

(C.2)

which is of the form
n∏

j=1

a + bj

bj
,

with bj ∈ N and bj+1 < bj for all j, and a > 0 constant (since moving to the
right AY1((i, j)) decreases). But then a product of this form is bounded by

a + 1
1

· a + 2
2

· · · a + n

n
. (C.3)

Indeed, if a > 0 and b > c > 0, it is always true that

a + b

b
≤ a + c

c
,

since, under those hypothesis,

a + b

b
≤ a + c

c
⇐⇒ (a + b)c ≤ (a + c)b ⇐⇒ ac ≤ ab ⇐⇒ c ≤ b.

But then, bn ≥ 1 (since it is an integer number and for hypothesis it is positive),
and, since bj−1 > bj for all j = 2, . . . , n, we have that bj ≥ n − j + 1 for all
j = 1, . . . n − 1; so the previous bound holds.

In our case, n is at most j∗ − 1, so we can bound this first part of the
product with

j∗−1∏

r=1

[(Y ′
1)i − (Y ′

2)i] + r

r
=
(

(Y ′
1)i − (Y ′

2)i + j∗ − 1
j∗ − 1

)

. (C.4)

We can bound the second part of the product (if there are boxes on the
right of (i, j∗)) as follows. First, from hY1((i, j

∗)) = (Y ′
1)i − (Y ′

2)i, it follows
that

AY1((i, j
∗)) + (Y ′

2)i + 1 = j∗.
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Then, we rewrite
hY1((i, j

∗ + r)) = (Y ′
1 )i − j∗ − r + AY1((i, j

∗ + r)) + 1

= (Y ′
1 )i − (Y ′

2 )i + (Y ′
2 )i − j∗ − r + AY1((i, j

∗))

− [AY1((i, j
∗)) − AY1((i, j

∗ + r))] + 1

= (Y ′
1 )i − (Y ′

2 )i + (Y ′
2 )i − [AY1((i, j

∗)) + (Y ′
2 )i + 1] − r + AY1((i, j

∗))

− [AY1((i, j
∗)) − AY1((i, j

∗ + r))] + 1

= (Y ′
1 )i − (Y ′

2 )i − r − [AY1((i, j
∗)) − AY1((i, j

∗ + r))],

(C.5)

for every 0 < r ≤ (Y ′
1)i − j∗. Moreover,

[(Y ′
1)i − (Y ′

2)i] − hY1((i, j
∗ + r)) = r + [AY1((i, j

∗)) − AY1((i, j
∗ + r))].

(C.6)

Since the quantity [AY1((i, j
∗)) − AY1((i, j

∗ + r))] is positive, we have that the
product over the boxes on the right of (i, j∗) is bounded by

∏

j=j∗+r

(Y ′
1)i − (Y ′

2)i − r

r
=

(Y ′
1 )i−j∗
∏

r=1

(Y ′
1)i − (Y ′

2)i − r

r
=
(

(Y ′
1)i − (Y ′

2)i − 1
(Y ′

1)i − j∗

)

.

(C.7)

Putting together (C.4) and (C.7), the product over the boxes of the ith row
of Y1 is bounded by

(
(Y ′

1)i − (Y ′
2)i + j∗ − 1

j∗ − 1

)(
(Y ′

1)i − (Y ′
2)i − 1

(Y ′
1)i − j∗

)

. (C.8)

Since j∗ ≤ (Y ′
1)i and j∗ > (Y ′

2)i, we have that
(

(Y ′
1)i − (Y ′

2)i + j∗ − 1
j∗ − 1

)

≤
(

2(Y ′
1)i − (Y ′

2)i − 1
j∗ − 1

)

≤ 22(Y ′
1 )i−(Y ′

2 )i ,

(
(Y ′

1)i − (Y ′
2)i − 1

(Y ′
1)i − j∗

)

≤ 2(Y ′
1 )i−(Y ′

2 )i .

(C.9)

We conclude that
(

(Y ′
1)i − (Y ′

2)i + j∗ − 1
j∗ − 1

)(
(Y ′

1)i − (Y ′
2)i − 1

(Y ′
1)i − j∗

)

≤ 23(Y ′
1 )i . (C.10)

Considering the product of this bound for all the rows of Y1, we can conclude
∏

(i,j)∈B2(Y1)

∣
∣
∣
∣

hY1((i, j))
−hY1((i, j)) + (Y ′

1)i − (Y ′
2)i

∣
∣
∣
∣ ≤ 8|Y1|. (C.11)

Useful Asymptotics

Here we collect some useful asymptotic formulae used in Sect. 4.
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log(G(1 − μ + 2(α + n)))

=
2n + 2α − μ

2
log(2π) − log(A) +

1

12
− 3(2n)2

4
− (2α − μ)(2n)

+

(
(2n)2

2
− 1

12
+

(2α − μ)2

2
+ (2α − μ)(2n)

)

log(2n) + O
(
1

n

)

;

log(G(1 − μ − 2(α + n)))

= log(G(1 + μ + 2(α + n))) − (μ + 2(α + n)) log(2π)

+

∫ μ+2(α+n)

0
πz′ cot(πz′)dz′

=
2n + 2α + μ

2
log(2π) − log(A) +

1

12
− 3(2n)2

4
− (2α + μ)(2n)

+

(
(2n)2

2
− 1

12
+

(2α + μ)2

2
+ (2α + μ)(2n)

)

log(2n) − (μ + 2(a + n)) log(2π)

+ (μ + 2(α + n)) log(1 − exp(2πi(μ + 2α)))

− i (π2(μ + 2(α + n))2 + Li2(exp(2πi(μ + 2α))))

2π
+ O

(
1

n

)

;

log(G(1 + 2(α + n)))

=
2n + 2α

2
log(2π) − log(A) +

1

12
− 3(2n)2

4
− (2α)(2n)

+

(
(2n)2

2
− 1

12
+

(2α)2

2
+ (2α)(2n)

)

log(2n) + O
(
1

n

)

;

log(G(1 − 2(α + n)))

= log(G(1 + 2(α + n))) − (2(α + n)) log(2π) +

∫ 2(α+n)

0
πz′ cot(πz′)dz′

=
2n + 2α

2
log(2π) − log(A) +

1

12
− 3(2n)2

4
− (2α)(2n)

+

(
(2n)2

2
− 1

12
+

(2α)2

2
+ (2α)(2n)

)

log(2n) − (2(α + n)) log(2π)

+ (2(α + n)) log(1 − exp(4πiα))

− i (π2(2(α + n))2 + Li2(exp(4πiα)))

2π
+ O

(
1

n

)

.

(D.1)

log(G(1 − μ − 2(α + n))) + log(G(1 − μ + 2(α + n)))

− log(G(1 + 2(α + n))) − log(G(1 − 2(α + n)))

= 2n log(
1 − exp(2πi(μ + 2α))

1 − exp(4πiα)
) − 2πiμn + μ2 log(2n) − μ log(2π)

+2α log(
1 − exp(2πi(μ + 2α))

1 − exp(4πiα)
)

+μ log(1 − exp(2πi(μ + 2α))) − Li2(exp(2πi(μ + 2α))) − Li2(exp(4πiα))

2π

− iπ

2
(μ2 + 4αμ) + O

(
1

n

)

. (D.2)
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Therefore, up to 1/n corrections,

G(1 − μ − 2(α + n))G(1 − μ + 2(α + n))
G(1 + 2(α + n))G(1 − 2(α + n))

∝ (2n)μ2
(

sin(π(μ + 2α))
sin(2πα)

)2n

(D.3)

where the proportionality constant is independent on n.
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