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Consider a BV function on a Riemannian manifold. What 
is its differential? And what about the Hessian of a convex 
function? These questions have clear answers in terms of 
(co)vector/matrix valued measures if the manifold is the 
Euclidean space. In more general curved contexts, the same 
objects can be perfectly understood via charts. However, 
charts are often unavailable in the less regular setting of metric 
geometry, where still the questions make sense.
In this paper we propose a way to deal with this sort 
of problems and, more generally, to give a meaning to 
a concept of ‘measure acting in duality with sections of 
a given bundle’, loosely speaking. Despite the generality, 
several classical results in measure theory like Riesz’s and 
Alexandrov’s theorems have a natural counterpart in this 
setting. Moreover, as we are going to discuss, the notions 
introduced here provide a unified framework for several key 
concepts in nonsmooth analysis that have been introduced 
more than two decades ago, such as: Ambrosio-Kirchheim’s 
metric currents, Cheeger’s Sobolev functions and Miranda’s 
BV functions.
Not surprisingly, the understanding of the structure of these 
objects improves with the regularity of the underlying space. 
We are particularly interested in the case of RCD spaces 
where, as we will argue, the regularity of several key measures 
of the type we study nicely matches the known regularity 
theory for vector fields, resulting in a very effective theory.
We expect that the notions developed here will help creating 
stronger links between differential calculus in Alexandrov 
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spaces (based on Perelman’s DC charts) and in RCD ones 
(based on intrinsic tensor calculus).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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0. Introduction

This paper is about further developing differential calculus in the nonsmooth setting 
of metric (measure) spaces. The starting point is the paper [26] of the second author, 
where the concept of Lp(m)-normed L∞(m)-module has been introduced as a means to 
interpret what m-a.e. defined tensor fields should be on a given metric measure space 
(X, d, m). A typical object that is well defined in such framework is that of differential df
of a Sobolev function f ∈ W1,p(X): shortly said, this is possible because such differential 
is, even in the smooth world, an a.e. defined 1-form.

Still, when taking distributional derivatives it might very well be that one ends up 
with objects more singular than these. Typical instances where this occurs are:

A) In dealing with the differential of a BV function.
B) In dealing with the Hessian of a convex function.
C) In dealing with the Ricci curvature tensor on RCD spaces: this is a sort of mea-

sure defined in duality with smooth vector fields whose properties are not yet well 
understood (see [26, Section 3.6]).

In all these cases, the relevant concept should be something possibly concentrated on a 
negligible set: as such, the notion of Lp(m)-normed L∞(m)-modules does not really suf-
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fice. It is our goal here to propose a more general theory capable of dealing, in particular, 
with the cases above. As it will turn out, the framework we develop is fully compatible 
even with objects conceptually far from the examples mentioned, like metric currents as 
developed by Ambrosio-Kirchheim in [11].

The theory, as well as the manuscript, is divided in two parts: in the first we develop 
the concept of ‘local vector measure’ in the general setting of Polish spaces, while in 
the second we discuss how the general framework fits in the more regular environment 
of RCD spaces. We point out also the similarity, in structure and aim, with the papers 
[26,15]. The paper [15] introduces a first order calculus on topological Lusin measure 
spaces carrying a quasi-regular strongly local Dirichlet form and, in the case in which 
the space is also tamed by a signed measure in the extended Kato class ([23]), develops 
a second order calculus.

0.1. Polish theory

Measures are defined as over other objects: either sets or functions or both. As such, 
if we want to give an abstract notion of ‘measure’ capable of giving a meaning to the 
examples above, we should at the same time be ready to specify the space of objects where 
it is acting. Example A) above is particularly illuminating: consider a BV function on a 
Riemannian manifold. Then its differential, whatever it is, should be something acting 
in duality with continuous vector fields; as such one should have at disposal such vector 
fields before defining the differential.

With this in mind, we build our theory by modelling it on the duality

{functions in Cb(X)} in duality with {finite Radon measures on X}

(for comparison, notice that the duality theory in [26] was modelled upon the duality 
between Lp-functions and Lq-functions, 1

p + 1
q = 1).

We thus begin our presentation introducing the concept of ‘normed Cb(X)-module’ 
that aims at being an abstract version of the space of continuous (or, more generally, 
bounded) sections of a normed bundle. By definition, a normed Cb(X)-module is a 
normed space (V, ‖ · ‖) that is also a module over Cb(X) in the algebraic sense and 
for which the inequality

‖f1v1 + · · · + fnvn‖ ≤ max
i

‖fi‖∞‖vi‖ (0.1)

holds for any n ∈ N and choice of vi ∈ V and fi ∈ Cb(X) with pairwise disjoint supports. 
The structure of Cb(X)-module gives the possibility of inspecting the ‘local behaviour’ 
of elements in V. For instance, for v ∈ V and A ⊆ X open we can define the seminorm 
‖v‖|A of v in A as sup ‖fv‖, the sup being taken among all f ∈ Cb(X) with support 
in A and norm bounded by 1. Then for C ⊆ X closed we say that the support of v is 
contained in C provided ‖v‖|X\C = 0. With these definitions it is easy to see that the 
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compatibility condition (0.1) can be read as a way of saying that the norm of V is a sort 
of ‘sup’ norm, as it implies that

‖v1 + · · · + vn‖ = max
i

‖vi‖ provided the vi’s have disjoint support

(here having disjoint supports means that there are disjoint closed sets Ci with supp vi ⊆
Ci).

For example, even though for every metric measure space (X, d, m) and p ∈ [1, ∞] the 
space Lp(X) is a module over Cb(X) in the algebraic sense, condition (0.1) only holds in 
the case p = ∞.

Now recall that a vector measure on the topological dual V ′ of V as Banach space is 
a σ-additive function taking Borel subsets of X and returning functionals in V ′. Then a 
local vector measure defined on V (i.e. acting in duality with elements of V) is a vector 
measure N on V ′ that is compatible with the module structure in the sense that

N(A)(v) = 0 ∀A ⊆ X open and v ∈ V such that ‖v‖|A = 0. (0.2)

We refer to property (0.2) as ‘locality’ (or ‘weak locality’, to distinguish it from the 
stronger notion discussed below). The basic example here is: V := Cb(X), μ finite (pos-
sibly signed) Radon measure on X and N given by the formula

N(B)(f) :=
ˆ

B

f dμ ∀B ⊆ X Borel and f ∈ Cb(X).

Section 1.1 is devoted to the study of this sort of measures. Among others, a relevant 
result that we obtain is a rather abstract version of Riesz’s representation theorem, see 
Theorem 1.27. In the case of X compact can be stated as: for any F ∈ V ′ there is a 
unique local vector measure N on V such that

N(X)(v) = F (v) ∀v ∈ V. (0.3)

Notice that in the case V = C(X) this easily reduces to the standard Riesz’s theorem. In 
the non-compact case we prove that for F ∈ V ′ there exists N as in (0.3) if and only if

F (fnv) → 0 ∀v ∈ V and {fn}n ⊆ Cb(X) with fn(x) ↘ 0 for any x ∈ X. (0.4)

This is reminiscent of the analogue condition appearing in the study of Daniell’s integral.
Another relevant property of local vector measures concerns their total variation, that 

for a generic vector measure N on V ′ is defined as |N|(E) := sup
∑

i ‖N(Ei)‖′, the sup 
being taken among at most countable partitions of the Borel set E. As it turns out, for 
local vector measures the total variation is always finite and the identity

|N|(E) = ‖N(E)‖′ ∀E ⊆ X Borel
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holds. In particular, |N| is always a Radon measure and it is therefore natural to ask 
whether any sort of polar decomposition is in place. As it turns out, this is always the 
case, meaning that for any local vector measure N there is a unique L : X → V ′ such 
that

N = L|N| in the sense that N(B)(v) =
ˆ

B

L(x)(v) d|N|(x) ∀B ⊆ X Borel and v ∈ V,

and it holds ‖L(x)‖′ = 1 for |N|-a.e. x (see Proposition 1.21 for the precise formulation). 
The locality of N implies the following locality property of L:

L(x)(v) = 0, |N|-a.e. on A ∀A ⊆ X open such that ‖v‖|A = 0, (0.5)

that we can also interpret by saying that L(x)(v) depends only on the germ of v at x.
At this level of generality we cannot say much more than this, but still these concepts 

turn out to be flexible enough to be naturally compatible with various pre-existing no-
tions in metric geometry. Given the conceptual proximity of the definition of L∞-module 
and Cb-module, it is not surprising that the notion of differential of a Sobolev function 
as given in [26] can be reinterpreted in this framework (see Section 1.2.2). On the other 
hand, one thing that we gain from the studies conducted here, and that in fact motivates 
them, is the possibility to give a meaning to the differential Df of a BV function f on 
arbitrary metric measure spaces. This notion of differential comes with some non-trivial 
calculus rule, for instance the Leibniz formula

D(fg) = gDf + fDg

holds for any couple f, g of bounded continuous functions of bounded variation (see 
Section 1.2.3).

As mentioned above, also the concept of metric current naturally fits in this frame-
work, let us briefly mention how. By the definition and the results in [11], an n current 
acts on the space

Dn(X) := Cb(X) ⊗
n∧

LIP(X)

whose elements are sums of objects formally written as fdϕ1 ∧ · · · ∧ dϕn. Thus, by also 
looking at the Euclidean case, it is natural to equip Dn(X) with the seminorm

‖v‖ := sup
T

T (v) for every v ∈ Dn(X)

where the supremum is taken among all currents T with ‖T‖AK(X) ≤ 1 (here ‖T‖AK is 
the mass of the current as defined in [11]). Then, tautologically, an n current T can be 
seen as an element of Dn(X)′ and the theories in [11] and in here quite nicely match, 
meaning that:
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- The results in [11] show that Dn(X)′ can naturally be equipped with the structure 
of a normed Cb(X)-module.

- An n current T always satisfies (0.4) when seen as element of Dn(X)′ and thus it 
induces a unique local vector measure NT on Dn(X). Also, the total variation |NT |
of NT as defined above coincides with the mass ‖T‖AK of T as introduced in [11].

- The map sending (fdϕ1∧· · ·dϕn, gdψ1∧· · ·dψm) to fgdϕ1∧· · ·dϕn∧dψ1∧· · · dψm

induces a unique bilinear and continuous map from Dn(X) ×Dm(X) to Dn+m(X) of 
norm ≤ 1.

- In particular, the collection of normed Cb(X)-modules {Dn(X)}n∈N possesses a nat-
ural algebra structure and - reading in this language some of the results in [11] - we 
see that the ‘differentiation’ map LIP(X) � f → 1df ∈ D1(X) satisfies Leibniz and 
chain rules and it is closed in a natural sense.

See Section 1.2.1.

The concept of locality as expressed in (0.2) and in (0.5) is the most we can expect 
for local vector measures defined on arbitrary Cb(X)-modules. It is so because, in some 
sense, for an element of such a module we are capable of saying whether it is 0 on an 
open set, but we cannot give a reasonable meaning to it being 0 on a Borel set. Still, in 
many practical situations a relevant normed Cb(X)-module V is given as suitable space 
of bounded elements of a larger Lp(m)-normed L∞(m)-module M equipped with the 
norm

‖v‖ := ‖|v|‖L∞(m) ∀v ∈ V.

If this is the case it is important to understand how the structure of L∞(m)-module and 
that of local vector measures on V interact. We are going to see in Section 1.2.4 that a 
local vector measure N on such a module V with |N| � m satisfies the stronger locality 
property

N(B)(v) = 0 ∀B ⊆ X Borel and v ∈ V such that |v| = 0 m-a.e. on B

if and only if there is an element MN ∈ M ∗ (the dual in the sense of modules) with 
|MN| = 1 |N|-a.e. such that

LN(v) = MN(v) |N|-a.e. ∀v ∈ V.

We shall call measures of this kind strongly local measures. Notice that if M is an Hilbert 
module, then the writing above (and Riesz’s theorem for Hilbert modules) means that 
we can represent a strongly local measure N as v|N| for some v ∈ M with |v| = 1 |N|-a.e., 
i.e. that

N(B)(v) =
ˆ

v · v d|N|.

B
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This closely corresponds to the usual intuition that wants a ‘vector valued measure’ to 
be writable via polar decomposition as its mass times a vector field of norm 1.

0.2. RCD theory

In this part of the paper we focus the attention on RCD spaces, whose study actually 
motived this manuscript: here the starting observation is about a ‘coincidence’ occurring 
when handling certain non-smooth objects. It is indeed the case that:

- In all of the three examples mentioned at the beginning of the introduction, the 
measure does not see sets of null 2-capacity: this is easily seen for Examples A and 
B at least if the underlying space is the Euclidean one, for the Ricci curvature tensor 
on RCD spaces we refer to [26]. To be more concrete: the polar decomposition of the 
differential Df of a real valued BV function on the Euclidean space takes the form 
v|Df | for some Borel vector field v of norm 1 |Df |-a.e. and some non-negative Radon 
measure |Df | giving 0 mass to sets of null 2-capacity. Notice that in fact the total 
variation measure of a function of bounded variation is well defined on arbitrary 
metric measure spaces [33] and does not see sets of null 2-capacity [16].

- On RCD spaces vector fields can be defined up to sets of null 2-capacity (unlike 
general metric measure spaces, where they typically are only defined up to sets of 
measure zero - at least in the axiomatization proposed in [26]). More precisely, the 
analysis carried out in [20] shows that Sobolev vector fields have a unique ‘quasi-
continuous representative’ defined up to sets of null 2-capacity: the analogy here is 
with the well known case of Sobolev functions, but in this case all the concepts are 
built upon functional analytic foundation, as no topology on the tangent module is 
given, so one cannot speak of continuity of vector fields in the classical sense.

The coincidence is in the fact that the best known regularity for vector fields matches 
the known regularity for the relevant (mass of the) measure, suggesting the existence of 
a good duality theory. Of course, we don’t think this is a coincidence at all, but rather 
an instance of the not infrequent phenomenon that sees the presence of solid analytic 
foundations for geometrically relevant objects.

This second part of the work is devoted to exploring the generalities of the theory in 
this setting and to tailoring it to the study of the differential of BV functions. In particular 
we shall mostly rely on the concept of strongly local measure discussed in Section 1.2.4. 
We cover also the case of vector valued BV functions, that presents additional difficulties 
and seems intractable over general metric measure spaces. The outcome of the analysis 
is that such distributional differential Df can always be represented as v|Df |, where v is 
a suitable quasi-continuous vector field of norm 1 |Df |-a.e. and |Df | is the classical total 
variation measure of f as introduced in [33], at least in the scalar case. This description, 
finer than the one available on arbitrary spaces, is consistent with all the recent fine 
calculus tools and integration by parts developed on finite dimensional RCD spaces. For 
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instance, the Gauss-Green formula established in [17] can now be interpreted as the 
representation, in the sense above, of the distributional differential of the characteristic 
function of a set of finite perimeter. In this sense also the Leibniz rule for the product 
of two bounded (but not necessarily continuous) BV functions recently obtained in [16]
naturally fits in this framework, meaning that we have

D(fg) = f̄Dg + ḡDf, ∀f ∈ BV(X) ∩ L∞(X),

where f̄ := f∨+f∧

2 is the precise representative of f (here f∨(x) := ap lim supy→x f(y)
and f∧(x) := ap lim infy→x f(y), see (2.14)), similarly for g and the differentials are 
defined as strongly local vector measures in the sense discussed here. We recall this fact 
in Proposition 2.19.

In this manuscript we are not going to study the Hessian of convex functions and the 
Ricci curvature tensor: this will be the main goal of an upcoming paper.

Acknowledgments
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1. The theory for Polish spaces

1.1. Definitions and results

In the first part of this note, our framework is a Polish space (X, τ), which means that 
there exists a distance d : X × X → R inducing the topology τ and such that (X, d) is a 
complete and separable metric space. For simplicity of exposition, we fix such distance 
d and hence we will often consider the Polish space (X, τ) as the complete and separable 
metric space (X, d). We point out that for what concerns this part of the work, the choice 
of the distance is immaterial and what is important is the topology τ . However, having 
a fixed distance is natural if one reads the first part of the work in perspective of the 
second part, where we will work with metric measure spaces, which are triplets (X, d, m)
where (X, d) is a complete separable distance on X and m is a Borel measure, finite on 
balls.

We denote the Borel σ-algebra of X by B(X) and we adopt the standard notation for 
the various function spaces.

In the following definition, we introduce the concept of normed Cb(X)-module. Recall 
that from the algebraic perspective there is a well defined concept of module over the 
commutative ring with unity Cb(X), it being a commutative group with unity V equipped 
with an operation · : Cb(X) × V → V satisfying
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f · (v + w) = f · v + f · w,
(f + g) · v = f · v + g · v,

(fg) · v = f · (g · v),
1 · v = v,

for any f, g ∈ Cb(X) and v, w ∈ V. Here 1 is the multiplicative identity of Cb(X), i.e. 
the function identically equal to 1. In what follows we shall omit the ‘dot’ and write the 
product of f and v simply as fv.

The space Cb(X) is also a Banach space when equipped with its natural ‘sup’ norm 
‖ · ‖∞. We shall then consider normed spaces that are also modules over Cb(X) in the 
algebraic sense and for which a certain compatibility between the normed and algebraic 
structure is present:

Definition 1.1 (Normed Cb(X)-modules). Let (V, ‖ · ‖) be a normed space that is also a 
module over the ring Cb(X) in the algebraic sense. We say that (V, ‖ · ‖) is a normed 
Cb(X)-module if

‖f1v1 + · · · + fnvn‖ ≤ max
i

‖fi‖∞ max
i

‖vi‖, (1.1)

whenever {fi}i=1,...,n ⊆ Cb(X) have pairwise disjoint supports and {vi}i=1,...,n ⊆ V.

Even though the expression ‘normed Cb(X)-module’ has an algebraic meaning (i.e. a 
normed vector space that is also a module over Cb(X)), in what follows when we write 
‘normed Cb(X)-module’, we always refer to the notion introduced in the definition above.

Simple examples of normed Cb(X)-modules are:

- The space (Cb(X), ‖ · ‖∞) itself.
- Let (X, d, m) be a metric measure space and M a L0(m)-normed L0(m)-module. Then 

any subspace V of M closed under multiplication by Cb(X) and made of elements 
with pointwise norm in L∞(m) is a normed Cb(X)-module once endowed with the 
norm ‖| · |‖L∞(m).

Here are two simple consequences of our standing assumptions for Cb(X)-modules 
that we are going to use with no reference.

Remark 1.2. The following properties hold:

(1) if f(x) = λ ∈ R for every x ∈ X, then fv = λv for every v ∈ V. Indeed, this holds 
for λ = 1 by the algebraic definition of module, then extends to λ ∈ Q by algebra 
and then to λ ∈ R, by the continuity granted by (1.1);

(2) if {fi}i=1,...,n ⊆ Cb(X) have pairwise disjoint support and {vi}i=1,...,n ⊆ V, then

‖f1v1 + · · · + fnvn‖ ≤ max (‖fi‖∞‖vi‖) .

i
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To show this, just divide each non zero fi by ‖fi‖∞ and multiply each vi by the 
same quantity. �

Occasionally we shall consider modules over appropriate subrings of Cb(X):

Definition 1.3 (Normed R-modules). Let R ⊆ Cb(X) be a subring (hence, contains the 
unity). We say that R approximates open sets if R is a lattice closed under multiplication 
by constant functions and such that for every open subset A ⊆ X, there exists a sequence 
{fk}k ⊆ R such that fk(x) ↗ χA(x) for every x ∈ X.

A normed R-module is a normed vector space (V, ‖ · ‖) that is also a module over 
R in the algebraic sense such that property (1.1) holds for any {vi}i=1,...,n ⊆ V and 
{fi}i=1,...,n ⊆ R with pairwise disjoint supports.

When speaking about normed R-modules we shall always refer to this sort of structure 
and always assume that R approximates open sets.

Example 1.4. Cb(X) itself and the subring generated by LIPbs(X) (i.e. d-Lipschitz func-
tions with bounded support) and the constant functions approximate open sets. �

In the following remark we state some properties of subrings that approximates open 
sets that we are going to exploit in the sequel.

Remark 1.5. Let R ⊆ Cb(X) that approximates open sets and let A ⊆ X open. Then:

(1) by the lattice property of R we can find {fk}k ⊆ R such that fk(x) ↗ χA(x) for 
every x ∈ X and also fk(x) ∈ [0, 1] for every x ∈ X and k ∈ N. Also, we can assume 
that supp fk ⊆ A for every k, using again the properties of R (indeed, for every 
ε ∈ (0, 1), the support of (fk ∨ ε) − ε is contained in A);

(2) if K ⊆ A is compact, we can modify {fk}k, still remaining in R, in such a way that, 
in addition to the properties stated in (1), it holds that for every k ∈ N fk = 1 on a 
neighbourhood of K. This is due to Dini’s monotone convergence Theorem and the 
lattice property of R. In particular we have

Let K ⊆ X compact and A ⊆ X open with K ⊆ A. Then there exists a function

ϕ ∈ R valued in [0, 1] such that ϕ = 1 on a neighbourhood of K and suppϕ ⊆ A.
(1.2)

(3) For every f ∈ Cb(X) there exists a sequence {fn}n ⊆ R with fn ↗ f . Notice that by 
Dini’s monotone convergence Theorem, this approximation is uniform on compact 
sets.

Indeed, take f ∈ Cb(X), say f(x) ∈ [0, 1] for every x ∈ X. Take k ∈ N. For every 
j = 0, . . . , k − 1, consider a sequence {χn

j,k}n ⊆ R taking values in [0, 1] and such 
that χn

j,k ↗ χ{f> j+1}, then let

k
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gnk := 1
k

k−1∑
j=0

χn
j,k ∈ R.

Notice that gnk ≤ f for every k, n, then let (ni, ki),i∈N be an enumeration of N2 and, 
finally, set f0 := 0 and for i ≥ 1, fi := gni

ki
∨ fi−1. It is easy to verify that {fi}i ⊆ R

provides a suitable approximating sequence. �

We recall that functions in Cb(X) have the following separation property, stronger 
than (1.2):

Let C ⊆ X closed and A ⊆ X open with C ⊆ A. Then there exists a function

ϕ ∈ Cb(X) valued in [0, 1] such that ϕ = 1 on a neighbourhood of C and suppϕ ⊆ A.
(1.3)

This is an instance of Urysohn’s lemma in the normal space (X, τ). More concretely, 
using the distance d we can post-compose the function d(x,X\A)

d(x,C)+d(x,X\A) with a continuous 
function ψ : R → [0, 1] identically 1 on a neighbourhood of 1 and identically 0 on a 
neighbourhood of 0.

The presence of both a norm and a product with functions allows to localise the 
concept of norm and to give some notion of ‘support’ as follows:

Definition 1.6 (Local seminorms). Let V be a normed R-module. Then for A ⊆ X open 
and v ∈ V, we define

‖v‖|A := sup {‖fv‖ : f ∈ R, supp f ⊆ A and ‖f‖∞ ≤ 1} .

Then define the germ seminorm of v, |v|g : X → R, by

|v|g(x) := inf
A

‖v‖|A,

where the infimum is taken among all open neighbourhoods of x.

Definition 1.7 (‘Supports’). Let V be a normed R-module. Then for C ⊆ X closed and 
v ∈ V we say supp v ⊆ C provided ‖v‖|X\C = 0.

More generally, for B ⊆ X Borel we say that supp v ⊆ B provided supp v ⊆ C for 
some C ⊆ B closed.

Let us collect few simple properties of these definitions:

(1) The concepts of local seminorm, germ seminorm and support all depend also on the 
ring R, so that if V is both a normed R-module and R′-module, then the associated 
notions of seminorm and support may depend on which ring we are using in the 
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definitions above. Nevertheless, this will not make much difference when considering 
local vector measures, see Remark 1.23.

(2) For every A ⊆ X open and x ∈ X both ‖ · ‖|A and | · |g(x) are seminorms on V.
(3) If {xn}n is converging to x, then eventually xn belongs to any given neighbourhood 

of x, hence

|v|g(x) := inf
A

‖v‖|A ≥ inf
A

lim sup
n

|v|g(xn) = lim sup
n

|v|g(xn).

Thus |v|g is upper semicontinuous, hence Borel measurable.
(4) For every ϕ ∈ R, v ∈ V we have

|ϕv|g = |ϕ||v|g on X. (1.4)

To see this, let ε > 0, x ∈ X and A ⊆ X be an open neighbourhood of x so small 
that ‖v‖|A ≤ |v|g(x) + ε and |ϕ − ϕ(x)| ≤ ε on A. Then letting f vary in the set of 
functions in R with support in A we get

‖ϕv‖|A = sup
f

‖fϕv‖ ≤ sup
f

(
‖(ϕ− ϕ(x))fv‖ + |ϕ|(x)‖fv‖

)
≤ ε‖v‖ + |ϕ|(x)‖v‖|A,

where in the last inequality we used the fact that ‖(ϕ − ϕ(x))f‖∞ ≤ ε and the 
compatibility condition (1.1). This proves ≤ in (1.4). The opposite inequality follows 
along the same lines starting from ‖fϕv‖ ≥ −‖(ϕ − ϕ(x))fv‖ + |ϕ|(x)‖fv‖.

(5) A direct consequence of Definition 1.7 is that

supp v ⊆ B ⇒ supp (ϕv) ⊆ suppϕ ∩B. (1.5)

Indeed the inclusion supp (ϕv) ⊆ B is obvious from the definition. On the other 
hand for any f ∈ R with supp f ⊆ X \ suppϕ we have f(ϕv) = 0, which is the same 
as to say ‖ϕv‖X\suppϕ = 0.

(6) The inclusion (1.5) gives

f ∈ R and supp v ⊆ {interior of {f = 1}} ⇒ fv = v. (1.6)

Indeed, the conclusion is equivalent to (1 − f)v = 0, i.e. to supp ((1 − f)v) = ∅. 
Now let C ⊆ {interior of {f = 1}} be closed such that supp v ⊆ C, notice that 
C ∩ supp (1 − f) = ∅ and conclude by (1.5).

(7) If V is a normed Cb(X)-module (i.e. if R = Cb(X)) we have

{vi}i=1,...,n ⊆ V with disjoint supports ⇒ ‖v1 + · · · + vn‖ = max
i

‖vi‖,
(1.7)

where having disjoint supports means that there are pairwise disjoint closed sets Ci

such that supp vi ⊆ Ci for every i.
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Indeed, we use the metric d to see that (X, τ) is normal, and hence find (iteratively) 
A1, . . . , An open and pairwise disjoint such that Ci ⊆ Ai for every i. Then, take fi
for Ci ⊆ Ai as in (1.3) and use (1.1) to conclude that ≤ holds in (1.7). On the other 
hand, with this choice of functions fi we see that (1.5) and (1.6) imply fj

∑
i vi = vj

and therefore ‖vj‖ ≤ ‖fj‖∞‖ 
∑

i vi‖ by (1.1) (applied with n = 1).
(8) Definition 1.7 does not identify the support of an element of V as a subset of X, but 

rather defines when an element of V has support contained in a set. It is tempting 
to set

supp v := {|v|g > 0} (1.8)

The problem with this definition is that it might be that

‖v‖X\supp v > 0, (1.9)

which violates the intuitive idea behind concept of support and of locality of the 
norm, see Example 1.8.

Nevertheless, we point out that on one hand that in all the practical examples 
we have in mind, the definition of support as in (1.8) works as well as the one in 
Definition 1.7 and on the other that in order for an example like the one below one 
needs X to be non compact and to use some version of the Axiom of Choice strictly 
stronger than the Axiom of Countable Dependent choice.

Example 1.8. Let X := N be endowed with the complete and separable distance 
d(n, m) := 1 − δmn , notice that Cb(X) = 
∞ and let V := Cb(X)′ = (
∞)′. It is readily 
verified that the natural product operation defined as f · L(g) := L(fg) for any L ∈ V, 
f, g ∈ 
∞ = Cb(X) endows V with the structure of normed Cb(X)-module.

Let W ⊆ 
∞ the subspace of sequences having limit and L ∈ V be an element of the 
dual of Cb(X) that is obtained by extending - via Hahn-Banach - the functional that 
associates to f ∈ W its limit.

We claim that

|L|g(x) = 0 ∀x ∈ X. (1.10)

Indeed, since the singleton {x} is open, it is sufficient to prove that f · L = 0 for every 
f ∈ 
∞ that is identically 0 outside {x}. But this is trivial by definition of product, 
because for any such f and any g ∈ 
∞ we have fg ∈ W with limit 0, hence f ·L(g) = 0
proving our claim (1.10).

It follows that the support as defined in (1.8) is empty and thus, since clearly L �= 0, 
that (1.9) holds. �

Let now (V ′, ‖ · ‖′) denote the dual space of (V, ‖ · ‖) (as normed vector space). It is 
well known that (V ′, ‖ · ‖′) is a Banach space.
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We recall now the definition of (σ-additive) vector valued measure, see e.g. [22, Chap-
ters 1 and 2].

Definition 1.9. A V ′-valued measure is a map

N : B(X) → V ′

that is σ-additive, in the sense that if {Ak}k∈N is a sequence of pairwise disjoint sets in 
B(X), then

N
(⋃

k

Ak

)
=
∑
k

N(Ak),

where the convergence of the series has to be understood as convergence in norm in V ′,

Notice that in particular the convergence of the series in the above equation is uncon-
ditional i.e. it is independent of the ordering of the terms.

In this paper we are concerned with a particular type of such measures, where the 
measure and the module structure interact in the following way:

Definition 1.10 (Local vector measures). Let V be a normed R-module. A local vector 
measure defined on V is a V ′-valued measure N : B(X) → V ′ that is weakly local, in the 
sense that

N(A)(v) = 0 for every A ⊆ X open and v ∈ V such that ‖v‖|A = 0.

We denote the set of such local vector measures by MV .

In what follows, we are going to consider local vector measures defined on the space 
V fixed, unless it is specified otherwise. Notice that one may always assume that V
is complete, as the dual of the completion coincides with V ′, the completion naturally 
carries the structure of normed Cb(X)-module and such structure remains compatible 
with the weak locality imposed above.

If N is a local vector measure and v ∈ V, we will often consider the finite signed Borel 
measure

v · N := N( · )(v).

By the regularity of v · N it trivially follows that

A ⊆ X open, B ⊆ A Borel, ‖v‖|A = 0 ⇒ N(B)(v) = 0 (1.11)

and this further implies that
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supp v ⊆ B ⊆ B′ with B,B′ ⊆ X Borel ⇒ N(B)(v) = N(B′)(v). (1.12)

Indeed, for C ⊆ B closed such that supp v ⊆ C we have ‖v‖X\C = 0. Since X \C is open, 
the weak locality of N gives N(X \ C)(v) = 0 and thus (1.11) and the trivial inclusion 
B′ \B ⊆ X \ C imply (1.12).

We also notice that for B ⊆ X Borel, w ∈ V and f ∈ R equal to 1 on an open 
neighbourhood A of B, we have ‖(1 − f)w‖|A = 0 and thus N(A)(fw) = N(A)(w) by 
weak locality. Hence (1.11) gives

N(B)(w) = N(B)(fw). (1.13)

We recall the definition of total variation of a vector valued measure, that we are 
going to use specialised to the case of local vector measures.

Definition 1.11. Let V be a normed R-module and N be a V ′-valued measure. Its total 
variation is the (countably additive) extended real valued Borel measure defined by

|N|(E) := sup
π

∑
A∈π

‖N(A)‖′

where the supremum is taken over all finite Borel partitions π of E. If |N|(X) < ∞, we 
say that N has bounded variation.

We will see with the following Proposition 1.14 that the local vector measures we have 
just defined have automatically bounded variation. From the definition of total variation, 
it immediately follows

|N(E)(v)| ≤ |N|(E)‖v‖ for every E Borel and v ∈ V. (1.14)

Remark 1.12. We remark that there is no effort in taking the (measure theoretic) com-
pletion of N, defining it to be 0 on all the subsets of |N|-negligible sets. Therefore, if we 
write

N := {Z ⊆ X : there exists Z ′ ⊆ X Borel such that |N|(Z ′) = 0 and Z ⊆ Z ′},

N is well defined on the σ-algebra generated by the union of B(X) and N . �

Lemma 1.13. Let V be a normed R-module and N be a local vector measure on it.
Then for every A ⊆ X open we have

|N(A)(v)| ≤ |N|(A)‖v‖|A for every v ∈ V, (1.15)

where the right hand side is intended as 0 in the case ∞ · 0.



16 C. Brena, N. Gigli / Journal of Functional Analysis 286 (2024) 110202
Proof. If ‖v‖|A = 0 the conclusion follows by weak locality. Thus we can assume ‖v‖|A >

0 and then |N|(A) < ∞ (as otherwise the conclusion is obvious). Then the restriction of 
|N| to A is inner regular and thus for any fixed ε > 0 we can find K ⊆ A compact set 
such that |N|(A \K) ≤ ε. take ϕ ∈ Cb(X) as in (1.2) for K ⊆ A. Then,

|N(A)(v)| ≤ |N(K)(v)| + ε‖v‖ (1.13)= |N(K)(ϕv)| + ε‖v‖
(1.14)
≤ |N|(K)‖ϕv‖ + ε‖v‖

and, as ε > 0 is arbitrary, the claim is proved recalling that ‖ϕv‖ ≤ ‖v‖|A. �
We then have the following general result:

Proposition 1.14. Let V be a normed R-module and N be a local vector measure on it.
Then N has bounded variation. More precisely

|N|(A) = ‖N(A)‖′ for any A ⊆ X Borel. (1.16)

Proof. We divide the proof in several steps.
Step 1. Let A ⊆ X Borel with |N|(A) = ∞ let and m ∈ R. Taking into account the very 
definition of total variation, the definition of the dual norm and the inner regularity of 
the finite signed measure v · N for v ∈ V, we can take {vl}l=1,...,L ⊆ V with ‖vl‖ ≤ 1
and {Kl}l=1,...,L pairwise disjoint compact subsets of A such that

m <

L∑
l=1

N(Kl)(vl).

Then by (1.2) we can take {ψl}l=1,...,L ⊆ R with values in [0, 1] such that ψl = 1 on a 
neighbourhood of Kl and {suppψl}l are pairwise disjoint. We set then v :=

∑L
l=1 ψlvl ∈

V and we notice that by weak locality N(Kl)(vl) = N(Kl)(v). Hence, if we set B :=⋃L
l=1 Kl,

m <

L∑
l=1

N(Kl)(vl) =
L∑

l=1

N(Kl)(v) = N(B)(v) ≤ ‖N(B)‖′,

where the last inequality follows as ‖v‖ ≤ 1 by (1.1). To sum up, we have proved in this 
step that given A ⊆ X Borel with |N|(A) = ∞ and m ∈ R, we can find a (compact) set 
B ⊆ A such that ‖N(B)‖′ ≥ m.
Step 2. Assume by contradiction |N|(X) = ∞. We construct two sequences {Ak}k and 
{Bk}k of Borel subsets of X iteratively, starting from A0 := X and B0 := X. Precisely, 
given k ∈ N, k ≥ 1, assume that we have defined A0, . . . , Ak and B0, . . . , Bk. Notice that 
by the construction we are going to do, |N|(Ak) = ∞ and Bk ⊆ Ak. Then, by additivity, 
either |N|(Bk) = ∞ or |N|(Ak \ Bk) = ∞. In the former case we set Ak+1 := Bk, 
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in the latter Ak+1 := Ak \ Bk. In either case we then take Bk+1 ⊆ Ak+1 such that 
‖N(Bk+1)‖′ ≥ k + 1, using step 1.

Now notice that for every k, ‖N(Bk+1)‖′ ≥ k + 1 and either Bk+1 ⊆ Bk or Bk∩Bl = ∅
for every l ∈ N, l ≥ k + 1 (this possibility may depend on k). If the second possibility 
occurs infinitely often, we can find a subsequence of pairwise disjoint subsets of X, {Bkl

}l
such that ‖N(Bkl

)‖′ → ∞. Otherwise, we can find a decreasing sequence of Borel subsets 
of X, {Bkl

}l, such that ‖N(Bkl
)‖′ → ∞. But in both cases this leads to a contradiction 

with the countable additivity of N (that involves the convergence in norm).
Step 3. We show (1.16). By regularity, there is no loss of generality in assuming A open. 
Let ε > 0. With the same notation as in step 1, we find

|N|(A) − ε ≤
L∑

l=1

N(Kl)(vl).

Being |N| a finite measure, we can find pairwise disjoint open sets {Al}l such that Kl ⊆
Al ⊆ A and |N|(Al \Kl) < ε/L for every l. Take then {ψl}l ⊆ Cb(X) as in step 1, but 
with the additional constraint that suppψl ⊆ Al for every l. Then, by weak locality,

L∑
l=1

N(Kl)(ψlvl) ≤
L∑

l=1

N(Al)(ψlvl) + ε =
L∑

l=1

N(A)(ψlvl) + ε = N(A)(v) + ε

where v :=
∑L

l=1 ψlvl ∈ V. Being ε > 0 arbitrary, we can conclude the proof. �
From the finiteness of the total variation we easily get the following:

Proposition 1.15. Let V be a normed R-module. Then the space (MV , | · |(X)) is a Banach 
space.

Proof. It is trivial to verify that | · |(X) is indeed a norm. Let now {Nn}n be a Cauchy 
sequence. Then, if B is Borel and v ∈ V, also {Nn(B)(v)}n ⊆ R is a Cauchy sequence, 
so that we can define (notice that in this way we get immediately weak locality)

N(B)(v) := lim
n

Nn(B)(v). (1.17)

We have

|N(B)(v)| = lim
n

|Nn(B)(v)| ≤ lim inf
n

|Nn|(B)‖v‖

for every B Borel. In particular, N(B) ∈ V ′ and

‖N(B)‖′ ≤ lim inf |Nn|(B).

n
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Clearly, N is finitely additive, but the equation above implies also σ-additivity: indeed, 
if {Bk}k is a sequence of pairwise disjoint Borel sets, setting Bk :=

⋃k
j=1 Bj we can 

compute, for any m,

‖N(B∞) − N(Bk)‖′ ≤ lim inf
n

|Nn|(B∞ \Bk) ≤ lim inf
n

|Nn − Nm|(X) + |Nm|(B∞ \Bk)

and notice that taking first m big enough and then k big enough, the right hand side of 
the above inequality converges to 0. Therefore N is a local vector measure.

Now if B is Borel and v ∈ V with ‖v‖ ≤ 1, similar computations as above show that

‖(N − Nn)(B)‖′ ≤ lim inf
m

|Nm − Nn|(B)

and then, thanks to the definition of total variation and the super additivity of the 
lim inf,

|N − Nn|(X) ≤ lim inf
m

|Nm − Nn|(X).

This implies convergence in norm of Nn to N. �
Justified by this proposition, here and below, when we write MV , we mean the Banach 

space (MV , | · |(X)).
In view of the following definition, we briefly recall the definition of Bartle integral 

that we take from [22, P. 5] (see also the original article [12]). If N is a vector valued 
measure and f =

∑n
i=1 ciχAi

is a simple function, where {ci}i ⊆ R and {Ai}i are 
pairwise disjoint Borel subsets, then we consider the map

A →
ˆ

A

f dN :=
n∑

i=1
ciN(A ∩Ai) ∈ V ′. (1.18)

It is clear that for any such f and at most countable disjoint family {Bj}j ⊆ X we have

∥∥∥∑
j

ˆ

Bj

f dN
∥∥∥′ ≤ ‖f‖L∞(|N|)

∑
j

|N|(Bj) = ‖f‖L∞(|N|)|N|(∪jBj),

having used also (1.16). This inequality shows that (1.18) defines a linear and continuous 
map from the space of simple functions (endowed with the supremum norm) to the space 
of V ′-valued measures, which therefore can be extended to a linear and continuous map 
from L∞(|N|) to the space of V ′-valued measures (see also Bartle’s bounded convergence 
theorem [22, Theorem 2.4.1]). Also, recalling (1.11) for the case of simple f ’s and then 
arguing by approximation we see that the measures in the image are weakly local, i.e. 
are local vector measures defined on V.

We summarise all this in the following definition:
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Definition 1.16. Let V be a normed R-module, N be a local vector measure defined on 
it and let f : X → R be a bounded Borel function. We define fN as the local vector 
measure given by

fN(A) :=
ˆ

A

f dN

where the integral has to be understood as a Bartle integral, i.e. in the sense described 
above.

We point out that Bartle’s bounded convergence theorem (see e.g. [22, Theorem 2.4.1]) 
ensures that

supn ‖fn‖L∞(|N|) < ∞,

fn → f |N|-a.e.

}
⇒ fnN(A) → fN(A) in V ′ ∀A ⊆ X Borel.

(1.19)
We notice the following general fact:

Proposition 1.17. Let V be a normed R-module, N be a local vector measure defined on 
it and let f : X → R be a bounded Borel function. Then it holds, as measures,

|fN| = |f ||N|. (1.20)

Proof. We show first that |fN| ≤ |f ||N|. Clearly it suffices to show that if B is Borel, 
then ‖fN(B)‖′ ≤

´
B
|f |d|N|. This follows from the triangle inequality if f is a simple 

function and then the claim is proved by approximation.
Therefore, we conclude if we show that

ˆ

X

|f |d|N| ≤ |fN|(X).

As Proposition 1.14 shows that |N|(X) < ∞, an approximation argument justified by the 
inequality in (1.20) that we have just proved yields that we can assume that f is simple, 
say f =

∑
j cjχBj

, where cj ∈ R for every j and {Bj}j is a finite Borel partition of B. 
Now we can compute

ˆ

B

|f |d|N| =
∑
j

|cj ||N|(Bj) =
∑
j

|cjN|(Bj)
(1.18)=

∑
j

|fN|(Bj) = |fN|(B). �

Lemma 1.18. Let V be a normed R-module, and let N be a local vector measure.
Then, for every f ∈ R and v ∈ V, we have

(fv) · N = f(v · N) = v · (fN). (1.21)
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Proof. The second equality in (1.21) follows directly from the definition of fN (and an 
approximation argument), so it is enough to prove the equality of the first and last term. 
By regularity of the signed measures (fv) · N and v · (fN) we can just show that

N(A)(fv) = fN(A)(v)

when A is open. Recall that Proposition 1.14 implies that N and fN have bounded 
variation. As f is bounded, we can assume that |f(x)| ≤ 1 for every x. Fix now ε > 0
and let

−1 − ε = t0 < t1 < · · · < tn = 1 + ε

be a collection of real numbers such that for every i = 1, . . . , n, ti − ti−1 ≤ ε and

|N|({f = ti}) = 0 and |fN|({f = ti}) = 0) for every i = 0, . . . , n. (1.22)

Consider now the open sets {Ai := A ∩{f ∈ (ti−1, ti)}}i=1,...,n and notice that, for every 
i = 1, . . . , n,

fN(Ai)(v) = tiN(Ai)(v) + (f − ti)N(Ai)(v)

and also

N(Ai)(fv) = tiN(Ai)(v) + N(Ai)(fv − tiv).

Subtracting these two equalities term by term and summing over i, recalling (1.22),

|N(A)(fv) − fN(A)(v)| ≤
n∑

i=1
|N(Ai)(fv − tiv)| + |(f − ti)N(Ai)(v)|. (1.23)

We then use (1.20) and (1.15) to deduce from (1.23) that

|N(A)(fv) − fN(A)(v)| ≤
n∑

i=1
2ε|N|(Ai)‖v‖ ≤ 2ε|N|(X)‖v‖.

As ε > 0 is arbitrary, this concludes the proof. �
Having a notion of ‘total variation’ naturally leads to the following definition:

Definition 1.19 (Polar decomposition). Let V be a normed R-module, and let N be a local 
vector measure. We say that N admits a polar decomposition if there exists a weakly∗

|N|-measurable map LN : X → V ′ such that N = LN|N|, in the sense that for every v ∈ V, 
we have LN(v) ∈ L1(|N|) and
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N(A)(v) =
ˆ

A

LN(v) d|N| for every A ⊆ X Borel, (1.24)

where here and in what follows we write LN(v) for the map x → LN(x)(v). We require 
moreover that for every x ∈ X it holds that

|LN(x)(v)| ≤ |v|g(x) for every v ∈ V. (1.25)

It easily follows from the above definition that the polar decomposition is ‘weakly 
unique’, in the sense that if N = LN|N| = L′

N|N|, then for every v ∈ V,

LN(v) = L′
N(v) |N|-a.e.

Also, if f : X → R is a bounded Borel function, then

fN(A)(v) =
ˆ

A

fLN(v) d|N| .

Finally, we remark that if LN satisfies (1.25), then for every x ∈ X, LN(x) is tight.
In view of the following proposition, it is useful to recall the definition of essential 

supremum (see e.g. [29, Lemma 3.2.1] for the well known proof of existence and unique-
ness and [32, Section 2.4] for much more on the topic).

Lemma 1.20. Let (X, μ) be a measure space with μ σ-finite. If {fα}α∈A is a collection of 
extended real valued μ-measurable functions, then there exists a unique (up to equality 
μ-a.e.) μ-measurable function g : X → {±∞}, called the essential supremum of {fα}α∈A

and denoted by ess supα∈A fα (or μ −ess supα∈A fα when we want to stress the dependence 
on the measure), such that

i) fα ≤ g μ-a.e. for every α ∈ A,
ii) if fα ≤ h μ-a.e. for every α ∈ A, then h ≥ g μ-a.e.

Proposition 1.21. Let V be a normed R-module, and let N be a local vector measure.
Then N admits the (‘weakly unique’) polar decomposition LN|N|, where LN satisfies 

the ‘weak’ identity

LN(v) = d(v · N)
d|N| |N|-a.e. for every v ∈ V.

Moreover, it holds that

|N| − ess sup LN(v) = 1. (1.26)

v∈V,‖v‖≤1
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Proof. For every v ∈ V (1.15) grants that v · N � |N|, so that we can define

ρv(x) := d(v · N)
d|N| ∈ L1(|N|)

and notice that

N(A)(v) =
ˆ

A

ρv d|N| (1.27)

whenever A ⊆ X is Borel.
To define the map LN we follow the argument given in [27, Lemma 3.2]. Let the maps 

Leb : L1
loc(|N|) → B(X) and BorRep : L1

loc(|N|) → {f : X → R Borel} be given by 
Corollary A in Appendix A. For every x ∈ X, define

Vx := {v ∈ V : x ∈ Leb(ρv)} .

Property iii) in Corollary A and the linearity of the map v → ρv grant that for every 
x ∈ X, Vx is a vector subspace of V and that

LN(x)(v) := BorRep(ρv)(x) for v ∈ Vx

is linear in v. Now, (1.15), (1.27) and an immediate approximation argument easily yield 
that for every x ∈ X

‖ρv‖L∞(|N| Br(x)) ≤ ‖v‖|Br(x)

so that, using also (A.2) we get that for every x ∈ X,

|LN(x)(v)| ≤ |v|g(x) for every v ∈ Vx. (1.28)

Fix x ∈ X and consider the equivalence relation on V given by the seminorm | · |g(x). Let 
then Wx be the quotient space, endowed with the factorisation of | · |g(x). Also, by (1.28), 
LN(x) factorises to the projection of Vx in Wx. Then, using Hahn-Banach Theorem, we 
can extend the factorisation of LN(x) to Wx and then, taking the composition with the 
projection, we have an extension of LN(x) to a map defined on V which still satisfies 
(1.28) for every v ∈ V.

Property i) in Corollary A implies that for any v ∈ V, we have x ∈ Leb(ρv) for |N|-a.e. 
x, so that, using also property ii),

LN(v) = ρv |N|-a.e.

This implies for every v ∈ V, LN(v) is |N|-measurable and satisfies
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N(A)(v) =
ˆ

A

ρv d|N| =
ˆ

A

LN(v) d|N| for every A ⊆ X Borel.

Now we prove the last claim. Set for brevity g := ess supv∈V,‖v‖≤1 LN(v). As for every 
B ⊆ X Borel and v ∈ V it holds∣∣∣∣ˆ

B

LN(v) d|N|
∣∣∣∣ = |N(B)(v)| ≤ |N|(B)‖v‖,

we see that g ≤ 1 |N|-a.e. Now, let B ⊆ X Borel such that |N|(B) < ∞ and let π be a 
finite Borel partition of B. If ε > 0, we can find {vA}A∈π ⊆ V such that ‖vA‖ ≤ 1 for 
every A ∈ π and

∑
A∈π

‖N(A)‖′ ≤
∑
A∈π

N(A)(vA) + ε =
∑
A∈π

ˆ

A

LN(vA) d|N| + ε ≤
∑
A∈π

ˆ

A

g d|N| + ε.

Being ε and π arbitrary, it follows

|N|(B) ≤
ˆ

B

g d|N|

that, combined with g ≤ 1 |N|-a.e. and the fact that |N| is finite, implies g = 1 |N|-a.e. �
Remark 1.22. As the proof shows, rather than imposing (1.25) to hold, we could only 
ask for the bound

|LN(x)(v)| ≤ ‖v‖ |N|-a.e. x ∈ X

to hold for every v ∈ V. Nevertheless, even with this weaker requirement, all the conclu-
sions of the proposition remain in place, up to the fact that (1.25) has to be interpreted 
as

|LN(x)(v)| ≤ |v|g(x) |N|-a.e. x, for every v ∈ V,

where this last inequality is a consequence of (A.2) of Corollary A in Appendix A, as in 
the proof of Proposition 1.21.

We also point out that the use of Hahn-Banach theorem is not really required in the 
proof. In fact, the rather constructive argument gives a collection (Vx, LN(x)) indexed 
by x ∈ X with Vx subspace of V and LN(x) ∈ V ′

x for every x ∈ X with the following 
properties:

i) For every v ∈ V the set of x ∈ X such that v ∈ Vx is Borel and with complement 
|N|-negligible,
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ii) The map x → LN(x)(v) set, say, to 0 if v /∈ Vx is Borel and bounded in norm by ‖v‖,
iii) The identity (1.24) (that makes sense thanks to the above and |N|(X) < ∞) holds 

for every v ∈ V.

These properties could also be used as definition of polar decomposition: the price one 
pays for doing so is to keep track of the subspaces Vx where the operators LN(x) are 
defined, but in doing so it gains the Borel regularity stated in i) − ii) above, in place of 
|N|-measurability, and a Choice-free proof. Notice in particular that the Axiom of Choice 
in a form stronger than Countable Dependent Choice - i.e. in the form of the general 
Hahn-Banach theorem - is used in the proof once for each point x ∈ X in order to extend 
the operators LN(x) to regions where almost surely they won’t be applied and that such 
extensions are irrelevant from the perspective of the defining formula (1.24). �

Remark 1.23. Let V be both a normed R-module and a normed R′-module, where R
and R′ approximate open sets. Assume also R ⊆ R′. Let N : B(X) → V ′ be a V ′-valued 
measure. Then the following assertions are equivalent (notice that the local seminorm 
‖ · ‖|A may not be independent of the choice of the subring R or R′):

(1) N is weakly local, considering V as a normed R-module,
(2) N is weakly local, considering V as a normed R′-module.

We prove now this assertion. Let us denote with ‖ · ‖A,R and ‖ · ‖A,R′ the local seminorms 
induced by the structure of normed R-module and normed R′-module, respectively. 
Clearly, ‖ · ‖A,R ≤ ‖ · ‖A,R′ as R ⊆ R′, so that it is immediate to see that (1) ⇒ (2). 
Conversely, assume that N is weakly local, considering V as a normed R′-module. Take 
v ∈ V with ‖v‖A,R = 0, for some open set A. Now we write, exploiting Proposition 1.21, 
N(A)(v) =

´
A
LN(v) d|N|. Take now {fk}k ⊆ R as in item (1) of Remark 1.5 and we use 

Lemma 1.18 together with dominated convergence to compute

N(A)(v) = lim
k

ˆ

A

fkLN(v) d|N| = lim
k

ˆ

A

LN(fkv) d|N| = lim
k

N(A)(fkv) = 0,

where we used that ‖v‖A,R = 0 in the last equality. The conclusion follows.
Notice that we indeed showed what follows: if N satisfies one of the equivalent condi-

tions above, then, for every A ⊆ X open,

|N(A)(v)| ≤ |N|(A)‖v‖A,R ≤ |N|(A)‖v‖A,R′

(the total variation of N is by definition independent of the choice of the subring R or 
R′). This is due to the fact that we assume that R approximates open sets.

We point out that if N = LN|N| is the polar decomposition given by Proposition 1.21
for the R′-normed module V, it may be false that (with the obvious notation) for every 
x ∈ X,
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|LN(x)(v)| ≤ |v|g,R(x) for every v ∈ V.

Clearly, this issue can be immediately solved building the polar decomposition for the 
R-normed module V instead of considering the polar decomposition for the R′-normed 
module V. �

If μ is a finite (signed) measure on the Polish space X, then

ϕ → F (ϕ) :=
ˆ

ϕdμ (1.29)

is a continuous linear functional on C(X) with operator norm equal to |μ|(X). The clas-
sical and celebrated Riesz-Markov-Kakutani theorem ensures that if X is compact, then 
all linear functionals on C(X) can be represented this way. The non-compact case is more 
delicate, and handled by the Daniell-Stone theorem: if X is Polish then finite measures 
correspond, via the map (1.29), to those functionals F : Cb(X) → R such that

F (ϕn) → 0 whenever (ϕn) ⊆ Cb(X) is such that ϕn(x) ↘ 0 for every x ∈ X. (1.30)

We shall call property (1.30) tightness (in the literature it is also called ‘continuity in 
0’). Given that we are now going to investigate the validity of a Riesz-like theorem in 
our setting, it is natural to look for a counterpart of tightness in the framework we are 
working now. We propose the following:

Definition 1.24 (Tightness). Let V be a normed R-module, and F ∈ V ′. We say that F
is tight with respect to R if for every v ∈ V and every sequence

{ϕn}n ⊆ R with ϕn(x) ↘ 0 for every x ∈ X, (1.31)

we have F (ϕnv) → 0.
We will dispense with specifying the ring R if it is clear from the context and in the 

case R = Cb(X).

Remark 1.25. Notice that, if every v ∈ V has compact support (i.e. contained in a 
compact set - this occurs in particular if the space is compact), then every functional 
F ∈ V ′ is tight. This follows easily from Dini’s monotone convergence theorem.

In general, already the case V = Cb(X) shows that (if one assumes a sufficiently strong 
version of Choice, then) not every functional F ∈ V ′ is tight: see e.g. the functional 
 ∈ V ′

defined in Example 1.8. �

The link between the concept of tightness and that of measure (positive real-valued 
for the moment - but this will later be further clarified) is given in the following key 
lemma. Notice that here the assumption that R approximates open sets is crucial.
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Lemma 1.26. Let V be a normed R-module and F ∈ V ′. Then F is tight with respect to 
R if and only if

μ(A) := sup {F (v) : v ∈ V, ‖v‖ ≤ 1 and supp v ⊆ A} (1.32)

is the restriction to open sets of a finite Borel measure.

Proof. Assume that μ as in (1.32) is the restriction to open sets of a finite Borel measure. 
We prove that F is tight with respect to R. Fix then v ∈ V and let {ϕn}n be as in 
(1.31). Fix also ε > 0. We use the regularity of μ to find a compact set K ⊆ X such that 
μ(X \K) ≤ ε. By Dini’s monotone convergence Theorem, up to discarding finitely many 
functions in {ϕn}n, we can assume that ϕn(x) < ε for every x ∈ K. By (1.2) we can 
take a sequence {φn}n ∈ R valued in [0, 1] such that for every n, suppφn ⊆ {ϕn < ε}
and φn = 1 on a neighbourhood of K. Then,

|F (ϕnv)| ≤ |F (ϕn(1 − φn)v)| + |F (ϕnφnv)| ≤ ‖v‖ (μ(X \K) + ε) ≤ 2ε‖v‖,

where we used the definition of μ as supp (ϕn(1 − φn)v) ⊆ X \K. Then the conclusion 
follows as ε > 0 is arbitrary.

Conversely, assume that F is tight with respect to R. We prove that μ as defined 
in (1.32) is the restriction to open sets of a finite Borel measure. To this aim, we can 
use Carathéodory criterion (see e.g. [5]) and is then enough to verify (all the sets in 
consideration are assumed to be open):

(1) μ(A) ≤ μ(B) if A ⊆ B,
(2) μ(A ∪B) ≥ μ(A) + μ(B) if d(A, B) > 0,
(3) μ(A) = limk μ(Ak) if Ak ↗ A,
(4) μ(A ∪B) ≤ μ(A) + μ(B).

We notice that (1) and (2) follow trivially from the definition of μ and that (2) does not 
even need the sets to be well separated (so that we do not even need to consider the 
distance d).

We prove now property (3). Take v ∈ V with ‖v‖ ≤ 1 and supp v ⊆ A. Let then 
C ⊆ A be a closed set with supp v ⊆ C. By the fact that R approximates open sets, take 
{ψn}n ⊆ R and, for every k, {ϕk

n}n ⊆ R that are valued in [0, 1] such that ψn ↗ χX\C
and such that for every k, ϕk

n ↗ χAk
. We can, and will, assume that suppψn ⊆ X \ C

and that suppϕk
n ⊆ Ak

n for every n, k. Let now (ki, ni)i∈N be an enumeration of N2 and 
define

ξi := ψi ∨ ϕ̂i ∈ R where ϕ̂i :=
∨
j≤i

ϕkj
nj
.

It is clear that ξi ↗ 1, hence by tightness we have
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F (v) = lim
i

F (ξiv). (1.33)

Also, the identity ξi = ϕ̂i +(ψi− ϕ̂i)+, the inclusion supp ((ψi− ϕ̂i)+) ⊆ suppψi ⊆ X\C
and (1.5) give supp (ξiv) ⊆ Ak̂i

, where k̂i := maxj≤i kj . Therefore recalling (1.33) we 
have

F (v) = lim
i

F (ξiv) ≤ lim sup
i

μ(Ak̂i
) = lim

k
μ(Ak)

and since this holds for every v ∈ V with ‖v‖ ≤ 1, we proved μ(A) ≤ limk μ(Ak) and the 
claim.

We pass to (4). Take v ∈ V with supp v ⊆ A ∪ B, say supp v ⊆ C ⊆ A ∪ B for some 
C ⊆ X closed. As R approximates open sets, take functions {ψA

n }n, {ψB
n }n ⊆ R that 

are valued in [0, 1], such that ψA
n ↗ χA and for every n, suppψA

n ⊆ A and such that 
the corresponding properties hold for {ψB

n }n. Take {ψn}n ⊆ R valued in [0, 1] such that 
ψn ↗ χX\C and for every n, suppψn ⊆ X \ C. Finally, let {ξn}n ⊆ R be defined by 
ξn := ψn ∨ ψA

n ∨ ψB
n . It is easy to verify that ξn ↗ 1 and - arguing as before - that for 

every n, we can write

ξnv = (ψA
n ∨ ψB

n )v + (ψn − (ψA
n ∨ ψB

n ))+v = ψA
n v + (ψB

n − ψA
n )+v.

Hence

F (v) = lim
n

F (ξnv) ≤ lim sup
n

F (ψA
n v) + F ((ψB

n − ψA
n )+v) ≤ μ(A) + μ(B)

and taking the supremum among all v as above we conclude. �
We then have the following version of the Riesz representation theorem (compare e.g. 

with [13, Section 7.10]):

Theorem 1.27 (Riesz’s theorem for local vector measures). Let V be a normed R-module 
and F ∈ V ′ be tight. There exists a unique local vector measure NF defined on V such 
that

NF (X)(v) = F (v) for every v ∈ V. (1.34)

Moreover, it holds that |NF | = μ, where μ is the finite Borel measure given by 
Lemma 1.26.

Proof. Let μ be the finite Borel measure given by Lemma 1.26. Let B ⊆ X Borel. Given 
ε > 0, take Kε ⊆ B ⊆ Aε, with Kε compact and Aε open such that μ(Aε \Kε) ≤ ε. Let 
ϕε ∈ R be as in (1.2) for Kε ⊆ Aε. Notice that

|F (ϕεv)| ≤ μ(Aε)‖ϕεv‖ ≤ μ(Aε)‖v‖. (1.35)
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We define the linear functional

NF (B)(v) := lim
ε↘0

F (ϕεv) (1.36)

where ϕε is any function as above for that given ε > 0. We claim that this limit exists 
and is independent of the choice of {Kε, Aε, ϕε}ε>0. Indeed, take ε > 0 and let ϕε and ϕ′

ε

as above. Then, with the obvious notation, ϕε = ϕ′
ε = 1 on a neighbourhood of Kε∩K ′

ε. 
Thus supp (ϕε − ϕ′

ε) ⊆ ((Aε ∪A′
ε) \ (Kε ∩K ′

ε)) implies

|F (ϕεv) − F (ϕ′
εv)| ≤ ‖v‖μ((Aε ∪A′

ε) \ (Kε ∩K ′
ε)) ≤ 2‖v‖ε. (1.37)

Notice that the inequality above holds in particular if ϕ′
ε = ϕε′ with 0 < ε′ < ε. Also, 

by (1.35), NF (B) ∈ V ′ for every B Borel.
Notice that the very definition of NF implies that (1.34) holds (to see this, just argue 

as for (1.37) with 1 in place of ϕ′
ε). We show now that NF , as just defined, is indeed a 

local vector measure. By (1.35), it holds

|NF (B)(v)| ≤ μ(B)‖v‖ for every B ⊆ X Borel,

so that NF (B) ∈ V ′ with

‖NF (B)‖′ ≤ μ(B) for every B ⊆ X Borel. (1.38)

Finite additivity of NF ( · ) follows easily from its definition using a suitable choice of 
cut-off functions, while to prove σ-additivity one only has to use (1.38) noticing that if 
{Bk}k is a sequence of pairwise disjoint Borel sets, it holds that 

∑∞
k=n μ(Bk) → 0 as 

n → ∞. Therefore NF is a V ′-valued measure.
To show weak locality we pick A ⊆ X open, v ∈ V with ‖v‖|A = 0 and notice that in 

the construction above we can pick Aε = A for every ε > 0. With this choice we have 
ϕεv = 0 and thus N(A)(v) = 0, as desired.

Also, by (1.38), |NF | ≤ μ and, by (1.34), it is clear that μ(X) ≤ |NF |(X) so that we 
have indeed μ = |NF |.

Uniqueness follows immediately from (1.34) and (1.16) as they grant that

|N − Ñ|(X) = ‖N − Ñ‖′(X) = sup
‖v‖≤1

(N − Ñ)(X)(v) = 0

for every N, Ñ satisfying the conclusion. �
Remark 1.28. The standard proof of Riesz’s theorem typically starts taking L ∈ C(X)′
(say X compact), decomposes it in its positive and negative parts to reduce to the case 
of positive functionals, then by monotonicity finds the value of the measure on open 
and/or compact sets and finally by approximation the value of the measure on any set. 
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Inspecting our arguments, we see that the mathematical principles behind the proof of 
Theorem 1.27 are similar, even though the lack of an order on V forces us to avoid 
arguments by monotonicity in favour of those based on approximation and domination 
(as in (1.36), (1.38)).

Let us illustrate how - somehow conversely - one can recover from our statement 
the classical Riesz’s theorem about the dual of Cc(X) for X locally compact metric 
space. Start noticing that V = Cc(X) is a normed Cb(X)-module and that, as seen 
in Remark 1.25, any F ∈ Cc(X)′ is automatically tight. Thus by Theorem 1.27 and 
Proposition 1.21 we can represent F as L|N|, so that

F (f) =
ˆ

X

L(f) d|N| for every f ∈ Cc(X).

Using local compactness and then separability, we build a countable sequence {ϕn}n ⊆
Cc(X) such that ϕn(x) ∈ [0, 1] for every x ∈ X and the interiors of {ϕn = 1} cover X (to 
show this use e.g. the Lindelöf property of X). Then we define σ : X → R as

σ(x) := L(x)(ϕn) on the interior of {ϕn = 1}

(such function is well defined up to N-negligible sets and is a |N|-measurable map). 
Building upon Lemma 1.18, it is easy to verify that the identity L(f)(x) = f(x)σ(x)
holds |N|-a.e. for every f ∈ Cc(X). On the other hand, the identity (1.26) in this case 
reads as

ess sup
f∈Cc(X), ‖f‖≤1

L(f) = 1,

which in turn easily implies σ(x) ∈ {±1} |N|-a.e. Collecting what observed so far we see 
that the measure μ := |N| {σ = 1} − |N| {σ = −1}, satisfies

F (f) =
ˆ

X

f dμ for every f ∈ Cc(X),

as desired. �

A direct consequence of this last result is the following isomorphism of Banach spaces:

Corollary 1.29. Let V be a normed R-module and consider the Banach space

T := ({F ∈ V ′ : F is tight w.r.t. R} , ‖ · ‖′) .

Then the map

Ψ : MV → T defined as N → N(X)
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is a bijective isometry.

Proof. It is easy to show that T is a Banach space. Also, we know that Ψ is linear, takes 
values in V ′, preserves the norm (by (1.16)) and that its image contains T thanks to 
Theorem 1.27.

Thus it only remains to prove that Ψ(N) is a tight element of V ′ for any N ∈ MV . 
Thus fix N, let v ∈ V and let {ϕn}n be as in (1.31). Also, let ε > 0 and take, by regularity 
of |N|, a compact set K ⊆ X such that |N|(X \K) < ε. By Dini’s monotone convergence 
Theorem, up discarding finitely many functions of {ϕn}n, we can assume that ϕn < ε on 
K for every n, By continuity, ϕn < ε on an open neighbourhood of K, say An, for every 
n. Set also S := supn ‖ϕn‖∞ < ∞. We can then compute, recalling (1.15) and using the 
trivial bound ‖ϕnv‖|An

≤ ε‖v‖,

|N(X)(ϕnv)| ≤ |N(An)(ϕnv)| + |N(X \An)|(ϕnv)

≤ ε|N|(An)‖v‖ + Sε‖v‖ ≤ ε‖v‖ (|N|(X) + S) ,

so that the claim follows as ε > 0 is arbitrary. �
Another direct consequence of Theorem 1.27, this time in conjunction with the classi-

cal theorem by Alexandrov about weak sequential completeness of the space of measures, 
is the following result. Notice that in order to apply Alexandrov’s theorem we need to 
work in the case R = Cb(X).

Corollary 1.30 (Alexandrov’s theorem for local vector measures). Let V be a normed 
Cb(X)-module and {Nn}n ∈ MV be a sequence such that for every v ∈ V the sequence 
n → Nn(X)(v) ∈ R is Cauchy.

Then there exists N ∈ MV such that

N(X)(v) = lim
n

Nn(X)(v) ∀v ∈ V.

Proof. Define F ∈ V ′ as F (v) := limn Nn(X)(v) (linearity of F is obvious, continuity 
follows from Banach-Steinhaus Theorem). To conclude it is enough, by Theorem 1.27, 
to show that F is tight.

Thus fix v and define Gn, G : Cb(X) → R as Gn( · ) := Nn(X)( · v) and G( · ) :=
limn Nn(X)( · v) = F ( · v): then the conclusion follows by the classical Alexandrov’s The-
orem. We give the details. By Riesz’s Theorem ([13, Theorem 7.10.1]), as Gn is tight, it 
is induced by a Baire measure μn, that is

Gn(f) =
ˆ

fdμn for every f ∈ Cb(X).

X
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Recall that μn is a Borel measure, as Baire measures and Borel measures coincide for 
metric (hence Polish) spaces, e.g. [13]. Now, μn is weakly fundamental ([14, Definition 
2.2.2]) as

ˆ

X

fdμn = Gn(f) → G(f),

hence by [14, Theorem 2.3.9], we see that μn converges weakly to a Borel measure μ, so 
that G(f) =

´
X fdμ. It follows that G is tight, by [13, Theorem 7.10.1] again. �

We also notice that another byproduct of Theorem 1.27, and in particular of the 
equality |NF | = μ is that

A ⊆ X open and N(A)(v) = 0 for every v ∈ V with supp v ⊆ A ⇒ |N|(A) = 0.
(1.39)

In classical measure theory it often happens that one first defines a measure via its 
action on a certain class of regular functions (say Lipschitz) and then, once the measure 
is constructed, its action on more general functions (say continuous) is uniquely defined 
by some density argument.

The following proposition establishes a construction of this sort in our setting. In 
the statement below notice that (1.41) is not a direct consequence of (1.40) because in 
computing the total variation of N̂ and N we use the norm in V ′, W ′ respectively.

Proposition 1.31. Let V be a normed Cb(X)-module and let W ⊆ V be a subspace that, 
with the inherited product and norm, is a normed R-module. Assume also that the space 
Cb(X) · W of Cb(X)-linear combinations of elements of W is dense in V and let N be a 
local vector measure defined on W.

Then there is a unique local vector measure N̂ defined on V that extends N, i.e. such 
that

N̂(B)(v) = N(B)(v) ∀v ∈ W, B ⊆ X Borel (1.40)

and such measure N̂ also satisfies

|N̂|(B) = |N|(B), ∀B ⊆ X Borel. (1.41)

More explicitly, for every A ⊆ X open and v ∈ V,

|N̂(A)(v)| ≤ |N|(A)‖v‖A, (1.42)

where the local seminorm at the right hand side is with respect the structure of R-normed 
module for V.
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Proof. First notice that (1.42) is a ‘self-improvement’ due to Remark 1.23, once we have 
proved the remaining parts of the statement.
Existence Recalling Definition 1.16 we wish to define

N̂(B)
(∑

i

fivi
)

:=
∑
i

fiN(B)(vi) (1.43)

for any choice of n ∈ N, fi ∈ Cb(X), vi ∈ W, i = 1, . . . , n and B ⊆ X Borel.
To prove that this is a well posed definition we claim that, with the same notations, 

it holds

∣∣∑
i

fiN(B)(vi)
∣∣ ≤ |N|(B)

∥∥∥ n∑
i=1

fivi

∥∥∥. (1.44)

To see this we fix ε > 0 and find Kε ⊆ X compact so that |N|(X \Kε) ≤ ε. Then we use 
item (3) of Remark 1.5 to find, for any i = 1, . . . , n, a function ϕε

i ∈ R with |fi−ϕε
i | < ε

on Kε and thus on some neighbourhood Aε of Kε independent on i. Then find ψ ∈ R
taking values in [0, 1] with support in Aε and identically equal to 1 on Kε.

With these choices we have∣∣∑
i

fiN(B)(vi)
∣∣ ≤ ∣∣∑

i

(1 − ψ)fiN(B)(vi)
∣∣+ ∣∣∑

i

ψ(fi − ϕε
i )N(B)(vi)

∣∣
+
∣∣N(B)

(∑
i

ψϕε
i vi
)∣∣

≤
∑
i

(
|(1 − ψ)fi||N|

)
(X)‖vi‖ +

∑
i

(
|ψ(fi − ϕε

i )||N|
)
(X)(vi)

+ |N|(B)
∥∥∑

i

ψϕε
ivi
∥∥

≤ ε
∑
i

‖fi‖∞‖vi‖ + ε|N|(X)
∑
i

‖vi‖ + |N|(B)
∥∥∑

i

ψϕε
ivi
∥∥

and ∥∥∑
i

ψϕε
i vi
∥∥ ≤∑

i

‖ψ(fi − ϕε
i )vi‖ +

∥∥ψ∑
i

fivi
∥∥ ≤ ε

∑
i

‖vi‖ +
∥∥∑

i

fivi
∥∥.

These last two inequalities and the arbitrariness of ε give the claim (1.44).
In turn, the bound (1.44) ensures that the right hand side of (1.43) depends only on 

v :=
∑n

i=1 fivi and not on the way v is written as such sum. In particular, the definition 
(1.43) is well posed and we have

|N̂(B)(v)| ≤ |N|(B)‖v‖ (1.45)

for every B ⊆ X and v ∈ Cb(X) · W. The fact that N̂ is linear on the space of such v’s is 
obvious by definition and this last inequality shows continuity: together with the density 
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assumption this ensures that N̂(B) can be uniquely extended to an element of V ′, still 
denoted N̂(B). It is clear by definition that the map B → N̂(B) is additive; σ-additivity 
follows trivially from the bound (1.45) and the σ-additivity of |N|.

To prove weak locality of N̂ we pick A ⊆ X open and v ∈ V with ‖v‖|A = 0. Notice that 
by what we have just proved, v · N̂ is a finite measure. Hence, by regularity, we can simply 
prove that N̂(A′)(v) = 0, where A′ is an open subset of A whose closure is still contained 
in A (this is easy to realise using the fact that the topology is induced by a metric). 
Then, by (1.3), we can find ϕ ∈ Cb(X) with support in X \ A′ and supp v ⊆ {ϕ = 1}. 
Then we pick {vj}j ∈ Cb(X) · W converging to v and notice that ϕvj → ϕv = v (recall 
(1.6)). On the other hand, writing vj =

∑
i fijvij with fij ∈ Cb(X) and vij ∈ W we see 

that ({ϕ�}� ⊆ R is obtained by item (3) of Remark 1.5, we can assume suppϕ� ⊆ suppϕ

for every 
)∑
i

ϕfijN(A′)(vij) = lim
�

∑
i

ϕ�fijN(A′)(vij) = lim
�

∑
i

fijN(A′)(ϕ�vij) = 0 ∀i ∈ N

by weak locality of N and the fact that supp (ϕ�vij) ⊆ suppϕ ⊆ X\A′. Hence N̂(ϕvi) = 0
for any i and letting i → ∞ we conclude, by the arbitrariness of A′, A, v, that N̂ is weakly 
local, as desired.

It is then clear that (1.40) holds and that inequality (1.45) gives ≤ in (1.41). The 
opposite inequality is trivial because, recalling (1.16), we see that |N̂|(B) is the operator 
norm of N̂(B) in V ′, whereas |N(B)| is the operator norm of N(B) in W ′ i.e. of the 
restriction of N̂(B) to W.
Uniqueness Let N̂ be an extension of N, f ∈ Cb(X), ϕ ∈ R and v ∈ W. Then for any 
B ⊆ X Borel we have

|N̂(B)(fv)−ϕN(B)(v)| (1.21)= |(f−ϕ)N̂(B)(v)|
(1.20)
≤ ‖v‖(|f−ϕ||N̂|)(B) ≤ ‖v‖‖f−ϕ‖L1(|N|).

Now observe that since |N| is a finite measure, item (3) of Remark 1.5 ensures that for 
any f ∈ Cb(X) there is {ϕn}n ∈ R uniformly bounded converging to f pointwise. Thus 
the convergence is also in L1(|N|), hence the above and (1.19) imply that any extension N̂
must satisfy N̂(fv) = fN(v) for any v ∈ W and f ∈ Cb(X). By linearity and the density 
of Cb(X) · W in V it follows that any extension N̂, if it exists, must satisfy (1.43). Since 
such equation defines the value of N̂ on Cb(X) · W and this is dense in V, uniqueness is 
proved. �

We conclude the section describing some operations on local vector measures. We start 
with the push forward through continuous maps and start with the following definition:

Definition 1.32 (Push-forward module). Let (X, d) and (Y, ρ) be two complete and sepa-
rable metric spaces, V a normed Cb(X)-module and ϕ ∈ C(X, Y).

The normed Cb(Y)-module ϕ∗V is defined as V as normed vector space and equipped 
with the structure of algebraic module over Cb(Y) by
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fv := f ◦ ϕv for every f ∈ Cb(Y) and v ∈ V.

It is easy to verify that ϕ∗V is a normed Cb(Y)-module: we just have to notice that 
if {fi}i=1,...,n ⊆ Cb(Y) have pairwise disjoint support, then also {fi ◦ϕ}i=1,...,n ⊆ Cb(X)
have the same property.

The following proposition shows how if we have a local vector measure on V we can 
naturally build a local vector measure on ϕ∗V via a push-forward operation:

Proposition 1.33 (Push-forward of local vector measures). With the same notation and 
assumptions as in Definition 1.32 the following holds. Let N be a local vector measure 
defined on V. Define a map by

ϕ∗N(B)(v) := N(ϕ−1(B))(v) for every B ⊆ Y Borel and v ∈ ϕ∗V. (1.46)

Then ϕ∗N is a local vector measure defined on ϕ∗V and |ϕ∗N| = ϕ∗|N|.

Proof. We show that ϕ∗N is indeed a local vector measure. The only non trivial veri-
fication to be done is weak locality. Take then an open set A ⊆ Y and v ∈ ϕ∗V with 
‖v‖|A = 0; in other words, f ◦ϕ v = 0 for every f ∈ Cb(Y) with supp f ⊆ A. We have to 
show that

N(ϕ−1(A))(v) = 0.

Take any ε > 0, then, by regularity, take a compact set K ⊆ ϕ−1(A) ⊆ X with

|N|(ϕ−1(A) \K) < ε. (1.47)

Then ϕ(K) is compact and contained in A, hence there is f ∈ Cb(Y) with supp f ⊆ A

and f(y) = 1 on a neighbourhood of ϕ(K). Therefore, by (1.47) and weak locality of N,∣∣N(ϕ−1(A))(v)
∣∣ ≤ ε‖v‖ + |N(K)(v)| ≤ ε‖v‖ + |N(K)(f ◦ ϕv)| = ε‖v‖,

where we used the fact that supp f ⊆ A for the last equality. Being ε > 0 arbitrary, this 
proves the claim.

By (1.46) and (1.16), we conclude that for every B ⊆ Y Borel,

|ϕ∗N|(B) = |N|(ϕ−1(B)) = ϕ∗|N|(B). �
It may happen that we have a normed Cb(X)-module V and we want to consider its 

Cartesian product with itself. To do this, first we have to endow Vk with a norm, then 
the normed Cb(X)-module operations will be defined component-wise. Let k ∈ N, k ≥ 1, 
endow Vk with a norm equivalent to the norm

‖(v1, . . . , vk)‖ := ‖(‖vi‖)i=1,...,k‖e for every v = (v1, . . . , vk) ∈ V.
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Notice that the canonical map Φ : (V ′)k → (Vk)′ defined by

Φ(φ1, . . . , φk)(v1, . . . , vk) = φ1(v1) + · · · + φk(vk)

is an isomorphism.
If one has in mind that V is some space of vector fields over a manifold, then Vk would 

correspond to some related tensor field. Then a little bit of matrix operation is possible 
over corresponding local vector measures:

Definition 1.34. Let N be a local vector measure defined on Vn. Let moreover m ∈ N, 
m ≥ 1 and let f = (fi,j)1≤i≤m,1≤j≤n : X → Rm×n be a bounded Borel map. We define 
fN as the local vector measure defined on Vm by

fN(A) :=
ˆ

A

f dN :=

⎛⎝ n∑
j=1

ˆ

A

fi,j dNj

⎞⎠
i

if A ⊆ X is Borel,

where we exploited the canonical identification (V ′)k � (Vk)′.

Notice that if f : X → R is a bounded Borel function and N is a local vector measure 
defined on Vn, then

fN = (fIdn×n)N.

1.2. Examples

1.2.1. Currents in metric spaces
For this section, (X, d) is a complete and separable metric space (here the distance 

matters) and we fix n ∈ N, n ≥ 1 (the case n = 0 being trivial).
The following notions are extracted from [11].

Definition 1.35. A n-current is a multilinear map

T : LIPb(X) × LIP(X)n → R

such that

i) there exists a finite (positive) measure μ such that

|T (f, π1, . . . , πn)| ≤
n∏

j=1
Lip(πj)

ˆ
|f |dμ (1.48)
X
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for every f ∈ LIPb(X) and π1, . . . , πn ∈ LIP(X). The minimal measure μ satisfying 
(1.48) (that can be proved to exist) will be called the mass of T and denoted by 
‖T‖AK;

ii) if f ∈ LIPb(X) and for j = 1, . . . , n, {πi
j}i ⊆ LIP(X) is a sequence of equi-Lipschitz 

functions such that πi
j → πj pointwise, then

lim
i

T (f, πi
1, . . . , π

i
n) = T (f, π1, . . . , πn);

iii) if f ∈ LIPb(X) and for some j = 1, . . . , n we have that πj is constant on a neigh-
bourhood of {f �= 0}, then

T (f, π1, . . . , πn) = 0.

When the dimension n is clear from the context, we call n-currents simply currents. 
It is clear from (1.48) that, if T is a current, then it can be uniquely extended to a map

T : Cb(X) × LIP(X)n → R

still satisfying (1.48) for every f ∈ Cb(X) and π1, . . . , πn ∈ LIP(X). As such extension is 
unique, we will not introduce a different notation for it. By [11, (3.2)], we have that a 
current is alternating in the last n entries, so that we can set (all the algebraic operations 
are with respect to the field of real numbers R)

Dn(X) := Cb(X) ⊗
n∧

LIP(X)

and consider a current T as a linear map T : Dn(X) → R. We also have a natural map

Cb(X) × LIP(X)n → Dn(X)

and we write (just as a notation) fdπ1∧· · ·∧dπn for the image of (f, π1, . . . , πn) through 
such map. Therefore, by T (fdπ1∧· · ·∧dπn), we mean T (f, π1, . . . , πn). Notice that Dn(X)
has a natural structure of algebraic module over the ring Cb(X), given by multilineality, 
starting from g(fdπ1 ∧ · · · ∧ dπn) := (gf)dπ1 ∧ · · · ∧ dπn.

Notice also that if T is a current and f ∈ Cb(X), then fT defines a current by (see 
the discussion below [11, (2.5)])

fT (v) := T (fv) for every v ∈ Dn(X)

and by (1.48) (cf. the key result [11, (2.5)] that encodes locality) it holds, as measures,

‖fT‖AK ≤ |f |‖T‖AK. (1.49)
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We define a seminorm on Dn(X) as follows:

‖v‖ := sup
T

T (v) for every v ∈ Dn(X) (1.50)

where the supremum is taken among all currents T with ‖T‖AK(X) ≤ 1. We claim that 
if v ∈ Dn(X) is so that ‖v‖ = 0, then ‖fv‖ = 0 for any f ∈ Cb(X). Indeed

‖fv‖ = sup
T :‖T‖AK≤1

T (fv) = sup
T :‖T‖AK(X)≤1

(fT )(v) ≤ sup
T̃ :‖T̃‖AK(X)≤‖f‖∞

T̃ (v) = 0

where the inequality above is due to (1.49). We then identify elements of Dn(X) that are 
equal up to an element of zero norm, so that we have a normed vector space (Dn(X), ‖ · ‖). 
Notice that our claim grants that the structure of algebraic module over Cb(X) descends 
to the quotient.

We show now that (Dn, ‖ · ‖) is a normed Cb(X)-module. The only non triv-
ial verification is that (1.1) holds and this in turn follows from (1.49). Indeed, take 
{fi}i=1,...,m ⊆ Cb(X) with pairwise disjoint supports and {vi}i=1,...,m ⊆ Dn(X). We have 
to show that, for every current T with ‖T‖AK(X) ≤ 1, it holds that

T (f1v1 + · · · + fmvm) ≤ max
j

‖fj‖∞ max
j

‖vj‖.

Now, using the definition of norm on Dn(X) and (1.49) we have

T

( m∑
j=1

fjvj

)
≤

m∑
j=1

|fjT (vj)| ≤
m∑
j=1

‖fjT‖AK(X)‖vj‖

≤ max
j

‖vj‖
∑
j

(|fj |‖T‖AK) (X) ≤ max
j

‖vj‖max
j

‖fj‖∞‖T‖AK(X),

so that the claim follows.
The following proposition shows how metric currents fit in the framework of local 

vector measures: we show that metric currents are precisely those local vector measures 
defined on Dn(X) that satisfy the weak continuity property stated in item ii) of Def-
inition 1.35 and moreover that the two concepts of mass (the one for metric currents 
defined in [11] and the one for local vector measures) coincide.

Proposition 1.36. Let T be a current. Then T is a tight element of Dn(X)′. In particular, 
T induces a unique local vector measure NT defined on Dn(X) such that

NT (A)(v) = T (v) for every A ⊆ X open and v ∈ Dn(X) with supp v ⊆ A. (1.51)

Moreover, it holds that ‖T‖AK = |NT |.
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Conversely, every tight element of Dn(X)′ satisfying item ii) of Definition 1.35 is a 
current; in other words, every local vector measure N defined on Dn(X) such that N(X)
satisfies item ii) of Definition 1.35 is given by a current, in the sense that (1.51) holds.

Proof. The fact that T ∈ Dn(X)′ follows (artificially) from the definition of norm on 
Dn(X). Tightness is an immediate consequence of (1.48) together with dominated con-
vergence. Therefore we can apply Theorem 1.27 and obtain a local vector measure NT

satisfying (1.51).
By the very definition of norm on Dn(X), for every v ∈ Dn(X) we have that |T (v)| ≤

‖T‖AK(X)‖v‖ so that, using (1.16) and (1.51),

|NT |(X) = ‖T‖′ ≤ ‖T‖AK(X).

Take then an open set A ⊆ X. By [11, Proposition 2.7] and the regularity of the measure 
‖T‖AK, we can show that

‖T‖AK(A) = sup
∑
i

T (fidπi
1 ∧ · · · ∧ dπi

n) (1.52)

where the supremum is taken among all finite collections {fi}i ⊆ Cb(X) with pairwise 
disjoint support, with supp fi ⊆ A and ‖fi‖∞ ≤ 1 for every i, and finite families {πi

j}i ⊆
LIP(X) of 1-Lipschitz functions, for j = 1, . . . , n. Now notice that if π1, . . . , πn are 1-
Lipschitz, then for every current T it holds

T (1dπ1 ∧ · · · ∧ dπn) ≤ ‖T‖AK(X)

so that

‖1dπ1 ∧ · · · ∧ dπn‖ ≤ 1. (1.53)

We can now bound the right hand side of (1.52) using (1.51), (1.1) and what we have 
noticed above, by

NT (A)
(∑

i

fidπi
1 ∧ · · · ∧ dπi

n

)
≤ |NT |(A)

∥∥∥∑
i

fidπi
1 ∧ · · · ∧ dπi

n

∥∥∥ ≤ |NT |(A),

so that ‖T‖AK ≤ |NT | as measures. Then, as we have already proved |NT |(X) ≤
‖T‖AK(X), we have ‖T‖AK = |NT | as measures.

Finally, let N be a local vector measure defined on Dn(X) such that N(X) satisfies 
item ii) of Definition 1.35. If fdπ1 ∧ · · · ∧ dπn is as in item iii) of Definition 1.35, then 
S(fdπ1 ∧ · · · ∧ dπn) = 0 for every current S, then ‖fdπ1 ∧ · · · ∧ dπn‖ = 0 and hence 
N(X)(fdπ1 ∧ · · · ∧ dπn) = 0. Let now f ∈ LIPb(X) and let π1, . . . , πn ⊆ LIP(X) be 
1-Lipschitz. Notice that the module structure of Dn(X) ensures that fdπ1 ∧ · · · ∧ dπn =
f(1dπ1 ∧ · · · ∧ dπn) and thus Lemma 1.18, Proposition 1.17 and (1.53) give
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N(X)(fdπ1 ∧ · · · ∧ dπn) = fN(X)(1dπ1 ∧ · · · ∧ dπn) ≤ |f ||N|(X) =
ˆ

X

|f |d|N| .

This proves that item i) in Definition 1.35 holds and concludes the proof that N(X) is a 
current. �
Remark 1.37. The push forward operator ϕ∗ defined in the previous section has nothing 
to do with the push forward for currents defined in [11, Definition 2.4] (notice that in 
particular the latter is only defined for ϕ Lipschitz as it defines the push-forward of a 
current by duality with the pullback of Lipschitz functions via the map ϕ). �

Remark 1.38. Proposition 1.36 allows us to consider n-currents as local vector measures 
defined on Dn(X). Notice that, in general, not every element of Dn(X) is tight, hence 
not every element of Dn(X) corresponds to a current.

Moreover, not every tight functional of Dn(X)′ is given by a current, this is to say that 
there are local vector measures defined on Dn(X) that are not given by currents (which 
is not a surprise). A counterexample to this lack of coincidence is given in Example 1.39
below, in which we exhibit a tight functional of Dn(X)′ that does not satisfy axiom ii)
of Definition 1.35. Notice however that, by the proof of Proposition 1.36, every tight 
functional of Dn(X)′ satisfies axioms i) and iii) of Definition 1.35. �

Example 1.39. Let (X, d, m) := ([−1, 1], de, L1). It is easy to see that for l ∈ L1(m) the 
map

D1(X) = Cb(X) ⊗ LIP(X) → R defined by fdg →
ˆ

X

lfg′ dm

defines a current (see [11, Example 3.2]). Thus, if fdg ∈ Cb(X) ⊗ C1(X) ⊆ D1(X), it 
holds that ‖fdg‖ ≥ |f(0)g′(0)|. Consider now the map

D1(X) ⊇ Cb(X) ⊗ C1(X) → R defined by fdg → f(0)g′(0).

Using Hahn-Banach Theorem, we can extend the map above to a functional of D1(X)′, 
that is automatically tight, as X is compact (Remark 1.25). However, we see that the map 
above can not be a current: indeed, axiom ii) of Definition 1.35 is clearly violated. �

We want to think to the space Dn(X) defined above as the space of n-forms on 
the metric space (X, d) and Proposition 1.36 corroborates this in showing that there is 
a natural duality between appropriate operators on Dn(X) and currents. Still, in the 
classical smooth setting the space of differential forms has a natural algebra structure 
and it is natural to wonder whether the same holds in our setting. We are going to show 
that this is indeed the case.
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Thus let n, m ∈ N, n, m ≥ 1 and notice that we have a natural exterior product 
operation

∧ : Dn(X) ×Dm(X) → Dn+m(X)

defined as

(fdπ1 ∧ · · · ∧ dπn, gdπn+1 ∧ · · · ∧ dπn+m) → fgdπ1 ∧ · · · ∧ dπn ∧ dπn+1 ∧ · · · ∧ dπn+m

and extended by bilinearity. We also write

v ∧ w := ∧(v, w) for every v ∈ Dn(X), w ∈ Dm(X).

This ‘algebraic’ structure is compatible with the norm on Dn(X) imposed via ‘analytic’ 
considerations:

Proposition 1.40. For every v ∈ Dn(X), w ∈ Dm(X), it holds that

‖v ∧ w‖ ≤ ‖v‖‖w‖.

Proof. We define, for k ∈ N, k ≥ 1, the set Bk ⊆ Dk(X) as

Bk :=
{∑

i∈N
fidπi

1 ∧ · · · ∧ dπi
k : {fi}i ⊆ Cb(X),

∑
i∈N

|fi| ≤ 1,Lip(πi
j) ≤ 1

}
.

Clearly, Bn ∧Bm ⊆ Bn+m, in the sense that ∧(Bn, Bm) ⊆ Bn+m.
By [11, Proposition 2.7], it holds that for k ∈ N, k ≥ 1,

‖T‖AK(X) = sup
v∈Bk

T (v) for every k-current T . (1.54)

Let now T be a (n +m)-current. If v ∈ Dn(X), we can define a m-current T v (see the 
discussion below [11, (2.5)]) by

T v(w) := T (v ∧ w) for every w ∈ Dm(X),

where we notice that the following discussion implies that this definition is well posed 
even after taking the quotient on Dn(X) with respect to the seminorm defined by (1.50).

Using (1.54) repeatedly and what noticed above, we have that for v ∈ Dn(X),

‖T v‖AK(X) = sup
p∈Bm

T v(p) = sup
p∈Bm

T (v ∧ p) = sup
p∈Bm

T (p ∧ v)

= sup
m

T p(v) ≤ ‖v‖ sup
m

‖T p‖AK(X)

p∈B p∈B
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= ‖v‖ sup
p∈Bm

sup
q∈Bn

T p(q) = ‖v‖ sup
p∈Bm

sup
q∈Bn

T (p ∧ q)

≤ ‖v‖ sup
r∈Bn+m

T (r) = ‖v‖‖T‖AK(X).

Now, for v, w as in the statement,

‖v ∧ w‖ = sup
T

T (v ∧ w) = sup
T

(T v)(w) ≤ sup
T

‖T v‖AK(X)‖w‖,

where the suprema are taken among all (n +m)-currents T with ‖T‖AK(X) ≤ 1. Together 
with what just remarked, this concludes the proof. �
Remark 1.41. Notice that we have a natural surjective linear map∧n

D1(X) → Dn(X)

where the domain has to be seen as algebraic wedge product. Moreover, if we endow the 
domain with the projective norm i.e.

∧n
D1(X) � v → ‖v‖ := inf

{
k∑

i=1
‖vi1‖D1(X) · · · ‖vin‖D1(X) : v =

k∑
i=1

vi1 ∧ · · · ∧ vin

}

and take then the quotient of 
∧n D1(X), we see that this map descends to the quotient 

and has norm bounded by 1 thanks to Proposition 1.40. �

Remark 1.42. Notice that in the case n = 1, the space D1(X) can be seen as a sort of 
metric cotangent module. Indeed, we have a natural map

d : LIP(X) → D1(X) f → 1df

satisfying

‖df‖ ≤ Lip(f) for every f ∈ LIP(X)

(here equality in general does not hold). Also, the Leibniz rule

d(fg) = fdg + gdf for every f, g ∈ LIPb(X)

holds by [11, Theorem 3.5] and, with a similar argument, we can prove that the chain rule

d(φ ◦ f) = φ′ ◦ fdf for every φ ∈ C1(R) ∩ LIP(R) and f ∈ LIP(X)

holds. Finally if {fi}i is a sequence of equi-Lipschitz functions pointwise convergent to 
f , then
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dfi
∗
⇀ df

thanks to the requirement ii) of Definition 1.35, where we isometrically embedded D1(X)
into the dual space of the space of 1-currents. �

In this section we have seen how currents on metric spaces can be seen as elements 
of the dual of a suitable normed Cb(X)-module. In literature, there have been other 
attempts to describe a pre-dual space of the space of currents (e.g. [34,37,42]). We now 
compare briefly our approach to the one in [34]. First, let us clarify that we do not 
exhibit a pre-dual space of the space of currents, as not every element of Dn(X)′ is a 
current, (indeed, in order to be a current, an element of Dn(X)′ must be tight and satisfy 
item ii) of Definition 1.35 - we have not been able to find a norm on Dn(X) which is 
compatible with such notions of convergence). On the other hand in [34] the space of 
currents is identified with the sequentially continuous dual of the space Γ̄n

c (X) (see [34]
for the relevant definitions).

We show now that the map ·̂ in [34, Theorem 1.1] is compatible with the notions 
developed here. In order to do so, the reader is assumed to be familiar with the machinery 
used and developed in [34]. Let T be a current, which then induces a local vector measure 
NT = LT |NT |. Take then T̂ ∈ Γ̄n

c (X)∗. Now, the proofs of [34, Theorem 7.1 and Theorem 
1.1] show that if ω ∈ Γ̄n

c (X) then we have

T̂ (ω) :=
ˆ

X

L̄T (x)(ω(x)) d|NT |(x)

where the measurability of the integrand is part of the statement. The map L̄T (x) is 
obtained by first considering the unique extension of LT (x) to the space Polyn(U), 
where U is an open neighbourhood of x, and then by considering the induced map on 
the stalk over x, as by weak locality L(x)(v) depends only on the germ of v at x.

1.2.2. Differential of Sobolev functions
Recall that a metric measure space is a triplet (X, d, m) where X is a set, d is a 

(complete and separable) distance on X and m is a non negative Borel measure that is 
finite on balls. We adopt the convention that metric measure spaces have full support, 
that is to say that for any x ∈ X, r > 0, we have m(Br(x)) > 0.

The Cheeger energy (see [19,38,8,7]) associated to a metric measure space (X, d, m) is 
the convex and lower semicontinuous functional defined on L2(m) as

Ch(f) := 1
2 inf

⎧⎨⎩lim inf
k

ˆ

X

lip(fk)2 dm : fk ∈ LIPb(X) ∩ L2(m), fk → f in L2(m)

⎫⎬⎭
where lip(f) is the so called local Lipschitz constant
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lip(f)(x) := lim sup
y→x

|f(y) − f(x)|
d(y, x) ,

which has to be understood to be 0 if x is an isolated point. The finiteness domain of 
the Cheeger energy will be denoted as W1,2(X) and will be endowed with the complete 
norm ‖f‖2

W1,2(X) := ‖f‖2
L2(m) + 2Ch(f). It is possible to identify a canonical object 

|df | ∈ L2(m), called minimal relaxed slope, providing the integral representation

Ch(f) = 1
2

ˆ

X

|df |2 dm for every f ∈ W1,2(X). (1.55)

We assume the reader familiar with the concepts of L∞/L0-normed modules as de-
veloped in [26]. Here we recall that one of the main results in [26] is about existence 
and uniqueness of a ‘cotangent module’ and of an associated notion of ‘differential of a 
Sobolev function’, meaning that: there exists a unique (up to unique isomorphism) cou-
ple (L2(T ∗X), d) where L2(T ∗X) is a L2-normed L∞-module and d : W1,2(X) → L2(T ∗X)
is linear and such that

i) |df | (as just above (1.55)) coincides with the pointwise norm of df m-a.e. for every 
f ∈ W1,2(X),

ii) L2(T ∗X) is generated (in the sense of modules) by 
{
df : f ∈ W1,2(X)

}
.

We define the tangent module L2(TX) as the dual (in the sense of modules) of L2(T ∗X). 
We define L0(T ∗X) as the L0-completion of the cotangent module L2(T ∗X) and also (this 
definition is canonically equivalent to the previous one if p = 2)

Lp(T ∗X) :=
{
v ∈ L0(T ∗X) : |v| ∈ Lp(X)

}
for p ∈ [1,∞].

Similarly, we define L0(TX) as the L0-completion of L2(TX) and

Lp(TX) :=
{
v ∈ L0(TX) : |v| ∈ Lp(X)

}
for p ∈ [1,∞]. (1.56)

In this manuscript we proposed an axiomatization of the concept of module (that aims 
at being an abstract approach to the space of sections of a given bundle) and duality 
different from the one in [26]. It is therefore natural to wonder whether even in this new 
approach we have an existence & uniqueness result like the above. The answer is ‘yes 
under mild conditions’ and is given in the theorem below. We notice that:

i) If M is an L2-normed module, then the subspace V := {v ∈ M : |v| ∈ L∞(m)}
equipped with the norm ‖v‖ := ‖|v|‖L∞ is a normed Cb(X)-module, the product 
operation being the one inherited from the L∞(m)-module structure.

ii) Is perfectly natural to assume that the reference measure is finite, in order to have 
the integrability of |df | for every f ∈ W1,2(X). The alternative would be to develop a 
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theory for local vector measures with locally finite mass - and thus acting in duality 
with objects with bounded support. This is viable but we won’t proceed in this 
direction.

iii) The situation here - in particular for what concerns uniqueness - is more complicated 
than the one in [26] because we have to build not only the local vector measure Df , 
but also the module V on which it acts (as opposed to the construction of the 
differential in [26] that ‘stands on its own’). Assuming L2(T ∗X) to be reflexive helps 
in getting the desired uniqueness.

Theorem 1.43. Let (X, d, m) be a metric measure space with finite mass and assume that 
L2(T ∗X) is reflexive. Then there exists a unique couple (D, V), where D : W1,2(X) → MV
is linear and V is a normed Cb(X)-module such that:

i) |Df | = |df |m as measures,
ii) for every v ∈ V we have

‖v‖ = supN(X)(v), (1.57)

where the supremum is taken among all local vector measures N belonging to the 
Cb(X) module generated by the image of D with |N|(X) ≤ 1,

iii) if {vk}k ⊆ V is bounded and such that for every A Borel and f ∈ W1,2(X), 
Df(A)(vk) has a finite limit, then there exists v ∈ V such that Df(A)(vk) →
Df(A)(v).

Uniqueness is intended up to unique isomorphism in the following sense: whenever (D̃, Ṽ)
is another such couple, there exists a unique couple of Cb(X) linear (bijective) isometries 
(Φ, Ψ) where Φ : MV → MṼ and Ψ : V → Ṽ are such that Φ ◦D = D̃ and Ψ(v) · Φ(N) =
v · N.

Finally, the definitions

V :=
{
v ∈ L2(TX) : |v| ∈ L∞(m)

}
= L∞(TX) (1.58)

and

Df(A)( · ) :=
ˆ

A

df( · ) dm (1.59)

provide a realisation of the unique couple as above.

Proof. We divide the proof in three steps.
Step 1. We verify that the couple (D, V) given by (1.58) and (1.59) satisfies the re-
quirements. It is clear that Df is a local vector measure for every f ∈ W1,2(X) whose 
total variation is bounded from above by |df |m. The equality |Df | = |df |m follows from



C. Brena, N. Gigli / Journal of Functional Analysis 286 (2024) 110202 45
[26, Corollary 1.2.16]. Also, W1,2(X) � f → Df ∈ MV is linear by linearity of f → df . 
Notice that (1.57) is a consequence of the density (in the sense of Lp-normed L∞-modules) 
of the image of the map d : W1,2(X) → L2(T ∗X) together with the definition of pointwise 
norm for L2(TX) ([26, Proposition 1.2.14]) and an immediate approximation argument. 
We prove now item iii), take {vk}k ⊆ V as in the statement and notice that since 
m(X) < ∞ such sequence is also bounded in L2(TX). Since such space is reflexive, 
there is a non-relabelled subsequence weakly converging to a limit v ∈ L2(TX) (e.g. by 
Eberlein-Smulian’s Theorem, but in fact in our setting the reflexivity of L2(T ∗X) implies 
its separability - because it trivially implies the reflexivity of W1,2(X), that in turn im-
plies separability of W1,2(X) - see [4, Proposition 42] - that in turn trivially implies the 
separability of L2(T ∗X), so there is no need of the deep Eberlein-Smulian’s Theorem). 
Now notice that the L∞(TX)-norm is L2(TX)-lower semicontinuous to conclude that 
v ∈ V as well.

Now notice that for f ∈ W1,2(X) and A ⊆ X Borel we have χAdf ∈ L2(T ∗X), hence 
the weak convergence implies

lim
k

Df(A)(vk) = lim
k

ˆ

A

df(vk) dm =
ˆ

A

df(v) dm = Df(A)(v),

as desired.
Step 2. We prove that the maps (Φ, Ψ), if they exist, are unique. Recall that we require 
Φ ◦D = D̃ and Ψ(v) · Φ(N) = v · N for any v ∈ V. Then, taken {gi}i=1,...,n ⊆ Cb(X) and 
{fi}i=1,...,n ⊆ W1,2(X) we have that for any v ∈ V it holds

n∑
i=1

giD̃fi(X)(Ψ(v)) = Φ
(

n∑
i=1

giDfi

)
(X)(Ψ(v)) =

n∑
i=1

giDfi(X)(v),

which, thanks to item ii), forces the uniqueness of Ψ. Uniqueness of Φ follows immediately 
from the request Ψ(v) · Φ(N) = v · N, as Ψ is required to be surjective.
Step 3. We take a couple (D, V) verifying items i), ii) and iii) and we prove existence of 
the maps (Φ, Ψ) as in the statement, provided that the other couple verifying items i), 
ii) and iii) is the canonical one given by (1.58) and (1.59). This will be clearly enough. 
Both maps will be denoted with ̂·.

For every v ∈ V, we define

|v|∗ := m − ess sup
f∈W1,2(X)

Lf (v)χ{df �=0},

where Df = Lf |Df | is the polar decomposition, notice that | · |∗ is well defined as |Df | �
m by item i). Notice now that item ii) together with an easy approximation argument 
based on Proposition 1.17 yields that

‖v‖ = supN(X)(v),



46 C. Brena, N. Gigli / Journal of Functional Analysis 286 (2024) 110202
where the supremum is taken among the local vector measures N with |N(X)| ≤ 1 and

N ∈
{∑

i

χAi
Dfi : {Ai}i is a Borel partition of X and {fi}i ⊆ W1,2(X)

}
.

It then follows that ‖|v|∗‖L∞(m) = ‖v‖.
Given v ∈ V, we consider the map

L2(T ∗X) �
∑
i

χAi
dfi →

∑
i

χAi
Lfi(v)|dfi| =

∑
i

χAi

d(v · Dfi)
dm ∈ L1(m),

where the equality is due to item i). By the trivial bound 
∑

i χAi
|dfi|‖v‖ for the right 

hand side, the fact that m is finite and [26, Proposition 1.4.8], we see that it defines 
an element of L2(TX), that we call v̂, and which satisfies, by the definition of | · |∗, the 
identity |v̂| = |v|∗ m-a.e. Notice that the map v → v̂ is Cb(X) linear and satisfies

Df(A)(v) =
ˆ

A

df(v̂) dm or equivalently v · Df = df(v̂) (1.60)

for every A ⊆ X Borel and v ∈ V. Also, if 
∑

i χAi
dfi ∈ L2(T ∗X), it holds that∣∣∣∣∑

i

χAi
dfi
∣∣∣∣ = m − ess sup

v∈V,‖v‖≤1

∑
i

χAi
dfi(v̂), (1.61)

as, if f ∈ W1,2(X),

|df | = m − ess sup
v∈V,‖v‖≤1

Lf (v)|df | = m − ess sup
v∈V,‖v‖≤1

df(v̂),

where, as above, the second equality comes from item i) (or, which is the same, from 
(1.60)).

We set now M := {v̂ : v ∈ V} and we claim that M = L∞(TX). We prove first that 
M ⊆ L2(TX) is dense. If by contradiction M was not dense, we could find a functional 
Q ∈ (L2(TX))∗ = L2(T ∗X) (by [26, Proposition 1.2.13] and the assumption that L2(T ∗X)
is reflexive) such that Q �= 0 but Q(v̂) = 0 m-a.e. for every v ∈ V. By density, we take 
{Qk}k ⊆ L2(T ∗X) with Qk → Q in L2(T ∗X) and also |Q−Qk| → 0 m-a.e. and Qk is of 
the form 

∑
i χAk

i
dfk

i . Now, if v ∈ V,

|Qk(v̂)| ≤ |Qk −Q|(v̂) + |Q(v̂)| ≤ |Qk −Q|‖v‖ m-a.e.

so that, taking into account (1.61),

|Qk| ≤ |Q−Qk| m-a.e.
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which implies that Q = 0, a contradiction. Therefore we have proved that M ⊆ L2(TX)
is dense.

Take now v ∈ L2(TX) with |v| ∈ L∞(m). By density, we take a sequence {vn}n ⊆
V such that v̂n → v in L2(TX) and also |v̂n − v| → 0 m-a.e. As M is stable under 
multiplication by characteristic functions of Borel subsets of X (thanks to item iii) and 
the Cb(X) linearity of the map v → v̂) we can further assume that {vn}n ⊆ V is bounded. 
Now, thanks to item iii), we see that v ∈ M .

Now, to any N ∈ MV we associate N̂ ∈ MM by v̂ · N̂ := v · N. As V is isometric to(
M, ‖| · |‖L∞(m)

)
(via the Cb(X) linear isometry ̂·), we see that the map N → N̂ is a Cb(X) linear isometry. 
Also, D̂f(A) =

´
A

df( · ) dm. Indeed, if v ∈ V, then v̂ · D̂f = v · Df = Lf (v)|df | =
df(v̂). �
Remark 1.44. Theorem 1.43 can be easily adapted to integrability exponents different 
from 2 within the range (1, ∞). �

1.2.3. Differential of BV functions
In this section, we build local vector measures that describe the distributional deriva-

tives of functions of bounded variation. We study here the case of an arbitrary metric 
measure space and a real valued function of bounded variation. Then, in the setting of 
an RCD(K, ∞) space, improve considerably the result, see Section 2.3.

We assume that the reader is familiar with the theory of functions of bounded variation 
in metric measure spaces developed in [1,2,33]. We recall now the main notions. For 
A ⊆ X open, LIPloc(A) denotes the space of Borel functions that are Lipschitz in a 
neighbourhood of x, for any x ∈ A. If (X, d) is locally compact, LIPloc(A) coincides with 
the space of functions that are Lipschitz on compact subsets of A.

Fix a metric measure space (X, d, m). Given f ∈ L1(m), we define, for any A ⊆ X
open,

|Df |(A) := inf

⎧⎨⎩lim inf
k

ˆ

A

lip(fk) dm : fk ∈ LIPloc(A) ∩ L1(m), fk → f in L1(m)

⎫⎬⎭ .

We say that f is a function of bounded variation, i.e. f ∈ BV(X), if f ∈ L1(m) and 
|Df |(X) < ∞. If this is the case, |Df |( · ) turns out to be the restriction to open sets of 
a finite Borel measure that we denote with the same symbol and we call total variation. 
Notice that, by its very definition, the total variation |Df |(A) is lower semicontinuous 
with respect to L1(m) convergence for A open, is subadditive and |D(φ ◦ f)| ≤ L|Df |
whenever f ∈ BV(X) and φ is L-Lipschitz.

Several classical results concerning BV calculus have been generalised to the abstract 
framework of metric measure spaces. Among them, the Fleming-Rishel coarea formula, 
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which states that given f ∈ BV(X), the set {f > r} has finite perimeter for L1-a.e. r ∈ R

and
ˆ

X

h d|Df | =
ˆ

R

dr
ˆ

X

h dPer({f > r}, · ) for any Borel function h : X → [0,∞].

In particular,

|Df |(A) =
ˆ

R

drPer({f > r}, A) for any A ⊆ X Borel. (1.62)

Now we need the definition of divergence ([26,18]). Notice that in the definition below 
the module L∞(TX) is defined as in (1.56), i.e. starting from the modules L2(T ∗X), 
L2(TX) and algebraic operations; in particular, no notion of Sobolev function other than 
W1,2(X) is required.

Definition 1.45. Let p ∈ {2, ∞}. For v ∈ Lp(TX) we say that v ∈ D(divp) if there exists 
a function g ∈ Lp(X) such that

ˆ

X

df(v) dm = −
ˆ

X

fg dm for every f ∈ W1,2(X) with bounded support, (1.63)

and such g, that is uniquely determined, will be denoted by div v.

Notice that if v ∈ D(div2) ∩D(div∞), then the two objects div v as above coincide, 
in particular, div v ∈ L2(m) ∩ L∞(m). From (1.63) it follows that supp (div v) ⊆ C for 
any C ⊆ X such that supp v ⊆ C.

Another direct consequence of the definition is that if v ∈ D(divp) has bounded 
support (i.e. support contained in a bounded set) then

ˆ

X

div v dm = 0 (1.64)

as it can be checked by picking f in (1.63) identically equal to 1 on a set containing the 
support of v. Also, the following version of the Leibniz rule holds: if v ∈ D(div∞) and 
f ∈ LIPb(X), then fv ∈ D(div∞) and

div(fv) = df(v) + fdiv v. (1.65)

This follows from (1.63) and the fact that if g ∈ W1,2(X) has bounded support and 
f ∈ LIPb(X), then fg ∈ W1,2(X) has bounded support and satisfies d(fg) = fdg + gdf . 
In the case p = 2, again from the algebra properties of bounded Sobolev functions 
together with an easy approximation argument, we have that if v ∈ D(div2) ∩ L∞(TX)
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and f ∈ S2(X) ∩L∞(m), then fv ∈ D(div2) and the calculus rule above holds. In the case 
p = 2, we will often omit to write the superscript 2 for what concerns the divergence.

The following representation formula is basically proved in [21] (see also [18] and [16, 
Proposition 2.1] for what concerns this formulation).

Proposition 1.46 (Representation formula). Let (X, d, m) be a metric measure space and 
f ∈ BV(X). Then, for every A open subset of X, it holds that

|Df |(A) = sup

⎧⎨⎩
ˆ

A

fdiv v dm

⎫⎬⎭ , (1.66)

where the supremum is taken among all v ∈ WA, where

WA := {v ∈ D(div∞) : |v| ≤ 1 m-a.e. and supp v ⊆ A} . (1.67)

This statement might appear surprising because it characterises BV(X) functions via 
duality with vector fields that, in turn, are defined in duality with functions in W1,2(X)
(as discussed before Definition 1.45). We thus make the following observations:

i) Approaching Sobolev/BV functions via integration by parts in general metric mea-
sure setting has been one of the main achievements in [21]. In such reference, the 
definition is given in duality with the notion of derivation which is there defined as 
suitable map from Lipschitz functions to L0(m).

ii) Since Lipschitz functions are always Sobolev, at least locally, vector fields as consid-
ered in (1.67) are included in the class of derivations as used in [21] to define BV 
functions. In particular, it is obvious a priori from the definitions in [21] that the 
inequality ≥ holds in (1.66).

iii) The opposite inequality follows from the results in [21]. Specifically, it is trivial to 
notice that ‘L∞ derivations with divergence in L∞’ are also ‘L2 derivations with 
divergence in L2’ (at least locally) and these latter ones can be used - thanks to 
[21] - to define W1,2 functions. It then follows by abstract machinery that these L2

derivations are (or better, uniquely induce) a vector field in L2(TX) and if we actually 
start with an L∞ derivation with divergence in L∞, the corresponding vector field 
will be in L∞(TX) ∩D(div∞) with the same pointwise norm and divergence of the 
original derivation (see also [18, Lemma 3.12]). This line of thought gives ≤ in (1.66).

With this said, we have the following result:

Theorem 1.47. Let (X, d, m) be a metric measure space and let V be the subspace of 
L∞(TX) made of Cb(X)-linear combinations of vector fields in D(div∞).

Then for every f ∈ BV(X) there exists a unique local vector measure Df defined on 
V such that
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Df(X)(v) = −
ˆ

X

fdiv v dm for every v ∈ D(div∞). (1.68)

Proof. Start noticing that (1.65) grants that D(div∞) is a normed LIPb(X)-module (we 
equip D(div∞) with the norm of L∞(TX)) and that LIPb(X) is a subring of Cb(X) that 
approximates open sets in the sense of Definition 1.3. Now define F : D(div∞) → R as

F(v) := −
ˆ

X

fdiv v dm .

Notice that Proposition 1.46 shows that F ∈ (D(div∞))′ with ‖F‖′ = |Df |(X) and that

sup {F(v) : v ∈ D(div∞), ‖v‖ ≤ 1, supp v ⊆ A} = |Df |(A).

In particular, the set function defined by the supremum in the left hand side of the 
equation above is the restriction to open sets of a finite Borel measure, so that by 
Lemma 1.26 the functional F is tight.

Therefore by Theorem 1.27 there is a unique local vector measure Df defined on 
D(div∞) for which (1.68) holds and by Proposition 1.31 such measure can be uniquely 
extended to a local vector measure on V. �
Remark 1.48. Given f ∈ BV(X), we can take the polar decomposition of its distributional 
derivative Df = L|Df | given by Theorem 1.47. Therefore, taking into account also 
Lemma 1.18, we have that for every g ∈ Cb(X) and v ∈ D(div∞) such that gv ∈ D(div∞), 
we have

ˆ

X

fdiv(gv) dm = −
ˆ

X

gL(v) d|Df |

where, in particular, ‖L(v)‖L∞(|Df |) ≤ ‖v‖ by (1.25). We can see this result as a particular 
case of [18, Theorem 4.13]. Following similar arguments it also possible to obtain the full 
result of [18, Theorem 4.13], working with local vector measures defined on the Cb(X)
module generated by DM∞(X) ([18, Definition 4.1]). �

We prove now the basic calculus rules for continuous functions of bounded variation. 
In the framework of RCD(K, N) spaces, we will have a much more powerful result, see 
Theorem 2.21.

Proposition 1.49 (Chain rule). Let (X, d, m) be a metric measure space, let f ∈ BV(X) ∩
C(X) and let φ ∈ LIP(R) be such that φ(0) = 0. Then

|Df |(f−1(N)) = 0 for every Borel set N ⊆ R such that L1(N) = 0. (1.69)

In particular, φ is differentiable at f(x) for |Df |-a.e. x. Moreover φ ◦ f ∈ BV(X) and
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D(φ ◦ f) = φ′ ◦ fDf. (1.70)

Proof. Take N ⊆ R with L1(N) = 0. Then we use (1.62) and the fact that the perimeter 
of a set is concentrated on its topological boundary to compute

|Df |(f−1(N)) =
ˆ

R

Per({f > t}, f−1(N)) dt =
ˆ

N

Per({f > t}, f−1(N)) dt = 0.

In particular, by Rademacher’s Theorem, we have that φ is differentiable at f(x) for 
|Df |-a.e. x.

With an easy approximation argument, we see that we can assume φ ∈ LIP(R) ∩C1(R)
with φ(0) = 0. Indeed, let {ρn}n be a family of Friedrich mollifiers and define

φn := φ ∗ ρn − (φ ∗ ρn)(0) ∈ LIP(R) ∩ C1(R).

For any v ∈ D(div∞), we have on the one hand

D(φn ◦ f)(X)(v) = −
ˆ

X

φn ◦ fdiv v dm → −
ˆ

X

φ ◦ fdiv v dm = D(φ ◦ f)(X)(v)

and on the other hand

φ′
n ◦ fDf(X)(v) =

ˆ

X

φ′
n ◦ fLf (v)|Df | →

ˆ

X

φ′ ◦ fLf (v)|Df | = φ′ ◦ fDf(X)(v),

where we used that φ′
n → φ′ L1-a.e. so that by (1.69) it holds φ′

n ◦ f → φ′ ◦ f |Df |-a.e. 
Then, if the chain rule holds for φn, by the characterisation of the differential given in 
Theorem 1.47 above we obtain that it holds for φ.

We thus proved that it suffices to prove the claim under the assumption φ ∈ LIP(R) ∩
C1(R) with φ(0) = 0. If this is the case, we can take an approximating sequence {φ̃n}n
as follows: for every n, φ̃n is piecewise affine, at its points of non-differentiability φ̃n

coincides with φ, φ̃n → φ uniformly and |φ̃′
n − φ′| → 0 L1-a.e. Let now {φ̂n}n be defined 

as φ̂n := φ̃n − φ̃n(0). Arguing as above, we see that it suffices to check that (1.70) holds 
for any φ̂n to conclude the proof.

To conclude then we prove the chain rule under the assumption that φ ∈ LIP(R) is 
piecewise affine and φ(0) = 0. Thus let {Ai}i ⊆ X be the at most countable collection of 
open sets of the form f−1(I) for I ⊆ R interval where φ is affine. Then (1.69) ensures that 
|Df |(X\∪iAi) = 0 and then an argument based on the fact that |Df |(X) < ∞ shows that 
χ∪i<nAi

D(φ ◦ f)(X)(v) → D(φ ◦ f)(X)(v) and χ∪i<nAi
φ′ ◦ fDf(X)(v) → φ′ ◦ fDf(X)(v)

as n → ∞ for any v ∈ D(div∞).
Hence to conclude it is enough to check that χAi

D(φ ◦ f) = χAi
φ′ ◦ fDf for any i, 

and then again by an argument based on |Df |(X) < ∞ that it is sufficient to prove that 
χBD(φ ◦ f) = χBφ

′ ◦ fDf for any bounded open set B contained in some of the Ai’s. 
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In turn, (1.39) (applied with V := D(div) but then we use Proposition 1.31) and (1.18)
show that to prove this latter statement it is sufficient to prove that

D(φ ◦ f)(B)(v) = φ′ ◦ fDf(B)(v)

for any B as before and v ∈ D(div∞) with supp v ⊆ B. To see this notice that

D(φ ◦ f)(B)(v) = D(φ ◦ f)(X)(v) = −
ˆ

X

φ ◦ fdiv v dm (1.64)= −φ′
|I

ˆ

X

fdiv v dm

= φ′ ◦ fDf(B)(v).

The conclusion follows. �
The Leibniz rule is simply obtained by polarisation of the chain rule with φ(t) = t2.

Proposition 1.50 (Leibniz rule). Let (X, d, m) be a metric measure space and f, g ∈
BV(X) ∩ Cb(X). Then fg ∈ BV(X) and

D(fg) = fDf + gDf.

In particular,

|D(fg)| ≤ |f ||Dg| + |g||Df |. (1.71)

Proof. Using the chain rule with φ ∈ LIP(R) that coincides with t → t2 on a sufficiently 
large neighbourhood of 0, we see that

D(f + g)2 = 2(f + g)D(f + g),

Df2 = 2fDf,

Dg2 = 2gDg.

The conclusion easily follows from the linearity of the differential. �
Remark 1.51. We wish to point out that the language of local vector measures is not 
necessary to achieve the inequality (1.71). We sketch an alternative proof. Take first 
φ ∈ LIP(R) bi-Lipschitz (hence strictly monotone, say strictly increasing) and assume 
that φ(0) = 0. For A ⊆ X open, we compute, by (1.62) and the change of variables 
formula,

|D(φ ◦ f)|(A) =
ˆ

R

Per({φ ◦ f > t}, A) dt =
ˆ

R

Per({f > s}, A)φ′(s) ds

=
ˆ

R

ˆ

A

φ′(f(x)) dPer ({f > s})(x) ds =
ˆ

A

φ′(f(x)) d|Df | ,
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so that

|D(φ ◦ f)| ≤ |φ′ ◦ f ||Df |. (1.72)

Now we notice that, using (1.62), (1.69) and the regularity of the measures involved, 
we see that it is enough to check (1.71) on A, where A ⊆ X is a bounded open set 
such that f, g ∈ (c, C) for some c, C ∈ (0, ∞). Up to scaling, we can assume c = 2. We 
compute then, on A,

|D(fg)| = |Delog(fg)| ≤ elog(fg)|D(log f + log g)| ≤ fg|D(log f)| + fg|D(log g)|

≤ g|Df | + f |Dg|,

where we used (1.72) twice.
If f, g ∈ BV(X) ∩ L∞(m) are not continuous, other versions of the inequality investi-

gated are available: if one denotes with f̄ , ̄g the precise representatives of f, g (e.g. (2.14)
and the equation below (2.14)) a reasonable claim would be

|D(fg)| ≤ |f̄ ||Dg| + |ḡ||Df |

which is exactly what one obtains in the smooth context. On metric measure spaces this 
property may fail (see e.g. [30], where also an optimal bound on |D(fg)| was provided 
for PI spaces), whereas for finite dimensional RCD spaces the sharp version has been 
proved in [16].

1.2.4. Strongly local measures
Let (X, d, m) be a metric measure space (complete, separable, with measure finite on 

bounded sets), M an Lp(m)-normed L∞(m)-module over it and V ⊆ M be a Cb(X)
submodule (in the algebraic sense) such that for every v ∈ V, |v| ∈ L∞(m). We have 
already noticed that V equipped with the norm

‖v‖ := ‖|v|‖L∞(m).

is (V, ‖ · ‖) is a normed Cb(X)-module. Local vector measures N defined on V are, by 
definition, weakly local, i.e. they satisfy

N(A)(v) = 0, for every A ⊆ X open and v ∈ V with ‖v‖|A = 0. (1.73)

In some sense, due to the nature of the definition of general normed Cb(X)-modules, this 
is the most we ask for when speaking about locality. In the current setting, however, the 
elements of V are also elements of M and thus are ‘defined m-a.e.’, in a sense (see also 
discussion in [26]). In practice, not only we can say whether ‖v‖|A = 0 for any open set 
A, but we can also ask whether |v| = 0 m-a.e. on B for B ⊆ X Borel (and this certainly 
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occurs if B is open and ‖v‖|B = 0). Because of this, we ask whether a given local vector 
measure N is local in the following sense, that we shall call strong locality:

N(B)(v) = 0, for every B ⊆ X Borel and v ∈ V with |v| = 0 m-a.e. on B. (1.74)

What just said ensures that (1.74) implies (1.73). There are two reasons for which it 
might happen that the converse implication fails:

1) It might be that |N| �� m. In this case picking B with m(B) = 0 and |N|(B) > 0 we 
see that (1.74) cannot hold.

2) It might be that |N| � m but still (1.74) fails, so that we can’t improve the locality 
information from open sets to Borel ones. In investigating this matter it might be 
worth to notice that the germ seminorm |v|g coincides with the m-essential upper 
semicontinuous envelope of the pointwise norm |v| (because ‖v‖|A = ‖|v|χA‖L∞(μ)
for any A ⊆ X open).

Using Hahn-Banach on L∞ it is easy to build examples where these can actually occur:

Example 1.52. Let (X, d, m) be the unit interval [0, 1] equipped with the usual distance 
and measure and V := L∞(m). Also, let V ⊆ V be the subspace of those functions that 
are L1-a.e. constant in a neighbourhood of 0 and L : V → R be the functional assigning 
to f ∈ V the value it a.e. assumes in such neighbourhood. Then clearly L has norm 1 
and can be extended, via Hahn-Banach, to a functional with norm 1 on V, still denoted 
L.

Now we define N := Lδ0, i.e. we put N(B)(f) := δ0(B)L(f) for every B ⊆ [0, 1] Borel 
and f ∈ V. It is clear that N is a vector valued measure on V ′; to check weak locality 
we notice that for A ⊆ [0, 1] open we have ‖f‖|A = 0 if and only if f = 0 L1-a.e. on 
A, whence the conclusion follows from the very definition of L. Since, rather clearly, we 
have |N| = δ0, we have an example where (1) above holds.

A variation of this construction also gives an example where (2) holds. Namely, let 
(X, d, m) be the unit interval [0, 1] equipped with the usual distance and the measure 
m := δ0 + L1 and let V := L∞(m). Also, let V ⊆ V be the subspace of those functions 
that are L1-a.e. constant in a neighbourhood of 0 and L : V → R be the functional 
assigning to f ∈ V the value it a.e. assumes in such neighbourhood (notice that L(f)
might be different from f(0)). Then, as before, L has norm 1 and can be extended, via 
Hahn-Banach, to a functional with norm 1 on V, still denoted L.

As before, we define N := Lδ0 and notice that the same arguments as above ensure 
that N is a local vector measure defined on V with |N| = δ0 � m. To see that (1.74)
fails let f ∈ V be identically 1 on (0, 1] and f(0) = 0. Then the pointwise norm of f in 0 
is 0 (notice that, as already discussed, the pointwise norm is not the same as the germ 
seminorm) so that if (1.74) is in place we should have N({0})(f) = 0, but the fact that 
f is in V gives L(f) = 1, so that N({0})(f) = 1. �
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With this said, our main result in this section, namely Proposition 1.53 below, concerns 
characterisation of strongly local vector measures and extension of such measures initially 
defined only on appropriate subspaces, i.e. we are going to adapt Proposition 1.31 to the 
strongly local case.

Before coming to the actual statement, let us point out an easy to spot class of 
strongly local vector measures. Take M ∈ M ∗ (the dual in the sense of modules) with 
|M | ∈ L∞(m) and define N as

N(A)(v) :=
ˆ

A

M(v) dm for A ⊆ X Borel and v ∈ V, (1.75)

where V := {v ∈ M : |v| ∈ L∞(m)}. It is then easy to see that N is a local vector 
measure satisfying (1.74) and that |N| = |M |m (one would also like to say that the polar 
decomposition N = L|N| of N is given by N = M

|M | |N| but this requires a bit of technical 
care because M is not a map from X to V ′ but rather a ‘local’ map from V to L1(m)). 
There are strict links between the two notions - relying on Corollary A - but we won’t 
discuss this topic further and rather refer to the upcoming [28]]). One of the conclusions 
of Proposition 1.53 below is that - perhaps not surprisingly - in fact all strongly local 
vector measures are of this form.

A more interesting question concerns the possibility of extending a strongly local 
vector measure that initially is defined only on some normed R-module W dense in V
in a suitable sense. We point out that for v ∈ V (V seen as a normed Cb(X)-module) or 
v ∈ W (W seen as a normed R-module) it holds

‖v‖|A = ‖χA|v|‖L∞(m) for every A ⊆ X open,

in particular the local seminorm ‖ · ‖|A (and hence the notion of germ seminorm and 
support) is independent of the choice of R.

We have seen in Proposition 1.31 that all (weakly) local vector measures admit a 
unique extension, thus uniqueness is also in place in the strongly local case. We have 
not been able to achieve an equally general conclusion for what concerns existence, nor 
to find counterexamples; this is the same as to say that we don’t know whether the 
extension of a strongly local vector measure given by Proposition 1.31 is still strongly 
local. Still, we identified a sufficient condition on W for this to hold: it amounts at asking 
that

1
1 ∨ |v|v ∈ W for every v ∈ W. (1.76)

A typical example of a situation when this happens is for W = L∞(X) ∩W1,2(X) (in our 
applications in the RCD setting we will pick a space of bounded Sobolev vector fields, 
see Section 2.2). Notice also that the map v → 1

1∨|v|v is a sort of ‘truncation’ operation, 
as it leaves v unchanged on {|v| ≤ 1} and normalises it to v on {|v| > 1}.
|v|
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Finally, we notice that once a representation like (1.75) holds, one can easily extend 
the measure from the completion of Cb(X) · W to {v ∈ M : |v| ∈ L∞(m)}: we shall use 
this observation in identifying ‘polar’ and ‘representable’ measures in Section 2.2, see 
Proposition 2.10.

With this said, our main result here is:

Proposition 1.53. Let (X, d, m) be a metric measure space, M an Lp(m)-normed L∞(m)-
module and V ⊆ M the normed Cb(X)-module made of elements of M with pointwise 
norm in L∞(m). Also, let W ⊆ V be a subspace that, with the inherited structure, is 
also normed R-module for some subring R ⊆ Cb(X) that approximates open sets (Defi-
nition 1.3).

Assume also that W satisfies (1.76) and that W generates, in the sense of modules, 
M .

Let N be a local vector measure defined on W such that |N| � m. Then the following 
assertions are equivalent:

i) N is strongly local on W, i.e. for any v ∈ W and B ⊆ X Borel we have

N(B)(v) = 0 whenever |v| = 0 |N|-a.e. on B.

ii) there exists MN in M ∗ (the dual in the sense of modules) such that |MN| = 1 |N|-a.e. 
and for every v ∈ W, it holds

LN(x)(v) = MN(v)(x) for |N|-a.e. x ∈ X. (1.77)

Moreover, if these holds the formula

N̂(B)(v) :=
ˆ

B

MN(v) d|N|, ∀B ⊆ X, Borel, v ∈ V, (1.78)

provides the unique extension of N to a strongly local vector measure defined on V.

Proof. The implication ii) ⇒ i) is obvious, so we turn to the opposite one. We start by 
showing that for every v ∈ W we have

|LN(x)(v)| ≤ |v|(x) for |N|-a.e. x ∈ X. (1.79)

Let then v ∈ W and let B be a Borel subset of X. If v = 0 |N|-a.e. on B, then N(B)(v) = 0. 
Otherwise we set

wv :=
‖|v|χB‖L∞(|N|)

∞
v
‖|v|χB‖L (|N|) ∨ |v|
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and notice that wv ∈ W by our assumption (1.76) and that |v − wv| = 0 |N|-a.e. on B. 
Having assumed i), this implies

|N(B)(v)| = |N(B)(wv)| ≤ |N|(B)‖wv‖ ≤ |N|(B)‖|v|χB‖L∞(|N|).

Therefore, for every B ⊆ X Borel we have∣∣∣∣∣∣
ˆ

B

LN(x)(v) d|N|

∣∣∣∣∣∣ ≤ |N|(B)‖|v|χB‖L∞(|N|) for every v ∈ W,

so that (1.79) follows.
By the fact that W generates, in the sense of modules M and with (1.79) in mind, we 

can apply [26, Proposition 1.4.8 and Theorem 1.2.24] to obtain existence and uniqueness 
of MN ∈ M ∗ such that (1.77) holds for every v ∈ W and |MN| ≤ 1 |N|-a.e. Then using 
(1.26) we show that |MN| = 1 |N|-a.e.

The fact that formula (1.78) provides a strongly local extension of N is obvious. To see 
that it is the only one, use the implication (i) ⇒ (ii) just proved with V in place of W
to find a (unique) corresponding MN̂ ∈ M ∗ such that (1.77) holds. Then the uniqueness 
of both MN̂ and MN forces the equality MN̂ = MN and gives the conclusion. �
2. The theory for RCD spaces

In this section we treat the case of local vector measures defined on a particular class 
of Cb(X)-normed modules, namely tangent modules on RCD spaces. The reason for 
dealing with RCD spaces is having at our disposal a fine tangent module (with respect 
to the capacity). This fine tangent module is useful, in the practice, as many relevant 
objects turn out to have total variation which is absolutely continuous with respect to 
the capacity (e.g. the distributional derivative of a function of bounded variation). Even 
though it is fairly easy to adapt the theory developed in this section to a more general 
context, we decided to stick to this particular case for the sake of clarity and to avoid 
overloading the paper with the axiomatization of the properties regarding the interplay 
of modules involved, which are by now well known in the RCD setting.

2.1. Some useful knowledge

With the introduction above in mind, let us briefly introduce RCD metric measure 
spaces. An RCD(K, N) space is an infinitesimally Hilbertian space ([24]) satisfying a 
lower Ricci curvature bound and an upper dimension bound (meaningful if N < ∞) in 
synthetic sense according to [39,40,31]. General references on this topic are [3,6,8–10,25,
26,29,41] and we assume the reader to be familiar with this material.

Following [26,36] (with the additional request of a L∞ bound on the Laplacian), we 
define the vector space of test functions on an RCD(K, ∞) space as
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Test(X) := {f ∈ LIP(R) ∩ L∞(m) ∩D(Δ) : Δf ∈ H1,2(X) ∩ L∞(m)},

and the vector space of test vector fields as

TestV(X) :=
{

n∑
i=1

fi∇gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ Test(X)
}
. (2.1)

Notice that the original definition of TestV(X) given by the second named author was 
slightly different, namely it was, {

∑n
i=1 fi∇gi : fi, gi ∈ Test(X)}.

Our choice is motivated by the desire of having (1.76) at our disposal without in-
troducing further space of vectors. In this direction we point out that, rather clearly 
from the studies in [26], for any v ∈ TestV(X) we have |v| ∈ W1,2(X) ∩ L∞(X), thus 

1
1∨|v| ∈ W1,2(X) ∩ L∞(X) as well, so that our definition of TestV(X) ensures that 
such space has the property (1.76). For what concerns the definition of the spaces 
H1,2

C (TX), H1,2
H (TX) as closure of the space of test vector fields, having the enlarged space 

of vector fields makes no difference, as such enlargement is still, trivially, contained in 
the spaces H1,2

C (TX), H1,2
H (TX) as originally introduced, and therefore such spaces can be 

equivalently defined taking the closure (with respect to the relevant norm) of the space 
defined in (2.1).

We assume familiarity with the definition of capacitary modules, quasi-continuous 
functions and vector fields and related material in [20]. A summary of the material we 
will use can be found in [17, Section 1.3]. For the reader’s convenience, we write the 
results that we will need most frequently. Exploiting Sobolev functions, we define the 
2-capacity (to which we shall simply refer as capacity) of any set A ⊆ X as

Cap(A) := inf
{
‖f‖2

H1,2(X) : f ∈ H1,2(X), f ≥ 1 m-a.e. on some neighbourhood of A
}
.

An important object will be the one of fine tangent module, as follows (QCR stands for 
‘quasi continuous representative’).

Theorem 2.1 ([20, Theorem 2.6]). Let (X, d, m) be an RCD(K, ∞) space. Then there 
exists a unique couple (L0

Cap(TX), ∇̄), where L0
Cap(TX) is a L0(Cap)-normed L0(Cap)-

module and ∇̄ : Test(X) → L0
Cap(TX) is a linear operator such that:

i) |∇̄f | = QCR(|∇f |) Cap-a.e. for every f ∈ Test(X),
ii) the set 

{∑
n χEn

∇̄fn
}
, where {fn}n ⊆ Test(X) and {En}n is a Borel partition of X

is dense in L0
Cap(TX).

Uniqueness is intended up to unique isomorphism, in the following sense: if another 
couple (L0

Cap(TX)′, ∇̄′) satisfies the same properties, then there exists a unique module 
isomorphism Φ : L0

Cap(TX) → L0
Cap(TX)′ such that Φ ◦ ∇̄ = ∇̄′. Moreover, L0

Cap(TX) is 
a Hilbert module that we call capacitary tangent module.
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Notice that we can, and will, extend the map QCR from H1,2(X) to S2(X) ∩ L∞(m)
by a locality argument. We define

TestV̄(X) :=
{

n∑
i=1

QCR(fi)∇̄gi : fi ∈ S2(X) ∩ L∞(m), gi ∈ Test(X)
}
.

We define also the vector subspace of quasi-continuous vector fields, QC(TX), as the 
closure of TestV̄(X) in L0

Cap(TX) and finally

QC∞(TX) := {v ∈ QC(TX) : |v| is Cap-essentially bounded} . (2.2)

Recall now that as m � Cap, we have a natural projection map

Pr : L0(Cap) → L0(m) defined as [f ]L0(Cap) → [f ]L0(m)

where [f ]L0(Cap) (resp. [f ]L0(m)) denotes the Cap (resp. m) equivalence class of f . It turns 
out that Pr, restricted to the set of quasi-continuous functions, is injective. We have the 
following projection map P̄r, given by [20, Proposition 2.9 and Proposition 2.13], which 
plays the role of Pr on vector fields.

Proposition 2.2. Let (X, d, m) be an RCD(K, ∞) space. There exists a unique linear con-
tinuous map

P̄r : L0
Cap(TX) → L0(TX)

that satisfies

i) P̄r(∇̄f) = ∇f for every f ∈ Test(X),
ii) P̄r(gv) = Pr(g)P̄r(v) for every g ∈ L0(Cap) and v ∈ L0

Cap(TX).

Moreover, for every v ∈ L0
Cap(TX),∣∣P̄r(v)

∣∣ = Pr(|v|) m-a.e.

and P̄r, when restricted to the set of quasi-continuous vector fields, is injective.

We point out that if v ∈ QC(TX), [20, Proposition 2.12] shows that |v| ∈ L0(Cap) is 
quasi-continuous, in particular, v ∈ QC∞(TX) if and only if P̄r(v) ∈ L∞(TX).

In what follows, with a little abuse, we will often write, for v ∈ L0
Cap(TX), v ∈ D(div)

if and only if P̄r(v) ∈ D(div) and, if this is the case, div v = div(P̄r(v)). Similar notation 
will be used for other operators acting on subspaces of L0(TX).

The following theorem describes the analogue of the map QCR (defined on functions) 
in the case of vector fields.
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Theorem 2.3 ([20, Theorem 2.14 and Proposition 2.13]). Let (X, d, m) be an RCD(K, ∞)
space. Then there exists a unique map ¯QCR : H1,2

C (TX) → L0
Cap(TX) such that

i) ¯QCR(v) ∈ QC(TX) for every v ∈ H1,2
C (TX),

ii) P̄r ◦ ¯QCR(v) = v for every v ∈ H1,2
C (TX).

Moreover, ¯QCR is linear and satisfies

∣∣ ¯QCR(v)
∣∣ = QCR(|v|) Cap-a.e. for every v ∈ H1,2

C (TX),

so that ¯QCR is continuous as map from H1,2
C (TX) to L0

Cap(TX).

We will often omit to write the ¯QCR operator for simplicity of notation. This should 
cause no ambiguity thanks to the fact that

¯QCR(gv) = QCR(g) ¯QCR(v)

for every g ∈ H1,2(X) ∩ L∞(m) and v ∈ H1,2
C (TX) ∩ L∞(TX).

(2.3)

This can be proved easily as the continuity of the map QCR implies that QCR(g) ¯QCR(v)
as above is quasi-continuous and the injectivity of the map P̄r restricted the set of quasi-
continuous vector fields yields the conclusion. Again by locality, we have that (2.3) holds 
even for g ∈ S2(X) ∩ L∞(m).

The following theorem, which is [17, Section 1.3], will be crucial in the construction 
of modules tailored to particular measures.

Theorem 2.4. Let (X, d, m) be a metric measure space and let μ be a Borel measure finite 
on balls such that μ � Cap. Let also M be a L0(Cap)-normed L0(Cap)-module. Define 
the natural (continuous) projection

πμ : L0(Cap) → L0(μ).

We define an equivalence relation ∼μ on M as

v ∼μ w if and only if |v − w| = 0 μ-a.e.

Define the quotient space M0
μ := M/∼μ with the natural (continuous) projection

π̄μ : M → M0
μ.

Then M0
μ is a L0(μ)-normed L0(μ)-module, with the pointwise norm and product induced 

by the ones of M: more precisely, for every v ∈ M and g ∈ L0(Cap),
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{
|π̄μ(v)| := πμ(|v|),
πμ(g)π̄μ(v) := π̄μ(gv).

(2.4)

If p ∈ [1, ∞], we set

Mp
μ :=

{
v ∈ M0

μ : |v| ∈ Lp(μ)
}
,

which is a Lp(μ)-normed L∞(μ)-module. Moreover, if M is a Hilbert module, also M0
μ

and M2
μ are Hilbert modules.

In the particular case in which M = L0
Cap(TX) and μ is a Borel measure finite on 

balls such that μ � Cap, we set

Lp
μ(TX) := (L0

Cap(TX))pμ for p ∈ {0} ∪ [1,∞].

In the case μ = m notice that considering the map

∇̇ : Test(X) ∇̄−→ L0
Cap(TX) π̄m−→ (L0

Cap(TX))0m

we can show that (L0
Cap(TX))0m is isomorphic to the usual L0 tangent module via a map 

that sends ∇f to ∇̇f so that we have no ambiguity of notation and, by construction, 
the map π̄m coincides with P̄r defined in Proposition 2.2. We define the traces

trμ : H1,2
loc(X) → L0(μ) as trμ := πμ ◦ QCR,

t̄rμ : H1,2
C (TX) → L0

μ(TX) as t̄rμ := π̄μ ◦ ¯QCR.

To simplify the notation, we will often omit to write the trace operators. This should 
cause no ambiguity because from (2.3) and (2.4) it follows that

t̄rμ(gv) = trμ(g)t̄rμ(v) for every g ∈ H1,2
loc(X) ∩ L∞(m) and v ∈ H1,2

C (TX) ∩ L∞(TX).
(2.5)

We define

TestVμ(X) := t̄rμ(TestV(X)) ⊆ L∞
μ (TX)

and the proof of [17, Lemma 2.7] gives what follows.

Lemma 2.5. Let (X, d, m) be an RCD(K, ∞) space and let μ be a finite Borel measure 
such that μ � Cap. Then TestVμ(X) is dense in Lp

μ(TX) for every p ∈ [1, ∞).

We will also need Cartesian products of normed modules. Fix n ∈ N, n ≥ 1 and 
denote by ‖ · ‖e the Euclidean norm of Rn. Given a L0(m)-normed L0(m)-module N , we 
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can consider its Cartesian product Nn and endow it with the natural module structure 
and with the pointwise norm

|(v1, . . . , vn)| := ‖(|v1|, . . . , |vn|)‖e

which is induced by a scalar product if and only if the one of N is, and if this is the 
case, we will still denote the pointwise scalar product on Nn by ·. Similarly, if N is 
an Lp-normed module, then Nn has a natural structure of Lp-normed module as well, 
where for v = (v1, . . . , vn) ∈ Nn we have

‖v‖ := ‖|v|‖Lp(m) =
∥∥‖(|v1|, . . . , |vn|)‖e

∥∥
Lp(m) (2.6)

It is then clear that a subspace N1 of N is dense if and only if (N1)n is dense in Nn. 
Similar considerations hold if m is replaced by a Borel measure finite on balls and (with 
the suitable interpretation) in the case of L0(Cap)-normed L0(Cap)-modules or if we alter 
the integrability exponent. It is clear that if M is a L0(Cap)-normed L0(Cap)-module 
and μ is a Borel measure finite on balls such that μ � Cap, then also

(Mp
μ)n ∼= (Mn)pμ for p ∈ {0} ∪ [1,∞].

Finally, we adopt the natural notation

Lp
μ(TnX) := Lp

μ(TX)n.

2.2. Definitions and results

Fix now an RCD(K, ∞) space (X, d, m) and n ∈ N, n ≥ 1.
In this section, we often consider local vector measures defined on TestV(X)n, which is 

endowed with the structure inherited from L∞(TnX). We recall that the space TestV(X), 
defined in (2.1), slightly differs from the one that one usually finds in literature, as 
discussed right after the definition (2.1), but with this definition it follows that TestV(X)n
is a normed R-module, for R := LIPb(X) and we are going to exploit this property 
throughout. Also, TestV(X)n has the property (1.76), as one may readily check using 
(2.7) below. Notice that, according to the conventions discussed at the end of the last 
section, the norm of TestV(X)n is given by formula (2.6) (in particular, in general ‖v‖ �=
‖(‖|v1|‖L∞ , . . . , ‖|vn|‖L∞)‖e).

We wish to remark the fact that,

if f1, . . . , fn ∈ H1,2(X) and ϕ ∈ LIP(Rn;R) is such that ϕ(0) = 0,

then ϕ(f1, . . . , fn) ∈ H1,2(X)
(2.7)

with
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QCR(ϕ(f1, . . . , fn)) = ϕ(QCR(f1), . . . ,QCR(fn)) Cap-a.e.

This is trivial in the case f1, . . . , fn ∈ H1,2(X)∩LIPb(X) and the general case is proved by 
approximation. In particular, if v = (v1, . . . , vn) ∈ TestV(X)n, then we have the following 
compatibility relation

QCR(|v|) = ‖QCR(|v1|), . . . ,QCR(|vn|)‖e = | ¯QCR(v)| Cap-a.e.

where we define the map ¯QCR : TestV(X)n → (QC∞(TX))n componentwise. We will 
often omit to write the maps ¯QCR and QCR.

If μ is a Borel measure finite on balls such that μ � Cap, we define the trace map

t̄r : TestV(X)n → L0
μ(TnX) as t̄r := π̄μ ◦ ¯QCR,

where π̄μ is given by Theorem 2.4. Similarly as for QCR and ¯QCR, we shall often omit 
to explicitly write t̄r and tr.

We now give the following two crucial definitions:

Definition 2.6 (Polar measures). Let (X, d, m) be an RCD(K, ∞) space and let N be a 
local vector measure defined on TestV(X)n. We say that N is polar (or that N is a polar 
vector measure) if |N| � Cap and for every A ⊆ X Borel

N(A)(v) = 0 for every v ∈ TestV(X)n such that |v| = 0 |N|-a.e. on A.

Here and after, we endow, naturally, L∞
Cap(TnX) with the L∞(Cap) norm of the point-

wise norm. Notice that from the trivial identity

|fv| = |f | |v| Cap-a.e. ∀v ∈ L0(Cap), f ∈ Cb(X)

it follows that L∞
Cap(TnX) is a normed Cb(X)-module.

Definition 2.7 (Representable measures). Let (X, d, m) be an RCD(K, ∞) space and let 
N be a local vector measure defined on L∞

Cap(TnX). We say that N is representable (or 
that N is a representable vector measure) if there exists a finite measure μN � Cap and 
νN ∈ L0

Cap(TnX) with |νN| = 1 μN-a.e. such that N = νNμN, in the sense that

N(A)(v) =
ˆ

A

v · νN dμN for every v ∈ L∞
Cap(TnX) (2.8)

for every A ⊆ X Borel.

An immediate difference between polar and representable vector measures is their 
domain of definition: the former are defined on TestV(X)n whereas the latter are defined 
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on the whole L0
Cap(TnX). We shall see in Proposition 2.10 that this is basically the only 

difference between these notions (to this aim we shall exploit the results in Section 1.2.4).

Remark 2.8. It is easy to show what follows.

i) The representation of a representable vector measure is unique, in the sense that if 
N = νNμN = ν′Nμ

′
N, then μN = μ′

N and νN = ν′N μN-a.e. Lemma 2.5 shows moreover 
that if two representable vector measures coincide on X on (the trace of) TestV(X)n, 
then they are equal.

ii) If N = νNμN is a representable vector measure defined on L∞
Cap(TnX), M = νMμM

is a representable vector measure defined on L∞
Cap(TmX) and also f ∈ L∞(μN)k×n

and g ∈ L∞(μM)k×m, then fN + gM is a representable vector measure defined on 
L∞

Cap(T kX). Indeed, we set G := μN + μM and

ω := fνN
dμN
dG + gνM

dμM
dG ,

then

fN + gM = ω

|ω| |ω|G.

On the other hand, if f ∈ L∞(Cap)k×n and N is as above,

fN(A)((v1, . . . , vk)) = N(A)(fT (v1, . . . , vk)),

where ·T denotes the transpose operator.
iii) In general, we don’t know whether a local vector measure whose total variation 

is absolutely continuous with respect to Cap is polar, unless other hypotheses are 
satisfied (cf. Proposition 1.53).

iv) We remark that, if |N| � Cap, then, for every v ∈ TestV(X)n,

N(A)(v) = 0 for every A ⊆ X Borel such that |v| = 0 |N|-a.e. on A

if and only if

N(A)(v) = 0 for every A ⊆ X Borel such that |v| = 0 Cap-a.e. on A.

Indeed, if |v| = 0 Cap-a.e. on A, then |v| = 0 |N|-a.e. on A, so that the first line 
implies the second. Conversely, assume that |v| = 0 |N|-a.e. on A. Then we can 
split A = A1 ∪ A2, where |N|(A1) = 0 and |v| = 0 Cap-a.e. on A2 (just fix a Borel 
representative of |v| and put A2 := {|v| = 0}) and therefore we conclude.

v) It may seem not natural to include the request that |N| is absolutely continuous 
with respect to the capacity in the definition of polar vector measure. However it 
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makes sense as the quasi-continuous representative of a vector field is the finest 
representative at our disposal. �

Here we describe the polar decomposition of a representable vector measure. This 
will be crucial to exploit the main result of Section 1.2.4, i.e. Proposition 1.53, whose 
consequence is the link between polar and representable vector measures (see Proposi-
tion 2.10).

Proposition 2.9. Let (X, d, m) be an RCD(K, ∞) space and let N = νμ be a representable 
vector measure. Then |N| = μ and N admits the polar decomposition LN|N|, where

LN(x)(v) = v · ν(x) for |N|-a.e. x ∈ X for every v ∈ TestV(X)n.

Proof. The fact that |N| = μ follows immediately from the fact that N is defined on 
L∞

Cap(TnX). The second assertion follows from Proposition 1.21, taking into account the 
uniqueness of the Radon-Nikodym derivative. �

For the following proposition, we use the fact that representable vector measures can 
be seen as polar vector measures: given a representable vector measure N = νμ, we can 
always define a polar vector measure I(N) by restriction to TestV(X)n ⊆ L∞

Cap(TnX), 
namely

I(N)(A)(v) :=
ˆ

A

v · ν dμ ,

where, as usual, we took the trace of v.

Proposition 2.10. Let (X, d, m) be an RCD(K, ∞) space and consider the Banach spaces

Repn(X) :=
({

representable vector measures defined on L∞
Cap(TnX)

}
, | · |(X)

)
Poln(X) := ({polar vector measures defined on TestV(X)n} , | · |(X)) .

Then the natural inclusion map

I : Repn(X) → Poln(X)

is a bijective isometry.

Proof. Thanks to Proposition 1.15, recalling (1.17), we easily see that Poln(X) is indeed 
Banach space and the fact that also Repn(X) is a Banach space will follow from the fact 
that I is an isometry. Notice that I is clearly linear.
Step 1. We prove that I is surjective. Take then a polar vector measure N and notice 
that by restriction it induces a local vector measure, still denoted N, on TestV(X)n.
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We are going to apply Proposition 1.53 with |N| in place of m, the (trace of) elements 
in TestV(X)n with pointwise norm in L∞(|N|) in place of W (recall that TestV(X)n is a 
normed LIPb(X)-module) and L∞

|N|(TnX) in place of V. The required density comes from 
Lemma 2.5. Taking also into account Riesz theorem for Hilbert modules ([26, Theorem 
1.2.24]) we thus find ν ∈ L2

|N|(TnX) such that |ν| = 1 |N|-a.e. and

LN(v) = ν · v |N|-a.e. ∀v ∈ TestV(X)n.

It is then clear that formula (2.8) with |N| and ν in place of μN, νN defines a representable 
vector measure whose image via I is precisely N (to be more precise, in Definition 2.7 we 
require ν to be in L0

Cap(TnX) and then use its trace in of formula (2.8): this obviously 
makes no difference with what we have done, since, by the definition given in Theorem 2.4
elements of L2

|N|(TnX) are defined as traces of elements in L0
Cap(TnX)).

Step 2. We prove that I is an isometry. Take then a representable vector measure νμ
and let N := I(νμ). If A ⊆ X is Borel and v ∈ TestV(X)n, we can compute

|N(A)(v)| =

∣∣∣∣∣∣
ˆ

A

v · ν dμ

∣∣∣∣∣∣ ≤
ˆ

A

|v||ν|dμ ≤ ‖v‖μ(A)

and this shows that |N| ≤ μ.
Conversely, by Lemma 2.5, take {vk}k ⊆ TestV(X)n such that vk → ν in L2

μ(TnX). 
Set

wk := 1
1 ∨ |vk|

vk

and notice wk ∈ TestV(X)n, |wk| ≤ 1 m-a.e. for every k and wk → ν in L2
μ(TnX). We 

can compute, by dominated convergence, recalling (2.5)

|N|(X) ≥ N(X)(wk) =
ˆ

X

wk · ν dμ →
ˆ

X

dμ ,

so that, |N|(X) ≥ μ(X). Then, as we have already showed |N| ≤ μ, we have |N| = μ. �
The following theorem builds upon the theory of quasi-continuous functions to improve 

the conclusion of Theorem 1.27, under a mild additional assumption. Namely, it allows 
us to prove that, under an additional tightness condition (see (2.9)), the (unique) local 
vector measure given by Theorem 1.27 is polar. The additional tightness condition just 
mentioned turns out to be rather manageable, especially in practice, when one deals with 
differential objects.

Theorem 2.11. Let (X, d, m) be an RCD(K, ∞) space and let F ∈ (TestV(X)n)′ be tight. 
Assume that F satisfies
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for every sequence {fk}k ⊆ H1,2(X) equibounded in L∞(m) with fk → 0 in H1,2(X),

it holds that F (fkv) → 0 for every v ∈ TestV(X)n.
(2.9)

Then there exists a unique polar vector measure NF defined on TestV(X)n such that

NF (X)(v) = F (v) for every v ∈ TestV(X)n.

Moreover, it holds that |NF | = μ, where μ is the finite Borel measure given by 
Lemma 1.26.

Proof. We call N the unique local vector measure given by Theorem 1.27. Assume that 
F satisfies (2.9), we just have to show that N is polar.
Step 1. We claim that if {fk}k is as in (2.9) and B ⊆ X is Borel, then it holds

N(B)(fkv) → 0 for every v ∈ TestV(X)n.

Indeed, let A ⊆ X be open and let K ⊆ A ∩B be compact and then take ψ ∈ LIPbs(X)
taking values in [0, 1] be identically 1 on a neighbourhood of K and with support con-
tained in A. Then {ψfk}k still is as in (2.9), and by weak locality we have

|N(B)(fkv)| ≤ |N(A)(fkψv)| +
(
|N|(B \K) + |N|(A \K)

)
‖fk‖L∞(m)‖v‖

= |F (fkψv)| +
(
|N|(B \K) + |N|(A \K)

)
‖fk‖L∞(m)‖v‖

for any k ∈ N, so the conclusion follows by first letting k → ∞ and then using the 
arbitrariness of A, K in conjunction with the regularity of |N|.
Step 2. We claim that N � Cap. By regularity of |N|, we just have to show that if K is 
a compact set with Cap(K) = 0, then |N|(K) = 0.

By (1.16), we conclude if we show that N(K)(v) = 0 for any v ∈ TestV(X)n. As 
Cap(K) = 0, we can find a sequence {fk}k as in (2.9) such that fk(x) = 1 for every x in 
a neighbourhood of K. Thus by weak locality we have N(K)(v) = N(K)(fkv) for every 
k ∈ N and then the conclusion follows from Step 1.
Step 3 Now we show that then N is polar. Taking into account item iv) of Remark 2.8
and the regularity of |N|, it is sufficient to show that if v ∈ TestV(X)n and K is a compact 
set such that |v| = 0 Cap-a.e. on K, then N(K)(v) = 0. Fix then v ∈ TestV(X)n, we 
can assume with no loss of generality that ‖v‖ = 1. Let now ε > 0. By the quasi-
continuity of |v|, we can find an open set Aε such that |v| is continuous on X \ Aε and 
Cap(Aε) < ε. We fix now a continuous version of |v| on X \Aε. Also, as |v| = 0 Cap-a.e. 
on K, we can assume, up to slightly enlarging Aε, that |v|(x) = 0 for every x ∈ K \ Aε

(still Cap(Aε) < ε). Then, |v| < ε on Bε \ Aε, where Bε is a suitable open subset 
of X \ Aε containing K \ Aε. Let now fε ∈ H1,2(X) be such that fε(x) = 1 for every 
x in Aε, fε(x) ∈ [0, 1] for every x ∈ X and ‖fε‖H1,2(X) < ε. Now, by construction, 
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|(1 − fε)v|(x) < ε for every x ∈ Bε ∪Aε, which is an open set in X containing of K. We 
can thus compute

|N(K)(v)| ≤ |N(K)(fεv)| + |N(K)((1 − fε)v)| ≤ |N(K)(fεv)| + ε‖v‖|N|(K).

Notice now that N(K)(fεv) → 0 as ε ↘ 0 by Step 1. The conclusion follows. �
Corollary 2.12. Let (X, d, m) be an RCD(K, ∞) space and consider the Banach spaces

Poln(X) := ({polar vector measures defined on TestV(X)n} , | · |(X)) ,

Tign(X) := ({F ∈ (TestV(X)n)′ : F is tight and F satisfies (2.9)} , ‖ · ‖′) .

Then the map

Poln(X) → Tign(X) defined as N → N(X)

is a bijective isometry.

Proof. Taking into account Corollary 1.29 and Theorem 2.11, it is enough to show that 
for every polar vector measure N, F := N(X) satisfies (2.9).

Let then N be a polar vector measure. Then we can use Proposition 2.10 to represent 
N as νNμN and hence compute, if {fk}k is as in (2.9) and v ∈ TestV(X)n,

N(X)(fkv) =
ˆ

X

fkv · νN dμN .

Now, we recall that if {fk}k ⊆ H1,2(X) is as above, up to taking a (non relabelled) 
subsequence, [20, Theorem 1.20, Proposition 1.12 and Proposition 1.17] show that the 
quasi-continuous representatives of fk converge to 0 Cap-a.e. The claim then follows by 
standard arguments. �
2.3. An example: improved results for the differential of BV functions

In the previous section we developed the theory to deal with polar/representable 
vector measures and to recognise the local vector measures with this particularly nice 
behaviour. We give an application of this abstract theory: working on RCD(K, ∞) spaces, 
we are able to improve the description of the local vector measure giving the distribu-
tional differential of a BV function studied in Section 1.2.3. This amounts in improving 
weak locality to ‘strong locality’ (i.e. being polar) and hence it gives us the framework 
to state finer calculus rules.

First, we recall the simple [16, Remark 2.2], based on the coarea formula, which 
provides us with the possibility to give a meaning to the integrals 

´
X fdiv v dm even 

though div v /∈ L∞(m).
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Remark 2.13. If f ∈ BV(X), v ∈ D(div) ∩ L∞(m) and {nk}k ⊆ (0, ∞), {mk}k ⊆ (0, ∞)
are two sequences with limk nk = limk mk = +∞, then the limit

lim
k

ˆ

X

(f ∨ −mk) ∧ nkdiv v dm (2.10)

exists finite and does not depend on the particular choice of the sequences {nk}k and 
{mk}k.

Therefore, if f ∈ BV(X) and v ∈ D(div) ∩ L∞(m), we can write
ˆ

X

fdiv v dm

with the convention that it has to be interpreted as the limit in (2.10). �

For what follows, see [16] and the references therein.

Definition 2.14. Let (X, d, m) be a metric measure space and F ∈ BV(X)n. We define, 
for any A open subset of X,

|DF |(A) := inf

⎧⎨⎩lim inf
k

ˆ

A

‖(lip(Fi,k))i=1,...,n‖e dm

⎫⎬⎭ (2.11)

where the infimum is taken among all sequences {Fi,k}k ⊆ LIPloc(A) such that Fi,k → Fi

in L1(A, m) for every i = 1, . . . , n.

Proposition 2.15. Let (X, d, m) be a metric measure space and F ∈ BV(X)n. Then 
|DF |( · ) as defined in (2.11) is the restriction to open sets of a finite non negative Borel 
measure that we call total variation of F and still denote with the same symbol.

In view of the following proposition, recall that the interpretation of the integral in 
(2.12) is given by Remark 2.13.

Proposition 2.16. Let (X, d, m) be an RCD(K, ∞) space and F ∈ BV(X)n. Then, for 
every A open subset of X, it holds that

|DF |(A) = sup

⎧⎨⎩
n∑

i=1

ˆ

A

Fidiv vi dm

⎫⎬⎭ , (2.12)

where the supremum is taken among all v = (v1, . . . , vn) ∈ Wn
A, where

Wn
A :=

{
v = (v1, . . . vn) ∈ TestV(X)n : |v| ≤ 1 m-a.e. and supp |v| ⊆ A

}
.
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In Section 1.2.3 we built a local vector measure describing the distributional differ-
ential of a function of bounded variation. We improve now the result, in the framework 
of RCD(K, ∞) spaces. Indeed, here we show that we can treat vector valued functions 
of bounded variation and also that we have a more powerful description of the local 
vector measure describing the weak derivative, as it turns out to be representable. With 
a slight abuse, we will denote the distributional differential of F on a RCD(K, ∞) space 
by DF , even though the same notation has been used in Section 1.2.3 for the distri-
butional differential on general metric measure spaces. As in this section we will work 
only on RCD(K, ∞) spaces, this should cause no confusion. Also, we justify again the 
notation DF as we show that the total variation of the local vector measure DF is (by 
construction) equal to the total variation of the BV function F .

In view of the following theorem, recall that the interpretation of the integral in (2.13)
is given by Remark 2.13. Recall also (2.2).

Theorem 2.17. Let (X, d, m) be an RCD(K, ∞) space and let F ∈ BV(X)n. Then there 
exists a unique representable vector measure DF (hence defined on L∞

Cap(TnX)) such that 
it holds

n∑
i=1

ˆ

X

Fidiv vi dm = −v · DF (X) for every v = (v1, . . . , vn) ∈ (QC∞(TX) ∩D(div))n.

(2.13)

Proof. Notice first that we know that such measure, if exists, is unique, being repre-
sentable (by i) of Remark 2.8). We start with the case Fi ∈ L∞(m) for every i = 1, . . . , n.

Define F : TestV(X)n → R as

F(v) := −
n∑

i=1

ˆ

X

Fidiv vi dm .

Notice now that from Proposition 2.16 it follows that

sup {F(v) : v ∈ TestV(X)n, ‖v‖ ≤ 1, supp v ⊆ A} = |DF |(A).

Now we want to argue as in the proof of Theorem 1.47, building upon Theorem 2.11
instead of Theorem 1.27. Take then {fk}k as in (2.9). We compute, if v ∈ TestV(X)n,

F(fkv) = −
n∑

i=1

ˆ

X

Fidiv(fkvi) dm = −
n∑

i=1

ˆ

X

Fifkdivvi dm −
n∑

i=1

ˆ

X

Fi∇fk · vi dm

and notice that the right hand side converges to 0 by the assumption fk → 0 in H1,2(X)
and vi ∈ TestV(X).
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We therefore obtain a polar vector measure DF that satisfies (2.13) for v ∈ TestV(X)n
and whose total variation coincides with |DF |. Then, by Proposition 2.10, DF induces 
a unique representable vector measure (that we still call DF ) defined on L∞

Cap(TnX), 
which still has total variation |DF | and still satisfies (2.13) for v ∈ TestV(X)n.

By [16, Lemma 3.2], (2.13) holds for every v ∈ (H1,2
H (TX)∩L∞(TX))n. Then the very 

same argument of [16, Theorem 3.13] shows that (2.13) holds for every v ∈ (QC∞(TX) ∩
D(div))n.

In the general case, we can define Fm ∈ (BV(X) ∩ L∞(m))n as Fm
i := (Fi ∨−m) ∧m

and therefore consider the sequence of polar vector measures {DFm}m given by the 
paragraphs above. By uniqueness we have that DF l − DFm = D(F l − Fm) and by 
(1.62),

|D(Fm − F )|(X)
(2.12)
≤

n∑
i=1

|D(Fm
i − Fi)|(X) → 0 as m → ∞.

We therefore have that {DFm}m is a Cauchy sequence that, thanks to Proposition 1.15, 
converges to a representable vector measure whose total variation is |DF | (see also 
Proposition 2.10). Also, taking into account (1.17) and Remark 2.13, DF still satisfies 
(2.13). �

Notice that DF = νF |DF |, characterised by (2.13), is coherent with the notions 
developed in [17,16]. In particular, if f = χE , where E is a set of finite perimeter and 
finite mass, we obtain the Gauss-Green integration by parts formula stated in [17]. This 
motivates the following definition.

Definition 2.18. Let (X, d, m) be an RCD(K, ∞) space and F ∈ BV(X)n. We call the 
local vector measure DF given by Theorem 2.17 the distributional derivative of F .

We state now the Leibniz rule for bounded functions of bounded variation, that is 
[16, Proposition 3.35] and we encourage the reader to compare it with Proposition 1.50. 
This calculus rule has been, in [16], the building block to prove the chain rule for vector 
valued functions of bounded variation, recalled in Theorem 2.21 below. We recall that 
for a m-measurable function f : X → R it is customary to define

f∧(x) := ap lim inf
y→x

f(y) := sup
{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f < t})
m(Br(x)) = 0

}
,

f∨(x) := ap lim sup
y→x

f(y) := inf
{
t ∈ R̄ : lim

r↘0

m(Br(x) ∩ {f > t})
m(Br(x)) = 0

} (2.14)

and finally

f̄ := f∨ + f∧
,
2
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with the convention that +∞ −∞ = 0.

Proposition 2.19 (Leibniz rule). Let (X, d, m) be an RCD(K, N) space and let f, g ∈
BV(X) ∩ L∞(m). Then fg ∈ BV(X) and

D(fg) = f̄Dg + ḡDf.

In particular, |D(fg)| ≤
∣∣f̄ ∣∣|Dg| + |ḡ||Df |.

To state Theorem 2.21, which is a restatement of [16, Theorem 3.38] in the language of 
local vector measures, we recall Definition 1.34. We also need the following proposition, 
extracted from [16], to define the functions F l and F r.

Proposition 2.20. Let (X, d, m) be an RCD(K, N) space and F ∈ BV(X)n. Then there 
exists a pair of |DF |-measurable functions F l, F r : X → Rn such that for |DF |-a.e. x
the following holds. Either F l(x) = F r(x) and then

lim
r↘0

−
ˆ

Br(x)

|F − F r(x)|dm = 0,

or there exists a Borel set E ⊆ X with

lim
r↘0

m(E ∩Br(x))
m(Br(x)) = 1

2

such that

lim
r↘0

−
ˆ

Br(x)∩E

|F − F r(x)|dm = lim
r↘0

−
ˆ

Br(x)∩(X\E)

|F − F l(x)|dm = 0.

If F̃ l, F̃ r : X → Rn is another pair as above, then for |DF |-a.e. x either (F̃ l(x), F̃ r(x)) =
(F l(x), F r(x)) or (F̃ l(x), F̃ r(x)) = (F r(x), F l(x)).

We state now the following result about the chain rule in the BV setting. Notice 
that, requiring that the space is RCD(K, N), we can improve considerably what stated 
in Proposition 1.49: not only we treat vector valued functions, but we also drop the 
continuity assumption on the BV function.

Theorem 2.21 (Chain rule for vector valued functions). Let (X, d, m) be an RCD(K, N)
space and F ∈ BV(X)n. Let φ ∈ C1(Rn; Rm) ∩ LIP(Rn; Rm) for some m ∈ N, m ≥ 1
such that φ(0) = 0. Then φ ◦ F ∈ BV(X)m and

D(φ ◦ F ) =

⎛⎝ 1ˆ
∇φ(tF r + (1 − t)F l) dt

⎞⎠DF,
0
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where F l, F r are given by Proposition 2.20.

Data availability

No data was used for the research described in the article.

Appendix A

In this appendix we show how using Doob’s martingale convergence theorem we can 
construct Borel representatives of functions in L1(m) that ‘linearly’ depend on the given 
function. Notice that no Choice, other than Countable Dependent, is needed in the proof, 
so our construction differs from similar ones based on the concept of von Neumann lifting: 
the price that we pay for this is that the Borel representatives are defined only on subsets 
of full measure.

Since we will need to distinguish between functions and representatives, for given f
Borel and integrable, we denote by [f ] its equivalence class in the Lebesgue space L1(m). 
Also, L1

loc(m) denotes the space of measurable functions f such that for every x ∈ X, 
there exists a neighbourhood of x, Bx, with f ∈ L1(m Bx). As before, we denote by [f ]
the equivalence class of f , for f ∈ L1

loc(m) Borel.
We recall that a measure space is a triplet (X, F , m) where X is a set, F is a σ-algebra 

and m is a measure defined on F . We say that the measure space is separable if there 
exists a countable collection {An}n∈N ⊆ F such that for every B ∈ F with m(B) < ∞
we can find a sequence {Bn}n ⊆ {An}n with m(BnΔB) → 0.

It is easy to see that for a measure space (X, F , m) the following assertions are equiv-
alent:

• (X, F , m) is separable, say {An}n is a countable dense subset of F ,
• Lp(m) is separable for some p ∈ [1, ∞),
• Lp(m) is separable for every p ∈ [1, ∞).

Moreover, if some (hence all) of the item above is satisfied, a countable dense subset of 
Lp(m), for p ∈ [1, ∞), can be obtained considering the linear span over Q of {χAn

}n, for 
{An}n as above.

Theorem A (‘Linear’ choice of measurable representatives for measure spaces). Let 
(X, F , m) be a separable measure space with m σ-finite. Then there exist two maps 
Leb : L1(m) → F and FRep : L1(m) → {F-measurable real valued maps on X} such 
that

i) m(X \ Leb([f ]) = 0 for every [f ] ∈ L1(m),
ii) for every [f ] ∈ L1(m) and f ′ ∈ [f ], we have f ′ = FRep([f ]) m-a.e.
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iii) for every [f ], [g] ∈ L1(m) and α, β ∈ R, we have

Leb([f ]) ∩ Leb([g]) ⊆ Leb([αf + βg])

and for every x ∈ Leb([f ]) ∩ Leb([g]), it holds

αFRep([f ])(x) + βFRep([g])(x) = FRep([αf + βg])(x).

Proof. By a gluing argument, we can clearly assume that m is finite. Let {An}n denote 
the countable dense subset of F .

We take a sequence of finite F-measurable partitions of X, {Ek}k∈N , where Ek =
{Ek

l }l=1,...,n(k) ⊆ F , with the following properties:

a) Ek+1 is a refinement of Ek, in the sense that for every l, Ek+1
l ⊆ Ek

m for some 
m = m(l),

b) for every n, there exists k = k(n) such that An can be written as union of sets in Ek.

We build such sequence as follows: first, let Fk denote the σ-algebra generated by 
{A1, . . . , Ak} and then let Ek be the finest partition of X whose sets belong to Fk.

We then define a sequence of linear maps {Pk}k∈N

Pk : L1(m) → {F-measurable real valued maps on X}

as follows:

Pk([f ])(x) :=
{

−́Ek
l
f dm if x ∈ Ek

l and m(Ek
l ) > 0,

0 otherwise.
(A.1)

Notice that for every k, Pk : L1(m) → L1(m) is 1-Lipschitz, in particular ‖Pk([f ])‖L1(m) ≤
‖f‖L1(m). We can easily check that the discrete stochastic process {Pk([f ])}k is a mar-
tingale with respect to the filtration {Fk}k. To this aim we use property a) in the 
construction of {Ek}k. Therefore, by [35, Theorem 2.2], Pk([f ]) converges m-a.e. to a 
finite limit. We define then

Leb([f ]) :=
{
x : lim

k
Pk([f ])(x) exists finite

}
and then the Borel function

FRep([f ])(x) :=
{

limk Pk([f ])(x) if x ∈ Leb([f ]),
0 otherwise.

We notice now that property i) of the statement is trivially satisfied while iii) follows from 
the linearity of the integral. We only need to show property ii) of the statement. First note 
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that by the request b) in the construction of {Ek}k, property ii) holds true if f belongs 
to the span over Q of {χAn

}n. Indeed, in such case, Pk([f ]) = f , eventually. Notice now 
that as FRep is defined as pointwise limit of Pk([ · ]) and the maps Pk : L1(m) → L1(m)
are 1-Lipschitz, it follows from Fatou’s lemma (and a slight abuse of notation) that also 
FRep : L1(m) → L1(m) is 1-Lipschitz. Then the conclusion follows by density. �
Corollary A (‘Linear’ choice of Borel representatives for Polish spaces). Let (X, τ) be 
a Polish space and let m be a σ-finite Borel measure on X. Then there exist two maps 
Leb : L1

loc(m) → B(X) and BorRep : L1
loc(m) → {Borel real valued maps on X} such that

i) m(X \ Leb([f ]) = 0 for every [f ] ∈ L1
loc(m),

ii) for every [f ] ∈ L1
loc(m) and f ′ ∈ [f ], we have f ′ = BorRep([f ]) m-a.e.,

iii) for every [f ], [g] ∈ L1
loc(m) and α, β ∈ R, we have

Leb([f ]) ∩ Leb([g]) ⊆ Leb([αf + βg])

and for every x ∈ Leb([f ]) ∩ Leb([g]), it holds

αBorRep([f ])(x) + βBorRep([g])(x) = BorRep([αf + βg])(x),

iv) for every [f ] ∈ L1
loc(m), it holds

|BorRep([f ])(x)| ≤ inf
r>0

‖f‖L∞(m Br(x)) for every x ∈ Leb([f ]). (A.2)

Proof. Fix a complete and separable distance d on X inducing the topology τ . Notice 
first that, up to a m-negligible Borel set, X =

⋃
n Kn, where {Kn}n is an increasing 

sequence of compact sets such that m Kn is a finite measure for every n. With a gluing 
argument, we see that it is enough to prove the theorem for the compact metric measure 
space (Kn, d, m Kn). In particular, L1(m Kn) = L1

loc(m Kn). Notice also that by basic 
measure theory we can check that (Kn, B(Kn), m Kn) is a separable measure space, 
where, as usual, B denotes the Borel σ-algebra. Now we apply Theorem A. It remains 
to show (A.2). To this aim, we have to modify slightly the partitions Ek used to prove 
Theorem A in order to ensure that

lim
k→∞

sup
l

diam (Ek
l ) → 0.

This can be easily done: using the notation of the proof of Theorem A, for k ≥ 2 we 
just have to redefine Fk as the σ-algebra generated by Fk−1, {A1, . . . , Ak} and a finite 
covering of Kn of sets with diameter smaller than k−1, and we leave F1 unchanged. �
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