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Chapter 1

Introduction

The primary justification for studying manybody physics is succinctly captured in
the phrase ’More is different,’ which is the title of a 1972 paper by Phil Anderson[1].
Anderson argued that the collective behavior of a manybody system exhibits a funda-
mentally distinct emergent behavior that cannot be built from the mere summation
of its individual components. Over the past 50 years since the publication of this
work, significant achievements have been made in addressing inquiries related to the
equilibrium behavior of both classical and quantum many-body systems [2]. How-
ever, a general understanding of the nonequilibrium dynamics of many-body systems,
particularly in the quantum regime, remains largely unclear[3, 4]. Historical investi-
gations of quantum manybody physics have relied on effective models to describe the
behavior of experimentally observed complex condensed matter systems. However,
in the past two decades, significant advancements have been made in the realm of
synthetic quantum simulators across various Atomic, Molecular, and Optical (AMO)
platforms. These simulators enable the direct realization of effective models in a near
isolated environment thus allowing the simulation of unitary dynamics of a closed
quantum system.

The theoretical interest in nonequilibrium manybody dynamics has been largely
driven by the success of these AMO platforms in simulating the physics of interact-
ing manybody systems. One notable pioneering experiment was Quantum Newton’s
cradle, which studied the nonequilibrium dynamics of trapped one dimensional Bose
gases composed of 40 to 250 87Rb atoms [5]. This experiment revealed that the system
failed to reach thermal equilibrium, even after thousands of collisions. Subsequent
advancements have since been made in diverse platforms such as trapped ions [6],
quantum gases in optical lattices [7, 8], Rydberg atoms [9], dipolar quantum gases
[10], and polar molecules [11]. These platforms offer precise control over the Hamil-
tonian parameters and accurate measurement of the order parameters, in addition
to facilitating various nonequilibrium protocols, including sudden quenches of global
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CHAPTER 1. INTRODUCTION 3

and local parameters, adiabatic variations of parameters (annealing), and periodic
driving fields. The simulation of effective manybody models addresses fundamental
questions in nonequilibrium dynamics, such as the thermalization of closed quantum
systems perturbed out of equilibrium, the relevant time scales, the existence of dy-
namical phases, and the corresponding universality classes for dynamical criticality.
Concurrently, the development of controllable and noise-free quantum simulators is
pivotal for advancing future quantum technologies.

In this thesis, we investigate the nonequilibrium quench dynamics of a one dimen-
sional spin model featuring a two-body spin-spin interaction decaying as a power-law
of spatial separation ∼ 1/rα. The inherent long range interaction allows for sta-
ble long range correlated states that are robust against thermal fluctuations. The
interaction strength α is highly tunable in current AMO platforms which makes it
a paradigmatic model to study nonequilibrium dynamics. Additional insights into
global quantum quench and relaxation dynamics are provided in Section 1.1 of this
chapter. Section 1.2 of this chapter provides further details of the specific model and
a succinct review of its properties.

Rest of the thesis is organized as follows: Chapter 2 provides an in-depth explo-
ration of tensor network formalism, with a specific focus on matrix product states
(MPS) and their significance in simulating one-dimensional many-body systems. Ad-
ditionally, it discusses Density Matrix Renormalization Group (DMRG) and Time
Dependent Variational Principle (TDVP) algorithms. Chapter 3 explores the relax-
ation dynamics of the probability distribution function (PDF) of subsystem magne-
tization in the long range Ising model (LRIM) following a global quantum quench.
The content in this chapter is adapted from ([12]). Chapter 4 builds on Chapter 3
and examines the thermalization of LRIM in various dynamical regimes based on the
relaxation dynamics of the PDF. The content in this chapter is adapted from ([13]).
Finally Chapter 5 investigates dynamical deconfinement transition with thermally
tuned density of excitations. This chapter is adapted from [14].

1.1 Quantum quench and thermalization

A commonly employed protocol for driving a system away from equilibrium is
global quantum quench. A quantum quench involves the sudden alteration of a pa-
rameter in the Hamiltonian, followed by the subsequent unitary time evolution of the
system with the new Hamiltonian. If this change encompasses the entire system, it is
called a global quench. Conversely, modifying the parameters associated solely with
local degrees of freedom constitutes a local quench. Throughout this thesis, we have
exclusively employed the global quench protocol. Consider a system described by
Hamiltonian Ĥ(h), where h is a tunable parameter. We initialize the system in the
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4 1.1. QUANTUM QUENCH AND THERMALIZATION

ground state of Hamiltonian Ĥ(hi). At time t = 0, the Hamiltonian changes abruptly
from Ĥ(hi) to Ĥ(hf ) and unitarily evolves the initial state with the new Hamiltonian,
which is generally not an eigenstate of the system. The temporal evolution of the
state for t > 0 is governed by the Schrödinger equation,

|ψt⟩ = e−itĤ(hf ) |ψi⟩ . (1.1)

The unitary evolution conserves the total energy of the system at all t > 0 and
the post quench energy density is larger than the ground state energy density of the
post-quench Hamiltonian,

lim
N→∞

1

N
⟨ψi|Ĥ|ψi⟩ = lim

N→∞

1

N
⟨ψt|Ĥ|ψt⟩ > lim

N→∞

Efinal

N
, (1.2)

where Efinal is the ground state energy of the post-quench Hamiltonian. Owing
to the extensive energy above the ground state induced by the quench, the system
remains in a region of the Hilbert space, which is macroscopically distinct from the
ground state. This significant departure is the primary driver of the nontrivial dynam-
ics observed in the quantum system post-quench. It is noteworthy that the initial
state need not be a pure state; rather, we can commence the evolution from any
generic mixed state ρ̂i [15]. The subsequent behavior of the system following the
quench is assessed by computing the expectation value of relevant order parameter,

Tr[Ôρ̂t] = Tr[Ôe−itĤ ρ̂ie
−itĤ ] (1.3a)

=
∑
m,n

Cm,n⟨m|Ô|n⟩e−i[En−Em]t, (1.3b)

where ρ̂t = e−itĤ ρ̂ie
−itĤ and ρ̂i =

∑
m,nCm,n |m⟩ ⟨n| is the expansion of the initial

density matrix ρ̂i in the eigenbasis of final Hamiltonian. Intriguing physics stems from
the oscillatory factor in Equation 1.3, which gives rise to interference effects [16]. The
widespread use of the global quench protocol is attributed to its effectiveness in ex-
ploring various exotic nonequilibrium phenomena, such as dynamical quantum phase
transitions [17, 18, 19], many-body localization [20, 21, 22], dynamical confinement
[23], and others.

1.1.1 Local relaxation

A critical inquiry regarding quantum quench pertains to the destiny of isolated
systems at late times. The emergence of a late-time stationary state is not guar-
anteed after a quantum quench. For example, consider a quantum quench protocol
involving a pure state, as described in Equation 1.1, and an order parameter defined
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CHAPTER 1. INTRODUCTION 5

by the Hermitian operator Ôm, n = |m⟩ ⟨n| + |n⟩ ⟨m|, where |m⟩ and |n⟩ represent
the eigenkets of the post-quench Hamiltonian. The post-quench evolution of Ôm,n is
expressed as follows,

Tr[Ôm,nρt] = e−i[En−Em]t⟨ψi|m⟩⟨n|ψi⟩+ h.c. (1.4)

The expectation value of Ôm,n exhibits persistent oscillations with no indication of
a stationary state at later times. The absence of a stationary state can be attributed
to the non-local nature of the operator Ôm,n. Although the system as a whole may not
relax, local relaxation in spatial regions is evident [24, 25, 26, 27]. In lattice models,
a local operator acts on a finite number of lattice sites within a finite distance in the
thermodynamic limit. These include operators acting on single sites, multiple sites
separated by finite distances, or over a finite compact subsystem within the entire
system. Throughout this thesis, we focus on the local operators defined over finite
subsystems.

Figure 1.1: Partitioning a full system into two spatial Sections: a finite subsystem B
and its complement A. In thermodynamic limit the finite subsystem B can be thought
of as a system immersed withing a large bath A.

Consider a quantum system defined over N lattice sites divided into two disjoint
Sections: a finite subsystem B and its compliment A, as shown in figure 1.1. The
post-quench reduced density matrices corresponding to B and A are ρ̂Bt = TrA[ρ̂

A∪B
t ]

and ρ̂At = TrB[ρ̂
A∪B
t ] respectively. The system is said to relax locally if the following

limit exist,

lim
t→∞

lim
N→∞

ρ̂Bt = ρ̂B∞ (1.5)

for a finite subsystem B. Assuming local relaxation the stationary state ρ̂SS is
defined for the full system such that,

lim
N→∞

TrA[ρ̂
SS] = ρ̂B∞. (1.6)

ρ̂SS is time independent. It should be noted that this doesn’t imply ρ̂A∪Bt→∞ = ρ̂SS.
Finally, consider two density matrices ρ̂ and ρ̂′. The ensembles corresponding to

5



6 1.1. QUANTUM QUENCH AND THERMALIZATION

these two density matrices are called locally equivalent if for a finite subsystem B the
following equation holds true,

lim
N→∞

TrA[ρ̂] = lim
N→∞

TrA[ρ̂
′]. (1.7)

Local equivalence is denoted by ρ̂ =loc ρ̂
′. It should be noted that local equivalence

does not imply equality of ρ̂ and ρ̂′. The existence of a time-independent stationary
state that corresponds to a nonequilibrium quantum system remains a key area of
investigation.

1.1.2 Thermalization of closed quantum systems

The concept of thermalization in a quantum system stems from classical thermal-
ization. In classical thermalization, a perturbed closed system ergodically explores a
constant energy manifold, leading to the characterization of macroscopic quantities
through a microcanonical ensemble corresponding to the conserved energy [28]. In a
closed quantum system, where energy is the sole conserved quantity, thermalization
is defined by the presence of local equivalence between the stationary state and a
thermal ensemble that is dependent on the conserved energy. In our framework, this
equivalence is established with the canonical Gibbs ensemble (CGE),

ρ̂SS =loc ρ̂
CGE =

eβeffĤ

Tr[eβeffĤ ]
, (1.8)

where the parameter βeff is the effective inverse temperature that is fixed by the
initial energy density of the system,

lim
N→∞

1

N
Tr[ρ̂iĤ] = lim

N→∞

1

N
Tr[ρ̂CGEĤ]. (1.9)

Practically local equivalence mentioned in equation 1.8 implies that the expec-
tation value of a local operator Ôloc over the stationary state ρ̂SS is equal to the
expectation value defined over ρ̂CGE,

lim
N→∞

1

N
Tr[ρ̂SSÔloc] = lim

N→∞

1

N
Tr[ρ̂CGEÔloc]. (1.10)

An alternative perspective to understanding thermalization in a closed quantum
system arises from the equivalence between the canonical Gibbs ensemble and the
microcanonical ensemble in the thermodynamic limit. We commence with the time-
dependent expectation of a generic operator, as given by Equation 1.3: Tr[Ôρ̂t] =∑

m,nCm,n⟨m|Ô|n⟩e−i[En−Em]t. While this expectation value possesses a time inde-
pendent diagonal term, the off-diagonal term consists of oscillating phases that are
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CHAPTER 1. INTRODUCTION 7

dependent on the energy difference of the corresponding energy eigenstates. If we as-
sume non-degenerate energy spectrum, then in the long-time limit, each off-diagonal
contributes a random phase that gets cancelled out. Consequently, in the long time
limit the expectation value of a generic operator consists only of the diagonal elements,

lim
t→∞

Tr[Ôρ̂t] =
∑
m

Cm,m⟨m|Ô|m⟩. (1.11)

We can define an equivalent time-independent ensemble based on this argument
known as the diagonal ensemble[29, 30],

ρ̂diag =
∑
m

Cm,m|m⟩⟨m|. (1.12)

If the system equilibrates, the stationary state should necessarily be described
by a diagonal ensemble, that is, ρ̂SS = ρ̂diag. The corresponding stationary state
expectation value is given by equation 1.11. In thermodynamic limit the canonical
Gibbs ensemble defined in equation 1.8 is equivalent to a microcanonical ensemble,

ρ̂MC =
1

NE0,∆

∑
|Em−E0|<∆

|m⟩⟨m|, (1.13)

where E0 is the energy of the initial state, Em is the energy corresponding to
the energy eigenket |m⟩, ∆ is the sufficiently narrow energy shell [30], and NE0,∆

is the normalization term, which is the total number of eigenkets within the energy
shell 2∆. Thermalization in this perspective means the local equivalence of the di-
agonal ensemble and the microcanonical ensemble, ρ̂diag =loc ρ̂

MC, or at the level of
observables, ∑

m

Cm,m⟨m|Ô|m⟩ =
1

NE0,∆

∑
|Em−E0|<∆

⟨m|Ô|m⟩. (1.14)

The left-hand side explicitly depends on the information of the initial state through
coefficients Cm,m whereas the right-hand side depends only on a single parameter E0,
which may be the same for different initial states. This apparent incongruity was
independently addressed by J. M. Deutsch [29] and M. Srednicki [31] through the
Eigenstate Thermalization Hypothesis (ETH). According to ETH, for a local operator
Ôloc in a non-integrable system, the expectation value ⟨m|Ôloc|m⟩ is smooth and does
not fluctuate significantly between eigenkets that are close in energy. Consequently,
for any initial state with a narrow energy distribution (sharp distribution of Cm,m
vs. Em), Equation 1.14 holds. It is crucial to note that ETH is a hypothesis and
there is no general proof for it. Nevertheless, ETH has been verified for a family of

7



8 1.2. SPIN MODEL WITH LONG RANGE INTERACTION

non-integrable systems [32, 33, 30, 34, 35, 36, 37, 38]. Many-body localized systems
are special cases that do not satisfy ETH, even if they are non-integrable [39].

1.2 Spin model with long range interaction

The study of models with long range interactions is of significant interest owing
to the profound impact of the range of interactions between the constituents on the
phase diagram and critical behaviors of systems. long range interactions introduce
nonlocal behaviors, which lead to the emergence of several exotic phenomena that are
absent in their short range counterparts [40, 41]. Recent advances in experimental
capabilities for controlling and manipulating atomic, molecular, and optical (AMO)
systems have fueled interest in the physics of models featuring long range interac-
tions. Specifically, the incorporation of two-body long range interactions has become
feasible across various AMO platforms including Rydberg atoms, dipolar gases, polar
molecules, atoms in optical cavities and trapped ions [40, 41]. Beyond the fasci-
nating emergent physics, the study of long range interacting systems is crucial for
the development of future quantum technologies. These systems offer the potential
to overcome constraints on correlation spreading and lack long range order at finite
temperatures, as observed in local systems [4, 40].

While any generic interaction beyond the nearest-neighbor interaction can be
called long range, including finite-range interaction and exponentially decaying in-
teraction, here we consider the power-law decaying interaction, where the interaction
between two particles decays as the inverse power of the distance between them
∼ 1/rα. An interesting feature of the power-law decaying interaction is that the
effective interaction can be finely tuned with the parameter. This give rise to the
idea of effective dimension; there is a correspondence between the universal behav-
ior of long range interacting model with spatial dimension D and parameter α and
the locally interacting system with dimension Deff = 2(D + z)/(α − d), where z is
the dynamical critical exponents [41, 42]. Consequently, this allows us to gauge the
behavior of the system at higher spatial dimensions by studying the corresponding
long range system in one dimension. Furthermore, long range models exhibit diverse
universality behavior as a function of α: for α < 5

3
D the system exhibits a mean field

universality class; for 5
3
D < α < α∗, it exhibits unique long range critical behavior;

and for α > α∗ it exhibits a short range universality class (akin to α→∞) [42].
In this thesis we consider a spin one-half long range Ising model (LRIM) in one

dimension that is described by the hamiltonian,

Ĥ(J, α, h) = − 1

K(α)

N∑
i<j

|J |
|i− j|α

ŝxi ŝ
x
j − h

N∑
i=1

ŝzi (1.15)

8



CHAPTER 1. INTRODUCTION 9

where ŝµi , µ = x, y, z are the spin one-half matrices at site i. We consider open
boundary condition, that is relevant to existing experimental setups. For α ≤ 1,
the inverse power-law interaction series diverges with the lattice size (represented by
hatched region in Figure 1.3) and is normalized using the Kac normalization constant,

K(α) = 1

N − 1

N∑
i<j

1

|i− j|α
=

1

N − 1

N∑
n=1

N − n
nα

. (1.16)

This normalization ensures the intensivity of the energy density in the regime
α ≤ 1. LRIM has been experimentally realized in a system of trapped ions utilizing
a linear radio frequency Paul trap, providing exceptional tunability of the interaction
range, α [6]. Additionally, employing a single-shot spin detection method allows
for precise measurement of the individual state of each ion spin with an impressive
efficiency approaching 99 percent [45]. Figure 1.2 panel (a) shows linear chain of
51 40Ca+ ions trapped with linear Paul trap. Panel (b) shows the time evolution of

Figure 1.2: (a) A linear chain of 51 40Ca+ ions trapped with linear Paul trap. Picture
adapted from https://quantumoptics.at/en/. (b) Evolution of average magneti-
zation of 16 spin LRIM (dots) starting from a fully polarized symmetry broken phase
to three different post quench transverse fields (Note: B̃z is equivalent to h and J0 is
equivalent to J in equation 1.15). The dashed lines are exact diagonalization results.
Picture adapted from [18].

9
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10 1.2. SPIN MODEL WITH LONG RANGE INTERACTION

Figure 1.3: Equilibrium phase diagram of LRIM: (a) Solid black line separates ferro-
magnetic phase from paramagnetic phase. Light grey region α < 5

3
represents mean

field universality class, dark grey region α > 3 represents Ising universality class. At
α = 2 and h = 0 the model undergoes Berezinskii-Kosterlitz-Thouless (BKT) type
thermal transition which also extends to finite h (represented by red dots). Figure
adapted from [43]. (b) Thermal phase transition from ferromagnetic to paramagnetic
phase at α = 0.05, 1.50 with the corresponding critical exponents. Here, the parame-
ter V is the spin-spin interaction in the unit of h (equivalent to J in equation 1.15).
Figure adapted from [44].

average magnetization following the global quench of transverse field as realized in
trapped ion experiment.

For a finite |J | LRIM exhibits a quantum phase transition (QPT) from an ordered
ferromagnetic phase to a paramagnetic phase induced by the transverse field. This
transition is associated with the spontaneous breaking of Z2 symmetry along x−
direction and is characterized by a zero average magnetization (⟨

∑
i ŝ
x
i ⟩ = 0) in the

paramagnetic phase transitioning into a finite average magnetization (⟨
∑

i ŝ
x
i ⟩ ≠ 0)

with two degenerate ground states at the critical point hαc . At α = ∞, the model
reduces to the transverse field Ising model (TFIM) [46], which can be solved exactly by
mapping it to a system of spinless fermions through Jordan-Wigner transformations
[47]. TFIM exhibits a quantum phase transition at hαc = J/2. As α decreases, this
transition point shifts towards higher values of magnetic field h [48, 43] (see Figure 1.3
panel (a)). The universality class of this transition is identical to that of the (1+1)-
dimensional classical Ising model [49]. Conversely, at the opposite extreme, with α =
0, the model becomes fully connected and is equivalent to the Lipkin–Meshkov–Glick
(LMG) model [50] with critical point at hαc = J . This regime is analytically tractable
using the Bethe ansatz [51]. However, for large N limit semiclassical solutions appear

10



CHAPTER 1. INTRODUCTION 11

Figure 1.4: Cartoon phase diagram of LRIM: (a) for α > 2 there is no thermal phase
transition, ferromagnetic order is only present along the T = 0 line ( horizontal red
line) from h = 0 to h = hαc . (b) for α < 2 the model sustains long range ferromagnetic
order at finite T . Solid red line Tαc represents the thermal critical line, solid blue line
Teff represents the effective temperature corresponding to the global quantum quench,
hi = 0→ hf .

to be a more powerful approach providing an accurate description of the dynamical
behavior [52, 41].

For systems featuring local interactions, the persistence of long range order re-
mains viable at finite temperatures when D ≥ 2. Adjusting parameter α to a
smaller value enhances the long-range interaction between spins, effectively mim-
icking a higher spatial dimension within 1D LRIM. Consequently, the LRIM sustains
long-range ferromagnetic order at a finite temperature for α < 2. The thermal phase
transition in LRIM has been investigated using large-scale path integral Monte Carlo
simulations [44]. Figure 1.4, panel (b), illustrates the thermal phase transition from
the ferromagnetic to paramagnetic phase for two values of α and varying interac-
tion strengths. The critical exponents extracted from these simulations confirm that
the transitions belong to the same universality class as the corresponding classical
long-range Ising model.

The ability to sustain long range order at finite temperature leads to the emergence
of dynamical phases in LRIM [48, 43]. This makes the LRIM an interesting paradig-

11



12 1.2. SPIN MODEL WITH LONG RANGE INTERACTION

matic model for studying nonequilibrium dynamics. Conventionally, the dynamical
phase transition in LRIM is characterized by a sudden change in the initial magnetic
order following a global quantum quench, and is captured by the time-averaged order
parameter, S̄ = limt→∞

1
t

∫ t
0
⟨Ŝx(t)⟩, where Ŝx =

∑
i s
x
i /N . In the thermodynamic

limit, this transition is associated with Z2 symmetry breaking. One of the main sub-
jects of this thesis is the investigation of dynamical phases in LRIM following a global
quantum quench. Global quantum quench injects an extensive amount of energy into
a closed quantum system. Consequently, the system relaxes in an energy space dis-
tinctly above the ground state of the post-quench Hamiltonian (see Section 1.1 for
more details) [53]. This energy corresponds to the effective temperature, Teff as de-
fined in Equation 1.9. Figure 1.4 (b) shows the cartoon phase diagram of the LRIM
for α < 2. The solid blue line represents the effective temperature Teff corresponding
to the post-quench transverse field hf corresponding to quench hi = 0 → hf . The
point at which Teff intersects the equilibrium phase transition line Tαc corresponds to
the dynamical critical points hdc . If hf < hdc the system strongly retains the initial
ferromagnetic order, whereas for hf > hdc the system loses the initial ferromagnetic
order with the emergence of paramagnetic order. The range hdc < hf < hαc is an
interesting regime that is ferromagnetic for equilibrium transitions and paramagnetic
for dynamical transitions. For α > 2, there is no long-range ferromagnetic order for
any T ̸= 0, and the system is expected to be in the dynamical paramagnetic phase for
all nontrivial quenches hf > 0. Dynamical phase transition in LRIM has been real-
ized in system of trapped ions [6] (see figure 1.2 panel (b)). Although the dynamical
phases of LRIM have been qualitatively understood, the underlying critical behavior
corresponding to the transition remains a challenging open question. In this thesis,
we investigate the dynamical phases of LRIM by employing full counting statistics
(FCS). In Chapter 3 we highlight FCS as a robust alternative to characterize dynam-
ical phases compared to the expectation of the order parameter. We show that the
FCS provides important qualitative signatures in the regime of slow relaxation, where
the lower-order moments become inconclusive. In Chapter 4 we extend this idea to
study the signatures of thermalization in LRIM.

The speed of correlation spreading in locally interacting quantum systems is lim-
ited by the Lieb-Robinson bound [54] which predicts a linear light-cone like spread
of correlation. However, long range interacting systems circumvent this bound and
allow for a super-ballistic spread of correlation [40, 41]. However LRIM exhibit some
anomalous and completely counter-intuitive dynamics that further makes it an in-
teresting model to study. For α < 1, bipartite entanglement entropy demonstrates
suppressed logarithmic growth following a quantum quench [55, 56, 57]. It has been
demonstrated that in the strong long range regime, α < 1, entanglement growth is
dominated by collective spin squeezing, thus leading to logarithmic growth [58, 59].
This slow growth of bipartite entanglement following a quench makes matrix prod-

12



CHAPTER 1. INTRODUCTION 13

Figure 1.5: (a) Domain wall as excitations in LRIM. Fading arrows represents power
law decaying interaction between spins. (b) Signature of domain wall confinement in
LRIM: first three panels are the connected correlation spreading ⟨ŝxj ŝxk⟩c (k placed at
the center of the chain) for α = {∞, 2.6, 2.3} and h = 0.27. The last panel is the
corresponding growth of entanglement entropy. Figure adapted from [61]

uct state (MPS)-based numerical studies very effective in this system (see Sections
2.2 and 2.3 in the next chapter for details of MPS and entanglement growth). This
counter-intuitive behavior continues well into the weak long range regime 1 < α < 2
with strongly suppressed correlation spreading [60, 61]. The underlying mechanism
behind these anomalous correlation dynamics in this regime is the phenomenon of
confinement. The long range interaction of the model introduces an effective poten-
tial that constrains the spreading of the domain walls, consequently binding a pair
of domain wall excitation (see Figure 1.5 panel (a)) into a stable quasiparticle called
a meson (akin to the meson in quark confinement). The expression for the effective
confining potential in a simple setting of two domain-wall kinks can be calculated
easily. Consider an excited state with two domain-wall kinks separated by 2l located
centrally in a chain of length 2N . The excess potential of this excited state above the
ground state is given by,

Vα,N(l) = 4J
N+l∑
i=N−l

2N−i∑
j=N+l−i

1

jα
(1.17)

13



14 1.2. SPIN MODEL WITH LONG RANGE INTERACTION

We don’t include the Kac normalization term here to be consistent with Chapter
5. In the continuous space limit the sums in the potential can be approximated with
integrals,

Vα,N(l)→ 4J

∫ N+l

N−l
dx

∫ 2N−x

N+l−x

dy

yα
(1.18)

=
4J

(1− α)

∫ N+l

N−l
[(2N − x)1−α − (N + l − x)1−α]dx (1.19)

=
4J

(1− α)(2− α)
[(N + l)2−α − (N − l)2−α − (2l)2−α] (1.20)

In the limit N ≫ l we can approximate potential by expanding the first two terms
in l/N and only taking the linear term,

Vα,N(l) = 4J

[
2l

(1− α)Nα−1 −
(2l)2−α

(1− α)(2− α)

]
+O[(l/N)2] + . . . (1.21)

In the thermodynamic limit N →∞, Vα,N(l) is finite for a finite domain wall size
only for α > 1. For 1 < α < 2 the potential diverges with the domain wall size,
Vα,N(l) ∼ l2−α therefore, creating a pair of domain walls is energetically unfavorable
and strongly confined. This leads to the ability of the LRIM to strongly retain long
range ferromagnetic order. By contrast, for α > 2 the potential Vα,N(l) is bounded
from above; however, the low excitations are still composed of bound states [60].
The confined system exhibits quasilocalized dynamics, including the oscillation of
order parameters, slow correlation spreading, and entanglement growth [62, 61, 63].
Figure 1.5 panel (b) illustrates the correlation spreading and bi-partite entanglement
entropy in LRIM for three different values of α. Although it is linear for the short-
range limit for α = {2.3, 2.6} we observe severe suppression. In the short range
model, quasilocalized dynamics due to confinement were observed to be destroyed by
increasing the density of domain wall excitations [64]. In Chapter 5 we investigate
the robustness of confinement in LRIM with thermally tuned density of excitations.
We highlight that the fluctuation of domain wall kinks provides a stronger signature
of the deconfinement transition than the average domain wall kinks.

14



Chapter 2

Simulation of 1D quantum systems

The quantum many-body problem poses an inherent challenge because of the ex-
ponential growth of Hilbert space as the system size increases. Although certain class
of problems admit analytically tractable solutions, a considerable number of intriguing
problems are analytically intractable. Over the past few decades, the rapid advance-
ment of computer hardware coupled with an exponential increase in computational
capacity [65, 66] has transformed the numerical simulation of many-body physics
using classical devices into a formidable field. The exact diagonalization technique,
both full and iterative diagonalization, yields numerically precise results constrained
only by the machine precision. Nevertheless, the exact diagonalization of many-body
problems beyond a few tens encounters severe limitations even with state-of-the-art
computational resources [67, 68]. Various alternative methods have been developed,
each with its strengths and weaknesses, such as dynamical mean field theory [69],
quantum Monte Carlo [70], series expansion techniques [71], and density functional
theory [72].

The tensor network method represents a relatively recent addition to the field
of numerical simulation of many-body physics, wherein entities such as wave func-
tions, density matrices, and operators are decomposed into tensors, and quantum
operations are formulated as tensor contractions. The techniques developed based
on this formalism are guided by the entanglement content and its structure within
many-body interacting systems. Tensor network gained prominence in many-body
physics following its successful application in the already established density matrix
renormalization group (DMRG) algorithm [73, 74, 75, 76]. Subsequently, a multi-
tude of tensor network-based methods have emerged, namely, time-evolving block
decimation (TEBD) [77, 78], time-dependent variational principle (TDVP) [79, 80],
projected entangled pair states (PEPS) [81], multi-scale entanglement renormaliza-
tion ansatz (MERA) [82], and tensor renormalization group (TRG) [83]. Notably,
tensor network have transcended their origins in many-body physics and have found

15



16 2.1. TENSOR NETWORK AND TENSOR OPERATIONS

applications in diverse fields, such as machine learning, holography, and quantum
computing, reflecting their versatility and impact across scientific disciplines.

This Section provides a comprehensive overview of tensor networks, with a pri-
mary emphasis on simulating one dimensional many-body spin systems using ma-
trix product states (MPS). The discussion will delve into two specific algorithms in
considerable detail: the Density Matrix Renormalization Group (DMRG) and Time-
Dependent Variational Principle (TDVP). Most of the numerical results presented in
this thesis are simulated using these two algorithms.

2.1 Tensor network and tensor operations

Tensor network is a method for structuring numerical data within multidimen-
sional arrays [84, 85, 86, 87]. It enables the execution of intricate linear algebra
operations in a concise manner, ideally suited for contemporary computational de-
vices. In this Section, we provide a formal introduction to tensors, tensor network,
and crucial tensor network operations. These will serve as the foundation for all the
representations and algorithms discussed in this chapter.

2.1.1 Tensor basics

The tensor is a generalization of vectors and matrices. A generic rank-N ten-
sor is described as a complex multidimensional array denoted by Tγ1,...,γi,...,γN ∈
CD1×...×Di×...×DN . Each index, informally referred to as the ”leg” of the tensor, as-
sumes values from set {1, 2, . . . , di} ∈ Z+Di . Here, Di signifies the dimension as-
sociated with the index γi, and the overall dimension of the full tensor is given by
the product

∏N
i=1Di. Consequently, every individual element within tensor T can

be uniquely identified by a tuple comprising N independent integers, denoted as
(γ1, . . . , γi, . . . , γN). This definition of words rank and dimension is specific to this
thesis.

Scalar is a rank-0, vector is a rank-1, and matrix is a rank-2 tensor. In the
case of higher-rank tensors that possess multiple legs, intricate operations can be
effectively executed using tensor network diagrams. These diagrams provide a visual
and intuitive means of representing and manipulating tensors, simplifying complex
computations, and facilitating a deeper understanding of their behavior. In figure 2.1
we present the tensor network diagram for a scalar, a vector, a matrix, and a generic
rank-N tensor.

Tensor network is a collection of tensors in which a subset of their total indices are
contracted in some fashion. Contracting the indices of two tensors is the most funda-
mental operation in tensor network and is a generalization of matrix multiplication.

16



CHAPTER 2. SIMULATION OF 1D QUANTUM SYSTEMS 17

Figure 2.1: tensor network diagrams : (a) Scalar, (b) vector, (c) matrix, (d) a generic
rank-N tensor.

Figure 2.2: Contracting two tensors with four legs each. The grey legs are the con-
tracted indices and the black legs are the free indices.(a) In each tensor the free indices
and contracting indices are fused together into a single indices.(b) The resulting ma-
trices are multiplied along the contracted indices.(c) Finally the free indices are split
into original indices.

Two tensors B and C of ranks N and Ñ , and dimensions
∏N

i=1D
B
i and

∏Ñ
j=1D

C
j can

be contracted along the l shared indices (k1, . . . , kl) by summing over the space of
shared indices as shown in equation 2.1. The result is a rank-N + Ñ − 2l tensor with

dimension
∏N−l

i=1 D
B
i ×

∏Ñ
j=l+1D

C
j .

∑
k1,...,kl

Bβ1,...,βN−l,k1,...,klCk1,...,kl,γl+1,...,γÑ
= Dβ1,...,βN−l,γl+1,...,γÑ

(2.1)

17



18 2.1. TENSOR NETWORK AND TENSOR OPERATIONS

Alternatively, every tensor contraction of arbitrary ranks can be accomplished us-
ing matrix multiplication. This is achieved by first reshaping the tensors into matrices
by fusing all free indices into one single index and all shared indices into another single
index; B(β1,...,βN−l),(k1,...,kl) → Bβ,k and C(k1,...,kl),(γl+1,...,γÑ ) → Ck,γ. For simplicity we
have considered the special case where the last l indices of B and the first l indices
of C are the shared indices. In general we can fuse any set of indices by permuting
the indices in correct order before fusing them. This is followed by a matrix multi-
plication along the shared index,

∑
k Bβ,kCk,γ = Dβ,γ. Finally, the free indices are

reshaped back to the original indices Dβ,γ → Dβ1,...,βN−l,γl+1,...,γÑ
. Figure 2.2 shows

the contraction of two rank-4 tensors via matrix multiplication. Modern scientific
computing provides several options for performing highly sophisticated tensor net-
work contractions. The tensor contraction operations at the backend of all results
in this thesis has been performed using the TensorOperations.jl [88] library in Julia
programming language [89].

2.1.2 Contraction cost

The speed of any tensor network algorithms fundamentally boils down to speed of
the underlying tensor network contractions [84, 85]. The speed of contracting a pair
of arbitrary tensors B and C as defined in 2.1 is parameterized by the total number
of underlying scalar multiplications and is given by,

cost

[ ∑
k1,...,kl

Bβ1,...,βN−l,k1,...,klCk1,...,kl,γl+1,...,γÑ

]
=

dim(B)× dim(C)

dim(B ∩ C)
(2.2)

where dim(B) =
∏N

i=1D
B
i , dim(C) =

∏Ñ
j=1D

C
j , and dim(B ∩ C) =

∏l
i=N−l+1D

B
i

(or
∏l

j=1D
C
j ). While the contraction cost for a pair of tensors remains constant,

the contraction cost for a tensor network comprising more than two tensors with
varying ranks and dimensions depends on the chosen order of contraction. Therefore,
identifying the optimal contraction order for a given tensor network is crucial. In
Figure 2.3, we show the contraction of three tensors with two different orders. The
tensor T is of rank-2, and both B and C are of rank-3. For simplicity, we assume
that all indices of these tensors have equal dimensions, D. According to Equation 2.2
the contraction cost in Figure 2.3(a) is O(D5) while the cost of contraction in Figure
2.3(b) is O(D4). For a large D this results in substantial speedup, highlighting the
significance of determining the optimal contraction order for every tensor contraction
within a tensor network algorithm.

The challenge of identifying the optimal order for contracting a tensor network
consisting of an arbitrary number of tensors with different ranks and dimensions is

18



CHAPTER 2. SIMULATION OF 1D QUANTUM SYSTEMS 19

Figure 2.3: Two different orders of tensor contraction. (a) Expensive order with a
cost of O(D5) .(b) Cheaper order with a cost of O(D4).

NP-hard [90]. However, tensor network algorithms commonly encountered in solving
many-body physics problems, particularly in low dimensions, often do not involve
complex tensor contractions, and the optimal contraction order can be determined
through simple observation. In recent years, multiple approaches have been proposed
for identifying the optimal contraction order [90, 91, 92, 93].

2.1.3 Tensor decomposition

Tensor decomposition takes a single tensor and decomposes it into two or more
constituent tensors. The indices of the original tensor are distributed among these
constituent tensors, which are interconnected through the shared internal indices. In
this light, tensor decomposition can be thought of as the reverse operation of tensor
contraction. In this Section, we delve into two specific decompositions that play a
crucial role in important tensor network algorithms for many-body physics: singular
value decomposition (SVD) and QR decomposition.

19



20 2.1. TENSOR NETWORK AND TENSOR OPERATIONS

Figure 2.4: Singular value decomposition (a) and QR decomposition (b) of a tensor
T .

Singular value decomposition (SVD)

Singular value decomposition is primarily a matrix decomposition that decom-
poses a matrix M of dimension m× n into three components,

Mi,j =

min(m,n)∑
k=1

Ui,kSk,kV
†
k,j (2.3)

where,

1. U is of dimension m×min(m,n) and has orthonormal columns, U †U = I where
I is an identity matrix.

2. S is a square diagonal matrix of dimension min(m,n)×min(m,n). The diagonal
entries are called the singular values. The number of non-zero diagonal entries of
S is called the Schmidt rank of M , not to be confused with the rank of a tensor
as defined in Section 2.1.1. The diagonal entries Sk,k are taken in descending
order without any loss of generality.

3. V † is of dimension min(m,n)× n and has orthonormal rows, V V † = I.

The cost of SVD is O(mn2) (assuming m ≥ n) [94]. Any generic tensor can be
decomposed by SVD. This is achieved by bipartitioning the tensor indices into two
groups and fusing them to form a matrix, followed by a SVD, and finally splitting
the original free indices,

T(γ1,...,γl),(γl+1,...,γN ) =
D∑
k=1

Uγ1,...,γl,kSk,kV
†
k,γl+1,...,γN

(2.4)

20



CHAPTER 2. SIMULATION OF 1D QUANTUM SYSTEMS 21

where, D = min
(∏l

i=1D
T
i ,
∏N

i=l+1D
T
i

)
and the bipartition is made at site l.

Figure 2.4 (a) shows the tensor network diagram of the SVD of a generic tensor.

QR decomposition

QR decomposition decomposes a matrixM of dimensionm×n into two constituent
components,

Mi,j =
∑
k

Qi,kRk,j (2.5)

where,

1. Q is a m×m unitary matrix (assuming m ≥ n), QQ† = Q†Q = I.

2. R is a m× n upper triangular matrix.

The lowest (m− n) rows of matrix R are comprised of zeros, allowing for a more
compact representation of the decomposition as follows: Mi,j =

∑
kQ

1
i,kR

1
k,j, where

Q1 denotes a rectangular matrix with dimensions m × n and features orthonormal
columns (QQ†), while R1 is an upper triangular square matrix sized at n × n. This
is commonly referred to as the thin QR decomposition [95, 94]. Although Q1 shares
the characteristic of right orthonormality with matrix U in the SVD, it is important
to note that these matrices are not identical. Likewise, any arbitrary tensor can
be decomposed using QR decomposition by partitioning its indices into two groups,
much like the SVD decomposition,

T(γ1,...,γl),(γl+1,...,γN ) =
D∑
k=1

Qγ1,...,γl,kR
†k, γl+1, . . . , γN (2.6)

where, D =
∏l

i=1D
T
i (assuming

∏l
i=1D

T
i ≥

∏N
i=l+1D

T
i ) and the bipartition is

made at site l. Figure 2.4 (b) shows the tensor network diagram of the SVD of a
generic tensor.

2.2 A need to restructure the manybody wave-

function

Lets consider a quantum manybody system of N interacting particles each with
d local degrees of freedom. The generic state of such a system can be described by
the wavefunction,
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22 2.2. A NEED TO RESTRUCTURE THE MANYBODY WAVEFUNCTION

|ψ⟩ =
∑

σ1,...σl...,σN

Cσ1,...σl...,σN |σ1⟩ ⊗ . . . |σl⟩ . . .⊗ |σN⟩ (2.7)

where |σl⟩ is the state representing the particle at site l. Cσ1,...σl...,σN are dN

complex numbers that contains full information of the manybody quantum system.
A standard method of representing Cσ1,...σl...,σN is as a dN dimension vector.

Alternatively, Cσ1,...σl...,σN can be understood as an element of a tensor with rank-
N and dimension dN . This exponential scaling of the dimension of tensor C with
the system size N is what makes the study of manybody physics so challenging. To
gauge the implications of exponential scaling, consider a quantum system of N = 300
spin-1/2 particles. The hilbert space dimension for this system is 2300, which sig-
nificantly surpasses the estimated total number of atoms in the observable universe
[96]. Therefore, dealing with many-body problems within this representation be-
comes unattainable beyond a few tens given the current limitations of computational
resources[67, 68]. Another notable constraint of this representation is its inability
to access the entanglement properties of the system directly. Given that entangle-
ment is a defining characteristic that separates a quantum system from a classical
one [97, 98, 99] and is a quantifiable resource [100], it is reasonable to anticipate that
a good representation of a quantum state should provide insights into entanglement
features.

Although the dimension of the Hilbert space scales exponentially with the system
size, it is imperative to recognize that many physically relevant states are situated
within a small subset of this vast space. Notably, for short-range interacting sys-
tems with a gap in the energy spectrum, it has been observed that the ground state
adheres to area laws [101, 102, 103, 104, 105, 106, 107, 108]. This suggests that
the entanglement entropy of a spatial region within a system is proportional to its
area rather than its volume [106]. Remarkably, the states that conform to these area
laws constitute a minuscule fraction of the Hilbert space. Therefore, it is sufficient
to focus our search on the ground state of gapped, short-range interacting quantum
systems within this infinitesimal corner of the Hilbert space. Moreover, this corner of
the Hilbert space is most appropriately parameterized by a family of tensor network
states [109, 75, 76] which allows for smooth manipulation of the relevant degrees of
freedom within renormalization group (RG) methods.

A primitive illustration of the utility of re-configuring the manybody wavefunction
into a tensor network ansatz can be seen in the Schmidt decomposition of the state
defined in Equation 2.7. We begin by bipartitioning the system into two two halves,
A and B and do the SVD of the state,
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CHAPTER 2. SIMULATION OF 1D QUANTUM SYSTEMS 23

Figure 2.5: Singular value decomposition of a manybody state tensor C with bipar-
tition at site l.

|ψ⟩ =
∑

σl,...σl,σl+1...σN

C(σ1,...σl),(σl+1...,σN )(|σ1⟩ ⊗ . . . |σl⟩)⊗ (|σl+1⟩ . . .⊗ |σN⟩) (2.8a)

=
∑
σ,σ̃

Cσ,σ̃ |σ⟩A ⊗ |σ̃⟩B (2.8b)

=
∑
σ,σ̃

D∑
k=1

Uσ,kSk,kV
†
k,σ̃ |σ⟩A ⊗ |σ̃⟩B (2.8c)

=
D∑
k=1

λk |k⟩A ⊗ |k⟩B (2.8d)

where, D = min
(∏l

i=1D
C
i ,
∏N

i=l+1D
C
i

)
and λk = Sk,k are the singular values

in descending order (λk ≤ λk+1,∀k). |k⟩A = Uσ,k |σ⟩A and |k⟩B = V †σ̃,k |σ̃⟩B are
orthonormal bases of region A and B. The representation in equation 2.8 provides
us information about the entanglement properties of the state ψ. If k = 1, the two
bipartitions have no entanglement whereas k > 1 implies the two bipartitions are
entangled. We can also calculate the reduced density matrices of each bipartitions,
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24 2.3. MATRIX PRODUCT STATE (MPS)

ρ̂A = TrB[|ψ⟩ ⟨ψ|] =
D∑
k=1

λ2k|k⟩AA⟨k| ρ̂B = TrA[|ψ⟩ ⟨ψ|] =
D∑
k=1

λ2k|k⟩BB⟨k| (2.9)

Furthermore, the state |ψ⟩ is maximally entangled if the reduced density matrix
of the bipartition ρ̂A (or ρ̂B) is maximally mixed, that is, λ2k = 1/D [110]. We can
also calculate the von Neumann entanglement entropy shared by the bipartitions

SA|B = −Tr[ρ̃Alog2ρ̃A] = −Tr[ρ̃Blog2ρ̃B] = −
∑
k

λ2klog2λ
2
k (2.10)

Consequently, SA|B is bounded from above and below, 0 ≤ SA|B ≤ log2D. From
equation 2.10 it is clear that the representation derived in equation 2.8 allows us to
truncate the singular values based on the decay behavior of entanglement entropy by
capping k by a finite constant value χ < D. The corresponding truncated state,

|ψ⟩ → ˜|ψ⟩ =
∑
σ,σ̃

χ∑
k=1

Ũσ,kS̃k,kṼ
†
k,σ̃ |σ⟩A ⊗ |σ̃⟩B (2.11)

is the optimal rank-χ approximation of |ψ⟩ for the given bipartition A|B [111].This
observation suggests the feasibility of approximating the quantum many-body wave-
function as a network of tensors with an overall dimension that does not exhibit
exponential scaling with the system size and where local entanglement properties are
conveniently accessible.

2.3 Matrix product state (MPS)

Any arbitrary quantum manybody state of form 2.7 can be decomposed into one
dimensional network of tensors called the matrix product state [112, 113, 75]. The
procedure involves iteratively decomposing the state tensor C from one of the ends.
The full procedure is shown in figure 2.6 a. We begin from the left edge by reshaping
Cσ1,...σl...,σN into a d× dN−1 matrix Cσ1,(σ2,...,σN ). This matrix is decomposed by SVD,

Cσ1,(σ2,...,σN ) =
d∑

c1=1

Uσ1,c1Sc1,c1V
†
c1,(σ2,...,σN ) =

d∑
c1=1

Aσ1c0,c1Cc1,σ2,...,σN . (2.12)

In equation 2.12 Uσ1,c1 is reshaped as rank-3 tensor Aσ1c0,c1 by introducing a ficti-

tious index c0 and Sc1,c1 and V †c1,(σ2,...,σN ) are contracted into tensor Cc1,σ2,...,σN . This
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CHAPTER 2. SIMULATION OF 1D QUANTUM SYSTEMS 25

Figure 2.6: (a) Iterative decomposition of coefficient tensor C into left canonical MPS.
(b) C decomposed as right canonical MPS. (c) Notation convention for tensors A and
B. d C decomposed as mixed canonical MPS.

is followed by reshaping the tensor Cc1,σ2,...,σN into matrix C(c1,σ2)(σ3,...,σN and its sub-
sequent SVD,

C(c1,σ2),(σ3,...,σN ) =
d2∑
c2=1

Uc1,σ2,c2Sc2,c2V
†
c2,(σ3,...,σN ) =

d2∑
c2=1

Aσ2c1,c2Cc2,σ3,...,σN , (2.13)

where Uc1,σ2,c2 → Aσ2c1,c2 and Sc2,c2V
†
c2,(σ3,...,σN ) → Cc2,σ3,...,σN . This procedure is

iteratively repeated for all sites l = 1, 2, . . . , N to obtain the full decomposition of the
state tensor of rank-N as a product of N rank-3 tensors,

Cσ1,...σl...,σN =
∑

c1...cl...cN

Aσ1c0,c1 . . . A
σl
cl−1,cl

. . . AσNcN−1,cN
. (2.14)

In tensor Aσlcl−1,cl
, the index σl is referred to as the physical index, representing

the physical dimension of the Hilbert space of a single particle, whereas cl−1 and cl
are auxiliary indices that contain information regarding the entanglement content of
the state. Unless otherwise specified, we adhere to the notation convention depicted
in Figure 2.6(c) for the tensor network diagram of tensor A. In Equation 2.14, the
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26 2.3. MATRIX PRODUCT STATE (MPS)

constituent tensors have dimensions of 1 × d × d, . . . , dN/2−1 × d × dN/2, dN/2 × d ×
dN/2−1, . . . , d×d×1, respectively. This demonstrates exponential scaling with respect
to the system size N . Each A tensor is constructed by reshaping the U matrices of
the singular value decomposition (SVD), which satisfies U †U = I. Consequently, it
exhibits the following property,

U †U = I→ δc′l,cl =
∑
cl−1,σl

(
U(cl−1,σl),cl

)†
U(cl−1,σl),cl (2.15a)

=
∑
cl−1,σl

U †c′l,(cl−1,σl)
U(cl−1,σl),cl (2.15b)

=
∑
cl−1,σl

Aσl†c′l,cl−1
Aσlcl−1,cl

. (2.15c)

The tensors A are called left normalized and the MPS representation in equation
2.14 is called left canonical. Figure 2.7 (a) shows the tensor diagram corresponding
to the equation 2.15.

Figure 2.7: The left (a) and right canonical (b) conditions for MPS tensors A and B.

Alternatively, we can start the decomposition from the right edge and iteratively
move towards the left as follows,
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Cσ1,...,σN = C(σ1,...σl...,σN−1),σN (2.16a)

=
d∑

cN−1=1

U(σ1,...,σN−1),cN−1
ScN−1,cN−1

V †cN−1,σN ,cN
(2.16b)

=
d∑

cN−1=1

C(σ1,...,σN−2),(σN−1,cN−1)B
σN
cN−1,cN

(2.16c)

=
d∑

cN−1=1

d2∑
cN−2=1

U(σ1,...,σN−2),cN−2
ScN−2,cN−2

V †cN−2,σN−1,cN−1
BσN
cN−1,cN

(2.16d)

=
d∑

cN−1=1

d2∑
cN−2=1

C(σ1,...,σN−3),(σN−2,cN−2)B
σN−1
cN−2,cN−1

BσN
cN−1,cN

(2.16e)

. . . (2.16f)

=
∑

c1,...cl...,cN

Bσ1
c0,c1

. . . Bσl
cl−1,cl

. . . BσN
cN−1,cN

(2.16g)

Since each B tensors are built by reshaping V † matrices that satisfy V V † = I,
they are right-normalized, ∑

cl,σl

Bσl
cl−1,cl

Bσl†
cl,c

′
l−1

= δcl−1,c
′
l−1

(2.17)

and the state represented as right-normalized MPS is called right canonical. Figure
2.6 (b) shows the tensor network diagram for right canonical MPS. We can also
decompose the state tensor into a mixed canonical MPS,

Cσ1,...σl...,σN =
∑

c1...cl...cN

Aσ1c0,c1 . . . A
σl
cl−1,cl

Scl,clB
σl+1
cl,cl+1

. . . BσN
cN−1,cN

. (2.18)

This is accomplished by initially left-normalizing the first l sites from the left,
and subsequently right-normalizing the remaining sites from the right. The site l
is known as the orthogonality center. The tensor diagram for the mixed canonical
representation is shown in Figure 2.6 (d). This decomposition retains the state in the
Schmidt decomposition,

|ψ⟩ =
D∑
cl=1

λcl |cl⟩A ⊗ |cl⟩B , (2.19)
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where D = min(dl, dN−l) ∼ O(dN), λcl = Scl,cl are the singular values in descend-
ing order and,

|cl⟩A =
∑
σ1...σl

∑
c1...cl−1

Aσ1c0,c1 . . . A
σl
cl−1,cl

|cl⟩B =
∑

σl+1...σN

∑
cl+1...cN

Bσl+1
cl,cl+1

. . . BσN
cN−1,cN

.

(2.20)
The bipartite states |cl⟩A and |cl⟩B are orthonormal by construction.
The decomposition of state tensor C into MPS is exact, and the constituent ten-

sors exhibit exponential scaling with respect to the system size. However, when we
represent the state in a mixed canonical form, as indicated in Equation 2.18, bipartite
entanglement becomes readily accessible, as reflected in the singular values {λcl} (re-
fer to equation 2.10). This enables us to employ approximate the state by truncating
the spectrum by retaining only the χ largest values,

|ψ⟩ → ˜|ψ⟩ =
χ∑

cl=1

λcl |cl⟩A ⊗ |cl⟩B . (2.21)

Consequently the error behind this truncation procedure is quantified by summing
over all the discarded singular values,

ϵl =
D∑

cl=χ+1

λ2cl , (2.22)

Here, we reject the exponential portion of the singular values. This truncation pro-
cedure is central to all renormalization group schemes and, consequently, underpins
numerous tensor network based algorithms for simulating manybody systems.

2.3.1 Matrix product state for 1D system

The matrix product state is inherently dense, implying that a typical quantum
state, as described in Eq. 2.7, can be expressed as an MPS by sufficiently increasing
the dimension of its constituent tensors. For a generic many-body state, we ob-
served that the dimensions of these constituent tensors increase exponentially with
the system size. Therefore, it is crucial to acknowledge that MPS serves as an effec-
tive representation exclusively for the states for which the approximation technique
defined in Eq. 2.19 can be employed without incurring substantial errors, thereby
capping the auxiliary index dimensions with a number that is independent of system
size. This has been shown to be true for the ground states of short-range 1D Hamil-
tonians away from criticality [107, 114] and more recently extended to long-range
interacting systems with locally bounded interactions [115].
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The intuitive argument behind the efficiency of MPS ansatz to represent local
gapped Hamiltonian follows from the area laws[101, 102, 103, 104, 105, 106, 107, 108]
which state that the bipartite entanglement entropy of the locally interacting Hamil-
tonian away from criticality is proportional to its area, SA|B ∝ ND−1, where D is the
geometric dimension of the system. This suggests SA|B ∼ const in one dimension,
whereas in higher dimensions, it diverges as a power law of N . In one dimensional
critical systems, we observe logarithmic divergence, that is, SA|B ∝ log2N [107].
Considering the case of a maximally entangled state, the von Neumann bipartite en-
tanglement entropy is Smax

A|B = log2D, where D is the dimension of the reduced density

matrix ρ̂A (or ρ̂B) defined in equation 2.9. In the language of mixed canonical MPS,
encoding an entanglement Smax

A|B corresponding to bipartition A|B at site l suffices

to have an auxiliary index of dimension 2S
max
A|B . Following area law SA|B ∼ const for

one dimensional therefore the auxiliary index dimension required to encode entan-
glement for such states is independent of the system size and capped from above.
Alternatively, there exists an integer χmax which is independent of N such that the
truncation procedure defined in equation 2.21 incur an error of the machine precision
order. For a two-dimensional system following area laws, SA|B ∼ N . Consequently,
the auxiliary index dimension necessary to encode the entanglement scales exponen-
tially χmax ∼ 2N . For critical systems, this scaling is polynomial χmax ∼ N const. For
this reason, MPS is a good ansatz in one dimension, but not in higher dimensions.
For a mathematically rigorous approach refer to the following articles, [109, 114].

2.4 Matrix product operator

Now that the quantum manybody state is expressed as MPS we need to express
the quantum operators in a compatible representation. Such a representation is called
a matrix product operator (MPO) [116, 117, 118, 119, 120] and any arbitrary operator
can be expressed expressed as an MPO,

Ô =
∑
σ

∑
σ′

Cσσ′ |σ⟩ ⟨σ′| (2.23a)

=
∑
σ

∑
σ′

Oσ′
1,σ1 . . . Oσ′

l,σl . . . Oσ′
N ,σN |σ⟩ ⟨σ′| (2.23b)

where, Oσl,σ
′
l is a compact form for O

σl,σ
′
l

nl−1,nl which is a rank-4 tensor. The σl and
σ′l are the physical indices whereas nl−1 and nl are the auxiliary indices. Figure 2.8
(a) shows the tensor network diagram of a generic MPO. With operators represented
as MPO, its application to state represented as MPS is straightforward,

29



30 2.4. MATRIX PRODUCT OPERATOR

Figure 2.8: (a) representation of generic operator as MPO. (b) application of MPO
on MPS, the output is a MPS with increased bond dimension.

Ô |ψ⟩ =
∑
σ,σ′

∑
σ′′

Oσ′
1,σ1 . . . Oσ′

l,σl . . . Oσ′
N ,σNMσ′′

1 . . .Mσ′′
l . . .Mσ′′

N |σ⟩ ⟨σ′|σ′′⟩ (2.24a)

=
∑
σ,σ′

Oσ′
1,σ1 . . . Oσ′

l,σl . . . Oσ′
N ,σNMσ′

. . .Mσ′
l . . .Mσ′

N |σ⟩ (2.24b)

=
∑
σ,σ′

∑
n,c

Oσ′
1,σ1
n0,n1

Mσ′
1

c0,c1
. . . O

σ′
l,σl
nl−1,nlM

σ′
l

cl−1,cl . . . O
σ′
N ,σN
nN−1,nNM

σ′
N

cN−1,cN |σ⟩ (2.24c)

=
∑
σ

∑
c̃

M̃σ1
c̃0,c̃1

. . . M̃σl
c̃l−1,c̃l

. . . M̃σN
c̃N−1,c̃N

|σ⟩ (2.24d)
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where, M̃σl
c̃l−1,c̃l

is a rank-3 tensor obtained by contracting O
σ′
l,σl
nl−1,nl with M

σ′
l

cl−1,cl

along their shared physical index σl. The resulting MPS has dimensions dim(M) =
dD2D2

O, where D is the dimension of the auxiliary indices of the input tensor M and
DO is the dimension of the auxiliary index of MPO. Figure 2.8 (b) illustrates the
corresponding tensor network diagram for Equation 2.24, with a thicker horizontal
link in the output MPS denoting an increased dimension of the auxiliary index.

2.4.1 Hamiltonians as MPO

The existence of a MPO representation of an arbitrary operator is guaranteed
but searching for an exact decomposition of a complex operator such as a manybody
Hamiltonian is exponentially complex [121] task. However, there exists a recipe based
on weighted finite state automaton that lets us map a local manybody Hamiltonian
into MPO [119, 122],

Ĥ → Ô1 . . . Ôl . . . ÔN (2.25)

where, Ôl =
∑

σl,σ
′
l
Oσ′

l,σl |σl⟩ ⟨σ′l| is the operator valued matrix that acts on the

local Hilbert space at site l. This approach runs in opposite direction, rather than
decomposing Ĥ we find a finite state automaton that generates its correct factoriza-
tion.

The finite state automaton corresponding to short range spin Hamiltonians are
rather straight forward. Consider a magnetization operator along z direction ex-
panded in full Hilbert space,

h
N∑
l=1

ẑl =
∑

i+1+j=N

I⊗i ⊗ hẑ ⊗ I⊗j, ∀ i, j ∈ [0,Z+], (2.26)

where ẑ = σ̂z/2, and σ̂z/2 is the Pauli matrix along z-axis. Equation 2.26 is a sum
of tensor product of strings of identity matrices at all but one site. Such strings can
be constructed by moving from right to left putting I matrix in all but one specified
site where we put ẑ. During this process we encounter two distinct conditions, 1:
where all the matrices on the right are I, and 2: where there is one ẑ matrix on right
and I matrix on all other sites. The transition from condition 1 to 2 takes place
by putting ẑ matrix at a specified site. The finite state automaton corresponding to
this operator is shown in figure 2.9 a. We start from the rightmost edge by adding
I on each site, this signifies the trivial transition 1 → 1. Adding ẑ on a specified
site signifies the transition 1 → 2. This is followed by adding I on remaining sites
which signifies another trivial transition 2 → 2. The bulk matrix corresponding to
the given finite state automaton can be constructed in a straightforward manner,
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32 2.4. MATRIX PRODUCT OPERATOR

Figure 2.9: Finite state automaton representation, (a) magnetization operator along
z axis, (b) transverse field Ising Hamiltonian, (c) Hamiltonian with both nearest and
next nearest neighbor x̂x̂ interaction, (d) Hamiltonian with exponentially decaying
x̂x̂ interaction.

Ôl =

[
I 0
hẑ I

]
. (2.27)

We put zero at all the forbidden transition, here 2→ 1 is a forbidden transition.
For a finite system with open boundary condition we have a row and column vectors
at the left and right edges respectively,

Ô1 =
[
hẑ I

]
, ÔN =

[
I
hẑ

]
. (2.28)

Hamiltonian with higher order interactions can be written by adding intermediate
states in the finite state automaton. Figure 2.9 (b) shows the finite state automaton
for nearest neighbor transverse field Ising Hamiltonian,

J

N−1∑
l=1

x̂lx̂l+1 + h

N∑
l=1

ẑl =
∑

i+2+j=N

I⊗i ⊗ x̂⊗ Jx̂⊗ I⊗j +
∑

i+1+j=N

I⊗i ⊗ hẑ ⊗ I⊗j, (2.29)
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where x̂ = σ̂x/2, and σ̂x/2 is the Pauli matrix along x-axis. To pass from state 1
to 2 we now need to pass from an intermediate state 3: where there is one x̂ on the
immediate right and left. The corresponding matrices are,

Ôl =

 I 0 0
x̂ 0 0
hẑ Jx̂ I

 , Ô1 =
[
hẑ Jx̂ I

]
, ÔN =

 I
x̂
hẑ

 , (2.30)

∀ l ∈ {2, . . . N}. Hamiltonian with longer range interaction can be constructed
by further adding extra intermediate states. Figure 2.9 (c) shows the finite state
automaton for Hamiltonian with both nearest and next nearest neighbor interactions,

J1

N−1∑
l=1

x̂lx̂l+1+J2

N−2∑
l=1

x̂lx̂l+2 =
∑

i+2+j=N

I⊗i⊗x̂⊗J1x̂⊗I⊗j+
∑

i+3+j=N

I⊗i⊗x̂⊗I⊗J2x̂⊗I⊗j.

(2.31)
The corresponding matrices are,

Ôl =


I 0 0 0
x̂ 0 0 0
0 I 0 0
0 J1x̂ J2x̂ I

 , Ô1 =
[
0 J1x̂ J2x̂ I

]
, ÔN =


I
x̂
0
0

 , (2.32)

∀ l ∈ {2, . . . N}. This suggests that for longer-ranged interacting hamiltonian the
size of the matrix Ôl scales linearly with the strength of interaction. Hamiltonians
with exponentially decaying long range interaction is a special case that has a compact
finite state automaton. Such Hamiltonian can be written as,

J
∑
l,r

e−
r
ξ x̂lx̂l+r =

∑
i+1+r+j=N

I⊗i ⊗ x̂⊗ [ζI]⊗r−1 ⊗ Jζx̂⊗ I⊗j, (2.33)

where ζ = e1/ξ. Figure 2.9 (d) shows the finite state automaton corresponding to
this Hamiltonian. The corresponding matrices are,

Ôl =

I 0 0
x̂ ζI 0
0 Jζx̂ I

 , Ô1 =
[
0 Jζx̂ I

]
, ÔN =

Ix̂
0

 , (2.34)

∀ l ∈ {2, . . . N}.
We finally arrive to the Hamiltonian central to this thesis, long range interact-

ing Hamiltonian with power-law decaying interaction. Unlike exponentially decay-
ing interaction shown in equation 2.33 there is no compact finite state automaton
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Figure 2.10: Finite state automaton representation of long range Hamiltonian with
inverse power law interaction.

representation for power law decaying interaction. However, we can get a good ap-
proximation of the inverse power law with the sum of limited number of exponentials
[118, 123, 120],

J

rα
≈

n∑
k=1

ηkζ
r
k , (2.35)

where n≪ N . The long range Hamiltonian can now be approximated as

J
∑
l,r

x̂lx̂l+r
rα

=
∑

i+1+r+j=N

n∑
k=1

ηkζ
r
k I⊗i ⊗ x̂⊗ I⊗r−1 ⊗ x̂⊗ I⊗j. (2.36)

The finite state automaton representation for this Hamiltonian is shown in figure
2.10 which is similar to the one for exponentially decaying Hamiltonian but with n
independent paths going from 1→ 2. The corresponding matrices are,
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Ôl =



I 0 . . . 0 0
η1x̂ ζ1I . . . 0 0
η2x̂ 0 ζ2I . . . 0
...

...
...

...
ηnx̂ 0 . . . ζnI 0
0 ζ1x̂ . . . ζnx̂ I


Ô1 =

[
0 ζ1x̂ . . . ζnx̂ I

]
, ÔN =



I
η1I
η2I
...
ηnI
0


, (2.37)

Figure 2.11: (a) Fitting power-law with the sum of exponentials with three increasing
number of exponentials. There is no visible difference in the data for n = 6 (green
scatter plot)and n = 14 (black scatter plot). (b) Error in fitting power-law with sum
of exponentials in equation 2.35 for different α , n = 14, and 0 ≤ r ≤ 200.

The accuracy of this representation depends on how precisely do we represent the
power law decaying function as the sum of exponentials in equation 2.35. This is
quantified by calculating the absolute error of approximation,

Error =

∣∣∣∣∣ Jrα −
n∑
k=1

ηkζ
r
k

∣∣∣∣∣ (2.38)

where the number of exponentials in the sum n determines the precision of fitting.
We observe that for system size N = 200 the relative error is 10−7 or smaller [cf.
Fig. 2.11] (b) with n = 14. We have used n = 14 throughout this thesis.

2.5 Matrix product density operator

The matrix product state (MPS) framework can be extended to encompass matrix
product density operators (MPDO) [116, 117] to represent mixed states that are
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Figure 2.12: Tensor network diagram for: (a) MPDO as MPO, (b) MPDO in locally
purified form, (c) projector corresponding to a pure state |ψ⟩, (d) MPDO correspond-
ing to the maximally mixed state.

central to the simulation of dissipative and thermal states. The MPDO ρ of a N
particles is defined as;

ρ =
∑
σ,σ′

Mσ′
1,σ1 . . .Mσ′

l,σl . . .Mσ′
N ,σN |σ⟩ ⟨σ′| . (2.39)

whereMσ′
l,σl is compact form of rank-4 tensorMσ′

l,σl
c̃l−1,c̃l

has a dimension d2×χ2
l−1×

χ2
l . Figure 2.12 panel (a) shows the tensor network representation of ρ. EachM can

be decomposed as,

Mσ′
l,σl
c̃l−1,c̃l

=
dl∑
k=1

Mσl,kl
cl−1,cl

⊗
[
M

σ′
l,kl

c′l−1,c
′
l

]∗
, (2.40)

where k is called Krauss index and dl ≤ dχl−1χl [116]. This representation of
MPDO is called locally purified form and is positive by construction [116, 117]. The
tensor network representation of ρ in locally purified form is shown in Figure 2.12

panel (b). For pure states dl = 1 and Mσ′
l,σl
c̃l−1,c̃l

= Mσl
cl−1,cl

⊗ [M
σ′
l

c′l−1,c
′
l
]∗. In this limit

ρ becomes a simple projector |ψ⟩⟨ψ|. The tensor network representation is shown in
Figure 2.12 panel (c). In the other extreme the MPDO corresponding to a maximally

mixed state isMσ′
l,σl
c̃l−1,c̃l

= 1σ
′
l,σl , where 1σ

′
l,σl is a d× d identity matrix.
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2.6 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) was initially introduced in
1992 [73, 74] as an advancement of existing real-space renormalization group methods.
Currently, DMRG is the most precise technique for investigating one dimensional
quantum systems with limited computational resources [124, 125, 121]. Although
originally formulated in terms of reduced block states, it became evident early on
that MPS is the the natural language for DMRG [75, 126]. This framework, in
addition to its original purpose of studying the low-energy states of one dimensional
quantum systems, enables the exploration of dynamical and dissipative properties.
In this thesis, our discussion of DMRG is limited to the iterative ground-state search.

Figure 2.13: tensor network diagram of (a) ⟨ψ|ψ⟩, (b) ⟨ψ|Ĥ|ψ⟩, (c) Ll−1, and (d) Rl+1

.

The primary idea behind DMRG is iterative ground state search by variational
minimization of the energy function,

E =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(2.41)

We introduce a Lagrangian function L = ⟨ψ|Ĥ|ψ⟩− ϵ⟨ψ|ψ⟩ and find its extremum
by differentiating with a variational parameter that eventually leads to the ground
state. We proceed by calculating the parts of Lagrangian L in tensor representation
with |ψ⟩ as MPS and Ĥ as MPO. The expectation of Hamiltonian ⟨ψ|Ĥ|ψ⟩ can be
written as,
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⟨ψ|Ĥ|ψ⟩ = L
nl−1

cl−1,c
′
l−1

[M
σ′
l

c′l−1,c
′
l
]∗[B

σ′
l+1

c′l,c
′
l+1

]∗O
σ′
l,σl
nl−1,nlO

σ′
l+1,σl+1

nl,nl+1 Mσl
cl−1,cl

Bσl+1
cl,cl+1

R
nl+1

cl+1,c
′
l+1

(2.42a)

= L
nl−1

cl−1,c
′
l−1

[T
σ′
l,σ

′
l+1

c′l−1,c
′
l+1

]∗O
σ′
l,σl
nl−1,nlO

σ′
l+1,σl+1

nl,nl+1 T σl,σl+1
cl−1,cl+1

R
nl+1

cl+1,c
′
l+1
. (2.42b)

We have employed Einsteins summation convention in the equation 2.42. The
MPS is assumed to be in a mixed canonical form. Figure 2.13 (b) illustrates the tensor
network diagram of ⟨ψ|Ĥ|ψ⟩ and the L and R tensors are shown in figure 2.13 (c) and
(d) respectively. In equation 2.42 the second line is derived from first by contracting
the M and B tensors along the auxiliary index ;

∑
cl
Mσl

cl−1,cl
B
σl+1
cl,cl+1 → T

σl,σl+1
cl−1,cl+1 . The

overlap term ⟨ψ|ψ⟩ can be similarly calculated,

⟨ψ|ψ⟩ = ΨA
cl−1,c

′
l−1

[M
σ′
l

c′l−1,c
′
l
]∗[B

σ′
l+1

c′l,c
′
l+1

]∗Mσl
cl−1,cl

Bσl+1
cl,cl+1

ΨB
cl+1,c

′
l+1

(2.43a)

= ΨA
cl−1,c

′
l−1

[T
σ′
l,σ

′
l+1

c′l−1,c
′
l+1

]∗T σl,σl+1
cl−1,cl+1

ΨB
cl+1,c

′
l+1

(2.43b)

= δcl−1,c
′
l−1

[T
σ′
l,σ

′
l+1

c′l−1,c
′
l+1

]∗T σl,σl+1
cl−1,cl+1

δcl+1,c
′
l+1
. (2.43c)

Figure 2.13 (a) illustrates the tensor network diagram of ⟨ψ|ψ⟩. If MPS is in
mixed canonical form with orthogonality center at site l then ΨA

cl−1,c
′
l−1

= δcl−1,c
′
l−1

and

ΨB
cl+1,c

′
l+1

= δcl+1,c
′
l+1

by construction. The tensor network representation of the La-

grangian function enables us to perform an iterative variational ground state. Specif-
ically, we extremize L with respect to the local two site tensor [T σ

′
l,σ

′
l+1 ]∗,

∂L
∂[T σ

′
l,σ

′
l+1 ]∗

= 0→ L
nl−1

cl−1,c
′
l−1
O
σ′
l,σl
nl−1,nlO

σ′
l+1,σl+1

nl,nl+1 T σl,σl+1
cl−1,cl+1

R
nl+1

cl+1,c
′
l+1
− ϵ T σl,σl+1

cl−1,cl+1
= 0.

(2.44)
Equation 2.44 is a generalized eigenvalue problem. This becomes clear by reshap-

ing L
nl−1

cl−1,c
′
l−1
O
σ′
l,σl
nl−1,nlO

σ′
l+1,σl+1

nl,nl+1 R
nl+1

cl+1,c
′
l+1
→ Heff

(σl,σl+1,cl−1,cl+1),(σ
′
l,σ

′
l+1,c

′
l−1,c

′
l+1)

and T
σl,σl+1
cl−1,cl+1 →

Tσl,σl+1,cl−1,cl+1
. Equation 2.44 can now be rewritten as,

Heff
l,l+1Tl,l+1 = ϵ Tl,l+1. (2.45)

Heff
l,l+1 is a χ

2d2×χ2d2 dimension Hermitian matrix and vl,l+1 is a χ
2d2 dimension

vector. This local eigenvalue problem can be solved for the ground state T0 and the
corresponding energy ϵ0. Full diagonalization of equation 2.45 is still an expensive
task therefore a cheaper iterative Lanczos-based eigensolver [127, 128] can be used to
solve just for the ground state.
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Figure 2.14: Diagrammatic representation of the left to right sweep of the two site
DMRG algorithm. (i) initial state in mixed canonical form, (ii) local eigen optimiza-
tion, (iii) singular value decomposition of the optimized local tensor.

The generalized eigenvalue problem defined in equation 2.44 defined on lattice
sites l and l+ 1 allows for an iterative variational ground state search that forms the
basis of an optimal DMRG algorithm as follows;

1. Start with a guess state |ψ⟩ in right canonical form. In most cases the guess state
can be chosen as a randomMPS. Prepare the set ofR tensors, {RN , RN−1, . . . , R3}.

2. Loop l over the list [1, 2, . . . , N − 1],

(a) Build two-site tensor, MσlBσl+1 → T σl,σl+1 .

(b) Solve the local eigenvalue problem , Ll−1Rl+2T̃
σl,σl+1 = ϵ0 T̃

σl,σl+1 .
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40 2.7. TIME DEPENDENT VARIATIONAL PRINCIPLE

(c) Decompose T̃ σl,σl+1 → AσlSB̃σl+1 . Truncate and renormalize the singular
value matrix S → S̃ and build S̃B̃σl+1 →Mσl+1 .

(d) Build Ll−1[A
σ′
l ]∗Oσ′

l,σlAσl → Ll. Delete Rl+2.

This iterative procedure is called the left to right DMRG sweep. Figure 2.14
illustrates the corresponding tensor network diagrams. At the end the MPS is
in left canonical form.

3. Loop l over the list [N,N − 1, . . . , 2],

(a) Build two-site tensor, Aσl−1Mσl → T σl−1,σl .

(b) Solve the local eigenvalue problem , Ll−2Rl+1T̃
σl−1,σl = ϵ0 T̃

σl−1,σl .

(c) Decompose T̃ σl−1,σl → Ãσl−1SBσl . Truncate and renormalize the singular
value matrix S → S̃ and build Ãσl−1S̃ →Mσl−1 .

(d) Build [Bσ′
l ]∗Oσ′

l,σlBσlRl+1 → Rl. Delete Ll−2.

This iterative procedure is called the right to left DMRG sweep. At the end the
MPS is in right canonical form.

4. Repeat the left and right sweep alternatively until desired convergence in ground-
state energy is achieved.

The algorithm described above is called a two-site DMRG because it entails the
optimization of a local eigenvalue problem spanning two adjacent sites. A cheaper
but less robust algorithm [129] performs optimization at a single site and is called
one-site DMRG [121]. It is important to highlight that the global convergence in
DMRG technique is achieved by iteratively optimizing a sequence of local eigenvalue
problems. This allows for a relaxation of the convergence criteria for individual local
eigenvalue problem while still achieving global convergence.

2.7 Time Dependent Variational Principle

Another significant issue in quantum many-body physics is the real-time evolution
of quantum states. One of the earliest algorithms for this purpose is the time-evolving
block decimation (TEBD) [77, 78, 130], which is based on the Lie-Trotter-Suzuki split-
ting of the Hamiltonian in the Schrödinger equation. Although this method is suitable
for short-range systems, a version has been proposed for simulating long-range sys-
tems [131]. A more recent algorithm that is independent of the range of interaction
of the system Hamiltonian is the time-dependent variational principle (TDVP) algo-
rithm [79, 80] which is based on projecting the time-dependent Schrödinger equation
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into a variational manifold of MPS, followed by numerical integration of the local
differential equations.

Figure 2.15: tensor network diagram of the tangent space projection operators P̂ l−1
L ⊗

Il ⊗ Il+1 ⊗ P̂ l+2
R (a) and P̂ l

L ⊗ Il+1 ⊗ P̂ l+2
R (b).

Consider the real time evolution of a quantum many body state as an MPS de-
scribed by the Schrödinger equation,

∂

∂t
|ψ(M(t))⟩ = −iĤ |ψ(M(t))⟩ . (2.46)

MPS |ψ(M)⟩ resides within a manifold denoted by MMPS which is a subset of the
complete MPS Hilbert space. This manifold is defined by imposing specific constraints
on the MPS within it. An example of such a manifold is an MPS space with a
fixed auxiliary index dimension. Note that other manifolds with smaller auxiliary
index dimensions are singularly embedded within this manifold. During real-time
evolution, the right-hand side of Equation 2.47 leads the initial MPS |ψ(M)⟩ outside
of the manifold, rendering the evolution computationally impractical. To facilitate
the evolution of the initial MPS within the manifold, an optimal approximation is
achieved by projecting the right-hand side of equation 2.46 onto the tangent space of
the manifold defined at the current state,

∂

∂t
|ψ(M(t))⟩ = −iP̂

T
[2]
|ψ(M(t))⟩,MMPS

Ĥ |ψ(M(t))⟩ , (2.47)

where the projection operator P̂
T

[2]
|ψ(M(t))⟩,MMPS

projects the MPS |ψ(M(t))⟩ onto

the tangent space T
[2]
|ψ(M(t))⟩ corresponding to the manifold MMPS. It is defined as,

P̂
T

[2]
|ψ(M(t))⟩,MMPS

=
N−1∑
l=1

P̂ l−1
L ⊗ Il ⊗ Il+1 ⊗ P̂ l+2

R −
N−2∑
l=1

P̂ l
L ⊗ Il+1 ⊗ P̂ l+2

R (2.48)
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42 2.7. TIME DEPENDENT VARIATIONAL PRINCIPLE

The superscript [2] denotes the projection operator is for a two-site TDVP algo-
rithm [80, 132]. The equation 2.47 then becomes,

∂

∂t
|ψ⟩ = −i

N−1∑
l=1

P̂ l−1
L ⊗ Il ⊗ Il+1 ⊗ P̂ l+2

R Ĥ |ψ⟩+ i
N−2∑
l=1

P̂ l
L ⊗ Il+1 ⊗ P̂ l+2

R Ĥ |ψ⟩ . (2.49)

The exact solution of equation 2.49 is not tractable, however, the individual terms
are integrable. This kind of problem can be solved by operator splitting method [133]
by solving a pair of forward and backward differential equations,

∂

∂t
|ψ⟩ = −iP̂ l−1

L ⊗ Il ⊗ Il+1 ⊗ P̂ l+2
R Ĥ |ψ⟩ , (2.50)

∂

∂t
|ψ⟩ = iP̂ l

L ⊗ Il+1 ⊗ P̂ l+2
R Ĥ |ψ⟩ . (2.51)

Figure 2.16: tensor network diagram corresponding to the right hand side of the local
forward

Multiplying the equations 2.50 and 2.51 by ψ̃Ll−1⊗ ψ̃Rl+2 and ψ̃
L
l ⊗ ψ̃Rl+2 respectively

simplifies these equations into local differential equations,
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∂

∂t
T σl,σl+1 = −i ψ̃Ll−1P̂ l−1

L ⊗ Il ⊗ Il+1 ⊗ ψ̃Rl+2P̂
l+2
R Ĥ |ψ⟩ = −i Ĥeff

l,l+1T
σl,σl+1 (2.52)

∂

∂t
Mσl+1 = i ψ̃Ll P̂

l
L ⊗ Il+1 ⊗ ψ̃Rl+2P̂

l+2
R Ĥ |ψ⟩ = i Ĥeff

l+1M
σl+1 , (2.53)

The tensor network diagram corresponding to the right hand side of these equa-
tions is illustrated in 2.16 where we observe that the effective hamiltonians Ĥeff

l,l+1

and Ĥeff
l are similar to that appeared in equation 2.45 for DMRG algorithm. Like

DMRG each of these local differential equations can be solved with Lanczos based
exponential solver [127, 128]. The error incurred during this procedure can be made
arbitrarily small by increasing the Krylov space accordingly.

Solving the local equations 2.52 and 2.53 facilitates an iterative approach to solving
the full Schrödinger equation. We can proceed in a manner similar to the DMRG
algorithm by starting from the left edge and moving towards the right by solving a set
of forward and backward discrete time differential equations in place of a local eigen
value equation, followed by a right to left sweep. Ultimately, the state is evolved
to time t + 2δt with an error at O(δt3). By halving the time step (δt → δt/2),
a complete left-to-right and right-to-left sweep is defined as a unit time step. The
TDVP algorithm is as follows;

1. Start with a initial state |ψi⟩ |t=0 in right canonical form. Prepare the set of R
tensors, {RN , RN−1, . . . , R3}t=0.

2. Loop l over the list [1, 2, . . . , N − 1],

(a) Build two-site tensor, MσlBσl+1 → T σl,σl+1 .

(b) Solve the local forward differential equation, ∂
∂t
T σl,σl+1(t) = −i Ĥeff

l,l+1T
σl,σl+1(t).

(c) Decompose T σl,σl+1(t+ δt/2)→ AσlSB̃σl+1 . Truncate and renormalize the
singular value matrix S → S̃ and build S̃B̃σl+1 →Mσl+1 .

(d) Build Ll−1[A
σ′
l ]∗Oσ′

l,σlAσl → Ll. Delete Rl+2.

(e) Solve the local backward differential equation, ∂
∂t
Mσl+1(t) = i Ĥeff

l+1M
σl+1(t).

This iterative procedure is called the left to right TDVP sweep. Figure 2.17
illustrates the corresponding tensor network diagrams. At the end the MPS is
in left canonical form.

3. Loop l over the list [N,N − 1, . . . , 2],

(a) Build two-site tensor, Aσl−1Mσl → T σl−1,σl .
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44 2.7. TIME DEPENDENT VARIATIONAL PRINCIPLE

Figure 2.17: Diagrammatic representation of the left to right sweep of the two site
TDVP algorithm. (i) initial state in mixed canonical form, (ii) solve the forward
differential equation, (iii) singular value decomposition of the evolved local tensor,
(iv) build Ll−1 → Ll, (v) solve the backward differential equation.

(b) Solve the local forward differential equation, ∂
∂t
T σl−1,σl(t) = −i Ĥeff

l−1,lT
σl−1,σl(t).

(c) Decompose T σl−1,σl(t+ δt/2)→ Ãσl−1SBσl . Truncate and renormalize the
singular value matrix S → S̃ and build Ãσl−1S̃ →Mσl−1 .

(d) Build [Bσ′
l ]∗Oσ′

l,σlBσlRl+1 → Rl. Delete Ll−2.

(e) Solve the local backward differential equation, ∂
∂t
Mσl−1(t) = i Ĥeff

l−1M
σl−1(t).
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This iterative procedure is called the right to left DMRG sweep. At the end the
MPS is in right canonical form.

4. Steps 2. and 3. evolves the state by a unit step δt, |ψ(t)⟩ → |ψ(t+ δt)⟩.
Repeating these steps will evolve the state further.

The TDVP algorithm exhibits four primary sources of error. The first arises as
projection error during the transformation of the exact Schrödinger equation into 2.47.
This error is a consequence of the limited bond dimensions of the auxiliary index in
MPS tensors. A practical assessment of this error involves monitoring the convergence
of TDVP data with several increasing bond dimensions. The second source of error is
the finite time step error incurred while approximating differential equation 2.49 with
a sequence of integrable local differential equations. In the context of the second-
order integrator scheme detailed above, this error amounts to O(δt3) per time-step.
The third error originates from insufficient Krylov vectors when solving the local
differential equations 2.52 and 2.53. Employing a larger number of Krylov vectors in
the Lanczos exponential solver allows the reduction of this error to arbitrarily small
magnitudes. The final error is the truncation error incurred during the truncation of
the singular values of the local MPS tensors.

2.8 Lanczos solvers

Eigen and exponential solvers are crucial to the efficiency of DMRG and TDVP
algorithms. In DMRG, the eigensolution stands out as the bottleneck, whereas in
TDVP, it is the exponentiation of the local effective Hamiltonian. Consequently,
optimizing these steps is imperative for achieving an optimal algorithm. When dealing
with Hermitian Hamiltonians, Lanczos-based iterative eigen and exponential solvers
have been proven to be superior to alternative methods [127, 134, 128, 135].

The Lanczos algorithm was originally devised for the tridiagonalization of a Her-
mitian matrix. In essence, the Lanczos process transforms an n×n Hermitian matrix
M into an n×n tridiagonal matrix in n steps. The significance of the Lanczos process
lies in the fact that the extreme eigenvalues and eigenvectors of a k × k tridiagonal
matrix after k ≪ n iteration are a good approximation of the extreme eigenvalues and
eigenvectors of the Hermitian matrix M . The Lanczos algorithm takes a Hermitian
matrixMn×n and an initial guess vector vinput as inputs. After k iterations, it yields a
tridiagonal matrix Tk×k and a set of orthogonal column vectors Vn×k. The algorithm
can be succinctly described as follows,

1: v1 = vinput/|vinput| ▷ input vector
2: for i ∈ [2, k + 1] do
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46 2.8. LANCZOS SOLVERS

Figure 2.18: (a) Convergence of the lowest eigenvalue for a Lanczos eigen solver of
a 14-site spin-1/2 XXZ Heisenberg model starting from a random input state. (b)

Convergence of the operation e−iδtĤ |ψrand⟩ for a Lanczos exponential solver. Ĥ is
a 14-site spin-1/2 XXZ Heisenberg Hamiltonian and |ψrand⟩ is a random normalized
vector.

3: vi = M × vi−1
4: for j ∈ [i− 2, i− 1] do ▷ Building tridiagonal matrix
5: if j ≥ 1 then
6: Ti−1,j = dot(vi, vj)
7: Tj,i−1 = T ∗i−1,j

8: for f ∈ [1, i− 1] do ▷ Full reorthonormalization
9: vi = vf − dot(vi, vf )× vf
10: vi = vi/|vi|
11: return T , [v1, v2, . . . , vk]

The set of orthonormal vectors Vn×k = [v1, v2, . . . , vk] are known as Krylov vectors
that forms the basis of Krylov subspace [127, 135]. The number k is known as the
Krylov dimension.

Eigen-solver : The tridiagonal matrix T is diagonalized to obtain the eigenval-
ues ϵT1 < ϵT2 < . . . < ϵTk and corresponding eigenvectors vT1 , v

T
2 , . . . , v

T
k . The lowest

eigenvalue of matrix M is approximated by ϵT1 and the corresponding eigenvector is
approximated by Vn×k× vT1 . The error of this approximation can be made arbitrarily
small by increasing the Krylov dimensions. Figure 2.18 (a) shows the absolute dif-
ference between the exact ground state energy and the Lanczos approximation as a
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function of Krylov dimension for a 14−site spin−1/2 XXZ Heisenberg model (Hilbert
space size is 16383) for two different anisotropy parameter1. In both cases we observe
a rapid convergence to value less than O(10−12) with less than 18 iterations.

Exponential-solver : Similarly, matrix exponential applied to a vector can be
approximated by the tridiagonal matrix as,

eM × vinput ≈ Vn×k × eTk×k × Ik×k[:, 1], (2.55)

where, Ik×k[:, 1] is the first column of the k × k identity matrix [136]. Accord-
ingly, the error of this approximation can be made arbitrarily small by increasing the
Krylov dimensions. Figure 2.18 (b) shows the absolute difference between the exact

and Lanczos approximations of operation e−iδtĤ |ψrand⟩ as a function of the Krylov
dimension for three different values of δt. Ĥ is a 14−site spin−1/2 XXZ Heisenberg
Hamiltonian with ∆/J = −0.6 and |ψrand⟩ is a random normalized vector. In all
cases, we observe a rapid convergence to values less than O(10−14) with less than 30
iterations. For a smaller δt this convergence is achieved much faster.

Figure 2.19: Optimal tensor operations corresponding o the matrix vector multipli-
cation Ĥeff × T . χ is the dimension of auxiliary indices.

The algorithm’s computational bottleneck arises from the matrix-vector multipli-
cation in the third line, which operates in O(n) time—a notably more cost-effective
process than full diagonalization, which demands O(n3) time. Additionally, in Lanc-
zos algorithm there is no requirement to explicitly construct matrix M , a resource-
intensive task, especially when matrix sparsity is not guaranteed. For DMRG and
TDVP algorithms, the effective Hamiltonian Ĥeff, defined in equations 2.45 and 2.52,

1The XXZ Heisenberg model is defined as,

ĤXXZ = −J
N−1∑
j=1

σ̂x
j σ̂

x
j+1 + σ̂y

j σ̂
y
j+1 +∆σ̂z

j σ̂
z
j+1 (2.54)

where σ̂x, σ̂y, σ̂z are the Pauli matrices and ∆ is the anisotropy parameter.
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is the equivalent of matrix M . In tensor representation, the equivalent matrix-vector
multiplication can be performed while retaining Ĥeff as its constituent tensors, with-
out the need to explicitly construct the matrix, as illustrated in Figure 2.19. The
overall computational complexity of this operation is O(χ3), where χ represents the
auxiliary index dimension. In contrast, the explicit construction of Ĥeff matrix fol-
lowed by a matrix-vector multiplication incurs a cost of O(χ4).

2.9 Codes availability

A substantial portion of my doctoral research was dedicated to writing and opti-
mizing the tensor network and exact diagonalization codes for the simulation of the
static and dynamic properties of low-dimensional quantum systems. These codes are
primarily written in the Julia programming language [89]. For convenient accessibil-
ity, the codes are made available through the following links:

• Tensor Network codes: https://github.com/NishanRanabhat/TenMB

• ED codes: https://github.com/NishanRanabhat/ExactDiagonalization
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Chapter 3

Dynamics of order parameter statistics

Dynamical phase transition (DPT) is one of the most interesting phenomena that
highlight the nonequilibrium behavior of manybody quantum systems. In Section
1.2, we discussed how long range interactions allows 1D LRIM to host long range
ferromagnetic order at finite temperature that leads to the emergence of dynamical
ferromagnetic and paramagnetic phases. Extensive investigations of DPT in LRIM
have been conducted [17, 137, 138], with experimental evidence observed in systems
involving trapped ions [18, 19]. Traditionally, DPT is characterized by the long time
behavior of the system following a sudden quench of the order parameter and is
quantified by the long-time Cesaro’s average of the order parameter,

Ō = lim
t→∞

1

t

∫ t

0

⟨Ô(t̃)⟩dt̃. (3.1)

In LRIM, the relevant order parameter is magnetization, and the time averaged
magnetization equilibrates to zero in the dynamical paramagnetic phase and remains
finite in the dynamical ferromagnetic phase. However, this approach to characterize
dynamical phases relies on the equilibration of the order parameter. Consequently,
the dynamical phases remain inconclusive in the regime in which equilibration is not
observed[17, 137]. Some studies employed higher-order moments to detect dynamical
phases [18]. In this chapter, we employ full counting statistics (FCS) to study the
DPT in LRIM based on the shape of the probability distribution function (PDF) of
the order parameter defined in the subsystem. We highlight that it is a robust alter-
native approach to characterize dynamical phases because it can provide qualitative
signatures of transition at transient times.

The rest of this chapter is organized as follows. In Section 3.1 we introduce FCS
of the order parameter. Section 3.2 start with explanation of the quench protocol
and simulation details followed by the results of quenching the transverse field in
Subsection 3.2.1 and interaction range in Subsection 3.2.2. Finally, in Section 3.3
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we provide the conclusion and outlook of the work. The Appendix sections are as
follows. Appendix 3.A outlines the methodology to calculate PDF in MPS formalism.
Appendix 3.B compares the TDVP results with two exact results at two extremes of
LRIM. Appendix 3.C details the errors in the TDVP data.

3.1 Full counting statistics

Full counting statistics (FCS) was first introduced as the full probability distribu-
tion of electron fluctuations in mesoscopic transport[139]. Subsequently, FCS has been
extensively applied in the study of mesoscopic systems [140, 141, 142, 143, 144, 145],
where the various cumulants of the electron distribution yield measurable physical pa-
rameters such as current, noise, and the Fano factor. With significant advancements in
the experimental realization of many-body interacting systems and the development
of numerical algorithms for their simulation, FCS have garnered increasing attention
in the realm of many-body dynamics. In particular, FCS has been employed to inves-
tigate the dynamics of ultra-cold atomic systems [146, 147, 148, 149, 150, 151, 152],
entanglement dynamics [153, 154], dynamical phase transitions [155, 156, 23, 12], and
many-body localization [157, 158]. These applications underscore the versatility and
significance of FCS for probing a wide range of phenomena in the dynamic landscape
of quantum systems.

Complete information regarding the quantum fluctuation of a system is inscribed
in the probability distribution function (PDF), denoted as P (Ô, |ψ⟩), where Ô is the
order parameter of interest and |ψ⟩ is the wavefunction characterizing the quantum
state. Owing to its inclusion of cumulants of all orders, P (Ô, |ψ⟩) provides com-
prehensive statistical information pertaining to order parameter Ô within state |ψ⟩.
Consequently, it is a superior entity for characterizing both the static and dynamic
aspects of quantum systems [159]. Although the concept of FCS is intuitively clear,
obtaining exact results for the FCS of interacting many-body systems poses signifi-
cant challenges [159, 160, 161, 162, 163, 164, 165]. In this context, we aim to provide
a comprehensive review of FCS, focusing on its application to many-body interacting
systems and methods to calculate it in the matrix product state (MPS) formalism.

For a system comprising N site spins, our order parameter is the subsystem mag-
netization defined over a subsystem with size l < N , positioned at the center to
mitigate the boundary effects,

M̂l =
l∑

j=1

ŝxj . (3.2)
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Figure 3.1: Real (a) and imaginary (b) part of the moment generating function of the
ground state of the transverse field Ising model at transverse field value h = 0.48.

The observable M̂l is local and therefore typically relaxes to a stationary state (see
Section 1.1.1) and l is chosen to be sufficiently large to have a well-defined statistical
distribution. The probability that a generic measurement of operator M̂l in a state
defined by density matrix ρ̂ (whether pure or mixed) will yield a value m is given by
the following distribution function,

Pl(m) = Tr[ρ̂δ(M̂l −m)]. (3.3)

Inserting the Fourier expansion of the delta function δ(M̂l−m) =
∫∞
−∞

dθ
2π
eiθ[M̂−m]

in equation 3.3 we get,

Pl(m) =

∫ ∞
−∞

dθ

2π
e−iθmTr[ρ̂eiθM̂l ], (3.4)

where Gl(θ) = Tr[ρ̂eiθM̂l ] is the moment-generating function and is central to the
calculation of the full PDF. Moments of any order can be derived from the moment-
generating function by a straightforward differential,

Tr[ρ̂M̂n] =
∂Gl(θ)

∂θn

∣∣∣∣
n=0

. (3.5)
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Furthermore, Gl(θ) satisfies three important properties: Gl(0) = 1, Gl(−θ) =
Gl(θ)

∗, Gl(θ+2π) = (−1)lGl(θ). The first two properties are trivial by construction.
The last one can be proved by expanding and rearranging the exponential,

eiθM̂l =
l∏

j=1

eiθŝ
x
j (3.6a)

=
l∏

j=1

[
1 + iθ

ŝxj
1!
− θ2

ŝx2j
2!
− iθ3

ŝx3j
3!

+ θ4
ŝx4j
4!

+ . . .
]

(3.6b)

=
l∏

j=1

[[
1− (θ/2)2

2!
+

(θ/2)4

4!
+ . . .

]
+ i
[(θ/2)2

1!
σ̂xj −

(θ/2)3

3!
σ̂xj + . . .

]]
(3.6c)

=
l∏

j=1

[
cos

(
θ

2

)
+ i sin

(
θ

2

)
σ̂xj

]
(3.6d)

thus implying

ei(θ+2π)M̂(l) =
l∏

j=1

[
− cos

(
θ

2

)
− i sin

(
θ

2

)
σ̂xj

]
= (−1)leiθM̂(l). (3.7)

we can now restrict the range of θ in equation (3.4) in the interval −π ≤ θ < π.
Figure 3.1 shows the real and imaginary part of Gl(θ) corresponding to the ground
state of transverse field Ising model at h = 0.48. For spin one-half systems the
order parameter m take either integer or half-integer discrete values in the range
m ∈ { − l

2
,− l

2
+ 1, . . . , l

2
− 1, l

2
} depending upon whether l is even or odd, we can

redefine the PDF as

Pl(m) =

{∑
r∈Z G̃l(r)δ(m− r) if l is even,∑
r∈Z G̃l(r +

1
2
)δ(m− r − 1

2
) if l is odd,

(3.8)

where G̃l(r) =
∫ π
−π

dθ
2π
e−irθGl(θ). The calculation of Gl(θ) is straightforward in MPS

formalism and is discussed in detail in Appendix 3.A. The integral of G̃l(r) over the
range θ ∈ [−π, π] is calculated by discrete sum with ∆θ = 0.005.

3.2 Quench dynamics

we consider two different classes of quantum quenches to investigate the post
quench dynamics of the subsystem magnetization PDF;
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Figure 3.2: (a) Quench protocol: At time t = 0 initial state |ψi⟩t=0 (here Green-
berger–Horne–Zeilinger state) is quenched and evolved unitarily with a post quench
Hamiltonian Ĥf . The evolution is monitored at each time step by calculating the
full probability distribution of the order parameter. (b) Two possible cases for relax-
ation following a global quantum quench, case 1: The initial ferromagnetic order is
strongly retained and the full probability distribution remains strictly bimodal, case
2: The initial ferromagnetic order quickly melts with the full probability distribution
exhibiting a Gaussian shape.
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1. Initialize the system at hi = 0 and quench the transverse field to finite hf for a
given value of interaction range.

2. Initialize the system at α = 0 (fully connected) and quench the interaction range
to α = 10 (short range Ising) at finite value of transverse field and vice-versa.

For finite system the ground state of ferromagnetic LRIM in the limit h → 0 is
the Z2 symmetric Greenberger–Horne–Zeilinger (GHZ) state for all values of α,

|ψi⟩ =
1√
2

[
N⊗
j=1

|→⟩xj +
N⊗
j=1

|←⟩xj

]
(3.9)

where, |→⟩x =
(
1/
√
2

1/
√
2

)
and |←⟩x =

(
1/
√
2

−1/
√
2

)
are the eigenkets of ŝx operator.

This state is characterised by a subsystem magnetization PDF, Pl(m) = 1
2
[δm,l/2 +

δm,−l/2], exhibiting long range ferromagnetic order. Unlike the fully polarized state the
GHZ state exhibits multi-partite entanglement and inherent long range correlation
[166]. This state admits a an exact MPS representation with χ = 2 following a trivial
decomposition,

|ψi⟩ =
1√
2
M1M2 . . .MN−1MN (3.10)

where, M1 =
(
|→⟩x |←⟩x

)
, MN =

(
|→⟩x
|←⟩x

)
, and Mj =

(
|→⟩x 0
0 |←⟩x

)
,∀j ∈

{2, 3, . . . , N − 1}. Each of these matrices can be appropriately reshaped to three
legged tensors to bring down to the useful MPS form.

At time t = 0 the system is suddenly quenched to a final Hamiltonian Ĥ(α, hf )
with 0 < hf < hc(α), where hc(α) is the equilibrium ferromagnetic to paramagnetic
transition point at a given α. For non-zero h the ground state is non-trivial, and
therefore, the initial state is numerically initialized using the DMRG algorithm (see

Section 2.6). The post quench unitary evolution |ψ⟩t+dt = e−idtĤ |ψ⟩t is achieved using
the TDVP algorithm (see Section 2.7) with a second-order integration scheme and
Trotter time-step of 0.05. The details of the convergence of the data and the numerical
accuracy are thoroughly explained in Appendix 3.C. Throughout this thesis, we have
taken the total system size of N = 200 and the subsystem of l = 100 unless explicitly
stated otherwise. Figure 3.2 (a) illustrates the general global quench protocol.

The two extremes of ferromagnetic LRIM at α = ∞ and α = 0 are exactly
solvable, offering an excellent basis for benchmarking our methodology. In Appendix
3.B.1 we compare our numerical results with the exact analytical results for the short
range transverse field Ising model. In Appendix 3.B.2 we outline a recipe for exactly

54



CHAPTER 3. DYNAMICS OF ORDER PARAMETER STATISTICS 55

calculating the time-dependent PDF for the fully connected Ising model with exact
diagonalization, and compare the TDVP results with the exact results.

3.2.1 Quench of the transverse field

The post quench behaviour of the PDF strongly depend on the post quench pa-
rameters and subsystem size l. Figure 3.3 illustrates various representative quenches.
In the first row, we observe a consistent qualitative behavior for α ∈ 0.0, 1.0 and
hf = 0.30. In both cases, the system robustly maintains its initial long-range fer-
romagnetic order throughout temporal evolution, represented as case 1 in figure 3.2
(b). Additionally, a distinctive oscillation in the PDF is evident, characterized by a
return frequency along the time axis. In the limit N → ∞ and α → 0 mean field
provides an accurate description of the dynamical behavior. The observed oscillatory
behavior can be understood in large N limit with semiclassical techniques formulated
as the classical trajectory of a collective spin that allows to calculate not just the
expectations but also the PDF of the order parameter [52, 43]. This behavior under-
goes a notable transformation when α = 2.5, where the initial ferromagnetic order
begins to dissipate at later times, indicating a fundamentally different dynamical

Figure 3.3: PDF dynamics of subsystem magnetization after a quantum quench for l =
100, α ∈ {0.0, 1.0, 2.5} and hf ∈ {0.30, 0.50} (in first and second rows respectively).
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regime. In the second row, we observe distinct quench dynamics for the same values
of α but with a higher post quench transverse field (hf = 0.50). In this scenario, a
larger transverse field facilitates rapid dissolution of the initial ferromagnetic order.
However, the evolution of the PDF experiences a qualitative shift in its late-time
dynamics contingent upon the interaction range. For α = 0.0, 1.0, the PDF dynam-
ics are characterized by periodic rebouncing of the probability streams, resulting in
a broad and flat distribution. Consequently, the PDF does not equilibrate withing
simulation time. Conversely, for α = 2.5, this pattern transforms, with the PDF
smoothly melting and eventually adopting a Gaussian shape centered around zero,
represented as case 2 in figure 3.2 (b).

Gaussification of PDF is significant because it indicates a transition from the
initial long-range ferromagnetic order to a paramagnetic phase. This transition is
anticipated when the linear dimension of the subsystem surpasses the steady-state
correlation length [167, 168]. In essence, the degree to which the PDF aligns with
the Gaussian approximation suggests the extent of the departure of the system from
its initial ferromagnetic order, serving as a valuable metric for characterizing the
dynamical transition of the system. Gaussification of PDF is accessed by comparing
the PDF with the Gaussian approximation obtained with the first two moments,

PG(µ, t) =
1√

2πσ2(t)
exp

[
− (µ− m̄(t))2

2σ2(t)

]
(3.11)

where m̄(t) = ⟨ψt| M̂l |ψt⟩ and σ(t) = ⟨ψt| [M̂l − m̄(t)]2 |ψt⟩ are the first two mo-
ments of subsystem magnetization. Quantitatively the goodness of Gaussification can
be measured by defining a metric Distance to Gaussian (DG) as

DG =

√∑
m

[P (m)− PG(m)]2 (3.12)

where P (m) is the numerically calculated PDF and PG(m) is the corresponding
Gaussian PDF obtained using Equation 3.11. DG quantifies the proximity (or diver-
gence) of the PDF from a Gaussian shape, where DG = 0 indicates a perfect Gaussian
form. DG is not be suitable for instances where the system fails to reach a steady
state within the specified time frame and exhibits oscillations. In such scenarios, we
introduce the time-averaged DG,

DGavg =
1

T − To

∫ T

To

DG(dt) dt (3.13)

where To is chosen to avoid the initial sharp drop in DG [cf. Fig. 3.6].
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Dynamical phases across α = 2

In Figure 3.4, we present the late-time PDF of the order parameter as a function
of subsystem size l for two distinct values of the interaction range, situated above
and below α = 2.0 and hf = 0.40. Notably, we observe contrasting behaviors in the
PDF for these two regimes. For α = 1.5, the PDF maintains a robust double-peaked
shape across all l values. Moreover, the divergence of the two branches of the PDF
intensifies with increasing l, indicating a strong retention of the initial memory of

Figure 3.4: Contour plot of the late time PDF of subsystem magnetization after
a quantum quench as a function of subsystem size, for α ∈ {1.5, 2.5}, hf = 0.40,
and time t = 25. The subsystem magnetization m has been rescaled to the range
m/l ∈ [−1.0, 1.0], due to this rescaling the intensity of the contour plot decreases
with increasing l and the colorbar readings doesn’t signify the actual value of PDF.
The second column shows PDF at four representative values of l. The symbols are
TDVP results and the lines are the Gaussian approximation. The inset shows the
dependence of DG on l.

57



58 3.2. QUENCH DYNAMICS

the long-range order in the thermodynamic limit. Conversely, for α = 2.5, the PDF
exhibits a double-peaked profile for smaller l, becomes flat for intermediate l, and
eventually transforms into a Gaussian shape for larger l. This progression suggests the
complete melting of the initial memory of the long-range order in the thermodynamic
limit. These distinct behaviors above and below α = 2.0 serve as the basis for the
dynamical phase transition (DPT) [17, 137, 138]. Accordingly, α = 2.0 delineates the
transition line between a dynamical ferromagnet and dynamical paramagnet.

Alternatively, it has been suggested that the ferromagnetic order persists well be-
yond persists well beyond α = 2.0 and depends on both the initial and final quench
parameters, based on the long-lived prethermal value of magnetization [137]. In
Figure 3.5, we performed quenches similar to figure 3.4 at a smaller value of final
transverse field, hf = 0.25 and for a longer timescale t = 50. For α = 1.5, we ob-
serve qualitatively similar behaviors across all timescales and subsystem sizes. The
initial ferromagnetic order persists throughout the time evolution, and the PDF con-
sistently maintains a distinctive double peak. Conversely, at α = 2.5 we observe a
completely different behavior, while the long-range ferromagnetic order persists at
shorter timescales, it begins to melt at longer times. This trend is particularly evi-

Figure 3.5: PDF of subsystem magnetization for α ∈ {1.5, 2.5}, hf = 0.25 (in first and
second rows respectively) at different time scales after the quantum quench. The first
two columns shows the contour plot of the rescaled PDF as a function of subsystem
size at times t ∈ {10, 50}. The last column shows the PDF at times t ∈ {10, 35, 50}
and subsystem size l = 100.
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dent in the rightmost panel of the second row of Figure 3.5, where the PDF at t = 10
displays a clear double peak that diminishes over time, accompanied by a stream of
probability density converging toward m = 0. These observations suggest that the
prethermal state is not robust for larger system sizes and longer timescales. Con-
sequently, the initial long-range ferromagnetic order melts beyond α = 2 with the
expectation of Gaussification in the thermodynamic limit.

Figure 3.6: PDF of subsystem magnetization after a quantum quench for l = 100, α ∈
{0.0, 1.0, 1.5, 2.0} and hf ∈ {0.60, 0.70}. The first two columns shows the evolution of
the PDF as a function of time t ∈ [0, 25]. The third column shows the time evolution
of DG (y-axis in log scale) and the last column shows the late time PDF at time
t = 25 for the mentioned parameters. The symbols are the TDVP results whereas
the corresponding full lines are the Gaussian approximation.
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Figure 3.7: The PDF of subsystem magnetization after a quantum quench at time
t = 25 for subsystem sizes l ∈ {10, 20, 40, 100} for two representative values of post
quench parameters α = 1.5, hf = 0.60, and α = 1.8, hf = 0.70. The symbols are the
TDVP results whereas the corresponding full lines are the Gaussian approximation.
In the inset we show the dependence of DG on the subsystem size.

Quenches in α ≤ 2 and hf > 0.5 regime

In Figure 3.6, we investigate the quench dynamics of the subsystem magnetiza-
tion PDF for hf > 0.50 for four representative values of α. For the fully connected
case with α = 0.0, the initial ferromagnetic order melts, and after a few oscillations
(dependent on hf ), the PDF broadens. DG follows a similar pattern, oscillating at
late times and consistently remaining above zero, indicating a lack of Gaussification.
However, the system retains some memory of the initial ferromagnetic order, as evi-
denced by the PDF at t = 25, which shows two peaks at the edges for both values of
hf . At α = 1.0, we observe two markedly different behavior of PDF at at hf = 0.60
and 0.70. For hf = 0.60, the late-time PDF is flat and far from Gaussian with no
remnants of the initial ferromagnetic order. In contrast, at hf = 0.70, remnants of
the initial ferromagnetic order persist, as manifested by peaks at the edges of the
late-time PDF. These differences underscore the strong dependence of PDF dynam-
ics on the depth of the quench. A larger quench depth injects more energy into the
system, delaying relaxation to a steady state and resulting in more oscillations in the
PDF evolution. At α = 1.5, Gaussification of the PDF is observed at late times for
hf = 0.60. However, increasing the quench depth to hf = 0.70 results in a flat PDF
for the same simulation time. The evolution of the DG metric provides clarity as DG
starts to relax to zero for hf = 0.60 but oscillates and remains well above zero for
hf = 0.70. By further increasing the interaction range to α = 2.0, clear Gaussifica-
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tion is observed at both values of hf . The time evolution of DG also reveals that the
system relaxes to a stationary state faster and admits a smaller value for hf = 0.60
than for hf = 0.70.

In Figure 3.6, Gaussification is predominantly observed only for higher values of
α. These observations alone do not allow us to conclusively claim the Gaussifica-
tion of the subsystem magnetization. A finite-size study with several subsystem sizes
provides a much stronger insight into the potential Gaussification of the PDF in the
thermodynamic limit. Figure 3.7 illustrates the late-time PDF for the two represen-
tative quenches at different subsystem sizes. For l = 100, Gaussification is evident
for both quenches. By contrast, smaller subsystem sizes predominantly exhibit flat
distributions far from the Gaussian distribution. The inset, depicting the variation of
DG with system size, illustrates the trend towards Gaussian behavior with increas-
ing system size. These flat distributions resemble those observed in Figure 3.6 for a
smaller α but with l = 100. Notably, for α = 1.8, hf = 0.70, l = 10, a strong rem-
nant of the initial ferromagnetic long-range order is observed, manifested by sharp
peaks at the edges. This suggests that the flat distribution may be an intermediate
state between double-peaked and Gaussian distributions. This observation provides
a strong signature for the Gaussification of subsystem magnetization in thermody-
namic limits. This observation aligns with the DPT proposed in [17], which suggests
that the dynamical critical point is approximately hf ≈ 0.50. Although experimental
observations with trapped ions support the existence of this phenomenon [18, 19], the
exact values of the dynamical critical points and critical exponents remain open for
investigation.

In Figure 3.8, we investigate the dependence of Gaussification on the post quench
transverse field hf at three representative values of the interaction range. For α = 1.5,
the system tends towards a Gaussian behavior with increasing hf up to a certain point,
marked by a dip in the color plot of the PDF versus hf in the first panel of the first row.
Beyond this point, as hf increases further, the PDF moves away from the Gaussian
and broadens in shape. The second panel of the first row highlights Gaussification only
for the intermediate values of hf . This is counter-intuitive because larger transverse
fields tend to disrupt the long-range ferromagnetic order. However, a larger value of
hf is associated with a higher effective temperature [53]. Consequently, the system
requires a longer time and larger subsystem size to eventually relax to a Gaussian
distribution. The third panel demonstrates that for sufficiently large system sizes
and longer simulation times, the PDF converges towards a Gaussian shape for all
values of hf . For α ≥ 2.0, the PDF is Gaussian within the considered range of hf
and simulation parameters. However, the dip in the color plot still persists. This dip
becomes less prominent with increasing α, as illustrated in the plots for α = 2.5 in
the third row.
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Figure 3.8: PDF dynamics of subsystem magnetization after a quantum quench as a
function of post quench transverse field hf at three representative values of interaction
range α = {1.5, 2.0, 2.5}. The dotted lines are the lines of constant probability at
P (m) = 0.002, these lines don’t have any quantitative significance and is plotted for
better visualization of PDF. The first column shows the color plot of PDF at time
t = 25 at different values of hf and l = 100. The second column shows the PDF at
t = 25 at different hf , the symbols are the TDVP calculations whereas the lines are
the Gaussian approximation. The inset shows DGavg at corresponding values of hf .
The last column shows the finite size dependence of DGavg for four different values

of hf . DGavg is calculated by averaging over the final
(

3
5

)th
of the total simulation

time.
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3.2.2 Quench of the interaction range

Here, we investigate the relaxation of the subsystem magnetization PDF following
a quantum quench in the direction of the interaction range α. Specifically, we quench
the system from one extreme to the other, initializing at α = 0.0, representing the
fully connected model, and quenching to α = 10.0, almost resembling the Ising model
with nearest neighbor interactions, and vice versa. The transverse field h remains
constant throughout the evolution. In addition to examining how the initial order
dissipates, we are interested in understanding whether quenching in opposite direc-
tions yields qualitatively equivalent outcomes. Figure 3.9 illustrates these quenches
for four representative values of the transverse field h = {0.30, 0.40, 0.48, 0.60}. No-
tably, the two peaks of the initial PDF are broader than those in the cases where the
system is initialized with h = 0.

Figure 3.9: PDF dynamics of subsystem magnetization after a quantum quench along
the direction of interaction range, α. The first row shows the results for quenches
where the system is initialized at αi = 0.0 and quenched to a final αf = 10.0, the
second row shows the results for opposite condition. The quenches are performed for
three representative values transverse field h ∈ {0.30, 0.40, 0.48, 0.60}.

We observe distinct behaviors for the two classes of quenches undertaken. When
initiating quenches from the fully connected state and evolving with the short-range
Hamiltonian, we witness the dissolution of the initial ferromagnetic order for suffi-
ciently large values of the transverse field. For h = 0.30, 0.40, the two branches of
the PDF exhibit progressive dissolution over time, as evidenced by the emergence of
probability density streams branching from the main PDF peak. However, the initial
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ferromagnetic order persists throughout the simulation. At h = 0.48, we observe
a complete breakdown of the initial ferromagnetic order, with subtle indications of
Gaussification at later times. Conversely, for quenches starting from the ground state
of the short-range Hamiltonian and evolving with the fully connected Hamiltonian,
robust remnants of the initial ferromagnetic order endure throughout the evolution,
displaying no signs of breakdown. Although the PDF exhibits oscillations with in-
creasing h, there is no discernible change in the intensity of the PDF branches over
time. The results in the last column pertain to similar quenches but at h = 0.6. For
the quench from α = 0.0 to α = 10.0 we observe that the initial ferromagnetic order
melts faster than before, and the system is quenched to a point in the paramagnetic
regime in the equilibrium phase diagram. The quench in the opposite direction is
initialized at a paramagnetic point such that the PDF begins with a Gaussian shape
but relaxes quickly. Interestingly, at intermediate times, we observe a double peak
PDF, signifying long range ferromagnetic order. This long range order is short lived
and melts quickly. However, the fate of PDF over a long time limit remains unclear.

The two cases of α represent the extremes of the long-range Ising model. When
α = 10.0, the system closely resembles the well-known transverse-field Ising model.
This model does not support long-range order at finite temperatures, which aligns
with our observation of melting of the initial ferromagnetic order. The protocol
introduces an extensive amount of energy into the system, effectively simulating a
finite-temperature environment. Consequently, although quench occurs within the
ferromagnetic region in the zero-temperature equilibrium phase diagram, the system
relaxes to a paramagnetic point in a finite-temperature phase diagram. In contrast,
the fully connected Ising model supports long-range ferromagnetic order, even at finite
temperatures [169, 49, 170]. This characteristic likely explains the robust remnants
of the initial ferromagnetic order observed later in our study.

3.3 Conclusion

In this Chapter we explored the dynamical phases of LRIM through the dynam-
ics of the PDF of the subsystem magnetization following quantum quenches. We
highlighted that because the FCS includes moments of all orders, it is a more robust
approach to characterize the dynamical phases. Our observations indicated that, for
α > 2.0, the initial long-range ferromagnetic order is not robust in the thermody-
namic limit, where previous studies proposed conflicting conclusions [17, 137]. This
was manifested by the transformation of the double-peak PDF into a Gaussian dis-
tribution. Even for cases where Gaussification was not observed for the considered
system size and simulation time, a qualitative signature of the melting of the fer-
romagnetic order was observed in the transient time. In another work [171] it was
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demonstrated that for α > 2 the order parameter decays slowly but with a finite rate
for variable range of interaction. It will be interesting to see how the decay rate of
the FCS observed in Figure 3.5 compares to the results reported in this article.

In the case of α ≤ 2.0, a robust remnant of the initial long-range order persisted,
as highlighted by the strictly bimodal PDF throughout the post quench evolution,
particularly when hf ≲ 0.50. Beyond hf = 0.50, we observed Gaussification of the
order parameter PDF, which is dependent on the subsystem size and total simulation
time, necessitating finite-size analysis for conclusive results. Nevertheless, preliminary
findings suggest that for sufficiently large system sizes and extended simulation times,
Gaussification of the order parameter PDF is expected for all α values, following a
quantum quench along the transverse field with hf ≥ 0.50. This contrasting behavior
based on the shape of the post quench PDF suggests the line hc ≈ 0.5 as the dynamical
ferromagnetic to paramagnetic transition point for α < 2 in line with a previous
study [17]. For finite systems without an explicitly symmetry breaking term in the
Hamiltonian the true ground state of LRIM in the equilibrium ferromagnetic phase
has bimodal PDF. We therefore initialized the state as a Z2 symmetric GHZ state
which is the ground state of finite LRIM with zero transverse field. This symmetry
remains protected through out the post quench evolution for both phases as revealed
by oscillating bimodal PDF in dynamical ferromagnetic phase and Gaussian PDF
in dynamical paramagnetic phase. Quenches along the interaction range revealed
qualitatively distinct dynamics of the order parameter PDF depending on the quench
direction. Quenches starting from the fully connected state and evolving with short-
range Hamiltonians exhibit the effective melting of the initial ferromagnetic order.
Conversely, quenches in the opposite direction displayed complete persistence of the
initial order. The success of FCS in characterizing the dynamical phases in LRIM
motivated us to employ this approach to study thermalization of LRIM or lack thereof
which forms the central topic of the next chapter.

3.A Calculating full counting statistics with MPS

The computational bottleneck in calculating the PDF of an order parameter is the
moment-generating function Gl(θ) = Tr[ρeiθM̂l ]. For a pure state, the density matrix

can be written as ρ = |ϕ⟩⟨ϕ| such that Gl(θ) = ⟨ϕ|eiθM̂l |ϕ⟩ = ⟨ϕ|
∏i+l−1

j=i eiθŝ
x
j |ϕ⟩. We

redefine the single-site operator eiθŝ
x
j as Oσ′

j ,σj and represent state |ϕ⟩ as an MPS.
Gl(θ) can now be written in MPS formalism as,

⟨ϕ|
j+l−1∏
i=j

Oσ′
i,σi |ϕ⟩ = ΦL

cj−1,c′j−1

[ j+l−1∏
i=j

[Mσ′
i ]∗Oσ′

i,σiMσi
]
ΦR
cj+l−1,c

′
j+l−1

, (3.14)
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where ΦL
cj−1,c′j−1

= [Mσ1
c′0,c

′
1
]∗Mσ1

c0,c1
. . . [M

σj−1

c′j−2,c
′
j−1

]∗M
σj−1
cj−2,cj−1 is the trace over physical

indices left of j and ΦR
cj+l−1,c

′
j+l−1

= [M
σj+l
c′j+l−1,c

′
j+l

]∗M
σj+l
cj+l−1,cj+l . . . [M

σN
c′N−1,c

′
N
]∗MσN

cN−1,cN

is the trace over physical indices right of j + l − 1. Figure 3.10 shows the tensor
network diagram corresponding to Equation 3.14. After calculating Gl(θ), the full
probability distribution Pl(m) can be computed numerically using discrete Fourier
transformation. For all results in the main text, we have taken dθ = 0.01.

Figure 3.10: Computing the generating function Gl(θ) in matrix product state rep-
resentation. The site j is chosen such that the subsystem of size l is in the center of
the full system.

3.B Integrable limits

The two extremes of the LRIM at α = ∞ and α = 0.0 are exactly solvable.
Here, we will compare the the PDF of subsystem magnetization obtained by TDVP
simulations and exact analytical and numerical results in these two extremes.

3.B.1 Nearest neighbor limit

The LRIM is exactly solvable at α =∞; it reduces to nearest neighbor transverse
field Ising model. The dynamic and stationary PDF for nearest neighbor Ising model
has been analytically computed for quenches to both ferromagnetic and paramagnetic
regimes by means of a relation to a 3-state classical model [168]. Here, we compare
the PDF after a quantum quench in long range model with increasing values of α
obtained by TDVP with the stationary PDF of the nearest neighbor transverse field
Ising model computed analytically. We also compare the corresponding evolution of
the formation probabilities Pl(m = ∓l

2
) and Pl(m = 0) for quenches to ferromagnetic

and paramagnetic regimes with the analytical results.
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Figure 3.11: PDF of subsystem magnetization of nearest neighbor transverse field
Ising model after quantum quench. The first panels on the left column are the PDF
after quench to two representative final transverse field and at three increasing values
of α. The panels on the right are the time evolution of formation probabilities,
Pl(m = ±l

2
), Pl(m = 0), for the corresponding final transverse fields. The lines are

analytical results [168] whereas the symbols are TDVP results.

In figure 3.11 we see that the TDVP results perfectly overlaps with the analytical
results for sufficiently large α. In fact we don’t observe much difference between the
α = 5 and α = 10 results.

67



68 3.B. INTEGRABLE LIMITS

Figure 3.12: PDF of subsystem magnetization of fully connected Ising model after
quantum quench. The first panels on the left column are PDF at three representative
time slices at two values of final transverse field. The panels on the right are the
time evolution of formation probabilities, Pl(m = ±l

2
), Pl(m = 0), for the respective

final transverse fields. The full lines are exact results calculated from equation 3.28
whereas the symbols are TDVP results.

3.B.2 Fully connected limit

The other extreme of LRIM at α = 0 gives us the fully connected Ising Hamilto-
nian

H(h) = − 1

N

N∑
i,j

ŝxi ŝ
x
j − h

N∑
i=1

ŝzi (3.15a)

= − 1

N
(Ŝx)2 − hŜz (3.15b)

where Ŝa =
∑N

i ŝ
a
i , a = x, y, z, are the collective spin operators and has commu-

tation relations like normal spin operators. In this regime the model behaves as a
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single collective spin and we can exactly solve the dynamics of our initial state with
this Hamiltonian. Our initial state is the Z2 symmetric GHZ state

|ψi⟩ =
1√
2
(|→, ...→,→,→ ...,→⟩x + |←, ...←,←,← ...,←⟩x). (3.16)

This state evolves unitarily as |ψt⟩ = e−iĤt |ψi⟩, so we need to represent |ψ0⟩
as the superposition of the eigenkets of the Hamiltonian 3.15. This Hamiltonian is
diagonalized with the basis {

∣∣N
2
, n
〉
} that are the simultaneous eigenkets of collective

spin operators (Ŝ2, Ŝx) in the maximal total spin sector. We strictly remain in this

sector because our initial state |ψ0⟩ is in this sector and the unitary operation e−iĤt

preserves the total spin quantum number. The total spin quantum number is fixed
through out the time evolution and is thus redundant, so we will from hereon use the
notation {|n⟩} where n is the number of down spins such that

|n⟩ = 1√(
N
n

) ∑
j1<j2<...jn

|...j1..j2...jn...⟩ , Ŝx |n⟩ =

(
N

2
− n

)
|n⟩ (3.17)

where j1, j2, ...jn are the positions of the down spins and the sum runs over all(
N
n

)
configurations. We can represent our initial state 3.16 as the linear combination

of the eigenkets {|Ej⟩} of the Hamiltonian 3.15

|ψi⟩ =
N∑
j=0

kj |Ej⟩ (3.18)

where, { |Ej⟩ } can be represented as the linear combination of the basis states,

|Ej⟩ =
∑N

n=0 c
j
n |n⟩. The coefficients {kj} can be extracted as

kj = ⟨Ej|ψ0⟩ =
N∑
n=0

(cjn)
∗ δ0,n + δN,n√

2
=

(cj0)
∗ + (cjN)

∗
√
2

. (3.19)

The evolved state is

|ψt⟩ = e−iĤ(h)t

N∑
j=0

kj |Ej⟩ =
N∑
j=0

kje
−iEjt |Ej⟩ =

N∑
n=0

Xn(t) |n⟩ (3.20)

where the time dependent coefficient is introduced as

Xn(t) =
N∑
j=0

kjc
j
ne
−iEjt. (3.21)
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The generating function of the PDF can then be calculated as

Gl(θ, t) = ⟨ψt| eiθM̂(l) |ψt⟩ =
∑
n,ñ

Xñ(t)
∗Xn(t) ⟨ñ| eiθM̂(l) |n⟩ . (3.22)

Since |n⟩ is not an eigenket of the subsystem magnetization we have to decompose
it as

|n⟩ = 1√(
N
n

) min(l,n)∑
σ=max(0,n−N+l)

|σ⟩l ⊗ |n− σ⟩N−l (3.23)

where σ is the number of down spins in the subsystem of size l such that

|σ⟩l ⊗ |n− σ⟩N−l =
∑

j1<j2<...jσ
j̃1<j̃2<...j̃n−σ

|...j1..j2...jσ...⟩l ⊗
∣∣...j̃1..j̃2...j̃n−σ...〉N−l (3.24)

where j1, j2, ...jσ are the positions of down spins in the subsystem l and j̃1, j̃2, ...j̃n−σ
are the positions of down spins in rest of the system. The sum runs through all(
l
σ

)
×
(
N−l
n−σ

)
configurations. The state in equation 3.23 is properly normalized as can

be seen from the following identity,

min(l,n)∑
σ=max(0,n−N+l)

(
l

σ

)
×
(
N − l
n− σ

)
=

(
N

n

)
. (3.25)

It goes by the name Chu-Vandermonde identity [172]. The representation in 3.23
is particularly useful because |σ⟩l⊗ |n− σ⟩N−l is an eigenket of the of the subsystem
magnetization operator

M̂(l) |σ⟩l ⊗ |n− σ⟩N−l =

(
l

2
− σ

)
|σ⟩l ⊗ |n− σ⟩N−l . (3.26)

We can now proceed to calculate the generating function

⟨ñ| eiθM̂(l) |n⟩ = 1√(
N
ñ

)(
N
n

)∑
σ,σ̃

e
iθ

(
l
2
−σ
)(

l

σ

)
δσ̃,σ

(
N − l
n− σ

)
δñ−σ̃,n−σ (3.27)

replacing equation 3.27 in equation 3.22 we get the final expression for generating
function of the PDF
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Gl(θ, t) =
N∑
n=0

min(l,n)∑
σ=max(0,n−N+l)

1(
N
n

) |Xn(t)|2eiθ(
l
2
−σ)
(
l

σ

)(
N − l
n− σ

)
. (3.28)

The PDF can be calculated from this expression of generating function by a Fourier
transformation (see Section 3.1 ),

Pl(m) =
N∑
n=0

min(l,n)∑
σ=max(0,n−N+l)

1(
N
n

) |Xn(t)|2
[∫ π

−π
eiθ(

l
2
−σ−m) dθ

2π

](
l

σ

)(
N − l
n− σ

)
(3.29)

=
N∑
n=0

min(l,n)∑
σ=max(0,n−N+l)

1(
N
n

) |Xn(t)|2
Sin[π( l

2
− σ −m)]

π( l
2
− σ −m)

(
l

σ

)(
N − l
n− σ

)
(3.30)

In figure 3.12 we plot the PDF after quantum quench to two different final trans-
verse field at three different time slices and the evolution of formation probabilities.
The results show an excellent match between the exact diagonalization results and
TDVP for both quenches.

3.C Convergence with bond dimension

To ensure the data generated by the simulations are correct we need to check
the convergence of the errors with increasing bond dimension. In TDVP the bond
dimension is responsible for projection error [132], which is a primary source of error.
To check that the errors converge with increasing bond dimension we compare the
time evolution of subsystem magnetization and relative errors for some representative
cases of quantum quenches for χ = {40, 60, 100} in figure 3.13. Quenches along the
transverse field show qualitatively similar behavior, the relative error converges and
becomes flat in a long time limit for all values of post quench parameter. Furthermore,
for times up to 25, which is the maximum time reached for most of the results in
the main text, the relative error remains smaller than O(10−3). For quenches of
the interaction range with h = 0.40 we observe a similar behavior. For h = 0.48,
the quench from αi = 10.0 to αf = 0.0 shows a markedly different behavior. The
magnetizations at different χ maintains a constant shift from one another right from
t = 0 throughout the evolution. This is because the point α = 10.0 and h = 0.48 is
close to the critical point of the equilibrium phase diagram where we see a logarithmic
divergence of the entanglement entropy [107] and DMRG generate a considerable
relative error while initializing the system in the ground state. This initial error
simply gets propagated throughout the time evolution. The relative errors in opposite
direction behaves normally attaining a flat region after oscillations.
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Figure 3.13: Convergence of subsystem magnetization and relative errors with in-
creasing bond dimension, χ = 40 (blue), χ = 60 (red), and χ = 100 (black). The
top row is for α = {1.5, 2.5} and hf = 0.30(colored dotted) , and hf = 0.60(colored
bold). The bottom row is for h = {0.40, 0.48} and quench from α = 10.0 to α = 0.0
(colored dotted) α = 0.0 to α = 10.0 (colored bold)

In figure 3.14 we also plot the error in emptiness formation probability with respect
to the exact analytical and numerical results at the two solvable extremes of the model.
We observe that these errors are smaller than the order of O(10−2) for the overall
time evolution.
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Figure 3.14: Errors in emptiness formation probability computed with bond dimen-
sion χ = 100 with respect to the exact analytical and numerical results at two ex-
tremes of the LRIM for quenches to two values of final transverse fields. On the left
panel the error is computed by subtracting the exact diagonalization results with the
TDVP results, refer to figure 3.12. On the right panel the error is computed by sub-
tracting the exact analytical results with the TDVP results computed for sufficiently
large interaction range, α = 10, refer to figure 3.11.
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Chapter 4

Thermalization : a full counting statistics
approach

The Isolated nonintegrable manybody systems are expected to thermalize, that
is, the late time expectation value of a local observable equilibrate to the thermal
value predicted by statistical mechanics [29, 31, 173, 30] (see Section 1.1 for a rig-
orous definition). However, the approach to thermalization is severely affected by
different dynamical phenomena, such as many-body localization [39, 20, 21, 22] and
confinement [174, 64, 23]. LRIM is non-integrable therefore, it is expected to ther-
malize. However, it also hosts strong confinement, which makes it a paradigmatic
model for investigating the thermalization behavior. A previous study showed that
LRIM exhibits prethermalization in the mean-field regime α < 1 because of the emer-
gence of two competing time scales with large separations [175, 52]. Furthermore, a
strong prethermal regime was observed for LRIM in a system of trapped ions for
α = 0.55. However, in the previous chapter we observed a quick relaxation of the
initial ferromagnetic order parameter in the dynamical paramagnetic regime with the
emergence of Gaussian PDF of subsystem magnetization for larger α. Gaussification
does not imply thermalization in general; however, the existence of a single timescale
for equilibration is definitely a strong indication of thermalization. In contrast, in
the dynamical ferromagnetic regime, the memory of the initial state was strongly
retained owing to the confinement. A natural inquiry following these observations is
whether the system exhibits thermalization in these different dynamical regimes. As
detailed in Section 1.1.2 thermalization of a closed quantum system following a global
quantum quench can be quantified with two equivalent conditions,

lim
t→∞

Tr[ρ̂(t)Ôloc]→ Tr[ρ̂SSÔloc] =
1

NE0,∆

∑
|Em−E0|<∆

⟨m|Ôloc|m⟩. (4.1)
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Figure 4.1: (a) Global Quench protocol: System is initialized as GHZ state, at time
t = 0 the system is suddenly quenched to a final Hamiltonian Ĥf and the initial
state is unitarily evolved with the final Hamiltonian. (b) The nonequilibrium state
following a global quantum quench can exhibit different relaxation behavior; Path
1: a direct relaxation to thermal equilibrium with a single time scale, Path 2: a
quick relaxation to a long lived prethermal state eventually followed a relaxation to
thermal equilibrium, Path 3: a strong retention of initial memory and suppression of
relaxation to thermal equilibrium.

lim
t→∞

Tr[ρ̂(t)Ôloc]→ Tr[ρ̂SSÔloc] =
Tr[e−βeffĤÔloc]

Tr[e−βeffĤ ]
, (4.2)

Equation (4.1) represents thermalization within the microcanonical ensemble (MCE).
The summation includes all the eigenstates of the Hamiltonian within a narrow en-
ergy range ∆ centered around the initial energy E0. The normalization factor NE0,∆
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counts the energy eigenstates within this range. By contrast, equation (4.2) implies
thermalization within the canonical Gibbs ensemble (CGE). The parameter βeff rep-
resents the inverse effective temperature, that is fixed by the initial energy of the

system E0 =
Tr[ρ̂βeffĤ]

Tr[ρ̂βeff ]
(in a closed system, the energy remains constant). Construct-

ing a microcanonical ensemble corresponding to a global quench is computationally
demanding because it requires knowledge of all energy eigenstates of the post-quench
Hamiltonian within the energy window ∆ centered around E0. This task is nontrivial
and can scale exponentially with the system size depending on the location of E0

in the spectrum of the post-quench Hamiltonian. By contrast, building a canonical
Gibbs ensemble requires only modest numerical resources. The process of extracting
βeff corresponding to a global quench is detailed in Section 4.1.

Following the success of FCS in characterizing dynamical phases of LRIM, in this
study we employ the PDF of the order parameter to access thermalization. PDF
includes moments of all order and therefore its relaxation to the expected thermal
PDF requires the collective relaxation of all the moments. Therefore this approach
to study thermalization is more rigorous compared to the equilibration of the local
expectations of order parameter. To evaluate thermalization, we introduce a metric
termed ”Distance to Thermalization,” denoted as DT, similar to the metric ”Distance
to Gaussification” introduced in Section 3.2.1. This metric measures the Euclidean
distance between the time-evolving PDF of the order parameter, denoted as Pl(m, t),
and the corresponding thermal PDF, represented as PTH

l (m). Mathematically, it is
defined as

DT(t) =

√∑
m

[Pl(m, t)− PTH
l (m)]2. (4.3)

In instances where the system undergoes thermalization, DT(t) is expected to
converge to zero. The real-time quench dynamics and TDVP parameters used are
analogous to those explained in Section 3.2. The only difference is in the maximum
bond dimension, which is set to χmax = 128. The accuracy of the data is tested in
Appendix 4.B.2.

The rest of this chapter is organized as follows. In Section 4.1 we outline the
extraction of effective temperature corresponding to a quantum quench. In Section
4.2 we present the results for quench to dynamical ferromagnetic phase (in Subsection
4.2.1) and dynamical paramagnetic phase (in Subsection 4.2.2). In Section 4.3 we
present the post quench dynamics of domain wall kinks that provides addition support
for our observation. In the final section we provide conclusion and outlook. The
Appendix sections are as follows. In Appendix 4.A we outline the method to calculate
time evolution of order parameter with exact diagonalization. In Appendix 4.B we
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provide details about the simulation. In Appendix 4.B.2 we outline the errors analysis
for data in the main text. In Appendices 4.C and 4.D we briefly discuss the thermal
phase transition in LRIM and the dynamics of correlation spreading respectively.

4.1 Numerical extraction of effective temperature

A global quantum quench, Ĥi(α, 0) −→ Ĥf (α, h), in an isolated system adds an
extensive amount of energy to the system. Consequently, the system relaxes to a
state at a higher energy level than the ground state of the post-quench Hamiltonian
[53].,

lim
N→∞

1

N

⟨ψt|Ĥf |ψt⟩
⟨ψt|ψt⟩

> lim
N→∞

1

N

〈
ψGS
f

∣∣Ĥf

∣∣ψGS
f

〉〈
ψGS
f

∣∣ψGS
f

〉 (4.4)

where
∣∣ψGS

f

〉
is the ground state of the post-quench Hamiltonian Ĥf (α, h). The

left-hand side of Equation (4.4) is a conserved quantity because of the unitary real-
time evolution of |ψt⟩. For each global quantum quench, we can associate an effective
temperature βeff, which is the temperature at which the thermal energy density above
the ground state of the post-quench Hamiltonian aligns with the conserved energy
density of the system.

⟨ψt|Ĥf |ψt⟩
⟨ψt|ψt⟩

=
Tr(ρ̂βĤf )

Tr(ρ̂β)
. (4.5)

The effective temperature is determined by solving Equation (4.5). The left-hand

side of the equation is calculated as ⟨ψt|Ĥf |ψt⟩ = ⟨ψi|eitĤf Ĥfe
−itĤf |ψi⟩ = ⟨ψi|Ĥf |ψi⟩.

On the other hand, the right-hand side can be computed for a range of β values
by numerically solving Equation (4.18) and calculating the energy density at each
instance. The precision of βeff depends on the trotter steps dβ in the solution of
Equation (4.18). In Fig. 4.2, we present the numerical solution of Equation (4.5).
The energy density attributed to quench, represented by the black dashed line, is
independent of the post-quench parameters because the spin-spin interaction term
in the Hamiltonian (1.15) is normalized with Kac normalization (1.16), whereas the
expectation value h ⟨ψi|

∑
j ŝ

z
j |ψi⟩ taken over the transverse field term is trivially zero.

If we extend the simulation to a larger β (i.e., lower temperature), all curves will
converge to the ground-state energy density of Ĥf at the corresponding post-quench
parameters. Once βeff is extracted, we can calculate the corresponding thermal PDF
PTH(m) = Pβeff(m). The accuracy of the thermal states is tested by comparing with
the exact results for 14 site system in Appendix 4.B.2 figure 4.12.
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Figure 4.2: Numerical extraction of βeff corresponding to a global quantum quench.
The horizontal black dashed line represent the energy density attributed to the
quench. The colored lines represents the energy density as the function of inverse
temperature β for the corresponding post-quench parameter (in legend). The point
at which the colored lines intersects the black dashed lines represents βeff for the cor-
responding post-quench parameters (represented by vertical colored lines).

4.2 Results

We investigate quantum quenches starting from a GHZ state to two represen-
tative post-quench transverse field points: one located in the dynamical ferromag-
netic regime at hf = 0.3 and the other in the dynamical paramagnetic regime at
hf = 0.6 [17, 12]. We consider three distinct values for the interaction strength:
α ∈ {0.0, 1.5, 1.9}. At α = 0.0, the system exhibits integrability owing to its full con-
nectivity and complete permutation symmetry, leading to a lack of thermalization.
Conversely, the choices of α = 1.5 and α = 1.9 are motivated by the relatively faster
equilibration and Gaussification of the PDF following a quench in the dynamical
paramagnetic phase, as observed previously [12].
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4.2.1 Quench to dynamical ferromagnetic regime

Figure 4.3 shows the temporal evolution of DT(t) following a global quantum
quench of the transverse field to hf = 0.3 with α = 0.0, 1.5, 1.9 for three subsystem
sizes l = 20, 60, 100. Notably, all of these points fall within the dynamical ferro-
magnetic phase, as established in previous studies [17, 12]. For all three quenches,
we observe a persistent oscillation in DT(t), indicating a robust retention of the ini-
tial ferromagnetic order and delayed thermalization. This behavior aligns with the
relaxation mode represented by Path 3 in figure. 4.1(b). Specifically, for α = 0.0,
which is an integrable point, the absence of thermalization is anticipated [29, 31],
whereas quenches with α = 1.5 and α = 1.9 are expected to thermalize. This be-
havior is attributed to the confinement induced by the long range interaction of the
model, which effectively bounds low-energy domain wall kinks into heavier quasipar-
ticles that typically travel slower than free quasiparticles, thereby suppressing the

Figure 4.3: First row: Time evolution of the metric DT(t) following a global quantum
quench to three interaction strength values α ∈ {0.0, 1.5, 1.9} and transverse field
hf = 0.3 at three different subsystem sizes l = {20, 60, 100}. All three points are in
dynamical ferromagnetic phases[17, 12]. Second row: Pl(m) versus m for m ∈ [0, l/2]
with l = 100 at four time different slices t = {2, 6, 20, 50}. Pl(m) versus m for
m ∈ [−l/2, 0) is its mirror image. The black dashed curve represents the thermal
PDF, PTH(m) attributed to the corresponding global quantum quenches.
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spread of correlations in the system [60, 61]. Consequently, although thermalization
is still expected, it occurs at significantly longer time scales [23]. Appendix 4.D pro-
vides more insights into the confinement behavior in LRIM, demonstrating a strong
temporal suppression in the spreading of connected correlation function

〈
ŝxk ŝ

x
k+∆

〉
c

for α = 1.9 and hf = 0.3. The confinement behavior of the LRIM is explained in
detail in Section 5.2. In panels (d), (e), and (f), the colored scattered plots depict
Pl(m) as a function of m at four distinct time intervals post-quench. The black
dashed curve represents the PDF of the expected thermal state, PTH

l (m). Notably,
the time-evolving Pl(m) persistently oscillates around PTH

l (m) in all the three cases.
Of particular importance is the observation that in all cases, the thermal PDFs are
bimodal, indicating the presence of long-range ferromagnetic order, which suggests
that if the system eventually thermalizes at extended time scales, it would still exhibit
a long-range ferromagnetic order. This finding further strengthens the argument that
this is indeed a dynamical ferromagnetic phase.

4.2.2 Quench to dynamical paramagnetic regime

Figure 4.4 depicts the temporal evolution of DT(t) following a global quantum
quench of the transverse field to hf = 0.6, with α = 0.0, 1.5, 1.9 for subsystem sizes
l = 20, 60, 100. Notably, these quenches are situated within the dynamical paramag-
netic phase [17, 12]. We observe a distinctive relaxation behavior of DT(t) compared
to the previous cases. In panel (a), rapid equilibration is evident for all the values of
l. However, it is crucial to note that DT(t) remains at or above the order of O(10−1)
after equilibration, suggesting a lack of thermalization. This behavior is expected
because α = 0 is an integrable point. For α = 1.5, DT(t) does not exhibit stable
equilibration, as shown in panel (b). In the case of α = 1.9, DT(t) equilibrates for
l = 60, 100 and exhibits stable oscillation around a constant value of approximately
O(10−3) as depicted in panel (c). A more comprehensive picture is shown in panel
(f), where the late-time PDF perfectly overlaps with the corresponding thermal PDF,
represented by a black dashed curve. This is indicative of thermalization; however,
the system still exhibits traces of confinement [63, 14]. In Appendix 4.D, the con-
nected correlation function

〈
ŝxk ŝ

x
k+∆

〉
c
for α = 1.9 and hf = 0.6 still exhibits a weaker

temporal suppression. A recent study observed a de-confinement transition for a sys-
tem with up to 31 spins only at a much higher value of the transverse field [63]. This
suggests that while strong confinement severely hinders the approach to thermaliza-
tion, the signatures of thermalization can still be detected in the presence of weak
confinement.
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Figure 4.4: First row: Time evolution of the metric DT(t) following a global quantum
quench to three interaction strength values α ∈ {0.0, 1.5, 1.9} and transverse field
hf = 0.6 at three different subsystem sizes l = {20, 60, 100}. All three points are in
dynamical paramagnetic phases[17, 12]. Second row: Pl(m) versus m for m ∈ [0, l/2]
with l = 100 at four time different slices t = {2, 6, 20, 50}. Pl(m) versus m for
m ∈ [−l/2, 0) is its mirror image. The black dashed curve represents the thermal
PDF, PTH(m) attributed to the corresponding global quantum quenches.

4.3 Signatures in domain wall kink

To further support our observations, we investigate the post-quench evolution of
domain wall kinks defined as

K̂ =
l−1∑
j=1

1− ŝxi ŝxi+1

2
. (4.6)

Here, K̂ quantifies the number of nearest neighbor domain wall kinks within the
subsystem l. Domain wall kinks are elementary excitations that are bound into heav-
ier quasiparticles due to confinement; therefore, this is a relevant order parameter
[174, 64, 63]. In Figure 4.5, we present the temporal evolution of the average do-
main wall kinks following a global quantum quench. As expected, quenches to the
dynamical ferromagnetic phase with hf = 0.3 exhibit persistent oscillations around
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Figure 4.5: Time evolution of domain wall kinks, ⟨K̂⟩, following a global quantum
quench to three interaction strength values α ∈ {0.0, 1.5, 1.9} (Panels (a), (b), and (c)
respectively) and hf = 0.3 and hf = 0.6. The dashed horizontal lines represent the

expected thermal value of domain wall kinks, ⟨K̂⟩TH corresponding to the quenches.

the expected thermal value, indicating a lack of thermalization. By contrast, for
quenches to the dynamical paramagnetic phase with hf = 0.6, distinct post-quench
behavior is observed. For α = 0, the domain-wall kinks equilibrate to a stable value
that differs from the expected thermal value, which is consistent with its integrable
nature. This observation complements the post-quench behavior of DT, as shown
in Figure 4.4(a). Although α = 1.5 is a non-integrable point, thermalization is not
observed within the simulation time. At later times, a stable prethermal plateau,
close but distinct from the expected thermal value, becomes apparent. Conversely,
for a quench corresponding to α = 1.9, the average domain wall kinks converge to the
expected thermal value. Notably, before reaching the thermal value, the kink density
exhibits a relatively stable prethermal plateau until time t ≃ 35. This relaxation
mode, which is characterized by two time scales, is represented by Path 2 in figure
4.1 panel (b). This discovery provides another robust indicator of thermalization in
weakly confined regimes.

4.4 Conclusions

We explored the relaxation dynamics of the LRIM following a global quantum
quench of the transverse field and assessed thermalization on a computationally viable
timescale within the canonical Gibbs ensemble (CGE). The model is non-integrable
and is therefore expected to thermalize. However, the presence of confinement in the
long-range Ising model strongly suppresses correlation spreading. Starting from the
GHZ state, the system was subjected to two distinct dynamical regimes. As antic-
ipated, robust confinement hindered thermalization in the dynamical ferromagnetic
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region. In this region, metric DT exhibits persistent oscillation characteristics of the
masses of bound mesons. Conversely, for quenches to the dynamical paramagnetic
region, a notably distinct behavior emerges. The persistent oscillation melts and DT
relaxes more rapidly. While conclusive evidence of thermalization for α = 1.5 is not
observed within the simulation time, there are compelling indications of the thermal-
ization surface for α = 1.9. This observation received additional support from the
convergence of the domain-wall kinks to the expected thermal value. In the dynamical
ferromagnetic phase confinement strongly hinders the approach to thermalization. In
the next section, we study the robustness of confinement against the thermally tuned
density of excitations and investigate whether it can destroy confinement such that
thermalization can be observed.

In this Chapter, we highlighted the convergence of the PDF of the local order
parameter as a rigorous condition for thermalization because it involves the conver-
gence of all underlying moments. In an interesting new experimental study [152] it
was observed that the fluctuation of observables in the subsystem thermalizes at dif-
ferent timescales compared to the local observables. It will be interesting to study
the relaxation dynamics of the full PDF in such models and compare the relaxation
timescale of the PDF with relaxation timescales of different moments.

4.A Exact time evolution

For smaller system sizes we can calculate the time evolution of FCS and other
relevant order parameters by exact diagonalization of the post-quench Hamiltonian.
We begin from our initial state, Z2 symmetric GHZ state,

|ψi⟩ =
1√
2
(|→, . . .→,→,→ . . . ,→⟩x + |←, . . .←,←,← . . . ,←⟩x). (4.7)

The time evolved state is given by |ψt⟩ = e−itĤ |ψi⟩, where Ĥ is the post-quench
Hamiltonian. We proceed by expanding |ψ0⟩ in the eigenbasis, { |Ej⟩ },of the post-
quench Hamiltonian,

|ψi⟩ =
2N−1∑
j=0

kj |Ej⟩ , (4.8)

where kj = ⟨Ej|ψi⟩. Expanding |Ej⟩ in the computational basis, |Ej⟩ =
∑

n c
j
n |n⟩,

we can derive the expression for kj as,
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kj = ⟨Ej|ψi⟩ =

(
cj|→,...,→⟩

)∗
+
(
cj|←,...,←⟩

)∗
√
2

. (4.9)

The post-quench state is

|ψt⟩ =
∑
n

Xn(t) |n⟩ (4.10)

where Xn(t) =
∑N

j=0 kjc
j
ne
−iEjt. The generating function of subsystem magneti-

zation is then calculated as,

Gl(θ, t) = ⟨ψt| eiθM̂(l) |ψt⟩ =
∑
n,ñ

X†ñ(t)Xn(t) ⟨ñ| eiθM̂(l) |n⟩ (4.11)

=
∑
n

|Xn(t)|2eiθmn . (4.12)

The computational basis ket |n⟩ is a simultaneous eigenket of the subsystem mag-
netization, M̂l |n⟩ = mn |n⟩, where mn is the magnetization of the subsystem l. We
can also access the time evolution of the expectation value of a generic parameter Ô
as,

O(t) = ⟨ψt| Ô |ψt⟩ =
∑
n,ñ

X†ñ(t)Xn(t) ⟨ñ| Ô |n⟩ . (4.13)

If |n⟩ is the eigenket of the order parameter Ô then 4.13 becomes,

O(t) =
∑
n

|Xn(t)|2On. (4.14)

Finally, with the full eigenvalues of hamiltonian at hand we can also calculate the
energy density corresponding to a thermal density matrix ρ̂β,

ϵβ =

∑
j Eje

−βEj∑
j e
−βEj

. (4.15)

4.B Simulations details

In this Section we present the details of numerical simulation complementary to
the results in the main text.
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4.B.1 Simulation of finite temperature density operator

The finite temperature states can be simulated by casting the density operator
as locally purified tensors [116, 117, 176]. The thermal density operator is defined

by Gibbs distribution ρ̂β = e−βĤ

Tr[e−βĤ ]
where β = 1

T
is the inverse temperature. At

β = 0 (infinite temperature) the state is maximally mixed and is given as the tensor
product of local identities ρ̂0 =

⊗N
i=1 1

σ′
i,σi = I, where each 1σ

′
i,σi is a unit matrix of

size (d, d), i.e. 1σ
′
i,σi = [δσ′

i,σi
]d×d and d is the dimension of the physical space (for

spin 1
2
, d = 2). The density operator for any finite temperature (non-zero β) is

ρ̂β ∝ e−βĤ = e−
β
2
ĤIe−

β
2
Ĥ (4.16a)

∝ e−
β
2
Ĥ ρ̂0e

−β
2
Ĥ (4.16b)

We keep the density operator operator in locally purified form ρ̂ = XX† at each
stage where X is represented as tensor

Xσ1,σ2,...σi,...,σN
k1,k2,...,ki,...,kN

= Xσ1,k1
c0,c1

Xσ2,k2
c1,c2

. . .Xσi,ki
ci−1,ci

. . .XσN ,kN
cN−1,cN

(4.17)

where σi = d, ki = d are the physical index and the Kraus index are are fixed
through out and 1 ≤ ci ≤ χmax is the bond index and χmax is the maximum value of
bond dimension. The density operator initialized at infinite temperature can now be
purified to a finite temperature in trotterized steps

ρ̂β+dβ = e−
dβ
2
Ĥ ρ̂βe

− dβ
2
Ĥ (4.18a)

= e−
dβ
2
ĤXβX†βe

− dβ
2
Ĥ (4.18b)

= e−
dβ
2
ĤXβ[e

− dβ
2
ĤXβ]

† (4.18c)

Equation (4.18) can be simulated using imaginary time TDVP (−idt → −dβ)
in only the half Section of the density operator operator and never contracting the
X and X† layer during the evolution, thus strictly preserving the locally purified form.

At infinite temperature (β = 0) the state is maximally mixed. Figure 4.6 shows
the tensor notation of the maximally mixed density operator ρ̂β=0 which is a tensor
product of identity matrices of size (d, d), where d is the physical dimension. Rather
than working with the density operator as an MPO we represent the density operator
in the locally purified form [176, 177] which is positive semi-definite by construction
and keep it in locally purified form at every stage of the thermal purification process.
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Figure 4.6: Maximally mixed density operator at β = 0 as the tensor product of local
identities.

Figure 4.7: Representing ρ̂β=0 in the locally purified form.

In Fig. 4.7 we represent ρ̂β=0 in the locally purified form Xβ=0X†β=0, where the index
in purple is an auxiliary index called the Krauss index.

we can now evolve one of the halves (X or X†) as shown in equation (4.18) and the
evolution on the other half is its trivial conjugate. This approach is computationally
efficient as we can work with cheaper MPS instead of more expensive MPDO. In Fig.
4.8 one half of the ρ̂β=0 in locally purified form is shown, form here on we will only
work with this half.

Figure 4.8: One half of the ρ̂β=0 in the locally purified form.
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Algebraically, Xβ=0 can be written as

Xσ1,k1,...σi,ki,...,σN ,kN = Xσ1,k1 ⊗ . . .Xσi,ki . . .⊗XσN ,kN (4.19)

For the system of spin one-half particles we choose A as

Xσi,ki =
1√
2

(
1 0
0 1

)
∀ i ∈ {1, 2, . . . , N} (4.20)

Figure 4.9: Choice of Xσi,ki to preserve the trace of ρ̂.

as shown in Fig. 4.9. This particular choice is taken to preserve the trace of the
density operator, ∑

k

Xσ,k[Xσ′,k]∗ =
1

2

(
1 0
0 1

)
. (4.21)

Finally, we reshape Xβ=0 from a string of 2× 2 matrices to a string of four legged
tensors of shape (1, 2, 2, 1) as shown in Fig. 4.10, which is an MPS of unit bond
dimension.

Figure 4.10: Xβ=0 in MPS form.

Now that we have our initial state as an MPS, we can simulate a finite temperature
density operator by solving the equation (4.18),

Numerically, equation (4.18) can be solved for long-range spin systems through
imaginary time evolution, (where idt → dβ) using the Time-Dependent Variational
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Figure 4.11: Expectation of the local operator Ôi in thermal density operator ρ̂β

Principle (TDVP). The TDVP algorithm employed for simulating the thermal state
remains fundamentally identical to that used for the real-time evolution of the pure
state, with the distinction of an additional auxiliary Krauss index. However, in the
thermal purification of a closed system, the Krauss index is obsolete because all
physical operators act solely on the physical index. The Krauss indices are therefore
traced over [176]. Figure 4.11 illustrates the tensor network diagram for computing
the expectation value of a two point operator ÔiÔj acting on site i and j within the
thermal state ρ̂β.

4.B.2 Errors and data convergence

We conducted two types of error analysis to assess the accuracy of the numerical
results. In figure 4.12, we assess the absolute error of the TDVP algorithm in com-
parison with the numerically exact full diagonalization results for a system with size
N = 14 and various post-quench parameters. Figure 4.12, panel (a), shows the abso-
lute error in the energy density of the thermal states, defined as |ϵEDβ − ϵTDVP

β |. The
absolute error remains of the order O(10−5) or smaller across the entire temperature
range under consideration. Figures 4.12, (b), (c), and (d) show the absolute error
in domain wall kinks, defined as |⟨K̂⟩ED − ⟨K̂⟩TDVP|, following a quantum quench to
various post-quench parameters. ⟨K̂⟩ is defined in equation 4.6. Notably, the error
rapidly converge and is of order O(10−6) or smaller for all the cases studied.

In Figure 4.13, we investigate the convergence of the TDVP data for DT(t) by
computing the relative errors |DTχ1(t) − DTχ2(t)| for three increasing bond dimen-
sions. Our observations reveal that the relative error eventually converges and con-
sistently remains in the order O(10−3) or smaller for all cases. It is noteworthy that
the error for α = 0.0 is several orders of magnitude smaller than that for the other
values of α. This is attributed to α = 0.0 being an integrable point with an exten-
sive number of conserved quantities, and therefore has a smaller Hilbert space to be
explored compared to non-integrable points. Furthermore, for α = {1.5, 1.9}, the
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Figure 4.12: Absolute error in the energy density,|ϵEDβ − ϵTDVP
β |, of thermal states -

(a). Absolute errors in the evolution domain wall kinks |⟨K̂⟩ED− ⟨K̂⟩TDVP| following
a quantum quench - (b),(c),(d). The numerically exact results are calculated using
equations 4.14 and 4.15 as detailed in 4.A. TDVP results are obtained with bond
dimension χ = 128. The system size considered is N=14.

error for hf = 0.3 is approximately two orders of magnitude smaller than that for
hf = 0.6. This discrepancy arises because the former case exhibits dynamical con-
finement, which effectively suppresses the spread of correlations and constrains the
total Hilbert space that can be explored during time evolution.

4.C Thermal phase transition in long range Ising

model

For values of α > 2, the long-range Ising model falls within the regime of short-
range interactions and does not exhibit any finite-temperature phase transitions [178].
Extensive investigations into the critical properties of the thermal phase transition
in the quantum long-range Ising model have been conducted using numerically exact
path integral Monte Carlo methods [179]. The thermal phase transition is qual-
itatively depicted in Figures 4.14 for specific parameter values: α = 1.5, 1.9 and
h = 0.3, 0.6. As described in Section 4.B.1, the simulation begins with a maximally
mixed state at β = 0. This initial state is characterized by a sharply peaked Gaussian
distribution of P (m) centered around m = 0, which signifies a strongly paramagnetic
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Figure 4.13: Convergence of the TDVP data for DT(t) with increasing bond dimen-
sions, χ = 60, 90, 128, for six different post-quench parameters considered in the main
text. The black dashed line is for visual guidance.

phase. As the system is gradually cooled by increasing β, the distribution gradually
widens, eventually becoming nearly flat around the critical temperature. A further
reduction in temperature leads to the emergence of a bimodal distribution of P (m),
which is indicative of the ferromagnetic phase. Notably, this transition from a uni-
modal Gaussian distribution to a bimodal distribution highlights the Z2 symmetry
that is inherent in the long-range Ising Hamiltonian.

4.D Confinement dynamics in different regimes

Confinement phenomena in the long-range Ising model result from ferromagnetic
interactions extending over long distances between the interacting spins. However,
the strength of confinement varies within different regions of the phase space [60, 61].
In this Section, we present comprehensive numerical results pertaining to the tempo-
ral spreading of correlations in the long-range Ising chain following a sudden quench
to various post-quench Hamiltonians starting from a fully polarized initial state de-
noted as |ψi⟩ = |←,←, . . . ,←, . . . ,←,←⟩x.

Figure 4.14 illustrates the time evolution of the half chain connected correlation
function

〈
ŝxk ŝ

x
k+∆

〉
c
=
〈
ŝxk ŝ

x
k+∆

〉
− ⟨ŝxk⟩

〈
ŝxk+∆

〉
in a chain of 200 spins, where k is kept
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Figure 4.14: Thermal phase transition of long range Ising model at four different
points in parameter space. The initial state in all cases is the maximally mixed state
at infinite temperature represented by ρ̂β=0, refer to 4.6. The color coding from red
to blue signifies decreasing temperature .

fixed at the center of the chain. In panels (a), (b), and (c), we examine a fixed value of
α = 1.9 while varying the transverse field h = 0.3, 0.6, 0.8. Notably, panel (a) shows
a pronounced signature of confinement, which gradually diminishes as the value of
h increases, as shown in panels (b) and (c). This behavior is expected because the
transverse field competes with long-range interactions and weakens the confinement
effect. In panel (d), we observe a linear light cone spreading of the correlation with
the maximum possible velocity, vmax = 2h [174].
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Figure 4.15: Real time dynamics of half chain connected correlation function〈
ŝxk ŝ

x
k+∆

〉
c
after a global quantum quench of the transverse field starting from a fully

polarized initial state. The dashed black lines is vmax = 2h line for nearest neighbor
transverse field Ising model[174].
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Chapter 5

Dynamical deconfinement transition

5.1 Introduction

Confinement is a fundamental phenomenon that binds elementary particles such
as quarks and gluons into stable and heavier hadrons such as baryons and mesons
[180]. The majority of the mass of these composite particles comes from the binding
energy, as the bare mass of elementary quarks contributes only approximately 0.2%
of the total mass. This binding occurs because of the presence of a strong confining
potential, which asymptotically increases with particle separation. A widely used
model for characterizing such potential is the Cornell potential, also known as the
funnel potential [181, 182]: VCornell(r) = − e

r
+ σr. Here, e represents the Coulomb

strength related to the QCD strong coupling constant [183] and σ is the string tension.
The Cornell potential has been successfully described in various experimental results
[183, 184]. The first part of the Cornell potential resembles the Coulombic behavior
and is dominant at shorter distances, typically r < 0.1 fm. The second part diverges
linearly with the separation between the confined particles and becomes dominant at
larger distances. For significantly separated quarks, it becomes energetically favorable
to undergo pair production, leading to the creation of quark and anti-quark pairs, a
phenomenon known as string-breaking [185].

Confinement has been explored in various condensed matter systems [62, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195]. In a recent study, a global quench protocol
was employed as a probe to investigate the effect of confinement on the nonequilib-
rium dynamics of a short-range non-integrable Ising chain [174]. This investigation
revealed that confinement imposes constraints on the relaxation of the order param-
eter and proliferation of entanglement throughout the system. Subsequent research
has extended this exploration to quantum spin chains [174, 64, 196, 197, 60, 61] and
lattice gauge theories [198, 199, 200, 201, 202, 203], with a focus on understanding
the consequences of confinement in nonequilibrium dynamics. Furthermore, dynami-
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cal confinement has been observed in various experimental and quantum computing
platforms. These include trapped-ion experiment simulating the ferromagnetic LRIM
[63], trapped-ion based quantum computer simulating the swinger model [204], and
an IBM quantum computer simulating the short-range Ising model [205].

Figure 5.1: (a) Effective confining potential in LRIM in thermodynamic limit for two
different values of α. For a > 2 it is bounded from above whereas for α < 2 it is
unbounded. (b) The confinement potential bounds the excited domains (down spins
in blue in the sea of up spins in red) that suppresses correlation spreading in the
system. The dashed line represents the Lieb-Robinson bound for locally interacting
systems.

Confinement has dramatic effects on the nonequilibrium dynamics of many-body
quantum systems. This restricts the spread of correlations in the system by constrain-
ing the proliferation of quasiparticles, fundamentally altering the light-cone spreading
of the correlation. Consequently, the order parameter exhibits robust oscillations with
characteristic frequencies associated with meson masses, and growth of entanglement
is suppressed [174, 60, 61, 64, 12]. This alteration hinders the approach to thermaliza-
tion, as evidenced in the bosonic swinger model [198], ferromagnetic LRIM [61, 13, 14],
and more recently in the short-range Ising model [23]. In the latter case, rare events
involving the creation of mesons in close proximity lead to an avalanche of scattering
events, resulting in a long and stable prethermal regime[23]. In the short range Ising
model, where confinement is due to the symmetry breaking field, it has been observed
that delocalization starts to occur as the density of the excitation increases, such that
the average distance between the domain wall kinks is equal to or less than the lo-
calization length [64]. This is characterized by spatial correlation and entanglement
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growth. Furthermore, string breaking has been studied in both short- and long-range
quantum spin chains, showing that a pair of excited domain walls delocalizes over a
long time limit [185]. In this chapter, we investigate the deconfinement transition in
LRIM with thermally tuned excitation density. To this end, we will prepare thermal
states with a nontrivial density of domain wall kinks across critical points, and study
the effect of confinement on the real time dynamics of these states. We highlight that
the fluctuation of domain wall kinks gives a stronger signature in characterizing the
deconfinement transition than the average domain wall kinks.

The rest of this chapter is organized as follows; In Section 5.2 we introduce the
mechanism of confinement in LRIM highlighting its effects in the real time dynam-
ics. In section 5.3 we introduce the quench protocol and signatures of deconfinement
transition observed in average domain wall kinks in subsection 5.3.1 and kink fluctu-
ation in subsection 5.3.2. In the final section 5.4 we present conclusion and outlook.
The Appendix sections are as follows. In Appendix 5.A we introduce the two kink
model. In Appendix 5.B we introduce the single kink model and extract the effective
localization length. In Appendix 5.C we outline the simulation details. Finally, in
the Appendix 5.D we detail the methodology to calculate the PDF of average domain
wall kinks in MPS formalism.

5.2 Confinement in LRIM

The ferromagnetic LRIM with power-law decaying interactions is a paradigmatic
model for studying dynamical confinement. Inherent long-range ferromagnetic inter-

Figure 5.2: Signatures of dynamical confinement observed in LRIM at α = 2.3 and
hf = 0.27: (a) time evolution of connected correlation function, (b) time evolution of
magnetization, (c) Fourier spectrum of magnetization vs. time signal revealing the
dominant frequencies. Vertical dashed lines are the meson masses and their difference
extracted from effective two kink model.
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actions intrinsically induce confinement and localize domain-wall kinks [60, 61]. To
maintain consistency with existing literature, we consider the following Hamiltonian:

Ĥ = −J
N∑
i<j

σ̂xi σ̂
x
j

|i− j|α
− h

N∑
i=1

σ̂zi , (5.1)

where, σ̂µi , µ = x, y, z are the Pauli matrices at site i. In contrast to the short-
range Ising model, where confinement arises from the external longitudinal field [174],
LRIM exhibits a distinct mechanism where the domain wall kinks, which are elemen-
tary excitations, are bound owing to the long-range interaction between spins of op-
posite polarity within and outside the domains (see Figure 5.1 (b)). The net energy
associated with a domain of size l within an infinitely long spin chain is.

Vα(l)/J = 4ζ(α)l − 4
∑
1≤i<l

∑
1≤j<i

1

jα
, (5.2)

where, ζ(α) =
∑∞

z=1 1/z
α is the Riemann zeta function. The net potential energy

between two propagating domain wall kinks scales linearly with their separation, akin
to the Cornell potential. Figure 5.1 (b) illustrates the effective potential energy of the
propagating domain wall kinks for α = 1.8 and α = 2.1, showing a monotonic increase
in potential with their separation. It is important to note that this potential has an
upper bound for α > 2; therefore, only low-lying excitations are bounded[60, 61]
whereas it is unbounded for α < 2. See the detailed explanation in Section 1.2.
Consequently, the domain wall kinks cannot propagate indefinitely and are confined,
analogous to elementary quarks confined to heavier composite particles. These bound
domain wall kinks are equivalently referred to as mesons, and their binding energies
are denoted as meson masses [174].

Figure 5.2 illustrates various signatures of dynamical confinement in a 30-site
LRIM following the global quench of the fully polarized state with parameters α = 2.3
and hf = 0.27. Panel (a) shows the post-quench evolution of the connected corre-
lation function ⟨σ̂xi (t)σ̂xj (t)⟩c = ⟨σ̂xi (t)σ̂xj (t)⟩ − ⟨σ̂xi (t)⟩⟨σ̂xj (t)⟩ with i = 15. The cor-
relation exhibits persistent spatial oscillations, which are distinctly different from
the typical light-cone-like spreading. A similar behavior is observed in the post-
quench evolution of the magnetization ⟨σ̂x(t)⟩ = 1

N

∑
i⟨σ̂xi (t)⟩. The frequency of

these oscillations is characteristic of the quench and reveals the inherent energy
scale associated with confined domain wall kinks. To illustrate this further, we
expand the initial state based on the eigenstates of the post-quench Hamiltonian
|ψi⟩ =

∑
mCm |m⟩. The time evolution of any order parameter Ô can be expressed

as ⟨Ô(t)⟩ =
∑

m,nCmC
∗
m⟨n|Ô|m⟩e−it(Em−En). Each term within the double sum os-

cillates in time, with frequencies corresponding to the energy differences between the
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Figure 5.3: PDF of domain wall kinks averaged over 100 eigenstates in the spectrum
of two different confining Hamiltonians; α = 1.8, h = 0.4 and α = 2.3, h = 0.4.
The black dots represents data averaged over first 100 eigenstates, the blue dots
represents data averaged over middle 100 eigenstates, and the green dots represents
data averaged over last 100 eigenstates. The data are for N = 12 and are computed
exactly with ED.

eigenstates of the post-quench Hamiltonian, denoted by ∆m,n = Em −En. If the ini-
tial state has a nontrivial overlap with the eigenstates, then the oscillating terms tend
to cancel out. However, if the initial state predominantly overlaps with a few specific
eigenstates, a pronounced oscillation of the order parameter occurs, with frequencies
corresponding to the energy differences between the eigenstates.

Additionally, the low-lying eigenstates of the confined LRIM mostly consist of
two domain wall kinks [63, 61]. This has been illustrated in Figure 5.3 which shows
the PDF of domain wall kinks averaged over 100 eigen states located at different
points in the energy spectrum. For lower excitations (black dots) we see a distinct
peak at K = 2 that confirms the low lying eigen states of confined LRIM is mostly
composed of two kinks. It is worth mentioning that while in thermodynamic limit
single kinks states are highly excited for finite system sizes the single kinks created at
the edge of the chain is lowly excited therefore the probability corresponding to odd
number of domain wall kinks are also considerable here. As we move higher in energy
spectrum the P̄ (K) shifts towards right signifying creation of higher number of domain
wall kinks. Based on this observation we can perturbatively study the low-energy
excitations of the LRIM by projecting the Hamiltonian to a restricted space consisting
of only zero or two kinks. The corresponding state is defined by two quantum numbers
representing the position and size of the domain (or equivalently, the separation of
domain wall kinks). Details of the two-kink model are presented in Appendix 5.A.
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This restricted model can be efficiently diagonalized, and, as expected, the low-lying
energies corresponding to the two-kink model perfectly match the dominant frequency
peaks associated with the oscillation of ⟨σ̂x(t)⟩, as shown in Figure 5.2.

5.3 Quench Dynamics

We observed that the inherent long-range interaction constrains the propagation of
domain-wall kinks and suppresses correlation spreading in the system. This prompts a
natural inquiry about the robustness of confinement against the density of excitations.
To this end we begin with thermal states as the initial states.

| ⟩
| ⟩

| ⟩

En

⋮

N

t

Number of kinks ⟨K⟩

ξ loc

ℓ ∼ N/⟨K⟩

Kinks scatter 
And 

Delocalise 

⟨K⟩
t⟨K2 ⟩

e−itH

e−βH0

Figure 5.4: Quench protocol: (1) Initial state is prepared as thermal density matrices

of the initial Hamiltonian, ∝ e−βĤi temperature (β = 1/T ). (2) The initial thermal

density matrix is evolved in real time with a post-quench Hamiltonian ∝ e−itĤ . Here,
we show the evolution of a representative state withing a thermal density matrix.
⟨K⟩ is the average number of domain wall kinks, l is the average distance between
two kinks and ξloc is the localization length defined as the maximum distance traced
by a domain wall kink with a given energy. 3) The real time evolution is monitored
by calculating the kink density and kink fluctuation at every time step.
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Figure 5.5: PDF of domain wall kinks in thermal states for four representative tem-
peratures with N = 50.

In LRIM with h = 0, the density of domain wall kinks exhibits a monotonic
variation from 0.5 at infinite temperature to 0 at zero temperature, independent
of α. Consequently, parameter β = 1/T serves as a tuning parameter to precisely
control the initial state of the system with varying kink densities (refer to Appendix

5.C). The initial state is a thermal density matrix, denoted by ρ̂iβ(t = 0) ∝ e−βĤi

where the Hamiltonian Ĥi has a zero transverse magnetic field. Figure 5.5 shows
the PDF of domain wall kinks (see Equation 5.3) of the initial thermal state Pβ(K)
for N = 50. These states are locally purified from a maximally mixed state at an

infinite temperature (β = 0) as ρ̂iβ = e−
β
2
Ĥi ρ̂β=0e

−β
2
Ĥi . Further details regarding

the simulation of thermal states are provided in Appendix 4.B. The initial states are
quenched and evolved in real time with the post-quench Hamiltonian given by ρ̂β(t) =

e−itĤ ρ̂iβ(t)e
itĤ . This quench protocol is illustrated in figure 5.4. The parameters of

the post-quench Hamiltonian are deliberately chosen to reside within the strongly
confined regime [60, 61]. As domain wall kinks are elementary excitations in the
system, the number of domain wall kinks emerges as a natural order parameter for
investigating dynamical confinement. It is quantified by the following operator,

K̂ =
1

2

N−1∑
i=1

1− σ̂xi σ̂xi+1. (5.3)
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Figure 5.6: Post-quench evolution of domain wall kinks starting from different thermal
states (see colorbar on the right) for α = 1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (c).
The horizontal dashed lines represent expected thermal values. The results are for
system size of N = 50 spins. (b),(c) the corresponding Fourier spectrum. The vertical
dashed lines are the meson masses and their differences extracted from the effective
two kink model.

5.3.1 Signatures in average domain wall kinks

Figure 5.6 panels (a) and (c) illustrates the post-quench evolution of the average
domain wall kinks initiated from various initial thermal states within a temperature
range (represented by color gradient going from blue to red) for two representative
post-quench parameters. The horizontal dashed lines represent the expected thermal
values Tr[ρ̂βeffK̂], where ρ̂βeff ∝ e−βeffĤ . The effective temperature attributed to a
quench βeff is extracted by solving the equation,
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Tr[ρ̂iβĤi]

Tr[ρ̂iβ]
=

Tr[ρ̂βeffĤ]

Tr[ρ̂βeff ]
(5.4)

Two distinct behaviors are observed at the extremes of the investigated temper-
ature range. At lower temperatures, the kink density oscillates persistently around
the expected thermal value, without showing any signs of relaxation. This persistent
oscillation indicates strong confinement, suppressing the correlation spreading within
the system and leading to a delayed thermalization process. This behavior weakens
as the temperature increases. At high temperatures, the kink density rapidly relaxes
to the expected thermal value, suggesting robust thermalization [206]. In Figure 5.6,
panels (b) and (d) depict the Fourier spectrum of ⟨K̂⟩, revealing the dominant fre-
quencies of oscillation. At lower temperatures, sharp frequency peaks corresponding
to the dominant oscillations of ⟨K̂⟩ are observed. These frequency peaks exhibit
strong agreement with the meson masses extracted from the two-kink model, indicat-
ing the presence of strongly bound mesons. However, as the temperature increases,
these frequency peaks gradually diminish and eventually melt. This indicates the
dissolution of bound mesons at high temperatures [207].

As in the preceding Section, the initial state can be expanded in the basis of the
eigenkets of the post-quench Hamiltonian, denoted as ρ̂iβ =

∑
m,nCm,n|m⟩⟨n|. The

corresponding time-evolved average domain wall kinks can be expressed as ⟨K̂(t)⟩ =∑
m,nCm,n⟨n|K̂|m⟩e−it(Em−En). At low temperatures, the initial states ρ̂iβ consist of

a few low-lying eigenkets of the post-quench Hamiltonian. Consequently, sharp fre-
quency peaks are observed. As the temperature increases, ρ̂iβ incorporates nontrivial
contributions corresponding to high-energy excitations, and therefore we don’t ob-
serve any dominant frequency peaks.

5.3.2 Signatures in kink fluctuation

The average domain wall kinks provide valuable qualitative insights into the decon-
finement transition, revealing distinct behaviors at the extreme ends of the considered
temperature range. However, a more pronounced signature of this transition emerges
from the interaction and propagation of domain wall kinks within the system. To
address this, we study the connected kink fluctuation, ⟨K̂2⟩c = ⟨K̂2⟩ − ⟨K̂⟩2. Figure
5.7 depicts the post-quench evolution of ⟨K̂2⟩c for two sets of post-quench parame-
ters. For both post-quench Hamiltonians, we observe two contrasting behaviors at
the extremes of the temperature range. At lower temperatures, ⟨K̂2⟩c exhibits per-
sistent oscillations over time, similar to the behavior of ⟨K̂⟩, indicating significant
suppression in the propagation of domain wall kinks. As the temperature increases,
⟨K̂2⟩c exhibits linear growth over time, suggesting a light-cone-like dispersion of the
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domain wall kinks. This observation aligns with light-cone spreading of correlation
and entanglement in the deconfined phase [174, 60, 61].

Figure 5.7: Post-quench evolution of the kink fluctuation starting from different ther-
mal states for α = 1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (b). The results are for
system size of N = 50 spins. The data are rescaled by 1/β and subtracted from their
initial values for better visualization. Dashed lines represent the linear fit of the data
in an appropriate time window.

A more comprehensive understanding emerges when examining the full probabil-
ity distribution P (K) of domain-wall kinks. In Figure 5.8 panels (b) and (d), we
observe that P (K) monotonically broadens over time, whereas in panels (b) and (d),
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oscillations are observed over time. To quantitatively assess this behavior, we fit
straight lines to the ⟨K̂2⟩c data over an appropriate time window and define the slope
of these lines as the velocity of kink dispersion v. In Figure 5.9, v is plotted as a func-
tion of the temperature of the initial thermal states. We observe a transition from
a strongly confined regime at low temperatures, denoted by v ≈ 0 to a de-confined
regime, denoted by a monotonically increasing finite v as the temperature increases.
This monotonic rise in v eventually halts owing to the finite system size.

Figure 5.8: Probability distribution function (PDF) of domain wall kinks for different
system parameters and temperature. Three colors represent different time slices dur-
ing the real time dynamics (see label). (a) and (c) exhibits strong confinement at low
temperature with persistent oscillation of PDF, (b) and (d) exhibits high temperature
deconfinement where the PDF consistently gets broader with time.

The underlying mechanism of this transition can be understood by studying the
dynamics of an effective single kink model [208, 60]. The semi-classical limit of the
single kink model is given by the Hamiltonian,
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Figure 5.9: Temperature dependence of velocity of kink fluctuation extracted from
5.7 for two different quenches: α = 1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (b) and
system sizes N = 30 (solid triangle) and N = 50 (solid circle) respectively. The
color gradient (from blue to red) represents varying temperature. Dashed black lines
are for visual guidance. Horizontal dashed lines are the deconfinement transition
temperatures predicted by the single kink model: blue for N = 50, green for N = 30.

Hcls
α,h,N(k, q) = Vα,N(q)− 2h cos(k) (5.5)

where,

Vα,N(q) =
2[q2−α + (N − q)2−α − (N − 1)2−α]

(α− 1)(2− α)
, (5.6)

and (k, q) ∈ [0, 2π]×[1, N−1]. The detail about the single kink model is outlined in
Appendix 5.B. In this framework we define the localization length ξloc as the maximum
distance travelled by the kink initialized at rest with the maximum possible energy.
ξloc can be extracted from single kink model by solving for maximum q in the equation,

Hcls
α,N(0, N/2) = Hcls

α,N(k, q). (5.7)

Parameter ξloc defines a natural threshold for the deconfinement transition. If
the separation between adjacent kinks exceeds the localization length, that is, l =
1/⟨K̂⟩ ≫ ξloc, then the kinks undergo uncorrelated Bloch oscillations around their
origin. However, when 1/⟨K̂⟩ ⪅ ξloc, the kinks scatter and delocalize, effectively
destroying confinement. Similar delocalization has also been reported in short range
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Ising model with growth of entanglement entropy observed on increasing the density
of the domain wall kinks [64]. With this insight, the corresponding deconfinement
transition temperature can be determined by solving the following equation for β,

1

ξloc
= ⟨K̂β(t)⟩. (5.8)

⟨K̂β(t)⟩ denotes time-averaged Tr[ρ̂β(t)K̂]. As shown in Figure 5.6, it is evident

that ⟨K̂β(t)⟩ = Tr[ρ̂βeffK̂] holds true for all values of β. By substituting this relation-
ship into Equation 5.8, the transition temperature can be determined numerically. In
Figure 5.9, dashed horizontal lines illustrate the deconfinement transition tempera-
tures obtained using this method. Despite the simplicity of the single-kink model, it
exhibits a strong predictive capacity for the transition temperature.

5.4 Conclusions

We investigated the nonequilibrium dynamics of thermal states following a global
quantum quench to a confined phase of LRIM. The post-quench time evolution of
domain wall kinks and their Fourier signals revealed the intricate interplay between
slow-decaying long-range interactions and the emergence of confinement behavior at
low temperatures. Furthermore, the time-dependent fluctuation of domain wall kinks
provides compelling evidence for a dynamical deconfinement transition with increas-
ing density of thermally tuned domain wall kinks. In future it will be inetersting to
study the critical properties of the observed transition. In this thesis the system sizes
studied were not big enough for a detailed finite size scaling analysis. An interesting
question to be addressed is whether the transition observed on the two sides of α = 2
line are similar.

These observations can be experimentally realized in AMO platforms, specifically
in trapped-ion experiments [63, 18, 19], which can implement the global quench pro-
tocol starting from a product state. The post-quench evolution of a mixed state can
be achieved by independently evolving individual pure states within a given mixed
state, and then computing the weighted ensemble average over the individual pure
state evolution: ρ̂β(0)→ ρ̂β(t) =

∑
n Pβ(n) |n(t)⟩ ⟨n(t)|, where |n(t)⟩ = e−itĤ |n⟩ and

Pβ(n) = e−βEn/
∑

n e
−βEn . Here, |n⟩ represents the eigenstate of Ĥi (equivalently, the

computational basis), and En corresponds to the associated eigenvalue. Notably, this
procedure scales exponentially with system size. However, for practical purposes, it
is feasible to consider only the dominant states, based on how Pβ(n) decays with n.
This is particularly applicable to low-temperature states.
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5.A Two kink model

We employ the two-kink model to investigate low-energy excitations as bound
quasiparticles. The underlying concept involves projecting the Hilbert space onto a
subspace in which n spins cluster together amidst a sea of up spins, thereby forming
two kink domain walls that exhibit the freedom to shift, contract, or expand. The
state is uniquely characterized by two quantum numbers defining the position and
length of the domains,

|j, n⟩ = |... ↑↑↓j↓j+1 ... ↓↓j+n−1↑↑ ...⟩ (5.9)

The long-range Hamiltonian can be projected in the in the two kink subspace is
Ĥ = P̂−1ĤP̂ , where P̂ is the projection operator,

Ĥ |j, n⟩ = Vα,N(j, n) |j, n⟩ − h[ |j, n+ 1⟩+ |j, n− 1⟩+ |j + 1, n− 1⟩+ |j − 1, n+ 1⟩ ]
(5.10)

where, for a finite system with N spins, 1 ≤ j ≤ N − 1 and 1 ≤ n ≤ N −
j − 1. The diagonal part, Vα,N(j, n), represents the total potential energy above the
ground state. For long range ferromagnetic Hamiltonians the potential energy is due
to the interaction of spins with opposite polarity within and out of the domains.
The off-diagonal term corresponds to the spin-flip term, which governs the shift,
expansion, and contraction of domain-wall kinks. The effective Hamiltonian Ĥ can
be diagonalized on the |j, n⟩ basis. Subsequently, the masses of the mesons can be
extracted by diagonalizing the following matrix,

Hj,n:j′,n′ = Vα,N(j, n)δj,j′δn,n′ −h[δj,j′δn+1,n′ + δj,j′δn−1,n′ + δj+1,j′δn−1,n′ + δj−1,j′δn+1,n′ ]
(5.11)

where,

Vα,N(j, n) = 2
∑

j≤u≤j+n−1

[ ∑
1≤v≤j−1

1

|v − u|α
+

∑
j+n≤v≤N

1

|v − u|α

]
(5.12)

is the potential energy of the excitation of the two kink states |j, n⟩. This model
effectively captures confinement in a long-range Ising chain, particularly in the limit
N → ∞, where the confining potential steadily increases with distance between the
coupled domain walls. However, in the case of a finite spin chain, the confining poten-
tial increases with the separation of the kinks until a characteristic length is reached,
beyond which it starts to decrease. This phenomenon is more pronounced for smaller
values of α.
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5.B Single kink model and localization length

Similar to the two kink model we can define the single kink model by projecting
the Hilbert space into a subspace with just one single kink. The quantum state is
defined by a single quantum number signifying the position of the single kink,

|j, n⟩ = |... ↑↑↑n↓n+1↓↓ ...⟩ . (5.13)

The corresponding Hamiltonian matrix is defined as,

Hn:n′ = Vα,N(n)δn,n′ − h[δn+1,n′ + δn−1,n′ ] (5.14)

Figure 5.10: Phase space of the semi-classical Hamiltonian 5.21 over a full period of
momentum for two different system parameters. ξloc is called the localization length
and is defined as the maximum space traversed by the single kink originally located
at the center of the system.

where the effective potential is,

Vα,N(n) = 2
∑

1≤i≤n

∑
n+1≤j≤N

1

|i− j|α
. (5.15)

In thermodynamic limit the sums in the potential can be approximated with
integrals,
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Vα,N(n) = 2

[
N−n∑
r=1

1

rα
+

N−n+1∑
r=2

1

rα
+ ....+

N−1∑
r=n

1

rα

]
(5.16)

≈

[∫ N−n

1

dr

rα
+

∫ N−n+1

2

dr

rα
+ ....+

∫ N−1

n

dr

rα

]
(5.17)

=
1

(α− 1)

[
n∑
r=1

1

rα−1
−

1∑
n′=n

1

(N − n′)α−1

]
(5.18)

On further approximation of the sums we get,

Vα,N(n) ≈
2

(α− 1)

[∫ n

1

dr

rα−1
−
∫ 1

n

dn′

(N − n′)α−1

]
(5.19)

=
2

(α− 1)(2− α)

[
1

nα−2
+

1

(N − n)α−2
− 1− 1

(N − 1)α−2

]
(5.20)

We can take the classical limit of the Hamiltonian in equation 5.14 by defining a
phase space (p, q) ∈ [0, 2π]× [1, N − 1] and corresponding Hamiltonian,

Hcls
α,h,N(p, q) = Vα,N(q)− 2h cos(p) (5.21)

where the function Vα,N(q) is defined in the equations 5.20. Starting from the
most energetic state in a finite chain within the single kink scenario; a single static
kink located at the centre of the chain, we can calculate the p × q phase space by
solving;

Hcls
α,N(0, N/2) = Hcls

α,N(p, q) (5.22)

In Figure 5.10, the classical phase space is obtained by solving 5.22 throughout
the full periodicity of the momentum. Notably, the kink travels the farthest from
its original position when p = π. This distance is defined as the localization length
of the kink, denoted by ξloc. Localization length is a crucial parameter that dis-
tinguishes two distinct dynamical regimes. When the average separation between
the kinks surpasses ξloc, the kinks exhibit uncorrelated Bloch oscillations that are
strictly localized around their respective sites of origin. Conversely, as the average
kink separation becomes comparable to or is smaller than ξloc, the kinks disperse and
undergo delocalization. The critical temperature corresponding to this transition can
be determined by numerically solving the following equation for β,
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Figure 5.11: Numerical solution of the equation 5.23. The dots are the average kink
separation, l = N

Tr[ρ̂βeffK̂]
, as a function of β, the full lines are the cubic interpolation

of the data, and the horizontal dashed lines are ξloc for the corresponding parameters.
The dashed circles highlights the point of solution.

l =
N

⟨K̂β(t)⟩
= ξloc, (5.23)

where ⟨K̂β(t)⟩ is the time average of Tr[ρ̂β(t)K̂]. The post-quench behavior of

⟨K̂β(t)⟩ suggests that we can replace ⟨K̂β(t)⟩ with the expected thermal average

kinks Tr[ρ̂βeffK̂].

5.C Simulation details

The finite temperature states are simulated by the method of purification by
keeping the thermal density operator in locally purified ρ̂β = XβX†β form throughout
the procedure,

ρ̂β+dβ = e−
dβ
2
HXβ[e

− dβ
2
HXβ]

† (5.24)

Details of the initial state preparation and subsequent imaginary time evolution
are comprehensively outlined in Section 4.B.1. We employ two-site TDVP algorithm
with a time step of dβ = 0.001. The bond dimensions does not exhibit excessive
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Figure 5.12: (a) Bond dimension corresponding to the central site as a function of
inverse temperature during the imaginary time evolution. All singular values smaller
than 10−8 are discarded during truncation. (b) Average kink density ⟨K̂⟩ as a function
of inverse temperature β for three different parameters and system size N = 50.
The figure illustrates a thermal phase transition from low temperature ferromagnetic
regime (in blue) to high temperature paramagnetic regime (in red) based on the kink
density.

growth during the imaginary time evolution. Figure 5.12 (a) illustrates the bond di-
mension corresponding to the central site plotted against β, with truncation involving
the discarding of all singular values smaller than 10−8. The peaks in the plot indicate
thermal critical regions in which the area law is invalid [101, 103, 105, 106, 107].

In Figure 5.12 (b), the average kink density ⟨k̂⟩ = ⟨K̂⟩/N is plotted against the
inverse temperature β for different values of α with h = 0.0. At β = 0, the state
is maximally mixed and ⟨k̂⟩ = 0.5 holds for all parameters (see Figure 5.5). With
increasing β, there is a monotonic reduction in ⟨k̂⟩, indicating a thermal transition
to the ferromagnetic phase, where ⟨k̂⟩ = 0. Notably, the thermal phase transition
observed in Figure 5.12 is robust only for α ≤ 2 in the ferromagnetic LRIM and will
show singularity at critical point for N → ∞. The transition observed for α = 2.3
will crossover to β = ∞ as N → ∞. This implies the thermal phase transition at
T = 0 or equivalently absence of ferromagnetic order in LRIM for α > 2.

Similarly, the thermal density operator can be evolved in real time while keeping
the locally purified form intact,

ρ̂β(t+ dt) = e−idtĤXβ(t)
[
e−idtĤXβ(t)

]†
(5.25)
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Figure 5.13: Convergence of the TDVP data for DT(t) with increasing bond dimen-
sions, χ = 80, 100, 128, for α = 1.8, hf = 0.4 (a) and α = 2.3, hf = 0.4 (b). The black
dashed line is for visual guidance.

We employ a two-site Time-Dependent Variational Principle (TDVP) algorithm
with a time step of dt = 0.05. To evaluate the convergence of the TDVP data, we
examine the relative error in kink density across three increasing bond dimensions
(χmax = 80, 100, 128) at β = 0.3, as shown in Figure 5.13. Notably, the relative
errors consistently remain below O(10−3), indicating satisfactory convergence of the
numerical results.

The reason for selecting β = 0.3 as the test case for convergence assessment
of all TDVP data is straightforward. A higher temperature promotes correlation
spreading throughout the system during real-time evolution, demanding a higher bond
dimension to capture the dynamics effectively. Therefore, testing the convergence of
errors for the worst-case scenario, where β = 0.3, is deemed sufficient for our study.
The results presented in the main text are derived using a maximum bond dimension
of χmax = 128.
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5.D Full counting statistics of domain wall kinks

The PDF of kink density operator K̂ can be calculated over the density matrix ρ̂
following the Equation 3.4,

P (K) =

∫ ∞
−∞

dθ

2π
e
−iθ

[
K−N−1

2

]
Tr

[
ρ̂
N−1∏
j=1

e−iθ
σ̂xj σ̂

x
j+1
2

]
. (5.26)

Figure 5.14: Left (red) and right (blue) MPO at site j, (a) and (b) respectively.
Contracting left and right MPO at each site to build a four legged MPO (black) at
each site, (c).

The moment generating function Tr
[
ρ̂
∏N−1

j=1 e
−iθ

σ̂xj σ̂
x
j+1
2

]
can be calculated by di-

rectly applying the sequence of two site operators to the density matrix. Alternatively,
we can expand the two site exponential operator by Taylor series and rearrange to
break it down into a product of two independent single site operators acting on site
j and j + 1 respectively,
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e−iθ
σ̂xj σ̂

x
j+1
2 = cos

(θ
2

)
− i sin

(θ
2

)
σ̂xj σ̂

x
j+1 =

[
cos
(
θ
2

)
Ij −i sin

(
θ
2

)
σ̂xj

] [Ij+1

σ̂xj+1

]
(5.27)

Equation 5.27 suggests that that the integral in equation 5.26 has a periodicity
of 2π so the integral can be restricted to θ ∈ [−π, π]. We reshape and redefine
the operators acting on site i and i + 1 in equation 5.27 as MPOleft and MPOright

respectively (see (a) and (b) in figure 5.14). Each site now has two single site tensors
that can be compressed together into a four legged MPO (see (c) in figure 5.14) which
can directly act on a matrix product density operator.
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Chapter 6

Summary and Outlook

In this thesis we investigate the different aspects related to the dynamics of ferro-
magnetic long range Ising model (LRIM) following a global quantum quench. Specif-
ically, we study three interrelated topics: dynamics of full counting statistics, ther-
malization in different dynamical regimes, and dynamical deconfinement transition
driven by thermally tuned density of excitations.

In Chapter 3, we explored the dynamical phases of LRIM following a global quan-
tum quench by monitoring the late time PDF of the order parameter. The PDF,
encompassing moments of all orders, has emerged as a robust alternative method for
characterizing different dynamical phases, offering compelling qualitative signatures,
especially in scenarios where lower moments fail to provide conclusive insights due
to the absence of stable equilibration. A noteworthy example is the α > 2 regime,
in which the absence of long-range ferromagnetic order is evident. A prior inves-
tigation [137] suggested a persistent ferromagnetic order for all α values, based on
the finite prethermal value of average magnetization. However, the emergence of a
Gaussian-shaped PDF in the same region suggests complete meltdown of the initial
ferromagnetic order. Even for smaller post quench transverse field values, where a
conclusive Gaussian shape isn’t observed within the simulation time, the PDF still
undergoes a qualitative change of shape in transient time with the initial sharp bi-
modal shape melting away with a stream of probability density moving towards each
other suggesting the absence of any robust ferromagnetic order. In the α ≤ 2 regime,
that sustains long range magnetic order at finite temperature [209], we observe a dy-
namical phase transition. The dynamical ferromagnetic regime is characterized by an
oscillating PDF that robustly remains bimodal, transitions to a paramagnetic regime
marked by the dissolution of the initial ferromagnetic order. Notably, the dynamical
transition observed here is not associated with the breaking of Z2 symmetry as the
symmetry of the initial GHZ state remains unbroken in both phases, but rather on
the shape of the shape of the post quench PDF of order parameter.
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While for larger value of α we observed the emergence of Gaussian shaped PDF
signifying the complete loss of initial order, for smaller α the Gaussification of PDF
remains inconclusive within the simulation time and system sizes considered. The
region of small α is however tractable with mean field theory, recently some promising
analytical results have been developed for post quench evolution of full counting
statistics for different magnetic models including LRIM at 0 < α < 1 using the self
consistent time dependent mean field theory (SCTDMFT)[210]. Finally, even though
the dynamical phases are qualitatively characterized the exact location of transition
points and the critical properties of the transition specially in the regime 1 ≤ α ≤ 2
still remain as open questions [138, 17].

In Chapter 4, we investigated thermalization in LRIM across various dynami-
cal regimes. LRIM is nonintegrable for 0 < α < ∞ and is generally expected to
thermalize. However, the model hosts a phenomenon known as confinement, which
suppresses correlation spreading throughout the system and tends to hinder thermal-
ization [60, 174]. This is evident from the persistence of the initial ferromagnetic order
in the dynamical ferromagnetic phase. In contrast, the dynamical paramagnetic phase
witnesses the dissolution of the initial ferromagnetic order, leading to the emergence
of a Gaussian-shaped PDF for the order parameter. Our study focused on the signa-
tures of thermalization within the accessible timescales of our simulations. Building
upon the success of FCS in characterizing different dynamical phases, we quanti-
fied thermalization using the parameter DT, which represents the Euclidean distance
between the post-quench PDF and the expected thermal PDF. This is a stringent
criterion for thermalization compared with monitoring only the expectation value of
the order parameter. In the dynamical ferromagnetic regime, confinement strongly
hinders thermalization, as evidenced by the persistent oscillation of the post-quench
PDF around the expected thermal value. Conversely, in the dynamical paramagnetic
phase for α = 1.9, a strong signature of thermalization is observed, with the post-
quench PDF equilibrating to the expected thermal value. This observation is further
corroborated by the signature observed in the post-quench evolution of domain wall
kinks. For α = 1.5, the results were inconclusive, with post-quench domain wall kinks
exhibiting a prethermal plateau in later times. In the 0 < α < 1 regime, where MPS-
based simulations become inconclusive owing to strong finite-size effects, relaxation
dynamics are tractable with the mean field approximation. A previous study [175]
based on mean-field approximations and discrete truncated Wigner approximation
(DTWA) indicated that in the 0 < α < 1 regime, long-range interactions give rise
to two distinct time scales with significant separations, leading to prethermalization.
One time scale involves the relaxation of quasi-conserved local permutation operators,
scaling as a power law with the system size, whereas the other is the time of initial
relaxation, scaling logarithmic with the system size.
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In a recent study with a system of the Bose-Hubbard model realized with sys-
tems of 133Cs atoms [152] it was observed that the fluctuation of observables in the
subsystem thermalizes at different timescales compared with the local observables.
The PDF includes moments of all orders therefore it would be interesting to study
thermalization in such systems based on the relaxation of the PDF.

In Chapter 5 we investigated the confinement-deconfinement transition driven by
the thermally tuned density of excitation. Previously, it has been observed in short-
range models with confinement that increasing the density of excitation in the initial
state eventually breaks down confinement, leading to faster entanglement growth [64],
prethermalization [23] and meson melting [207]. In LRIM, dynamical confinement is
responsible for various exotic emergent behaviors such as slow entanglement growth
and dynamical phase transitions. To study the deconfinement, we quenched the
initial thermal state at different temperatures across two different thermal phases. We
observed a strong signature of dynamical transition in the post-quench evolution of
kink fluctuation that showed a transition from a persistent horizontal oscillation at low
temperature, signifying strong confinement, to a linear growth at high temperature,
signifying deconfinement. This transition was correctly predicted using an effective
single-kink model. This transition can be observed in AMO platforms, specifically in
systems of trapped ions. The post-quench evolution of a mixed state can be mimicked
by evolving pure states within a given mixed state and then computing the weighted
ensemble average over each pure state evolution. The simulation time and system
size in this study were greatly constrained because the initial thermal states were
already highly entangled. In the future, it will would be interesting to simulate larger
systems to study the critical properties of the transition and to understand whether
they are the same or distinct from the underlying thermal transition.
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[148] I. Lovas, B. Dóra, E. Demler, and G. Zaránd, “Full counting statistics of
time-of-flight images,” Phys. Rev. A, vol. 95, p. 053621, 05 2017. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevA.95.053621

[149] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl,
I. Mazets, D. A. Smith, E. Demler, and J. Schmiedmayer, “Relaxation
and prethermalization in an isolated quantum system,” Science, vol.
337, no. 6100, p. 1318–1322, Sep. 2012. [Online]. Available: http:
//dx.doi.org/10.1126/science.1224953

[150] N. Malossi, M. M. Valado, S. Scotto, P. Huillery, P. Pillet, D. Ciampini,
E. Arimondo, and O. Morsch, “Full counting statistics and phase diagram of
a dissipative rydberg gas,” Phys. Rev. Lett., vol. 113, p. 023006, 07 2014.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.023006

[151] P. Devillard, D. Chevallier, P. Vignolo, and M. Albert, “Full counting
statistics of the momentum occupation numbers of the tonks-girardeau
gas,” Phys. Rev. A, vol. 101, p. 063604, 06 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevA.101.063604

[152] J. F. Wienand, S. Karch, A. Impertro, C. Schweizer, E. McCulloch, R. Vasseur,
S. Gopalakrishnan, M. Aidelsburger, and I. Bloch, “Emergence of fluctuating
hydrodynamics in chaotic quantum systems,” 2023.

[153] I. Klich and L. Levitov, “Quantum noise as an entanglement meter,”
Phys. Rev. Lett., vol. 102, p. 100502, 03 2009. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevLett.102.100502

[154] H. F. Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie, and
K. Le Hur, “Bipartite fluctuations as a probe of many-body entanglement,”
Phys. Rev. B, vol. 85, p. 035409, 01 2012. [Online]. Available: https:
//link.aps.org/doi/10.1103/PhysRevB.85.035409

[155] A. del Campo, “Universal statistics of topological defects formed in a quantum
phase transition,” Phys. Rev. Lett., vol. 121, p. 200601, 11 2018. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRevLett.121.200601
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