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Abstract

This thesis focuses on the Potts model of long-range cortical interactions. The model is
simple enough to allow a quantitative analysis, e.g., mean-field treatment, on the global
cortical level. At the same time, it is so rich in its dynamic repertoire that we can simulate
diverse aspects of associative memory processing in the cortex. We have pushed the Potts
model one step closer to biological plausibility by differentiating the frontal subnetwork
from the posterior one. Though this binary distinction is still far away from reality, it
gives us an unexpected observation as well as a potentiality to address interesting questions
related to cognitive processes.

Firstly, we study the glassy nature of a discrete Potts model, within mean-field theory,
to find a previously unreported effect of speed inversion, which might be relevant for
learning dynamics of cortical networks (Chapter 3). Secondly, we discuss the storage
capacity of a discrete Potts neural network when stored memories have a compositional
structure, in connection with recalling spatial scenes (Chapter 4). Thirdly, by using
latching dynamics of a continuous Potts model, we propose a network model for short-
term memory that can explain experimental data on free recall as well as serial recall
(Chapter 5). Lastly, we offer a preliminary attempt to model prefrontal schemata by
means of latching dynamics, in connection with an empirical observation from brain-
lesioned patients (Chapter 6).

List of publications and preprints

• Kwang Il Ryom and Alessandro Treves. Speed inversion in a Potts glass model of
cortical dynamics. PRX Life, 013005 (2023). (Chapter 3)

• Kwang Il Ryom, Debora Stendardi, Elisa Ciaramelli, and Alessandro Treves. Com-
putational constraints on the associative recall of spatial scenes. Hippocampus, 2023.
(Chapter 4)

• Kwang Il Ryom∗, Vezha Boboeva∗, Oleksandra Soldatkina, and Alessandro Treves.
Latching dynamics as a basis for short-term recall. PLoS computational biology,
17(9):e1008809, 2021. (Chapter 5)

• Kwang Il Ryom, Anindita Basu, Debora Stendardi, Elisa Ciaramelli and
Alessandro Treves. Taking time to compose thoughts with prefrontal schemata.
bioRxiv, 2023.07.25.550523, (2023). (Chapter 6)

3



Acknowledgements

I regret that my English vocabulary is too poor to fully acknowledge all the people that
have contributed to the finishing of this thesis.

I am deeply grateful to my PhD advisor Alessandro Treves for his brilliant and encour-
aging supervision, for his patience with my slow progress and with my random intrusion
into his office. I would like to thank him for his countless helps, unwavering support and
kindness.

Special thanks to Prof. John Nicholls for his brilliant insights and educational skills,
and for his kind teachings in neurophysiology.

I would like to thank Mathew Diamond for giving me a chance to experience lab
activities and experiments, which have enriched my knowledge and extended my academic
vision.

It is my pleasure to thank Raffaella Rumiati, Domenica Bueti, Davide Zoccolan, Da-
vide Crepaldi and Eugenio Piasini for invaluable courses they have taught and for their
suggestions on my yearly progress reports.

I am delighted to thank Elisa Ciaramelli for her beautiful works and fruitful collabo-
rations with us.

Thanks to my collaborators, Vezha Boboeva, Francesca Schönsberg, Oleksandra Sol-
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Chapter 1

Introduction

In this chapter, I introduce our model of cortical dynamics, the Potts neural network, in
the background of previous related works.

1.1 Interdisciplinary nature of memory research

Memory is a brain function that is of paramount importance. Virtually all higher cognitive
functions of the brain are premised on a support of intact memory. Research of memory
function necessarily entails interdisciplinary approaches, covering cognitive neuroscience,
mathematics, neuropsychology, statistical physics, biochemistry, computer science and
maybe others. A full understanding of cortical memory includes its neural substrates and
learning/retrieval dynamics. It requires researches at all levels; genes and protein synthe-
sis, neurotransmitters and their receptors, synapses and their plasticity, ion channels and
action potentials, and neuronal dynamics at the systems level (local- and global- cortical
networks). Both experimental approaches and theoretical modelling contribute to our
understanding of memory functions in the brain.

This thesis is about theoretical modelling; the underlying hypothesis is that some
memory functions emerge as a collective behaviour and thus should be treated at the
systems level. The primary goal is to build a good model that satisfies the following three
criteria:

1. Biological plausibility: the model should respect relevant anatomical and physiolog-
ical constraints.

2. Analytical tractability: the model should lend itself to mathematical analysis to a
certain extent.

3. Usefulness: the model should explain some empirical data.

The first criterion, biological plausibility, presumes that we should have in mind, at the
first place, the target area of the brain we want to model. For this matter, we try to model
the entire region of the cerebral cortex. While the meaning of the latter will become clear
in due sections, here I comment on why we are “obsessed” with modelling the cortex. As
Whitfield has noted [1] in 1979, it is the cortex that transforms physical features into the
percept of real things that are “out there”. He also noted that intracortical processing is
essential for animals to use the result of one problem to solve a closely related problem.1

According to Whitfield, information is organised in the cortex as objects and concepts,

1Though Whitfield mainly argues with data on auditory cortex of cats, we can already smell the
flavour of associative memory and that of schemata from this sentence.
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rather than a set of more-or-less elaborate features. And due to this organisation, the
cortex allows linkage of incoming sensory signal with stored knowledge, which can then
lead to the generalisation mentioned above. Evolutionary consideration also supports the
idea that higher cognitive functions like language comprehension and production should
reside in the neocortex.

The remaining two criteria can be justified by a massaged sentence of Einstein2: Ev-
erything should be made as simple as possible, but no simpler. The second criterion,
analytical tractability, is for preventing our model from becoming a “black box” and for
keeping things under control. The necessity of the third criterion, usefulness, is self-
evident and readers will be convinced, I hope so, by the chapters 4, 5 and 6, where I
present preliminary attempts to explain empirical data by using our model.

With all these primers in mind, the remaining part of the chapter elaborates on the
first two criteria, by reviewing the related literature and introducing our model. Finally
in Section 1.4, we articulate the specific problems we want to discuss in this thesis.

Studying a complex system like the brain requires an educated choice of “working
scale” (or working unit) both in the spatial and temporal domains. As an example of
temporal scale, using millisecond as a measuring unit of time works well for a 100m-
sprinting competition but not for studying the average lifespan of a human. While this
example may seem benign to the reader3, choosing an inappropriate scale may be vital in
other situations. Imagine that a naive child wants to understand how a car works. Simply
appreciating the outer shape of the car doesn’t help. One should open, at least, the car
bonnet! On the other extreme of the spectrum, one can start from microscopic particles,
such as electrons and ions that constitute the car material, and try to solve equations
determined by physical laws4, driven by the fact that after all, it is individual particles
(atoms, ions and electrons, etc.) that make up the entire body of the car. However, this
approach based on microscopic units is deemed to be an attempt in vain to understand
how a car works5. A better choice of working units would be crankshafts, cylinders, gears,
four strokes, etc.6

The above paragraph is a summary of what I am trying to convince you through this
chapter: why we need a mesoscopic model of cortical dynamics. If the reader is already
persuaded by the above paragraph, he/she can directly go to the last section, Section 1.4,
to read the goal of this thesis. If you are not convinced yet, then please continue reading
with the next section.

1.2 Spin glass models of neural networks

The brain is a complex system: its computational principles can be studied with theories
developed in other complex systems. Here we briefly review the development of spin glass
theory, the birthplace of complexity science. We then look at applications of spin glass
theory to other fields, in particular to neural networks.

2Einstein himself didn’t write it this way, see: doi:https://doi.org/10.1038/

d41586-018-05004-4.
3If you have enough patience with extra decimals and zeros, even microsecond would be fine with the

age of our universe.
4For example, Schrodinger’s equation for wave functions and Coulomb’s law.
5Any good physicist will know that it is not only impractical, but also ineffective in this case.
6I got an idea of the car example, including those of gears and strokes, from a book. Unfortunately, I

forgot the title of the book. I will cite it as soon as I retrieve it.
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1.2.1 Spin glass theory

Birth of spin glass theory and its unexpected impact on other fields

The history of spin glass theory goes back to about 50 years ago. Until the beginning
of the 1970s, it seemed that all possible states of condensed matter were understood.
However, magnetic properties of some dilute magnetic alloys posed a challenge. It was
observed [2, 3] that low-field magnetic susceptibility in gold-iron alloys shows a sharp
cusp for low concentration of iron (a few percent), if plotted as a function of temperature.
This implies a phase transition at the temperature indicated by the cusp, but then-existing
theories could not tell what the new phase was7.

It was the intellectual curiosity about this gap in the theory of condensed matter
that created a formidable new field of statistical physics (statistical mechanics of complex
systems), yielding thousands of scientific papers by the mid-1980s [6], although spin glasses
in themselves are useless.8 Fig. 1.1a gives a partial glimpse on how the new field of spin
glass theory was growing from 1972 and ever since. Some notable progress9 in the theory
has been made by the Edward-Anderson (EA) model [10] and its mean-field version, the
Sherrington-Kirkpatrick (SK) model [11], the recognition of the instability of SK solutions
[12] and Parisi’s hierarchical scheme to remedy it [13].

As of now, physical properties of real spin glasses are not fully understood. Successful
theories are mostly built around mean-field models where the interaction is infinite-ranged
(see below for its meaning). However, it turns out that many problems in field outside
physics share some of the essential features – randomness and frustration – that char-
acterise spin glasses [14]. And importantly, these systems, called complex systems, often
possess the mean-field feature – constituent units (e.g., neurons) interact with many other
units, almost in an all-to-all manner. Therefore, although mean-field methods developed
for spin glasses probably do not apply to real spin glasses [14], they offer a successful
description of other complex systems, often being the only tractable way to understand
those which are otherwise impossible to analyse. Some of its applications include neural
networks (see Fig. 1.1), combinatorial optimisation, biological evolution, protein dynam-
ics and folding, signal processing or machine learning to name but a few [6, 7]. The Nobel
Prize for Physics attributed to Giorgio Parisi in 2021 is a distinguished recognition of this
trend.

Frustration and disorder

Just before, I wrote that frustration and randomness (quenched disorder) characterise
spin glasses, with no explanation on their meaning. Frustration occurs when not all of
the given constraints can be satisfied for a system; you are frustrated when you want to
be friendly both with Mr. A and Mr. B, but A and B hate each other [9]. In Fig. 1.2,
we explain the concept of frustration in a system of 3 Ising10 spins. Each edge of the
triangle is assigned with +/- sign: an edge with + (-) sign tends to align (anti-align)
the two spins that are coupled through the edge. We can check for the right triangle of
Fig. 1.2, by flipping spins one by one, that one of the spins always remains “frustrated”:
it cannot satisfy both of its neighbours whatever orientation it takes (it can satisfy only

7Note that the idea of a phase characterized by a frozen random configuration of spins had already
been proposed in 1970 by P. W. Anderson [4]. But still some details of experiments, (e.g., sharpness of
cusp), could not be explained with available theories at that time [5].

8Magnetic spin glasses like Au-Fe and Cu-Mn alloys are not very good at being magnetic. Metallic
spin glasses are poor conductors, and insulating spin glasses are fairly useless as practical insulators [6].
So, as Marc Mezard wrote, even the most imaginative physicists could not find their applications [7].

9This list is a biased selection of myself, and not an exhaustive list. Note also the Thouless-Anderson-
Palmer (TAP) approach [8] and the cavity method [9].

10Ising spin can take one of two possible states: up and down.
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Figure 1.1: (a): Number of published papers per year in all APS journals with the word
“spin glass” either in title or abstract. Left: A (minimally adapted) copy of Fig. 1.1 of [5],
showing data from 1972 to 2007. Right: Data from 2008 to the June of 2023, obtained
from https://journals.aps.org/archive/. (b): Number of papers per year in all
APS journals with the word “neural network” either in title or abstract, obtained from
https://journals.aps.org/archive/. Relevant events for our discussion are marked
in blue. *The year 2023 is marked by an asterisk to indicate that data are collected up
to June 2023, while the green bar is a guess.

Figure 1.2: Frustration means degenerated ground states. A system of 3 Ising spins
is not frustrated on the left panel, while the right system is frustrated because regardless
of the orientation of the uppermost spin (either up or down), not all of the 3 bonds are
satisfied. Edges that are assigned “+” symbol tend to align the two spins (ferromagnetic),
while edges with “−” symbol tend to anti-align the two spins (antiferromagnetic). If the
product of signs along all edges is negative, then the system is frustrated. In physics terms,
this means that there is more than one ground state, or the ground state is degenerated. In
the jargon of optimisation, there are more than one near-optimal solutions for frustrated
systems. This concept of frustration can be generalised to systems of more than 3 spins.
The figure is inspired by a similar one in Ref. [15].

10

https://journals.aps.org/archive/
https://journals.aps.org/archive/


Figure 1.3: Rugged landscape of free energy is a characteristic of complex systems such as
spin glasses and neural networks. Schematic free energy of spin glasses is plotted against
one order parameter (or one phase space coordinate) for several values of temperature.
The figure is taken from Ref. [16]. The rugged profile of free energy is responsible for the
exotic properties of spin glasses.

one of its two neighbours). This concept of frustration is easily generalised to a system
with more than 3 spins (or units), see Ref. [9] for more information. Quenched disorder
or randomness means no regularity in the system – the coupling strength between a pair
of two units (spins, neurons, etc.) varies across pairs in a random fashion, though it is
fixed in time.

It is the interplay between frustration and quenched disorder that are primarily re-
sponsible for the exotic properties of spin glasses, including aging dynamics (extensively
many timescales for relaxation [14]), hysteresis and the ultrametric organisation of ground
states [9]. These properties can be explained by a “rugged” free energy landscape with
many local minima, see Fig. 1.3. For dilute magnetic alloys mentioned before, these two
features arise due to the random positions of magnetic impurities (e.g., iron atoms in
gold-iron alloy) and due to RKKY11 interactions between them [6]. In other complex
systems, these two features arise due to different reasons.

Among the formidable list of applications of spin glass theory, attractor neural net-
works are relevant to this thesis. As we shall see in the next section, neural networks also
possess the two key features of complex systems (frustration and disorder), but due to a
different mechanism from the one of magnetic alloys.

1.2.2 Attractor neural networks

Ever since Marr’s seminal work [17], theoretical neuroscience has developed rapidly.
A major advance came from the realisation, imported from statistical physics, that

11Ruderman-Kittel-Kasuya-Yosida
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Figure 1.4: Phase diagram of Hopfield network, predicted by AGS theory. The figure is
taken from Ref. [29].

some properties of the collective behaviour of many interacting elements are independent
of the detailed properties of the individual elements [18]. For example, phase transitions
have been categorised into a number of universality classes, and a first-order phase transi-
tion is essentially the same animal, so to speak, whether it is water molecules that freeze
or neurons that reactivate a memory by aligning to a partial cue. Hopfield was the first to
recognise that the emergent collective computational abilities in simple physical systems
(e.g., a network of Ising spins) can subserve associative memory function [19, 20]. He has
shown how a simple learning rule based on Hebbian plasticity [21] can lead to storage
of multiple memories, or attractors of network dynamics, towards which the dynamics
converges once it starts close enough. In the Hopfield model, the interaction between two
“neurons” (Ising spins) is given by

Jij ∝
p∑

µ=1

ξµi ξ
µ
j , (1.1)

where ξµi ∈ {+1, − 1} and {ξµi }’s are the p memories, or patterns that are stored in
the network. Due to the randomness of patterns, we easily see that Eq. (1.1) gives rise
to frustration and disorder to the Hopfield model, sharing the properties of spin glasses
mentioned before. This is exactly what Amit, Gutfreund and Sompolinsky showed in
their seminal paper, see below.

In 1985, three physicists Amit, Gutfreund and Sompolinsky published a paper titled
Spin-glass models of neural networks [22], which is now regarded as the first tour de force
in statistical mechanics of neural networks. They performed a thorough analysis of phase
transitions of the Hopfield model by introducing spin glass theory into neural networks
(Fig. 1.4). The detailed derivation of mean-field equations, dubbed AGS theory, was
later published in Refs. [23, 24]. Naturally, many studies followed this line of research
(Fig. 1.1b). Some pursued a purely theoretical path without having any correspondence
with brain function. Others tried to get closer to brain function; notable examples are
the introduction of sparse and/or correlated representations for memory patterns [25, 26],
biologically plausible connectivity schemes [27], using threshold-linear units instead of
Ising spins [28] and more.

It is now widely accepted that the AGS theory of the Hopfield model captures the key
computational principles of the CA3 region of the hippocampus [30]. It is its extensive
recurrent connectivity between pyramidal neurons that makes CA3 region similar to a

12



system of mutually interacting units, almost in an all-to-all fashion. Therefore, the CA3
circuitry can be a typical example of a complex system for which mean-field approaches
of spin glasses are readily applied. As such, the functioning of CA3 network cannot
be studied by seeking causal relationship between “inputs” and “outputs”, which is a
common practice in engineering systems and also in some of the neuroscientific literature.
Similarly, the cerebral cortex cannot be regarded as a serial processor that transforms an
input into an output, as we will clarify later.

As is common in a physics class, a mere generalisation of Ising spins to Potts spins12

is first proposed to Renfrey Potts, then a student, as an exercise [31]. Since then, the
Potts model – a system of Potts spins that interact via ferromagnetic or antiferromagetic
couplings – has been being a workhorse in statistical mechanics due to its rich physics.
Accordingly, the Potts version of SK model – dubbed Elderfield-Sherrington model (ES)
– was first analysed in Ref. [32] and later by Refs. [33, 34]. Not surprisingly, the neural
network version of Potts model has been studied first in Ref. [35] and then in Ref. [36, 37].
However, these studies treated the model as a mere generalisation of the Hopfield model
to Potts spins with virtually no connection13 to biological plausibility, i.e. to the memory
function of the brain. As such, these studies mainly focused on the retrieval property
of the network, more specifically the storage capacity, bearing in mind the equilibrium
situation.

With all their merits and caveats, the aforementioned studies often stay away from
directly confronting experimental data on cognitive functions. Some rare exceptions,
where there is an attempt to connect to empirical data, are still limited to simple cued
retrieval.

Memory retrieval is dynamic in its nature [38] and thus models studied only in their
asymptotic behaviour, like those mentioned above, cannot capture the computational
mechanisms underlying cognitive functions, where dynamic retrieval of memory items is
essential (e.g., episodic event retrieval and mind-wandering). In this thesis, we analyse a
network model of global cortical dynamics that respects necessary anatomical and physi-
ological constraints to a certain extent as well as explains a variety of cognitive functions,
proposed by Treves [39] in 2005. In the next section, I review the related literature.

1.3 Potts neural network as a model of cortical dy-

namics

1.3.1 Mesoscopic modelling of the cortex

Anatomically, the (human) cerebral cortex is a folded sheet with a thickness of ∼ 2.4 mm
and with a surface area of ∼ 973 cm2 [40]. It is characterized by a folded shape, displaying
ridges (gyri) and fissures (sulci), providing a greater surface area in the confined volume of
the cranium. It contains approximately 1010 neurons (note that the cerebellum, that has
even more neurons, is a separate structure) and many more cells that are not neurons. The
cerebral cortex has been considered to play key roles in memory among other important
functions [1, 41].

It is tempting to build a model of the entire cerebral cortex in microscopic details,
possibly at the 1:1 scale. A considerable amount of research is still under way with the

12Unlike Ising spins, Potts spins have more than two states.
13A few comments can be found about biological plausibility in those papers, but they are more ice-

on-the-cake rather than the foreground problem, which is the application of AGS theory to the network
of Potts spins.
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goal of building such a model and simulate it. However, taking all microscopic details into
account is not only impractical, but also non-informative about its collective behaviour:
many interesting properties are emergent at the systems level.14 But I do not mean here
that all of microscopic models are futile; network models that comprise spiking neurons,
described by Hodgkin-Huxley equations, are satisfactory in their biological plausibility
and are capable of explaining some brain functions15, mainly limited to modelling a lo-
calised region of the cortex. They cannot be simply scaled up to the entire cortical level,
while higher cognitive functions such as declarative memory and language processing (see
Ref. [43]) involve widely-distributed regions across the cortex. Let me take an anecdotal
example here. Even when we are interested only in the visual cortex, which is certainly
much smaller than the entire cortex, recording each neuron one by one seems an impracti-
cal approach. David Hubel, who won the Nobel Prize for Physiology or Medicine in 1981
together with Torsten Wiesel, once said that it16 was like trying to mow the lawn with a
pair of nail scissors [44]. If it is that impractical for the visual cortex, then we easily see
that it is next to impossible for the entire cortex. As we will see in the next subsection,
an alternative is to consider a statistical description by abandoning the wishful desire of
precisely describing every details.

What about the opposite extreme, i.e., models at the macroscopic level? Neuropsy-
chological evidence and data are often translated into box-and-arrow models, describing
cognitive functions in terms of sequences of specialised routines. However, neural im-
plementation of these models often implies detailed assumptions on the functioning and
connectivity of single neural networks, about which we have no clear evidence [45, 46].
Another family of “macroscopic” models is obtained from brain-imaging studies, mainly
with fMRI (functional magnetic resonance imaging) data. Here each brain region (or
region of interest) is mapped into a node of a graph and connections between these nodes
are inferred from fMRI data. Yet these models gloss over local attractor dynamics, which
are indispensable components in the associative memory function of the cortex [47].

So, microscopic models cannot be scaled up to the entire cortical level in the near fu-
ture and macroscopic models lack a clear neural substrate. How can we make a progress
in building a model of cortical functions, then? One possible way is to start from Brait-
enberg’s compartment model of the cortex [48].

1.3.2 From Braitenberg’s proposal of a skeleton cortex to the
Potts model

The cortex is characterised by its division, parallel to the surface, into functional areas
that serve various sensory, motor and cognitive functions. Another equally-important
feature of the cortex is the subdivision, perpendicular to the surface, into several layers
that organize the input and output connectivity of the neurons.

Braitenberg suggested [49] that pyramidal cells, being the majority of cortical neurons,
can be seen as the “skeleton cortex”: with their long axons and large size, they have been
hypothesised to be the major neurons connecting different regions of the cortex together.

14Take a piece of iron as an analogy; it may include 1023 or more particles (ions and electrons).
Even if we knew all of their positions and velocities, that would not tell us much about the macroscopic
behaviour of the system such as its electromagnetic properties, because there are different fundamental
laws at different scales of particles. P. W. Anderson articulated this principle by “More is different” [42].

15In analogy with the car example of Section 1.1, one may explain, with due deligence, how the gear
remains solid (and how it conducts heat and electricity) from microscopic descriptions of all its constituent
particles.

16Hubel was probably referring to their beautiful experiments on cat’s visual cortex, which were possible
only because of their extraordinary imagination, brilliance, and dedication [44].
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Figure 1.5: (a): Camera lucida tracing of two pyramidal cells, taken from [50]. Basal
dendrites surround the soma and apical dendrites extend through the upper layers of
the cortex, up to the cortical surface (indicated by a dashed curve). Long myelinated
axons (shown by gray, arbourised lines) depart from the bottom of the soma, entering
the white matter to contribute to cortico-cortico connections. (b): A cartoon that shows
Braitenberg’s model of skeleton cortex. Each dot represents a cortical pyramidal neuron.
A cortical patch is shown by densely-connected cloud of such dots, where dots with the
same colour denote one local attractor in that patch. Some of long-range connections
between patches are shown by black lines. The figure is taken from [26, 51].

A key feature of pyramidal cells is that their dendritic tree branches in two directions:
basal dendrites collect input mainly from local axon collaterals, while apical dendrites,
branching into the upper layers of the cortex, receive input largely from long-range cortico-
cortical connections coming from other cortical regions, see Fig. 1.5(a). Braitenberg and
Schuz have elegantly synthesised this dual (local and global) nature of the cortex in terms
of the A and B systems (referring to apical and basal dendrites) [47]. They suggest that
the whole cortex operates as a memory machine, in which the B-systems encode a set
of memories as local attractors and the A-system encodes global attractors, by virtue of
long-range connections.

In summary, Braitenberg’s model considers the entire cortex as a network composed
of
√
N compartments or patches17, each comprising

√
N pyramidal neurons. Here N is

the total number of pyramidal neurons in the cortex, which is in order of 1010 in the
human cerebral cortex. Within each compartment, neurons are densely connected with
each other (possibly all-to-all), whereas inter-compartment connections are sparse: each
pyramidal neurons receives

√
N − 1 inputs from neurons of the same compartment it

belongs to and it also receives
√
N − 1 inputs from other compartments, one connection

from each compartment. This is schematically shown by a cartoon in Fig. 1.5(b).
There have been several studies to directly simulate this cortical network model with

a multi-modular structure [52, 53, 54]. It turns out that the model is still too complex to
lend itself to mathematical analysis [52].

In 2005, Treves has proposed an advanced version of the model by encapsulating local
dynamics of cortical patches by effective dynamics of Potts units18 [39].

17The three words “patch”, “module” and “compartment” will be used interchangeably in this thesis,
though I prefer patch over others. Each patch contains approximately 105 pyramidal neurons. In primary
visual cortex, one patch can roughly correspond to one hypercolumn.

18I would use the word unit instead of spin, since it is more than a simple Potts spin of statistical
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By integrating out microscopic degrees of freedom (interactions between individual
pyramidal neurons within a cortical module), Treves’s Potts model19 deals withmesoscopic
units (Potts units). Interestingly, a recent study analyses connectivity patterns in visual
cortical regions (V1, V2, V4, etc.), mainly focusing on cortical columns20 and stimulates
the need of a mathematical description of cortical dynamics at the mesoscopic level [55].

I have already mentioned that the CA3 region of the hippocampus can be modelled
by the Hopfield network, which is a complex system with frustration and disorder. The
existence of frustration in complex systems removes any hope for formulating a simple
description in terms of input-output relations [15]; for the case of CA3 network, there is
no simple input-output relation like in electronic circuits. I would like to emphasise that
this attitude for complex systems is the underlying rationale behind the Potts model of
cortical networks and behind this thesis. Regarding the cerebral cortex, Braitenberg and
Schuz already hinted its complexity, see Fig. 1.6, and also explicitly articulated that input-
output transformation is not primarily the way how the cerebral cortex is functioning [47].
They wrote [47]:

Whatever signal reaches the cortex and is relayed to the motor output from there has
to pass through a very large network of interconnected neurons. The functional state of
this network at any given moment determines the output to a greater extent than the input
does, and even the extent to which the sensory input is at all “perceived” by the network,
i.e. is able to perturb its dynamic state, depends largely on this state itself.

. . .

· · · , the global layout of the cortex also provides a further argument against simple,
serial processing. The cortical architecture is that of a three-dimensional network in which
only one direction has a special status, namely that along which the cortical layers are
displayed in succession.

· · ·
In view of this it seems more reasonable to talk of the motor output as something

determined by the dynamic state of the whole cortex, and of the various sensory inputs as
devices through which this dynamic state is continually updated.

A brief review is given here about previous studies of the Potts model. As is already
mentioned before, Treves proposed the Potts model as a possible neural basis for infinite
recursion in 2005 [39]. The storage capacity for static retrieval in Potts model is studied
in [56, 57]. Latching dynamics of the Potts model are studied in [39, 58, 59, 60, 61].
The correspondence between the Potts model and the multi-modular network model is
analysed in [57], while the Potts model as a semantic memory network is studied in [26].
In Ref. [62], the Potts neural network is studied as an effective model of the phonological
output buffer in the context of neurolinguistics.

1.4 Goal of the thesis

For my PhD project, I have studied the Potts model of cortical dynamics: the model is
simple enough to allow a quantitative analysis on the global cortical level and at the same

mechanics. We will see it in Chapter 2.
19This model of cortical dynamics should be distinguished from the “Potts model” of statistical me-

chanics mentioned in Section 1.2. From now on, we mean by Potts model a network of Potts units as a
model of cortical dynamics, proposed by Treves.

20In some literature, they call it minicolumn; whatever the nomenclature, we mean the cortical column
of approximately 0.2mm in size, inside which neurons all prefer, e.g. in V1, a certain orientation of visual
stimulus.
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Figure 1.6: Various degrees of order and disorder in nerve tissue. The image and
caption are taken from Ref. [47]. Upper panel: tangential section through layer IVa
of monkey area 17. Middle panel: tangential section through the (curved) layer of L4

collaterals in the lamina ganglionaris of the fly. Lower panel: tangential section through
the lowest level of the molecular layer of the cerebellar cortex of the mouse. Axons of
basket cells run vertically, parallel fibres horizontally.
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time is rich enough to be relevant in understanding cortical processing. The contribution
of this work comes in three flavours:

1. Analytical treatment for the long-time behaviour of the model

2. Structural determinants of network operation, analysed through abstract simula-
tions

3. Modelling experimental observations with somewhat less abstract simulations

Analytical treatment for the long-time behaviour of the model. We have done
a thermodynamic analysis of the long-time behaviour (equilibrium situation) of the Potts
model, focusing on the glassy phase near the critical temperature Tc

21, to complete its
phase diagram; previous studies mainly focused on the retrieval phase at low temperature.
This work is presented in Chapter 3 and supplemented by Appendices.

Structural determinants of network operation, analysed through abstract sim-
ulations. Previous works with the Potts model treated each Potts unit in the network
equally to each other, and thus ignored the heterogeneous nature of cortical networks. In
this thesis, we made a first step towards the fully-heterogeneous model by introducing a
hybrid Potts model, see Chapter 3 and Chapter 6. In Chapter 4, the retrieval properties
of the Potts model are studied, taking compositional structures of memories into account.

Modelling experimental observations with somewhat less abstract simulations.
We attempt to explain empirical data with the Potts model that is minimally tweaked for
the task at hand. In Chapter 5, we show how latching dynamics of the Potts model can
help understand the mechanism for short-term memory. In Chapter 6, we use the Potts
model dynamics to understand the role of the frontal cortex in schema-related processes.

21It is not a physical temperature, but a noise level in the neural network. And “near” means just
below the Tc, where phase transition from paramagnetic phase to glassy phase occurs.
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Chapter 2

The Potts model and latching
dynamics

This chapter gives a mathematical description of the Potts model, explained in Chapter
1, and introduce a key characteristic of the model – latching dynamics. The model is
introduced in its fundamental form, which can be minimally tweaked in later chapters for
specific problems to be understood.

2.1 The Potts unit

A Potts unit models one patch1 of the cortex, as shown in Fig. 2.1: the local attractor
dynamics of that patch are captured by the effective dynamics of the Potts unit. If
there are S local attractors stored in a cortical patch, then one Potts unit possesses S
active states, indexed as as 1, 2, · · · , S, each representing one local attractor in the given
patch. In addition, a Potts unit has also a quiescent state, denoted by 0, representing
the situation when no attractor is retrieved in the cortical patch. We denote the retrieval
quality of state k (k = 0, 1, · · · , S) by σki , where i is the index of the unit and is reserved
for later use when we have many units in the network. These variables, called activation
variables, {σki } satisfy the following equations, for every i.

S∑
k=0

σki = 1,

0 ≤ σki ≤ 1.

(2.1)

We can interpret Eq. (2.1) this way. If σ1
i ≈ 1, then it holds that σki ≈ 0, k ̸= 1 due to

the constraints given in Eq. (2.1). This means that the first local attractor in the cortical
path i is fully retrieved, see the left panel in Fig. 2.2. We easily see that two or more
states can be activated at the same time, as shown in the middle of Fig. 2.2: σ1

i ≈ 0.5,
σ2
i ≈ 0.5. Note that σki is a continuous variable.
Local network dynamics within a patch are taken to be driven by the “current” that

the unit i in state k receives

hki (t) =
N∑
j ̸=i

S∑
l=1

Jklij σ
l
j(t) + w

[
σki (t)− 1

S

S∑
l=1

σli(t)
]

(2.2)

1For curious readers, each cortical patch (or module) is roughly estimated as large as 1mm× 1mm×
2mm in size, with approximately 105 pyramidal neurons in it. In the primary visual cortex, one cortical
patch (thus one Potts unit) may correspond roughly to one hypercolumn which contains some tens of
columns that share the common location of their visual receptive field.
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Figure 2.1: Schematic illustration of cortical patches, modelled by Potts spins with 4
active states (S = 4), taken from [60].

Figure 2.2: A cartoon of Potts unit with S = 4. The left unit is fully active along
one state (red), showing that one local attractor is fully retrieved in the corresponding
cortical patch. The middle unit has two half-active states (red and blue), showing that
the corresponding patch is in the middle between two local attractors. The right unit is
quiet, showing that no attractor is retrieved in the corresponding cortical patch. Black
dashed lines are eye-guides, reminding of 4 active states, S = 4.
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where the local feedback w, introduced in [60], models the depth of attractors in a patch, as
shown in [57] – it helps the corresponding Potts unit converge to its most active state. The
tensor connection Jklij in the first term of Eq. (2.2) denotes long-range interactions between
cortical patches (the A-system in Braitenberg’s jargon), and its detailed explanation is
deferred to Section 2.2. The activation along each state for a given Potts unit is updated
with a soft max rule

σki (t) =
exp[βrki (t)]∑S

l=1 exp[βr
l
i(t)] + exp{β[U + θAi (t) + θBi (t)]}

k > 0,

σ0
i (t) =

exp{β[U + θAi (t) + θBi (t)]}∑S
l=1 exp[βr

l
i(t)] + exp{β[U + θAi (t) + θBi (t)]}

,

(2.3)

where U is a fixed threshold common for all units and β is an effective inverse “temper-
ature”, β ≡ 1/T . We denote the neuronal noise level (or effective “temperature”) by T
throughout this thesis. The variables rki , θ

A
i and θBi parameterise, respectively, the state-

specific potential, fast inhibition and slow inhibition in patch i, and will be explained
soon.

Note that if β → ∞, each Potts unit expresses a single nonzero state σi: the (S +
1)−dimensional vector {σki } can sit only on the corners of (S+1)−dimensional hybercube
formed by Eq. (2.1). In this case, each unit can be denoted by one nominal value, σi ∈
{0, 1, 2, · · · , S}, and it becomes similar to the Potts spin of statistical mechanics, except
for the existence of the quiescent state. Therefore, only the left and right unit of Fig. 2.2
are allowed for β →∞; the middle unit of Fig. 2.2 is not allowed. The Potts unit is called
discrete in this case, and the discrete Potts unit is studied in Chapter 3 and 4.

The state-specific potential rki integrates the state-specific current hki , Eq. (2.2), by

τ1
drki (t)

dt
= hki (t)− θki (t)− rki (t), (2.4)

where the variable θki is a specific threshold for unit i and for state k. If it were constant
in time, the Potts network would simply operate as an autoassociative memory with
extensive storage capacity, as studied in Ref. [56]. We also study this case in Chapter 3
and Chapter 4.

Taking the threshold θki to vary in time to model adaptation, i.e. synaptic or neural
fatigue selectively affecting the neurons active in state k, and not all neurons subsumed
by Potts unit i

τ2
dθki (t)

dt
= σki (t)− θki (t), (2.5)

the Potts network additionally expresses latching dynamics, the distinguished feature of
our Potts model, see Section 2.2.

The unit-specific thresholds θAi and θBi describe local inhibition, which in the cortex
is relayed by at least 3 main classes of inhibitory interneurons [63] acting on GABAA

and GABAB receptors, with widely different time courses, from very short to very long.
In previous studies of Potts model [60, 61], either very slow or very fast inhibition is
considered in order to separate time scales. Here, we consider a more realistic case in
which both slow and fast inhibition are taken into account. Formally in our model, θAi
denotes fast, GABAA inhibition and θBi denotes slow, GABAB inhibition and they vary
in time in the following way:

τA
dθAi (t)

dt
= γA

S∑
k=1

σki (t)− θAi (t), (2.6)
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τB
dθBi (t)

dt
= (1− γA)

S∑
k=1

σki (t)− θBi (t), (2.7)

where one sets τA < τ1 ≪ τ2 ≪ τB and the parameter γA sets the balance of fast and slow
inhibition. If γA = 0, we have only slow inhibition in the network. If γA = 1, we have
only fast inhibition. We have both for 0 < γA < 1. In this way, we make a small step
towards plausibility, while maintaining relative mathematical simplicity, and the ability
to apply a separation of time scales methods to better understand the phenomenology.

To sum up, each Potts unit that represents one cortical patch is characterized by
several parameters shown in Table 2.1.

Table 2.1: Parameters that characterise each Potts unit
Symbol Meaning Interpretation

S number of active states per unit number of local attractors
U threshold common to all units -
β effective inverse temperature inverse of neuronal noise
τ1 timescale for “fields” -
τ2 timescale for adaptive thresholds neuronal adaptation and fatigue
τA timescale for fast inhibition GABAA−mediated inhibition
τB timescale for slow inhibition GABAB−mediated inhibition
γA proportion of fast inhibition -

w self-reinforcement parameter
depth of local attractors
(nonlinearity)

2.2 Potts neural network and latching dynamics

A Potts neural network is a network comprised of N Potts units (see Fig. 2.3a), which can
be either identical with each other or not depending on the problem at hand. When every
unit in the network has the same set of parameters of Table 2.1, we call it a homogeneous
network. If, instead, the parameters vary across units in the network, then we call it a
heterogeneous network or a hybrid one. The N units of the network interact with each
other via tensor connections, {Jklij }2, which completely determines the structure of the
network. The input that a given state of a given Potts unit receives from other units is
given by the first term of Eq. (2.2),

N∑
j ̸=i

S∑
l=1

Jklij σ
l
j(t).

Depending on the situation that we want to model with our network, the connectivity
tensor {Jklij } can take various forms.

Potts glass model. When we model learning dynamics of cortical networks in Chap-
ter 3, we start from a simple case where {Jklij }’s are random variables sampled from a
Gaussian distribution. We will call it the Potts glass model, in resemblance with spin
glass models introduced in Section 1.2.

Potts associative network. A more interesting case is the content-addressable mem-
ory network comprising Potts units, which models storage and retrieval3 of distributed

2Jkl
ij is the coupling strength between two Potts states σk

i and σl
j . As a tradition, we use i, j ∈

{1, 2, · · · , N} for indexing units and k, l ∈ {0, 1, 2, · · · , S} for indexing states.
3Both of static and dynamic retrieval; the latter is the latching dynamics.
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Figure 2.3: (a): The Potts network encapsulates local attractor dynamics within cortical
patches into Potts spins and describes attractor dynamics in the global network of the
cortex by means of a network of Potts units. The figure is modified from Ref. [26]. (b):
In a cortex comprised of modules, with pyramidal cells receiving their sparse inputs from
other modules (shown by a toy model with 5 modules on the upper panel), memory
patterns can be thought of as comprised of features, whose values are coded in the local
attractors of each module (lower panel, which reproduces the layout of the modules in the
top panel). Two memory patterns are shown, one by red circles and the other by blue
squares, each having 3 features. Due to sparse coding, not all features pertain to every
memory; the rest of the Potts units are in their quiescent state. The figure, together with
its caption, is modified from Ref. [57].

long-term memory (LTM) traces over large swathes of neocortex through purely associa-
tive mechanisms [39]. The values of the tensor components are pre-determined by the
Hebbian learning rule, which can be construed as derived from Hebbian plasticity at the
synaptic level [57]

Jklij =
cij

cma(1− a
S
)

p∑
µ=1

(
δξµi k −

a

S

)(
δξµj l −

a

S

)
(1− δk0)(1− δl0) , (2.8)

where cij is either 1 if unit j gives input to unit i or 0 otherwise, allowing for asymmetric
connections between units, and the δ’s are the Kronecker symbols. The number of input
connections per unit is cm. The p distributed activity patterns which represent LTM
items are assigned, in the simplest model, as composition of local attractor states {ξµi }
(i = 1, 2, · · · , N and µ = 1, 2, · · · , p), see Fig. 2.3b. The variable ξµi indicates the state of
unit i in pattern µ and is randomly sampled, independently on the unit index i and the
pattern index µ, from {0, 1, 2, · · · , S} with probability

P (ξµi = k) =
a

S
(1− δk,0) + (1− a)δk,0. (2.9)

Constructed in this way, patterns are randomly correlated with each other. We use
these randomly correlated memory patterns {ξµi }µ=1,...,p in this thesis, but envisage later
generalising it to a set of correlated memory patterns, as produced by the algorithm
presented in [26]. The parameter a is the sparsity of patterns – fraction of active units in
each pattern; the average number of active units in any pattern µ is therefore given by
Na.

Eq. (2.8) ensures that the memory patterns, {ξµi }, are fixed points of the network or
steady states if inhibition and adaptation are not taken into account. In order to quantify
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Figure 2.4: Latching dynamics of the Potts neural network. (a) A two-dimensional
sketch of the energy landscape of Potts neural network; latching is a spontaneous jump
of the network from a memory (energy minimum in this cartoon) to another. The figure
is taken from [60]. (b) Phase diagram of a Potts neural network in w − γA plane. The
x-axis is γA, the proportion of fast inhibition in the dynamics. γA = 0 (1) means only
slow (fast) inhibition. The y-axis is the self-reinforcement parameter w. In false color, the
proportion of simulations that exhibit finite latching. Increasing w, in fact, one observes
different latching phases: no latching (noL), finite latching (L), infinite latching (infL)
and stable attractor phase (SA). White circles indicate four points, where examples of
latching sequences are shown in the bottom panels, all produced with time constants
τ1 = 0.01s, τ2 = 0.2s and τ3 = 100s. The x-axis corresponds to time, and the y-axis to
the overlap, each colour with an item in long-term memory. (c) For too low w, in the no
latching phase, there is only retrieval and the network cannot latch onto another pattern.
(d) Increasing w, one reaches the finite latching phase, where the network retrieves a
finite sequence of patterns, with high overlap. (e) Increasing w further, one reaches the
infinite latching phase, where sequences are indefinitely long but the quality of latching
is degraded. The mean dwell time in a pattern is also increased compared with the finite
latching regime. (f) Increasing w even further, one gets to the stable attractor phase,
where the network retrieves the cued pattern and cannot escape from that attractor.
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how well the network can retrieve each memory pattern, we define an order parameter
called the overlap, which measures the retrieval of each pattern.

mµ(t) ≡ 1

Na(1− a/S)

N∑
i=1

S∑
k=1

(
δξµi ,k −

a

S

)
σki . (2.10)

When mµ = 1, pattern µ is perfectly retrieved.
Latching dynamics. With adaptation and inhibition, the Potts associative network

exhibits latching dynamics. Latching describes the spontaneous jump of the network
from one memory to another, producing a sequence of retrieved memories, see Fig. 2.4a.
Key to such latching dynamics is that the specific thresholds θki ’s inactivate, when rising,
only the corresponding attractor state and not the cortical patch tout court, allowing for
a large variety of ensuing trajectories. For example, we show four different phases of
operation in the w − γA phase space (Fig. 2.4b). The first one is the trivial no latching
phase, where the network operates just as an autoassociative (long-term) memory, with
large storage capacity, but dynamics stop after the retrieval of the cued pattern. Above
a phase transition, the network spontaneously latches, i.e., it generates a sequence of
items, clearly defined but limited in length in the finite latching phase, and indefinite
but progressively less well defined in the third phase, the infinite latching one, in which
latching dynamics go on indefinitely after the initial associative retrieval. In the fourth
phase the retrieved pattern is not destabilised by adaptation, and remains as a steady
state. We call this the stable attractor phase.

After separating timescales, a quasi-energy function or Lyapunov function can ef-
fectively describe latching dynamics of the Potts model, as is schematically shown in
Fig. 2.4a. In this way, latching behaviour is analysed within the mean-field limit in
Refs. [59, 60].
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Chapter 3

Speed inversion in a Potts glass
model of cortical dynamics

3.1 Summary of the chapter

To better understand the conditions prevailing when acquiring complex, compositional
memories, we introduce a differentiation between a frontal and a posterior subnetwork to
the Potts model. “Frontal” units, representing patches of anterior cortex, are endowed
with a higher number S of local attractor states, in keeping with the larger number of
local synaptic contacts of neurons there, than in some posterior, e.g. occipital cortices. A
thermodynamic analysis and computer simulations confirm that disorder leads to glassy
properties and slow dynamics but, surprisingly, the frontal network, which would be slower
if isolated, becomes faster than the posterior network when interacting with it. From an
abstract, drastically simplified model we take some steps towards approaching a neurally
plausible one, and find that the speed inversion effect is basically preserved. We argue that
this effect may facilitate learning, through the acquisition of new dynamical attractors.

3.2 Introduction: do local attractors obstruct corti-

cal dynamics?

For the brain to store new memories, neural dynamics should accurately reflect the novel
information to be encoded; whereas to utilize previously stored memories, the information
they contain should be reliably recovered, irrespective of what is currently occurring out-
side. In a massively recurrent neural system, reliable retrieval has been associated with
previously established attractors of the dynamics: as neural activity rapidly approaches
its attractors, the role of afferent inputs is minimized, essentially reduced to setting the
initial conditions, which select among the attractors [24]. When acquiring new memories,
instead, the corresponding attractors do not exist yet; how can the existing, unrelated
attractors be prevented from taking over also when they should not, and swamp the fresh
information conveyed by the inputs? In physics terms, unrelated attractors amount to
quenched noise, and input information has to navigate the dire straits between quenched
and fast noise – rapid variability. In the mammalian hippocampus, it appears that evo-
lution has addressed this version of the stability-plasticity dilemma [64] by introducing,
before the massively recurrent CA3 network (the core component of hippocampal cir-
cuitry), a dedicated pre-processor, the Dentate Gyrus (another component), to counter
any take-over by CA3 attractors [30]. In the cortex, however, there is no Dentate Gyrus,
but also the dilemma plays out differently because of the multi-level structure. Locally, in
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a small portion of cortex, attractor dynamics is expected to dominate most of the time,
also when acquiring new memories, insofar as these are new combinations of elements,
which individually have already been assigned a stable neural representation. Thus, most
viewers of the 2022 FIFA World Cup final would have had already established neural
representations of a soccer ball, of the scene of a penalty kick, probably of French player
Mbappé as well, but would still have to form memories of the (multiple) novel combina-
tions of these elements which occurred then. Imagine a viewer’s brain as Mbappé is about
to kick the ball. Can cortical activity follow the incoming inputs, and flow freely around
pre-existing combinations of these elements, like a stream unimpeded by the pebbles and
cobbles on its bed?

It can, to the extent that global cortical dynamics are fluid rather than glassy, a critical
issue which in this context has received limited or no attention. Glassy behavior might
in fact be made even more rigid by local attractors, widely hypothesized to serve as the
ubiquitous mechanism for expressing memory functionality at the level of a small portion
of cortex [24, 47]. Local attractors amount to non-linearities, which can be expected to
obstruct the continuous flow of neural activation, and slow it down, adding to the quenched
noise, including that due to pre-existing combinations of elements. Higher levels of rapid
variability – fast noise – would counter these effects, but further decrease the fidelity to
the afferent inputs, i.e., the accuracy of the neural code.

Global oscillations in cortical state, as well as electroencephalographic (EEG) and
magnetoencephalographic (MEG) response patterns, have been approached with linear
decomposition analyses, such as spherical harmonics [65, 66, 67]. Yet, these macroscopic
descriptions gloss over precisely local attractor dynamics, the key factor that may impede
global dynamics.

The Potts model offers a conceptual framework to remedy such neglect, as is argued
in Chapter 1. Each Potts unit possesses S states, pointing in S different directions, which
model the local attractors of a patch of cortex. These local attractors may be dynamical
rather than point-like attractors [38]. In this chapter, we focus on input-driven dynamics
of the discrete Potts model as a simplified cortical network, and whether they are fluid or
glassy.

3.3 A differentiated Potts model

Previous studies had reduced the cortex to a homogeneous network of Potts units, each of
which is characterized by the same number of states S, positive feedback w, time constants
τ ’s for excitation, inhibition and adaptation. This is in contrast with prominent features
of cortical organization, which for example point at much higher numbers of local synaptic
contacts among pyramidal cells in temporal and frontal, compared to occipital cortex [68],
suggestive of a capacity for more and/or stronger local attractor states in the former, or
conversely at more linear and prompt responses to afferent inputs in posterior visual
cortices [69, 70], suggestive of reduced positive feedback relative to more anterior areas.
Other features show gradients that roughly align with these, and all together have been
proposed by Changeux and colleagues [71] to define, in particular in the human brain, a
natural cortical axis. If one attempts to incorporate these features into a non-homogeneous
Potts network, what are the implications for cortical dynamics? The indications that the
dynamics in frontal cortex may be more affected by local attractors need not necessarily
imply, it should be noted, that individual neurons are routinely “stuck” in steady states,
in which they keep firing at steady rates for a few hundred msec. This would be in
apparent contrast with extensive evidence for more dynamical forms of coding in frontal
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cortex, e.g., for changing task contingencies rather than stable visual features [72]; or,
moving up to entire populations of neurons and to the human brain, for the encoding of
verbs rather than nouns [73, 74] (but see [75]) or of syntax rather than the lexicon [76].
As noted above, stable local attractors may be expressed by rapidly changing firing rate
distributions [38] and also quasi-stable attractor “ruins” may in fact accelerate dynamics
when particularly strong [77].

Local attractor states may thus be composed, only transiently or more persistently,
into global attractor states. Studying the dynamics of reactivating such global attractors
requires assumptions about the nature and the statistics of the compositionality, and two
distinct models have been studied in this respect, both for a homogeneous Potts network
[26, 78] (the latter is presented in Chapter 4). Here, however, we want to focus on the
dynamics unfolding away from previously acquired global attractors, as new attractors are
being established, or learned. In a learning regime, we expect the lack of a priori relations
between what has been already acquired and the new compositional representation to
be established to turn the cortex, from the point of view of the latter, into basically a
disordered system. Do long-range cortical interactions then result into “glassy” dynamics,
with critical slowing down and persistent traces of initial conditions? During learning, that
would likely imply an inability to track new inputs. If so, how does the glassy character
express itself over the short time scales relevant to cognition? Is it affected by gross
inhomogeneities, like the posterior-anterior gradients in cortical parameters mentioned
above?

We are aware of the large distance between our abstract models and the real cortex,
but we choose to consider here the most basic and mathematically well defined aspects
of these issues, by analyzing a hybrid model that integrates in the Potts formulation a
crude binary version of the gradient along the “natural” axis (Fig. 3.1); and leave for later
studies more realistic models of cortical dynamics and applications to other domains. As
we shall see, even the analysis of what seems like a simple extension of a standard model
for an infinite-ranged spin glass reveals some surprising properties.

Figure 3.1: The hybrid Potts model combines the representation of local attractor dynam-
ics in terms of units with S active states, inspired by Braitenberg’s idea of an approximate√
N scaling [48], with a differentiation between frontal and posterior cortices, along the

natural axis posited by Changeux and others [71] and expressed by a larger S value for
frontal units. Note the assumption that the critical quantity that varies along the axis
is S, the simplification of replacing a gradient with just two S values, and the ill-fitting
temporal cortex areas, in which pyramidal cells have abundant recurrent collaterals [68]
but are otherwise included among posterior regions.
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3.4 Mean-field theory of the long-time behaviour

As discussed in previous reports [56, 57], the analysis of the attractor states of associative
Potts networks, in which each unit represents a patch of cortex, relies on the same as-
sumption of symmetric interactions, proposed for the standard model [19] in which each
unit represents a single neuron. We aim to sketch in this section the thermodynamics of
the simplest version of the model, and then of the variant divided into two sub-networks,
which differ in the number S of states per unit.

If we consider, as we do here, a local cortical network to behave effectively as a
discrete Potts unit, σi ∈ {0, 1, . . . , S}, which can take one of S active states (labelled by
k = 1, 2, . . . , S) as well as stay in the quiescent state (labelled by 0), it is convenient to
define the model in terms of the Potts spin operator,

V k
i ≡ (δσik − 1/S)(1− δσi0). (3.1)

3.4.1 The random homogeneous Potts model, with a zero state

First, we consider a network of Potts units all endowed with the same number of states S,
that interact through random tensor connections. The Hamiltonian of the system reads

H = −1

2

N∑
i ̸=j

∑
k,l>0

Jklij V
k
i V

l
j + U

∑
i

(1− δσi0), (3.2)

where N is the number of Potts units, U is a threshold [60] and the {Jklij }’s are sampled
from Gaussian distributions with mean J0/N and variance λ4J2/N . We have introduced
the normalisation factor λ,

λ2 ≡ S√
S − 1

, (3.3)

which makes the critical temperature for the transition to a glassy phase independent on
S, in units of J (see below). The interactions satisfy

Jklji = J lkij , i ̸= j,

Jklii = 0.
(3.4)

Note that in this model, although S is the same across all units, the states of one unit do
not correspond to those of another unit, as they would if they represented, e.g., directions
in physical space. This is in contrast to the Potts model considered by Elderfield and
Sherrington (ES) [32], in which such correspondence holds, and the interactions, albeit
still random, are in the form Jklij ∝ Jij(δkl − 1/S), with a single random variable Jij per
unit pair (and, in addition, there is no quiescent state). In that model, the symmetry
among Potts states is global, whereas in our model it is local, as it must be in order to
represent distinct codes by different patches of cortex.

Despite the larger number of random variables the thermodynamic analysis proceeds
along similar lines to that in [32] and it is in some respects simpler. Using the replica
method [10], the free energy of the system is written as

f = lim
n→0

1

n
fn,

βnfn[{qγδ}] =
(βJ)2λ4

2

∑
γ<δ

q2γδ + (βJ)2λ4
n∑
γ=1

q2γγ − ln
S∑

σ1=0

S∑
σ2=0

· · ·
S∑

σn=0

exp(K),

K ≡ (βJ)2λ4
∑
γ<δ

qγδ

S∑
k=1

V k
γ V

k
δ + (βJ)2S

n∑
γ=1

qγγ(1− δσγ0)− βU
n∑
γ=1

(1− δσγ0).

(3.5)
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where qγδ is the Edward-Anderson order parameter [10], β = 1/T is the inverse temper-
ature and replica indices γ and δ run from 1 to n. A detailed derivation of Eqs. (3.5) is
reported in Appendix A. Saddle-point equations of Eqs. (3.5) are

qγδ =

S∑
σ1=0

S∑
σ2=0

· · ·
S∑

σn=0

[
S∑
k=1

V k
γ V

k
δ exp(K)]

S∑
σ1=0

S∑
σ2=0

· · ·
S∑

σn=0

exp(K)

, γ ̸= δ,

qγγ =
S − 1

2S

S∑
σ1=0

S∑
σ2=0

· · ·
S∑

σn=0

[(1− δσγ0) exp(K)]

S∑
σ1=0

S∑
σ2=0

· · ·
S∑

σn=0

exp(K)

.

(3.6)

The physical meaning of qγδ (γ ̸= δ) is the same as in the Sherrington-Kirkpatrick
(SK) model [11] (see also [13]), while 2qγγS/(S − 1) is the fraction of active units in
replica γ of the Potts network. Note that the free energy in Eqs. (3.5) does not depend
on J0, the mean of the normal distribution from which the Jklij ’s are sampled. This is in
contrast with the ES model [32], where low enough values of J0 should be chosen to avoid
ferromagnetic ordering at low temperatures ([32, 33]). Since the symmetry in our model
is local – a sort of gauge invariance – there is no meaning to ferromagnetic alignment.

Properties near the critical temperature
The free energy Eqs. (3.5) should be minimised with respect to {qγδ} (maximised

when n→ 0) to obtain ground states of the system. The paramagnetic solution (qγδ = 0,
γ ̸= δ) is the ground state of the system at high enough temperatures. Lowering the
temperature, a phase transition from the paramagnetic to the spin glass phase occurs at
T = Tc. To determine Tc, one can (Landau-) expand the free energy close to it. Following
Landau [79], the free energy Eqs. (3.5) can be expanded close to the critical temperature
Tc, assuming qγδ (γ < δ) to be small, to find

βnfn ≈
A

2

∑
(γδ)

q2γδ −
B

3

∑
(γδ)

q3γδ −
C

3

∑
(γδλ)

qγδqδλqλγ −
D

12

∑
(γδ)

q4γδ,

A =
(βJ)2

2

S2

S − 1
[1− (βJ)2S2ψ2],

B =
(βJ)6

4

S − 2√
S − 1

S2ψ2,

C =
(βJ)6

2

S3ψ3

√
S − 1

,

D = (βJ)8
[3(3S − 1)

4(S − 1)
S4ψ4 − 3S3ψ3 +

S2 − 3S + 3

4(S − 1)
S2ψ2

]
.

(3.7)

Here (γδλ) means that replica indices γ, δ, λ are all distinct in the summation. Following
[80], we have retained only the quartic term that is relevant for replica-symmetry breaking
(RSB) in Eqs. (3.7). We have also assumed that the order parameter qγγ does not depend
on the replica index γ near Tc and thus have introduced a symbol ψ ≡ 2qγγ/(S − 1) to
reduce the burden of heavy notation.

ψ =
exp

[
(βJ)2 S(S−1)

2
ψ − βU

]
1 + S exp

[
(βJ)2 S(S−1)

2
ψ − βU

] (3.8)

and the quantity Sψ gives the fraction of active units in the network.
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Under the replica symmetric (RS) assumption, qγδ = q (γ ̸= δ) we have also a non-
trivial solution (Potts glass), in addition to the trivial (paramagnetic) solution of q = 0.
It reads,

q2 =
2[(βJ)2S2ψ2 − 1]

(βJλ)4Sψ2[4Sψ − (S − 2)]
. (3.9)

The critical temperature is determined by numerically solving

(βJ)2S2ψ2 − 1 = 0 (3.10)

together with Eq. (3.8), since ψ contains T . If U → −∞ (which amounts to considering
the case with no quiescent state, all units are active if the threshold is infinitely low),
then Sψ → 1 and we get a simple formula, Tc = J , or Tc = 1 in units of J . The phase
transition is a continuous one if

0 < 4Sψ − (S − 2). (3.11)

For S < 6, there exists a critical value of U , Uc, above (below) which the transition is
discontinuous (continuous). For S > 6, the transition is discontinuous for all values of U .

A discontinuous transition is indicative of more pronounced glassy effects for larger
S, suggesting that cortical networks with a larger number of local attractors may be
slower. This RS solution is however unstable against replica symmetry breaking (RSB)
in the whole glassy phase, as is shown in Appendix A. Thus, the question should be
re-examined after breaking replica symmetry in the analytical approach.

To probe replica symmetry breaking, following Parisi’s hierarchical scheme [81] we
write the free energy

−βf ≈
∫ 1

0

dx
[A
2
q2(x)− B

3
q3(x)− D

12
q4(x)

]
+
C

3

∫ 1

0

dx
[
xq3(x) + 3q(x)

∫ x

0

q2(y)dy
]
,

(3.12)

using the coefficients A, B, C, D defined in Eqs. (3.7), and this free energy is to be
maximised with respect to Parisi’s function q(x) [80]. A detailed derivation is reported in
Appendix A. We note that Eq. (3.12) has the same form as in the ES model [32], except
for the coefficients. Thus, we can envisage that the nature of RSB is similar to that in the
ES model (see also [33, 34] for its detailed properties). The corresponding saddle-point
equation reads,

δ(−βf)
δq(x)

= Aq(x)−Bq2(x) + Cxq2(x)+

+ C

∫ x

0

q2(y)dy + 2Cq(x)

∫ 1

x

q(y)dy −Dq3(x)/3 = 0,

(3.13)

and its non-trivial solution is obtained as follows (see Appendix A).

q(x) =


0, x ≤ x0
Cx−B
D

, x0 ≤ x ≤ x1

q1 =
A

B − C
+O(q21), x1 ≤ x,

(3.14)
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where

x0 =
B

C
=

1

2ψ

S − 2

S
,

x1 =
B

C
+

AD

C(B − C)
.

(3.15)

From Eq. (3.14), we can see how replica symmetry is broken, for a given value of U . The

xq

q(x)P(q)

Figure 3.2: Schematic description of replica symmetry breaking, from Eq. (3.14). Left:
the probability density P (q), with blue rectangles denoting Dirac delta functions. Right:
Parisi’s function. Colour coding is used to facilitate a visual comparison.

scheme in Fig. 3.2 is similar to the one for the ES model. Note that x0 is always zero for
S = 2, regardless of U , whereas it remains positive for S > 2. This means that P (q) has
a Dirac delta at q = 0 for S > 2, whereas there is no Dirac delta at q = 0 for S = 2, as
in the SK model.

The phase transition to the glassy phase is continuous if

0 < 2Sψ − (S − 2),

0 < 3S2(3S − 1)ψ2 − 12S(S − 1)ψ + S2 − 3S + 3.
(3.16)

In general, these two conditions are numerically probed together with Eqs. (3.8) and
(3.10) for a given value of U . As a special case, when U → −∞, the second condition is
guaranteed. However, unlike the RS Eq. (3.11), the first of RSB Eqs. (3.16) ceases to hold
for S > 4. Thus, the transition can be continuous only for S ≤ 4. We can compute the
range of U where Eqs. (3.16) hold by solving them together with Eq. (3.8) and Eq. (3.10).
The result is shown in Fig. 3.3a.

Thus, in practice, replica symmetry breaking has lowered the value S beyond which
the transition to the spin glass phase must be discontinuous from S = 6 to S = 4, while
still suggesting that, in general, cortical networks with a larger number of local attractors
may be slower.

What happens, if the transition is discontinuous, in the entire range 0 < T < Tc? In
general for spin glasses the analysis via the replica method is complicated and involves
heavy numerics, however for Potts spins specific circumstances enable an approach. This
is explained in the following subsection.

Properties at all temperatures
At temperatures well below Tc and when the transition is discontinuous, one should

directly deal with the free energy, Eqs. (3.5), in the full RSB formalism. Even for the
SK model, solving Parisi’s equations requires sophisticated numerical techniques [82].
However, Potts spins seem to have a distinguishing property from Ising spins, at least
when we compare the ES model with the SK model: while any finite-step RSB solution

32



(a)

U S

(=
a
)

c T

c T

(b)

Figure 3.3: The critical temperature (Tc) for the onset of the glassy phase of a homo-
geneous Potts network. (a): Tc as a function of the threshold U for a model with a zero
state. With the normalisation set as in Eq. (3.3), the mean activity a of the network at
T = Tc is equal to Tc itself (that is, to Tc/J). Dashed curves are predicted by RS theory
and solid curves are from RSB theory. All transitions shown here are continuous. (b)
Tc as a function of S for a model without a zero state (U → −∞): colour encodes the
normalisation used (as indicated in the legend). Solid curves are obtained analytically
from the Landau expansion of the free energy (a continuous phase transition) and dashed
curves are their mere extensions, to guide the eye. Circles are obtained by numerically
maximising the 1-step RSB free energy (a discontinuous transition), Eq. (3.21). We set
J = 1.

is unstable in the SK model [81], the first-step RSB (1RSB) solution is locally stable in
the ES model (S > 2) below Tc, down to a certain temperature, where another phase
transition occurs [33, 34]. So, one can study discontinuous transitions for S > 4, where
the Landau expansion does not apply, by using a 1RSB formalism [83]). Here we use this
method to study the discontinuous transition of our random Potts model, Eq. (3.2).

The Edward-Anderson order parameter is set as, within the 1RSB formalism,

qγδ =


q̃, γ = δ

q1, γ ̸= δ,
⌊ γ
m

⌋
=
⌊ δ
m

⌋
q0, γ ̸= δ,

⌊ γ
m

⌋
̸=
⌊ δ
m

⌋
,

(3.17)

where ⌊x⌋ gives the smallest integer which is greater than or equal to x. Then the free
energy Eqs. (3.5) reads,

f [q1, q0,m] =
β2J2

4
λ4[m(q21 − q20)− q21] + β2J2λ4q̃ − 1

m

∫ (∏
l>0

Dzl
)
ln

∫ (∏
k>0

Dyk
)
Lm,

(3.18)
where

L ≡
S∑
σ=0

exp
{[
β2J2S

(
q̃ − q1 − q0

2

)
− βU

]
(1− δσ0) + βJλ2

∑
l>0

(√
q0zl +

√
q1 − q0yl

)
V l
σ

}
(3.19)

and

Dy ≡ dy√
2π

exp
(
− y2

2

)
.

Solving Eq. (3.18) numerically is computationally hard, especially for large values of S.
Thus, we restrict ourselves to a special case: the threshold U goes to −∞ (the zero state
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then drops out of the equations). Inspired from the shape of Eq. (3.14), we seek solutions
of the form

P (q) = mδ(0) + (1−m)δ(q). (3.20)

Then, the 1RSB free energy becomes,

βf ≈ (βJ)2λ4

4
(m− 1)q2 +

(βJ)2λ4

2

m+ S − 1

S
q − 1

m
ln

∫
D−→y

[ S∑
l=1

exp(βJλ2
√
qyl)

]m
,

(3.21)
where

D−→y ≡
S∏
k=1

[ dyk√
2π

exp
(
− y2k

2

)]
.

We can numerically maximise Eq. (3.21) by using the same numerical trick as in [83], up
to S = 20 (see Appendix A). Critical temperatures obtained that way are reported in
Fig. 3.3b, while the order parameters are shown in Fig. 3.4.

(a)

(b)

q
m

T

q

d
e
n
si
ty

Figure 3.4: Order parameters of a homogeneous Potts network without a zero state (U →
−∞), predicted by 1RSB theory. (a): solutions of the 1RSB free energy as a function
of T . Note the discontinuous jumps in q at T = Tc for S > 4. (b): Probability density,
P (q), obtained from Monte Carlo simulations, for S = 7 and T ≈ 6

7
Tc. Red vertical lines

indicate Dirac delta functions, estimated from (a). The peak at higher q seems to be
lower with increasing values of N , but this is due to the insufficient relaxation time in
our simulations. Since the relaxation time grows exponentially with N ([84]), we did not
attempt to obtain the exact ground states.

In conclusion, the level of fast noise below which the Potts network is glassy, Tc, is with
the λ-normalization we adopt (Eq. (3.3)) roughly independent of the number of states S
its units are endowed with; but the way it enters the glassy phase depends markedly on
S, and it appears that with larger S the entrance is more abrupt, suggestive of more
impeded glassy dynamics.

3.4.2 The hybrid Potts model without a zero state

We now consider a network of Potts units that have different values for S: a unit i has its
own number Si of Potts states. For the sake of simplicity, we consider Potts units without
the quiet state (equivalent to taking the limit U → −∞). We group units according to
their number of states: there are Nl units in group l (l = 1, 2, . . . , L) and they have Sl
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Potts states each. If the total number of Potts units in the network is N ,

ηl ≡
Nl

N
,

1 =
L∑
l=1

ηl.

We write

H = −1

2

N∑
i ̸=j

Si∑
k=1

Sj∑
m=1

λiJ
km
ij λj(δσik − 1/Si)(δσjm − 1/Sj), (3.22)

where λj ≡
√

Sj√
Sj−1

normalizes the interactions with both a pre- and a post-synaptic

factor, and the {Jkmij }’s are sampled from a Gaussian distribution of mean J0/N and
variance J2/N and satisfy Eqs. (3.4). One obtains the free energy,

βnfn ≈
(βJ)2

2

∑
γ<δ

q2γδ −
L∑
l=1

ηl lnTr
l exp[(βJλl)

2
∑
γ<δ

qγδ(δσγσδ − 1/Sl)], (3.23)

where qγδ is the Edward-Anderson order parameter,

qγδ =
1

N

N∑
i=1

λ2i ⟨δσγ
i σ

δ
i
− 1/Si⟩, (3.24)

and

Trl ≡
Sl∑

σ1=1

· · ·
Sl∑

σn=1

. (3.25)

A detailed derivation can be found in Appendix B.
As before, we expand Eq. (3.23) around qγδ = 0 and apply the Parisi algebra [85] to

probe the nature of the equilibrium state. The corresponding free energy functional and
the Parisi function that maximises it have the same form as for the homogeneous network
(see Eqs. (3.12) and (3.14)), after a redefinition of the coefficients A, B, C and D, as
follows

A =
(βJ)2

2
[1− (βJ)2],

B =
(βJ)6

4

L∑
l=1

ηl
Sl − 2√
Sl − 1

,

C =
(βJ)6

2

L∑
l=1

ηl
1√
Sl − 1

,

D =
(βJ)8

4

L∑
l=1

ηl
S2
l − 6Sl + 12

Sl − 1
.

(3.26)

The critical temperature for the onset of the glassy phase is again given by

Tc = J, (3.27)

where the phase transition is continuous in terms of q whenever

L∑
l=1

ηl
Sl − 4√
Sl − 1

< 0. (3.28)
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As an example, consider a hybrid network with two types of Potts units: half with S1

and half with S2 states. The phase transition is continuous if

S1 − 4√
S1 − 1

+
S2 − 4√
S2 − 1

≤ 0. (3.29)

Several cases are interesting (we set 1 < S1 ≤ S2):

• S1 = 2. The transition is continuous for S2 ≤ 10 and discontinuous otherwise.

• S1 = 3. The transition is continuous for S2 ≲ 5.5 and discontinuous otherwise.

• S1 ≥ 4. The transition is always discontinuous (except for S1 = S2 = 4, but then
the network is again homogeneous, as in the previous section).

3.4.3 The glassy phase of a Potts associative memory

We consider now an attractor neural network comprised of Potts units. The Hamiltonian
is the same as in Eq. (3.2), with the connection Jklij now given by the Hebbian-learning
rule,

Jklij =
1− δij

Na(1− ã)

p∑
µ=1

(
δξµi k − ã

)(
δξµj l − ã

)
(1− δk0)(1− δl0), (3.30)

where {ξµi } are p randomly correlated memory patterns, a is their sparsity and ã = a/S.
Note that the network is fully-connected, unlike in Eq. (2.8). The free energy and the
saddle point equations are obtained by the replica trick, as sketched in [56, 57]1.

nfn
[−→m,q, r] = 1

2

∑
γ

(mγ)
2 +

α

2β
Tr ln

[
I− βãq

]
+
∑
γδ

rγδqγδ+

+
[αã
2

+
SU

S − 1

]∑
γ

qγγ −
1

β

〈
lnTr{σγ} exp[βL

ξ
σ]

〉
ξ

,

(3.31)

where
Lξσ ≡

∑
γ

mγ

∑
k>0

(δξk − ã)V k
γ +

∑
γδ

rγδ
∑
k>0

V k
γ V

k
δ (3.32)

and α ≡ p/N is taken to be α ̸= 0. The saddle-point equations read

mγ =
∑
k>0

〈
(δξk − ã)

〈
V k
γ

〉
Lξ
σ

〉
ξ
,

qγδ =
〈∑
k>0

〈
V k
γ V

k
δ

〉
Lξ
σ

〉
ξ
,

rγδ =
αã

2

[
I− βãq

]−1

γδ
− δγδ

[αã
2

+
SU

S − 1

]
(3.33)

where

⟨X(σ, ξ)⟩Lξ
σ
≡

Trσ
[
X(σ, ξ) exp(βLξσ)

]
Trσ exp(βL

ξ
σ)

. (3.34)

One can solve Eqs. (3.33) by using either RS or RSB assumptions to compute, inter
alia, the storage capacity of the network. We refer to Refs. [56, 57] for a discussion of the
storage capacity (see also [35, 37] for related but different models). Here, we are interested

1A more detailed derivation can be found in the Thesis of Chol Jun Kang, 2017.
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in the phases prevailing at higher temperature, where there are no retrieval solutions: the
paramagnetic and the glassy phase.

At high enough values of T and α, in fact, we expect retrieval solutions not to exist.
So, we set mγ = 0 and the terms including ξ and mγ drop out of the equations. We can
easily see that qγδ and rγδ are zero in the high temperature limit, if γ ̸= δ. We expand the
free energy with respect to these two variables around zero (see Appendix C for details).
Within the RS ansatz, the expanded free energy reads, up the third order in q and r,

βfRS ≈
α

2
ln(1− βãq̃)− βrq + βq̃

(αã
2

+
SU

S − 1
+ r̃
)

+
αΛ2

4
q2
[
1− 4

3
Λq
]
+ (S − 1)β2ψ2r2

[
1− 8

3
βψr +

2(S − 2)

3S
βr
]
.

(3.35)

This free energy is maximised with respect to r and q, while q̃ and r̃ satisfy

q̃ = (S − 1)ψ,

r̃ =
αã

2

( 1
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− 1
)
− S

S − 1
U,
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exp

(
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S

)
1 + S exp

(
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S

) .
(3.36)

In addition to the trivial (paramagnetic) solution of q = 0, we have

q = 2
αΛ2ψ2(S − 1)− 1

αψ2Λ3(S − 1)
(
4 + αΛ4Sψ+2−S

S

) . (3.37)

A phase transition from the paramagnetic to the glassy phase occurs at

Tc = q̃ã+ ψã
√
α(S − 1)→ (S − 1)a

S2
+

a

S2

√
α(S − 1), (3.38)

where α = p/N and the last expression is for the limit of U → −∞ (i.e., in the absence
of a quiet state). It is a continuous transition if S ≤ 6. For S > 6, the transition is
continuous if α < α0 and discontinuous otherwise, with

α0 =
16S2ψ2(S − 1)

(S − 4ψS − 2)2
→ 16(S − 1)

(S − 6)2
,

where the last expression is again for U → −∞.

As in the random Potts model considered above, there is a value of U above which
the phase transition cannot be treated by the Landau expansion, indicating that, when
lowering T , the glassy phase is entered discontinuously, with an abrupt freezing of the
Potts units in a disordered configuration. This critical value of Uc is shown for α→ 0 in
Fig. 3.5a (see Appendix C). In Fig. 3.5b, we report the transition temperature Tc(U, α)
for the emergence of a glassy solution with small q ̸= 0, as a function of U and α, provided
that α ̸= 0.

The general conclusion of these thermodynamic analyses is that a continuous transition
to a glassy phase characterizes disordered networks of Potts units with low S, whereas
networks with high S tend to get stuck more abruptly. Before applying these insights to,
respectively, posterior and frontal cortical networks, however, we should study the actual
dynamics of the Potts model.
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(a) (b)

Figure 3.5: High temperature phase of associative memory for S = 3. (a): max-
imum value of U (blue) above which the transition is no longer continuous, and the
corresponding critical temperature (green) are plotted against sparsity of patterns for
α → 0. (b): Critical temperature as a function of α for a = 0.2. Note that the data
points for α = 0 (in the left panel, and the leftmost of the right panel) are computed
separately from those for α ̸= 0, and that the sample value U = 0.02 used in the right
panel is just below Uc ≈ 0.026 given by solving the equations valid for α = 0, in the left
panel.

3.5 Dynamics

Although dynamics can be studied within mean-field theory to a certain extent ([86, 87]),
here we stick to Monte Carlo (MC) simulations. Throughout this work, we use the heat
bath algorithm to simulate the dynamics of Potts networks. Specifically, the local field of
each Potts unit is computed as

hki =
N∑

j=1(j ̸=i)

∑
l>0

(Jklij −
1

S

∑
k′

Jk
′l

ij )V
l
j , k > 0, (3.39)

where the weights Jklij express the random or the associative memory model. At each MC
step, one Potts unit is randomly chosen to be updated based on the following equations

Prob[σi = k] =
exp[βhki ]∑S

l=1 exp[βh
l
i] + exp[βU ]

, k > 0,

Prob[σi = 0] =
exp[βU ]∑S

l=1 exp[βh
l
i] + exp[βU ]

.

(3.40)

For models without a zero state, the second of Eqs. (3.40) is not used.
For most of the simulations presented here, we run two systems ([84]) with the same

quenched disorder (i.e., the set of interactions between Potts units) and measure the
overlap between the two configurations γ and δ at time t:

qγδ(t) =
S

N(S − 1)

N∑
i=1

(δσγ
i σ

δ
i
− 1/S). (3.41)

3.5.1 Dynamics close to steady states

Fig. 3.6 shows sample trajectories of networks with random interactions at temperatures
T ≪ Tc, to illustrate their glassy nature: after an initial transient the system is trapped
in metastable states for a while before finding a way out, along which it can further lower
its energy. The opportunities to escape a metastable state however become rarer and
rarer, and the time spent near it longer and longer, a process called thermalisation.
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Figure 3.6: Energy as a function of MC sweeps per unit for sample MC trajectories.
Note the log scale of the abscissa. (a): Three example trajectories are shown for a
homogeneous Potts network without a zero state and with S = 2. In the right panels,
t restarts after t0 ≃ 105, to focus on long-time glassy dynamics. (b): Same as (a) but
with S = 7. (c): Example trajectories of a homogeneous Potts network with a zero state
(S = 3). (d): Example trajectories of the ES model. The three curves are rescaled and
shifted for better visibility (only in panel (d)). Note that the ES model reduces to the
SK model if S = 2. The number of units is N = 256 for all panels, and each data point
is averaged over 10 MC sweeps, except for the first 100 points.
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To measure how fast the dynamics unfolds on the glassy free energy landscape, we
first “thermalize” a configuration by letting it evolve for t0 = 103 time steps, and then
start from it two simulations with identical interactions, until at τ their overlap reaches
half its initial value. Since the times τ are quite scattered depending on the realization of
the interaction – their logarithms are approximately normally distributed – we consider
their cumulative distribution, for a given network, and in particular the thermal half-life
scale ζg(T ), defined as the median µ1/2[log(τ)] when the cumulative distribution, at a
temperature T , reaches the value 0.5.

With this procedure, we find that a homogeneous random Potts network “moves”
faster the lower is S, i.e., the number of states of its Potts units. This is shown in
Fig. 3.7a, which indicates that ζg(T ) ≡ µ1/2[log(τ)] increases approximately with log(S),
with the parameters we use. This is in line with the expectations from the thermodynamic
analysis.

If we measure τ (and ζg) separately for the units with a given S in a hybrid network,
we find that the small S units get slower and the large S units get faster, due to the
hybridization. Surprisingly, however, the effect is not simply an interpolation or averaging
of the temporal scale between the two sub-networks, that would come to share a common
speed, because in many cases the large units get markedly faster than the small units.
This is shown in Fig. 3.7b for T = 0.8 and large units with S2 = 7, that interact in a
hybrid network with small spins, S1 = 2. Fig. 3.7c shows that the slowing down of these
spins scales roughly with the log of S2, the number of states of the units that “bog them
down”. Simultaneously, the large units “speed up” after the hybridization, Fig. 3.7d and,
particularly when the interactions are not renormalized as in Eq. (3.22), can get to be
faster, on average, than the small spins (Fig. 3.7f).

The speed inversion phenomenon indicates that the same free-energy landscape is
“perceived” as rougher, near the metastable states, by Potts units with fewer degrees
of freedom. Notably, the effect occurs, albeit reduced in size, with the normalization of
Eq. (3.22), which according to the thermodynamic analysis makes the relevant fast noise
range 0 < T < Tc independent of S. Does the same effect occur away from the metastable
states, e.g. in the initially rapid dynamics to the left of the panels in Fig. 3.6, or when
asymmetric connections weaken the very stability of such disordered states?

3.5.2 Factors that accelerate the dynamics

In the Hopfield model, imposing symmetry in the interactions, which established the con-
nection with Hamiltonian systems, thus enabling the analytical approach [19], entailed
gross disregard for Dale’s law – stating that excitatory and inhibitory neurotransmitters
are released by distinct types of cortical neurons – and also of plausible statistical mod-
els of connectivity among excitatory neurons alone. Interestingly, it was argued early
on that spin-glass-like metastability would still characterize networks with asymmetri-
cally “diluted” connectivity, whereas it was suggested that more profound changes due
to asymmetry might be observed in the dynamics [88]. In the Potts network, inspired
by Braitenberg’s model [48], Dale’s law is not relevant as long-range connectivity (the
component modelled by the tensor interactions among Potts units) is only excitatory;
and there is no urgency to consider diluted connectivity either, as the tensor connections
themselves are considered to recapitulate thousands of individual synaptic connections
[57]. Still, it makes sense to consider the effect of asymmetric non-zero values in the
random interactions, by writing them in the form

Jklij = γJasym + (1− γ)Jsym, (3.42)
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Figure 3.7: Speed-up and slow-down in a hybrid Potts model. All curves are
dashed for homogeneous nets, solid for hybrid ones. (a): Cumulative distribution of τ ,
computed for homogeneous networks of N = 256 units, as a function of S. (b): The
inversion of speed due to hybridization between small units with S1 = 2 and large units
with S2 = 7. Note the faster dynamics, as we have set here T = 0.8, whereas the default
value T = 0.5 was used in the other panels. (c): A sub-network of S1 = 2 that interacts
with another sub-network with S2 > 2, denoted in the legend as 2 ← S2, is more slowed
down the higher is S2. Note that the case with S2 = 2 is the homogeneous network of
panel (a). (d): The speed-up and slow-down of the sub-networks in panel (c) are shown
by the arrows, which head up for units that accelerate. The color of bars stands for S as
in panel (a), while the height measures the difference ∆ζg in the median of the cumulative
distribution of log(τ), between hybrid and homogeneous networks. Start and end points
of arrows are the median ζg(T ) for homogeneous and hybrid network. (e) and (f): Same
as (c) and (d), but without the normalization constants λi in Eq. (3.22) and T = 0.2,
t0 = 5× 103.
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where Jklij,sym = J lkji,sym and Jklij,asym is unrelated to J lkji,asym; thus the former are symmetric
and the latter a-symmetric random components, drawn from the usual distribution with
zero mean and variance J .

Figs. 3.8b and 3.8c show that introducing asymmetry does have a major effect in
speeding up the dynamics, across the board, while maintaining the slowing down of small
units and speeding up of large units due to hybridization. With γ = 0.3, the root-
mean-square symmetric component of the weights is still more than twice the asymmetric
component, and yet dynamics are extremely fast.
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Figure 3.8: Speeding up the dynamics with asymmetric connections and ex-
ternal inputs. (a): The speed-up and slow-down of sub-networks (relative to their
homogeneous counterparts) are shown without asymmetry or perturbation, to serve as
the “control” case. (b): The effect of asymmetry, where γ = 0.2, is to speed up the
dynamics across both sub-networks, homogeneous or hybrid. (c): With more asymme-
try, γ = 0.3, the same general speed-up is seen as in (b), but more extreme. (d): N/4
units are perturbed or reset, after thermalization, mimicking an external input; they are
selected uniformly across the whole network. γ = 0. (e): Those perturbed by the input
are all in the smaller unit (S = 3) sub-network. (f): They are all in the larger unit
(S=7) sub-network. In both (e) and (f) the dotted curves refer to unperturbed halves of
homogeneous networks, and the dashed ones to the halves including the units receiving
the input.

To probe the dynamics away from the vicinity of the metastable states, without touch-
ing the symmetry of the interactions, we use a variant of the simulation paradigm above,
that mimics the arrival of an external input to the Potts network. That is, after a con-
figuration has been thermalized as in previous simulations, a fraction of the units are
randomly reset in a new state (different from the thermalized one), and then two in-
dependent trajectories evolve with the heat bath procedure from this common starting
configuration, until the time τ when their overlap has been halved. Fig. 3.8 shows that the
basic inversion effect, and in particular the selective slowing down of the “small” units,
persists over wider regions of activity space. With respect to the standard thermalization
paradigm in Fig. 3.8a, Fig. 3.8d shows that resetting a quarter of the units does indeed
accelerate the dynamics of the S = 3 network, when it is homogeneous; whereas when it
is hybridized with S = 7 units, these latter get faster, and slightly faster than the S = 3
ones.
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In Fig. 3.8d, the external stimulus or perturbation is applied to a quarter of the units
distributed in both sub-networks; when they are concentrated among the small S = 3 units
(panel e, solid curves), the already minimal acceleration effect is reduced even further.
When they are concentrated among the large S = 7 units, instead, their sub-network
activity is markedly accelerated, as expected (panel f, solid curves), but only if it is part
of a hybrid network with S = 3 units, with only minimal acceleration if they are part of
a homogeneous network.

The results of the simulated external input procedure are therefore rather counter-
intuitive: if affecting one fourth of the Potts units, the input effectively distances the
network from its slow-evolving glassy state in two situations: when it is applied to a ho-
mogeneous network of small, but not large units, or, in a hybrid network, only when it is
applied to the large units, but then it accelerates essentially their dynamics alone. These
complex effects are observed still within the domain of networks with symmetric inter-
actions, and they beg the question of what happens when an external input is combined
with relaxing the symmetry constraint in a more cortically plausible manner.

3.5.3 Approaching a cortical scenario

An interesting model of how cortical dynamics might influence cortical connectivity might
be expressed by setting γ = 0 only for the interactions among the small units, to express
the hypothesis that during learning they had been almost clamped by afferent inputs. This
leads to a remarkable inversion effect, illustrated in Fig. 3.9a. One can see a self-consistent
pattern potentially at play: the hybridization makes the large-S sub-network fast, which
upon spike-timing dependent synaptic plasticity would tend to result in more asymmetric
tensorial couplings connecting those units.

To combine a putative external sensory input and the same type of asymmetry of
Fig. 3.9a, in a cortically plausible scenario, we show in Fig. 3.9b what happens when
resetting a fraction η of the small-S units (thus simulating an input to posterior cortex)
after thermalization. The result is a moderate general speed-up, for both sub-networks,
and very fast dynamics in about 30% of the runs, for the posterior network. It appears that
in those runs the input has brought the small-S units close to the boundary between deep
basins of attraction, so that fast noise leads to the immediate divergence of trajectories
with the same starting point. For most of the other runs, instead, presumably well inside
each large basin, the posterior network remains slower than the frontal one.

Finally, in Fig. 3.9c we take a major step towards cortical plausibility, by re-introducing
the quiet state until now considered only in the thermodynamic analysis. The quiet state
implies sparse activity (only a fraction a of the Potts units in one of their active states)
and this overall level of sparsity must be conceived as being regulated by inhibition (in
the analysis, this amounts to considering the activity level rather than the threshold U
as a parameter, whereas for the implementation in the simulations see the Appendix C).
We first consider in this case purely symmetric random connections, and an input applied
to some of the posterior units. To maintain the sparsity level, the input is applied after
thermalization both to units already in an active state (which are then flipped to a different
state) and to units in their quiescent state – in this case the input is clamped to keep them
in the new state, simulating the strong effect of thalamic inputs impinging on an inactive
local network. Again, we refer to the Appendix C for a full description of the procedure.
The result, in Fig. 3.9c is a strong differentiation between slow dynamics in the posterior
network and an immediate divergence of nearly all trajectories in the frontal one. While
this outcome stems to a large extent from clamping a few critical units only in the posterior
network, it suggests that the main speed inversion phenomenon is not necessarily reversed
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Figure 3.9: The speed inversion effect likely applies to the cortex. (a) Distribution
of divergence times when the asymmetric component is zero only within the S = 3 sub-
network and γ = 0.2 otherwise. For homogeneous networks, dotted curves are for the
sub-networks that have zero asymmetric component. (b) Same as in (a), but half the
S = 3 sub-network units are perturbed after thermalization. (c). Potts glass model
with a quiet state and with regulated mean-activity. After thermalization, a persistent
external input is applied to the S = 3 sub-network, by flipping to a different active state
a proportion aη of its active units, inactivating a proportion (1−a)η, and activating (in a
random active state) the exact same number as those that get inactivated (which is close
to Na(1 − a)η, but varies somewhat in the course of each thermalization). The newly
activated units are clamped. Broken curves show results when reintroducing asymmetry,
γ = 0.2, in the connections involving the S = 7 units.

back again when moving towards actual cortical dynamics. Reintroducing the asymmetry
in the connections involving the S = 7 units only makes their network diverge immediately
in all trajectories (the broken curves in Fig. 3.9c).

3.5.4 Short-term dynamics for the associative memory model

In this last Results subsection we consider the associative memory model, in which the
interactions are not random but rather tend to align the network along one of a number p of
pre-acquired memory states. Here there is no hypothesis about the overarching structure
of memory representations in the cortex (we have reported elsewhere on the problems
in applying to the cortex the simplest autoassociative retrieval scenario [78]) but rather
we aim to assess the effects on glassy dynamics of the presence of the large attractors
associated with the memories. The logic is that we are probing the establishment of new
representations, driven by either external inputs or internal dynamics, and if the network
gets stuck into a previously acquired memory, no new configuration can be learned.

First, Fig. 3.10a shows that hybridization, i.e., the differentiation between large- and
small-S units, in this case speeds up both sub-networks. In a homogeneous network,
the S = 7 units are extremely slow, as nearly all trajectories are trapped in one of
the large basins of attraction of the memories encoded in the connections, reflecting the
very extensive storage capacity of the Potts network, quadratic in S [35, 56]. Also the
trajectories of the S = 3 homogeneous network are slower than in the random network,
which does not have the memory attractors, but faster than the S = 7 ones. The effect
of hybridization is then much stronger on the S = 7 units.

What happens when applying, after thermalization, an external input to some of the
S = 3 units? Not much, Fig. 3.10b shows, if the simulated input is applied to half
of them (following the procedure used for Fig. 3.9c, with η = 0.5 and no clamp). If
η = 1.0, instead, i.e. the input is applied to the entire S = 3 sub-network, then there is
a major effect, particularly in producing immediate or very early divergence of many of
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Figure 3.10: Speed inversion occurs also in the associative memory model. (a)
Cumulative distribution for τ (on a log scale) without external input. Dashed curves are
for the homogeneous network. (b) The input-driven divergence times, i.e., when half of
the S = 3 active units are perturbed (η = 0.5, solid curves) and all of the S = 3 active
units are perturbed (η = 1.0, broken curves). (c) Asymmetric connections between the
two sub-networks, obtained by removing/pruning 30% of them, results in only quantitative
changes. The slow-down and also the speed-up are dramatic, instead, when in addition,
like in Fig. 3.9c, the newly activated units are clamped by persistent external inputs
(broken curves). For all panels, T = 0.05.

the trajectories, but the speed inversion remains more or less unaltered (broken lines).
Finally, Fig. 3.10c shows that introducing moderate levels of asymmetry by diluting

or cutting 30% of the connections between the two sub-networks does not have much of
an effect either – unless one also clamps some of the units in the posterior network, in the
manner already described; then, the posterior network slows down, almost to a standstill,
which is intuitive, while surprisingly the anterior network speeds up further, as if unable
to find any single satisfactory accomodation to the configuration imposed posteriorly.

3.6 Discussion

Our study is premised on the hypothesis that some of the characteristics of cortical dy-
namics have their roots in the statistical physics of disordered systems [7]. Prior to
attempting to validate the connection between two levels of analysis so distant from each
other, we wanted to explore what the statistical properties might be, that might find – or
not – their expression at the neural systems level. We have considered the reduction of
Braitenberg’s model of cortical connectivity to a Potts network, and reviewed the ther-
modynamic analysis that predicts different types of transition from a paramagnetic to
a glassy phase, as a function of the number S of local states. One should note that in
this model the glassy character stems from the local attractor dynamics – the S states –
whereas those very dynamics have been argued not to be too glassy, locally, if individual
neurons are modelled realistically [89].

We then combine in a“hybrid” network two halves with “low” and “high” S units,
inspired by the observed anatomical differences in the number of local synaptic connections
– differences which, it should be remembered, may not lead, or only partially lead, to
differences in the number of local attractor states. Surprisingly, in the “hybrid” network
the low-S units are slowed down by the interaction, and the high-S ones are sped up, to
the point of overtaking the former. This effect might be related to the different order of
the phase transition to the glassy phase, but remarkably it is a reversal of the difference
presented by homogeneous networks. Although one can construct seemingly intuitive
explanations a posteriori, those did not enable us to predict it, in the least.

The speed inversion effect appears to survive largely unaltered the introduction of
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additional elements and details, and, importantly, the replacement of the random network
with an associative memory with connections structured by learning.

What are the implications for cortical processing? First, one should note that such
implications should be taken with more than a grain of salt, if anything because the
key concept of a single cortical axis is rather ill-defined, at best. Perusing the many
parameters of cortical circuitry that have been observed to vary across cortical areas, and
the many more likely to be reported in the future, describing their variation as aligned to
an axis, let alone whether it is the same axis across parameters, is a wishful simplification.
The sensory-motor hierarchies conceptualized e.g. by Fuster [90] have their final station
in motor cortex after passing through the more anterior prefrontal cortices, while the
termination layers of intracortical fibers, used to distinguish between feed-forward and
feedback projections, define a cortical hierarchy with the hippocampus at the top, the
limbic cortices next to it just below, then the association cortices of both temporal and
frontal lobes, going down all the way to primary sensory and motor cortices [91]. In terms
of the number of largely local inputs to the basal dendrites of pyramidal cells, instead,
Elston [92] gives estimates for areas V1, 7a, TE and 12, in macaque monkey, that are
roughly in the ratios 1:4:11:16, more or less along a posterior-to-anterior axis – but then
measures in other areas do not necessarily align, for example area 10 at the frontal pole is
anterior to 12, but its pyramidal cells are estimated to have on average 17% fewer spines.

Our hybrid Potts network discards such complexity anyway to favor simplicity, and the
speeding up of the large-S units that it reveals may have to be factored in, as an underlying
phenomenon, in any complex scenario that envisages an imbalance between the effective
numerosity of local attractor states across the cortical mantle. One scenario of this kind
is the debate about the neural bases of consciousness, in which competing theories wrestle
with the characterization of the differences between posterior and prefrontal cortices [93].

Interestingly, machine learning has pointed out the usefulness of combining “processing
units” with memory properties at different time scales (LSTM units), e.g. to tackle syntax
in language production and understanding. In particular, it has been predicted that long-
and short-range units, which are taken to correspond to patches of cortex of perhaps 106

neurons, similar to our Potts units, should reside in different cortical regions [94]. Our
findings should prove useful to research in this natural language processing framework, by
at least contributing a warning that the properties of the units in a homogeneous network,
or even in isolation, may differ, to the point of being the opposite, from those of the same
units in a hybrid one.

A rather different linguistic domain in which the effective speed or slowness of glassy
dynamics may be important is language evolution. There, it has long been hypothesized
that the syntactic parameters that determine the internal structure of language and that
evolve or even “mutate”, like units of a genetic code, on a scale of hundreds or thousands
of years [95], may all be binary. Notably, many other features which are needed to
describe natural languages and to implement them in artificial systems are obviously far
from binary and appear to evolve, largely, on faster time scales. Our study suggests that
in a network of parameters with effectively random interactions, those that emerge in
evolution as more resistant to change, and therefore describe the most stable internal
structure or set of motifs of a natural language are precisely the binary ones, whether or
not they possess a default value [18].

Yet other seemingly distant domains are those of protein folding and evolution, which
have been approached with simplified Potts models [96, 97]. The possible application of
our results to these different fields is left for future work.
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Chapter 4

Storage capacity for compositional
memories

4.1 Summary of the chapter

We consider a model of associative storage and retrieval of compositional memories in an
extended cortical network. The critical assumption is that a memory, for example of a
spatial view, is composed of a limited number of items, each of which has a pre-established
representation: storing a new memory only involves acquiring the connections, if novel,
among the participating items. The model is shown to have a much lower storage capacity
than when it stores simple unitary representations. It is also shown that an input from
the hippocampus facilitates associative retrieval. When it is absent, it is advantageous to
cue rare rather than frequent items. The implications of these results for emerging trends
in empirical research are discussed.

4.2 Introduction

Try to recall the last time when you watched a soccer game, either on TV or at the local
stadium. You can not only remember the result of the match (your favourite team had
won/lost the game), but also visualise (or imagine) the scene of highlights: the football
near the gate, the goalkeeper in blue uniform, other players around the referee on the
pitch, the lawn, etc. The ability to recall facts and events not currently conveyed by
sensory inputs is a hallmark of cortical computations.

Let me take as an example mind-wandering, the drifting of the mind away from current
(sensory) experience towards inner contents such as memories or plans [98, 99]. Recent
research has begun to investigate the neural underpinnings of mind-wandering, and to
reveal distinct patterns of alteration of mind-wandering, following brain damage. Pa-
tients with lesions in the ventro-medial prefrontal cortex (vmPFC) tend to mind-wander
less than healthy and brain-damaged controls, and when they do they are more focused
on the present and on the self, suggesting a deficit in activating dynamical schemata to
self-project into imaginary situations different from the perceptual present, such as future
events or others’ perspectives [100]. Hippocampal patients, on the other hand, report
mind-wandering as frequently as healthy controls, but their thoughts are of a stream-
lined logical/semantic character, impoverished in spatial details and bereft of episodic
contributions, particularly from the recent past, the last year or so of actual experi-
ences [101]. It thus appears that vmPFC integrity is necessary for the self-initiation
and unfolding of mind-wandering episodes, whereas hippocampus integrity is important
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for the composition of elements drawn from recent experience into imagined scenes that
fuel mind-wandering, whether or not they closely match combinations of elements that
actually occurred [102, 103, 101, 104, 99].

Why should it be so? After all, influential memory theories promote the idea that,
after hippocampally-driven consolidation, even episodic memories should become inde-
pendent of the hippocampus [17, 105]. One such theory viewed the hippocampus as a
complementary learning system, needed because the cortex, just like a back-propagation
trained network, is postulated to be able to only learn slowly [106]; logically, once the cor-
tex has taken its time, the hippocampus can be disposed of. The Multiple Trace Theory
has emphasized instead the qualitative distinction between truly episodic memories that
remain dependent on the hippocampus through a lifetime, and semanticized memory con-
tent that can be retrieved and utilized also without the hippocampus [107]. A somewhat
intermediate formulation has been put forward, to try and reconcile the contradictory
empirical evidence, which can be invoked in partial support of either extreme position: it
holds that the hippocampus regenerates constructs that appear to be simple reactivations
of the activity patterns originally encoded, but are not [103]. By titrating the degree of
infidelity of the reactivated from the original, this proposal can satisfactorily interpolate
between views that prima facie clash with each other.

None of the above, however, really addresses any constraints that may arise below
the functional system level, that is, in the neural network mechanisms that are invoked
to implement the required operations of memory storage and reactivation. An exception
may be the argument that rapid neocortical learning would lead to catastrophic interfer-
ence [106], although it was later qualified that this would only happen with new content
inconsistent with previously stored information [108]. Episodic memories, however, are
typically neither fully consistent nor inconsistent with each other, rather, they are diverse,
entailing a variably overlapping set of items.

We ask here whether there are purely computational constraints that require cooper-
ation between the hippocampus and neocortex in the associative storage and retrieval of
snapshot compositional memories, and which stem from the distinct neural network orga-
nization of the hippocampus and of vmPFC (and neocortex in general). The hippocampus
has available the dentate gyrus, which can establish a new, tendentially orthogonal com-
pressed representation for any new memory [30]. In the neocortex there is no dentate
gyrus, but its presumably large storage capacity – particularly in humans – should allow
for the associative storage of many new combinations of items, most of which are already
endowed with their neuronal representations. To what extent is this the case?

Figure 4.1: A schematic illustration of how compositional memories are stored in the
Potts neural network. Memory items that constitute a compositional memory are already
consolidated in the network, as shown by solid and dashed connections on the left panel (a
toy model). Learning a compostional memory amounts to learning the new relationship
between constituent items, as shown by dotted connections on the right panel (not all of
them are shown for visual clarity), but not to re-learning the item representations.
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4.3 Model explanation

4.3.1 Simple memories

Simple memories in the cortex would be assigned distributed representation over several
Potts units, exhibiting a higher level of (self-)organization than simple memories in the
hippocampus, which are taken to be distributed over many individual neurons. Still, if
across Potts units memory patterns are nearly orthogonal, that is, randomly correlated,
like those assumed to be established by the dentate gyrus in the hippocampus, the Potts
model equipped with Eq. (3.30) can store and retrieve an extensive number of patterns
and each pattern has a large basin of attraction (Fig. 4.2a,b).

What if memory representations have a nontrivial structure, rather than randomly
correlated? In the next section, we examine the retrieval properties of Potts neural net-
works when memories have a semi-naturalistic internal structure, in terms of items, which
are defined as percepts that are included whole in several memories. For example, a farm
can be a familiar percept participating in the memory of several autobiographical events
that have taken place at the farm. This implies that the representations of those memories
are unlikely to be randomly correlated: they share (at least) the item farm.

4.3.2 Compositional memories

We take our model compositional memories to embody a further level of organization and
to include Z items, each of which has now a distributed cortical representation over several
Potts units (Fig. 4.1). Two conceptually distinct stages of learning are therefore envisaged:
first, the representations of the items are stored and subsequently, if a pair of items appears
in a compositional memory, the tensor connections between the corresponding Potts units
are strengthened. In practice, a novel item may happen to be stored only the first time
it is included in an episodic memory; but here we are interested in the capacity of the
model for retrieval, not in detailing the learning process. Across memories, some items
may appear more frequently than others. We consider a pool of K items. Each memory
can contain items with different frequency, from rare to very frequent ones.

We denote with ηρi (ρ = 1, 2, ..., K), the activity patterns, of sparsity of a′ = a/Z,
which represent the items. Here a is the sparsity, i.e., the fraction of active units, of the
memories themselves, ξµi (µ = 1, 2, ..., p), and the details of how we compose the memory
patterns from those of the items are explained in the Appendix D.

The connection weights are set differently than in Eq. (3.30), to express the notion,
inherent to the compositional construct, that once an item has been encoded onto the
synaptic connections, it is there and it is not stored again every time that item is present
in the input
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where Fρσ is 1 if a pair of items (ρ, σ) appears together in one of the p memories, and 0
otherwise. Thus, the two lines above reflect the two stages of learning envisaged. That
is, while the first term of Eq. (4.1) reflects one-shot associative learning of individual
items, assumed to have occurred before, the second term likewise stores relations between
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items included at least once in the same compositional, episodic memory, and again the
pair is stored once even if it recurs in multiple memories. Note that the prefactor with
a′ in the denominator makes the single-item term stronger than the pair-of-items term,
as 1/a < 1/a′ = Z/a. Note also that more complex, e.g., iterative and non-associative
processes involved in acquiring the individual items in memory are not considered in the
present model for simplicity, but they would not necessarily affect the constraints we focus
on here, which are those arising from the associative storage not of items but of unique
compositions of items.

4.3.3 Retrieval cues vs. Hippocampal input

To simply cue the network we activate a fraction f of the units active in a given memory,
concentrated within some of the items of that memory, and let the network evolve without
further external input. For example, for f = 0.5, when Z = 5, the cue is applied essentially
to all the units active in two of the items, and to half of those active in a third (minor
adjustments are due to the coincidence of some of the active units). With memories
including both rare and frequent items, we consider applying a cue concentrated at either
end of the frequency spectrum.

To model hippocampal inputs operating at retrieval, instead, we assume that the
hippocampus has reinstated a compressed representation of the entire memory, and is
able to convey a corresponding signal to all the units of the Potts network, which unlike
the cue is sustained over the time course of retrieval. We express that through the state-
specific thresholds, θki , by setting, for memory µ,

θki = −γδξµi ,k (4.2)

so that γ regulates the intensity of facilitation. Note that this θki is taken to be constant
in time. The model thus allows contrasting two neural mechanisms for the reactivation
of compositional memory: in the former, it is up to the long-range cortical connections,
while in the latter, the hippocampus does it, in line with the indexing theory [109], leaving
to cortical connections only to retrieve the detailed content of each item.

4.4 Results

4.4.1 A strong constraint on compositional memories.

First, for the sake of analytical clarity, we start from a simple case, in which all items
appear with the same (average) frequency in the compositional memories: we vary the
number of memories p, compose each by drawing from a common pool of K items, and set
the other parameters at their default values, specified in Table D.1, including the number
of items per memory Z = 5. Note that, when for example p = 300, items appear on
average in 5 distinct memories each, if K = 300 as well, and in as many as 15 memories
each, ifK = 100. This increases the difficulty of maintaining the unique item configuration
of the compositional memory, even though it is present in the full cue (Fig. 4.2a), and once
p = 400, compositional memories are effectively inaccessible (the overlap, which measures
the correlation of the retrieved activity with the stored representation, drops to zero);
whereas simple unitary memories (which can be conceived as comprised of non-repeated
items) do not show a capacity limit, with our parameters, until p = 16000.

The apparent exception is, perhaps surprisingly, when the pool of items is very small,
K = 50 – for those it appears that the network remains highly correlated with the cue,
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Figure 4.2: Unitary memories and compositional memories. (a): The overlap
between stored patterns and retrieval states is plotted as a function of the total number
p of stored memories. The network stores only one type of memory: either unitary (blue)
or compositional memories with fixed frequency (red). The network starts from a perfect
version of one memory pattern (f = 1.0) and is allowed to follow its dynamics until it
reaches a retrieval state or a limiting time. From bright red to dark red, colour encodes the
number of items K. The blue curve is for random patterns (unitary memories). Network
parameters are set at default values (see Table D.1). (b): Similar to (a), but the network
is partially cued by a memory pattern. The partial cue is prepared by flipping back a
fraction 1 − f = 0.5 of active units of the cued pattern into a quiescent state. (c) The
same network stores two types of compositional memories: memories made of frequently
used items (red) and those made of rarely used items (used once, pink). There are p
(x-axis) memories in total, half in either category. The black dashed line indicates the
initial value of the overlap (i.e., f).

hence with the memory itself, all the way to high values of p. This is due to two effects,
as clarified by Fig. 4.2b. First, we can imagine the network as moving on a free-energy
landscape (or its generalizations, the details are beyond our purposes here); for movement
to be unimpeded, the landscape has to be smooth, which it is not for K = 50, due to the
limited number of item representations dotting it. Now, the full cue does not really test
the retrieval or pattern completion ability of the recurrent Potts network, but only its
reluctance to drift away from the initial configuration of activity, already specified by the
cue – and with a rough landscape the network is very reluctant, as it cannot effectively
move. When using a partial cue, instead, e.g. f = 0.5, the other overlap curves do not
change much, but the one for K = 50 starts to drop already for p > 50. Second, if the
cue maintains nevertheless activated the items it is applied to (3 out of 5, for f = 0.5),
there is a substantial chance, if the pool is small, that also some of the remaining items
will be those appearing in the memory to be retrieved. So we can consider the small K
case as essentially an artifact, in any case irrelevant to human memory, which represents
more than 50 items.

For larger K values on the other hand the constraint is real, and it can be understood
to a first approximation by considering the individual items as robust blocs of units that
can be reactivated coherently, while the challenge for the network lies in using the item
pairings, stored in the connectivity, in order to retrieve the correct configuration of Z
items. The challenge is tougher the more memories are stored, because more pairs of
items will have been stored in the connections between the Potts units. Resorting to an
argument developed many years ago for the Willshaw model [110, 111], we can estimate the
probability that a pair of items has not been stored as the probability that it has not been
stored in one memory, to the power p: Prob(Fρσ = 0) = [1− (Z/K)2]p ≈ exp(−pZ2/K2).
If this probability becomes small, most item pairs will be encoded in the network, that will
therefore find it difficult to select those in the compositional memory. This interference
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effect is reduced for large K, but then a complementary negative effect sets in, that the
network is overloaded with items. Simulations show that the two effects complement each
other and lead, irrespective of the K value, to an effective capacity much reduced with
respect to that of unitary memories.

4.4.2 Memories composed with frequent and with rare items.

Fig. 4.2c shows that the capacity constraints is almost as stringent also in a network
that has stored compositional memories composed of frequent (hence, repeated) items,
and other memories composed of rare items (in our model, appearing only once, hence
unambiguously individuating the episodic memory that includes them). The effective
storage capacity for the latter is a bit higher, as the signal that leads from a partial cue to
reactivate the complete configuration of items is clearer, but since the noise is contributed
and felt by both frequent and rare memories once they share the same network, the
difference is small. Note that in Fig. 4.2c frequent items, from a pool of K = 100, are
repeated as many times as those with K = 200 in Fig. 4.2b, as they appear in half of the
p memories.

We have also simulated a network storing half compositional and half unitary memo-
ries. Unitary memories can also be conceived as composed of items appearing only once;
the difference with the case above is in the learning rule, which in the compositional case
of Eq. (4.1) assigns more weight to the individual items, because of the prefactor 1/a′.
Overall, however, the interference resulting from the storage of the other memories is
similar, and so is the resulting storage capacity for compositional and unitary memories
(not shown). Note that if the latter were alone, many more of them could be stored,
but since they share the connection space with compositional memories, their effective
”storage capacity” is almost the same as that of compositional memories.

4.4.3 Scale-free memories.

Next, we consider a more realistic case in which memories include items of different
frequencies. We proceed as follows: we group items into B bins, indexed by 1, . . . , l, . . . , B,
and each bin includes l items (Fig. 4.3a). Then a memory is assembled by combining Z
items obtained by sampling bins evenly. This results in the few items in the first bins
being picked up more frequently than the many in the later bins and, as one can easily
show, in an approximately scale-free distribution of items across memories (here, scale
refers to frequency; see also the Appendix D).

Fig. 4.3b (lightest green curve) shows that diversity in the distribution of item fre-
quency has an adverse effect on storage capacity. A suitable comparison is between a
scale-free distribution of items in B = 20 bins, which implies B(B + 1)/2 = 210 items
overall, the lightest green curve, and compositional memories with fixed-frequency items
drawn from a pool of K = 200 (the red curve). The comparison indicates that the more
realistic, mixed distribution of item frequencies, coexisting within the same memories,
does not solve the capacity constraint imposed on compositional memories; if anything,
it makes it somewhat worse.

4.4.4 Hippocampal inputs.

The results above indicate that memory retrieval triggered by partial cues is inherently less
effective with compositional memories, in which the component items have been stored on
their own, than with unitary representations. This suggests that a more effective retrieval
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Figure 4.3: Scale-free distribution of item frequency. (a): An example of distribu-
tion of item frequency with B = 20 bins. Bins are arranged according to the frequency
of items they include along the x-axis, with frequency indicated by bin height, while bin
width alludes to the number of items per bin. (b): Retrieval for memories comprised of
items following the frequency distribution given in (a). Colour encodes γ values (i.e., the
strength of hippocampal inputs). f = 0.5, B = 20. The red curve is for single frequency
items, as in Fig. 4.2b. (c): Similar to (b), the overlap is shown as a function of f for
p = 200.
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operation could be initiated by a full cue, possibly weak but full, that is, distributed
over all the component items. Such a cue could come from an auxiliary compressed
representation of the full memory, of the type that the hippocampus has been widely
thought to store and retrieve, in turn, from partial cue.

To explore this hypothetical mechanism, we add a model hippocampal input to the
compositional representation in the extended cortical network; following [112], this is
simply a sustained external contribution to the signal aligning each Potts units towards
the activation state it has in the memory to be retrieved. It is parametrized by a variable
γ. In formulas, using Kronecker’s δ we write

hki =
N∑

j(̸=i)=1

S∑
k=1

Jklij δσj l + γδξµi ,k. (4.3)

Obviously, when the factor γ is large enough, successful retrieval is expected to be
merely transferred from the hippocampus to the neocortex, in this model, with the latter
not performing any significant role. As shown in Fig. 4.3b, however, simulation results are
complex. On the one hand, the sustained input enhances network capacity, the more the
stronger it is, but without really removing the capacity limit for compositional memories,
indicated by the drop in all green curves at p = 600. On the other hand, also a weak
hippocampal input produces a noticeable effect, when the fraction of the standard partial
cue is f = 0.5. When p = 200, Fig. 4.3c shows that even a weak sustained input, γ = 0.2,
leads to retrieval to a level midway to that obtained with γ = 1.0, and as a function of f
the same level is reached in the entire range 0.01 < f < 1.0: in practice the hippocampal
input requires only a minimal additional cue – and also when this is absent (f ≃ 0.0)
hippocampally-triggered retrieval is effective on its own.

Figure 4.4: Effect of item frequency on retrieval. (a): Two methods of cuing the
network with a partial version of memory patterns are compared by different colours. A
fraction f of units among Na active units for a memory pattern is chosen preferentially
from frequent items (green) or from rare items (violet). p = 200, γ = 0.0, B = 20. (b):
Same as (a) but for γ = 0.2, that is, with some hippocampal input. Dashed curves show
results that include only a subset of memories that include very rare or very frequent
items (from the last or first two bins in the distribution).

4.4.5 Triggering retrieval from frequent or from rare items.

Given the interference caused by the multiple pairings of frequent items with others,
in retrieving compositional memories, one may wonder whether the operation is more
effective if triggered by the reactivation of the rarer items. This can be examined in the
model simply by applying the partial cue f to the Potts unis active in the representation of
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the rare vs. the frequent items. In Fig. 4.4, this is done considering model scale-invariant
representations produced with B = 20 bins, and applying the cue at either end of the
frequency spectrum (solid curves); or by selecting memories with at least one item from
the first two (frequent) or the last two (rare) bins, and averaging only over either restricted
subset (dashed lines). Fig. 4.4a shows that without the model hippocampal input, γ = 0.0,
there is a marked effect of where the cue is applied, but only for f ≤ 0.2, i.e., effectively
when a single item is cued. In that case cuing a frequent item is ineffective, while cuing
a rare one is (partially) effective, although the correlation with the full memory is still
far from ideal (overlap just above 0.4, or 2/5 items retrieved). With weak hippocampal
input, γ = 0.2, retrieval is still incomplete, but the effect of where the partial cue was
applied is virtually erased.

4.5 Discussion

In this study we look at purely computational constraints for the retrieval of episodic,
compositional memories, which turn out to be relatively complex to analyse, despite the
artificial simplicity of the assumptions in-built in the model we have considered. To
assess the range of validity of the results obtained, it is therefore useful to review the
main assumptions:

• compositional episodic memories are conceived statistically as being structured in
terms of items, independently drawn from a pool of such items, with no further
substructure. For example, the image of a football player can be composed with
that of a thick wood as well as with that of a lawn, even though football matches
more often take place on the latter. In further work we shall relax this assumption
by introducing structured schemata into the model.

• two distinct modes of content-addressing an episodic memory are envisaged. In the
first, a partial cue sets in the active state the Potts units relative to a fraction f of
the items composing the memory – which is intended to correspond to the initial
alignment of some patches of cortex along the local attractors which represent those
items, while the rest of the cortex is not aligned to anything.

• in the second mode, the hippocampus provides a sustained cue of possibly limited
strength, but delivered to all relevant patches of cortex – therefore, a hippocampal
index in Teyler and DiScenna’s sense [109] rather than a partial cue.

• the hippocampal representation of a compositional episodic memory, if it exists,
is assumed to be unitary and not compositional, hence unrelated to the detailed
semantic content of each item.

• other simplifying assumptions are more “technical”, as they relate to the Potts
neural network model.

Obviously all such assumptions are extreme, and relaxing them results in some form of
interpolation. This can be regarded as a general limitation of an approach which, in the
trade-off between clarity and plausibility, favors the former.

Compositionality effectively shrinks the cortex. The model offers a number of
theoretical insights. One of the main findings is that the storage capacity that had been
previously calculated for unitary representations [35, 56] is much higher and essentially
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irrelevant to that for compositional representations. The storage capacity for composi-
tional representations is indeed constrained by factors that should be investigated further:
the statistics of compositionality, the (long-range) connectivity, the plasticity that under-
lies the acquisition of compositional memories (expressed in the model by the “learning
rule” adopted). The key finding, that is, the low storage capacity for compositional rep-
resentations, may seem counter-intuitive: using a representation preassembled in blocks
of units – the items – makes recall more difficult instead of facilitating it. The computa-
tional reason is that associative retrieval, in general, is robust to the interference of other
memories if these produce uncorrelated fluctuations (i.e., the noise, in a signal-to-noise
analysis) over many units or many small groups of units. If the fluctuations are coherent
over large chunks of cortex, because they represent interfering items, the noise does not
average out so well. It is as if compositionality nullified the key advantage of the cortex
for memory – its sheer size – by obstructing the approach to the “law of large numbers”,
i.e. the mutual cancellation of random fluctuations, which is key to associative retrieval.
The pre-assemblage effectively reduces the size of the network to Z, the (average) number
of items in a compositional memory; of course, only from the point of view of associative
retrieval (in other respects, e.g. for representational capacity, the cortex remains huge).

Without the hippocampus, rare elements facilitate recall. Rare elements are
those shared between relatively fewer memories. The effect demonstrated in Fig. 4.4
reflects indeed the lower confusion associated with the retrieval cue coming from those
items – they have established fewer strengthened connections to other items, and there-
fore are less likely to trigger the retrieval of multiple compatible memories. With the
parameters we have adopted, the effect is not huge and limited to very partial cues (small
f). Analyzing how it may scale up when cues are more detailed and the network more
closely simulates a human cortex is beyond the scope of this work. We note for now that
this effect, the advantage of cueing rare elements, vanishes once the hippocampus, in our
model, provides a sustained full cue, even if weak, suggesting that the contribution of the
hippocampus is vital to retrieve compositional memories involving highly frequent items.

The hippocampus helps, but by brute force. A final remark on the results is
that Fig. 4.3b indicates that the model hippocampal input does not really solve the low
capacity problem. Whatever its strength γ, retrieval quality begins to decline at about
the same memory load p. What happens is that in our model the hippocampus effectively
takes over the retrieval task, and can send to the cortex a strong signal with its outcome,
that the cortex would have been unable to get at on its own. Investigating a more
significant cortical contribution, in this computational framework, probably requires a
more articulated model, that we intend to analyse in future work.

Implications for empirical research

The model can be related to a body of nascent theoretical notions and empirical data
that seek to dissect the contribution of distinct brain structures to imaginative acts such
as event (re)construction and mind-wandering [101]. One hypothesis is that vmPFC
mediates schema-related relations among the objects in a scene, whereas the hippocam-
pus assembles cohesive scenes [101, 113, 114]. This is consistent with the evidence that
constructed experience in patients with hippocampal lesions is rich in content but lacks
spatial cohesiveness, whereas that of vmPFC patients also lacks (schema-based) constitu-
tive elements [115], and that mind-wandering is of poor episodic quality in hippocampal
patients [101] vs. severely reduced in vmPFC patients [100].
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While the contribution of the hippocampus to event imagination may also be pro-
ductively contrasted with that of other cortical areas, focusing on the division of labor
between vmPFC and the hippocampus, a distinction that may turn out to be useful is
the one analysed recently by Mullally and Maguire and involving ‘Space Defining (SD)’
and ‘Space Ambiguous (SA) objects [116, 117]. Mullaly and Maguire have suggested and
shown empirically that SD objects promptly evoke a strong sense of a surrounding 3D
space. An example SD object is a couch, which promptly evokes a sense of a surrounding
3D space compatible with a living room and not with other types of spatial layouts; SD
objects define (identify) the space they fit in. A fly, an example SA object, does not. SA
objects are compatible with, and shared between, many spatial layouts. Consistent with
the prominent role of space processing for mental construction, SD objects are preferen-
tially chosen as the initial building block to mentally construct a scene, and are picked last
to be removed from a mental scene [117]. Processing of SD and SA stimuli is associated
with different activity in the parahippocampal cortex [116], the superior temporal gyrus,
and vmPFC [118], in line with the different functional properties of the two classes of
items.

The SD-SA distinction must be considered together (and not confounded) with an-
other independent distinction, that between objects that are more or less likely to be
associated with other objects or related concepts [119], and hence trigger their activa-
tion [116]. Although SD objects tend to be evocative of content (associated with other
objects/concepts), as in the previous example of the couch, which can easily activate,
in addition to the 3D space of a living room, the image of a nearby coffee table or TV,
the SD/SA and contextual richness dimensions are distinct, and dissociable from the one
another both behaviorally and neurally [116]. We have recently isolated, for example, SD
objects high in contextual associations (eg., swing), SD objects low in contextual associ-
ations (eg., chair), SA objects high in contextual associations (eg., fishing rod), and SA
objects low in contextual associations (eg., belt) to be used as cues for event construction
(unpublished work by Stendardi et al.).

In the present model, rare items can be taken to more immediately evoke a constella-
tion of other items, because, being rare, they have been associated strongly with a small
number of other items and contexts. This is the case for SD items, especially those with
low levels of contextual associations, which evoke virtually unique contexts. Cueing a
rare (e.g., SD) item is likely more effective in triggering memory retrieval, as competition
between memories sharing that item is less likely. Our computational findings indicate
that if and only if the hippocampal input is damaged or reduced, a partial cue applied to
a rare item is more effective in triggering accurate memory retrieval than one applied to a
frequent item. It would be interesting to investigate, therefore, if the advantage in event
construction observed for SD vs. SA items is more pronounced in the case of reduced
input from the hippocampus, for example testing patients with hippocampal damage or
using tasks that make heavier demands on neocortical regions vs. the hippocampus (e.g.,
priming).

As of now, it remains unclear to what extent the model captures the spatial nature of
memories for multiple items in visual scenes (which is integral to the SD/SA distinction),
especially as it does not describe earlier visual processing [120] nor the cortical connectivity
that leads to item and scene representations [121]; but it is clear that it fails to consider
more structured constructs, usually referred to as schemata. These can be elaborated in
at least two different dimensions. One is to consider schemata as groups of items that
often occur together as components of wider compositional scenes, irrespective of exact
timing relations [122]. A second dimension is the temporal one. If two items A and B
when they co-occur do so in a fixed succession, such as the discussion of the Thesis and
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the friends’ congratulations, proper recall would entail reactivating their representation
in the same order. Ultimately, along both dimensions one moves away from the snapshot
character of simple episodic memories, taking some steps towards their semantization.

Developing our current computational model along the first dimension involves con-
sidering some form of nested probability distributions, which opens up a very large space
of possibilities, so that it is probably wise to focus on a specific set of empirical data.
Along the second dimension, instead, there is a straightforward neural mechanisms that
favors the ordered reactivation of the representations of two items A and B: to enhance
the connections from the units active in A to those active in B, and not vice versa [38]. If
a spatial relation is captured, in part, by the availability of both options, scanning A→B
as well as B→A, a temporal relation singles out A→B. Correctly reactivating all the
temporal relations in an episode that has been experienced could be challenging for the
cortex, but a partial reactivation that follows several originally distinct paths, making use
of self-related [123] and other schemata, may in fact be the substrate for the generative
process envisaged by Barry and Maguire [103].
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Chapter 5

Modelling short-term recall with
latching dynamics

5.1 Summary of the chapter

What makes short-term memory so poor, that over a minute we tend to forget even phone
numbers, if we cannot rehearse or record them electronically? In comparison, long-term
memory can be amazingly rich and accurate. Was it so difficult to equip our brain with
a short-term memory device of reasonable capacity? We propose the hypothesis that
instead of an ad hoc device, short-term memory relies on long-term representations.

We discuss simple models for the transient storage in short-term memory of cortical
patterns of activity, all based on the notion that their recall exploits the natural tendency
of the cortex to hop from state to state – latching dynamics. We show that in one such
model, and in simple spatial memory tasks we have given to human subjects, short-term
memory can be limited to similar low capacity by interference effects, in tasks terminated
by errors, and can exhibit similar sublinear scaling, when errors are overlooked. The same
mechanism can drive serial recall if combined with weak order-encoding plasticity. Finally,
even when storing randomly correlated patterns of activity the network demonstrates
correlation-driven latching waves, which are reflected at the outer extremes of pattern
space.

Our analysis suggests that a proper short-term memory device may have never evolved
in our brain, which had, therefore, to make do with tweaking its superb long-term memory
capabilities.

Declaration: This chapter contains some experimental data, which are collected by
Oleksandra Soldatkina. As we have stated in the publication [112], the author of this
thesis has done the modelling part.

Notice: There are 11 supplementary figures, which can be skipped for the first reading
of the chapter. These figures, enumerated from E.1 to E.11, are given in Appendix E.

5.2 Introduction

Despite much effort directed towards understanding the neural processes underlying short-
term memory (STM), what causes its notoriously limited capacity has, to this day, re-
mained largely mysterious [124, 125, 126, 127, 128]. If one were to take a functionalist
perspective, inspired e.g. by Baddeley’s theory of working memory [129], and assume that
items in short-term memory are transiently represented in a dedicated cortical module,
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where they have been copied from their long-term traces, two riddles would arise: how
would the copying work? and why would this module have such poor capacity?

Multiple lines of evidence, particularly since the advent of functional imaging, have
however failed to identify an ad hoc STM module, and indicated that STM is expressed
by the activity of the same neurons that participate in the representation of long-term
memories (LTM) [130]. This disposes of the copy riddle, but emphasizes the capacity one.
What makes us able, for example, to recognize tens of thousands of images as familiar
[131] and yet unable to detect a change in a configuration of more than a few elements
that we have just seen [132]? Focusing on the recall of sequences of well-known items,
what makes it so difficult to go, again, beyond very short sequences?

Addressing this riddle with a mathematically well-defined neural network model re-
quires, in our view, a model that, however drastically simplified, captures the widely
distributed nature of the cortical representations which STM as well as LTM can rely on.
We argue that a Potts network is adequate in this respect [57]. Latching dynamics of
a Potts network can produce a sequence of recalled memory items resembling a random
walk. We propose here that it holds the key to understand STM limitations, once com-
bined with some mechanism, perforce imprecise, for short-term storage. We consider a
number of distinct mechanisms of this type, that by adding an extra “kick” to boost a
small subset of L among p patterns in LTM, approximately restrict latching dynamics to
the subset, which is then effectively kept in STM.

We show that this formulation fits with the general hypothesis that interference be-
tween memories is critical [133] as well as with the gist of the recently proposed statistical
theory of free recall, as implemented by stochastic trajectories among ensembles of items
[134], in fact unifying them: depending on the task, the limiting factor turns out to
be either interference from items in long-term memory or the randomness in retrieval
trajectories.

While the basic model needs more structure to be predictive about specific behaviour,
e.g. in semantic priming experiments [135], or about the effects of item complexity [136]
or individual differences [137], and in general to fully benchmark its validity as a model
of short-term memory [127], we show that it is consistent with simple experiments, that
illustrate the way STM limitations depend on task demands.

In free recall, where repetitions and mistakes are not penalised, the number M of
retrieved items tends to scale sublinearly with L, reflecting largely random exploration. In
a task which is terminated by mistakes, instead, capacity is constrained by the interference
of other items in long-term memory.

Further, modeling serial recall with hetero-associative short-term synaptic enhance-
ment leads to the conclusion that latching dynamics is preserved only if the enhancement
is weak, and then it generates limited sequences, similar to those shown by human subjects
when asked to serially recall unstructured items, without recourse to LTM aids.

5.3 The 3 different models for short-term memory

The Potts network has so far been studied as a model of long-term memory, but it can
be tweaked in minimal ways to serve also as a model of short-term or working memory.
While it remains a simple object to study, it demonstrates how memory operating on
widely different time scales can utilise the very same neural representations and the same
associative mechanisms, based on plausible and unsupervised synaptic plasticity rules.

The core idea is that a few memory items, or sequences of items, are strengthened
by increasing by a moderate and imprecisely determined amount the value of some pre-
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existing parameter (Fig. 5.1a), to effectively bring only those items across a network phase
transition, into a phase in which they or their sequences are held effectively separate from
the ocean of all items and all possible sequences in long-term memory (Fig. 5.1b). So it
is just an extra boost, without adding new components. The increase or extra boost is
assumed to be temporary, and once it subsides, the short-memory has vanished. A critical
assumption is that, since whatever plasticity in the brain serves as the extra boost, it has
a transient time course, we should model it by modifying parameters in simple and coarse
ways, in contrast with what we assume to happen when encoding long-term memories,
which in principle can be refined over many repetitions/recall instances, and can be taken
therefore to reflect very precisely set parameters, down to the level of individual synaptic
efficacies.

Different neural-level mechanisms can constrain latching dynamics to a small subset
of activity patterns that represent items in long-term memory. It can be envisaged that
several of them may operate in synergy. Here we analyse three, which can be simply
associated with distinct parameters of the Potts network, and we consider each mecha-
nism separately from the other two, to demonstrate its characteristics (Fig. 5.1a). The
parameters we focus on are the degree of local feedback (Model 1), the local adaptive
thresholds (Model 2) and the strength of long range connections (Model 3). In each case,
a single parameter is therefore varied across many network elements, so that L patterns,
those supposed to be held in short-term memory, are driven into the latching regime (Fig.
5.1b). This change, which embodies short-term storage, should avoid pushing into the
latching regime also the other p − L patterns, but to some extent their involvement is
unavoidable, as will be shown.

5.3.1 Model 1: Stronger local feedback for the items held in
STM

The first mechanism models increased depth of the attractors in the patches of cortex
where any of the L patterns is active, which could reflect a generic short-term potentiation
of the synaptic connections among pyramidal cells in those patches, what in the Potts
network is summarily represented by the parameter w [57, 60]. In the model, each of the
L items is active over aN Potts units, and their active states are shared with many other
items not intended to go into STM. This is the coarseness that leads to limited capacity of
memory: if L is too large, virtually all of the units are given the boost, all with the same
strength, and no distinction between the L selected items and the other p − L remains.
Formally, instead of common w for all Potts units, we introduce

wi = w +∆w Θ

(
L∑
µ=1

S∑
k=1

δξµi ,k

)
, (5.1)

where ξµi is the state of pattern ξµ at the unit i, Θ(·) is the Heaviside step function and
δξµi ,k is the Kronecker’s delta symbol.

If a unit participates in the representation of any one of the L patterns in STM, then
wi = w +∆w. If not, wi = w.

5.3.2 Model 2: Lower adaptive threshold for the items held in
STM

In the second mechanism, a parameter regulating firing rate adaptation is reduced selec-
tively for the neurons that are active, in those patches, in the representation of the L
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Figure 5.1: Different models for holding items in STM yield qualitatively differ-
ent recall performance. (a): Schematic of the way STM is implemented in the three
models. Model 1 acts at the unit-level, Model 2 at the Potts-state level, and Model 3
at the synapse level. (b): Schematic diagram of models for STM. The STM function is
produced by a“boost” ∆x in the parameter x, representing w, θ and J for Model 1, 2, and
3, respectively. (c) The quantity ∆Mcorr has a maximum at around L ≃ 32 for Model 2
and 3b and it continues to grow for Model 3a, while it remains always close to zero for
Model 1. The abscissa is L, the number of items in STM, in log scale. The ordinate is
∆Mcorr ≡Mcorr(∆x = 0.3)−Mcorr(∆x = 0.0), whereMcorr is the number of recalled STM
items until the network either repeats an already-visited item or (mistakenly) retrieves
one of the LTM items. (d) The different propensity to latch, i.e., to make transitions,
is quantified by the number of latches per sequence, plotted as a function of L for the 3
models, in a log-log scale. The strength of the boost is, again, ∆x = 0.3 for each model.
The horizontal dashed line indicates the number of latches per sequence when all p pat-
terns are on equal footing, i.e., there is no boost. (e) The proportion of resources utilised
in the models predicts the peak of the performance ∆Mcorr. The dashed horizontal line
indicates the proportion equal to 1 − 1

e
. Across all 3 panels, parameters are p = 200,

S = 7, a = 0.25, γA = 0.5 and w = 1.1.
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items. That is, we decrease adaptation, by subtracting from the adapted threshold (θki ) a
term ∆θ, for the Potts states that are active in any one of the L patterns,

τ2
dθki (t)

dt
= σki (t)− θki (t)−∆θΘ

(
L∑
µ=1

δξµi ,k

)
. (5.2)

5.3.3 Model 3: Stronger long-range connections for the items
held in STM

The third mechanism we consider is the one acting on the long-distance synaptic con-
nections between neurons, represented in the Potts model [57] by the tensor connections
between Potts units. We model short-term potentiation of the synaptic connections by
stronger tensor connections. Since the latter connect separate Potts units, however, in
order to specify exactly which tensor elements are considered to be potentiated, we have
to specify whether the L patterns, in the task, are taken to be stored simultaneously. We
consider two opposite cases. If they are assumed to be all stored at separate times, the
stronger tensor elements are those that connect Potts states of two units both active in
any one of the L patterns. If they are assumed to be all stored in STM together, the
stronger elements are all those that connect Potts states of two units both active in any
pair of the L patterns. We call them variants a and b of Model 3.

Model 3a: Model 3 with only autoassociative connections in short-term mem-
ory

J̃klij = Jklij +∆J Θ

(
L∑
µ=1

δξµi ,kδξ
µ
j ,l

)
, (5.3)

where Jklij is the strength of connections that store all the LTM items, given in Eq. (2.8)
and rewritten below for the sake of readers’ convenience. Here we say that a connection
belongs to a pattern when the two states that are paired by the connection participate in
the representation of the pattern.

Jklij =
cij

cma(1− a
S
)

p∑
µ=1

(
δξµi k −

a

S

)(
δξµj l −

a

S

)
(1− δk0)(1− δl0).

Model 3b: Model 3 with all associative connections among STM items

J̃klij = Jklij +∆J Θ

(
L∑

µ=1,ν=1

δξµi ,kδξνj ,l

)
, (5.4)

where Jklij is again given above (and also in Eq. (2.8)). In this model, we potentiate extra
connections in addition to those that are potentiated in Model 3a. These are the so-called
heteroassociative connections that connect Potts states of one item to those of another
item in STM.

5.3.4 Different models for holding items in STM are differen-
tially effective

For the sake of a fair comparison among the mechanisms (Models 1, 2 and 3), we equalise
the values of all parameters as they affect the L patterns, so that in practice, rather
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than bringing them into the latching regime, which is what should happen in the real
process, in our model evaluation we push the other p−L out, or partially out, in different
directions.

We first consider how effective are the three mechanisms in constraining latching
dynamics to the L items in STM. We find that for Models 2 and 3a, latching dynamics
are effectively constrained to the L items, but only up to a given value of L (see Fig 5.1c,
where we have shown the result for specific values of the parameters, e.g. ∆x = 0.3, but
those are representative of a broad range, as shown in Figs. E.1–E.4). The effectiveness
is measured, in Fig 5.1c, by a quantity called Mcorr, which is the number of recalled STM
items until the network either repeats one of already-visited items or retrieves one of the
LTM items. We then consider the difference between this quantity and the value it would
have without any differentiation between the L and the other items, ∆Mcorr ≡Mcorr(∆x =
0.3) −Mcorr(∆x = 0.0); this subtraction of the chance level quantifies the genuine effect
of ∆x. Here x represents w, θ and J for the 3 models, respectively. When we increase
L, there are two main factors that affect Mcorr. The first one is the exploration by the
trajectory, resembling that of a random walk, which increases Mcorr. Due to this effect
Mcorr should grow like

√
L as a function of L (see Appendix E.4) if there are no errors, i.e.

recall of items that are not in short-term memory. The occurrence of errors is the second
factor that affects Mcorr, progressively more as L increases. When L is small, the first
factor dominates and as a result, Mcorr grows. Beyond a certain value of L, there is an
avalanche of errors as there are many LTM patterns that are kicked as strongly as those
in STM. This avalanche of errors causes the sudden drop of ∆Mcorr seen for Model 2 and
3a in Fig 5.1c. We can attempt to understand this limitation as being due to interference
from the LTM items, that start to dominate the dynamics at different values of the list
size L. To illustrate this, let us consider the proportion of elements (units, states and
connections for Model 1, 2 and 3, respectively) that are enhanced for a given number L.
If we randomly pick, respectively, one unit, state or connection, then the probability of it
belonging to one of L patterns in STM can be written, respectively, for Models 1, 2, 3a
and 3b:

M1 : PL = 1− (1− a)L (5.5)

M2 : PL = 1−
(
1− a

S

)L
(5.6)

M3a : PL = 1−
(
1− a2

S2

)L
(5.7)

M3b : PL =

(
1−

(
1− a

S

)L)2

(5.8)

All of these quantities approach 1 when L becomes very large, as all elements become
used towards encoding the list in STM. As a rough estimation, we can set a criterion of
PL = 1− 1

e
, above which more than half of all elements are used, and the network cannot

easily discriminate STMs from LTMs. We can then roughly estimate the “critical” value
of L, Lc, at which PL reaches this criterion, with which we obtain, using the parameters
for which we run the simulations (S = 7, a = 0.25):

M1 : Lc =
−1

log(1− a)
≈ 3.5 (5.9)

M2 : Lc =
−1

log(1− a/S)
≈ 27.5 (5.10)

M3a : Lc =
−1

log(1− a2/S2)
≈ 783.5 (5.11)
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M3b : Lc =
log(1−

√
1− 1/e)

log(1− a/S)
≈ 43.5 (5.12)

The considerations above point to the different values of the critical list length Lc
obtained through the different models. This is to be expected as the different models
act on different elements of the network. Model 1 has very limited capacity to constrain
latching dynamics, in that interference effects occur already for low values of L. In
contrast, Models 2 and 3b yield broadly similar values, whereas Model 3a, acting on the
long-range connections, is not affected by interference until much higher L values. This
is because in this case, the boost is affecting a subset of the very many NCS(S − 1)/2
tensor connection values (Fig 5.1e). Note that increasing the strength of the “boost” does
not affect the critical list length Lc (Figs. E.1–E.4).

However, the different manipulations intended to add short-term functionality to the
network also affect its regime of operation, such that the its ability to spontaneously
recall, or latch, is altered, affecting the length of the sequences uttered by the network
[59, 60]. To investigate this propensity to latch, we first cue the network with one of the
memorised patterns, after which we count the total number of transitions that occur until
the dynamics stop on their own (Fig. 5.1d). We can see that with Model 2, constraining
the dynamics to be among the L items actually enhances the length of the sequences,
whereas the opposite is true, at least up to moderate values of L, for Model 3 (and
incidentally, for Model 1). This is because for Model 2, the direct manipulation of the
adaptive threshold θki screens its “refractory” effect, affecting also sequence length. The
same does not hold for Model 3, in which the adaptive threshold is not manipulated. We
deduce that two aspects of Model 2 are relevant as a model of short term memory. First,
the “coarseness” of Model 2 yields a limit to the list size that can be effectively enhanced.
Second, the basic propensity to latch also falls off with increasing list size, reminiscent of
the slowing down of retrieval from memory as the set size increases [127]. Therefore, in
the remainder of this work, we focus on Model 2.

5.4 Can “free recall” by the Potts network model

experimental data?

Having discussed three different models for short-term recall, we study in detail Model 2,
and focus now on a specific paradigm, free recall. In free recall, participants are given a list
of items to remember, and are then immediately asked to recall the items, in the order they
wish. Experimental data from decades ago show that the number of items recalled from
memory obeys a power law of the list length [131, 138]. To explain this finding and more
generally to investigate the putative mechanisms that could hinder recall, a theoretical
model for memory recall has been proposed. We refer to this model as the SAM++
model, as it was developed by Sandro Romani, Misha Tsodyks and colleagues [139, 134],
with some roots in the SAM theory of Raaijmakers and Shiffrin [140], which however
does not envisage the deterministic loops that terminate the search dynamics in SAM++
model. In this model, L STM items are drawn from a virtually unlimited reservoir of
(LTM) memory items. Transitions are defined to occur deterministically between items
that have the largest similarity; as a consequence, recall trajectories always enter a loop,
at which point old items are repeatedly recalled, and no new items are recalled beyond
the number R reached with those in the loop. Given such simple transition rules, the
power-law dependence R ∝

√
L can be derived (a similar derivation can be found in

Appendix E.4). In a more recent study, this power law dependence has been observed for
lists of up to 512 words [134].
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5.4.1 If limited by repetitions, the network can recall up to

∼
√
L STM items.

In contrast to the conceptual model above, the dynamics in the Potts network model are
not deterministic (we will discuss this point in Section 5.6), and we hardly ever observe a
loop in the network trajectories; hence we cannot apply quite the same stopping criterion
to determine how many items have been recalled in a simulation. However we can still
compute a measure somewhat similar to R, labeled as Mit, as the number of retrieved
patterns until the network repeats one transition – which would be the first element in
a loop, given deterministic dynamics. Compared to lnR ∝ 0.5 lnL (see Ref. [134]), Mit

has a steeper scaling with L, but still sublinear (Fig. 5.2a). Alternatively, we can look at
the number Mi1 of retrieved items until the network simply revisits one of those already
visited. In contrast toMit, Mi1 grows now less than a square root of L (Fig. 5.2a). To get
at an intermediate behaviour, we could then define a third measure Mi, as the number of
recalled items until one item is repeated twice. This somewhat contrived quantity has a
behaviour indeed similar to that theoretically expected from the quantity R(L), that is,
a slope of 0.5 in a log-log plot (Fig. 5.2b).

In computing these three measures, we have ignored errors (extra-list items) in order to
compare with Refs. [134, 139]. Note that errors are not discussed in their conceptual model
and experiment, in which retrieval of extra-list words is simply dismissed as irrelevant.
The beauty of their treatment, in fact, stems from the simple question they pose, without
getting into how the recall process happens dynamically in the brain and how LTMs affect
free recall performance. These questions are those we address here, however.

Moreover, we see that whether we consider only very slow or only very fast inhibition,
as in previous analytical studies [60, 61], or a more plausible balance of the two, the
network behaves similarly in terms of short-term memory function. Based on this obser-
vation, hereafter we only concentrate on the balanced, or intermediate regime (γA = 0.5).

5.4.2 If limited by duration, the network can again recall up to

∼
√
L STM items

In the free recall experiment conducted in Ref. [134], they computed R as the number of
correctly recalled words (or sentences), ignoring errors and repetitions. The time allocated
to recall started from 1 minute and 30 seconds for L = 4, and was increased by the same
amount when the length of the list was doubled. As it is problematic to establish a
correspondence between human recall time and simulation time in the Potts model, we
define another quantity: we compute the number of correctly retrieved items, ignoring
errors and repetitions,Mu, within a given number of consecutive latches, denoted by g(L).
Given the stochasticity of the network dynamics in visiting pattern space, the specific
choice of g(L) has implications on Mu. Therefore, we set g(L) = 4 log2(L)− 2 in order to
establish a reasonable comparison with the results in Ref. [134]. We find that this measure
has a slope of approximately 0.5 (Fig. 5.2c). However, if g(L) = L, i.e., a linear function
of L, Mu has a higher slope. Finally, if we set g(L) to g(Lmax) = 22, with Lmax ≡ 64, i.e.
constant and equal to the maximum number of latches in the logarithmic option, then
Mu becomes slightly larger for intermediate values of L, suggestive of a drop after hitting
a maximum. This again indicates that the Potts model can capture the empirical trend
of
√
L, provided one adopts a suitable rule for limiting the length of latching sequences.

Of course, in experiments limiting the time available to subjects imposes implicit limits
also on the errors and repetitions they can make.
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(a) (b) (c)

Figure 5.2: Whether limited by repetitions or in duration, Potts free recall
approaches a

√
L dependence. The dashed gray line is the theoretical prediction of

R in Ref. [134]. Both axes are in a log scale. (a) Mit is the number of recalled STM
items until one transition is repeated. Mi1 is the number of recalled STM items until one
of the visited STM items is revisited. Dotted curves are for slow inhibition (γA = 0.0),
dashed curves for fast inhibition (γA = 1.0), and solid ones for the intermediate regime
(γA = 0.5). (b) Mi, the number of recalled STM items until one of them is repeated
twice. In contrast to the two measures plotted in (a), this quantity approaches a square
root dependence with L. (c) Mu, the number of recalled STM items within a given
number of latches, g(L), is plotted as a function of L in log-log scale. We consider three
different functions for g(L): logarithmic, linear and constant, denoted by dots, squares
and diamonds, respectively, for γA = 0.5.

5.4.3 Free recall of nodes on a 2D grid also shows a ∼
√
L de-

pendence

That the various M measures obey quasi-square-root functions of L may be partially
understood by considering a random walk in pattern space, with equally probable visits
to each of the patterns (see Fig. 5.3 and Appendix E.4) [141, 142]. Inspired by this
observation, we have designed simple experiments in which subjects are asked to remember
a random trajectory on a 2-dimensional grid (Fig. 5.4a). We then asked participants to
freely recall the positions of the presented dots by clicking on their positions on the grid.

Clearly, the parameters of the experimental protocol can be expected to affect recall,
including the amount of time allocated for recall. However, in our experiment, partici-
pants only need to click on the correct locations (as opposed to typing in the words they
recall [134]), and setting a fixed recall time may seem ad hoc. As an alternative, and to
further explore the validity of latching dynamics as a model for this experiment, we give
participants a limited number of clicks per trial, set as 2L − h(t|L), where h(t|L) is the
number of correctly recalled dots up to that point in time. Then we computeMR, defined
as the number of correctly recalled dots for a given L ignoring errors and repetitions, and
compute the same measure from simulations with the Potts model (see Appendix E.3 for
a description of the experiment).

We find a reasonable agreement between the performance of the Potts model and hu-
man subjects in our experiment, where both show a slope of approximately 0.5 (Fig. 5.4b).
This suggests that latching dynamics capture some aspects of the underlying neural mech-
anisms of free memory recall, related to the random walk nature of the trajectory, although
the exact details depend on the paradigm.
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Figure 5.3: The quantity R, number of recalled items, is proportional to
√
L. We show

that this power-law dependence is ubiquitous; all lines shown here have a slope of approx-
imately 0.5. See Appendix E.4 for details.

(a) (b)

Figure 5.4: Free recall of locations in a 2D grid also shows an approximate
√
L

dependence. (a): The 2D grid used in the free recall experiment. Yellow dots show
one example of stimuli with L = 8. (b): MR, the average number of correctly recalled
locations in our experiment, is shown by the height of pink bars in a log-log scale. The
distance from the bar to the dot of the same colour corresponds to the standard deviation
of the mean. Results of 40 participants are pooled together. The same quantity MR

is computed, from simulating Model 2, as the number of correctly retrieved STM items
within a given number of consecutive latches set as 2L−h(t|L), where h(t|L) is the number
of correctly recalled STM items up to that point in time (blue bars). The dashed gray
line is the theoretical prediction of R in Ref. [134]. Both results, from our experiment and
the Potts network, show an approximate

√
L trend. Experimental data are collected

by Oleksandra Soldatkina.
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5.4.4 If limited by errors, the network cannot recall beyond its
STM capacity

The measure Mcorr was introduced and discussed in Section 5.3 for comparing three dif-
ferent models. Here we compute the same quantity with a slight modification; in order
to compare with our experimental data, we consider sequences of variable length that
depends both on list length L and time. We consider again lengths g(L) = 2L − h(t|L),
where h(t|L) is the number of correct STM items already retrieved; within this sequence
we count the number of correctly retrieved STM items up to the first error or repeti-
tion. We compute this quantity M̃corr for several values of ∆θ in the Potts model. The
behaviour of M̃corr with respect to L is qualitatively similar to that of the experimental
curve for a broad range of ∆θ values (see Fig. 5.5a). For all values of ∆θ, M̃corr saturates
reaching a maximum that is similar to that of the experimental data, of around 8 items
correctly recalled. Exceptions are at the two extremes: too small and too large values
lead to lower capacity of the Potts model, below 7 items.

The saturation behaviour, and hence the notion of memory capacity, again contrasts
with the scaling behaviour approximated by the various measures such asMi,Mu andMR.
This contrast holds irrespective of the values of network parameters used in simulations.
Indeed the scaling behaviour of MR is almost independent on the value of ∆θ except
when it is too large, ∆θ = 0.6 (Fig. 5.5b). Furthermore, we find that the two contrasting
behaviours – scaling and saturation – are fairly robust to change of network parameters
such as ∆θ, S and a (Figs. E.5 and E.6).

(a) (b)

Figure 5.5: An error-limited measure of recall has a maximum value. Two
measures, M̃corr and MR, are shown for several values of ∆θ, coded by colours. Black
dotted curves are the experimental results of free recall of locations in a 2-dimensional
grid. (a): M̃corr has a maximum value. It is the number of recalled STM items until the
network either revisits one of the already-recalled STM items or visits one of the LTM
items, but within a given number of latches – 2L− h(t|L), where h(t|L) is the number of
correctly recalled STM items up to that point in time. (b): MR shows a scaling behaviour.
MR is the number of recalled STM items, ignoring repetitions and errors, within a given
number of consecutive latches, again 2L − h(t|L). Experimental data are collected
by Oleksandra Soldatkina.

“Performance” therefore depends very differently on L, if recall is taken to be ter-
minated by errors, i.e. by the erroneous recall of an item that is not in STM. Thus,
while if ignoring errors the notion of STM capacity appears irrelevant (given the scaling
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behaviour of the various quantities discussed above), it becomes quite relevant if errors
are considered to be critical in the task.

In summary, we have shown that whether we get scaling or saturation in STM per-
formance depends on the specific metric we use to measure it, both in the Potts network,
endowed with an STM mechanism and in our experiment. In free recall experiments,
performance has often been quantified through the MR index, thereby ignoring errors.
This scaling behaviour appears to hold even up to 512 items [134]. In contrast, taking
our experiment as an example, we have shown that if errors are considered critical, in
our case through the Mcorr measure, then the performance of human subjects actually
expresses a saturation at about 8 items. In our model, that expresses a similar behaviour,
this saturation is brought about by the interference from long-term memories.

5.5 Serial recall

Can the Potts model endowed with short term memory express also behaviour similar to
serial recall? This is a paradigm very similar to free recall, but with a crucial difference.
Here, participants are instructed to recall items in the same order as they have been
presented, making the task more difficult and, for a model, to rely on random walk
dynamics would appear to be counterproductive. Clearly, the network model requires
some extra ingredient to produce ordered sequences.

First, in light of the literature pointing at how STM span depends on the nature of
items being remembered [143, 144, 137, 136], we have performed serial recall experiments
with three different types of items, but within the same general paradigm. We asked
participants to observe and repeat sequences of stimuli presented to them on the screen -
either digits or spatial locations on a 2-dimensional grid (Fig. 5.6a), and varied the time
of presentation of the stimuli in the observed sequence. There were two conditions for the
spatial locations, referred to as Locations and Trajectories: in the Locations condition,
considered to involve only “discrete” items, the six chosen locations around the centre
of the grid were highlighted in any order, while in the Trajectories condition, every next
location was one of the six consecutive locations around the previous one, thus suggesting
a “continuous” trajectory. Contrary to the previous experiment reported in Section 5.4.3,
in this task participants had to recall the material in the correct order, otherwise the trial
was dismissed as incorrect. Participants started with short sequences of length 3; if they
recalled them correctly in at least 3 out of 5 trials, the sequence length increased, until a
memory capacity limit for this stimulus type and presentation time was reached. Fig. 5.6b
shows the capacity for serial recall in this task (see Appendix E for how we computed the
memory capacity).

Our experiment yields two main results (Fig. 5.6b). The first is that the type of
stimulus does not affect the recall probability, except for a slight disadvantage in the
discrete Locations condition, suggesting a universal mechanism for recall independent of
the material, which manifests itself at the systems level. The second, which is more
pronounced, is the effect of presentation time per stimulus, that, when shortened, makes
it more difficult to correctly remember and repeat the longer sequences, suggesting a
disadvantage at the encoding stage. We ask whether latching dynamics in the Potts
model can reproduce this finding. Given that our results, as well as those from other
studies [127], show limited dependence on stimulus material, hereafter we only consider
the result with digits in order to establish a comparison with our model.

We used Model 2 (lower adaptive threshold for items held in STM) to constrain the
dynamics into a subset of L = 6 patterns intended as the 6 digits of our experiment. In
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(a) (b)

Figure 5.6: Short-term memory capacity for serial recall does not markedly
depend on stimulus type. (a): The 2D grid used in the serial recall experiment. Dots
are presented sequentially as shown by the highlighted dots here (L = 8). (b): Memory
capacity for serially presented stimuli for different presentation times: bars correspond to
the average capacity across participants, while the distance from the bar to the dot of
the same colour corresponds to the standard deviation of the mean. We performed the
experiment for three different stimulus types, shown in different colours. Experimental
data are collected by Oleksandra Soldatkina.

addition to that, we introduced heteroassociative weights, similar to Model 3, to provide
the sequential order of presented digits. Formally,

Jkl,hetij = λΘ

(
L−1∑
µ=1

δ
ξ
Iµ+1
i ,k

δ
ξ
Iµ
j ,l

)
, (5.13)

where λ parameterises the relative strength of the heteroassociative weights to the au-
toassociative weights (Eq. (2.8)) and I1, I2, ..., IL are indices of memory items that are
supposed to be recalled sequentially for performing the serial-recall task. More details
about the model implementation are given in Appendix E1.

We find a good agreement between our experimental data and the model (Fig. 5.7). In
addition, we find that human subjects perform better if the to-be-memorised digit series
include ABA or AA (Figs. 5.7a, 5.7c), in line with the notion that the repetition of an
item aids memory [145, 146, 147, 148]. Such sequences are not produced by our model,
due to firing rate adaptation and inhibition preventing the network from falling back onto
the same network state for time scales of the order τ2.

The heteroassociative component of the learning rule Eq. 5.13 (see also Eq. (E.2)
in Appendix E) provides “instructions” to the network regarding the sequential order
of recall, allowing it to perform serial recall (this is to be contrasted with the model
with a purely autoassociative learning rule, performing free recall). The strength of such
instructions is expressed through the parameter λ. We find that this parameter plays
a role similar to that of presentation time in our experiments; increasing it enhances
performance, just as increasing the presentation time increases the performance of human
subjects (Fig. 5.7). However, values of λ that are too large again make performance worse
and deteriorate the quality of latching (Fig. 5.7e). The dynamics becomes a stereotyped
sequence of patterns, see Fig. E.7, without really converging towards attractors, and the
sequence itself is progressively harder to decode. Therefore, the most functional scenario is

1Please see Eq. (E.2) and explanations thereof.

71



when the heteroassociative instruction acts as a bias or a perturbation to the spontaneous
latching dynamics rather than enforcing strictly guided latching in the Potts model. This
is in sharp contrast with the mechanism for sequential retrieval envisaged in the model
considered in Ref. [149], where the heteroassociative connections are the main and only
factor driving the sequential dynamics; in that case, without it, there are no dynamics
but rather, at most, the retrieval of only the first item. The effect of lower adaptive
threshold (expressed by ∆θ) on latching sequences is to constrain the dynamics to a
subset of presented items among p patterns, but values of ∆θ that are too high degrade
the performance as well as the quality of latching (Fig. 5.7b, 5.7d, 5.7e).

As mentioned above, the Potts model produces latching sequences even without any
heteroassociative instructions. This means that the free transition dynamics of the model
may or may not coincide with the “instructions” provided by the heteroassociative weights.
Then one question naturally arises. How does the congruity between spontaneous, endoge-
nous sequences and instructed ones affect the performance of the model? To see this effect,
we obtain some intrinsic latching sequences by running simulations with λ = 0; from these
latching sequences, we generate a set of instructions for the serial order. These instruc-
tions are congruous, inasmuch as they reproduce latching sequences emerging without
any heteroassociative instructions. Then we compare the performance for these congru-
ous instructions with those of incongruous instructions, which we obtain by shuffling the
congruous ones. We find that the capacity of the model increases by as much as 1 item
for the congruous case relative to the incongruous case (see the legend in Fig. 5.7f)

These results together with those from the previous two sections indicate that intrinsic
latching dynamics, similar to a random walk, can serve short-term memory (e.g., they
can be utilised by free recall). Furthermore latching dynamics can also serve serial recall,
if supplemented by biases that modify the random walk trajectory; the modification (or
perturbation) should be a quantitative one, which biases the random walk character of
the trajectories, rather than an all-or-none, or qualitative one, that inhibits it. This is
consistent with our recent experimental result, where “guided” serial recall leads to poorer
performance than a non-guided control (Unpublished work by O. Soldatkina).

5.6 The trajectories in free recall

In previous sections we saw a reasonable agreement between some experimental measures
and those extracted from simulating the Potts model. This agreement essentially results
from two factors: first, the Potts model can produce a sequence of discrete activity pat-
terns even though its governing equations are continuous at the microscopic level; and
second, the dynamics of the Potts model visit the patterns in a random-walk like pro-
cess. We now examine the sequences more closely to see what factors influence latching
sequences and how the network wanders around the landscape of memorized patterns.

We first ask ourselves: once the network is cued with a given pattern, what elicits the
retrieval of the next one? [61, 60], it was shown that transitions occur most frequently
between highly correlated patterns, when the Potts model serves a long-term memory
function. We confirmed that this is also the case when the Potts model serves a short-
term memory function, as in the current study (Fig. E.8). Indeed, the larger the average
correlation of one pattern with all other patterns in STM, the more often it is visited by
the network (Fig. E.9). This result is consistent with a recent experimental study on how
memorability of words affects their retrieval in a paired-associates verbal memory task
[150].

Next we probe the flow of information in the latching sequences of the STM model
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Figure 5.7: Serial recall of digits by human subjects and the Potts model. (a):
Proportion of correct trials in the serial recall task with digits. Data for all subjects
(n = 36) are pooled together. Colour codes for presentation time (in ms). Dots are for
sequences without repetitions like AA and ABA and circles are for all sequences. (b):
Proportion of correct subsequences in a latching sequence of the Potts model. Colour
codes for values of the heteroassociative strength λ, that hard-codes transitions into the
weights. Circled (dotted) curves correspond to simulations with the boost ∆θ = 0.1 (0.2).
(c): Memory capacity computed from the curves of (a), (see Appendix E). (d): Recall
capacity computed from latching sequences of the Potts model is shown by the same
colour-coding as in (b). (e): The quality of latching (see Eq. (E.4)), a measure of the
discriminability of the individual memories composing a sequence, is shown for different
values of λ and ∆θ. (f): Proportion of correct subsequences in a latching sequence of the
Potts model for ∆θ = 0.1, λ = 0.01. The solid curve is for congruent instructions only
and the dashed curve is for a shuffled version of intrinsic sequences.
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embedded in the Potts neural network by computing the normalised mutual information
between two patterns as a function of their relative separation in a latching sequence,
z (see Methods for details). We find that the mutual information is decreasing rapidly
with respect to z, with a quasi-periodic modulation, reminiscent of the temporal profile
of intensity of a damped oscillator (Fig 5.8a). The periodic modulation is much more
evident for L = 16 than for L = 64; within the range of z we have considered, we see a
peak at z ≈ 4.5 for γA = 0.0 and at z ≈ 3.5 for γA = 0.5, but we also see the second
peak at z = 6 in addition to the first peak at z = 3 for γA = 1.0 (Fig 5.8a). The second
peaks for γA = 0.0 and γA = 0.5 would be located at z ≈ 9 and z ≈ 7, respectively.
The quasi-period of the “damped oscillation”, ζ, is twice the z–value of the first peak,
therefore, decreasing with increasing γA, starting from ζ ≈ 9 at γA = 0.0 until ζ ≈ 6 at
γA = 1.0. For L = 64, it’s as if the damping ratio is too high to observe any periodicity.

This behaviour is related to how the Potts network “freely” forages the landscape
of the embedded attractors. We visualize this nontrivial behaviour for γA = 0.5, where
we not only see a kind of damped wave that “propagates” along the y−axis with the
variable z as an effective “time”, but also see the “reflection” of the wave around z ≈ 3.5
(Fig. 5.8c).

What causes these characteristics of the latching trajectories of the Potts model? To
answer this question, we define a quantity, called d, which is an index of “semantic”
distance between two patterns in their representational space. We defined a distance
between two patterns µ and ν as follows.

d(µ, ν) ≡ Cad(µ, ν)− Cas(µ, ν) + 1

2
, (5.14)

where Cas and Cad measure the correlation between two patterns2. Formally,

Cas(µ, ν) =
1

Na

N∑
i=1

(1− δξµi ,0)δξµi ,ξνi , (5.15)

which measures the fraction of co-active units in the same state for both patterns µ and
ν, and

Cad(µ, ν) =
1

Na

N∑
i=1

(1− δξµi ,0)(1− δξνi ,0)(1− δξµi ,ξνi ), (5.16)

which measures the fraction of units that are co-active but in a different state.
We consider the distribution of d(µn, µn+z), the distance between two patterns that

are separted by z latches in a latching sequence, for 6 values of z (Fig 5.8b). At z = 1,
latching occurs mostly between highly correlated patterns as expected, where the higher
correlation is expressed by lower d. At the second step in a latching sequence (z = 2),
patterns that have higher d values than the average value ⟨d⟩ = S−2

2S
a + 1

2
≈ 0.589 show

a comparable proportion of the probability density curve relative to patterns with lower
values of d. Then the proportion of higher d values is much larger than the proportion of
lower d values for z = 3 and z = 4. This means that the network prefers to visit those
patterns that are less correlated with the initially retrieved one at the third and fourth
step. So we can say that the network reaches the most “distant” pattern from its “initial”
pattern around z = 3.5, which is the “reflection” point of the wave (Fig 5.8c). As z
increases further to reach 6, the density curve is getting closer to the curve for z = 1, thus
approaching the periodicity mentioned above. This periodicity is confirmed by Figs. E.10
and 5.9.

2For details, see Eqs. (E.5) and (E.6) and explanations thereof.

74
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Figure 5.8: Damped waves in pattern space. (a): Mutual information as a function
of the relative separation of two patterns in a latching sequence, z. The ordinate is the
mutual information I(z) ≡ I(µ, ν|z) (see Methods for details) divided by the entropy
H. Note the logarithmic scale of the y–axis. Parameters are ∆θ = 0.3, L =16 (64) for
the curves marked with dots (open squares), w = (0.4, 0.8, 1.0) for γA = (0.0, 0.5, 1.0).
(b): Distribution of distance, d, between two patterns that have the relative separation
z in a latching sequence for L = 16, γA = 0.5 and w = 0.8. The black, vertical line
indicates the mean value of d across all p patterns. The solid black curve is the PDF of
d among all possible pairs between L patterns in STM. (c): Histograms for the visiting
frequency of patterns in STM, given one pattern is recalled. The remaining L − 1 = 15
patterns are arranged along the x–axis by their visiting frequency at the next position of
the currently retrieved pattern in a sequence (z = 1), giving three groups x1, x2 and x3
of 5 patterns each. Each group is further arranged symmetrically along the y–axis, with
the most frequent pattern on the midline (y3). Visiting frequency is double-encoded by
the height and colour of bars. The lonely, magenta bar behind the group x1 shows the
visiting frequency of the currently recalled pattern once it returns at the position z.
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These results indicate that latching trajectories by Potts networks have a quasi-random
walk character, though biased by correlations between patterns in their representational
space. This is consistent with earlier applications of latching dynamics to semantic prim-
ing [135].

Figure 5.9: Visiting frequency of a pattern at the position n+z as a function of d(µn, µn+z)
and d(µn+1, µn+z) from simulating Model 2. Colour indicates the visiting frequency. From
the upper left panel to the lower right one, we can see that the brightest spot (most
frequent visits) rotates counter-clockwise. Dashed black lines indicate the average value
across all pairs in STM on the corresponding axis. w = 0.8, γA = 0.5, L = 16, ∆θ = 0.3.

5.7 Discussion

The Potts model offers a plausible cortical framework to discuss aspects of memory dy-
namics, without losing too much of the clarity afforded by simpler non-neural models.
Indeed, a major difficulty with network models of memory storage in the human cortex,
which have attempted to reflect its dual local and long-range connectivity [50, 53] by
articulating interactions at both the local and global levels, is that their mathematical or
even computational tractability usually has required ad hoc assumptions about memory
organization. For example, the partition of memory items in a number of classes, in each
of which memories are expressed by the activity of the same cortical modules [151] –
which makes it awkward to use such a network model to analyse the free or serial recall of
arbitrary items. On the other hand, more abstract models have provided brilliant insight
[139] which is hard, however, to relate to neural variables and neural constraints. By
subsuming the local level into the dynamics of individual Potts variables, the statistical
analysis can focus on the cortical level, what is effectively a reasonable compromise.

The (global) cortical level is in particular the one to consider in assessing short-term
memory phenomena, in which interference from widely distributed long-term memories
plays a central role. Experiments with lists of unrelated words are a prime example
[135]. The free energy landscape of the Potts model provides a setting for quasi-discrete
sequences of states, with properties that turn out to be similar to those of random walks.
This happens, however, only within a specific parameter range, and only to a partial
extent, so that often one has in practice several intertwined sequences, with simultaneous
activation of multiple patterns, as well as pathological transitions, all characteristics with
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potential to account for psychological phenomena, and which are lost in a more abstract
purely symbolic model. We have thus discussed three generic neural mechanisms that
may contribute to restrict the random walk, approximately, from p to L items. Although
not exclusive, we have argued that the second such mechanism is the one most relevant
to account for the recall of list of unrelated items.

To model the recall of ordered lists, an additional heteroassociative mechanism can be
activated, which biases the random walk, but again approximately, resulting in frequent
errors and limited span. We have observed that, at least in the Potts network, if the
heteroassociations, which amount to specific instructions, dominate the dynamics, the
random character is lost. With it we lose the entire latching dynamics – which cannot be
harnessed to just passively follow instructions.

In summary, a Potts network can generate quasi-discrete sequences from analog pro-
cesses, with the possibility of errors in

1. the “digitalisation” into a string of discrete states, one at a time

2. the restriction to L out of p item in LTM

3. the order, both in the specific sense of serial order, and in the generic one of avoiding
repetitions.

These possibilities for error reflect weaknesses of latching dynamics as a mechanism for
short-term memory expressed by a Potts network, and at the same time underscore the
value of the mechanistic model, inasmuch as similar “flaws” crop up in the phenomenology.
The analysis of such flaws can lead to refinements of the model.

Thus, point 2, the difficulty of restricting latching dynamics to a subset of all the
long-term memory representations, is made even more severe in paradigms that involve
multiple subsets. For example, in analyses of the Phonological Output Buffer (POB)
the hypothesis has been considered of mutiple POBs, one holding simple phonemes, one
function words, one numerals, etc., conceptually as sort of separate drawers, or mini-
stores [62]. If one accepts the evidence of a common substrate for working memory
and long-term memory representations [152], one cannot resort to different “drawers”,
i.e., different scratchpads or the like, where to temporarily hold the items from distinct
subsets, and this makes enforcing the restriction more difficult. Likewise, one cannot
regulate the correlation between the long-term representations, as one could do if new ad
hoc representations were temporarily set up. These constraints can result in intrusions,
a simple form of false memory, e.g. by items that are strongly semantically associated
to items in a short-term memory list [153], or by items in prior lists [154]. It would be
tempting to pursue a fully quantitative study of these phenomena [155] to try and extract
constraints, for example, on the time course of the “boost” that models STM in the Potts
network.

In relation to point 3, latching dynamics are intrinsically stochastic in nature, even
in the absence of microscopic noise, because of the heterogeneity of the underlying mi-
croscopic states. With randomly correlated representations, trajectories among items are
effectively random, with only a tendency to avoid close repetitions, as a result of the
adaptation-based mechanism. Interestingly, a tendency to perceive random processes as
less prone to repetition than they really are is a hallmark of human cognition [156]. Be-
yond the vanilla version of the model, however, it is rather trivial to incorporate e.g.
adjustments of the time course of the boost, to produce primacy and recency, or adjust-
ments of the correlations between pairs of representation to produce preferred transitions.
What is more interesting and still lacking, to our knowledge, is again a quantitative study
of the degree of randomness of the recall process, in the context of remembering lists for
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example – a study made inherently difficult by the need to use novel items in a within
subjects design. The same need effectively prevents the analysis of the recalled string at
the single neuron level: even when recording the activity of neurons in awake patients,
only generic forms of selectivity can be reliably studied, e.g., that expressed by puta-
tive “time” cells [157]. Interestingly such a study has been recently carried out in rats,
pointing at the random walk character of the spatial trajectories they recall shortly after
experiencing them [141]. While a similar approach cannot easily be extended to humans,
to probe the dynamics of individual neurons, the Potts model can help interpret evidence
at the integrated cortical level.

It is its fallibility in the production of a simple string of items, however, where the Potts
network offers crucial insight beyond that provided by simpler and more abstract models,
in which the digitalisation of a string is a priori given. Latching dynamics can involve
partially parallel strings, items incompletely recalled simultaneously with others, periods
of utter confusion, stomping attempts. Statistically, they are all observed with prevalence
determined by the various parameters. These flaws in the analog-to-digital transduction
of the Potts model may be useful in the interpretation of electrophysiological data. One
basic question in this domain is: can two items be simultaneously active in working
memory? On this question, experimental evidence has been difficult to obtain, because a
process that appears to involve two items active together, might in fact rapidly alternate
between them. Recently, however, the genuinely concurrent activation of two items has
been reported with a model-based analysis of EEG data [158]. In that study, holding on
to the two items meant better performance in the task, so it reflects a capability, not a
flaw of the short-term mechanism. If extended to sequences of endogenously generated
states, as the Potts model indicates would occur, at least in certain regimes, it would mean
that not only the focus of attention when performing a similar task need not be unique,
but also that parallel streams of thoughts can be entertained along partially interacting
trajectories. This could be applied to interpret electrophysiological measures of mind
wandering dynamics [159], with significant implications for our intuition about a global
workspace in effortful cognitive tasks [160].
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Chapter 6

Modelling schemata with latching
dynamics

6.1 Summary of the chapter

Under what conditions can prefrontal cortex (PFC) direct the composition of brain states,
to generate coherent streams of thoughts? Using a simplified Potts model of cortical
dynamics, crudely differentiated into two halves, we show that once activity levels are
regulated, so as to disambiguate a single temporal sequence, whether the contents of the
sequence are mainly determined by the frontal or by the posterior half, or by neither,
depends on statistical parameters that describe its microcircuits. The frontal cortex
tends to lead if it has more local attractors, longer-lasting and stronger ones, in order of
increasing importance. Its guidance is particularly effective to the extent that posterior
cortices do not tend to transition from state to state on their own. The result may be
related to prefrontal cortex enforcing its temporally-oriented schemata driving coherent
sequences of brain states, unlike the atemporal “context” contributed by the hippocampus.
Modelling a mild prefrontal (vs. posterior) lesion offers an account of mind-wandering
and event construction deficits observed in prefrontal patients.

6.2 Constructive associative memories

Recent explorations of the mechanisms underlying creative forms of human cognition [161,
162], ranging from musical improvisation [163] through visual creativity [164] up to poetry
[165], or mere mind wandering [99], have again questioned the validity of reducing the
cortex to a machine operating a complex transformation of the input it currently receives.
On the one hand, sophisticated and massive artificial intelligence systems like ChatGPT or
midJourney, with their impressive performance, have adhered to the standard operational
paradigm of producing a response to a query. On the other, a simple observation of cortical
circuitry, with its extensive recurrence and quantitatively limited external inputs, have
long ago led to the proposal that the cortex is (largely) a machine talking to itself [50].
Likewise, when confronted with an artistic or literary creation we sometimes ask: what
was the query? Was there a query?

If it is the cortex itself that takes the initiative, so to speak, is it the entire cortex?

Understanding the mechanisms of cortico-cortical dialogue that generate spontaneous
behaviour cannot eschew their statistical character, that of a system with very many
imprecisely interacting elements. Valentino Braitenberg suggested a framework for such
a statistical analysis, which to a first approximation considers the cortex as a homoge-
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neous structure, not differentiated among its areas (nor, other than quantitatively, among
mammalian species) [48]: the only distinction is between long-range connections and local
ones – those which reach in the immediate surround of the projecting neuron and do not
travel through the white matter. Importantly, by asking whether there is any compu-
tational principle other than just associative memory operating at both long-range and
local synapses [50], Braitenberg pushes the age-old debate of whether cortical activity is
more like a classic orchestra led by a conductor or more like a musical improvisation, be-
yond the limits of abstract information-processing models. In traditional box-and-arrows
models of that kind, a box, whether it represents a specific part of the brain or not, can
operate any arbitrary transformation of its input, which makes it difficult to relate it to
physiological measures, and tends to leave the debate ill-defined. If at the core one is
dealing solely with associative memory, instead, the issue can be approached with well-
defined formal models, generating statistical insights that can be later augmented with
cognitive qualifications.

Given the canonical cortical circuit [166] as a basic wiring plan for the generic cortical
plaquette, or patch, getting at the gist of how it contributes to the exchanges mediated
by long-range cortico-cortical connectivity among different patches requires considering
the fundamental aspects that vary, at least quantitatively, among the areas. A number of
reviews [167, 71] have pointed out that several prominent features align their gradients of
variation, across mammals and in particular in the human brain, along a natural cortical
axis, roughly from the back to the front of the cortex. Actual observations and measure-
ments may be incomplete or even at variance with such a sweeping generalization, but here
we take it as a convenient starting point. Anatomical measures point at more spines on
the basal dendrites of pyramidal cells, indicating more local synaptic contacts in temporal
and especially frontal, compared to occipital cortex [68]. This may support a capacity for
more and/or stronger local attractor states. More linear and prompt responses to afferent
inputs in posterior cortices, e.g. visual ones [69, 70], also suggest reduced local feedback
relative to more anterior areas.

The rapidity of the population response to an incoming input has been related to
the notion of an intrinsic timescale that might characterize each cortical area, and that
may produce highly non-trivial effects, for example when inhibiting a particular area with
transcranial magnetic stimulation (TMS) [168]. The timescales measured with similar
methods have been shown to differ considerably, even within individual areas [169], and to
define distinct cortical hierarchies, when extracted in different behavioural states, e.g. in
response to visual white noise stimuli [170] or during free foraging [171]. Thus it remains
unclear whether the ambition to define a unique hierarchy of timescales can really be
pursued [172], and whether they can be related to patterns of cortical lamination [91] and
to biophysical parameters, including the Ih current and others underlying firing rates and
firing frequency adaptation [173]. Still, in broad terms multiple timescale hierarchies do
roughly align with the natural axis, from faster in the back to slower in the front of the
brain, and ignoring a factor of, say, four [172] would appear to grossly overlook a basic
principle of cortical organization.

Here, we ask what are the implications of major differences in cortical parameters for
how basic associative memory mechanisms may express cortically-initiated activity. We
focus on a simple differentiation between a posterior and a frontal half of the cortex, and
neglect finer distinctions, e.g., rostrocaudal hierarchies within prefrontal cortex [174, 175]
or the undoubtedly major differences within posterior cortices.
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6.3 A simply differentiated Potts model

As is already shown in previous chapters, a Potts network can latch1 in the absence of
external input – of a query [39]. Latching dynamics are a form of iterated associative
memory retrieval; each extended activity pattern acts briefly as a global cortical attractor
and, when destabilized by the rising thresholds which model firing rate adaptation, serves
as a cue for the retrieval of the next pattern. Studies with brain-lesioned patients indicate,
however, that there is structure in such spontaneous behaviour. In studies of mind-
wandering, for example, patients with lesions to ventromedial prefrontal cortex (vmPFC)
show reduced mind-wandering, and their spontaneous thoughts tend to be restricted,
focused on the present and on the self, suggestive of a limited ability to project coherently
into the future [100].

We then take our standard, homogeneous Potts network, differentiate it in two halves,
and ask whether a structure of this type may reflect a basic differentiation between frontal
and posterior cortices in the number or in the strength of their local attractor states, or
in the time scale over which they operate, as expressed in differences, in the model, in the
three relevant parameters, ∆S, ∆w and ∆τ2.

We assume that the two sub-networks store the same number p of memory patterns
(with the same sparsity a), and that all the connections already encode these p patterns,
as a result of a learning phase which is not modelled. We have already shown in Chapter
3 that a differentiation ∆S has important dynamical implications during learning itself,
but here we imagine learning to have already occurred. For a statistical study, we take
the activity patterns to have been randomly generated with the same statistics, therefore
any correlation between pattern µ and ν is random, and randomly different if calculated
over each sub-network. These restrictive and implausible assumptions – they discard for
example the possibility of structured associations between frontal and posterior patterns
of different numerosity, statistics and internal non-random correlations – are needed to
derive solid quantitative conclusions at the level of network operation, and might be
relaxed later in more qualitative studies.

6.3.1 Connectivity in the differentiated network

For the statistical analysis, carried out through computer simulations, to be informative,
the structure of the network model and in particular its connectivity have to be chosen
appropriately. First, each sub-network should have the same number of units (half the
total) and each unit the same number of inputs, for the comparisons between different
conditions to be unbiased by trivial factors. Second, each sub-network should be allowed
to determine, to some extent, its own recurrent dynamics, which requires the inputs onto
each unit from the two halves not to be equal in strength, which would lead to washing
away any difference, effectively, at each recurrent reverberation.

We then set the connection between units i and j, in their tensorial states k and l, as

Jkl,intra,interij =
cij

cma
√

(1− a
Si
)(1− a

Sj
)

p∑
µ=1

(
δηµi k −

a

Si

)(
δξµj l −

a

Sj

)
(1− δk0)(1− δl0),

(6.1)
where {cij} is a sparsity {0, 1} matrix that ensures that Potts unit receives cm intra inputs
from other units in the same sub-network and also receives cm inter inputs from units of

1It hops from a quasi-stationary pattern of activity to the next
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the other sub-network. Note that the number of Potts states of each unit, S, may depend
on which sub-network the unit belongs to.

The partially differential dynamics is obtained by setting the strength coefficients as

Jklij =
(1 + λ)

2
Jkl,intraij +

(1− λ)
2

Jkl,interij , (6.2)

where the parameter λ ∈ [−1, 1] controls the relative strength of two terms. For λ = 0.0,
the connectivity matrix becomes homogeneous and we cannot distinguish the two sub-
networks from connectivity alone. If λ = 1.0, each sub-network is isolated from the other.
For values of λ between 0 and 1, the recurrent connections within a sub-network prevail
over those from the other sub-network, generating partially independent dynamics. We
set λ = 0.5 as our reference value.

Figure 6.1: The differentiated network and examples of latching sequences. (a):
The differentiated network is comprised of frontal and posterior halves, in each of which
units receive the same number of inputs from both halves, but not of the same average
strength. (b) and (c): The latching sequences are very similar if extracted from the
posterior (upper panels) or the frontal sub-network (bottom panels). In (b), parameters
are set as in Fig. 6.2e. In (c), parameters are set as in Fig. 6.3c.

6.4 Results

We assume that the attractors of the frontal network have been associated one-to-one with
those of the posterior network, via Hebbian plasticity, during a learning phase, which we
do not model. When there is no external stimulus, e.g. when modelling creative thinking
and future imaging, the network can sustain latching dynamics, i.e. it can hop from
state to state, as in Fig. 6.1, provided its activity is appropriately regulated by suitable
thresholds, as is reported in Ref. [39]. Such spontaneous dynamics of the entire network
might be led to a different extent by its frontal and posterior halves, depending on their
characteristic parameters.

In order to quantify the relative influence of the two sub-networks on the latching
sequences produced by the hybrid Potts model, we look at whether the actual occurrence
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of each possible transition depends on the correlations, computed separately in the frontal
and posterior parts, between the two patterns before and after the transition.

For randomly-correlated patterns used here, the correlations are relatively minor, but
they can be anyway quantified by two quantities, Cas and Cad defined in Eqs. (5.15) and
(5.16)2, that is, the fraction of active units in one pattern that are co-active in the other
and in the same, Cas, or in a different state, Cad. In terms of these quantities, two memory
patterns are highly correlated if Cas is larger than average and Cad is smaller than average,
and we can take the difference Cad −Cas as a simple compact indicator of the “distance”
between the two patterns.

How strongly are transitions in a latching sequence driven by pattern correlations in
each subnetwork? To measure this, we take the weighted average of Cas and Cad with the
weights given by latching sequences; that is, we compute (and analogously for ⟨Cad⟩T )

⟨Cas⟩T ≡
∑
(µ,ν)

tµνC
µν
as , (6.3)

where the sum
∑

(µ,ν) runs over all possible pairs of memories and tµν is the normalized

frequency of latching transitions for the pair µ, ν:
∑

(µ,ν) tµν = 1. This average is compared
with the “baseline” average, e.g.,

⟨Cas⟩B ≡
2

p(p− 1)

∑
(µ,ν)

Cµν
as , (6.4)

independent of the transitions, where p is the number of stored memories in the network.
The comparison between the two averages, ⟨Cas(d)⟩T and ⟨Cas(d)⟩B, is one index of how
strongly latching sequences are related to correlations between patterns in one of the two
sub-networks.

Second, based on the hypothesis that the frequency of transitions tends to decrease
exponentially with the distance between the two patterns, as defined above, we look for
the linear regression between the logarithm of the normalized transition frequency, log(t),
and the distance Cad − Cas.

We first consider a case when all the macroscopic parameters are equal between the
two sub-networks, while the connection parameter is set as λ = 0.5. In this case, the
intra-connections (within each sub-network) are 3 times, on average, as strong as the inter-
connections (between the two sub-networks), but the two halves are fully equivalent, or
Not Differentiated (ND). With the appropriate parameters, in particular the feedback w,
we find that the network as a whole shows robust latching and that latching sequences in
each sub-network are well synchronized with each other: the two sub-networks essentially
latch as one. Comparing latching dynamics in two sub-networks, we find that latching
is largely driven by correlations between patterns, in either half or in both, as found
previously [60]. This can be seen, leftmost bars of Fig. 6.2a and Fig. 6.2b, by the higher
value of ⟨Cas⟩T relative to ⟨Cas⟩B, and vice versa for Cad, in the ND case. Correlations
in the two sub-networks appear to contribute equally to determine latching sequences,
as expected. This is confirmed by the similar negative slopes in the two scatterplots of
Fig. 6.2c.

Different S. We now examine a case in which the two networks share the same values
of all but one parameter: the number of Potts states, S. When the posterior network
has fewer states (S = 3 instead of the reference value, 7), the baselines for both Cas and
Cad are shifted, above and below, respectively, but their transition-weighted values are
similarly positioned, above and below the respective baselines, as in the frontal network.

2See also Eqs. (E.5) and (E.6) and explanations thereof.
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Figure 6.2: A latching frontal network leads a non-latching posterior network.
Red indicates the frontal and blue the posterior network in this and other figures. (a)
and (b) The transition-weighted averages of Cas and Cad are compared to their baseline
values for three cases: no difference between the two networks (ND, leftmost bars), a
difference in S (∆S, middle bars) and a difference in w (∆w, rightmost bars). The gray
horizontal line and shaded area indicate the baseline average and its standard deviation.
(c), (d) and (e) Scatterplots of (log) transition frequencies between individual patterns
pairs versus their distance, for the three conditions. The darkness of color indicates the
number of pairs at each combination of abscissa and ordinate. For the ND condition,
parameters are set as wp = wf = 1.1, Sp = Sf = 7. For the other conditions, the
parameters of the frontal network are kept the same as in the ND condition, while the
parameters of the posterior sub-network are set as Sp = 3 and wp = 0.6, respectively, in
(d) and (e).
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Also in terms of the second indicator, the scatterplot of Fig. 6.2d shows rather similar
slopes, with only a modest quantitative “advantage” for the frontal network (in red),
which can be said to lead the latching sequence somewhat more than the posterior one.
One should note that, with these parameters, both sub-networks would latch if isolated.

Different w. In contrast to the two cases above, ND and ∆S, we see a major difference
between the two sub-networks if it is the w parameter which is lower for the posterior
network (the rightmost bars of Figs. 6.2a,b). In this case, it is obviously the correlation
structure of the frontal patterns, not of the posterior ones, that dominates in determining
latching sequences. This is also evident from the very different slopes, k, in the scatterplot
of Fig. 6.2e. With the lower value w = 0.6 chosen for the posterior sub-network, this time
it would not latch, if isolated. Note that to preserve its latching, and for it to be a
clear single sequence, we would have to set w at almost the same value as for the frontal
sub-network, unlike the case with the S parameter.

And/or different τ2. We now allow the adaptation timescale, τ2, to differ between
two sub-networks. We first note that latching sequences between the two networks are
remarkably well synchronized despite their different adaptation timescales (Fig. 6.1c).
If isolated, the two sub-networks would each latch at a pace set by its own τ2. Their
synchronization thus shows that, even with this relativity weaker connectivity coupling
(inter-connections 1/3 of the average strength of the intra-connections) the two halves
are willing to compromise, and latch at some intermediate pace, close to the one they
sustained when τ2 was not differentiated.

Furthermore, latching sequences are affected predominantly by frontal correlations
rather than posterior ones. In Fig. 6.3, we show two cases: the two sub-networks have
two different adaptation timescales; and in the second case also different w. We see a
moderate effect if τ2 is the only parameter that differs between the two. Note that in this
case the posterior sub-network, if isolated, would latch.

The effect is most pronounced if w is also lowered to w = 0.6 for the posterior sub-
network, as is evident from the weak positive slope k it shows, see Fig. 6.3d. In this case
it would not latch if isolated.

We have also inverted the τ2 difference, making the posterior sub-network, still with
a lower w, slower in terms of firing rate adaptation. In this case (not shown) latching
is virtually abolished, showing that the parameter manipulations do not simply add up
linearly.

6.4.1 Lesioning the network

To model lesions in either sub-network, we define a procedure that still allows us to
compare quantities based on the same number of inputs per unit, etc. The procedure
acts only on the relative weights of the connections (through λ), which are modulated
while keeping their average for each receiving unit always to 1/2. Other parameters of the
network are set in such a way that the frontal sub-network leads the latching sequences
and that lesions do not push the network into a no-latching phase: the self-reinforcement
parameter is set as w = 0.7 for the posterior sub-network and w = 1.2 for the frontal one,
while S and τ2 are set as specified in Table F.1 and thus take the same value for both
sub-networks. For “healthy” networks, we use λ = 0.5 in Eq. (6.2), meaning the intra-
connections (within the frontal and within the posterior half) are 3 times, on average,
as strong as the inter-connections (between frontal and posterior halves). For lesioned
networks, we use smaller values of λ than 0.5 for their input connections: the smaller the
value is, the stronger the lesion is. So, for example, a frontal lesion with λ = 0.2 implies
that its recurrent weights are weighted by a factor 0.6 (instead of 0.75) and the weights
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Figure 6.3: The frontal sub-network is even more dominant with slower adap-
tation. Color code and meaning are the same as in Fig. 6.2. (a) and (b) Transition-
weighted averages of Cas and Cad versus their baselines are shown for two conditions:
only τ2 is different and both w and τ2 are different. In both conditions, τ2 is 100 for
the posterior network and 400 for the frontal network. In the ∆w condition, w is 0.6
for the posterior network and 1.1 for the frontal network. (c) and (d) Log-transformed
transition frequencies between individual patterns pairs versus their distance.
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from the posterior sub-network by a factor 0.4 (rather than 0.25), i.e. the internal weights
are only 1.5 times those of the interconnections. The posterior sub-network in this case
has the same weights as the control case.

We then quantify the effect of the lesions with the slopes in the scatterplots as before,
but also with an entropy measure. The entropy at position z in a latching sequence
measures the variability of transitions encountered at that position, across all sequences
with the same starting point. It is computed as

S(z) =
〈
−
∑
µ ̸=ν

P µν
γ (z) log2 P

µν
γ (z)

〉
γ
, (6.5)

where P µν
γ (z) is the joint probability of having two patterns µ and ν at two consecutive

positions z and z + 1 relative to the cued pattern γ in a latching sequence, and ⟨·⟩γ
means that we average the entropy across all the p patterns that are used as a cue. See
Appendix F for how we get P µν

γ (z) from computer simulations.
Note that if all transitions were incurred equally, asymptotically for large z, the entropy

would reach its maximum value S∞ = log2[p(p − 1)] (with p patterns stored in memory
and available for latching). Therefore exp{[S(z) − S∞] ln(2)} is an effective measure of
the fraction of all possible transitions that the network has explored at position z, on
average.

In terms of the slopes in the scatterplots, we see that posterior lesions do not have a
major effect, while frontal lesions reduce the relation between the probability of individual
transitions and the correlation between the two patterns, particularly in the frontal sub-
network where it was strong in the “healthy” case (see Fig. 6.4).

Figure 6.4: Correlations between transition frequency and pattern distance are shown
for a network with frontal lesions (a), for a healthy network (b) and for a network with
posterior lesions (c). Lesions are modelled by setting λ = 0.2 (see main text). The self-
reinforcement parameter is set as w = 1.2 for the frontal sub-network and w = 0.7 for the
posterior one.

In terms of entropy, we see that lesions in the posterior sub-network do not affect the
entropy curve, relative to that for the healthy network (Fig. 6.5). Lesions in the frontal
sub-network, however, tend to restrict the sequences to a limited set of transitions, leading
to a marked reduction in the fraction of possibilities explored by the lesioned network.
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Figure 6.5: (a) The entropy S(z) and its standard error of the mean are shown for
healthy (black), frontal-lesioned (blue) and posterior-lesioned (red) networks. Lesions
are implemented by setting λ = 0.2 for solid curves, whereas the dashed blue curve is
for a milder lesion in the frontal network (λ = 0.3). The black horizontal line indicates
the asymptotic entropy value for a completely random sequence generated from a set
of p = 50 patterns. The self-reinforcement parameter is set as w = 1.2 for the frontal
network and w = 0.7 for the posterior network. (b) A schematic view of the diversity
of transitions expressed by latching sequences. Circles are centered around an arbitrary
position, while their areas extend over a fraction 2S(10)−S∞ of the area of the square (which
would correspond to an even exploration of all possible transitions, asymptotically). The
large orange circle is obtained by setting λ = 0.7, thus modelling a sort of cognitive frontal
enhancement, perhaps obtained with psychoactive substances.
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Simulated frontal lesions, therefore, produce in our model two effects that, while not
opposite, are not fully congruent either. The first, manifested in the reduced slope of
Fig. 6.4a, is suggestive of a loss of coherence in individual transitions between brain
states; the second, seen in the limited entropy of Fig. 6.5, indicates a restriction in the
space spanned by the trajectories of spontaneous thought. To reconcile the two outcomes,
we have to conclude that while less dependent on the similarity between the two patterns,
or states, individual transitions are not really random, and some become in the lesioned
network much more frequent than others, gradually veering from creative towards obses-
sive (or perseverative) thought.

6.5 Discussion

Simulating our model provides some insight about the conditions that may enable frontal
cortex to determine the sequence of states in spontaneous thought dynamics. It is impor-
tant, in assessing the computational findings, to distinguish what has gone into defining
the model from what the model gives out in return. For example, much cognitive neuro-
science research has been devoted to understanding the process of segmenting our ongoing
experience into separate sub-events, or event segmentation [176]. Baldassano and col-
leagues [177] have recently demonstrated how brain activity within sub-events resembles
temporarily stable activity patterns, dubbed “neural states” [178], which may be iden-
tified with those long posited to occur in the cortex of primates [179] and other species
[180], from analyses of single-unit activity. This notion is conceptually similar to the Potts
states in a latching sequence, but finding evidence that a continuous input flow is seg-
mented into discrete or quasi-discrete states in the brain is a major achievement, whereas
in the Potts network it is a straightforward outcome of the ingredients used to define the
model in the first place. Interestingly, these neural states were found to occur on different
timescales across regions, with more but short-lasting transitions in low-level (posterior)
sensory cortices and fewer but longer-lasting transitions in higher-level (frontal/parietal)
regions. Strikingly, for some of the higher order brain regions, neural state transitions
appeared to overlap with behavioural measures of event boundary perception [181].

In our study, the central question is which portion of the differentiated model network
controls the sequence of discrete event states. We have seen that three types of differ-
entiation, each capturing some aspect of caudo-rostral cortical variation, bias sequence
control towards the “frontal” half of the network, albeit with different effectiveness. A
comparison across the three types of differentiation is inherently ill-defined, because ∆S,
∆w and ∆τ2 are all measured on different scales, but it is apparent that the first type has
a much milder effect than the second, and the third is somewhere in between. The major
effect seen with ∆w is likely due to the posterior network being unable to latch on its
own, with the lower w value we have used. The lower S and τ2 values do not have much of
an effect on latching per se. The three types of differentiation are of course not mutually
exclusive, and it is plausible that in the real brain, if the model makes sense, their effect
would be cumulative. They do not appear to add up linearly, though: we have mentioned
that inverting the τ2 difference with respect to the w difference (i.e., making firing rate
adaptation faster in the frontal sub-network) tends to abolish latching altogether, rather
than reduce the frontal advantage in leading it.

A limitation of our study is that to compare the sub-networks on an even footing
we have considered an artificial scenario in which activity patterns are only randomly
correlated, and also there are p in each half network and they have been paired one-to-one
during learning. Obviously in this scenario there is no benefit whatsoever if the network
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follows a frontally- rather than a posteriorly-generated sequence: they are equivalent,
and both devoid of content. It will be therefore important, in future work, to understand
whether the insights derived under these assumptions are applicable also to more plausible
conditions, in which the frontal and posterior patterns are not paired one-to-one, and can
take distinct roles, for example along the lines of the classic operator/filler (also denoted
as role/filler) distinction [182]. In this more complex scenario, the frontal patterns, if they
have to serve as operators, would “take” or be paired in certain cases to a single filler and
in others to multiple fillers (and possibly to other operators, in a hierarchical scheme);
but even if just to one, it would be one among several options, so the pairing scheme in
long-term-memory would be considerably more complex than the one considered here.

A relevant cognitive construct we mention, only partially overlapping with that of
operator, is that of a temporally-oriented schema. A schema is a regularity extracted
from multiple experience, in which B follows A and is then followed by C, although the
particular instantiation of A, B and C will be different every time [114]. Note that to be
implemented in our network, the skeleton of the ABC representation would have to stay
activated while the specific filling items A, B and C are specified, in succession, in the
posterior cortex. Alternatively, ABC could be conceptualized as a short tight latching
sequence. Clearly, more attention has to be paid to the possibility of formalizing these
constructs in a future well-defined network model.

Mind wandering and creativity

Within its present limitations, still our approach may offer insights relevant to the
dynamics of state transitions in spontaneous cognition, such as those underlying mind
wandering. Mind wandering occurs when attention drifts away from ongoing activities
and towards our inner world, focusing for example on memories, thoughts, plans, which
typically follow one another in a rapid, unconstrained fashion [183, 98]. The dynamics
governing the flow of thoughts can indeed be described as latching (see also [99]).

Mind wandering is known to engage the Default Mode Network (DMN), a set of
interconnected brain regions, spanning from posterior, temporal, and frontal cortices [184,
185, 186, 187, 98, 188], underlying introspection and spontaneous (endogenously triggered)
cognition. Ciaramelli and Treves [99] and McCormick et al. [189] have proposed that the
prefrontal cortex, especially in its ventral-medial sectors (vmPFC) might support the
initiation (internal triggering) of mind-wandering events.

Indeed, recent MEG findings show that activity in the vmPFC precedes (presumably
drives) hippocampal activity during (voluntary) scene construction and autobiographical
memory retrieval ([190]; see also [118, 191]), and this region may play a similar role during
spontaneous cognition. Indeed, damage [100, 192] or inhibition [193, 194] of the vmPFC
(but not the hippocampus; [189]) reduce the frequency of mind-wandering.

On one view, vmPFC initiates event construction by activating schemata (about the
self, or common events) that help collect relevant details that the hippocampus then
binds in coherent, envisioned scenes ([104]; see also [195, 113]). Consistent with the
schema hypothesis, vmPFC (but not hippocampal) patients are particularly impaired in
event construction when the task benefits from the activation of the self schema [196, 123],
and are not impaired when the need for self-initiation is minimized [197]. vmPFC may
also govern schema-congruent transitions between successive scenes of constructed events
based on event schemata (scripts) [188, 198]), which may explain why vmPFC patients
are particularly poor at simulating extended events as opposed to single moments selected
from events [100, 199].

The results from our computational simulations accord with and complement this
view. Lesioning the frontal (but not the posterior) sector of the network led to more
random state transitions, less dependent on the correlation between patterns, and also
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led to shorter-lasting sequences, that fade out after fewer state transitions. This pattern
of findings is expected if transitions in thought states were not guided by schematic
knowledge, making them less coherent in content and self-exhausting.

A second effect we observed is a reduced entropy following lesions in the frontal (but
not posterior) half of the network, which indicates that the trajectories of state transitions
were confined in a limited space, as if mind wandering lost its ’wandering’ nature to become
more constrained, with recurring thoughts characteristic of the perseverative responses
long observed in prefrontal patients; suggesting that vmPFC patients, in addition to an
impaired activation of relevant schemata, also fail in flexibly deactivating current but no
longer relevant ones [114].

The most characteristic memory deficit following vmPFC damage is confabulation, the
spontaneous production of false memories. Confabulations often involve an inability to
inhibit previously reinforced memory traces [200]. For example, confabulators can falsely
endorse personal events as true because these were true in the past (e.g., that they just
played football while in fact they used to play football during childhood). If presented
with modified versions of famous fairy tales to study, confabulators tend to revert to the
original versions of the stories in a later recall phase [201]. Similarly, during navigation,
confabulators may get lost because they head to locations they have attended frequently
in the past, instead of the currently specified goal destination [202].

The inability to flexibly switch between relevant time schemata and memory traces
has been linked to reduced future thinking and reduced generation of novel scenarios in
prefrontal patients ([203]; see also [100]), who admitted they found themselves bound to
recast past memories while trying to imagine future events. More in general, prefrontal
lesions impair creativity. There is interaction between the DMN and the fronto-parietal
control network while generating (DMN) and revising (fronto-parietal network) creative
ideas ([204, 205]). Bendetowicz et al. found that damage to the right medial prefrontal
regions of the DMN affected the ability to generate remote ideas, whereas damage to left
rostrolateral prefrontal region of the fronto-parietal control network spared the ability to
generate remote ideas but impaired the ability to appropriately combine them.

Note, however, that the originality associated with creative ideas can be conceived
as disrupting the automatic progression from a thought to the one most correlated to
it. Fan et al. [206] had participants perform a creative writing task, and indeed found
the semantic distance between adjacent sentences to be positively correlated with the
story originality. Also, semantic distance was predicted by connectivity features of the
salience network (e.g., the insula and anterior cingulate cortex) and the DMN. Green et
al. [207] have also reported a putative role of mPFC (Brodmann Area 9/10) in connecting
semantically distant concepts during abstract relational integration. In a following study
[208], mPFC activity was found to vary monotonically with increasing semantic distance
between abstract concepts, even when controlling for task difficulty. Indeed, preliminary
evidence from patients with vmPFC lesions is indicative of a greater global semantic co-
herence in speech compared to healthy participants (Stendardi et al., in preparation).
These results align with our finding that a lesion of the frontal component of the network
produces a reduction in entropy, making latching dynamics “less creative”; but not, prima
facie, with the reduced slope in Fig. 6.4a, which indicates that the lesion would produce
more random transitions, frequent also among distant patterns. The apparent contradic-
tion can be reconciled by noting that, as seen above, individual random transitions can
still result in reduced entropy, if they tend to recur perseveratively within a sequence;
and also that semantic coherence may reflect pattern correlation in posterior rather than
frontal cortices, whereas it is logical/syntactic consequentiality that is expected to be im-
paired by random frontal transitions. In fact, in our model lesion, the decreased slope in
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the frontal sub-network seen in Fig. 6.4a (more random transitions) is accompanied by a
slightly increased slope, suggestive of more semantic coherence, posteriorly.

Clearly, a major refinement of our approach is required, before these suggestions can
be taken seriously, and articulated in a more nuanced view of how operating along the
time dimension may be coordinated across cortical areas.
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Chapter 7

Conclusion

The Potts model is a simplified network model of global cortical dynamics. In this thesis,
we have shown that the model can explain a variety of cognitive processes, such as learning
dynamics, recalling compositional memories, short-term recall and temporal schemata.

Some theoretical neuroscientists tend to model typical laboratory tasks by using (ar-
tificial) “neural networks”1 that are trained by biologically implausible algorithms (e.g.,
gradient-descent). They try to understand a certain cognitive function of the brain by
analysing the optimally-trained2 “neural network”. One potential problem of this ap-
proach is that the two systems, the brain on one hand and the artificial neural network
(ANN) on the other, do not necessarily use the same strategy even when they apparently
perform equally well on a given experimental task. ANNs are excellent in an engineering
context and in technological applications. However, there is no guarantee that they work
in the same way as the brain does3.

In contrast with those approaches, the Potts model is based on a statistical descrip-
tion of cortical networks (Braitenberg’s model) and attempts to implement biologically
plausible assumptions. Some unrealistic assumptions are inevitable, at least for now, if
we value analytical (mathematical) tractability. I believe that future works will make
progress in overcoming the caveats of the current model. After all, the brain is a self-
organised complex system and its understanding requires combinations of all known and
yet-unknown approaches of research. Our own approach with the Potts model is one of
the ways that can tap the “black box”.

In Chapter 5, we have shown that the Potts model can explain an aspect of short-term
recall, which is a typical “laboratory memory” task (see Appendix F.2). Though being
preliminary, we also attempted to simulate neuropsychological observations in Chapters 4
and 6, which can be regarded as an “everyday memory” (see Appendix F.2). By ex-
plaining both paradigms, with a minimal tweaking of the same model network, our Potts
model can provide one way to reconcile two approaches. I wonder if our modelling ap-
proach can help further explore the “uncharted” territory between the so-called real-word
memory and traditional laboratory memory by dissecting the fundamental principle of
neural computations behind them.

1In the literature of artificial intelligence and even in some neuroscience literature, they simply call
it a neural network. For our discussion, I would explicitly articulate the word artificial to distinguish it
from a real neural network, which is the brain.

2The network is trained to “perform” the same task as participants of experiments with a more-or-less
equal excellency.

3There are striking differences, of course. For example, the brain is by far better in terms of energy
efficiency, which is closely related with entropy production (heat dissipation). ANNs require thousands
(even more) of examples for a successful generalisation, while an 1-year-old baby requires just one example
to generalise.
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My work presented in this thesis warrants further study, for example along the direc-
tions sketched in the following.

We have observed the speed inversion effect through computer simulations in Chap-
ter 3. One may attempt an analytical understanding of this phenomenon by e.g. dy-
namical mean field theory (DMFT) [86, 87]. The glassy properties of a discrete Potts
model studied in Chapter 3 need to be analysed also in a continuous Potts model. We
have chosen discrete Potts units in Chapter 3 as a starting point for analytical simplicity,
though continuous Potts units are more realistic (recall that Potts units represent local
attractors of cortical modules). It has been shown that spin glass effects are marginal for
neural networks of threshold-linear units [89], while they are essential for neural networks
of Ising spins (e.g., Hopfield network) [23]. Whether our results of Chapter 3 (e.g., the
speed inversion effect) will also hold for a continuous Potts model is an open question
at the moment. Yet another potential project with the discrete Potts model is to model
protein folding by inverse statistical physics, as in Ref. [97].

Our consideration of compositional memories in Chapter 4 was motivated by empirical
data (collected by Stendardi and Ciaramelli) that patients with lesions in vmPFC and
those with hippocampal lesions show different impairments in constructing (or imagining)
spatial scenes. In general, the interplay between the cerebral cortex and hippocampus in
episodic memory function is yet to be fully understood. As a preliminary modelling at-
tempt, we discussed the separate roles played by the cortex and hippocampus in recalling
compositional memories. While we modelled the cortex by a Potts neural network, the hip-
pocampal network was not modelled: hippocampal input to neocortex was hand-written
in Chapter 4. Modelling hippocampal networks with Hopfield-type neural networks (e.g.,
composed of threshold-linear neurons) and examining the interplay between the cortex
as a Potts model and hippocampal networks is a promising future study. It may not
only be worthwhile as a mathematical challenge, but also be fruitful in connecting with
neuropsychological evidences. Another possible avenue, which is purely mathematical,
is to analytically derive the storage capacity of the Potts network with compositional
memories.4

When you recollect an episode about your last visit to the local stadium (episodic
event retrieval), your brain doesn’t “stop” after recalling one spatial scene (e.g., scenery
around stadium). A sequence of spatial scenes is recalled one after another. In Ref. [104],
a putative model is proposed about the interplay between vmPFC and hippocampus
in such a successive retrieval of spatial scenes. Latching dynamics of the Potts model
may provide a platform where the empirical evidence recapitulated in Ref. [104] could
be tested. Further, in this thesis, latching dynamics is studied only with randomly-
correlated memories. Future studies will attempt to deal with latching dynamics between
compositional memories, possibly paving the way to the mechanistic understanding of
episodic memory retrieval.

Analytically understanding the latching phase diagram (Fig. 2.4b) is another endeav-
our that begs future work. During the initial months of my PhD, I have attempted to
generalise the method of Ref. [60], which is based on a quasi-energy functional, to under-
stand differernt latching phases of the Potts model. I wonder if a progress can be made by
combining this approach with that of Ref. [209], where DMFT is applied after separating
time scales. It may be that latching dynamics is beyond the mean-field theory; one may
have to deal with fluctuations around mean field behaviour. Another interesting question
pertains to the qualitative difference between latching sequences of the Potts model and a

4Even for Hopfield network, storage capacity at zero temperature is still unclear, see Fig. 1.4: there
is a mismatch between the capacity obtained from computer simulations and the theoretically predicted
value.
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sequence of retrieved memories in Hopfield-like networks, as presented in Ref. [210, 211].
Our crude binary distinction between frontal and posterior subnetworks should be

improved. In Chapter 3 and 6, we divided the model network of cerebral cortex into
two halves: frontal and posterior subnetwork. As we have already acknowledged in those
chapters, this dramatical simplification is by no means realistic. Relevant parameters
such as adaptation timescales, number of Potts states etc. should vary across Potts
units reflecting cortical architecture. This work is already under way (Basu et al., in
preparation): the adaptation timescale becomes there another quenched disorder in the
system, i.e., sampled from a certain distribution (e.g., Gaussian).

The temporal schemata discussed in Chapter 6 deserve further studies. It is proposed
that the main deficit in vmPFC-damaged patients is in schema-related processes [104].
Our collaborators (Stendardi and Ciaramelli) have analysed the semantic coherence of
stories produced by vmPFC-damaged patients by using various measures (Stendardi et
al., in preparation). In order to compare the “semantic coherence” of latching sequences
and that of stories produced by vmPFC-patients, we should improve our model presented
in Chapter 6. One potential progress is in the compositional structure of memory pat-
terns: so far we have used randomly correlated representation of memories and further
assumed a simple one-to-one correspondence between memories of frontal and posterior
subnetworks. This part can be improved by using correlated memory patterns, reflecting
semantic knowledge in the cortex, as studied in Ref. [51] and by non-trivial mapping be-
tween memories of the two subnetworks, see Fig. 7.1. Further progress will be made with

Figure 7.1: Schematic illustration of a nontrivial mapping between frontal patterns and
posterior patterns. The figure is adapted from Ref. [26, 51]. Frontal patterns (rows of
squares in the upper layer) are connected to several posterior patterns (rows of circles in
the lower layer), and vice versa. This relationship is self-organised in the learning process,
with temporal schemata stored in the frontal network.

hippocampus entering the fray: one may consider a tripartite system: frontal and poste-
rior subnetworks (modelled by Potts networks), and the hippocampal network modelled
by threshold-linear units. At that stage, our modelling results may be compared with
empirical data in a more transparent way than it is now in Chapter 6. There is also room
for improving the way we model a brain lesion.

The Potts model has a potential to elucidate language evolution, as is pointed out at
the end of Chapter 3 (see also [18]). A not-so-recent preprint discusses a spin glass model
of syntactic parameters [212]. Unlike what its title implies, they simulated a ferromagnetic
model (with no frustration), which may not be adequate for the problem at hand.

Dramatic and progressive loss of memory function (declarative memory in particular)
is one characteristic of Alzheimer’s disease. Its physiological and anatomical hallmark
can be said to be the massive loss of neurons in medial temporal lobe (MTL) and pre-
frontal cortex (PFC), together with a malfunctioning of ACh (Acetylcholine) system [213].
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Acetylcholine is known to suppress transmission along the recurrent collateral connections
while enhancing their plasticity, and thus to facilitate learning a new representation while
suppressing interference from older memories [214, 215]. Though the ultimate culprit of
Alzheimer’s disease may be rooted at the histological, biochemical or even genetic level,
the aforementioned three components (MTL, PFC, ACh) may bear some relation to our
attempts with the Potts model. Computational modelling of the interplay between PFC
and hippocampus (or MTL in general) may, one day, provide a better approach for the
early detection of the onset of the disease.

96



Appendix A

Potts glass model with a quiet state

Here we report a detailed derivation of the free energy of Potts glass model, Eq. (3.2), by
using the replica method. For the sake of simplicity, we set the normalisation constant as
unity, λ = 1. Results reported in the main text (the normalisation is given by Eq. (3.3))
can be easily restored by replacing J by λ2J . Potts spin operators have the following
properties. ∑

k>0

V k
i = 0,

∑
k>0

(V k
i )

2 =
S − 1

S
(1− δσi0),

S∑
σi=0

(δσik − 1/S)(1− δσi0) = 0.

(A.1)

f = lim
n→0

fn,

fn =
1

n
lim
N→∞

−1
Nβ

log
〈〈
Zn
〉〉

{Jkl
ij }
,

Hα = −1

2

∑
i ̸=j

∑
k,l>0

Jklij V
k
iαV

l
jα + U

∑
i

(1− δσα
i 0
),

〈〈
Zn
〉〉

=
〈〈

Tr{σα
i } exp

[
− β

n∑
α=1

Hα
]〉〉

,

≈ Tr−→σ exp
[
− βU

∑
ik>0

(1− δσα
i 0
) +

β2J2

4N

∑
αβ

(∑
ik>0

V k
iαV

k
iβ

)2]
,

(A.2)

where V k
iα ≡ (δσα

i k
−1/S)(1−δσα

i 0
) and the order parameter has been introduced via Dirac

delta function,

qαβ =
1

N

N∑
i=1

S∑
k=1

V k
iαV

k
iβ =

1

N

N∑
i=1

(δσα
i σ

β
i
− 1/S)(1− δσα

i 0
)(1− δσβ

i 0
). (A.3)

fn[Q] =
1

n

[
U

S

S − 1

∑
α

qαα −
βJ2

4

∑
αβ

q2αβ −
∑
αβ

irαβqαβ −
1

β
lnTrσα exp(βK)

]
,

K = −
∑
αβ

irαβ
∑
k>0

V k
α V

k
β .

(A.4)
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Saddle-point equations are

irαβ = U
S

S − 1
δαβ −

βJ2

2
qαβ,

qαβ =
∑
k>0

Tr[V k
α V

k
β exp(βK)]

Tr exp(βK)
.

(A.5)

A.1 Replica symmetric (RS) solution and its stability

QRS = (q̃ − q)I+ qene
T
n ,

iRRS = (r̃ − r)I+ rene
T
n ,

(A.6)

r̃ = U
S

S − 1
− βJ2

2
q̃,

r = −βJ
2

2
q.

(A.7)

Replica-symmetric free energy is

fRS[q̃, q, r̃, r] = U
S

S − 1
q̃ − βJ2

4
(q̃2 − q2) + rq − r̃q̃−

− 1

β

∫
D−→z ln

{
1 +

∑
σ>0

exp[−βHσ(
−→z )]

}
,

Hσ(
−→z ) = (r̃ − r)

∑
k>0

(δσk − 1/S)2 −
√
−2r
β

∑
k>0

(δσk − 1/S)zk,

−→z = z1, z2, . . . , zS.

(A.8)

Saddle-point equations are

q̃ =
S − 1

S

∫
D−→z

∑
σ>0 exp[−βHσ(

−→z )]
1 +

∑
σ>0 exp[−βHσ(

−→z )]
,

q =
∑
k>0

∫
D−→z

[∑
σ>0(δσk − 1/S) exp[−βHσ(

−→z )]
1 +

∑
σ>0 exp[−βHσ(

−→z )]

]2
,

(A.9)

where
∑

k>0(δσk − 1/S)2 = S−1
S

for σ > 0 is used.

q̃ − q =
√

1

−2rβ

∫
D−→z

∑
σ>0,k>0

(δσk − 1/S)zk exp[−βHσ(
−→z )]

1 +
∑
σ>0

exp[−βHσ(
−→z )]

. (A.10)

We now study the stability of RS solutions by considering fluctuations of order pa-
rameters around their RS values (the so-called replicon mode, see [12] for SK model and
[23, 216] for the Hopfield model).

Q→ QRS + η,

iR→ iRRS + η̃,
(A.11)

where fluctuations satisfy

ηγδ = ηγδ,

ηγγ = 0,∑
δ

ηγδ = 0.
(A.12)
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From Eq. (A.7), one can see that

η̃ = − β

J2
η.

We expand free energy up to the second order around QRS and require

∆f ≡ f(Q, iR)− f(QRS, iRRS) ≥ 0. (A.13)

The result is
1 ≥ (βJ)2(G2 −G3 +G4), (A.14)

where
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∑

k>0,l>0

∫
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[∑
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∑
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−→z )]

]2
,

G3 =
∑
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∑
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−→z )]
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∑
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−→z )]

×
∑
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−→z )]

1 +
∑
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−→z )]

×
∑
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−→z )]

1 +
∑

σ>0 exp[−βHσ(
−→z )]

,

G4 =

∫
D−→z

{∑
k>0

[∑
σ>0(δσk − 1/S) exp[−βHσ(

−→z )]
]2}2

{1 +
∑

σ>0 exp[−βHσ(
−→z )]}4

.

(A.15)

Eq. (A.14) is numerically solved together with Eq. (A.9) to see the stability of RS solutions.
It turns out that replica-symmetric solution is unstable in the entire region of Potts glass
phase (see below).

A.2 Landau expansion of free energy

If we remove the algebraic order parameter irαβ in Eq. (A.2) with its saddle-point value,

βnfn[Q] =
(βJ)2

2

∑
α<β

q2αβ + (βJ)2
∑
α

m2
α − lnTrσα exp

[
(βJ)2

∑
α<β

qαβ
∑
k>0

V k
α V

k
β

+ (βJ)2
S − 1

S

∑
α

mα(1− δσα0)− βU
∑
α

(1− δσα0)
]
,

(A.16)

where we have separated diagonal elements of Q, mα = qαα, as they behave differently
from non-diagonal elements in the high temperature region and in the vicinity of the
phase transition. Alternatively, one can obtain the same expression of free energy by
using Hubbard-Stratonovich transformation (rather than using the Fourier representation
of Dirac delta function) in introducing the order parameters qαβ. Saddle-point equations
are

qαβ =
∑
k>0

Tr[V k
α V

k
β exp(βK)]

Tr exp(βK)
,

mα =
∑
k>0

Tr[(V k
α )

2 exp(βK)]

Tr exp(βK)
=
S − 1

2S
⟨1− δσα0⟩K ,

K ≡ βJ2
∑
α<β

qαβ
∑
k>0

V k
α V

k
β + βJ2S − 1

S

∑
α

mα(1− δσα0)− U
∑
α

(1− δσα0).

(A.17)

99



One can easily see that the order parameter qαβ goes to zero in the limit of high tem-
perature (paramagnetic phase). We may assume that the transition from paramagnetic
phase to Pott-glass phase is of a second order and thus expand the free energy, Eq. (A.16),
around qαβ = 0 near Tc. The matrix Q is symmetric and has zeros on the diagonal. At
Q = 0, the order parameter mα does not depend on its replica index α and is given by

m =
S − 1

2S

S exp
[
(βJ)2mS−1

S
− βU

]
1 + S exp

[
(βJ)2mS−1

S
− βU

] ≡ S − 1

2
ψ, (A.18)

where we introduced a variable ψ to reduce the burden of heavy notations in further
derivations.

The expansion of Eq. (A.16) around Q = 0 gives us, ignoring irrelevant constants,

βnfn ≈ (βJ)2
∑
α

m2
α +

(βJ)2

4
[1− (S − 1)(βJ)2ψ2]

∑
αβ

q2αβ

− (βJ)6

12
(S − 1)

[
2ψ3Tr(Q)3 +

S − 2

S
ψ2
∑
αβ

q3αβ

]
.

(A.19)

In the replica-symmetric approximation, qαβ = q (α ̸= β), the saddle-point equation gives
us

q
{(βJ)2

2

[
1− (S − 1)ψ2(βJ)2

]
+

(βJ)6

4

S − 1

S

[
4Sψ3 − (S − 2)ψ2

]
q2
}
= 0. (A.20)

In addition to the trivial solution of q = 0, we have also a non-trivial solution (Potts
glass),

q2 =
2S

(βJ)4ψ2(S − 1)

(βJ)2ψ2(S − 1)− 1

4Sψ − (S − 2)
, (A.21)

if the right-hand side of the above equation is positive. In order to be self-consistent with
our initial assumption of a continuous phase transition, this non-trivial solutions should
exist in the low-temperature region (where βJ is large). Given that ψ ∈ [0, 1/S], the
numerator of Eq. (A.21) can stay positive. The denominator, on the other hand, has the
maximum value of 6 − S. Thus, we conclude that the denominator is always negative
if S ≥ 6. This means that the phase transition from paramagnetic phase to Potts glass
phase is not a continuous one, thus cannot be treated by expanding free energy.

We can now show that replica-symmetric solutions are unstable by expanding Eq. (A.14)
near q = 0. It is straightforward to see that G2 → (S− 1)ψ2, G3 → 0 and G4 → 0. Thus,
the stability condition, Eq. (A.14) reduces down to the requirement for the numerator of
Eq. (A.21) to be negative. So, RS solutions are unstable in the entire region of Potts glass
phase, as long as the phase transition is a continuous one.

A.3 Replica symmetry breaking (RSB)

We first review Parisi’s hierarchical scheme of RSB and then detail derivations for the
Potts glass model.

A.3.1 Parisi RSB algebra

We summarize some results of Parisi RSB algebra, following [15]. The linear space of
the Parisi matrices, completed with Identity matrix (Iab = δab), is closed w.r.t the matrix
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product and the Hadamard product (Q ·P )ab = QabPab; by means of this operations, it is
possible to build polynomials that are invariant by permutations of replica indices.

A generic Parisi matrix, Q, in the continuum limit of k →∞ and for an arbitrary value
of the parameter n < 1, is parameterised by its diagonal element q̃ and the off-diagonal
function q(x) (n ≤ x ≤ 1). We always bear in mind that n→ 0.

Q→ (q̃, q(x)),

TrQ = nq̃,
n∑
a,b

Ql
ab = nq̃l − n

∫ 1

n

ql(x)dx.

(A.22)

A ·B → (ãb̃, a(x)b(x)),

AB → (ãb̃− ⟨ab⟩, c(x)),
c(x) = −na(x)b(x) + [ã− ⟨a⟩]b(x) + [b̃− ⟨b⟩]a(x)

−
∫ x

n

[a(x)− a(y)][b(x)− b(y)]dy,

⟨a⟩ =
∫ 1

n

a(x)dx.

(A.23)

Eigenvalues of a Parisi matrix Q reads,

λ0 = q̃ − ⟨q⟩, multiplicity 1, (A.24)

λ(x) = q̃ − xq(x)−
∫ 1

x

q(y)dy multiplicity − n

x2
dx, (A.25)

from which we can compute

TrQl =
∑
i

λli = λl0 +

∫ 1

n

λl(x)
−n
x2
dx. (A.26)

Some useful formulae, for q̃ = 0, are here:

TrQ3 = n

∫ 1

n

xq3(x)dx+ 3n

∫ 1

n

q(x)

∫ x

n

q2(x)dx,

TrQ4 = −n
∫ 1

n

x2q4(x)dx− 12n

∫ 1

n

q(x)dx

∫ x

n

dyq(y)

∫ y

n

dzq2(z)

− 4n

∫ 1

n

dxq(x)

∫ x

n

dyyq3(y),∑
abc

Q2
abQ

2
bc = 2n

∫ 1

n

q2(x)

∫ x

n

q2(y)dydx,

∑
abc

qabq
2
bcqca = 2⟨q⟩⟨q3⟩+

∫ 1

0

dxq2(x)

∫ x

0

dy[q(x)− q(y)]2.

(A.27)
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A.3.2 Expanded free energy of Potts glass model

Retaining only the most dangerous quartic term [13], the expanded free energy of the
Potts glass model in the infinite-step of RSB reads

−βf ≈
∫ 1

0

dx
[A
2
q2(x)− B

3
q3(x)− D

12
q4(x)

]
+
C

3

∫ 1

0

dx
[
xq3(x) + 3q(x)

∫ x

0

q2(y)dy
]
,

(A.28)

where

A =
(βJ)2

2
[1− (S − 1)(βJ)2ψ2],

B =
(βJ)6

4

(S − 1)(S − 2)

S
ψ2,

C =
(βJ)6

2
(S − 1)ψ3,

D = (βJ)8
[3(S − 1)(3S − 1)

4
ψ4 − 3

(S − 1)2

S
ψ3 +

(S − 1)(S2 − 3S + 3)

4S2
ψ2
]
.

(A.29)

The saddle-point equation and its repetitive derivative with respect to x read,

0 =
δ(−βf)
δq(x)

,

0 =
d

dx

[δ(−βf)
δq(x)

]
,

0 =
d

dx

{ 1

f ′(x)

d

dx

[δ(−βf)
δq(x)

]}
,

(A.30)

where we have excluded the trivial solution of q′(x) = 0, which is the RS solution. A
straightforward calculation gives

0 = Aq(x)−Bq2(x) + Cxq2(x) + C

∫ x

0

q2(y)dy + 2Cq(x)

∫ 1

x

q(y)dy −Dq3(x)/3,

0 = A+ 2q(x)(Cx−B) + 2C

∫ 1

x

q(y)dy −Dq2(x),

0 = Cx−B −Dq(x).
(A.31)

We solve the above equations with the assumption that q(x) is small and continuous.

A.4 Numerical solution of 1RSB equations

In the case of ES model, there are two types of solutions just below the critical tempera-
ture: one of a full-RSB type and one of an 1RSB. The latter becomes unstable at a lower
temperature [33]. The local stability of 1RSB solution is a key characteristic of a Potts
model with S > 2, since this solution is unstable at all temperatures below Tc for S = 2
(SK model). In [33], expansion near S ≈ 4+ ϵ is used to study the nature of the RSB (see
also [34]). It turns out that 1RSB solution is also stable for S > 4, though the transition
is a discontinuous one. Based on this understanding, 1RSB free energy is maximised to

102



compute order parameters for the ES model in [83]. They used an ad-hoc numerical trick
that can be applied for large values of S, but is valid only for a specific shape of P (q),
Eq. (3.20):

P (q) = mδ(0) + (1−m)δ(q).

We assume that above descriptions about ES model are also valid for our Potts glass
model of tensor connections. More specifically, we seek a solution having the shape of
Eq. (3.20). Then, the trick is to evaluate the last term of Eq. (3.21) numerically, which
requires performing S−dimensional integrals. As is done in [83], we have∫

D−→y
[ S∑
l=1

exp(βJλ2
√
qyl)

]m
=
S exp(β2J2λ4q/2)

Γ(1−m)
×

×
∫ +∞

0

dxx−mwS−1(x)w[x exp(β2J2λ4q)],

w(x) ≡
∫
Dy exp

[
− x exp

[
βJλ2

√
qy
]]
.

(A.32)

Thus, we have reduced the S−dimensional integral into a 2-dimensional one. The above
formula is derived by using the following identity (see Ref. [83]).

Am−1 =
1

Γ(1−m)

∫ ∞

0

dxx−me−Ax, (A.33)

where Γ(x) if the Gamma function.
Sometimes we need to directly minimise the free energy, Eq. (3.21), after expansion

near m = 1 to study the dynamical transition, as is pointed out in Ref. [83]. Then the
following formula can reduce the numerical burden.

ln(1 + A) =

∫ ∞

0

dx

x
e−x(1− e−Ax). (A.34)
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Appendix B

The hybrid Potts model without a
zero state

We derive mean-field free energy of the hybrid Potts model, Eq. (3.22), by using the
standard replica method. For simplicity, we set λi = 1. Ignoring some irrelevant constants,
we get

⟨⟨Zn⟩⟩ ≈ Trexp
[(βJ)2

2N

∑
a<b

(∑
i

(δσa
i σ

b
i
− 1/Si)

)2] ≈
≈
∫ ∏

a<b

dqabexp
[
− N(βJ)2

2

∑
a<b

q2ab + lnTrexp
(
β2J2

∑
a<b

qab
∑
i

(δσa
i σ

b
i
− 1/Si)

)] (B.1)

If we now approximate integrals in the above equations by saddle-point values, we obtain

qab =
1

N

N∑
i=1

⟨δσa
i σ

b
i
− 1/Si)⟩. (B.2)

Now we write

lnTrexp
(
β2J2

∑
a<b

qab

N∑
i=1

(δσa
i σ

b
i
− 1/Si)

)
= ln

N∏
i=1

[ Si∑
σ1
i =1

· · ·
Si∑

σn
i =1

exp(β2J2
∑
a<b

qab(δσa
i σ

b
i
− 1/Si)

]

=
N∑
i=1

ln
[ Si∑
σ1=1

· · ·
Si∑

σn=1

exp(β2J2
∑
a<b

qab(δσaσb − 1/Si)
]

= N
L∑
l=1

ηl lnχl.

(B.3)

Thus we get

βnfn ≈
(βJ)2

2

∑
a<b

q2ab −
L∑
l=1

ηl lnχl, (B.4)

where

χl =

Sl∑
σ1=1

· · ·
Sl∑

σn=1

exp(β2J2
∑
a<b

qab(δσaσb − 1/Sl). (B.5)
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We now expand the free energy, Eq. (B.4), around Q = 0.

lnχl ≈
Sl − 1

4S2
l

(βJ)4
∑
αβ

q2αβ + (βJ)6
Sl − 1

6S3
l

Tr(Q)3+

+ (βJ)6
(Sl − 1)(Sl − 2)

12S3
l

∑
αβ

q3αβ + (βJ)8
(Sl − 1)(S2

l − 6Sl + 12)

48S4
l

∑
αβ

q4αβ.

(B.6)

After doing the Parisi algebra, we get

−βf ≈
∫ 1

0

dx
[A
2
q2(x)− B

3
q3(x)− D

12
q4(x)

]
+
C

3

∫ 1

0

dx
[
xq3(x) + 3q(x)

∫ x

0

q2(y)dy
]
,

(B.7)

where

A =
(βJ)2

2

[
1− (βJ)2

L∑
l=1

ηl
Sl − 1

S2
l

]
,

B =
(βJ)6

4

L∑
l=1

ηl
(Sl − 1)(Sl − 2)

S3
l

,

C =
(βJ)6

2

L∑
l=1

ηl
Sl − 1

S3
l

,

D =
(βJ)8

4

L∑
l=1

ηl
(Sl − 1)(S2

l − 6Sl + 12)

S4
l

.

(B.8)

The critical temperature of phase transition is determined by

(βJ)2crit =
1∑L

l=1 ηl
Sl−1
S2
l

, (B.9)

and the transition is continuous in the order-parameter if:

L∑
l=1

ηl
(Sl − 1)(Sl − 4)

S3
l

< 0. (B.10)

105



Appendix C

Thermodynamics for the associative
memory network

The free energy is obtained by the replica trick (see [23] for the Hopfield model and [56, 57]
for the Potts model).

C.1 Landau expansion at high temperature

At high enough values of T and α, in fact, we expect retrieval solutions not to exist. So,
we set mγ = 0 and the terms including ξ and mγ drop out of the equations. We can easily
see that qγδ and rγδ are zero in the high temperature limit, if γ ̸= δ. We expand the free
energy with respect to these two variables around zero,

nβf ≈ nα

2
ln(1− βãq̃) + β

∑
(γδ)

rγδqγδ + nβq̃
(αã
2

+
SU

S − 1
+ r̃
)

− αΛ2

2

(1
2

∑
(γδ)

q2γδ +
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∑
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∑
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(C.1)

where

Λ ≡ Λ(T ) =
βã

1− βãq̃
=

ã

T − ãq̃
.

For the sake of simplicity, let us consider a RS ansatz. Then, the free energy reads,
up the third order in q and r,

βfRS ≈
α

2
ln(1− βãq̃)− βrq + βq̃

(αã
2

+
SU

S − 1
+ r̃
)

+
αΛ2

4
q2
[
1− 4

3
Λq
]
+ (S − 1)β2ψ2r2

[
1− 8

3
βψr +

2(S − 2)

3S
βr
]
.

(C.2)

In Fig. C.1, we show an approximate phase diagram obtained by replica-symmetric mean-
field theory.
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Figure C.1: Critical temperature above which retrieval solution doesn’t exist is plotted
against memory load (blue data, obtained by replica-symmetric mean-field theory). The
black curve shows temperature for glassy transitions. Parameters are S = 2, a = 0.1 and
U = 0.5.

C.2 Finite number of patterns

When the tensorial weights encode only a finite number p of patterns, that is, α = p/N →
0 asN → +∞, we hypothesize that solutions corresponding to the retrieval of one pattern,
the so-called Mattis states, arise when lowering T at the critical value Tc which is the limit
for α→ 0 of the Tc(U, α) considered above. This is in fact the case for the Hopfield model
[23] – but not necessarily for other network models, see [36].

As α→ 0, the q-terms disappear from the free energy, Eq. (3.31), and one can study
Mattis solutions of Eqs. (3.33), which satisfy

m = a

∑
σ>0(δσ1 − 1/S) exp[βm(δσ1 − 1/S)− βU ]
1 +

∑
σ>0 exp[βm(δσ1 − 1/S)− βU ]

. (C.3)

The critical temperature Tc(U, 0) where m→ 0, for a given value of U , is determined by
solving

Tc = ã(S − 1)
exp(−U/Tc)

1 + S exp(−U/Tc)
. (C.4)

The trivial solution of Eqs. (3.33), −→m = 0, is stable as long as the corresponding eigenvalue

λ = 1− ã(S − 1)

T

exp(−U/T )
1 + S exp(−U/T )

(C.5)

remains positive. This is always the case for T > Tc(U, 0). We can thus compute the
maximum value of U , below which Mattis states arise.

We can see that if U → +∞, Tc → 0 and the trivial solution −→m = 0 is stable for all
temperature. In Fig. 3.5a, we show values of Uc and the critical temperature at U = Uc.
Fig. 3.5b shows that Tc(U, 0) is indeed very close to the limit of Tc(U, α→ 0).
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C.3 Details on the computer simulations

For models with a quiet state, the Edward-Anderson order parameter is computed as,
instead of Eq. (3.41),

qγδ =
S

S − 1

∑N
i=1(δσγ

i σ
δ
i
− 1/S)(1− δσγ

i 0
)(1− δσδ

i 0
)∑N

i=1(1− δσγ
i 0
)(1− δσδ

i 0
)

. (C.6)

The mean activity of the network is controlled by time-dependent threshold

U(t) = U0 + k
[ 1
N

∑
i

(1− δσi0)− a
]3
, (C.7)

where a is the sparsity of patterns in associative memory model and k is set as 1000. For
the Potts glass model with a quiet state, we have used the same activity level a.

The external input to the posterior sub-network is modelled by persistent external
fields applied (after thermalization) to a fraction η of its units, which will maintain its
states during dynamics (clamping in the main text). Specifically, we randomly select a
fraction η of all active units in the S = 3 sub-network. Among the selected units, a
fraction a of them is flipped into a different active state, while the remaining fraction
1 − a of them is set into a quiet state. The same number of units among quiet units is
activated to maintain the same level of activity.

If not specified explicitly, parameters are set as in Table C.1.

Table C.1: Parameters of the network

Symbol Meaning Default value

N number of Potts units 256
S number of states per unit 7 (3)
T temperature (noise level) 0.5
γ degree of asymmetry 0.2
η fraction of units with external inputs 0.5
p number of memory patterns 1024
t0 number of thermalization updates 1000
a mean activity 0.25

108



Appendix D

Supplementary information for
Chapter 4

D.1 Making memory representations

We construct representations of compositional memories in two steps. In the first step, we
assign Z items to each memory. This is done either by sampling items evenly, so that on
average they all occur with the same frequency, or unevenly, as described in the text, for
example with the quasi-scale-free procedure discussed below, and represented in Fig. 4.3a.
In the second step, we write a representation of each memory by merging representations
of its Z items. The only issue in doing so is that there are some units that are shared by
more than one item. This would lead to representations with sparsity (fraction of active
units) less than a. In order to constrain all memories to have the same sparsity a, we
compute the ”fields” hki of all units, by assuming that the Z items of a particular memory
are activated. Then we select the Na units (and their states) which receive the largest
field, to define them as the representation of this particular memory.

D.2 Scale-free item frequency

Scale-free distributions have been invoked as a simple description of many natural phe-
nomena, and there is considerable controversy as to the ideas that have been put forward
[217, 218]. There has been also considerable work on the scale-invariant distribution of
objects of different sizes in natural scenes, which is closer to being relevant for the com-
positionality of memory for scenes [219]. Here our intent is merely practical, however: to
generate a simple distribution of frequencies, which does not involve an extra arbitrary
parameter. The distribution described in the text is approximately scale free, because
no such parameter is introduced explicitly, although implicitly the number B of bins
sets the upper and lower ends of the frequency range with which items are assigned to
memories: from about pZ/B to pZ/B2 times. Within this range, each“frequency scal” is
approximately represented evenly.

D.3 Monte Carlo simulation with heat bath algo-

rithm

We have used a discrete Potts model without adaptation in getting results presented in
this chapter. As in Chapter 3, we update the Potts network asynchronously, by randomly
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picking up one unit at a time to update with zero temperature. Updating all the units
once is defined as a unit of effective time in simulations.

When not varied systematically, parameters of the Potts model are set as in Table
D.1.

Table D.1: Parameters of the network

Symbol Meaning Default value

N number of Potts units 1000
S number of states per unit 7
p number of memory patterns 200
a sparsity of patterns 0.2
Z number of items per memory 5
K number of items in total 200
B number of bins 20
f fraction of units for cuing 0.5
γ strength of hippocampal input 0.1
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Appendix E

Supplementary information for
Chapter 5

E.1 Model explanation and definition of quantitative

measures

The Potts network as a model for short-term recall

The Potts network has been studied so far as a model of long-term memory; but it
can also serve, with minimal modifications, short-term or working memory. It suffices to
strengthen a few memory items, or sequences of items, by increasing the value of some pre-
existing parameter, to effectively bring the network across a phase transition, as indicated
in Fig 5.1. Evidence and arguments supporting the model of short-term memory as an
activated portion of long-term memory can be found in [130].

The types of modifications we consider, in this study, all implement the assumption
that, when a subject is performing a task of immediate recall, the attractors corresponding
to the presented items have been facilitated at the encoding stage. We can visualize them
as becoming wider and deeper in their basins. At the recall phase, then, we interpret
that an item has been recalled by the Potts network if its activity becomes, at least for a
brief time, most correlated with the corresponding attractor, among all LTM items. The
facilitation of attractors for STM items can be done by changing distinct parameters of
the network. We propose in Section 5.3 three different models for short-term memory
function.

The Potts model for serial recall

We use Model 2 to approximately constrain the dynamics to a subset of L0 patterns, for
example the 6 digits of our experiment. We have p = 200 patterns in long-term memory,
among which we give a ∆θ boost to L0 = 6 patterns, indicated as 1, 2,..., 5, 6. In addition
to the autoassociative connections between Potts units given by Eq. (2.8), we introduce
heteroassociative connections to mimic the sequential order of the items presented in
the experiment; we randomly pick L items among the 6 items (1, 2, 3, 4, 5, 6), allowing
repetitions. When L = 6, for example, it can be 2 → 4 → 3 → 2 → 5 → 1. But we do
not include sequences that have a subsequence like AA or ABA because the Potts model
cannot really express such sequences (they occasionally appear in the dynamics, but only
when the transition from A to B is incomplete or anomalous). We call sequences without
any subsequence of the form ABA and AA Potts-compatible. In this way we prepare a
set of 80 Potts-compatible sequences for a given value of L, with L = 3, 4, ..., 10. If we
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denote a sequence of this set as I1, I2, ..., IL, then the model for serial recall is determined
by the following equations

τ2
dθki (t)

dt
= σki (t)− θki (t)−∆θΘ

(
L0∑
µ=1

δξµi ,k

)
(E.1)

Jkl,hetij = λΘ

(
L−1∑
µ=1

δ
ξ
Iµ+1
i ,k

δ
ξ
Iµ
j ,l

)
(E.2)

hki =
N∑
j ̸=i

S∑
l=1

(Jklij σ
l
j + Jkl,hetij θlj) + w

(
σki −

1

S

S∑
l=1

σli

)
(E.3)

Definition of quantitative measures

In order to measure the memory capacity in this serial recall task, we first plot the
proportion of correct trials as a function of L either for each participant in Fig. 5.6b or
for the pooled data across all participants in Fig. 5.7a. Although the minimum value L
we used was 3, we added two “data points” by hand to the proportion-P (L), setting it to
1 (i.e., a putative 100% for L = 1 and L = 2). We then compute the memory capacity as
the simple sum,

C =
Lmax∑
L=1

P (L),

where Lmax is the maximum value of L used in the experiment. This measure is usually
referred to as Area Under the Curve or AUC [220].

The quality of latching is evaluated by means of d12−Q. d12 is the difference between
the largest overlap and the next largest one, averaged over time and over so called quenched
variables [61], while

Q =
1

T

∫ t0+T

t0

q(t)dt, (E.4)

is the average overlap with the next L patterns, since q(t) ≡ 1
L−1

∑L−1
i=1 m

µi . mµi is the
overlap of the network activity with a pattern µi and µ1, ..., µL−1 are the L− 1 patterns
having largest overlaps excluding the maximum overlap. This quantity is a kind of measure
on how “condensed”, i.e., partially recalled, the non-recalled patterns are.

The correlation between patterns is measured by two quantities [60, 26],

Cas(µ, ν) =
1

Na

N∑
i=1

(1− δξµi ,0)δξµi ,ξνi , (E.5)

which measures the fraction of co-active units in the same state for both patterns µ and
ν, and

Cad(µ, ν) =
1

Na

N∑
i=1

(1− δξµi ,0)(1− δξνi ,0)(1− δξµi ,ξνi ), (E.6)

which measures the fraction of units that are co-active but in a different state. The
average values of Cas and Cad over different realizations of randomly-correlated patterns
are given by

⟨Cas⟩ = a/S, (E.7)

⟨Cad⟩ = a(S − 1)/S. (E.8)
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For Fig. 5.3, the degree of symmetry for a square matrix A is computed as

s =
|Asym| − |Aanti|
|Asym|+ |Aanti|

,

where | · | is the Frobenius1 norm of a matrix and

Asym = (A+ AT )/2,

Aanti = (A− AT )/2.
Then the degree of symmetry satisfies −1 ≤ s ≤ +1, with the lower bound saturated for
an antisymmetric matrix and with the upper bound for a symmetric matrix.

E.2 Details on computer simulations

In a simulation the network is first initialized by setting all variables at their equilibrium
values. Then we cue the network with one of the memorized patterns, remove the cue
and let the dynamics proceed. Simulations are terminated if the network shuts down into
a globally stable null attractor (in which all units are inactive) or if the total number of
updates reaches 105.

The network parameters used in this study are set as in Table E.1, if not specified
explicitly.

Table E.1: Parameters of the network
Symbol Meaning Default value

N number of Potts units 1000
S number of states per unit 7
p number of stored LTM patterns 200
a sparsity of patterns 0.25
cm number of presynaptic units per unit 150
U threshold common to all units 0.1
β effective inverse temperature 11
τ1 timescale for “fields” (rki ) 10
τ2 timescale for adaptive thresholds (θki ) 200
τA timescale for fast inhibition (θAi ) 5
τB timescale for slow inhibition (θBi ) 100000
γA proportion of fast inhibition 0.5
w self-reinforcement parameter 0.8
L number of patterns in STM 16
∆θ the amount of decrease in adaptive threshold 0.3

λ
strength of heteroassociative connections
relative to autoassociative ones

0.1

E.3 Experiments of free recall and serial recall

This section is added for the convenience of interested readers, though it is not my own
work. One can consult our publication [112] for the information about authors’ credits.

Both experiments were conducted online, by Oleksandra with participants recruited
through https://www.prolific.co/.

1Any other norm would work as well.
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Serial recall

The 36 participants were instructed to watch a sequence appear on the computer screen
and repeat the sequence just after, by clicking on the screen. They had to repeat sequences
of L stimuli (L starting from 3). In each of the conditions, they had 5 trials for each length
L, with L incremented by one until 3 out of 5 trials were incorrect; the last L is then
taken as the limit capacity for this participant in this condition. For each participant the
sequences were of all three stimulus variants: - (D) Digits out of {1, 2, 3, 4, 5, 6} on a black
screen, presented one at a time - (L) Locations on a hexagonal grid highlighted one by
one, out of 6 around the central (blue) dot - (T) Trajectories on the same hexagonal grid:
now each consecutively highlighted dot is one of 6 neighbors of the previous one (as shown
in Fig. 5.4a, the first one is always one of the six around the center). Each stimulus was
presented for one of the three duration values (in separate blocks): 400ms, 200ms, 100 ms.
First always came the 400 ms training session, then either 200 ms or 100 ms (balanced),
and then the remaining duration. Presentation order was balanced across duration and
stimulus material. In additional experiments, landmarks on the grid were used as well as
intermediate presentation times, but no significant effect on the recall performance was
observed.

Free recall

The same hexagonal grid as in serial recall is used (Fig. 5.4a). In this experiment, the sets
of stimuli were presented all at once, and the participants (N = 40) were instructed to
repeat as many as they could recall, by clicking on the dots in the grid. For each set size
L in {4, 6, 8, 12, 16, 24, 32}, the participants had 5 trials to do, each trial allowing for 2L -
(number of correctly recalled items) clicks. For example, if participants correctly clicked
3 correct dots out of 4 times in a trial with L = 4, they had another chance, to reach the
fourth correct dot, as 2L− 3 = 5. A set of size L was presented for logL2 seconds.

E.4 Deriving scaling law of free recall

Here we give a detailed explanation of Fig. 5.3, together with SAM++ model.

E.4.1 SAM++ model and power-law dependence in free recall

As already mentioned in Section 5.4 about free recall experiments, participants are given a
list of items to remember, and are then immediately asked to recall the items, in the order
they wish. Experimental data from decades ago show that the number of items recalled
from memory obeys a power law of the list length [131, 138]. To explain this finding and
more generally to investigate the putative mechanisms that could hinder recall, SAM++
model is proposed by Tsodyks and colleagues [139, 134], with some roots in the SAM
theory of Raaijmakers and Shiffrin [140].

In the SAM++ model, transitions are defined to occur in a deterministic way between
L STM items that have the largest similarity; as a consequence, recall trajectories always
enter a loop, at which point old items are repeatedly recalled, and no new items are recalled
beyond the number R reached with those in the loop. Given such simple transition rules,
the power-law dependence R ∝

√
L can be derived.

In Fig. 5.3, we have shown that this kind of power-law dependence is not a unique
property of SAM++ model. All the lines shown in Fig. 5.3 have the slope of ≈ 0.5. Below
is the meaning of each line shown in Fig. 5.3.
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The quantity R, which is the number of visited STM items until the search process
enters a loop [139, 134], is well-defined only in the case of symmetric similarity matrix.
In other cases the quantity R is ill-defined; a closed loop is hardly ever observed in search
process, so we compute, instead, Mi1, which is the number of visited STM items until the
network revisits one of the already-visited items, as a surrogate for R. The blue curve with
squares is R(L) obtained from simulations with random symmetric similarity matrices
(1000 simulations). The blue curve with circles is R(L) obtained from simulations with
random non-symmetric similarity matrices (10000 simulations). In both cases elements
are drawn from a uniform distribution between 0 and 1. In the latter case, the degree
of symmetry is 0.5 on average. The green line with diamonds is R(L) obtained from
simulations of the Potts model without short-term boost in the intermediate inhibition
regime (γA = 0.5, w = 1.4). We randomly pick L out of p = 200 patterns and treat
them as if they were STM items. The solid black line is from the numerical evaluation of
Eq. (E.9) (see next subsection), which is derived from an equal-probability assumption.

E.4.2 Deriving scaling law under the assumption of equal visits

The quantity M can be estimated under the assumption of equal visits to each of the
patterns. Under such an assumption, the probability of going to a new item m times and
to one already visited at the (m+1)–th time step is given by 1(1− 1/(L− 1))...(1− (m−
1)/(L− 1))m/(L− 1) and this contributes to M = m+ 1. So taking a sum for m from 1
to L− 1 of this probability times m+ 1 gives

M ≡
L−1∑
m=0

m(m+ 1)

L− 1

m−1∏
k=0

(
1− k

L− 1

)
. (E.9)

One simple approximation of this expression for L large yields

M ≃
√

2(L− 1) γ

(
3

2
,
L− 1

2

)
− e−

L−1
2 + 1 , (E.10)

where γ is the lower incomplete Gamma function, which for L → ∞ grows as a square
root,

M ≃
√

(π/2)(L− 1) + 1. (E.11)

One way to approximate this expression for L large is to assume 1− k
L−1
≃ e−

l
L−1 , so

that the product of the exponentials becomes the exponential of the sum, and one has

M ≃
L−1∑
m=0

m(m+ 1)

L− 1
exp

(
−m(m− 1)

2(L− 1)

)
. (E.12)

To further approximate the above sum with an integral, let x = m√
L−1

, then we have

M ≃
∫ √

L−1

0

dx
(√

L− 1x2 + x
)
e
− 1

2

(
x2− x√

L−1

)
. (E.13)

Keeping only the first term in the exponent of the integral∫ √
L−1

0

dx
(√

L− 1x2
)
e−

x2

2 =
√
2(L− 1) γ

(
3

2
,
L− 1

2

)
, (E.14)

where

γ

(
3

2
,
L− 1

2

)
=

∫ L−1
2

0

t
3
2
−1 e−tdt (E.15)
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is the lower incomplete Gamma function, and∫ √
L−1

0

dx x e−
x2

2 = −e−
L−1
2 + 1. (E.16)

An alternative expression for M is in terms of the upper incomplete Gamma function,

M ≡
L−1∑
m=1

m(m+ 1)

L− 1

(L− 1)!

(L− 1−m)!(L− 1)m−1
=

eL−1

(L− 1)L−1
Γ(L,L− 1). (E.17)

To derive its asymptotic behaviour for large L, it is convenient to separate one term and
write

M = 1 +
L−1∑
l=1

(L− 1)!

(L− 1− l)!(L− 1)l
, (E.18)

and then use Stirling’s approximation for the factorial to evaluate the sum as half an
indefinite integral for −∞ < l < ∞, which can be evaluated at its saddle point near
l = 1/2, yielding again, to leading order, M ≃

√
(π/2)(L− 1) + 1.

E.5 Supplementary figures

(a) (b)

Figure E.1: ∆Mcorr is shown for various several values of ∆w from simulating Model
1. The abscissa is the number of items in STM, L, in a log scale. The ordinate is
∆Mcorr ≡ Mcorr(∆w) −Mcorr(0), where Mcorr is the number of recalled STM items until
the network either repeats an already-visited item or (mistakenly) retrieves one of the
LTM items. Left: w = 1.0, right: w = 1.1.
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(a) (b)

Figure E.2: ∆Mcorr is shown for various several values of ∆θ from simulating Model 2.
Details as in Fig. E.1.

(a) (b)

Figure E.3: ∆Mcorr is shown for various several values of ∆J from simulating Model 3a.
Details as in Fig. E.1.

(a) (b)

Figure E.4: ∆Mcorr is shown for various several values of ∆J from simulating Model 3b.
Details as in Fig. E.1.
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Figure E.5: Mi(L) is plotted for several values of ∆θ from simulating Model 2. Mi is the
number of recalled STM items until one of them is repeated twice. Its scaling behavior
with respect to L is fairly robust to the values of ∆θ.

(a) (b)

Figure E.6: Mi, Mcorr (left) and MR (right) remain qualitatively the same with respect
to changes in S and a, as long as latching dynamics are stably maintained under these
changes. Mcorr is the number of recalled STM items until the network either revisits one
of the already-recalled STM items or visits one of the LTM items, but within a given
number of latches – 2(L− h(t|L)), where h(t|L) is the number of correctly recalled STM
items up to that point in time. MR is the number of correctly retrieved STM items within
a given number of consecutive latches set as 2(L−h(t|L)), ignoring errors and repetitions.

118



(a) (b)

Figure E.7: In serial recall by the Potts model, too high values of λ, relative strength
of heteroassociative connections to the autoassociative ones, lead to faltering latching
dynamics. Two example sequences are shown, for the same parameter values: ω = 1.0,
γA = 0.5, ∆θ = 0.1, λ = 0.05. Each colour corresponds to a different pattern. The
proportion of simulation in which latching completely fails, as in the right panel, increases
with λ.

Figure E.8: Scatter plot with Cas and Cad on the two axes. Each data point (obtained from
Model 2 for L = 64) indicates, for enhanced clarity, an average over 3 pairs of patterns.
Crosses (open circles) represent correlations averaged over 3 most (least) frequent pairs,
whose relative positions are determined by z in a latching sequence. Horizontal and
vertical dashed lines indicate the average values of Cas and Cad over all patterns. At the
first step (z = 1), latching occurs most frequently between highly correlated patterns, in
agreement with previous studies on long-term memory. At the third step, the trend is
reversed.
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(a) (b)

(c)

Figure E.9: Patterns that are visited more frequently seem to be those that share a
larger number of active units with a larger set of patterns, reflected in the correlation
matrix. (a) Re-ordered transition matrix for p = 200 and L = 16 for one set of patterns,
ordered according to the visit frequencies of each pattern in that data set. The matrix
of transition probability has rows – where the network latches from, which in turn is just
the probability of appearance of each pattern – that look roughly similar to the average
row (with fluctuations), while the columns – where the network latches to – are very
different from each other, from the heavy ones on the left to the light ones on the right.
(b) Cas matrix, again ordered in the same way as in (a). The diagonal has been set to
0 artificially, in order for off-diagonal values to be more visible. (c) Mean correlation of
each pattern in STM with all the others in STM, yn, versus its visit frequency fn for
p = 200 and L = 16. Numbers indicate the pattern indices (16 of them).
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Figure E.10: Probability density of d(µn, µn+z) (see Eq. 5.14 and explanations thereof)
divided by the probability density of d(µ, ν) for all possible pairs among L patterns in
STM from simulating Model 2. From z = 1 to z = 6, we can see the quasi-periodic
evolution of the PDF. Parameters are w = 0.8, γA = 0.5, L = 16, ∆θ = 0.3.

Figure E.11: Mutual information is plotted up to z = 9 for confirming the peoriodicity
stated in Fig. 5.8.
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Appendix F

Supplementary information for
Chapter 6

F.1 Details of computer simulations

We have used an asynchronous updating, where one unit is updated at a time with a
random order. Updating all Potts units in the network once is our measuring unit of
simulation time: all timescales of the model are measured with this unit. We stop the
simulation after updating the entire network 10000 times (except for Fig. 6.5, see next
paragraph). Then, we cut out the first 3 patterns in the sequence to remove the effect of
initialization. Every stored memory is used as a cue with its full representation.

In order to compute the probability P µν
γ (z) in Eq. (6.5), we have run p × 1000 simu-

lations for each condition. For each memory pattern, we take 40% of its active units and
flip them into different states. We prepare 1000 corrupted versions of each memory by
repeating this procedure 1000 times. Each of these corrupted versions is used as a cue in
each simulation, which is terminated after 12 transitions.

Unless specified explicitly, parameters of the Potts model are set as in Table F.1.
Other parameters are set as τA = 10, τB = 105, τ1 = 20 and γA = 0.5 in Chapter 6.

Table F.1: Parameters of the network

Symbol Meaning Default value

N number of Potts units 256
cm number of presynaptic units 50
S number of states per unit 7
p number of memory patterns 50
a sparsity of patterns 0.25
λ relative coupling strength 0.5
U global threshold 0.1
τ2 adaptation timescale 200
w self-reinforcement term 1.1
β inverse “temperature” 11
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F.2 Everyday memory vs. laboratory memory

Once there was a hot debate between the supporters of two approaches of memory re-
search: everyday memory research (so-called naturalistic) vs. traditional laboratory meth-
ods [221]. Neisser claimed that laboratory findings on memory were trivial, pointless, or
obvious and fail to generate outside the laboratory [222]. He advocated a new approach,
concentrating on the detailed examination of naturally occurring memory phenomena in
the real world. According to Neisser [222], the following sentence remained true in 1878
and also in 1978 (the year when Neisser was writing the sentence),
If X is an interesting or socially significant aspect of memory, then psychologist have
hardly ever studied X.
Those who were criticised by Neisser reacted, in return, by calling “bankruptcy” of ev-
eryday memory research [223].

Each of the two approaches has pros and cons; the laboratory method is questionable
about its ecological value and generalisation, while the naturalistic approach lacks a proper
control. Two approaches should be combined to understand the memory function. Later
two approaches embraced each other [221].
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[116] Sinéad L Mullally and Eleanor A Maguire. A new role for the parahippocampal
cortex in representing space. Journal of Neuroscience, 31(20):7441–7449, 2011.
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