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Abstract

In this paper, we consider a control system of the form X = F (x)u, linear in the control variable
u. Given a fixed starting point, we study a finite-horizon optimal control problem, where we want
to minimize a weighted sum of an end-point cost and the squared 2-norm of the control. This
functional induces a gradient flow on the Hilbert space of admissible controls, and we prove
a convergence result by means of the Lojasiewicz-Simon inequality. Finally, we show that,
if we let the weight of the end-point cost tend to infinity, the resulting family of functionals
is I"-convergent, and it turns out that the limiting problem consists in joining the starting
point and a minimizer of the end-point cost with a horizontal length-minimizer path.
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1 Introduction

In this paper, we consider a control system of the form
X =FX)u, (1.1)

where F : R" — R"K jg a Lipschitz-continuous function, and u € R* is the control
variable. If k < n, for every x € R”, we may think of the columns {F'(x)};—1.._ of the
matrix F(x) as an ortho-normal frame of vectors, defining a sub-Riemannian structure on
R”. For a thorough introduction to the topic, we refer the reader to the monograph [4]. In
our framework, U := Lz([O, 1], Rk) will be the space of admissible controls, equipped with
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the usual Hilbert space structure. Given a base-point xg € R”, for every u € U, we consider
the absolutely continuous trajectory x, : [0, 1] — R” that solves

X, (s) = F(x,(s))u(s) forae.s € [0, 1], (12)
X, (0) = xg. ’
For every B > 0 and xg € R", we define the the functional F B .U — Ry as follows:
1
FPw) = S lullfy + patx, (1), (1.3)

where a : R” — R, is a non-negative C'-regular function, and x, : [0, 1] — R” is the
solution of Eq. 1.2 corresponding to the control u € Y. In this paper we want to investigate
the gradient flow induced by the functional 7# on the Hilbert space I, i.e., the evolution
equation
0 Uy = =G [U,], (1.4)

where G# : U — U is the vector field on the Hilbert space U/ that represents the differential
dFPB : U — U* through the Riesz’s isometry. In other words, for every u € U, we denote
by d, F? : U — R the differential of F# at u, and G#[u] is defined as the only element of
U such that the identity

(GPlu), v) 2 = du FP (v) (1.5)
holds for every v € U. In order to avoid confusion, we use different letters to denote the time
variable in the control system Eq. 1.2 and in the evolution equation Eq. 1.4. Namely, the vari-
able s € [0, 1] will be exclusively used for the control system Eq. 1.2, while ¢ € [0, +00)
will be employed only for the gradient flow Eq. 1.4 and the corresponding trajectories.
Moreover, when dealing with operators taking values in a space of functions, we express
the argument using the square brackets.

The first part of the paper is devoted to the formulation of the gradient flow equation
Eq. 1.4. In particular, we first study the differentiability of the functional F# : i/ — R,
then we introduce the vector field G# : U/ — U as the representation of its differential, and
finally we show that, under suitable assumptions, G# is locally Lipschitz-continuous. As a
matter of fact, it turns out that Eq. 1.4 can be treated as an infinite-dimensional ODE, and
we prove that, for every initial datum Uy = ug, the gradient flow equation Eq. 1.4 admits
a unique continuously differentiable solution U : [0, +00) — U. In the central part of this
contribution, we focus on the asymptotic behavior of the curves that solve Eq. 1.4. The main
result states that, if the application F : R" — R™* that defines the linear-control system
Eq. 1.1 is real-analytic as well as the function a : R" — R, that provides the end-point
term in Eq. 1.3, then, for every ug € HL([0, 11, R*) c U, the curve t — U, that solves the
gradient flow equation Eq. 1.4 with initial datum Uy = u satisfies

tliinooHUz—uoo“U =0, (1.6)
where uo, € U is a critical point for F#. To establish this fact we first show that the
functional F7# satisfies the Lojasiewicz-Simon inequality. Finally, in the last part of this
work, we prove a I'-convergence result concerning the family of functionals (F#) peRr, - In
particular, we show that, when 8 — 4-o0, the limiting problem consists in minimizing the
L2-norm of the controls that steer the initial point xo to the set {x € R" : a(x) = 0}. This
fact can be applied, for example, to approximate the problem of finding a sub-Riemannian
length-minimizer curve that joins two assigned points.

We report below in detail the organization of the sections.

In Section 2, we introduce the linear-control system Eq. 1.1 and we establish some pre-
liminary results that will be used throughout the paper. In particular, in Subsection 2.2, we
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focus on the first variation of a trajectory when a perturbation of the corresponding con-
trol occurs. In Subsection 2.3, we study the second variation of the trajectories at the final
evolution instant.

In Section 3, we prove that, for every intial datum ug € U, the evolution equation Eq. 1.4
gives a well-defined Cauchy problem whose solutions exist for every ¢+ > 0. To see that,
we use the results obtained in Subsection 2.2 to introduce the vector field G# : U — U
satisfying Eq. 1.5 and to prove that it is Lipschitz-continuous when restricted to the bounded
subsets of {/. Combining this fact with the theory of ODEs in Banach spaces (see, e.g.,
[10]), it descends that, for every choice of the initial datum Uy = ug, the evolution equation
Eq. 1.4 admits a unique and locally defined solution U : [0, ) — U, with a > 0. Using the
particular structure of the gradient flow Eq. 1.4, we finally manage to extend these solutions
for every positive time.

In Section 4, we show that, if the Cauchy datum ug has Sobolev regularity (i.e., ug €
H™ ([0, 11, Rk) C U for some positive integer m), then the curve ¢ — U, that solves Eq. 1.4
and satisfies Uy = ug is pre-compact in {. The key-observation lies in the fact that, under
suitable regularity assumptions on F : R” — R"*K and a : R" — R, the Sobolev space
H™ ([0, 11, ]Rk) is invariant for the gradient flow Eq. 1.4. Moreover, we obtain that, when the
Cauchy datum belongs to H™ ([0, 1], R¥), the curve ¢ > U, that solves Eq. 1.4 is bounded
in the H"-norm.

In Section 5, we establish the Lojasiewicz-Simon inequality for the functional F# : I/ —
R, under the assumption that F : R” — R"** and ¢ : R" — R, are real-analytic. We
recall that the first result on the Lojasiewicz inequality dates back to 1963, when in [11]
Lojasiewicz proved that, if f : R? — R is a real-analytic function, then for every x € R?¢
there exist ¥ € (1, 2], C > 0 and r > 0 such that

If) = fFOI < CIVFODIL (1.7)

for every y € RY satisfying |y — |, < r. This kind of inequalities are ubiquitous in several
branches of Mathematics. For example, as suggested by Lojasiewicz in [11], Eq. 1.7 can be
employed to study the convergence of the solutions of

X =-VfX).

Another important application can be found in [12], where Polyak studied the convergence
of the gradient descent algorithm for strongly convex functions using a particular instance of
Eq. 1.7, which is sometimes called Polyak-Lojasiewicz inequality. In [13], Simon extended
Eq. 1.7 to real-analytic functionals defined on Hilbert spaces, and he employed it to establish
convergence results for evolution equations. For further details, see also the lecture notes
[14]. The infinite-dimensional version of Eq. 1.7 is often called Lojasiewicz-Simon inequal-
ity. For a complete survey on the topic, we refer the reader to the paper [7]. Following this
approach, the Lojasiewicz-Simon inequality for the functional F# is the cornerstone for the
convergence result of the subsequent section.

In Section 6, we prove that, if the Cauchy datum belongs to H™ ([0, 1], Rk) for an integer
m > 1, the corresponding gradient flow trajectory converges to a critical point of F#. This
result requires that both F : R” — R"*K and g : R" — R, are real-analytic. Indeed,
we use the Lojasiewicz-Simon inequality for # : 4 — R to show that the solutions of
Eq. 1.4 with Sobolev-regular initial datum have finite length. This fact immediately yields
Eq. 1.6.

In Section 7, we study the behavior of the minimization problem Eq. 1.3 when the
positive parameter S tends to infinity. We address this problem using the tools of the I"-
convergence (see [8] for a complete introduction to the subject). In particular, we consider
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Uy, ={u €U : |lull;2 < p} and we equip it with the topology of the weak convergence
of U. For every B > 0, we introduce the restrictions F, b._ b |u4,» and we show that there

exists a functional F,, : U, — Ry U {4-00} such that the family (.7-"5 )/3 ® I'-converges
eR4

to F, as § — +oo. In the case a : R" — R, admits a unique point x; € R” such that
a(x;) = 0, then the limiting problem of minimizing the functional F, consists in finding
(if it exists) a control u € U, with minimal L2-norm such that the corresponding curve
x, : [0, 1] — R" defined by Eq. 1.2 satisfies x, (1) = x;. The final result of Section 7
guarantees that the minimizers of F, g provide L2-strong approximations of the minimizers
of Fp.

2 Framework and Preliminary Results

In this paper, we consider control systems on R” with linear dependence in the control
variable u € R¥, i.e., of the form

% = F(x)u, (2.1
where F : R" — R"*K is a Lipschitz-continuous function. We use the notation F' for
i = 1,...,k to indicate the vector fields on R" obtained by taking the columns of F, and
we denote by L > 0 the Lipschitz constant of these vector fields, i.e., we set

Fi(x)— F!
L:= sup sup M 2.2)
i=1,..k x,yeRn lx — yl2
We immediately observe that Eq. 2.2 implies that the vector fields F', ..., F* have sub-
linear growth, i.e., there exists C > 0 such that
sup [F'(x)| < C(lxla+ 1) (2.3)
i=1,..., k
for every x € R". Moreover, foreveryi = 1,...,k, if F I is differentiable at y € R", then
from Eq. 2.2 we deduce that

dF!

LN S 2.4)
ox |,

We define Y := Lz([O, 1], ]Rk) as the space of admissible controls, and we endow U with
the usual Hilbert space structure, induced by the scalar product

1
(U, v)j2 = f (u(s), v(s))pk ds. 2.5)
0

Given xo € R”, for every u € U, let x,, : [0, 1] — R” be the absolutely continuous curve
that solves the following Cauchy problem:
{ Xy (s) = F(x,(s))u(s) forae.s € [0, 1], 2.6)
x,(0) = xp. ’
We recall that, under the condition Eq. 2.2, the existence and uniqueness of the solution of
Eq. 2.6 is guaranteed by Carathéodory Theorem (see, e.g., [9, Theorem 5.3]). We insist on
the fact that in this paper the Cauchy datum x¢ € R” is assumed to be assigned.

In the remainder of this section, we introduce auxiliary results that will be useful in the
other sections. In Subsection 2.1, we recall some results concerning Sobolev spaces in one-
dimensional domains. In Sections 2.2 and 2.3, we investigate the properties of the solutions
of Eq. 2.6.
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2.1 Sobolev Spaces in One Dimension

In this subsection, we recall some results for one-dimensional Sobolev spaces. Since in
this paper we work only in Hilbert spaces, we shall restrict our attention to the Sobolev

exponent p = 2, i.e., we shall state the results for the Sobolev spaces H™ := W™ with
m > 1. For a complete discussion on the topic, the reader is referred to [6, Chapter 8].
Throughout the paper we use the convention H® := L2. For every m > 1, the function

u € L*([a, b], RY) belongs to the Sobolev space H™ ([a, b], RY) if and only if, for every
integer 1 < £ < m there exists u® ¢ Lz([a, b], ]Rd), the £-th Sobolev derivative of u. We
recall that, forevery m > 1, H"™ ([a, b], Rd) is a Hilbert space (see, e.g., [6, Proposition 8.1])
when it is equipped with the norm || - ||g» induced by the scalar product (u, v)gm =
(w,v) 24> 0, [ ab @O (s), v®(s))ga ds. We recall that a linear and continuous application
T : E; — E; between two Banach spaces Ep, E; is compact if, for every bounded set
B C Ej, the image T (B) is pre-compact with respect to the strong topology of E;. In the
following result, we list three classical compact inclusions.

Theorem 2.1 For every m > 1, the following inclusions are compact:

H"([a, b], RY) < L*([a, b], RY), 2.7
H"([a, b], RY) < C°(a, b], RY), (2.8)
H™([a, b], RY) — H™ ([a, b], RY), (2.9)

Finally, we recall the notion of weak convergence. For every m > 0 (we set H 0.= L2,
if (uy)n>1 is a sequence in H™ ([0, 1], Ry and u € H™([0, 1], RY), then the sequence
(un)n>1 weakly converges to u if and only if

lim (v, up)gm = (v, u) gm

n—0o0
for every v € H™ ([0, 1], Rd), and we write u, —pgm u as n — oo. Finally, in view of the
compact inclusion Eq. 2.9 and of [6, Remark 6.2], for every m > 1, if a sequence (u#,),>1
in H™ ([0, 1], R?) satisfies u,, — ym u as n — oo, then

n1l>nolo ||un - M||Hm—l =0.

2.2 General Properties of the Linear-Control System Eq. 2.1

In this subsection, we investigate basic properties of the solutions of Eq. 2.6, with a par-
ticular focus on the relation between the admissible control u € U and the corresponding
trajectory x,. We postpone the most technical proofs of this subsection to Appendix A. We
recall that, for every u € U := LZ([O, 1], Rk), the following inequality holds:

1 ko 1 _k
||”||L1:/0 > i 9)lds < Vi /0 > lui ()P ds = Vull 2. (2.10)
i=l i=1

We first show that, for every admissible control u € U, the corresponding solution of
Eq. 2.6 is bounded in the C°-norm. In our framework, given a continuous function f :
[0,1] — R", we set

[1fllco := sup |f(s)la.
s€[0,1]
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Lemma 2.2 Letu € U be an admissible control, and let x,, : [0, 11 — R" be the solution of
the Cauchy problem Eq. 2.6 corresponding to the control u. Then, the following inequality
holds:

allo < (ola + VACjull 2 ) eVFElilz, @11

where C > 0 is the constant of sub-linear growth prescribed by Eq. 2.3.

Proof This estimate follows from Eq. 2.3 as a direct application of Gronwall inequality. [

In the following proposition, we prove that the solution of the Cauchy problem Eq. 2.6
has a continuous dependence on the admissible control.

Proposition 2.3 Let us consider u, v € U and let x,, x4y : [0, 1] = R”" be the solutions
of the Cauchy problem Eq. 2.6 corresponding, respectively, to the controls u and u + v.
Then, for every R > O there exists Lg > 0 such that the inequality

Xurv — Xullco < Lgllvllz2 (2.12)

holds for every u, v € U such that ||ul|;2, ||v]|2 < R.

Proof See Appendix A O

The previous result shows that the map u +— x,, is Lipschitz-continuous when restricted
to any bounded set of the space of admissible controls ¢/. We remark that Proposition 2.3
holds under the sole assumption that the controlled vector fields F', ..., FK : R" — R”
are Lipschitz-continuous. In the next result, by requiring that the controlled vector fields are
C!-regular, we compute the first order variation of the solution of Eq. 2.6 resulting from a
perturbation in the control.

Proposition 2.4 Let us assume that the vector fields F', . .., FX defining the control system
Eq. 2.6 are Cl-regular. Foreveryu,v € U, forevery e € (0, 1], let x,, Xy4ep : [0, 1] > R"
be the solutions of Eq. 2.6 corresponding, respectively, to the admissible controls u and
u + gv. Then, we have that

|Xurew — xu = ey0llco = o(e) as & — O, 2.13)

where y; : [0, 11 — R" is the solution of the following affine system:

k N
. OF'
Vo (s) = F(x,(s)v(s) + <Z1 u' (S)(;;(s))) Vi (5) (2.14)
1=
fora.e.s € [0, 1], and with y; (0) = 0.
Proof See Appendix A. O
Let us assume that F!, ..., F¥ are C 1—regular. For every admissible control u € U, let
us define A, € L>([0, 1], R"*") as
k .
i JOF (xy(s))
Au(s) =) (u (3)87; (2.15)

i=1
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for a.e. s € [0, 1]. For every u € U, let us introduce the absolutely continuous curve
M, : [0, 1] — R"*" defined as the solution of the following linear Cauchy problem:

M, (s) = Au(s)My(s) forae.s € [0, 1],
M, (0) =1d.

The existence and uniqueness of the solution of Eq. 2.16 descends once again from the

Carathéodory Theorem. We can prove the following result.

(2.16)

Lemma 2.5 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are Cl—regular. For every admissible control u € U, let My, : [0, 1] — R"*" be the
solution of the Cauchy problem Eq. 2.16. Then, for every s € [0, 11, M,,(s) is invertible, and
the following estimates hold:

IMy(9)l2 < Cuy 1M ()]2 < Cu, 2.17)

where
C, = eVRLlull,2.

Proof See Appendix B. O

Using the curve M, : [0, 1] — R"*" defined by Eq. 2.16, we can rewrite the solution
of the affine system Eq. 2.14 for the first-order variation of the trajectory. Indeed, for every
u, v € U, adirect computation shows that the function y. : [0, 1] — R” that solves Eq. 2.14
can be expressed as

N
Y (5) =/ My ()M, (D) F (xy (T))v(1) d (2.18)
0
for every s € [0, 1]. Using Eq. 2.18 we can prove an estimate of the norm of y,..

Lemma 2.6 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are Cl—regular. Let us consider u,v € U, and let y : [0, 1] — R”" be the solution
of the affine system Eq. 2.14 with y}(0) = 0. Then, for every R > 0 there exists Cr > 0
such that the following inequality holds

1y ()2 < Crllvll 2 (2.19)

forevery s € [0, 1] and for every u € U satisfying ||ul|;» < R.

Proof Using the expression Eq. 2.18, from Eqgs. 2.17, 2.11, and 2.3, we directly deduce the
thesis. O

Let us introduce the end-point map associated to the control system Eq. 2.6. For every
s € [0, 1], let us consider the map P; : U — R”" defined as
Py u— Py(u) := xyu(s), (2.20)

where x,, : [0, 1] — R” is the solution of Eq. 2.6 corresponding to the admissible control
u € U. Using the results obtained before, it follows that the end-point map is differentiable.

Proposition 2.7 Let us assume that the vector fields F', . .., F¥ defining the control system
Eq. 2.6 are C'-regular. For every s € [0, 1], let Py : U — R" be the end-point map defined
by Eq. 2.20. Then, for every u € U, Py is Gateaux differentiable at u, and the differential
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D,P; = (D, Psl, ..., DyP}) : U — R" is a linear and continuous operator. Moreover,
using the Riesz’s isometry, for every u € U and for every s € [0, 1], every component of the
differential D, Ps can be represented as follows:

. L,
DW= [ (du@v(o), dr a1
o V7 R
where, for every j = 1, ..., n, the function gsjyu : [0, 11 = R* is defined as
. i\T -1 r

glu(o) = ((e]) M, ()M, (T)F(xu(f))) T € [0, 5], 2.22)

0 T e (s, 1],

where the column vector e/ is the j-th element of the standard basis {e', ..., "} of R".

Proof Forevery s € [0, 1], Proposition 2.4 guarantees that the end-point map P : f — R”"
is Gateaux differentiable at every point u € U. In particular, for every u, v € U and for
every s € [0, 1] the following identity holds:

Dy Ps(v) = y,/(s). (2.23)

Moreover, Eq. 2.18 shows that the differential D, P : :/ — R” is linear, and Lemma 2.6
implies that it is continuous. The representation follows as well from Eq. 2.18. O

Remark 2.8 In the previous proof we used Lemma 2.6 to deduce for every u € U the
continuity of the linear operator D, Py : U — R". Actually, Lemma 2.6 is slightly more
informative, since it implies that for every R > 0 there exists Cg > 0 such that

|Dy Ps(v)|2 = Crllvllg2 (2.24)

for every v € U and for every u € U such that |[u||;2» < R. As a matter of fact, we deduce
that

gl ullp2 < Cr (2.25)

forevery j =1,...,n, forevery s € [0, 1] and for every u € U such that ||u]|;2 < R.

Remark 2.9 Tt is interesting to observe that, for every s € (0, 1] and for every u € U, the
function g.{,u : [0,1] = R* that provides the representation the jth component of D,, Ps
is absolutely continuous on the interval [0, s], being the product of absolutely continuous
matrix-valued curves. Indeed, on one hand, T — F(x, (7)) is absolutely continuous, being
the composition of a C!-regular function with the absolutely continuous curve 7 > x,,(z)
(see, e.g., [6, Corollary 8.11]). On the other hand, T M;l (7) is absolutely continuous as
well, since it can be expressed as the solution of a linear system (see Eq. A.8).

We now prove that for every s € [0, 1] the differential of the end-point map u +— D, Py
is Lipschitz-continuous on the bounded subsets of /. This result requires further regularity
assumptions on the controlled vector fields. We first establish an auxiliary result concerning
the matrix-valued curve that solves Eq. 2.16.

Lemma 2.10 Let us assume that the vector fields F', ..., F* defining the control system

Eq. 2.6 are C2—regular. For everyu, w € U, let My, My, 1y, : [0, 1] = R™"*" be the solutions
of Eq. 2.16 corresponding to the admissible controls u and u + w, respectively. Then, for
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every R > 0, there exists Lgr > 0 such that, for every u, w € U satisfying ||u||;2, ||w|| 2 <
R, we have

Myt (s) — My(s)2 < Lrllwll2, (2.26)
and

M (s) = M ()] < Lillwll 2 (2.27)
foreverys € [0, 1].
Proof See Appendix A. O

We are now in position to prove the regularity result on the differential of the end-point
map.

Proposition 2.11 Ler us assume that the vector fields F', ..., F* defining the control sys-
tem Eq. 2.6 are C2-regular. Then, for every R > 0, there exists Lg > 0 such that, for every
u, w € U satisfying ||ul|;2, ||lw|l; 2 < R, the following inequality holds

[Duyw Py (v) — Dy Py (v)|2 < Lrllwl|2[lv]] 2 (2.28)

forevery s € [0, 1] and for every v € U.

Proof See Appendix A. O
2.3 Second Differential of the End-point Map

In this subsection, we study the second-order variation of the end-point map Py : U — R”
defined in Eq. 2.20. The main results reported here will be stated in the case s = 1, which
corresponds to the final evolution instant of the control system Eq. 2.6. However, they can
be extended (with minor adjustments) also in the case s € (0, 1). Similarly as done in
Subsection 2.2, we show that, under proper regularity assumptions on the controlled vector
fields F1,..., F¥, the end-point map P; : U — R" is C2-regu1ar. Therefore, for every
u € U, we can consider the second differential Dﬁ Py : U x U — R", which turns out to
be a bilinear and symmetric operator. For every v € R", we provide a representation of the
bilinear form v - D,% P : U xU — R, and we prove that it is a compact self-adjoint operator.

Before proceeding, we introduce some notations. We set V' := Lz([O, 1], R™), and we
equip it with the usual Hilbert space structure. In order to avoid confusion, in the present
subsection, we denote by || - ||z and || - ||y the norms of the Hilbert spaces U/ and V),
respectively. We use a similar convention for the respective scalar products, too. Moreover,
given an application R : U — V), for every u € U, we use the notation R[u] € V to
denote the image of u through R. Then, for s € [0, 1], we write R[u](s) € R" to refer to
the value of (a representative of) the function R[u] at the point 5. More generally, we adopt
this convention for every function-valued operator.

It is convenient to introduce a linear operator that will be useful to derive the expres-
sion of the second differential of the end-point map. Assuming that the controlled fields
F', ... FFare Cl—regular, for every u € U we define £, : U — V as follows:

Ly [v](s) := y,(s) (2.29)
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for every s € [0, 1], where y} : [0, 1] — R” is the curve introduced in Proposition 2.4 that
solves the affine system Eq. 2.14. Recalling Eq. 2.18, we have that the identity

L,[v](s) = / ' M, ()M, ' (T) F (x, ())v(t) dT (2.30)
0

holds for every s € [0, 1] and for every v € U, and this shows that L, is a linear operator.
Moreover, using the standard Hilbert space structure of I/ and of V, for every u € U we can
introduce the adjoint of £,,, namely the linear operator £} : VV — U that satisfies

(Catw], v) = (Lulv], w),, (2.31)

forevery v e Y and w € V.

Remark 2.12 We recall a result in functional analysis concerning the norm of the adjoint
of a bounded linear operator. For further details, see [6, Remark 2.16]. Given two Banach
spaces E|, E;, let Z(E;, E;) be the Banach space of the bounded linear operators from
E| to Ej, equipped with the norm induced by E; and E,. Let EY, E5 be the dual
spaces of Ey, E», respectively, and let Z(E5, ET) be defined as above. Therefore, if A €
ZL(E1, E3), then the adjoint operator satisfies A* € Z(E}, E 1), and the following identity
holds:

A" 2(£3,67) = I1All.2(E).E»)-
If E;, E, are Hilbert spaces, using the Riesz’s isometry it is possible to write A* as an
element of Z(E,, E1), and the identity of the norms is still satisfied.

We now show that £, and L are bounded and compact operators.
Lemma 2.13 Let us assume that the vector fields F', ..., F* defining the control sys-
tem Eq. 2.6 are C'-regular. Then, for every u € U, the linear operators L, : U —

Vand L : V — U defined, respectively, by Eqs. 2.29 and 2.31 are bounded and
compact.

Proof See Appendix B. O

In the next result, we study the local Lipschitz-continuity of the correspondence u +— L.

Lemma 2.14 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are C2-regular. Then, for every R > 0, there exists Lg > 0 such that
| Lutwlv] = Lulv]lly < Lrllwllullvll (2.32)

for every v € U and for every u, w € U such that ||u||y, ||lw|ly < R.

Proof See Appendix B O

Remark 2.15 From Lemma 2.14 and Remark 2.12, it follows that the correspondence u +—
L is as well Lipschitz-continuous on the bounded sets of I{.

If the vector fields F!, ..., F* are C2-regular, we write 332 XFZI e 332 szk to denote their
second differential. In the next result, we investigate the second-order variation of the
solutions produced by the control system Eq. 2.6.
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Proposition 2.16 Ler us assume that the vector fields F1, ..., F¥ defining the control sys-
tem Eq. 2.6 are C*-regular. For every u, v, w € U, for every ¢ € (0, 1], let Vi Vovew -
[0, 1] — R”" be the solutions of Eq. 2.14 corresponding to the first-order variation v and
to the admissible controls u and u + sw, respectively. Therefore, we have that

sup 1Yy rew — Vi — €2, " llco = o(e) as e — 0, (2.33)
ol 2 <1

where 7% : [0, 1] — R” is the solution of the following affine system:
k

IF" (x, OF(x,
2v(s) = Z[ () L) )+wl(s>$y;:<s>] (234)

i=1

92F (x,
+Z (s) (x Sl (v sy, 3o (s (2.35)
k
IF" (x,
T ST LA R (2.36)

i=1

with z"(0) = 0, and where yo,yy + [0,11 — R" are the solutions of Eq. 2.14
corresponding to the admissible control u and to the first-order variations v and w,
respectively.

Proof The proof of this result follows using the same kind of techniques and computations
as in the proof of Proposition 2.4. O

Remark 2.17 Similarly as done in Eq. 2.18 for the first-order variation, we can express the
solution of the affine system Eqgs. 2.34-2.36 through an integral formula. Indeed, for every
u,v,w €U, for every s € [0, 1] we have that

k
s dF" (x
o= [ Mo o (Z 0 D £y 237)
i=1
k
+Y i D ey 2.38)
i=1
30O (1, e ) dr, 239)
iz}ur 2 01, Ly[wl(z 7, (2.

where we used the linear operator £, : U — V defined in Eq. 2.29. From the previous
expression it follows that, for every u, v, w € U, the roles of v and w are interchangeable,
i.e., for every s € [0, 1] we have that z'" (s) = z,;""(s). Moreover, we observe that, for
every s € [0, 1] and for every u € U, z,;” (s) is bilinear with respect to v and w.

We are now in position to introduce the second differential of the end-point map P :
U — R" defined in Eq. 2.20. In view of the applications in the forthcoming sections, we
shall focus on the case s = 1, i.e., we consider the map P; : i/ — R". Before proceeding,
for every u € U we define the symmetric and bilinear map By, : U x U — R" as follows

Bu(v, w) :=z;"" (1). (2.40)
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Proposition 2.18 Ler us assume that the vector fields F, ..., F* defining the control sys-
tem Eq. 2.6 are C*-regular. Let P : U — R" be the end-point map defined by Eq. 2.20,
and, for every u € U, let D, Py : U — R" be its differential. Then, the correspondence
u +— Dy Py is Gateaux differentiable at every u € U, namely
D P - D,P
lim  sup |PwreePIO = DBIQ) 0, (2.41)
2

e=>0 Jjy)| o<1 €

where B, : U x U — R" is the bilinear, symmetric and bounded operator defined in
Eq. 2.40.

Proof In view of Eq. 2.23, for every u, v, w € U and for every ¢ € (0, 1], we have that
Dy P1(v) = y; (1) and Dy ¢y P1(v) = ¥, 1, (1). Therefore, Eq. 2.41 follows directly from
Eq. 2.33 and from Eq. 2.40. The symmetry and the bilinearity of B, : U xU — R" descend
from the observations in Remark 2.17. Finally, we have to show that, for every u € U, there
exists C > 0 such that

1By (v, w)l2 < Cllvll 2wl 2

for every v, w € U. Recalling Eq. 2.40 and the integral expression Eqs. 2.37-2.39, the last
inequality follows from the estimate Eq. B.1, from Lemma 2.5, from Proposition 2.2 and
from the C2—regularity of F1, ... Fk. O

In view of the previous result, for every u € U, we use DL% P : U xU — R" to denote
the second differential of the end-point map P; : U/ — R”. Moreover, for every u, v, w € U
we have the following identities:

D2Pi (v, w) = B, (v, w) = 25 (1). (2.42)

Remark 2.19 1t is possible to prove that the correspondence u +—> D,% P is continuous. In
particular, under the further assumption that the controlled vector fields F 1 ., FFare C3-
regular, the application u +— D,% Py is Lipschitz-continuous on the bounded subsets of U{.
Indeed, taking into account Eq. 2.42 and Eqgs. 2.37-2.39, this fact follows from Lemma 2.10,
from Lemma 2.14 and from the regularity of F 1 .. Fk.

For every v € R”" and for every u € U, we can consider the bilinear form v - D,% P
U x U — R, which is defined as

v-D2P (v, w) := (v, D}Pi (v, w))gn. (2.43)

We conclude this section by showing that, using the scalar product of I/, the bilinear form
defined in Eq. 2.43 can be represented as a self-adjoint compact operator. Before proceed-
ing, it is convenient to introduce two auxiliary linear operators. In this part we assume that
the vector fields F!, ..., F¥ are Cz-regular. For every u € U let us consider the application
M) U — V defined as follows:

Me[o)(o) = (M MY ()(x”(”)) v (2.44)

i=1

for a.e. T € [0, 1], where x,, : [0, 1] — R” is the solution of Eq. 2.6 and M,, : [0, 1] —
R™ " is defined in Eq. 2.16. We recall that, for every i = 1, ..., k and for every y € R”,
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2 i . . g . .
% : R" x R" — R”"” is a symmetric and bilinear function. Hence, for every i =

l,...,k, forevery u € U, and for every t € [0, 1], we have that the application
1 P F (D)

(1, ) > v My (DM (D) —— =

is a symmetric and bilinear form on R”". Therefore, foreveryi =1, ..., k, forevery u € U,

and for every 7 € [0, 1], we introduce the symmetric matrix S,"' (r) € R"*" that satisfies
the identity

M1, m2)

O*F (x, (1))
9x2
for every 1y, n2 € R”. We define the linear operator S, : C 0([0, 11, R") — V as follows:

(Se @i ma) = v MM () (11, m)

k
Syl(r) =Y u (r)Sy (1)v(r) (2.45)

i=1

for every v € ([0, 11, R") and for a.e. T € [0, 1].
In the next result, we prove that the linear operators introduced above are both
continuous.

Lemma 2.20 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are C?-regular. Therefore, for every u € U and for every v € R, the linear oper-
ators M U — Vand S} : c%0,1,R") - V defined, respectively, in Eqs. 2.44 and
2.45 are continuous.

Proof See Appendix B. O

We are now in position to represent the bilinear form v - Dﬁ P; : U x U — R through
the scalar product of /. Indeed, recalling Egs. 2.43 and 2.42, from Egs. 2.37-2.39 for every
u € U, we obtain that

v Dp P (v, w) = (M} ], Lu[w]), + (M) [w], Lulv]),, +(S) Lulv], Lulw]),,
= (CiM) ], w), + (M Lulvl, w)y, + (L3S Lulv], w),
for every v, w € U, where (M}))* : V — U is the adjoint of the linear operator M, : U/ —
V. Recalling Remark 2.12, we have that (M))* is a bounded linear operator. This shows
that the bilinear form v - D2P; : U x U — R can be represented by the linear operator
NV U — U, ie.,
v Dy Pi(v, w) = (N [v], w), (2.46)
for every v, w € U, where
Ny = LM + (M) Ly + L3S L. (2.47)

We conclude this section by proving that N : &/ — U is a bounded, compact, and self-
adjoint operator.

Proposition 2.21 Let us assume that the vector fields F', ..., F* defining the control sys-
tem Eq. 2.6 are C2-regular. For every u € U and for every v € R, let NY U — U be
the linear operator that represents the bilinear form v - D,%Pl U x U — R through the
identity Eq. 2.46. Then, J\/‘L}’ is continuous, compact, and self-adjoint.
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Proof We observe that the term LM} + (M})*L, at the right-hand side of Eq. 2.47 is
continuous, since it is obtained as the sum and the composition of continuous linear opera-
tors, as shown in Lemma 2.13 and Lemma 2.20. Moreover, it is also compact, since both £,
and L are, in virtue of Lemma 2.13. Finally, the fact that £} M} + (M))* L, is self-adjoint
is immediate. Let us consider the last term at the right-hand side of Eq. 2.47, i.e., L3S} L,.
We first observe that S/ £, : U — V is continuous, owing to Lemma 2.20 and the inequal-
ity Eq. B.1. Recalling that £ : V — U is compact, the composition LSy L, : U — U is
compact as well. Once again, the operator is clearly self-adjoint. O

3 Gradient Flow: Well-posedness and Global Definition
For every 8 > 0, we consider the functional F# : I/ — R defined as follows:
1
FPw) = S llullz, + atu (1), 3.1

where a : R” — R, is a non-negative C!-regular function, and, for every u € U, x, :
[0, 1] — R”" is the solution of the Cauchy problem Eq. 2.6 corresponding to the admissible
control u € U. In this section, we want to study the gradient flow induced by the functional
FP on the Hilbert space U. In particular, we establish a result that guarantees existence,
uniqueness and global definition of the solutions of the gradient flow equation associated
to FP. In this section, we adopt the approach of the monograph [10], where the theory of
ODE:s in Banach spaces is developed.

We start from the notion of differentiable curve with values in {/. We stress that in the
present paper the time variable ¢ is exclusively employed for curves taking values in /. In
particular, we recall that we use s € [0, 1] to denote the time variable only in the control
system Eq. 2.6 and in the related objects (e.g., admissible controls, controlled trajectories,
etc.). Given a curve U : (a, b) — U, we say that it is (strongly) differentiable at ¢y € (a, b)
if there exists u € U such that

U —Uy

lim =0. (3.2)
= || =t 12
In this case, we use the notation d;U;, := u. In the present section, we study the well-
posedness in I/ of the evolution equation
U, = —GPIU,],
{ Uop = uy, 3-3)

where G : U — U is the representation of the differential dF# : U — U* through the
Riesz isomorphism, i.e.,
(GPlu).v),, = duFP (V) (3.4)

for every u, v € U. More precisely, for every initial datum u¢ € U we prove that there exists
acurve ¢t — Uy that solves Eq. 3.3, that it is unique and that it is defined for every ¢ > 0.

We first show that d,, F# can be actually represented as an element of I/, for every u € U.
We immediately observe that this problem reduces to study the differential of the end-point
cost, i.e., the functional £ : U/ — R, defined as

E) = a(x, (1)), (3.5)

where x, : [0, 1] — R” is the solution of Eq. 2.6 corresponding to the admissible control
uel.
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Lemma 3.1 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C'-regular, as well as the function a : R" — R designing the end-point cost.
Then, the functional £ : U — Ry is Gateaux differentiable at every u € U. Moreover, using
the Riesz’s isomorphism, for every u € U, the differential d,€ : U — R can be represented

as follows:
' (Batu(D) g
du€(v) :/0 JX_; <T<g‘l7u(r),v(r)>w) dr (3.6)
for every v € U, where, for every j = 1,...,n, the function g{iu € U is defined as in
Eq. 2.22. '
Proof See Appendix C. O

Remark 3.2 Similarly as done in Remark 2.8, we can provide a uniform estimate of the
norm of d,€ when u varies on a bounded set. Indeed, recalling Lemma 2.2 and the fact that
a:R" — R, is C'-regular, for every R > 0 there exists C% > 0 such that

daCu ()| _ oo
dax/ -
for every j = 1,...,n and for every u € U such that ||u||;2 < R. Combining the last

inequality with Eqs. C.1 and 2.24, we deduce that there exists Cg > 0 such that for every
[lu||;2 < R the estimate
lduE W)l < CrllvllL2 (3.7

holds for every v € U.

Remark 3.3 We observe that, for every u, v € U, we can rewrite Eq. 3.6 as follows

1
4 = [ (Tl @.vm), dn (338)

where A, : [0, 1] — (R™)* is an absolutely continuous curve defined for every s € [0, 1]
by the relation
Mu(s) = Va(x, (1) - My(HM; ' (s), (3.9

where M, : [0, 1] — R"™ " is defined as in Eq. 2.16, and Va(x, (1)) is understood as a
row vector. Recalling that s — Mu’l(s) solves Eq. A.8, it turns out that s — X, (s) is the
solution of the following linear Cauchy problem:

k .
i, (s) = —A ( i M) fora.e. s € [0, 1],
u(s) u(s)g1 u' (s) =5y orae.s &[0, 1] (3.10)

Au(1) = Va(x,(1)).

Finally, Eq. 3.8 implies that, for every u € U, we can represent d,& with the function
hy @ [0, 1] = R* defined as

hu(s) = FT (xu ()AL (5) (3.11)

for a.e. s € [0, 1]. We observe that Eq. 3.7 and the Riesz’s isometry imply that for every
R > 0 there exists Cg > 0 such that

[1hullz2 < Cr (3.12)

for every u € U such that |[u||;2 < R. We further underline that the representation 4, :
[0, 1] — R* of the differential d,€ is actually absolutely continuous, similarly as observed
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in Remark 2.9 for the representations of the components of the differential of the end-point
map.

Under the assumption that the controlled vector fields F L .., F* and the func-
tion a : R" — R, are C’-regular, we can show that the differential u > d,& is
Lipschitz-continuous on bounded sets.

Lemma 3.4 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C2-regular, as well as the function a : R" — R, designing the end-point cost.
Then, for every R > O there exists Lg > 0 such that

Whutw = hullp2 < Lrllwl 2 (3.13)

for every u, w € U satisfying ||ul| 2, llw|| 2 < R, where hyy,, hy are the representations,
respectively, of dy+,E and d, € provided by Eq. 3.11.

Proof See Appendix C. (]

Remark 3.5 In Lemma 3.1 we have computed the Gateaux differential d,,€ of the functional
€ : U — R. The continuity of the map u +— d,& implies that the Gateaux differential
coincides with the Fréchet differential (see, e.g., [S, Theorem 1.9]).

Using Lemma 3.1 and Remark 3.3, we can provide an expression for the representation
map G# : U — U defined in Eq. 3.4. Indeed, for every 8 > 0 we have that
G lul = u + Bhu, (3.14)

where h, : [0,1] — RF is defined in Eq. 3.11. Before proving that the solution of the
gradient flow Eq. 3.3 exists and is globally defined, we report the statement of a local
existence and uniqueness result for the solution of ODEs in infinite-dimensional spaces.

Theorem 3.6 Let (E, || - ||E) be a Banach space, and, for every ug € E and R > 0, let
Bpg(ug) be the set

Br(ug) :={u € E: |lu —uollg < R}.
Let K : E — E be a continuous map such that

O NK[ullle < M for every u € Br(ug);
() IK[u1] — Klu2lllg < Lllur — uzl|g for every ui, uz € Bg(uo).

For every ty € R, let us consider the following Cauchy problem:

{ & Ur = K[U;],

3.15
UIO = Uug. ( )

Then, setting o := %, the equation Eq. 3.15 admits a unique and continuously differentiable

solution t +— Uy, which is defined for every t € T := [ty — «, ty + «] and satisfies U; €
Bg(ug) for everyt € I.
Proof This result descends directly from [10, Theorem 5.1.1]. O

In the following result, we show that, whenever it exists, any solution of Eq. 3.3 is
bounded with respect to the LZ-norm.

@ Springer



A Gradient Flow Equation for Optimal Control Problems With End-point Cost 537

Lemma 3.7 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C2-regular, as well as the function a : R" — R, designing the end-point cost.
For every initial datum ug € U, let U : [0, ®) — U be a continuously differentiable solution
of the Cauchy problem Eq. 3.3. Therefore, for every R > 0, there exists Cg > 0 such that,
if lluoll 2 < R, then

Uill2 < Cr

foreveryt € [0, ).

Proof Recalling Eq. 3.3 and using the fact that both 7# : &/ — Ry and r + U, are
differentiable, we observe that

d
TP WU =dy FP0,U) = (GPIUL), 0,Us) 12 = =1, Uil < 0 (3.16)

for every t € [0, ), and this immediately implies that
FP U < FP(Uo)

for every t € [0, o). Moreover, from the definition of the functional F# given in Eq. 3.1
and recalling that the end-point term is non-negative, it follows that %||u||i2 < FP(u) for
every u € U. Therefore, combining these facts, if ||ug||;2 < R, we deduce that

1 1
5||U,||izs sup fﬁ(uo)§§R2+ sup  a(xu,(1))
[luoll 2 <R [luoll 2 <R

for every ¢t € [0, ). Finally, using Lemma 2.2 and the continuity of the terminal cost
a:R" — R, we deduce the thesis. O

We are now in position to prove that the gradient flow equation Eq. 3.3 admits a unique
and globally defined solution.

Theorem 3.8 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C%-regular, as well as the function a : R" — R designing the end-point cost.
For every ug € U, let us consider the Cauchy problem Eq. 3.3 with initial datum Uy = uy.
Then, Eq. 3.3 admits a unique, globally defined and continuously differentiable solution
U :[0,+o00) > U.

Proof Let us fix the initial datum ug € U, and let us set R := ||ug||;2. Let Cg > O be the
constant provided by Lemma 3.7. Let us introduce R’ := Cg + 1 and let us consider

Bri(0):={u el :||ull2 <R}
We observe that, for every i € U such that ||i]|;2 < Cg, we have that
Bi(u) C Br(0), (3.17)

where By (it) := {u € U : ||u — u]|;» < 1}. Recalling that the vector field that generates the
gradient flow Eq. 3.3 has the form GPlul = u + Bhy for every u € U, from Eq. 3.12, we
deduce that there exists Mz > 0 such that

IGPTulll > < M (3.18)

for every u € Bg/(0). On the other hand, Lemma 3.4 implies that there exists Lz > 0 such
that

11GPTur] — GPlualll 2 < Lgilluy — ual| ;2 (3.19)
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for every uj,u; € Bpg/(0). Recalling the inclusion Eqgs. 3.17, 3.18, and 3.19 guarantee

that the hypotheses of Theorem 3.6 are satisfied in the ball Bj (i), for every u satisfying

[li|| 2 < Cg. This implies that, for every #y € R, the evolution equation
{ U, = —GPluyl,

Uy, = i, (3.20)

admits a unique and continuously differentiable solution defined in the interval [fo — «, o +
o], where we set o := M%e/ In particular, if we choose 7o = 0 and # = ug in Eq. 3.20, we
deduce that the gradient flow equation Eq. 3.3 with initial datum Uy = 1o admits a unique
and continuously differentiable solution ¢t — U, defined in the interval [0, «]. We shall now
prove that we can extend this local solution to every positive time. In virtue of Lemma 3.7,

we obtain that the local solution r +— U, satisfies
Ul 2 < Cr (3.21)

for every t € [0, «]. Therefore, if we set fp = % andu = U g in Eq. 3.20, recalling that,
if ||ul| 2 < Cg, then Eq. 3.20 admits a unique solution defined in [ty — o, fp + o], it turns
out that the curve t — U, that solves Eq. 3.3 with Cauchy datum Uy = u( can be uniquely
defined for every ¢ € [0, %a]. Since Lemma 3.7 guarantees that Eq. 3.21 holds whenever
the solution ¢ +— U, exists, we can repeat recursively the argument and we can extend the
domain of the solution to the whole half-line [0, +00). O

We observe that Theorem 3.6 suggests that the solution of the gradient flow equation
Eq. 3.3 could be defined also for negative times. In the following result we investigate this
fact.

Corollary 3.9 Under the same assumptions of Theorem 3.8, for every Ry > R > 0,
there exists a > 0 such that, if ||ugll;2 < Ry, then the solution t — U; of the Cauchy
problem Eq. 3.3 with initial datum Uy = uy is defined for every t € [—a, +00). Moreover,
Uil 2 < Ry for everyt € [—a, 0].

Proof The fact that the solutions are defined for every positive time descends from Theo-
rem 3.8. Recalling the expression of G# : U — U provided by Eq. 3.14, from Eq. 3.12 it
follows that, for every Ry > 0, there exists Mg, such that

IGP[ulll 2 < Mg,

forevery u € Bg,(0) := {u € U : ||u]|;2 < R>}. On the other hand, in virtue of Lemma 3.4,
we deduce that there exists L g, such that

11GPlur]l — GPlualll 2 < Le,lluy — uall;2

for every u1, up € Bg,(0). We further observe that, for every ug € U such that ||ug||;2 <
R1, we have the inclusion Bg(uo) := {u € U : ||lu — uo|| < R} C Bg,(0), where we set
R := Ry — R;. Therefore, the previous inequalities guarantee that the hypotheses of Theo-
rem 3.6 are satisfied in Br(uo), whenever ||ug||;2 < R;. Finally, in virtue of Theorem 3.6
and the inclusion Bg (1) C Bg,(0), we obtain the thesis with

_ Ry — Ry
Mg,

o
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4 Pre-compactness of Gradient Flow Trajectories

In Section 3, we considered the F# : U/ — R, defined in Eq. 3.1 and we proved
that the gradient flow equation Eq. 3.3 induced on I/ by F# admits a unique solution
U : [0,+00) — U, for every Cauchy datum Uy = ug € U. The aim of the present
section is to investigate the pre-compactness in U of the gradient flow trajectories ¢ > U;.
In order to do that, we first show that, under suitable regularity assumptions on the vector
fields F!,..., F¥ and on the function a : R" — R4, for every ¢ > 0, the value of the
solution U, € U has the same Sobolev regularity as the initial datum ug. The key-fact is
that, when F1, ..., FF are C’-regular with » > 2 and a : R" — R, is of class C2, the
map GP - H™([0, 1], RF) > H™([0, 1], R¥) is locally Lipschitz continuous, for every non-
negative integer m < r — 1. This implies that the gradient flow equation Eq. 3.3 can be
studied as an evolution equation in the Hilbert space H™ ([0, 1], R ).
The following result concerns the curve A, : [0, 1] — (R™)* defined in Eq. 3.9.

Lemma 4.1 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C2-regular, as well as the function a : R" — R, designing the end-point cost.
For every R > 0, there exists Cr > 0 such that, for every u € U satisfying ||u||;2 < R, the
following inequality holds

Aullco = Cr, 4.1

where the curve A, : [0, 11 — (R™)* is defined as in Eq. 3.9. Moreover, for every R > 0,
there exists Lr > 0 such that, for every u, w € U satisfying ||ul|;2, ||lwll;2 < R, for the
corresponding curves Ay, Ayt : [0, 11 = (R™)* the following inequality holds:

Autw = Aullco = Lrllwll 2. 4.2)

Proof Recalling the definition of A, given in Eq. 3.9, we have that
()2 < [VaCe, ()M, (D 2| M; ()]

for every s € [0, 1], where x,, : [0, 1] — R” is solution of Eq. 2.6 corresponding to the
control u € U. Lemma 2.2 implies that there exists Cj > 0 such that [Va(x,(1))|2 < Cj
for every u € U such that ||u||;» < R. Combining this with Eq. 2.17, we deduce Eq. 4.1.

To prove Eq. 4.2, we first observe that the C2-regularity of ¢ : R"” — R, and
Proposition 2.3 imply that, for every R > 0, there exists L’y > 0 such that

/
|qu+w(1)a - V)Cu(l)alz E LR||w||L2

for every u, w € U such that ||u]|;2, ||w||;2 < R. Therefore, recalling Eq. 2.17 and
Egs. 2.26-2.27, we deduce Eq. 4.2 by applying the triangular inequality to the identity

Pt () = M ()2 = Vi 1y (1)@ - M (DM, () = Vi, ya - My (DM, ()12

for every s € [0, 1]. O

We recall the notion of Lie bracket of vector fields. Let G!, G2 : R" — R" be two vector
fields such that G! € €' (R",R") and G? € C"2(R", R"), with 1, r» > 1, and let us set
r := min(ry, r2). Then, the Lie bracket of G' and G? is the vector field [G!, G?] : R" —
R" defined as follows:

IG2(y) IG! ()

[G', G*1(y) = a—G%y) - ——=G*(y).
X 0x
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We observe that [G!, G%] € C™~1(R", R"). In the following result, we establish some
estimates for vector fields obtained via iterated Lie brackets.

Lemma 4.2 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are C™-regular, with m > 2. For every compact K C R", there exist C > 0 and
L > 0 such that, for every ji, ..., jm =1, ..., k, the vector field

G :=[F/" [...,[F3, [F? F']..]:R" > R
satisfies the following inequalities:
G =C (4.3)

forevery x € K, and
IG(x) = G2 = Llx =yl 4.4)
foreveryx,y € K.

Proof The thesis follows immediately from the fact that the vector field G is C'-regular.
O

The next result is the cornerstone this section. It concerns the regularity of the function
hy @ [0, 1] = R* introduced in Eq. 3.11. We recall that, for every u € U, h,, is the represen-
tation of the differential d, £ through the scalar product of I/, where the functional £ : U —
R, is defined as in Eq. 3.5. We recall the convention H°([0, 1], R¥) = L2([0, 1], R¥) = 1.

Lemma 4.3 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C"-regular with r > 2, and that the function a : R* — R designing the end-
point cost is C*-regular. For every u € U, let h,, : [0, 1] — R be the representation of
the differential d,€ : U — R provided by Eq. 3.11. For every integer 1 < m < r — 1,
ifu € H"1([0,11,RYY ¢ U, then h, € H™([0, 11, RX). Moreover, for every integer
1 <m <r —1, forevery R > O there exist C§ > 0 and L'y > 0 such that

Ihullum < Cg 4.5)
for every u € H"~1([0, 11, R¥) such that [lu]| gm—1 < R, and
Nhutw — hullpm < LRI wl|gm- (4.6)

foreveryu,w € H™1([0, 1], R¥) such that [lull ggm—1, [|lw|| gm-1 < R.

Proof 1t is sufficient to prove the thesis in the case m = r — 1, for every integer r > 2.
When r = 2, m = 1, we have to prove that, for every u € U, the function A, : [0, 1] — Rk
isin H'. Recalling Eq. 3.11, we have that, for every j = 1, ..., k, the jth component of A,
is given by the product
hit(s) = hu(s) - F/ (x(5))

for every s € [0, 1]7 where A, : [0, 1] - (R™)* was defined in Eq. 3.9. Since both s +—
Au(s) and s — FJ(x,(s)) are in H!, then their product is in H! as well (see, e.g., [6,
Corollary 8.10]). Therefore, since A, : [0, 1] — (R")* solves Eq. 3.10, we can compute

k
Ry (s) = hu(s) - D [F', F g oy’ (5) 4.7)
i=1
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forevery j = 1,...,k and for a.e. s € [0, 1]. In virtue of Egs. 4.1, 2.11 and 4.3, for every
R > 0, there exists C }e > 0 such that

Il ()] < Crlu(s)ls

for a.e. s € [0, 1], forevery j = 1,...,k and for every u € U such that ||ul||;> < R.
Recalling Eq. 2.10, we deduce that

Rl 12 < VEChllull 2 (4.8)

forevery j = 1,..., k and for every u € U such that ||u||;2 < R. Finally, using Eq. 3.12,
we obtain that Eq. 4.5 holds for r = 2, m = 1. To prove Eq. 4.6, we observe that, for every
j=1,...,kand forevery u, w € U we have

() = W (S)]

k
= Pt ®) = 2@l Y [P Fll 0 1 (9) + 0/ 9)]
i=1

k
Ha)2 Y [F F L) = I il
i=1

, ' (5) + w' (5)]

k
a2 Y [P il 10 0)
i=1

for a.e. s € [0, 1]. In virtue of Lemma 4.1, Lemma 2.2, Proposition 2.3 and Lemma 4.2, for
every R > 0 there exist L’y > 0 and C}, > 0 such that for every j = 1, ..., k the inequality

() = h)| = Liglwll2lu() + w(o)]i + Crlw)ly

holds for a.e. s € [0, 1] and for every u, w € U satisfying ||u||;2, [lw]l;2 < R. Using
Eq. 2.10, the previous inequality implies that there exists L’ > 0 such that

Wi — Rl 2 < Lgllwl] g2 (4.9)

u+w

for every u, w € U such that ||u]|;2, ||lw||;2 < R. Recalling Eq. 3.13, we conclude that
Eq.4.6 holds forr =2, m = 1.

For r = 3,m = 2, we have to prove that, for every u € H([0, 1], R%), the func-
tion h, belongs to H2([0, 1], R%). This follows if we show that fzu e H([0, 1], RY)
for for every u € H 1([0, 1], ]Rk). Using the identity Eq. 4.7, we deduce that, whenever
u € HY([0, 1], RF), M is the product of three Hl-regular functions, forevery j =1, ..., k.
Therefore, using again [6, Corollary 8.10], we deduce that /i, is H'-regular as well. From
Eq.4.7, forevery j =1, ..., k, we have that

k
i (s) = hu(s) Y LF2[F™, Py, u" (s)u™(s)
ir,ip=1
() - Y IF, F g 0" ()

i=1
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for a.e. s € [0, 1]. Using Lemma 4.1, Lemma 2.2, Lemma 4.2, and recalling Theorem 2.1,
we obtain that, for every R > 0 there exist Cf, Cy > 0 such that

it ()12 < Ch + Chlli(s)Il2 (4.10)

for a.e. s € [0, 1], for every j = 1,...,k and for every u € Hl([O, 1], ]Rk) such that
[lu||g1 < R. Therefore, combining Eqs. 3.12, 4.8 and 4.10, the inequality Eq. 4.5 follows
for the case r = 3,m = 2. In view of Egs. 3.13 and 4.9, in order to prove Eq. 4.6 for
r =3, m = 2 it is sufficient to show that, for every R > 0 there exists L’y > 0 such that
Wi = il 2 < Ligllwll g @.11)

utw
for every u, w € H([0, 11, R¥) such that [lu|lg1, [lwllg1 < R. The inequality Eq. 4.11
can be deduced with an argument based on the triangular inequality, similarly as done in the
caser =2, m = 1.
The same strategy works for every r > 4. O

The main consequence of Lemma 4.3 is that, when the map GP . U — U defined in
Eq. 3.14 is restricted to H™ ([0, 1], RFK), the restriction G# : H™ — H™ is bounded and
Lipschitz continuous on bounded sets.

Proposition 4.4 Let us assume that the vector fields F', . .., FX defining the control system
Eq. 2.6 are C"-regular with r > 2, and that the function a : R"* — R designing the end-
point cost is C2-regular. For every B > 0, let GF : U — U be the representation map
defined in Eq. 3.4. Then, for every integer 1 < m <r — 1, we have that

G#(H™ ([0, 11, R¥)) ¢ H™([0, 1], RF).

Moreover, for every integer 1 < m < r — 1 and for every R > 0 there exists Cly > 0 such
that

NG 1| m < C 4.12)
for every u € H™ ([0, 11, R¥) such that ||u||gm < R, and there exists L'z > 0 such that
1GP [+ wl = GPLulllm < L |wl] 4.13)

for every u, w € H™ ([0, 1], R¥) such that ||u||gm, ||lw||g» < R.

Proof Recalling that for every u € U we have
G lul = u + Bhu,

the thesis follows directly from Lemma 4.3. O

Proposition 4.4 suggests that, when the vector fields F 1 . FrareC’ -regular with r >
2, we can restrict the gradient flow equation Eq. 3.3 to the Hilbert spaces H™ ([0, 1], Rk),
for every integer 1 < m < r — 1. Namely, for every integer | < m < r — 1, we shall
introduce the application g,’,‘; - H™([0, 1], R¥) — H™([0, 1], R¥) defined as the restriction
of G U — Uto H™,ie.,
Gh =GP . (4.14)
For every integer m > 1, given a curve U : (a,b) — H™ ([0, 1], RF), we say that it is
(strongly) differentiable at 7y € (a, b) if there exists u € H™ ([0, 1], R¥) such that
Ui=Uy _
t—1o

lim
—1

=0. (4.15)
Hm
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In this case, we use the notation d; Uy, := u.Forevery £ =1, ..., m andforeveryt € (a, b),

we shall write U, ,(K) e H™ ([0, 1], R¥) to denote the ¢-th Sobolev derivative of the function
U, :s = U(s),ie.,

1 1
©) _(_1\¢ )
/0 (Vi) 9@ ) ds = (1) /0 (U@, 6), ds

for every ¢ € C°([0, 1], R¥Y. Tt is important to observe that, for every order of derivation
£=1,...,m,Eq.4.15 implies that

) (0)
lim U —Uy u® -0
1o t—1toy 2 ’
and we use the notation 0, U,(OE) =u® In particular, for every £ = 1, ..., m, it follows that
d @2 : ) ) 0 7,0
E”Ut 7. = 2/ (0:Ur 7 (s), U " (8))ge ds = 2(0,U; 7, U; ") 2. (4.16)
0
In the next result, we study the following evolution equation
_ _CcB
atUt - gm[Ul], (417)
Uy = uo,

with ug € H™([0, 1], R%), and where G : H™ ([0, 1], RF) — H™ ([0, 1], R¥) is defined
as in Eq. 4.14. Before establishing the existence, uniqueness and global definition result
for the Cauchy problem Eq. 4.17, we study the evolution of the semi-norms ||U,(K)|| 12 for
£ =1,..., m along its solutions.

Lemma 4.5 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are C"-regular with r > 2, and that the function a : R" — R, designing the
end-point cost is C2-regular. For every integer 1 < m < r — 1 and for every inital datum
uo € H™([0,1],RY), ler U : [0,0) — H™([0, 1], R¥) be a continuously differentiable
solution of the Cauchy problem Eq. 4.17. Therefore, for every R > 0, there exists Cg > 0
such that, if ||ug||gm < R, then

NUillgm < Cr (4.18)

foreveryt € [0, ).

Proof 1t is sufficient to prove the statement in the case r > 2, m = r — 1. We shall use an
induction argument on r.

Let us consider the case r = 2, m = 1. We observe that if U : [0, &) — H!([0, 1], R¥)
is a solution of Eq. 4.17 with m = 1, then it solves as well the Cauchy problem Eq. 3.3 in
U. Therefore, recalling that ||uo||;2 < ||uol| g1, in virtue of Lemma 3.7, for every R > 0,
there exists Cj, > 0 such that, if [|uo|| ;1 < R, we have that

Uil < Ch (4.19)
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for every ¢t € [0, @). Hence, it is sufficient to provide an upper bound to the semi-norm
||U,(l)||L2. From Eq. 4.16 and from the fact that ¢t +— U, solves Eq. 4.17 form = 1, it
follows that

d 1
SO = 2000, 00 = =2 [ U6+ s 0. U0, ds
dt 0 ! RK

IA

1 1 1
2110112, + 2811 11 211U 2
1 1
< =P 1R + BInG 112,
for every ¢t € [0, @), where hy, : [0, 1] — RF is the absolutely continuous curve defined

in Eq. 3.11, and h(L},) is its Sobolev derivative. Combining Eq. 4.19 with Eq. 4.5, we obtain
that there exists C Ile > 0 such that

d 2 2
(1) (1 2 ~1
EHU’ ’L2§_”Ut ‘L2+ﬁcR

for every t € [0, ). This implies that

(€3] 1 1
], <o ], -8
for every ¢ € [0, «). This proves the thesis in the case r = 2, m = 1.
Let us prove the induction step. We shall prove the thesis in the case r,m = r — 1. Let
U :[0,a) — H™([O,1], Rk) be a solution of Eq. 4.17 with m = r — 1. We observe that
t — U; solves as well
U =G U,
Uy = uop.
Using the inductive hypothesis and that ||ug||gm-1 < |lug||gm, for every R > 0 there exists
C% > Osuch that, if [|ug||= < R, we have that

Ut gm-1 < Cg (4.20)

for every t € [0, o). Hence, it is sufficient to provide an upper bound to the semi-norm

||U,(m) |I;2. Recalling Eq. 4.16, the same computation as before yields
d m |12 2
— U, ‘ < —
dt H !

U(m)
2~ d

2
2 |4, (m)
2t P ‘ hy,

L2

for every t € [0, «). Combining Eq. 4.20 with Eq. 4.5, we obtain that there exists C,le >0
such that

d | m|? m|? g2
EHUI LZS_HUt ‘L2+'BCR
for every t € [0, ). This yields Eq. 4.18 for the inductive case r,m =r — 1. O

We are now in position to prove that the Cauchy problem Eq. 4.17 admits a unique and
globally defined solution. The proof of the following result follows the lines of the proof of
Theorem 3.8.

Theorem 4.6 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are C"-regular with r > 2, and that the function a : R* — R designing the end-
point cost is C-regular. Then, for every integer 1 < m < r — 1 and for every inital datum
ug € H" ([0, 11, R¥), the evolution equation Eq. 4.17 admits a unique, globally defined and
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continuously differentiable solution U : [0, +00) — H™ ([0, 1], Rk)‘ Moreover, there exists
Cuo > 0 such that
Ut l|gm < Cyy (4.21)

for everyt € [0, +00).

Proof 1t is sufficient to prove the statement in the case r > 2,m = r — 1. In virtue of
Lemma 4.5 and Proposition 4.4, the global existence of the solution of Eq. 4.17 follows
from a verbatim repetition of the argument of the proof of Theorem 3.8. Finally, Eq. 4.21
descends directly from Lemma 4.5. O

Remark 4.7 We insist on the fact that, under the regularity assumptions of Theorem 4.6,
if the initial datum uq is H™-Sobolev regular with m < r — 1, then the solution U :
[0, +00) — U of Eq. 3.3 does coincide with the solution of Eq. 4.17. In other words, let
us assume that the hypotheses of Theorem 4.6 are met, and let us consider the evolution
equation

(4.22)

U, = —GPIU,],
Uy = uo,

where ug € H™ ([0, 1], ]Rk), with m < r —1. Owing to Theorem 3.8, it follows that Eq. 4.22
admits a unique solution U : [0, +00) — U. We claim that t > U, solves as well the
evolution equation
0,U; = —GhlU,], 423)
Uy = uy. )

Indeed, Theorem 4.6 implies that Eq. 4.23 admits a unique solution U : [0, +00) —
H™ ([0, 11, R ). Moreover, any solution of Eq. 4.23 is also a solution of Eq. 4.22; therefore,
we must have U; = U, for every t > 0 by the uniqueness of the solution of Eq. 4.22. Hence,
it follows that, if the controlled vector fields F!, ..., F¥ and the function a : R* — R are
regular enough, then for every ¢ € [0, +00), each point of the gradient flow trajectory U;
solving Eq. 4.22 has the same Sobolev regularity as the initial datum.

We now prove a pre-compactness result for the gradient flow trajectories. We recall that
we use the convention H? = L2.

Corollary 4.8 Under the same assumptions of Theorem 4.6, let us consider ug €
H™([0, 1], Rk) with the integer m satisfying 1 <m <r — 1. Let U : [0, +00) — U be the
solution of the Cauchy problem Eq. 3.3 with initial condition Uy = ug. Then, the trajectory
{U; : t = 0} is pre-compact in H™"1([0, 1], R%).

Proof As observed in Remark 4.7, we have that the solution U : [0, 4+00) — U of Eq. 3.3
satisfies U; € H™ ([0, 1], Rk) for every t > 0, and that it solves Eq. 4.17 as well. In virtue
of Theorem 2.1, the inclusion H™ ([0, 1], R*) — H™~1([0, 1], R) is compact for every
integer m > 1; therefore, from Eq. 4.21, we deduce the thesis. O

5 Lojasiewicz-Simon Inequality

In this section, we show that when the controlled vector fields F!, ..., F¥ and the function
a : R" — R, are real-analytic, then the cost functional F# : I{ — R, satisfies the
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Lojasiewicz-Simon inequality. This fact will be of crucial importance for the convergence
proof of the next section. For a complete survey on the Lojasiewicz-Simon inequality, we
refer the reader to the paper [7].

In this section, we prove that the functional 7# : &/ — R, defined in Eq. 3.1 satisfies
the Lojasiewicz-Simon inequality for every B > 0. We first show that, when the function
a : R* — Ry involved in the definition of the end-point cost Eq. 3.5 and the controlled
vector fields F1, ..., F¥ are real-analytic, F' B is real-analytic as well, for every § > 0. We
recall the notion of real-analytic application defined on a Banach space. For an introduction
to the subject, see, for example, [15].

Definition 5.1 Let £, E; be Banach spaces, and let us consider an application 7 : E| —
E>. The function 7T is said to be real-analytic at ey € E| if for every N > 1 there exists a
continuous and symmetric multi-linear application Iy € Z((E DN, E») and if there exists
r > 0 such that, for every e € E satisfying ||e — eo||g, < r, we have

o
D Nl @zny £y e — eol |}, < 400

N=1
and
(e e]
T(e) —T(eo) =Y In(e—en)”,
N=1
where, forevery N > 1, we setly(e—ep) = In(e—eq, ...,e—ep).Finally, 7 : E; — E;

is real-analytic on E if it is real-analytic at every eg € Ej.

In the next result, we provide the conditions that guarantee that # : i{ — R is real-
analytic.

Proposition 5.2 Let us assume that the vector fields F', . .., FX defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R" — Ry designing the end-point cost
Eq. 3.5. Therefore, for every B > 0, the functional FP U — R, defined in Eq. 3.1 is
real-analytic.

Proof Since FPu) = %| lu|l ;2 + BE (u) for every u € U, the proof reduces to show that the
end-point cost £ : U — Ry is real-analytic. Recalling the definition of £ given in Eq. 3.5
and the end-point map P; : U — R” introduced in Eq. 2.20, we have that the former can
be expressed as the composition
E=ao P].

In the proof of [4, Proposition 8.5] it is shown that Py is smooth as soon as F!, ..., F¥ are
C*-regular, and the expression of the Taylor expansion of P; at every u € U is provided.
In [2, Proposition 2.1], it is proved that, when a : R” — R and the controlled vector fields
are real-analytic, the Taylor series of a o Pj is actually convergent. O

The previous result implies that the differential d F# : U — U* is real-analytic.

Corollary 5.3 Under the same assumptions as in Proposition 5.2, for every > 0, the
differential dFP : U — U* is real-analytic.

Proof Owing to Proposition 5.2, the functional 7# : i/ — R, is real-analytic. Using this
fact, the thesis follows from [15, Theorem 2, p.1078]. O
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Another key-step in view of the Lojasiewicz-Simon inequality is the study of the Hessian
of the functional F# : U — R. In our framework, the Hessian of F B ata point u € U is
the bounded linear operator Hess, F# : 1/ — U that satisfies the identity:

(Hess, FP[v], w) 2 = d>FP (v, w) (5.1

for every v, w € U, where a'g]: B . U x U — R is the second differential of F? at the point
u. In the next proposition we prove that, for every u € U, Hess, F* has finite-dimensional
kernel. We stress on the fact that, unlike the other results of the present section, we do not

have to assume that F!, ..., F¥ and a : R” — R are real-analytic to study the kernel of
Hess, FP.
Proposition 5.4 Let us assume that the vector fields F', . .., F¥ defining the control system

Eq. 2.6 are C2-regular, as well as the function a : R" — Ry defining the end-point cost
Eq. 3.5. For every u € U, let Hess, F? : U — U be the linear operator that represents the
second differential d>FP : U x U — R through the identity Eq. 5.1. Then, the the kernel
of Hess, FP is finite-dimensional.

Proof For every u € U, we have that
d*FP (v, w) = (v, w),2 + Bd2E(v, w)

for every v, w € U. Therefore, we are reduced to study the second differential of the end-
point cost £ : U — R . Recalling its definition in Eq. 3.5 and applying the chain-rule, we
obtain that

d2E (v, w) = [Dy Py ()T V2a(x, (1)) [Dy Py (w)] + (Va(x, (D)) - D2Pi (v, w), (5.2)

where P; : Y — R” is the end-point map defined in Eq. 2.20, and where the curve x,, :
[0, 1] — R” is the solution of Eq. 2.6 corresponding to the control u € U{. We recall that,
for every y € R”, we understand Va(y) as a row vector. Let us set v, := (Va(x, (D) and
H, := VZa(x,(1)), where H, : R" — R" is the self-adjoint linear operator associated to
the Hessian of @ : R” — R at the point x,,(1). Therefore, we can write

d2E (v, w) = ((Dy P} o Hy 0 Dy P1) [v], w),2 + vy - D2P1 (v, w) (5.3)
for every v, w € U, where D, P|" : R" — U is the adjoint of the differential D, Py : U —
R". Moreover, recalling the definition of the linear operator N} : U — U given in Eq. 2.46,
we have that

vu - D2P1(v, w) = (N2 [v], w) 2
for every v, w € U. Therefore, we obtain
d2E(v, w) = (Hess, E[v], w) 2 (5.4)
for every v, w € U, where Hess, & : U — U is the linear operator that satisfies the identity:
Hess,& = D, P} o H, 0o D, P| + N}".

We observe that Hess,, € is a self-adjoint compact operator. Indeed, N,;* is self-adjoint and
compact in virtue of Proposition 2.21, while D, Pl* o H, o D, P; has finite-rank and it
self-adjoint as well. Combining Egs. 5.2 and 5.4, we deduce that

Hess, F? = Id + BHess, &, (5.5)
where Id : U4 — U is the identity. Finally, using the Fredholm alternative (see, e.g., [6,
Theorem 6.6]), we deduce that the kernel of Hess, F* is finite-dimensional. O
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We are now in position to prove that the functional F# : U — R, satisfies the
Lojasiewicz-Simon inequality.

Theorem 5.5 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R* — R, defining end-point cost
Eq. 3.5. For every 8 > 0 and for every u € U, there existsr > 0, C > 0and y € (1,2]
such that

| FP () — FPw)]| < C|dyFP|

for every v € U such that ||[v — ul|;2 <.

e (5.6)

Proof If u € U is not a critical point for FP ie.,d,FP # 0, then there exists r; > 0 and
k > 0 such that
dy FP |15 =

for every v € U satisfying ||v — u||;2 < r1. On the other hand, by the continuity of F#, we
deduce that there exists rp > 0 such that

| 7P () — FPw| <«

for every v € U satisfying [|lv — u||;» < rp. Combining the previous inequalities and taking
r := min{ry, 2}, we deduce that, when d, F# # 0, Eq. 5.6 holds with y = 2.

The inequality Eq. 5.6 in the case d,F# = 0 follows from [7, Corollary 3.11]. We
shall now verify the assumptions of this result. First of all, [7, Hypothesis 3.2] is satisfied,
being U an Hilbert space. Moreover, [7, Hypothesis 3.4] follows by choosing W = U*. In
addition, we recall that dF# : U — U* is real-analytic in virtue of Corollary 5.3, and that
Hess, F# has finite-dimensional kernel owing to Proposition 5.4. These facts imply that the
conditions (1)—(4) of [7, Corollary 3.11] are verified if we set X = U/ and Y = U*. O

6 Convergence of the Gradient Flow

In this section, we show that the gradient flow trajectory U : [0 + co) — U that solves
Eq. 3.3 is convergent to a critical point of the functional 7# : U/ — R, provided that
the Cauchy datum Uy = ug satisfies ug € H 1[0, 11, R*) c U. The Lojasiewicz-Simon
inequality established in Theorem 5.5 will play a crucial role in the proof of the convergence
result. Indeed, we use this inequality to show that the trajectories with Sobolev-regular initial
datum have finite length. In order to satisfy the assumptions of Theorem 5.5, we need to
assume throughout the section that the controlled vector fields L .., F¥ and the function
a :R" — R, are real-analytic.

We first recall the notion of the Riemann integral of a curve that takes values in .
For general statements and further details, we refer the reader to [10, Section 1.3]. Let us
consider a continuous curve V : [a, b] — U. Therefore, using [10, Theorem 1.3.1], we can

define
b 1 n—1
/a Vedt = lim ;; Vi

We immediately observe that the following inequality holds:

b
I

b
5/ [ Vill 2 dt. (6.1)
L? a
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Moreover, [10, Theorem 1.3.4] guarantees that, if the curve V : [a, b] — U is continuously
differentiable, then we have:

b
Vo —Va= / 0;Vp do, (6.2)
a

where 9, Vj is the derivative of the curve ¢ — V; defined as in Eq. 3.2 and computed at the
instant 6 € [a, b]. Finally, combining Eqgs. 6.2 and 6.1, we deduce that

b
Vs = Vall 2 sf 113 Voll,» db. 63)
a

We refer to the quantity at the right-hand side of Eq. 6.3 as the length of the continuously
differentiable curve V : [a, b] — U.

Let U : [0, +00) — U be the solution of the gradient flow equation Eq. 3.3 with initial
datum ug € U. We say that us, € U is a limiting point for the curve ¢ — Uy if there exists
a sequence (#;)j>1 such that 7; — +oo and ||U;; — ucoll2 — 0 as j — oo. In the next
result, we study the length of # — U; in a neighborhood of a limiting point.

Proposition 6.1 Let us assume that the vector fields F', . . .| F* defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R" — R designing the end-point cost.
Let U : [0, +00) — U be the solution of the Cauchy problem Eq. 3.3 with initial datum
Uo = ug, and let uso € U be any of its limiting points. Then, there exists r > 0 such that
the portion of the curve that lies in B, (u~o) has finite length, i.e.,

/ [10:Uglly2 db < o0, (6.4)
z

where L :={t > 0:U; € Br(Uoo)}, and B, (uo) :={u € U : |lu —uxoll|j2 < r}.

Proof Let us € U be a limiting point of ¢ — Uy, and let (7;) j>1 be a sequence such that
tj = +oo and ||U;j — Uxollz2 = 0 as j — oo. The same computation as in Eq. 3.16

implies that the functional 7# : 1/ — R, is decreasing along the trajectory t — Uy, i.e.,
FPwy) < FP ) 6.5)

for every ¢ > ¢t > 0. In addition, using the continuity of FB, it follows that fﬁ(U,-,.) —

FPB(us) as j — oo. Combining these facts, we have that
FPU) = FPux) 2 0 (6.6)

for every t+ > 0. Moreover, owing to Theorem 5.5, we deduce that there exist C > 0,
y € (1,2] and r > O such that

1
|FP (v) — FP(uoo)| < 5||dufﬁ||z,* (6.7)

for every v € B,(uso). Let t1 > 0 be the infimum of the instants such that U; € B, (uco),
ie.,

1 := inf{U; € B, (so)}.
>0

We observe that the set where we take the infimum is nonempty, in virtue of the convergence
||U,-/. — Ueollz2 — 0 as j — oo. Then, there exists t]’ € (t1, +oo] such that U, € B, (uso)
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for every ¢ € (t1, t{), and we take the supremum f{ > #{ such that the previous condition is
satisfied, i.e.,
11 = sup{U; € B,(uco), Vt € (11, 1)}.
t'>1
If 1{ < oo, we set
b= inf (U; € B, (o)},

1>t
and
th = sup{U; € B,(uco),Vt € (12,1")}.
t'>t

We repeat this procedure (which terminates in a finite number of steps if and only if there
exits 7 > 0 such that U; € B, (uco) for every t > 1), and we obtain a family of intervals
{(t;, t})}jzl ,,,,, N, where N € N U {oo}. We observe that U;V:l(tj, t;.) = 7, where we set
ZT:={t>0:U, € By(ux)}.

Without loss of generality, we may assume that Z is a set of infinite Lebesgue measure.
Indeed, if this is not the case, we would have the thesis:

/||8tU9||L2d9 =/ 1GP[Us1l1 2 d6 < oo,
T T

since ||GP[ull| 12 is bounded on the bounded subsets of I/, as shown in Eq. 3.18. Therefore,
we focus on the case when the Lebesgue measure of Z is infinite. Let us introduce the
following sequence:

0 =11, ‘L'1=t{, ‘L’2=T1+(té—t2), R ‘L'j'=‘L'j_1+(t;-—tj), A (6.8)

where tl,ti,... are the extremes of the intervals {(tj,t})}/:] ,,,,, N constructed above.
Finally, we define the function o : [t9, +00) — [10, +00) as follows:

t iftg <t <1,
t—1+nifty <t <1,

o(t) = .
@ t—n+nifp <t <1,

(6.9)

We observe that o : [19, +00) — [t0, +00) is piecewise affine and it is monotone
increasing. In particular, we have that

o(tj) =tjy1 > t; = lim o(t). (6.10)

—>T.
t 'L'j

Moreover, from Eq. 6.8 and from the definition of the intervals { (t i t;) } - it follows that
iz
Usr) € By (iiso) ©.11)
for every t € [tp, +00). Let us define the function g : [tg, +00) — R as follows:
8(t) == FP(Us)) — FP o), (6.12)

where we used Eq. 6.6 to deduce that g is always non-negative. From Eq. 6.9, we obtain
that the restriction g|(; 7;,,) is C !_regular, for every j > 0. Therefore, using the fact that
d|(rj,,j+|) = 1, we compute

d
g0 =— (FP(Us ) — FPluso)) = —du, , F* (G [Us(r)])

@ Springer



A Gradient Flow Equation for Optimal Control Problems With End-point Cost 551

for every t € (tj, Tj4+1) and for every j > 0. Recalling that GB . U — U is the Riesz’s
representation of the differential d ' B .U — U*, it follows that
(6.13)

g(t) = - ||dUa(;)]:ﬁ|ZZA*

for every t € (tj, tj4+1) and for every j > 0. Moreover, owing to the Lojasiewicz-Simon
inequality Eq. 6.7, from Eq. 6.11 we deduce that

(1) < —Cg7 (1) 6.14)

for every ¢ € (7, Tj4+1) and forevery j > 0. Let i : [19, 00) — [0, +00) be the solution of
the Cauchy problem

h=—Ch?. () = g(xo). 6.15)
whose expression is
) w2
oy = | (@) 77+ P —)) T ity e 1,2),
h(zp)e™ ¢! if y =2,

for every t € [79, 00). Using the fact that g|(, ) is Cl-regular, in view of Eq. 6.14, we
deduce that

g() < h(), (6.16)
for every t € [79, T1). We shall now prove that the previous inequality holds for every

t € [19, +00) using an inductive argument. Let us assume that Eq. 6.16 holds in the interval
[70, Tj), with j > 1. From the definition of g, combining Eqs. 6.5 and 6.10, we obtain that

g(rj) < lim g(r) < lim h(z) = h(z)). (6.17)

—>T; —>T.
I‘Ij trj

Using that the restriction gl(,j,,jﬂ) is Cl-regular, in virtue of Egs. 6.14, 6.15, and 6.17,
we extend the the inequality Eq. 6.16 to the interval [zg, ;). This shows that Eq. 6.16 is
satisfied for every ¢ € [19, +00).

We now prove that the portion of the trajectory that lies in B, (i) is finite. We observe
that

/Ina,Uaande=/I||Qﬁ(Ue>||de9=/I||du9fﬁ||wd9, (6.18)

where we recall that Z = U?’ZI <tj, t;> For every j > 1, in the interval (¢, t}) we use the
change of variable & = o (¥%), where ¢ is defined in Eq. 6.9. Using Eqgs. 6.8 and 6.9, we
observe that o ! {(tj, t;)} = (7j—1, ;) and that é|(fj71,,j) = 1. These facts yield

t/- Tj Tj
f 1y FP 1 d6 = / ldu, ) FPlle d = f JoEDd (619
' T Tj-1

j j
for every j > 1, where we used Eq. 6.13 in the last identity. Therefore, combining Eqs. 6.18
and 6.19, we deduce that

400
/I||8tUg||L2 do = V=@ dv. (6.20)

70
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Then, the thesis reduces to prove that the quantity at the right-hand side of Eq. 6.20 is finite.
Let § > 0 be a positive quantity whose value will be specified later. From the Cauchy-
Schwarz inequality, it follows that

1 1
+Oo,/—g(19)dz? < (foo —g(ﬁ)ﬁ1+5dﬁ>2 (/oo ﬁ_l_‘sdﬁ)z . (6.21)
L1 0

70 0

On the other hand, for every j > 1, using the integration by parts on each interval
(z0, 71), ..., (tj—1, Tj), we have that

Tj J Ti
/—gmml” do = Z (r}jfg(q_l) — Pz + 1 +8)/ g(0)05d0>
T Ti—1

0 i=1

IA

7j
g o e+ 1 +0) [ hoywtan
L)

IA

7j
1o g (t0) + (1 + 8)/ h(9)9? dv,
70

where we introduced the notation g(z;”) := lim,_, - g(#), and we used the first inequality
of Eq. 6.17 and the fact that g is always non-negati\'/e. Finally, if the exponent y in Eq. 6.7
satisfies y = 2, we can choose any positive § > 0. On the other hand, if y € (1,2), we
choose § such that 0 < § < 22%/2 This choice guarantees that that

Tj o0
lim /' —g@)p' v :/ —g@)P' dy < oo,
T

J—>00 0 T0

and therefore, in virtue of Egs. 6.21 and 6.20, we deduce the thesis. O

In the following corollary, we state an immediate (but important) consequence of
Proposition 6.1.

Corollary 6.2 Under the same assumptions as in Proposition 6.1, let the curve U
[0, +00) — U be the solution of the Cauchy problem Eq. 3.3 with initial datum Uy = ug. If
Uoo € U is a limiting point for the curve t + Uy, then the whole solution converges 1o uso
ast — oo, ie.,

lim ||U[ —uoo||L2 =0.
—00

Moreover, the length of the whole solution is finite.

Proof We prove the statement by contradiction. Let us assume that r — U, is not converg-
ing to us as t — oo. Let B, (1) be the neighborhood of u., given by Proposition 6.1.
Diminishing » > 0 if necessary, we can find two sequences {t;} ;>0 and {t}}jzo such that
for every j > 0 the following conditions hold:

- 1 <t} <tj41;
- Uy —usollpr = 5
- %SHUt;._uoo”LZ =r;

— U € Br(uwo) forevery t € (¢, t}).
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We observe that U?il(fj»f;) C Z,whereZ :={t > 0 : U; € B,(us)}. Moreover, the
inequality Eq. 6.3 and the previous conditions imply that

/

' r
/ 10:Usller dO = 11Uy — Unllue =
'
for every j > 0. However, this contradicts Eq. 6.4. Therefore, we deduce that ||U, —
Usolly — 0 ast — oo. In particular, this means that there exists 7 > 0 such that

U; € B, (ux) forevery r > 7. This in turn implies that the whole trajectory has finite length,
since

r
[ 118, Up|| 2 d6 < ~+o0.
0
O

We observe that in Corollary 6.2 we need to assume a priori that the solution of the
Cauchy problem Eq. 3.3 admits a limiting point. However, for a general initial datum ug €
U we cannot prove that this is actually the case. On the other hand, if we assume more
regularity on the Cauchy datum u, we can use the compactness results proved in Section 4.
We recall the notation HO([O, 1], Rk) =U.

Theorem 6.3 Let us assume that the vector fields F', ..., F¥ defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R" — Ry designing the end-point cost.
Let U : [0, 400) — U be the solution of the Cauchy problem Eq. 3.3 with initial datum
Uo = uo, and let m > 1 be an integer such that ug belongs to H™ ([0, 1], RX). Then, there
exists oo € H™([0, 1], R¥) such that

lim |Ur = ool g1 = 0. (6.22)

Proof Let us consider ug € H™ ([0, 1], Rk) and let U : [0, +00) — U be the solution
of Eq. 3.3 satisfying Uy = ug. Owing to Theorem 4.6, we have that U; € H™ ([0, 1], Rk)
for every t > 0, and that the trajectory {U, : t > 0} H™ ([0, 1], R¥). In addition, from
Corollary 4.8, we deduce that {U; : t > 0} is pre-compact with respect to the strong topol-
ogy of H”’_I([O, 1], Rk). Therefore, there exist uoe € H™1([0, 1], Rk) and a sequence
(fj)j=1 such that we have r; — +o0 and ||Ur; — uoollgm-1 — 0 as j — oo. In par-
ticular, this implies that [|U;; — uco|lz2 — 0 as j — oo. In virtue of Corollary 6.2, we
deduce that ||U; — uxo||;2 — 0ast — +4oo. Using again the pre-compactness of the tra-
jectory {U; : t > 0} with respect to the strong topology of H”~!([0, 1], R), the previous
convergence implies that ||U; — uso||gm-1 — 0 ast — 4-o00.

To conclude, we have to show that us, € H™ ([0, 1], R¥). Owing to the compact inclu-
sion Eq. 2.9 in Theorem 2.1, and recalling that the trajectory {U; : t+ > 0} is pre-compact
with respect to the weak topology of H™ ([0, 1], R¥), the convergence Eq. 6.22 guarantees
that oo € H™ ([0, 1], R¥) and that U; — gm uso as t — +00. a

In the next result, we study the regularity of the limiting points of the gradient flow trajectories.

Theorem 6.4 Let us assume that the vector fields F', ..., F defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R" — R designing the end-point
cost. Let U : [0, 4+00) — U be the solution of the Cauchy problem Eq. 3.3 with initial
datum Uy = ug, and let uso € U be any of its limiting points. Then, us is a critical point
for the functional FB ie., duoo]:ﬂ = 0. Moreover, uso € H™([0, 1], Rk)for every integer
m > 1.
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Proof By Corollary 6.2, we have that the solution ¢ + U; converges to uso as t — 400
with respect to the strong topology of /. Let us consider the radius r > O prescribed by
Proposition 6.1. If d,, F B £ 0, taking a smaller r > 0 if necessary, we have that there exists
& > 0 such that ||d, FP ||y~ > & for every u € By (o). Recalling that ||U; — ueo|lzy — O as
t — +00, then there exists 7 > 0 such that U; € B, (uoo) and for every ¢ > . On the other
hand, this fact implies that ||0; U ||y = |ldy, FB||y» > e for every t > f, but this contradicts
Eq. 6.4, i.e., the fact that the length of the trajectory is finite. Therefore, we deduce that
dy.,FP = 0. As regards the regularity of u, we observe that d,. F? = 0 implies that
GPluse] = 0, which in turn gives

Uoo = _ﬂhuoo,

where the function £, : [0, 1] — R¥ is defined as in Eq. 3.11. Owing to Lemma 4.3,
we deduce that the right-hand side of the previous equality has regularity H”*! whenever
Uso € H™, for every integer m > 0. Using a bootstrapping argument, this implies that
Uoo € H™([0, 1], R¥), for every integer m > 1. O

Remark 6.5 We can give a further characterization of the critical points of the functional
FP . Let ii be such that dy F B = 0. Therefore, as seen in the proof of Theorem 6.4, we have
that the identity

iu(s) = —Phy(s)
is satisfied for every s € [0, 1]. Recalling the definition of &; : [0, 1] — Rk given in
Eq. 3.11, we observe that the previous relation yields

fi(s) = arg max {—ﬁxﬁ(s)F(x,;(s))u - l|u|§} , (6.23)
ueRk 2

where x; : [0, 1] — R” solves

x;(s) = F(x;(s))u(s) forae. s € [0, 1],
{ O = 10, (6.24)
and A : [0, 1] — (R™)* satisfies
k o
fas) = =2a(6) 3 (# ()52 forae. s € [0, 1, 625

i=1
Aq(1) = Va(xy(1)).
Recalling the Pontryagin Maximum Principle (see, e.g., [3, Theorem 12.10]), from

Egs. 6.23-6.25 we deduce that the curve x; : [0, 1] — R” is a normal Pontryagin extremal
for the following optimal control problem:

minyeq { $11ull2, + Batr ()]
Xy = F(x)u,

subject to
) { x4 (0) = xo.

7 I'-convergence

In this section, we study the behavior of the functionals (F ) geR, as B — +oo using the
tools of the I'-convergence. More precisely, we show that the problem of minimizing the
functional 7# : U/ — R, converges as § — oo (in the sense of I'-convergence) to a
limiting minimization problem. A classical consequence of this fact is that the minimizers
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of the functionals (F#) geR, can provide an approximation of the solutions of the limiting
problem. Moreover, in the present case, the limiting functional has an important geometrical
meaning, since it is related to the search of sub-Riemannian length-minimizing paths that
connect an initial point to a target set. The results obtained in this section hold under mild
regularity assumptions on the vector fields F', ..., F¥ and on the end-point cost a : R" —
R . Finally, for a complete introduction to the theory of I"-convergence, we refer the reader
to the monograph [8].

In this section, we shall work with the weak topology of the Hilbert space U :=
L?([0, 1], R¥). We first establish a preliminary result. We consider a L2-weakly convergent
sequence (Un)m>1 C U, and we study the convergence of the sequence (x,,;)m>1, Where,
for every m > 1, the curve x,, : [0, 1] = R” is the solution of the Cauchy problem Eq. 2.6
corresponding to the admissible control u,,.

Lemma 7.1 Let us assume that the vector fields F', ..., FX defining the control sys-
tem Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2. Let us consider a sequence
(Wm)m>=1 C U such that u, —j2 us as m — oo. For every m € N U {oo}, let
Xm : [0, 1] — R" be the solution of Eq. 2.6 corresponding to the control u,,. Then, we have
that

lim ||xy — Xsollco = 0.
m—0oQ

Proof Being the sequence (u,,),>1 weakly convergent, we deduce that there exists R > 0
such that ||uy|l;2 < R for every m > 1. The estimate established in Lemma 2.2 implies
that there exists Cg > 0 such that

[1xXm|lco < Crg, (7.1

for every m > 1. Moreover, using the sub-linear growth inequality Eq. 2.3, we have that
there exists C > 0 such that

k k
()] < Y 1F () 2lum ()] < CA +Cr) Y lum ()],

j=1 j=1
for a.e. s € [0, 1]. Then, recalling that ||u,,||;> < R for every m > 1, we deduce that
[lXmllz2 < C(1 4 Cr)kR (7.2)

for every m > 1. Combining Eqs. 7.1 and 7.2, we obtain that the sequence (x;;)m>1 is
pre-compact with respect to the weak topology of H'([0, 1], R"). Our goal is to prove that
the set of the H!-weak limiting points of the sequence (x;;),>1 coincides with {x}, i.e.,
that the whole sequence x,, —p1 Xoo as m — 00. Let X € H'([0, 1], R") be any H!-
weak limiting point of the sequence (x;,;)m>1, and let (x,,,)¢>1 be a sub-sequence such that
Xm, —p1 % as £ — oo. Recalling Eq. 2.8 in Theorem 2.1, we have that the inclusion
H'([0, 1], R") — €°([0, 1], R") is compact, and this implies that

Xy —> 0 X (7.3)
as £ — oo. From Eq. 7.3 and the assumption Eq. 2.2, forevery j = 1, ..., k it follows that
1F () = FI(D)llco — 0 (74)
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as £ — oo. Let us consider a smooth and compactly supported test function ¢ €
CX°([0, 1], R™). Therefore, recalling that x,,, is the solution of the Cauchy problem Eq. 2.6
corresponding to the control u,,, € U, we have that

1 k 1 ) .
/0 X ) - sy ds = =) /0 (F7 Come 50) - $(5)) uhy () ds
j=I

for every £ > 1. Thus, passing to the limit as £ — oo in the previous identity, we obtain
1 . k 1 ) )
/ £(5) - d(s)ds = — Z/ (FIG) - 6@)) ubo(s) ds. (71.5)
0 : 0
j=1

Indeed, the convergence of the right-hand side is guaranteed by Eq. 7.3. On the other hand,
for every j = 1,...,k, from Eq. 7.4 we deduce the strong convergence F/ (x,,,) - ¢ —> 2
FI(X)- ¢ as £ — oo, while uf,,l -2 ul, as € — oo by the hypothesis. Finally, observing
that Eq. 7.3 gives x(0) = x¢, we deduce that

)2(5) = F(x(s))uco(s), fora.e. s € [0, 1],
x(0) = xo,

that implies X = xoo. This argument shows that x,,, — y1 X0 as m — oo. Finally, the thesis
follows using again the compact inclusion Eq. 2.8. O

The standard theory of I'-convergence requires the domain of the functionals to be a
metric space, or, more generally, to be equipped with a first-countable topology (see [1,
Chapter 12]). Since the weak topology of U is first-countable (and metrizable) only on the
bounded subsets of 2/, we shall restrict the functionals (F#) peR, to the set

Upi={ueld:lull> < p),

where p > 0. We set
Fb=FPly,.

where F# : U{ — Ry is defined in Eq. 3.1. Using Lemma 7.1 we deduce that for every
B > 0and p > O the functional }"ff : U, — R, admits a minimizer.

Proposition 7.2 Let us assume that the vector fields F', . .., F¥ defining the control system
Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2, and that the functiona : R"* — R
designing the end-point cost is continuous. Then, for every B > 0 and p > 0 there exists
i € U, such that

Flay = ibr{lffg.

Proof Letus set § > 0 and p > 0. If we show that .7-'//,3 : U, — Ry is sequentially
coercive and sequentially lower semi-continuous, then the thesis will follow from the Direct
Method of calculus of variations (see, e.g., [8, Theorem 1.15]). The sequential coercivity is
immediate, since the domain U, is sequentially compact, for every p > 0. Let (i) =1 C
U, be a sequence such that u,, —;> us as m — 0o. On one hand, in virtue of Lemma 7.1,
we have that

Jim a (i (1) = a(xeo(1)), (7.6)
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where for every m € N U {oo} the curve x,, : [0, 1] — R" is the solution of the Cauchy
problem Eq. 2.6 corresponding to the admissible control u,,. On the other hand, the L?-weak
convergence implies that
[toollr2 < liminf |[|uy||;2. (7.7)
m— 00

Therefore, combining Egs. 7.6 and 7.7, we deduce that the functional ]:,g is lower semi-
continuous. O

Before proceeding to the main result of the section, we recall the definition of
I’-convergence.

Definition 7.3 The family of functionals (F, 5 )peR.. is said to I'-converge to a functional
F, + U, - Ry U {400} with respect to the weak topology of I/ as B — +o0 if the
following conditions hold:

— forevery (ug)per, C U, suchthatug —;2 u as  — +o00 we have
. . ﬁ .
— forevery u € U there exists a sequence (ug)ger, C U, called recovery sequence such
that ug —;2 u as B — +oo and such that

lim sup F¥ (ug) < F,(u). (7.9)
p—+oo

If Egs. 7.8 and 7.9 are satisfied, then we write ]-'g —r Fpas f — +o0.

Remark 7.4 Let us assume that .7-"5 —r F,as B — oo, and let us consider a non-
decreasing sequence (B,,),>1 such that §,, — +o0 as m — oo. For every u € U, and for
every sequence (ug, )m>1 C U, such that ug, —;> u as m — oo, we have that

Folu) < liminfff”' (ug,,)- (7.10)
m— 00
Indeed, it is sufficient to “embed” the sequence (ug,, )n>1 into a sequence (ug)geRr, such
thatug —;2 u as f — +00, and to observe that
. . ﬂ . . ,Bm
}31213;?)}" (ug) < lrlnn_l)loléffp (ug,)-
Combining the last inequality with the lim inf condition Eq. 7.8, we obtain Eq. 7.10.
Leta : R" — R be the non-negative function that defines the end-point cost, and let us

assume that the set D := {x € R" : a(x) = 0} is non-empty. Let us define the functional
Fy Uy, = RU {400} as follows:

sllul?, if x, (1) € D,

7.11
+00 otherwise, ( )

Fou) = {
where x,, : [0, 1] = R” is the solution of Eq. 2.6 corresponding to the control u.
Remark 7.5 A situation relevant for applications occurs when the set D is reduced to a
single point, i.e., D = {x;} with x; € R". Indeed, in this case the minimization of the limit-

ing functional F, is equivalent to find a horizontal energy-minimizing path that connect x
(i.e., the Cauchy datum of the control system Eq. 2.6) to x1. This in turn coincides with the
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problem of finding a sub-Riemannian length-minimizing curve that connect xp to xj (see
[4, Lemma 3.64]).

We now prove the I"-convergence result, i.e., we show that F, /’,5 —r Fpas f — oo with
respect to the weak topology of U.

Theorem 7.6 Let us assume that the vector fields F', ..., F* defining the control system
Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2, and that the functiona : R* — R
designing the end-point cost is continuous. Given p > 0, let us consider .7:5 ‘U, - Ry
with B > 0. Let F,, : U, — R4 U {+00} be defined as in Eq. 7.11. Then, the functionals

(]://)S)ﬁQRJr I'-converge to F, as B — 400 with respect to the weak topology of U.

Remark 7.7 If p > 0 is not large enough, it may happen that no control in i, steers xg to
D, ie., x,(1) ¢ D for every u € U,. In this case, the I"-convergence result is still valid,
and the I'-limit satisfies F, = 4+00. We can easily avoid this uninteresting situation when
system Eq. 2.1 is controllable. Indeed, using the controllability assumption, we deduce that
there exists a control # € U such that the corresponding trajectory x; satisfies x; (1) € D.
On the other hand, we have that

inf FPu) < FP (i)
ueld

for every 8 > 0. Moreover, using the fact that x; (1) € D and recalling the definition of 77
in Eq. 3.1, we have that

- L.
FA@) = S lill7
for every 8 > 0. The fact that the end-point cost a : R” — R is non-negative implies that
FPB(u) > FP(it) whenever ||u|,> > ||i||;2. Setting p = ||it|| 2, we deduce that
inf FP(u) = inf FP(u).
ueld uel,

Moreover, this choice of p guarantees that the I'-limit F, # oo, since we have that
Fp(it) < +o0.

Proof of Theorem 7.6 We begin with the lim sup condition Eq. 7.9. If F,(u) = +oo, the
inequality is trivially satisfied. Let us assume that (1) < +oo. Then, setting ug = u for
every 8 > 0, we deduce that x, (1) = xuﬁ(l) € D, where x,, : [0, 1] — R”" is the solution
of the Cauchy problem Eq. 2.6 corresponding to the control u. Recalling that a|p = 0, we
have that

1
Fllup) = S lullfz = Fy)

for every 8 > 0. This proves the lim sup condition.
We now prove the lim inf condition Eq. 7.8. Let us consider (ug)ger, C U, such that
ug —;2 uas f — oo, and such that

}JEH;EIP (ug) =C. (7.12)

We may assume that C < +-oc0. If this is not the case, then Eq. 7.8 trivially holds. Let us
extract (8,,)m>0 such that 8,, — +o00 and

1 ,Bm — 3 I3 —
mh_)moofp (ug,) = klinfg]:” (ug) =C. (7.13)
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For every m > 0, let xg,, : [0, 1] — R”" be the curve defined as the solution of the Cauchy
problem Eq. 2.6 corresponding to the control ug, , and let x,, : [0, 1] — R" be the solution
corresponding to u. Using Lemma 7.1, we deduce that xg, — o x, as m — 00. In partic-
ular, we obtain that xg, (1) — x,(1) as m — oo. On the other hand, the limit in Eq. 7.13
implies that there exists m € N such that

Bna(xp, (1)) < Fhr(ug,) < C+1,
for every m > m. Recalling that §,, — 0o as m — 00, the previous inequality yields

a(x, () = lim a(xg, (1)) =0,

i.e., that x,, (1) € D. This argument proves that, if ug — ;2 u as f — oo and if the quantity
at the right-hand side of Eq. 7.12 is finite, then the limiting control u steers xo to D. In
particular, this shows that F,(u) < +o00, namely F,(u) = %||u||i2. Finally, we observe
that

1 2
.| B B
Fpu) < lbrggéfzﬂuﬁnﬂy < lhrggf}“p (ug,) = /lglgir;(f)}“p (up),

and this establishes the lim inf condition Eq. 7.8. O

The next theorem motivates the interest in the I"-convergence result just established.
Indeed, we can investigate the asymptotic the behavior of the sequence (infy, F f )BeR, as
B — +00. Moreover, it turns out that the minimizers of F, g provide approximations of the
minimizers of the limiting functional F,,, with respect to the strong topology of L?. The first
part of Theorem 7.8 holds for every I'-convergent sequence of equi-coercive functionals
(see, e.g., [8, Corollary 7.20]). On the other hand, the conclusion of the second part relies
on the particular structure of (F ) BeR, -

Theorem 7.8 Under the same assumptions of Theorem 7.6, given p > 0 we have that

lim 1nf]:ﬂ —1nf.7: (7.14)

B—oo U,

Moreover, under the further assumption that F, # oo, for every B > 0 let iig be a

minimizer of F, 5 . Then, for every non-decreasing sequence (Bm)m>1 such that B, — +00
asm — 0o, (lig, )m=1 is pre-compact with respect to the strong topology of U,, and every
limiting point of (iig,,)m>1 is a minimizer of F,.

Proof For every f > 0let iig be a minimizer of F, 4 , that exists in virtue of Proposition 7.2.
Let us consider a non-decreasing sequence (B;,),>1 such that g, — 400 as m — oo and
such that

hm _7—"5'" (lig,) = hm 1nf.7-"ﬂ'" = llmmf mf}"ﬂ (7.15)

B—+o00 U,

Recalling that (g, )m>1 C U,, we have that there exists fiooc € U, and a sub-sequence
(Bm;)j=1 such that ﬁ,gmj — 2 Uso as j — 00. Since .7-'//,3 —r F,as B — +oo, the
inequality Eq. 7.10 derived in Remark 7.4 implies that

Fpliie) < hm ]-—ﬂ (“ﬁm )= hmlnf inf F5, (7.16)

B—>+o00 Uy
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where we used Eq. 7.15 in the last identity. On the other hand, for every u € U, let (ug)ger,
be a recovery sequence for u, i.e., a sequence that satisfies the lim sup condition Eq. 7.9.
Therefore, we have that

Fp(u) > limsup F¥ (up) > lim sup g{lf}—ﬂ (7.17)

~>+oo ~>+oo P
From Egs. 7.16 and 7.17, we deduce that
]:p(u) = -7:,0(1200)
forevery u € Uy, ie.,
Fpliiog) = inf F. (7.18)
Up
Finally, setting u = ii, in Eq. 7.17, we obtain
Fpliiog) = ﬁli?éo iIEpff;f . (7.19)
From Egs. 7.18 and 7.19, it follows that Eq. 7.14 holds.
We now focus on the second part of the thesis. For every 8 > 0 let iig be a minimizer

of ]:ﬁ , as before. Let (B,)m>1 be a non-decreasing sequence such that 8, — 400 as
m — 00, and let us consider (i Bw)m=1- Since U B Im=1 18 L2-weakly pre-compact, there
exists # € U, and a sub-sequence (ﬁﬂmj)jzl such that ﬁﬁmj — 2 it as j — oo. From the

first part of the thesis, it descends that i is a minimizer of F, o~ Indeed, in virtue of Eq. 7.10,
we have that

Fo@) < 1iminfff'”f (fig, ) = lim infff”f =inf F,,
Jj—>00 J j—oo Uy U,

where we used ]:f ™ (@ lgmj) = infy, F, fmj and the identity Eq. 7.14. The previous relation
guarantees that

A . . Buni (.
Foliy = inf Fp. = tim F," (ig,, ). (7.20)
Uy j—oo J
To conclude, we have to show that

=0. (7.21)
L2

lim |, —
]—)OO uﬂlﬂj u
Using the assumption F, # 4o0, from the minimality of # we deduce that F,(1) =
%Ilﬁlliz. Hence, Eq. 7.20 implies that

f||u||L2 = Jim F (u/g )>11msup g 1122, (7.22)

j—)OO

where we used that ff (u) > %Hul |i2 for every B > 0 and for every u € U,,. From Eq. 7.22
and from the weak convergence u Bu; 12 it as j — oo, we deduce that Eq. 7.21 holds. [

Conclusions

In this paper, we have considered an optimal control problem in a typical framework of sub-
Riemannian geometry. In particular, we have studied the functional given by the weighted
sum of the energy of the admissible trajectory (i.e., the squared 2-norm of the control) and
of an end-point cost.
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We have written the gradient flow induced by the functional on the Hilbert space of
admissible controls. We have proved that, when the data of the problem are real-analytic,
the gradient flow trajectories converge to stationary points of the functional as soon as the
starting point has Sobolev regularity.

The I'-convergence result bridges the functional considered in the first part of the
paper with the problem of joining two assigned points with an admissible length-minimizer
path. This fact may be of interest for designing methods to approximate sub-Riemannian
length-minimizers. Indeed, a natural approach could be to project the gradient flow onto a
proper finite-dimensional subspace of the space of admissible controls, and to minimize the
weighted functional restricted to this subspace. We leave further development of these ideas
for future work.

Appendix A: Proofs of Subsection 2.2

Proof (Proposition 2.3) Using the fact that x,, and x4, are solutions of Eq. 2.6, for every
s € [0, 1] we have that

ko) = 5@ = /Osg(\F"(xu+v(r)>\2|v"(r)|) dr

s k . . .
[ X (1P st = Pl 1) d.
i=1

Recalling that ||v|[;2 < R, in virtue of Lemma 2.2, we obtain that there exists Cg > 0 such
that

sup  sup |F (xusy(0))]2 < Ck.
7€(0,1] i=1,....,k

Hence, using Eq. 2.10, we deduce that

s k . '
/0 > (IF Gura @)Ll (@) dt < CrviIIvll 2. (A1)
i=1

On the other hand, from the Lipschitz-continuity condition Eq. 2.2, it follows that
|F' (Xu0(T)) = F (2 (D2 < LIyt () — x4 (D2 (A2)
foreveryi =1, ..., k and for every T € [0, 1]. Using Egs. A.1 and A.2, we deduce that

i (5) = xu ()2 < CrVkI o]l 2 + L/(.) (D) |1 1Xut0 (T) — xu (D)2 d7, (A.3)

for every s € [0, 1]. By applying Gronwall inequality to Eq. A.3, we obtain that
o (5) = xu(9)|2 < MMt Cpi/kl o] 12,
for every s € [0, 1]. Recalling Eq. 2.10 and setting
Lg := eL“/ZRCRx/I;,

we prove Eq. 2.12. O

Proof (Proposition 2.4) Setting R := ||u||;2 + [|v]| 2, we observe that |lu + ev||;2 < R
for every ¢ € (0, 1]. Owing to Lemma 2.2, we deduce that there exists a compact Kg C R"
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such that x,(s), X460 (s) € Kg for every s € [0, 1] and for every ¢ € (0, 1]. Using the
fact that F!, ..., F¥ are assumed to be C 1—regular, we deduce that their differentials are
uniformly continuous on Kg. This is equivalent to say that there exists a non-decreasing
function § : [0, +00) — [0, +00) such that §(0) = lim,_¢3(r) = 0 and

: , aF!
i) — Fia) — 22D

(r2 —x1)| = C8(lx1 —x2])|x1 — x2 (A4)
2

for every x1,x2 € Kg and for everyi = 1, ..., k. Let us consider the non-autonomous

affine system Eq. 2.14. Owing to Carathéodory Theorem (see [9, Theorem 5.3]), we deduce

that the system Eq. 2.14 admits a unique absolutely continuous solution y. : [0, 1] — R”".

For every s € [0, 1], let us define

E(s) == Xupeu(s) — xu(s) — £y, (5). (A.5)

Therefore, in view of Egs. 2.6 and 2.14, for a.e. s € [0, 1] we compute

k
E®)2 < &Y IF Curen(s) = F (xu ()20’ (5))]

i=1

AF (x4 ()

F' (Xuten () — F (xu(5)) — & ; Y2)| i (9)]
X 2

D)

i=1

On one hand, using Proposition 2.3 and the Lipschitz-continuity assumption Eq. 2.2, we
deduce that there exists L’ > 0 such that

k
£ |F Guyen()) = F'(xu()2 < L'|[v]] 26 (A.6)
i=1
forevery s € [0, 1] and for every ¢ € (0, 1]. On the other hand, foreveryi =1, ..., n, com-

bining Proposition 2.3, the inequality Eq. A.4 and the estimate of the norm of the Jacobian
Eq. 2.4, we obtain that there exists L” > 0 such that

i i 8Fi(xu(s)) v
‘F (Furev(s)) — F' (xy(s)) — e (s)
X 2
i i aFi(xu(S))
S F (Kugen(s)) — F(xu(s)) — T (Xutev(s) — x4 (s))
2

o (Xutev(s) = xu(s) — €y, ()

< C[8(L"|Ivll28)L"|I]l 2] + LIE(S)]2.

for every s € [0, 1] and for every ¢ € (0, 1]. Combining the last inequality and Eq. A.6, it
follows that

N ‘ AF (x,(5))

2

E(s)]2 < Lre® + LRlu(s)118(Lre)e + Llu(s)|11£(s)|2 (A7)
for a.e. s € [0, 1] and for every ¢ € (0, 1], where Lg := max{L’, L"}||v||;2. Finally,
recalling that [£(0)]2 = |Xy4¢0(0) — x4, (0) — £y, (0)|2 = O for every & € (0, 1], we have that

|s<s)|25/0 £ d 5LR82+LR||u||L16(LRe)e+L/O () E@) ] dr.

for every s € [0, 1] and for every ¢ € (0, 1]. Using Gronwall inequality and Eq. A.5, we
deduce Eq. 2.13. O
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Proof (Lemma 2.5) Let us consider the absolutely continuous curve Ny, : [0, 1] — R"*"
that solves

Ny (s) = —N,(s)A,(s) forae.s € [0, 1],
N, (0) = Id.

(A.8)

The existence and uniqueness of the solution of Eq. A.8 is guaranteed by Carathéodory
Theorem. Recalling the Leibniz rule for Sobolev functions (see, e.g., [6, Corollary 8.10]),
a simple computation shows that the identity N, (s) M, (s) = Id holds for every s € [0, 1].
This proves that M, (s) is invertible and that N, (s) = M, 1 (s) for every s € [0, 1]. In order
to prove the bound on the norm of the matrix M, (s), we shall study | M, (s)z]», for z € R".
Using Eq. 2.16, we deduce that

IMu($)zl2 < Izl2 + [ 1 Au(@) 2l Mu(D)z]2 dt
< Izl + L[ lu() |1 | My (12l dx,

where we used Eq. 2.4. Using Gronwall inequality and Eq. 2.10, we obtain that the inequal-
ity Eq. 2.17 holds for M, (s), for every s € [0, 1]. Using Eq. A.8 and applying the same
argument, it is possible to prove that Eq. 2.17 holds as well for N, (s) = M, 1(s), for every

e [0, 1]. O

Proof (Lemma 2.10) Let us consider R > 0, and let u,w € U be such that
[lu|lz2, llwll2 < R. We observe that Lemma 2.2 implies that there exists a compact set
Kr C R”" such that x,(s), xy+w(s) € Kg for every s € [0, 1]. The hypothesis that

F', ..., F? are C?-regular implies that there exists L. > 0 such that the differentials
1

%Lx, R "d‘i are Lipschitz-continuous in Kr with constant L’ From Eq. 2.16, we have

that

|Mugw () = Mu($)|2 = | Ausw () Mugw (5) — Au(s) My (s)12, (A.9)

for a.e. s € [0, 1]. In particular, for a.e. s € [0, 1], we can compute

k :
BF u-t+w IM‘ [
)~ Al = 3 [ 550 i

+Z oF! <xu+u<s>>‘ lwi ()],
i=1

and using Proposition 2.3, the Lipschitz continuity of 2 3x e * and Eq. 2.4, we obtain

that there exists Lz > 0 such that

|Ausw(s) = Au($)|2 < Lgllwll2u(s)1 + Llw ()], (A.10)

Bx

for a.e. s € [0, 1]. Using once again Eq. 2.4, we have that
|Au(s)l2 = Llu(s)l1, (A.11)

for a.e. s € [0, 1]. Combining Eqgs. A.10-A.11 with the triangular inequality at the right-
hand side of Eq. A.9, we deduce that

| Mg (s) — My(s)l2 < Ch (Lpllwllg2]u(s)]1 + Llw(s)]1)
HLIu()1 | Mytw(s) — My(s)]2,
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for a.e. s € [0, 1], where we used Lemma 2.5 to deduce that there exists C; > 0 such
that | M, 1, (s)| < Cj for every s € [0, 1]. Recalling that the Cauchy datum of Eq. 2.16
prescribes M,,,,(0) = M, (0) = Id, the last inequality yields

A

|Mygw(s) — My(s)la < /0 |Mygw(T) — My (D)2 dt

N

Chllwllz + Lf ()1 [ M (7) — Ma (D)2 d,
0

IA

for every s € [0, 1], where we used Eq. 2.10 and where C}, > 0 is a constant depending
only on R. Finally, Gronwall Lemma implies the first inequality of the thesis. Recalling
that s —> M !(s) and s > Mujlw (s) are absolutely continuous curves that solve Eq. A.8,
repeating verbatim the same argument as above, we deduce the second inequality of the

thesis. O

Proof (Proposition 2.1) In virtue of Proposition 2.7, it is sufficient to prove that there exists
Lk > 0 such that

J J
gs,quw — 8s,u

for every j = 1,...,n and for every u,w € U such that ||u||;2, |lw]l;2 < R,

L, = Lelwl (A.12)

where gin,giu are defined as in Eq. 2.22. Let us consider u, w € U satisfying
[lull;2, [lw]];2 < R. The inequality Eq. A.12 will in turn follow if we show that there exists
a constant L g > 0 such that

My ()M, (O F (o (7)) — My ()M, () F (3 () , S Lellwllz, (A13)

for every s € [0,1], for every T € [0,s] and for every u,w € U that satisfy
[lu]lz2, llw]l;2 < R. Owing to Proposition 2.3 and Eq. 2.2, it follows that there exists
L's > 0 such that

|F (utw (5)) — F(xu ()2 < Ligllwll 2, (A.14)
for every s € [0, 1] and for every u, w € U satisfying ||u||;2, ||w||;2 < R. Using the
triangular inequality in Eq. A.13, we compute

[ Matu IM (0 F G () = Mu() M @ F (e ()
< My (s) = My@)la [ ML @] 1F s (O
HIML)2 [ Mol (0) = M7 O IF ()2

M )2 [ M ©)la| Fisn () = Fra ()2

for every s € [0, 1] and for every t € [0, s]. Using Eq. A.14, Lemma 2.5 and Lemma 2.10
in the last inequality, we deduce that Eq. A.13 holds. This concludes the proof. O
Appendix B: Proofs of Subsection 2.3

Proof (Lemma 2.13) It is sufficient to prove the statement for the operator £, : U — V.

Indeed, if £, is bounded and compact, then £ : )V — U is as well Indeed, the boundedness
of the adjoint descends from Remark 2.12, while the compactness from [6, Theorem 6.4]).
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Using Lemma 2.6, we obtain that, for every u € U, there exists C > 0 such that the
following inequality holds
NL.[V]lIco < Cllvlly, (B.1)

for every v € U. Recalling the continuous inclusion C 0([0, 11, R") < V), we deduce that
L, is a continuous linear operator. In view of Theorem 2.1, in order to prove that £, is
compact, it is sufficient to prove that, for every u € U, there exists C’ > 0 such that

Lulvlll g < CMllvll (B.2)

for every v € U. However, from the definition of £, [v] given in Eq. 2.29, it follows that

%@mm=ﬁm

for a.e. s € [0, 1]. Therefore, from Eq. 2.14 and Lemma 2.6, we deduce that Eq. B.2 holds.
O

Proof (Lemma 2.14) Recalling the continuous inclusion Co%([0, 11, R") < V), it is suffi-
cient to prove that for every R > 0 there exists Lz > 0 such that, for every s € [0, 1], the
following inequality is satisfied

|Lugwlv](s) = Lulvl($)l2 < Lrllwllellvlle (B.3)

for every v € U and for every u, w € U such that ||ul|y, ||w|lez < R. On the other hand,
Eq. 2.30 implies that

[Lutwlvl(s) — Lulv](s)]2
Efo | My (ML, (O F G (7)) — My ()M, (1) F (x4 (D)) 2v(7) ]2 .

However, using Proposition 2.3, Lemma 2.5 and Lemma 2.10, we obtain that there exists
L', > 0 such that

Mot Mol (0 F o (0) = Mu)M @ F (e ()] < Lillllu

for every s, T € [0, 1] and for every u, w € U such that ||u||y, ||w|ly < R. Combining the
last two inequalities, we deduce that Eq. B.3 holds. O

Proof (Lemma 2.20) Let us start with M} : U — V. Using Lemma 2.5 and Eq. 2.4, we
immediately deduce that there exists C; > 0 such that

M, ]Iy < Crllvllu
for every v € U. As regards S” : C°([0, 1], R") — V, from Eq. 2.45 we deduce that

k
Sy, < (zizlui(f)HSﬁJ(rH2>IIcho

i=1
for every v € U and for a.e. T € [0, 1]. Moreover, from Lemma 2.5, from Lemma 2.2 and
the regularity of F!, ..., F¥, we deduce that there exists C’ > 0 such that

S|, = ¢
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for every t € [0, 1]. Combining the last two inequalities and recalling that u € U =
L2([0, 1], R¥), we deduce that the linear operator S} : c9([0, 1], R") — V is continuous.
O

Appendix C: Proofs of Section 3

Proof (Lemma 3.1) We observe that the functional £ : U4 — Ry is defined as the
composition

E=aoP,

where P; : Y — R” is the end-point map defined in Eq. 2.20. Proposition 2.4 guarantees
that the end-point map Pj is Gateaux differentiable at every u € {{. Recalling thata : R" —
Ry is assumed to be C 1 we deduce that, for every u € U, £ is Gateaux differentiable at u
and that, for every v € U, the following identity holds:

n

dEW =Y wDMP{(U), (C.1)

axJ
i

where x,, : [0, 1] — R” is the solution of Eq. 2.6 corresponding to the control u € U.
Recalling that D, Pll, ..., Dy Pl : U — R are linear and continuous functionals for every
u € U (see Proposition 2.7), from Eq. C.1 we deduce that d,€ : U — R is as well. Finally,
from Eq. 2.21 we obtain Eq. 3.6. (]

Lemma 3.4 Let us consider R > 0. In virtue of Eq. 3.6, it is sufficient to prove that there
exists Lg > 0 such that

da(xy4w (1)) ; da(x, (1)) ;
‘ ol St T T g S|, S Lgllwll,2 (C2)
for every j = 1,...,n and for every u,w € U such that [|ul|;2, |[lw|l;2 < R.

Lemma 2.2 implies that there exists a compact set Kg C R" depending only on R such that
Xu(1), x4+ (1) € Kg for every u, w € U satisfying ||u||;2, [lw]|;2 < R. Recalling that
a :R" — R, is assumed to be C2-regular, we deduce that there exists L' > 0 such that

da(y1)  da(yz)
ax/ ox/

< Lilyi — »2l2
2

for every yi, y2» € Kg. Moreover, combining the previous inequality with Eq. 2.12, we
deduce that there exists L}e > 0 such that

da(xyw(1)) — da(x, (1))

1
L 2| < Lyl (C.3)

2

for every u, w € U satisfying ||u||;2, [lw||;2 < R. On the other hand, using Eq. A.12, we
have that there exists L%e > 0 such that

< Lil|wl|,2 (C4)

J J
Hgl,u+w - gl,u 12

for every u, w € U satisfying ||u||;2, |lw|l;2 < R. Combining Egs. C.3 and C.4, and

recalling Eq. 2.25, the triangular inequality yields Eq. C.2. O
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