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Abstract
In this paper, we consider a control system of the form ẋ = F(x)u, linear in the control variable
u. Given a fixed starting point, we study a finite-horizon optimal control problem, where we want
to minimize a weighted sum of an end-point cost and the squared 2-norm of the control. This
functional induces a gradient flow on the Hilbert space of admissible controls, and we prove
a convergence result by means of the Lojasiewicz-Simon inequality. Finally, we show that,
if we let the weight of the end-point cost tend to infinity, the resulting family of functionals
is Γ -convergent, and it turns out that the limiting problem consists in joining the starting
point and a minimizer of the end-point cost with a horizontal length-minimizer path.

Keywords Gradient flow · Optimal control · End-point cost ·
Lojasiewicz-Simon inequality · Γ -convergence.
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1 Introduction

In this paper, we consider a control system of the form

ẋ = F(x)u, (1.1)

where F : R
n → R

n×k is a Lipschitz-continuous function, and u ∈ R
k is the control

variable. If k ≤ n, for every x ∈ R
n, we may think of the columns {F i(x)}i=1,...,k of the

matrix F(x) as an ortho-normal frame of vectors, defining a sub-Riemannian structure on
R

n. For a thorough introduction to the topic, we refer the reader to the monograph [4]. In
our framework, U := L2([0, 1],Rk) will be the space of admissible controls, equipped with
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the usual Hilbert space structure. Given a base-point x0 ∈ R
n, for every u ∈ U , we consider

the absolutely continuous trajectory xu : [0, 1] → R
n that solves{

ẋu(s) = F(xu(s))u(s) for a.e. s ∈ [0, 1],
xu(0) = x0.

(1.2)

For every β > 0 and x0 ∈ R
n, we define the the functional Fβ : U → R+ as follows:

Fβ(u) := 1

2
||u||2U + βa(xu(1)), (1.3)

where a : Rn → R+ is a non-negative C1-regular function, and xu : [0, 1] → R
n is the

solution of Eq. 1.2 corresponding to the control u ∈ U . In this paper we want to investigate
the gradient flow induced by the functional Fβ on the Hilbert space U , i.e., the evolution
equation

∂tUt = −Gβ [Ut ], (1.4)
where Gβ : U → U is the vector field on the Hilbert space U that represents the differential
dFβ : U → U∗ through the Riesz’s isometry. In other words, for every u ∈ U , we denote
by duFβ : U → R the differential of Fβ at u, and Gβ [u] is defined as the only element of
U such that the identity

〈Gβ [u], v〉L2 = duFβ(v) (1.5)
holds for every v ∈ U . In order to avoid confusion, we use different letters to denote the time
variable in the control system Eq. 1.2 and in the evolution equation Eq. 1.4. Namely, the vari-
able s ∈ [0, 1] will be exclusively used for the control system Eq. 1.2, while t ∈ [0, +∞)

will be employed only for the gradient flow Eq. 1.4 and the corresponding trajectories.
Moreover, when dealing with operators taking values in a space of functions, we express
the argument using the square brackets.

The first part of the paper is devoted to the formulation of the gradient flow equation
Eq. 1.4. In particular, we first study the differentiability of the functional Fβ : U → R+,
then we introduce the vector field Gβ : U → U as the representation of its differential, and
finally we show that, under suitable assumptions, Gβ is locally Lipschitz-continuous. As a
matter of fact, it turns out that Eq. 1.4 can be treated as an infinite-dimensional ODE, and
we prove that, for every initial datum U0 = u0, the gradient flow equation Eq. 1.4 admits
a unique continuously differentiable solution U : [0, +∞) → U . In the central part of this
contribution, we focus on the asymptotic behavior of the curves that solve Eq. 1.4. The main
result states that, if the application F : Rn → R

n×k that defines the linear-control system
Eq. 1.1 is real-analytic as well as the function a : Rn → R+ that provides the end-point
term in Eq. 1.3, then, for every u0 ∈ H 1([0, 1],Rk) ⊂ U , the curve t 
→ Ut that solves the
gradient flow equation Eq. 1.4 with initial datum U0 = u0 satisfies

lim
t→+∞ ||Ut − u∞||L2 = 0, (1.6)

where u∞ ∈ U is a critical point for Fβ . To establish this fact we first show that the
functional Fβ satisfies the Lojasiewicz-Simon inequality. Finally, in the last part of this
work, we prove a Γ -convergence result concerning the family of functionals (Fβ)β∈R+ . In
particular, we show that, when β → +∞, the limiting problem consists in minimizing the
L2-norm of the controls that steer the initial point x0 to the set {x ∈ R

n : a(x) = 0}. This
fact can be applied, for example, to approximate the problem of finding a sub-Riemannian
length-minimizer curve that joins two assigned points.

We report below in detail the organization of the sections.
In Section 2, we introduce the linear-control system Eq. 1.1 and we establish some pre-

liminary results that will be used throughout the paper. In particular, in Subsection 2.2, we
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focus on the first variation of a trajectory when a perturbation of the corresponding con-
trol occurs. In Subsection 2.3, we study the second variation of the trajectories at the final
evolution instant.

In Section 3, we prove that, for every intial datum u0 ∈ U , the evolution equation Eq. 1.4
gives a well-defined Cauchy problem whose solutions exist for every t ≥ 0. To see that,
we use the results obtained in Subsection 2.2 to introduce the vector field Gβ : U → U
satisfying Eq. 1.5 and to prove that it is Lipschitz-continuous when restricted to the bounded
subsets of U . Combining this fact with the theory of ODEs in Banach spaces (see, e.g.,
[10]), it descends that, for every choice of the initial datum U0 = u0, the evolution equation
Eq. 1.4 admits a unique and locally defined solution U : [0, α) → U , with α > 0. Using the
particular structure of the gradient flow Eq. 1.4, we finally manage to extend these solutions
for every positive time.

In Section 4, we show that, if the Cauchy datum u0 has Sobolev regularity (i.e., u0 ∈
Hm([0, 1],Rk) ⊂ U for some positive integer m), then the curve t 
→ Ut that solves Eq. 1.4
and satisfies U0 = u0 is pre-compact in U . The key-observation lies in the fact that, under
suitable regularity assumptions on F : Rn → R

n×k and a : Rn → R+, the Sobolev space
Hm([0, 1],Rk) is invariant for the gradient flow Eq. 1.4. Moreover, we obtain that, when the
Cauchy datum belongs to Hm([0, 1],Rk), the curve t 
→ Ut that solves Eq. 1.4 is bounded
in the Hm-norm.

In Section 5, we establish the Lojasiewicz-Simon inequality for the functional Fβ : U →
R+, under the assumption that F : Rn → R

n×k and a : Rn → R+ are real-analytic. We
recall that the first result on the Lojasiewicz inequality dates back to 1963, when in [11]
Lojasiewicz proved that, if f : Rd → R is a real-analytic function, then for every x ∈ R

d

there exist γ ∈ (1, 2], C > 0 and r > 0 such that

|f (y) − f (x)| ≤ C|∇f (y)|γ2 (1.7)

for every y ∈ R
d satisfying |y − r|2 < r . This kind of inequalities are ubiquitous in several

branches of Mathematics. For example, as suggested by Lojasiewicz in [11], Eq. 1.7 can be
employed to study the convergence of the solutions of

ẋ = −∇f (x).

Another important application can be found in [12], where Polyak studied the convergence
of the gradient descent algorithm for strongly convex functions using a particular instance of
Eq. 1.7, which is sometimes called Polyak-Lojasiewicz inequality. In [13], Simon extended
Eq. 1.7 to real-analytic functionals defined on Hilbert spaces, and he employed it to establish
convergence results for evolution equations. For further details, see also the lecture notes
[14]. The infinite-dimensional version of Eq. 1.7 is often called Lojasiewicz-Simon inequal-
ity. For a complete survey on the topic, we refer the reader to the paper [7]. Following this
approach, the Lojasiewicz-Simon inequality for the functional Fβ is the cornerstone for the
convergence result of the subsequent section.

In Section 6, we prove that, if the Cauchy datum belongs to Hm([0, 1],Rk) for an integer
m ≥ 1, the corresponding gradient flow trajectory converges to a critical point of Fβ . This
result requires that both F : R

n → R
n×k and a : R

n → R+ are real-analytic. Indeed,
we use the Lojasiewicz-Simon inequality for Fβ : U → R+ to show that the solutions of
Eq. 1.4 with Sobolev-regular initial datum have finite length. This fact immediately yields
Eq. 1.6.

In Section 7, we study the behavior of the minimization problem Eq. 1.3 when the
positive parameter β tends to infinity. We address this problem using the tools of the Γ -
convergence (see [8] for a complete introduction to the subject). In particular, we consider
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Uρ := {u ∈ U : ||u||L2 ≤ ρ} and we equip it with the topology of the weak convergence

of U . For every β > 0, we introduce the restrictions Fβ
ρ := Fβ |Uρ , and we show that there

exists a functional Fρ : Uρ → R+ ∪ {+∞} such that the family
(
Fβ

ρ

)
β∈R+

Γ -converges

to Fρ as β → +∞. In the case a : Rn → R+ admits a unique point x1 ∈ R
n such that

a(x1) = 0, then the limiting problem of minimizing the functional Fρ consists in finding
(if it exists) a control u ∈ Uρ with minimal L2-norm such that the corresponding curve
xu : [0, 1] → R

n defined by Eq. 1.2 satisfies xu(1) = x1. The final result of Section 7
guarantees that the minimizers of Fβ

ρ provide L2-strong approximations of the minimizers
of Fρ .

2 Framework and Preliminary Results

In this paper, we consider control systems on R
n with linear dependence in the control

variable u ∈ R
k , i.e., of the form

ẋ = F(x)u, (2.1)

where F : R
n → R

n×k is a Lipschitz-continuous function. We use the notation F i for
i = 1, . . . , k to indicate the vector fields on R

n obtained by taking the columns of F , and
we denote by L > 0 the Lipschitz constant of these vector fields, i.e., we set

L := sup
i=1,...,k

sup
x,y∈Rn

|F i(x) − F i(y)|2
|x − y|2 . (2.2)

We immediately observe that Eq. 2.2 implies that the vector fields F 1, . . . , F k have sub-
linear growth, i.e., there exists C > 0 such that

sup
i=1,...,k

|F i(x)| ≤ C(|x|2 + 1) (2.3)

for every x ∈ R
n. Moreover, for every i = 1, . . . , k, if F i is differentiable at y ∈ R

n, then
from Eq. 2.2 we deduce that ∣∣∣∣∂F i(y)

∂x

∣∣∣∣
2

≤ L. (2.4)

We define U := L2([0, 1],Rk) as the space of admissible controls, and we endow U with
the usual Hilbert space structure, induced by the scalar product

〈u, v〉L2 =
∫ 1

0
〈u(s), v(s)〉Rk ds. (2.5)

Given x0 ∈ R
n, for every u ∈ U , let xu : [0, 1] → R

n be the absolutely continuous curve
that solves the following Cauchy problem:{

ẋu(s) = F(xu(s))u(s) for a.e. s ∈ [0, 1],
xu(0) = x0.

(2.6)

We recall that, under the condition Eq. 2.2, the existence and uniqueness of the solution of
Eq. 2.6 is guaranteed by Carathéodory Theorem (see, e.g., [9, Theorem 5.3]). We insist on
the fact that in this paper the Cauchy datum x0 ∈ R

n is assumed to be assigned.
In the remainder of this section, we introduce auxiliary results that will be useful in the

other sections. In Subsection 2.1, we recall some results concerning Sobolev spaces in one-
dimensional domains. In Sections 2.2 and 2.3, we investigate the properties of the solutions
of Eq. 2.6.
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2.1 Sobolev Spaces in One Dimension

In this subsection, we recall some results for one-dimensional Sobolev spaces. Since in
this paper we work only in Hilbert spaces, we shall restrict our attention to the Sobolev
exponent p = 2, i.e., we shall state the results for the Sobolev spaces Hm := Wm,2 with
m ≥ 1. For a complete discussion on the topic, the reader is referred to [6, Chapter 8].
Throughout the paper we use the convention H 0 := L2. For every m ≥ 1, the function
u ∈ L2([a, b],Rd) belongs to the Sobolev space Hm([a, b],Rd) if and only if, for every
integer 1 ≤ � ≤ m there exists u(�) ∈ L2([a, b],Rd), the �-th Sobolev derivative of u. We
recall that, for every m ≥ 1, Hm([a, b],Rd) is a Hilbert space (see, e.g., [6, Proposition 8.1])
when it is equipped with the norm || · ||Hm induced by the scalar product 〈u, v〉Hm :=
〈u, v〉L2+∑m

�=1

∫ b

a
〈u(�)(s), v(�)(s)〉Rd ds. We recall that a linear and continuous application

T : E1 → E2 between two Banach spaces E1, E2 is compact if, for every bounded set
B ⊂ E1, the image T (B) is pre-compact with respect to the strong topology of E2. In the
following result, we list three classical compact inclusions.

Theorem 2.1 For every m ≥ 1, the following inclusions are compact:

Hm([a, b],Rd) ↪→ L2([a, b],Rd), (2.7)

Hm([a, b],Rd) ↪→ C0([a, b],Rd), (2.8)

Hm([a, b],Rd) ↪→ Hm−1([a, b],Rd), (2.9)

Finally, we recall the notion of weak convergence. For every m ≥ 0 (we set H 0 := L2),
if (un)n≥1 is a sequence in Hm([0, 1],Rd) and u ∈ Hm([0, 1],Rd), then the sequence
(un)n≥1 weakly converges to u if and only if

lim
n→∞〈v, un〉Hm = 〈v, u〉Hm

for every v ∈ Hm([0, 1],Rd), and we write un ⇀Hm u as n → ∞. Finally, in view of the
compact inclusion Eq. 2.9 and of [6, Remark 6.2], for every m ≥ 1, if a sequence (un)n≥1
in Hm([0, 1],Rd) satisfies un ⇀Hm u as n → ∞, then

lim
n→∞ ||un − u||Hm−1 = 0.

2.2 General Properties of the Linear-Control System Eq. 2.1

In this subsection, we investigate basic properties of the solutions of Eq. 2.6, with a par-
ticular focus on the relation between the admissible control u ∈ U and the corresponding
trajectory xu. We postpone the most technical proofs of this subsection to Appendix A. We
recall that, for every u ∈ U := L2([0, 1],Rk), the following inequality holds:

||u||L1 =
∫ 1

0

k∑
i=1

|ui(s)| ds ≤ √
k

√√√√∫ 1

0

k∑
i=1

|ui(s)|2 ds = √
k||u||L2 . (2.10)

We first show that, for every admissible control u ∈ U , the corresponding solution of
Eq. 2.6 is bounded in the C0-norm. In our framework, given a continuous function f :
[0, 1] → R

n, we set

||f ||C0 := sup
s∈[0,1]

|f (s)|2.
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Lemma 2.2 Let u ∈ U be an admissible control, and let xu : [0, 1] → R
n be the solution of

the Cauchy problem Eq. 2.6 corresponding to the control u. Then, the following inequality
holds:

||xu||C0 ≤
(
|x0|2 + √

kC||u||L2

)
e
√

kC||u||
L2 , (2.11)

where C > 0 is the constant of sub-linear growth prescribed by Eq. 2.3.

Proof This estimate follows from Eq. 2.3 as a direct application of Grönwall inequality.

In the following proposition, we prove that the solution of the Cauchy problem Eq. 2.6
has a continuous dependence on the admissible control.

Proposition 2.3 Let us consider u, v ∈ U and let xu, xu+v : [0, 1] → R
n be the solutions

of the Cauchy problem Eq. 2.6 corresponding, respectively, to the controls u and u + v.
Then, for every R > 0 there exists LR > 0 such that the inequality

||xu+v − xu||C0 ≤ LR||v||L2 (2.12)

holds for every u, v ∈ U such that ||u||L2 , ||v||L2 ≤ R.

Proof See Appendix A

The previous result shows that the map u 
→ xu is Lipschitz-continuous when restricted
to any bounded set of the space of admissible controls U . We remark that Proposition 2.3
holds under the sole assumption that the controlled vector fields F 1, . . . , F k : Rn → R

n

are Lipschitz-continuous. In the next result, by requiring that the controlled vector fields are
C1-regular, we compute the first order variation of the solution of Eq. 2.6 resulting from a
perturbation in the control.

Proposition 2.4 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C1-regular. For every u, v ∈ U , for every ε ∈ (0, 1], let xu, xu+εv : [0, 1] → R

n

be the solutions of Eq. 2.6 corresponding, respectively, to the admissible controls u and
u + εv. Then, we have that

||xu+εv − xu − εyv
u ||C0 = o(ε) as ε → 0, (2.13)

where yv
u : [0, 1] → R

n is the solution of the following affine system:

ẏv
u(s) = F(xu(s))v(s) +

(
k∑

i=1

ui(s)
∂F i(xu(s))

∂x

)
yv
u(s) (2.14)

for a.e. s ∈ [0, 1], and with yv
u(0) = 0.

Proof See Appendix A.

Let us assume that F 1, . . . , F k are C1-regular. For every admissible control u ∈ U , let
us define Au ∈ L2([0, 1],Rn×n) as

Au(s) :=
k∑

i=1

(
ui(s)

∂F i(xu(s))

∂x

)
(2.15)
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for a.e. s ∈ [0, 1]. For every u ∈ U , let us introduce the absolutely continuous curve
Mu : [0, 1] → R

n×n, defined as the solution of the following linear Cauchy problem:{
Ṁu(s) = Au(s)Mu(s) for a.e. s ∈ [0, 1],
Mu(0) = Id.

(2.16)

The existence and uniqueness of the solution of Eq. 2.16 descends once again from the
Carathéodory Theorem. We can prove the following result.

Lemma 2.5 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C1-regular. For every admissible control u ∈ U , let Mu : [0, 1] → R

n×n be the
solution of the Cauchy problem Eq. 2.16. Then, for every s ∈ [0, 1], Mu(s) is invertible, and
the following estimates hold:

|Mu(s)|2 ≤ Cu, |M−1
u (s)|2 ≤ Cu, (2.17)

where
Cu = e

√
kL||u||

L2 .

Proof See Appendix B.

Using the curve Mu : [0, 1] → R
n×n defined by Eq. 2.16, we can rewrite the solution

of the affine system Eq. 2.14 for the first-order variation of the trajectory. Indeed, for every
u, v ∈ U , a direct computation shows that the function yv

u : [0, 1] → R
n that solves Eq. 2.14

can be expressed as

yv
u(s) =

∫ s

0
Mu(s)M

−1
u (τ )F (xu(τ ))v(τ ) dτ (2.18)

for every s ∈ [0, 1]. Using Eq. 2.18 we can prove an estimate of the norm of yv
u .

Lemma 2.6 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C1-regular. Let us consider u, v ∈ U , and let yv

u : [0, 1] → R
n be the solution

of the affine system Eq. 2.14 with yv
u(0) = 0. Then, for every R > 0 there exists CR > 0

such that the following inequality holds

|yv
u(s)|2 ≤ CR||v||L2 (2.19)

for every s ∈ [0, 1] and for every u ∈ U satisfying ||u||L2 ≤ R.

Proof Using the expression Eq. 2.18, from Eqs. 2.17, 2.11, and 2.3, we directly deduce the
thesis.

Let us introduce the end-point map associated to the control system Eq. 2.6. For every
s ∈ [0, 1], let us consider the map Ps : U → R

n defined as

Ps : u 
→ Ps(u) := xu(s), (2.20)

where xu : [0, 1] → R
n is the solution of Eq. 2.6 corresponding to the admissible control

u ∈ U . Using the results obtained before, it follows that the end-point map is differentiable.

Proposition 2.7 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C1-regular. For every s ∈ [0, 1], let Ps : U → R

n be the end-point map defined
by Eq. 2.20. Then, for every u ∈ U , Ps is Gateaux differentiable at u, and the differential
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DuPs = (DuP
1
s , . . . , DuP

n
s ) : U → R

n is a linear and continuous operator. Moreover,
using the Riesz’s isometry, for every u ∈ U and for every s ∈ [0, 1], every component of the
differential DuPs can be represented as follows:

DuP
j
s (v) =

∫ 1

0

〈
g

j
s,u(τ ), v(τ )

〉
Rk

dτ, (2.21)

where, for every j = 1, . . . , n, the function g
j
s,u : [0, 1] → R

k is defined as

g
j
s,u(τ ) =

{ ((
ej
)T

Mu(s)M
−1
u (τ )F (xu(τ ))

)T

τ ∈ [0, s],
0 τ ∈ (s, 1],

(2.22)

where the column vector ej is the j -th element of the standard basis {e1, . . . , en} of Rn.

Proof For every s ∈ [0, 1], Proposition 2.4 guarantees that the end-point map Ps : U → R
n

is Gateaux differentiable at every point u ∈ U . In particular, for every u, v ∈ U and for
every s ∈ [0, 1] the following identity holds:

DuPs(v) = yv
u(s). (2.23)

Moreover, Eq. 2.18 shows that the differential DuPs : U → R
n is linear, and Lemma 2.6

implies that it is continuous. The representation follows as well from Eq. 2.18.

Remark 2.8 In the previous proof we used Lemma 2.6 to deduce for every u ∈ U the
continuity of the linear operator DuPs : U → R

n. Actually, Lemma 2.6 is slightly more
informative, since it implies that for every R > 0 there exists CR > 0 such that

|DuPs(v)|2 ≤ CR||v||L2 (2.24)

for every v ∈ U and for every u ∈ U such that ||u||L2 ≤ R. As a matter of fact, we deduce
that

||gj
s,u||L2 ≤ CR (2.25)

for every j = 1, . . . , n, for every s ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R.

Remark 2.9 It is interesting to observe that, for every s ∈ (0, 1] and for every u ∈ U , the
function g

j
s,u : [0, 1] → R

k that provides the representation the j th component of DuPs

is absolutely continuous on the interval [0, s], being the product of absolutely continuous
matrix-valued curves. Indeed, on one hand, τ 
→ F(xu(τ )) is absolutely continuous, being
the composition of a C1-regular function with the absolutely continuous curve τ 
→ xu(τ )

(see, e.g., [6, Corollary 8.11]). On the other hand, τ 
→ M−1
u (τ ) is absolutely continuous as

well, since it can be expressed as the solution of a linear system (see Eq. A.8).

We now prove that for every s ∈ [0, 1] the differential of the end-point map u 
→ DuPs

is Lipschitz-continuous on the bounded subsets of U . This result requires further regularity
assumptions on the controlled vector fields. We first establish an auxiliary result concerning
the matrix-valued curve that solves Eq. 2.16.

Lemma 2.10 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular. For every u,w ∈ U , let Mu,Mu+w : [0, 1] → R

n×n be the solutions
of Eq. 2.16 corresponding to the admissible controls u and u + w, respectively. Then, for
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every R > 0, there exists LR > 0 such that, for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤
R, we have

|Mu+w(s) − Mu(s)|2 ≤ LR||w||L2 , (2.26)

and ∣∣∣M−1
u+w(s) − M−1

u (s)

∣∣∣
2

≤ LR||w||L2 (2.27)

for every s ∈ [0, 1].

Proof See Appendix A.

We are now in position to prove the regularity result on the differential of the end-point
map.

Proposition 2.11 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 are C2-regular. Then, for every R > 0, there exists LR > 0 such that, for every
u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, the following inequality holds

|Du+wPs(v) − DuPs(v)|2 ≤ LR||w||L2 ||v||L2 (2.28)

for every s ∈ [0, 1] and for every v ∈ U .

Proof See Appendix A.

2.3 Second Differential of the End-point Map

In this subsection, we study the second-order variation of the end-point map Ps : U → R
n

defined in Eq. 2.20. The main results reported here will be stated in the case s = 1, which
corresponds to the final evolution instant of the control system Eq. 2.6. However, they can
be extended (with minor adjustments) also in the case s ∈ (0, 1). Similarly as done in
Subsection 2.2, we show that, under proper regularity assumptions on the controlled vector
fields F 1, . . . , F k , the end-point map P1 : U → R

n is C2-regular. Therefore, for every
u ∈ U , we can consider the second differential D2

uP1 : U × U → R
n, which turns out to

be a bilinear and symmetric operator. For every ν ∈ R
n, we provide a representation of the

bilinear form ν ·D2
uP1 : U×U → R, and we prove that it is a compact self-adjoint operator.

Before proceeding, we introduce some notations. We set V := L2([0, 1],Rn), and we
equip it with the usual Hilbert space structure. In order to avoid confusion, in the present
subsection, we denote by || · ||U and || · ||V the norms of the Hilbert spaces U and V ,
respectively. We use a similar convention for the respective scalar products, too. Moreover,
given an application R : U → V , for every u ∈ U , we use the notation R[u] ∈ V to
denote the image of u through R. Then, for s ∈ [0, 1], we write R[u](s) ∈ R

n to refer to
the value of (a representative of) the function R[u] at the point s. More generally, we adopt
this convention for every function-valued operator.

It is convenient to introduce a linear operator that will be useful to derive the expres-
sion of the second differential of the end-point map. Assuming that the controlled fields
F 1, . . . , F k are C1-regular, for every u ∈ U we define Lu : U → V as follows:

Lu[v](s) := yv
u(s) (2.29)
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for every s ∈ [0, 1], where yv
u : [0, 1] → R

n is the curve introduced in Proposition 2.4 that
solves the affine system Eq. 2.14. Recalling Eq. 2.18, we have that the identity

Lu[v](s) =
∫ s

0
Mu(s)M

−1
u (τ )F (xu(τ ))v(τ ) dτ (2.30)

holds for every s ∈ [0, 1] and for every v ∈ U , and this shows that Lu is a linear operator.
Moreover, using the standard Hilbert space structure of U and of V , for every u ∈ U we can
introduce the adjoint of Lu, namely the linear operator L∗

u : V → U that satisfies〈
L∗

u[w], v〉U = 〈Lu[v], w〉V (2.31)

for every v ∈ U and w ∈ V .

Remark 2.12 We recall a result in functional analysis concerning the norm of the adjoint
of a bounded linear operator. For further details, see [6, Remark 2.16]. Given two Banach
spaces E1, E2, let L (E1, E2) be the Banach space of the bounded linear operators from
E1 to E2, equipped with the norm induced by E1 and E2. Let E∗

1 , E∗
2 be the dual

spaces of E1, E2, respectively, and let L (E∗
2 , E∗

1 ) be defined as above. Therefore, if A ∈
L (E1, E2), then the adjoint operator satisfies A∗ ∈ L (E∗

2 , E∗
1 ), and the following identity

holds:
||A∗||L (E∗

2 ,E∗
1 ) = ||A||L (E1,E2).

If E1, E2 are Hilbert spaces, using the Riesz’s isometry it is possible to write A∗ as an
element of L (E2, E1), and the identity of the norms is still satisfied.

We now show that Lu and L∗
u are bounded and compact operators.

Lemma 2.13 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 are C1-regular. Then, for every u ∈ U , the linear operators Lu : U →
V and L∗

u : V → U defined, respectively, by Eqs. 2.29 and 2.31 are bounded and
compact.

Proof See Appendix B.

In the next result, we study the local Lipschitz-continuity of the correspondence u 
→ Lu.

Lemma 2.14 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular. Then, for every R > 0, there exists LR > 0 such that

||Lu+w[v] − Lu[v]||V ≤ LR||w||U ||v||U (2.32)

for every v ∈ U and for every u,w ∈ U such that ||u||U , ||w||U ≤ R.

Proof See Appendix B

Remark 2.15 From Lemma 2.14 and Remark 2.12, it follows that the correspondence u 
→
L∗

u is as well Lipschitz-continuous on the bounded sets of U .

If the vector fields F 1, . . . , F k are C2-regular, we write ∂2F 1

∂x2 , . . . , ∂2Fk

∂x2 to denote their
second differential. In the next result, we investigate the second-order variation of the
solutions produced by the control system Eq. 2.6.
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Proposition 2.16 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 are C2-regular. For every u, v, w ∈ U , for every ε ∈ (0, 1], let yv

u, yv
u+εw :

[0, 1] → R
n be the solutions of Eq. 2.14 corresponding to the first-order variation v and

to the admissible controls u and u + εw, respectively. Therefore, we have that

sup
||v||

L2 ≤1
||yv

u+εw − yv
u − εzv,w

u ||C0 = o(ε) as ε → 0, (2.33)

where z
v,w
u : [0, 1] → R

n is the solution of the following affine system:

żv,w
u (s) =

k∑
i=1

[
vi(s)

∂F i(xu(s))

∂x
yw
u (s) + wi(s)

∂F i(xu(s))

∂x
yv
u(s)

]
(2.34)

+
k∑

i=1

ui(s)
∂2F i(xu(s))

∂x2
(yv

u(s), yw
u (s)) (2.35)

+
k∑

i=1

ui(s)
∂F i(xu(s))

∂x
zv,w
u (s) (2.36)

with z
v,w
u (0) = 0, and where yv

u, yw
u : [0, 1] → R

n are the solutions of Eq. 2.14
corresponding to the admissible control u and to the first-order variations v and w,
respectively.

Proof The proof of this result follows using the same kind of techniques and computations
as in the proof of Proposition 2.4.

Remark 2.17 Similarly as done in Eq. 2.18 for the first-order variation, we can express the
solution of the affine system Eqs. 2.34–2.36 through an integral formula. Indeed, for every
u, v, w ∈ U , for every s ∈ [0, 1] we have that

zv,w
u (s)=

∫ s

0
Mu(s) M−1

u (τ )

(
k∑

i=1

vi(τ )
∂F i(xu(τ ))

∂x
Lu[w](τ ) (2.37)

+
k∑

i=1

wi(τ)
∂F i(xu(τ ))

∂x
Lu[v](τ ) (2.38)

+
k∑

i=1

ui(τ )
∂2F i(xu(τ ))

∂x2
(Lu[v](τ ),Lu[w](τ ))

)
dτ, (2.39)

where we used the linear operator Lu : U → V defined in Eq. 2.29. From the previous
expression it follows that, for every u, v, w ∈ U , the roles of v and w are interchangeable,
i.e., for every s ∈ [0, 1] we have that z

v,w
u (s) = z

w,v
u (s). Moreover, we observe that, for

every s ∈ [0, 1] and for every u ∈ U , z
v,w
u (s) is bilinear with respect to v and w.

We are now in position to introduce the second differential of the end-point map Ps :
U → R

n defined in Eq. 2.20. In view of the applications in the forthcoming sections, we
shall focus on the case s = 1, i.e., we consider the map P1 : U → R

n. Before proceeding,
for every u ∈ U we define the symmetric and bilinear map Bu : U × U → R

n as follows

Bu(v, w) := zv,w
u (1). (2.40)
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Proposition 2.18 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 are C2-regular. Let P1 : U → R

n be the end-point map defined by Eq. 2.20,
and, for every u ∈ U , let DuP1 : U → R

n be its differential. Then, the correspondence
u 
→ DuP1 is Gateaux differentiable at every u ∈ U , namely

lim
ε→0

sup
||v||

L2 ≤1

∣∣∣∣Du+εwP1(v) − DuP1(v)

ε
− Bu(v,w)

∣∣∣∣
2

= 0, (2.41)

where Bu : U × U → R
n is the bilinear, symmetric and bounded operator defined in

Eq. 2.40.

Proof In view of Eq. 2.23, for every u, v, w ∈ U and for every ε ∈ (0, 1], we have that
DuP1(v) = yv

u(1) and Du+εwP1(v) = yv
u+εw(1). Therefore, Eq. 2.41 follows directly from

Eq. 2.33 and from Eq. 2.40. The symmetry and the bilinearity of Bu : U×U → R
n descend

from the observations in Remark 2.17. Finally, we have to show that, for every u ∈ U , there
exists C > 0 such that

|Bu(v,w)|2 ≤ C||v||L2 ||w||L2

for every v,w ∈ U . Recalling Eq. 2.40 and the integral expression Eqs. 2.37–2.39, the last
inequality follows from the estimate Eq. B.1, from Lemma 2.5, from Proposition 2.2 and
from the C2-regularity of F 1, . . . , F k .

In view of the previous result, for every u ∈ U , we use D2
uP1 : U × U → R

n to denote
the second differential of the end-point map P1 : U → R

n. Moreover, for every u, v, w ∈ U
we have the following identities:

D2
uP1(v, w) = Bu(v,w) = zv,w

u (1). (2.42)

Remark 2.19 It is possible to prove that the correspondence u 
→ D2
uP1 is continuous. In

particular, under the further assumption that the controlled vector fields F 1, . . . , F k are C3-
regular, the application u 
→ D2

uP1 is Lipschitz-continuous on the bounded subsets of U .
Indeed, taking into account Eq. 2.42 and Eqs. 2.37–2.39, this fact follows from Lemma 2.10,
from Lemma 2.14 and from the regularity of F 1, . . . , F k .

For every ν ∈ R
n and for every u ∈ U , we can consider the bilinear form ν · D2

uP1 :
U × U → R, which is defined as

ν · D2
uP1(v, w) := 〈ν, D2

uP1(v,w)〉Rn . (2.43)

We conclude this section by showing that, using the scalar product of U , the bilinear form
defined in Eq. 2.43 can be represented as a self-adjoint compact operator. Before proceed-
ing, it is convenient to introduce two auxiliary linear operators. In this part we assume that
the vector fields F 1, . . . , F k are C2-regular. For every u ∈ U let us consider the application
Mν

u : U → V defined as follows:

Mν
u[v](τ ) :=

(
Mu(1)M−1

u (τ )

k∑
i=1

vi(τ )
∂F i(xu(τ ))

∂x

)T

ν (2.44)

for a.e. τ ∈ [0, 1], where xu : [0, 1] → R
n is the solution of Eq. 2.6 and Mu : [0, 1] →

R
n×n is defined in Eq. 2.16. We recall that, for every i = 1, . . . , k and for every y ∈ R

n,
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∂2F i(y)

∂x2 : R
n × R

n → R
n is a symmetric and bilinear function. Hence, for every i =

1, . . . , k, for every u ∈ U , and for every τ ∈ [0, 1], we have that the application

(η1, η2) 
→ νT Mu(1)M−1
u (τ )

∂2F i(xu(τ ))

∂x2
(η1, η2)

is a symmetric and bilinear form on R
n. Therefore, for every i = 1, . . . , k, for every u ∈ U ,

and for every τ ∈ [0, 1], we introduce the symmetric matrix S
ν,i
u (τ ) ∈ R

n×n that satisfies
the identity

〈
Sν,i

u (τ )η1, η2

〉
Rn

= νT Mu(1)M−1
u (τ )

∂2F i(xu(τ ))

∂x2
(η1, η2)

for every η1, η2 ∈ R
n. We define the linear operator Sν

u : C0([0, 1],Rn) → V as follows:

Sν
u [v](τ ) :=

k∑
i=1

ui(τ )Sν,i
u (τ )v(τ ) (2.45)

for every v ∈ C0([0, 1],Rn) and for a.e. τ ∈ [0, 1].
In the next result, we prove that the linear operators introduced above are both

continuous.

Lemma 2.20 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular. Therefore, for every u ∈ U and for every ν ∈ R

n, the linear oper-
ators Mν

u : U → V and Sν
u : C0([0, 1],Rn) → V defined, respectively, in Eqs. 2.44 and

2.45 are continuous.

Proof See Appendix B.

We are now in position to represent the bilinear form ν · D2
uP1 : U × U → R through

the scalar product of U . Indeed, recalling Eqs. 2.43 and 2.42, from Eqs. 2.37–2.39 for every
u ∈ U , we obtain that

ν · D2
uP1(v,w) = 〈

Mν
u [v],Lu[w]〉V + 〈

Mν
u [w],Lu[v]〉V + 〈

Sν
uLu[v],Lu[w]〉V

= 〈
L∗

uM
ν
u [v], w〉U + 〈

(Mν
u)

∗Lu[v], w〉U + 〈
L∗

uSν
uLu[v], w〉U

for every v,w ∈ U , where (Mν
u)

∗ : V → U is the adjoint of the linear operator Mν
u : U →

V . Recalling Remark 2.12, we have that (Mν
u)

∗ is a bounded linear operator. This shows
that the bilinear form ν · D2

uP1 : U × U → R can be represented by the linear operator
N ν

u : U → U , i.e.,
ν · D2

uP1(v,w) = 〈
N ν

u [v], w〉U (2.46)

for every v, w ∈ U , where

N ν
u := L∗

uM
ν
u + (Mν

u)
∗Lu + L∗

uSν
uLu. (2.47)

We conclude this section by proving that N ν
u : U → U is a bounded, compact, and self-

adjoint operator.

Proposition 2.21 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 are C2-regular. For every u ∈ U and for every ν ∈ R

n, let N ν
u : U → U be

the linear operator that represents the bilinear form ν · D2
uP1 : U × U → R through the

identity Eq. 2.46. Then,N ν
u is continuous, compact, and self-adjoint.
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Proof We observe that the term L∗
uM

ν
u + (Mν

u)
∗Lu at the right-hand side of Eq. 2.47 is

continuous, since it is obtained as the sum and the composition of continuous linear opera-
tors, as shown in Lemma 2.13 and Lemma 2.20. Moreover, it is also compact, since both Lu

and L∗
u are, in virtue of Lemma 2.13. Finally, the fact that L∗

uM
ν
u +(Mν

u)
∗Lu is self-adjoint

is immediate. Let us consider the last term at the right-hand side of Eq. 2.47, i.e., L∗
uSν

uLu.
We first observe that Sν

uLu : U → V is continuous, owing to Lemma 2.20 and the inequal-
ity Eq. B.1. Recalling that L∗

u : V → U is compact, the composition L∗
uSν

uLu : U → U is
compact as well. Once again, the operator is clearly self-adjoint.

3 Gradient Flow: Well-posedness and Global Definition

For every β > 0, we consider the functional Fβ : U → R+ defined as follows:

Fβ(u) := 1

2
||u||2

L2 + βa(xu(1)), (3.1)

where a : R
n → R+ is a non-negative C1-regular function, and, for every u ∈ U , xu :

[0, 1] → R
n is the solution of the Cauchy problem Eq. 2.6 corresponding to the admissible

control u ∈ U . In this section, we want to study the gradient flow induced by the functional
Fβ on the Hilbert space U . In particular, we establish a result that guarantees existence,
uniqueness and global definition of the solutions of the gradient flow equation associated
to Fβ . In this section, we adopt the approach of the monograph [10], where the theory of
ODEs in Banach spaces is developed.

We start from the notion of differentiable curve with values in U . We stress that in the
present paper the time variable t is exclusively employed for curves taking values in U . In
particular, we recall that we use s ∈ [0, 1] to denote the time variable only in the control
system Eq. 2.6 and in the related objects (e.g., admissible controls, controlled trajectories,
etc.). Given a curve U : (a, b) → U , we say that it is (strongly) differentiable at t0 ∈ (a, b)

if there exists u ∈ U such that

lim
t→t0

∣∣∣∣
∣∣∣∣Ut − Ut0

t − t0
− u

∣∣∣∣
∣∣∣∣
L2

= 0. (3.2)

In this case, we use the notation ∂tUt0 := u. In the present section, we study the well-
posedness in U of the evolution equation{

∂tUt = −Gβ [Ut ],
U0 = u0,

(3.3)

where Gβ : U → U is the representation of the differential dFβ : U → U∗ through the
Riesz isomorphism, i.e., 〈

Gβ [u], v〉
L2 = duFβ(v) (3.4)

for every u, v ∈ U . More precisely, for every initial datum u0 ∈ U we prove that there exists
a curve t 
→ Ut that solves Eq. 3.3, that it is unique and that it is defined for every t ≥ 0.

We first show that duFβ can be actually represented as an element of U , for every u ∈ U .
We immediately observe that this problem reduces to study the differential of the end-point
cost, i.e., the functional E : U → R+, defined as

E(u) := a(xu(1)), (3.5)

where xu : [0, 1] → R
n is the solution of Eq. 2.6 corresponding to the admissible control

u ∈ U .
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Lemma 3.1 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C1-regular, as well as the function a : Rn → R+ designing the end-point cost.
Then, the functional E : U → R+ is Gateaux differentiable at every u ∈ U . Moreover, using
the Riesz’s isomorphism, for every u ∈ U , the differential duE : U → R can be represented
as follows:

duE(v) =
∫ 1

0

n∑
j=1

(
∂a(xu(1))

∂xj

〈
g

j

1,u(τ ), v(τ )
〉
Rk

)
dτ (3.6)

for every v ∈ U , where, for every j = 1, . . . , n, the function g
j

1,u ∈ U is defined as in
Eq. 2.22.

Proof See Appendix C.

Remark 3.2 Similarly as done in Remark 2.8, we can provide a uniform estimate of the
norm of duE when u varies on a bounded set. Indeed, recalling Lemma 2.2 and the fact that
a : Rn → R+ is C1-regular, for every R > 0 there exists C′

R > 0 such that∣∣∣∣∂a(xu(1))

∂xj

∣∣∣∣ ≤ C′
R

for every j = 1, . . . , n and for every u ∈ U such that ||u||L2 ≤ R. Combining the last
inequality with Eqs. C.1 and 2.24, we deduce that there exists CR > 0 such that for every
||u||L2 ≤ R the estimate

|duE(v)|2 ≤ CR||v||L2 (3.7)

holds for every v ∈ U .

Remark 3.3 We observe that, for every u, v ∈ U , we can rewrite Eq. 3.6 as follows

duE(v) =
∫ 1

0

〈
FT (xu(τ ))λT

u (τ ), v(τ )
〉
Rk

dτ, (3.8)

where λu : [0, 1] → (Rn)∗ is an absolutely continuous curve defined for every s ∈ [0, 1]
by the relation

λu(s) := ∇a(xu(1)) · Mu(1)M−1
u (s), (3.9)

where Mu : [0, 1] → R
n×n is defined as in Eq. 2.16, and ∇a(xu(1)) is understood as a

row vector. Recalling that s 
→ M−1
u (s) solves Eq. A.8, it turns out that s 
→ λu(s) is the

solution of the following linear Cauchy problem:⎧⎪⎨
⎪⎩

λ̇u(s) = −λu(s)
k∑

i=1

(
ui(s)

∂F i (xu(s))
∂x

)
for a.e. s ∈ [0, 1],

λu(1) = ∇a(xu(1)).

(3.10)

Finally, Eq. 3.8 implies that, for every u ∈ U , we can represent duE with the function
hu : [0, 1] → R

k defined as

hu(s) := FT (xu(s))λ
T
u (s) (3.11)

for a.e. s ∈ [0, 1]. We observe that Eq. 3.7 and the Riesz’s isometry imply that for every
R > 0 there exists CR > 0 such that

||hu||L2 ≤ CR (3.12)

for every u ∈ U such that ||u||L2 ≤ R. We further underline that the representation hu :
[0, 1] → R

k of the differential duE is actually absolutely continuous, similarly as observed
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in Remark 2.9 for the representations of the components of the differential of the end-point
map.

Under the assumption that the controlled vector fields F 1, . . . , F k and the func-
tion a : R

n → R+ are C2-regular, we can show that the differential u 
→ duE is
Lipschitz-continuous on bounded sets.

Lemma 3.4 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular, as well as the function a : Rn → R+ designing the end-point cost.
Then, for every R > 0 there exists LR > 0 such that

||hu+w − hu||L2 ≤ LR||w||L2 (3.13)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, where hu+w, hu are the representations,
respectively, of du+wE and duE provided by Eq. 3.11.

Proof See Appendix C.

Remark 3.5 In Lemma 3.1 we have computed the Gateaux differential duE of the functional
E : U → R. The continuity of the map u 
→ duE implies that the Gateaux differential
coincides with the Fréchet differential (see, e.g., [5, Theorem 1.9]).

Using Lemma 3.1 and Remark 3.3, we can provide an expression for the representation
map Gβ : U → U defined in Eq. 3.4. Indeed, for every β > 0 we have that

Gβ [u] = u + βhu, (3.14)

where hu : [0, 1] → R
k is defined in Eq. 3.11. Before proving that the solution of the

gradient flow Eq. 3.3 exists and is globally defined, we report the statement of a local
existence and uniqueness result for the solution of ODEs in infinite-dimensional spaces.

Theorem 3.6 Let (E, || · ||E) be a Banach space, and, for every u0 ∈ E and R > 0, let
BR(u0) be the set

BR(u0) := {u ∈ E : ||u − u0||E ≤ R}.
Let K : E → E be a continuous map such that

(i) ||K[u]||E ≤ M for every u ∈ BR(u0);
(ii) ||K[u1] − K[u2]||E ≤ L||u1 − u2||E for every u1, u2 ∈ BR(u0).

For every t0 ∈ R, let us consider the following Cauchy problem:{
∂tUt = K[Ut ],
Ut0 = u0.

(3.15)

Then, setting α := R
M
, the equation Eq. 3.15 admits a unique and continuously differentiable

solution t 
→ Ut , which is defined for every t ∈ I := [t0 − α, t0 + α] and satisfies Ut ∈
BR(u0) for every t ∈ I .

Proof This result descends directly from [10, Theorem 5.1.1].

In the following result, we show that, whenever it exists, any solution of Eq. 3.3 is
bounded with respect to the L2-norm.
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Lemma 3.7 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular, as well as the function a : Rn → R+ designing the end-point cost.
For every initial datum u0 ∈ U , letU : [0, α) → U be a continuously differentiable solution
of the Cauchy problem Eq. 3.3. Therefore, for every R > 0, there exists CR > 0 such that,
if ||u0||L2 ≤ R, then

||Ut ||L2 ≤ CR

for every t ∈ [0, α).

Proof Recalling Eq. 3.3 and using the fact that both Fβ : U → R+ and t 
→ Ut are
differentiable, we observe that

d

dt
Fβ(Ut ) = dUtFβ(∂tUt ) = 〈Gβ [Ut ], ∂tUt 〉L2 = −||∂tUt ||2L2 ≤ 0 (3.16)

for every t ∈ [0, α), and this immediately implies that

Fβ(Ut ) ≤ Fβ(U0)

for every t ∈ [0, α). Moreover, from the definition of the functional Fβ given in Eq. 3.1
and recalling that the end-point term is non-negative, it follows that 1

2 ||u||2
L2 ≤ Fβ(u) for

every u ∈ U . Therefore, combining these facts, if ||u0||L2 ≤ R, we deduce that

1

2
||Ut ||2L2 ≤ sup

||u0||L2 ≤R

Fβ(u0) ≤ 1

2
R2 + sup

||u0||L2 ≤R

a(xu0(1))

for every t ∈ [0, α). Finally, using Lemma 2.2 and the continuity of the terminal cost
a : Rn → R+, we deduce the thesis.

We are now in position to prove that the gradient flow equation Eq. 3.3 admits a unique
and globally defined solution.

Theorem 3.8 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular, as well as the function a : Rn → R+ designing the end-point cost.
For every u0 ∈ U , let us consider the Cauchy problem Eq. 3.3 with initial datum U0 = u0.
Then, Eq. 3.3 admits a unique, globally defined and continuously differentiable solution
U : [0,+∞) → U .

Proof Let us fix the initial datum u0 ∈ U , and let us set R := ||u0||L2 . Let CR > 0 be the
constant provided by Lemma 3.7. Let us introduce R′ := CR + 1 and let us consider

BR′(0) := {u ∈ U : ||u||L2 ≤ R′}.
We observe that, for every ū ∈ U such that ||ū||L2 ≤ CR , we have that

B1(ū) ⊂ BR′(0), (3.17)

where B1(ū) := {u ∈ U : ||u − ū||L2 ≤ 1}. Recalling that the vector field that generates the
gradient flow Eq. 3.3 has the form Gβ [u] = u + βhu for every u ∈ U , from Eq. 3.12, we
deduce that there exists MR′ > 0 such that

||Gβ [u]||L2 ≤ MR′ (3.18)

for every u ∈ BR′(0). On the other hand, Lemma 3.4 implies that there exists LR′ > 0 such
that

||Gβ [u1] − Gβ [u2]||L2 ≤ LR′ ||u1 − u2||L2 (3.19)
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for every u1, u2 ∈ BR′(0). Recalling the inclusion Eqs. 3.17, 3.18, and 3.19 guarantee
that the hypotheses of Theorem 3.6 are satisfied in the ball B1(ū), for every ū satisfying
||ū||L2 ≤ CR . This implies that, for every t0 ∈ R, the evolution equation{

∂tUt = −Gβ [Ut ],
Ut0 = ū,

(3.20)

admits a unique and continuously differentiable solution defined in the interval [t0 −α, t0 +
α], where we set α := 1

MR′ . In particular, if we choose t0 = 0 and ū = u0 in Eq. 3.20, we
deduce that the gradient flow equation Eq. 3.3 with initial datum U0 = u0 admits a unique
and continuously differentiable solution t 
→ Ut defined in the interval [0, α]. We shall now
prove that we can extend this local solution to every positive time. In virtue of Lemma 3.7,
we obtain that the local solution t 
→ Ut satisfies

||Ut ||L2 ≤ CR (3.21)

for every t ∈ [0, α]. Therefore, if we set t0 = α
2 and ū = Uα

2
in Eq. 3.20, recalling that,

if ||ū||L2 ≤ CR , then Eq. 3.20 admits a unique solution defined in [t0 − α, t0 + α], it turns
out that the curve t 
→ Ut that solves Eq. 3.3 with Cauchy datum U0 = u0 can be uniquely
defined for every t ∈ [0, 3

2α]. Since Lemma 3.7 guarantees that Eq. 3.21 holds whenever
the solution t 
→ Ut exists, we can repeat recursively the argument and we can extend the
domain of the solution to the whole half-line [0, +∞).

We observe that Theorem 3.6 suggests that the solution of the gradient flow equation
Eq. 3.3 could be defined also for negative times. In the following result we investigate this
fact.

Corollary 3.9 Under the same assumptions of Theorem 3.8, for every R2 > R1 > 0,
there exists α > 0 such that, if ||u0||L2 ≤ R1, then the solution t 
→ Ut of the Cauchy
problem Eq. 3.3 with initial datum U0 = u0 is defined for every t ∈ [−α, +∞). Moreover,
||Ut ||L2 ≤ R2 for every t ∈ [−α, 0].

Proof The fact that the solutions are defined for every positive time descends from Theo-
rem 3.8. Recalling the expression of Gβ : U → U provided by Eq. 3.14, from Eq. 3.12 it
follows that, for every R2 > 0, there exists MR2 such that

||Gβ [u]||L2 ≤ MR2

for every u ∈ BR2(0) := {u ∈ U : ||u||L2 ≤ R2}. On the other hand, in virtue of Lemma 3.4,
we deduce that there exists LR2 such that

||Gβ [u1] − Gβ [u2]||L2 ≤ LR2 ||u1 − u2||L2

for every u1, u2 ∈ BR2(0). We further observe that, for every u0 ∈ U such that ||u0||L2 ≤
R1, we have the inclusion BR(u0) := {u ∈ U : ||u − u0|| ≤ R} ⊂ BR2(0), where we set
R := R2 − R1. Therefore, the previous inequalities guarantee that the hypotheses of Theo-
rem 3.6 are satisfied in BR(u0), whenever ||u0||L2 ≤ R1. Finally, in virtue of Theorem 3.6
and the inclusion BR(u0) ⊂ BR2(0), we obtain the thesis with

α = R2 − R1

MR2

.
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4 Pre-compactness of Gradient Flow Trajectories

In Section 3, we considered the Fβ : U → R+ defined in Eq. 3.1 and we proved
that the gradient flow equation Eq. 3.3 induced on U by Fβ admits a unique solution
U : [0, +∞) → U , for every Cauchy datum U0 = u0 ∈ U . The aim of the present
section is to investigate the pre-compactness in U of the gradient flow trajectories t 
→ Ut .
In order to do that, we first show that, under suitable regularity assumptions on the vector
fields F 1, . . . , F k and on the function a : R

n → R+, for every t ≥ 0, the value of the
solution Ut ∈ U has the same Sobolev regularity as the initial datum u0. The key-fact is
that, when F 1, . . . , F k are Cr -regular with r ≥ 2 and a : Rn → R+ is of class C2, the
map Gβ : Hm([0, 1],Rk) → Hm([0, 1],Rk) is locally Lipschitz continuous, for every non-
negative integer m ≤ r − 1. This implies that the gradient flow equation Eq. 3.3 can be
studied as an evolution equation in the Hilbert space Hm([0, 1],Rk).

The following result concerns the curve λu : [0, 1] → (Rn)∗ defined in Eq. 3.9.

Lemma 4.1 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular, as well as the function a : Rn → R+ designing the end-point cost.
For every R > 0, there exists CR > 0 such that, for every u ∈ U satisfying ||u||L2 ≤ R, the
following inequality holds

||λu||C0 ≤ CR, (4.1)

where the curve λu : [0, 1] → (Rn)∗ is defined as in Eq. 3.9. Moreover, for every R > 0,
there exists LR > 0 such that, for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, for the
corresponding curves λu, λu+w : [0, 1] → (Rn)∗ the following inequality holds:

||λu+w − λu||C0 ≤ LR||w||L2 . (4.2)

Proof Recalling the definition of λu given in Eq. 3.9, we have that

|λu(s)|2 ≤ |∇a(xu(1))|2|Mu(1)|2|M−1
u (s)|2

for every s ∈ [0, 1], where xu : [0, 1] → R
n is solution of Eq. 2.6 corresponding to the

control u ∈ U . Lemma 2.2 implies that there exists C′
R > 0 such that |∇a(xu(1))|2 ≤ C′

R

for every u ∈ U such that ||u||L2 ≤ R. Combining this with Eq. 2.17, we deduce Eq. 4.1.
To prove Eq. 4.2, we first observe that the C2-regularity of a : R

n → R+ and
Proposition 2.3 imply that, for every R > 0, there exists L′

R > 0 such that

|∇xu+w(1)a − ∇xu(1)a|2 ≤ L′
R||w||L2

for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R. Therefore, recalling Eq. 2.17 and
Eqs. 2.26–2.27, we deduce Eq. 4.2 by applying the triangular inequality to the identity

|λu+w(s) − λu(s)|2 = |∇xu+w(1)a · Mu+w(1)M−1
u+w(s) − ∇xu(1)a · Mu(1)M−1

u (s)|2
for every s ∈ [0, 1].

We recall the notion of Lie bracket of vector fields. Let G1, G2 : Rn → R
n be two vector

fields such that G1 ∈ Cr1(Rn,Rn) and G2 ∈ Cr2(Rn,Rn), with r1, r2 ≥ 1, and let us set
r := min(r1, r2). Then, the Lie bracket of G1 and G2 is the vector field [G1, G2] : Rn →
R

n defined as follows:

[G1,G2](y) = ∂G2(y)

∂x
G1(y) − ∂G1(y)

∂x
G2(y).
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We observe that [G1, G2] ∈ Cr−1(Rn,Rn). In the following result, we establish some
estimates for vector fields obtained via iterated Lie brackets.

Lemma 4.2 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are Cm-regular, with m ≥ 2. For every compact K ⊂ R

n, there exist C > 0 and
L > 0 such that, for every j1, . . . , jm = 1, . . . , k, the vector field

G := [Fjm, [. . . , [Fj3 , [Fj2 , F j1 ]] . . .] : Rn → R
n

satisfies the following inequalities:

|G(x)|2 ≤ C (4.3)

for every x ∈ K , and

|G(x) − G(y)|2 ≤ L|x − y|2 (4.4)

for every x, y ∈ K .

Proof The thesis follows immediately from the fact that the vector field G is C1-regular.

The next result is the cornerstone this section. It concerns the regularity of the function
hu : [0, 1] → R

k introduced in Eq. 3.11. We recall that, for every u ∈ U , hu is the represen-
tation of the differential duE through the scalar product of U , where the functional E : U →
R+ is defined as in Eq. 3.5. We recall the convention H 0([0, 1],Rk) = L2([0, 1],Rk) = U .

Lemma 4.3 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are Cr -regular with r ≥ 2, and that the function a : Rn → R+ designing the end-
point cost is C2-regular. For every u ∈ U , let hu : [0, 1] → R

k be the representation of
the differential duE : U → R provided by Eq. 3.11. For every integer 1 ≤ m ≤ r − 1,
if u ∈ Hm−1([0, 1],Rk) ⊂ U , then hu ∈ Hm([0, 1],Rk). Moreover, for every integer
1 ≤ m ≤ r − 1, for every R > 0 there exist Cm

R > 0 and Lm
R > 0 such that

||hu||Hm ≤ Cm
R (4.5)

for every u ∈ Hm−1([0, 1],Rk) such that ||u||Hm−1 ≤ R, and

||hu+w − hu||Hm ≤ Lm
R ||w||Hm−1 (4.6)

for every u,w ∈ Hm−1([0, 1],Rk) such that ||u||Hm−1 , ||w||Hm−1 ≤ R.

Proof It is sufficient to prove the thesis in the case m = r − 1, for every integer r ≥ 2.
When r = 2, m = 1, we have to prove that, for every u ∈ U , the function hu : [0, 1] → R

k

is in H 1. Recalling Eq. 3.11, we have that, for every j = 1, . . . , k, the j th component of hu

is given by the product

h
j
u(s) = λu(s) · Fj (xu(s))

for every s ∈ [0, 1], where λu : [0, 1] → (Rn)∗ was defined in Eq. 3.9. Since both s 
→
λu(s) and s 
→ Fj (xu(s)) are in H 1, then their product is in H 1 as well (see, e.g., [6,
Corollary 8.10]). Therefore, since λu : [0, 1] → (Rn)∗ solves Eq. 3.10, we can compute

ḣ
j
u(s) = λu(s) ·

k∑
i=1

[F i, F j ]xu(s)u
i(s) (4.7)
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for every j = 1, . . . , k and for a.e. s ∈ [0, 1]. In virtue of Eqs. 4.1, 2.11 and 4.3, for every
R > 0, there exists C′

R > 0 such that

|ḣj
u(s)| ≤ C′

R|u(s)|1
for a.e. s ∈ [0, 1], for every j = 1, . . . , k and for every u ∈ U such that ||u||L2 ≤ R.
Recalling Eq. 2.10, we deduce that

||ḣj
u||L2 ≤ √

kC′
R||u||L2 (4.8)

for every j = 1, . . . , k and for every u ∈ U such that ||u||L2 ≤ R. Finally, using Eq. 3.12,
we obtain that Eq. 4.5 holds for r = 2,m = 1. To prove Eq. 4.6, we observe that, for every
j = 1, . . . , k and for every u,w ∈ U we have

∣∣∣ḣj
u+w(s) − ḣ

j
u(s)

∣∣∣
≤ |λu+w(s) − λu(s)|2

k∑
i=1

∣∣∣[F i, F j ]xu+w(s)

∣∣∣
2
|ui(s) + wi(s)|

+|λu(s)|2
k∑

i=1

∣∣∣[F i, F j ]xu+w(s) − [F i, F j ]xu(s)

∣∣∣
2
|ui(s) + wi(s)|

+|λu(s)|2
k∑

i=1

∣∣∣[F i, F j ]xu(s)

∣∣∣
2
|wi(s)|

for a.e. s ∈ [0, 1]. In virtue of Lemma 4.1, Lemma 2.2, Proposition 2.3 and Lemma 4.2, for
every R > 0 there exist L′

R > 0 and C′′
R > 0 such that for every j = 1, . . . , k the inequality

∣∣∣ḣj
u+w(s) − ḣ

j
u(s)

∣∣∣ ≤ L′
R||w||L2 |u(s) + w(s)|1 + C′′

R|w(s)|1
holds for a.e. s ∈ [0, 1] and for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Using
Eq. 2.10, the previous inequality implies that there exists L′′

R > 0 such that

||ḣj
u+w − ḣ

j
u||L2 ≤ L′′

R||w||L2 (4.9)

for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R. Recalling Eq. 3.13, we conclude that
Eq. 4.6 holds for r = 2,m = 1.

For r = 3,m = 2, we have to prove that, for every u ∈ H 1([0, 1],Rk), the func-
tion hu belongs to H 2([0, 1],Rk). This follows if we show that ḣu ∈ H 1([0, 1],Rk)

for for every u ∈ H 1([0, 1],Rk). Using the identity Eq. 4.7, we deduce that, whenever
u ∈ H 1([0, 1],Rk), ḣj

u is the product of three H 1-regular functions, for every j = 1, . . . , k.
Therefore, using again [6, Corollary 8.10], we deduce that ḣ

j
u is H 1-regular as well. From

Eq. 4.7, for every j = 1, . . . , k, we have that

ḧ
j
u(s) = λu(s) ·

k∑
i1,i2=1

[F i2 , [F i1 , F j ]]xu(s)u
i1(s)ui2(s)

+λu(s) ·
k∑

i1=1

[F i1 , F j ]xu(s)u̇
i1(s)
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for a.e. s ∈ [0, 1]. Using Lemma 4.1, Lemma 2.2, Lemma 4.2, and recalling Theorem 2.1,
we obtain that, for every R > 0 there exist C′

R, C′′
R > 0 such that

||ḧj
u(s)||L2 ≤ C′

R + C′′
R||u̇(s)||L2 (4.10)

for a.e. s ∈ [0, 1], for every j = 1, . . . , k and for every u ∈ H 1([0, 1],Rk) such that
||u||H 1 ≤ R. Therefore, combining Eqs. 3.12, 4.8 and 4.10, the inequality Eq. 4.5 follows
for the case r = 3,m = 2. In view of Eqs. 3.13 and 4.9, in order to prove Eq. 4.6 for
r = 3,m = 2 it is sufficient to show that, for every R > 0 there exists L′

R > 0 such that

||ḧj
u+w − ḧ

j
u||L2 ≤ L′

R||w||H 1 (4.11)

for every u,w ∈ H 1([0, 1],Rk) such that ||u||H 1 , ||w||H 1 ≤ R. The inequality Eq. 4.11
can be deduced with an argument based on the triangular inequality, similarly as done in the
case r = 2,m = 1.

The same strategy works for every r ≥ 4.

The main consequence of Lemma 4.3 is that, when the map Gβ : U → U defined in
Eq. 3.14 is restricted to Hm([0, 1],Rk), the restriction Gβ : Hm → Hm is bounded and
Lipschitz continuous on bounded sets.

Proposition 4.4 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are Cr -regular with r ≥ 2, and that the function a : Rn → R designing the end-
point cost is C2-regular. For every β > 0, let Gβ : U → U be the representation map
defined in Eq. 3.4. Then, for every integer 1 ≤ m ≤ r − 1, we have that

Gβ(Hm([0, 1],Rk)) ⊂ Hm([0, 1],Rk).

Moreover, for every integer 1 ≤ m ≤ r − 1 and for every R > 0 there exists Cm
R > 0 such

that
||Gβ [u]||Hm ≤ Cm

R (4.12)

for every u ∈ Hm([0, 1],Rk) such that ||u||Hm ≤ R, and there exists Lm
R > 0 such that

||Gβ [u + w] − Gβ [u]||Hm ≤ Lm
R ||w||Hm (4.13)

for every u,w ∈ Hm([0, 1],Rk) such that ||u||Hm, ||w||Hm ≤ R.

Proof Recalling that for every u ∈ U we have

Gβ [u] = u + βhu,

the thesis follows directly from Lemma 4.3.

Proposition 4.4 suggests that, when the vector fields F 1, . . . , F k are Cr -regular with r ≥
2, we can restrict the gradient flow equation Eq. 3.3 to the Hilbert spaces Hm([0, 1],Rk),
for every integer 1 ≤ m ≤ r − 1. Namely, for every integer 1 ≤ m ≤ r − 1, we shall
introduce the application Gβ

m : Hm([0, 1],Rk) → Hm([0, 1],Rk) defined as the restriction
of Gβ : U → U to Hm, i.e.,

Gβ
m := Gβ |Hm . (4.14)

For every integer m ≥ 1, given a curve U : (a, b) → Hm([0, 1],Rk), we say that it is
(strongly) differentiable at t0 ∈ (a, b) if there exists u ∈ Hm([0, 1],Rk) such that

lim
t→t0

∣∣∣∣
∣∣∣∣Ut − Ut0

t − t0
− u

∣∣∣∣
∣∣∣∣
Hm

= 0. (4.15)
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In this case, we use the notation ∂tUt0 := u. For every � = 1, . . . , m and for every t ∈ (a, b),

we shall write U
(�)
t ∈ Hm−�([0, 1],Rk) to denote the �-th Sobolev derivative of the function

Ut : s 
→ Ut(s), i.e.,

∫ 1

0

〈
Ut(s), φ

(�)(s)
〉
Rk

ds = (−1)�
∫ 1

0

〈
U

(�)
t (s), φ(s)

〉
Rk

ds

for every φ ∈ C∞
c ([0, 1],Rk). It is important to observe that, for every order of derivation

� = 1, . . . , m, Eq. 4.15 implies that

lim
t→t0

∣∣∣∣∣
∣∣∣∣∣
U

(�)
t − U

(�)
t0

t − t0
− u(�)

∣∣∣∣∣
∣∣∣∣∣
L2

= 0,

and we use the notation ∂tU
(�)
t0

:= u(�). In particular, for every � = 1, . . . , m, it follows that

d

dt
||U(�)

t ||2
L2 = 2

∫ 1

0
〈∂tU

(�)
t (s), U

(�)
t (s)〉Rk ds = 2〈∂tU

(�)
t , U

(�)
t 〉L2 . (4.16)

In the next result, we study the following evolution equation

{
∂tUt = −Gβ

m[Ut ],
U0 = u0,

(4.17)

with u0 ∈ Hm([0, 1],Rk), and where Gβ
m : Hm([0, 1],Rk) → Hm([0, 1],Rk) is defined

as in Eq. 4.14. Before establishing the existence, uniqueness and global definition result
for the Cauchy problem Eq. 4.17, we study the evolution of the semi-norms ||U(�)

t ||L2 for
� = 1, . . . , m along its solutions.

Lemma 4.5 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are Cr -regular with r ≥ 2, and that the function a : R

n → R+ designing the
end-point cost is C2-regular. For every integer 1 ≤ m ≤ r − 1 and for every inital datum
u0 ∈ Hm([0, 1],Rk), let U : [0, α) → Hm([0, 1],Rk) be a continuously differentiable
solution of the Cauchy problem Eq. 4.17. Therefore, for every R > 0, there exists CR > 0
such that, if ||u0||Hm ≤ R, then

||Ut ||Hm ≤ CR (4.18)

for every t ∈ [0, α).

Proof It is sufficient to prove the statement in the case r ≥ 2,m = r − 1. We shall use an
induction argument on r .

Let us consider the case r = 2,m = 1. We observe that if U : [0, α) → H 1([0, 1],Rk)

is a solution of Eq. 4.17 with m = 1, then it solves as well the Cauchy problem Eq. 3.3 in
U . Therefore, recalling that ||u0||L2 ≤ ||u0||H 1 , in virtue of Lemma 3.7, for every R > 0,
there exists C′

R > 0 such that, if ||u0||H 1 ≤ R, we have that

||Ut ||L2 ≤ C′
R (4.19)
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for every t ∈ [0, α). Hence, it is sufficient to provide an upper bound to the semi-norm
||U(1)

t ||L2 . From Eq. 4.16 and from the fact that t 
→ Ut solves Eq. 4.17 for m = 1, it
follows that

d

dt
||U(1)

t ||2
L2 = 2〈∂tU

(1)
t , U

(1)
t 〉L2 = −2

∫ 1

0

〈
U

(1)
t (s) + βh

(1)
Ut

(s), U
(1)
t (s)

〉
Rk

ds

≤ −2||U(1)
t ||2

L2 + 2β||h(1)
Ut

||L2 ||U(1)
t ||L2

≤ −||U(1)
t ||2

L2 + β2||h(1)
Ut

||2
L2

for every t ∈ [0, α), where hUt : [0, 1] → R
k is the absolutely continuous curve defined

in Eq. 3.11, and h
(1)
Ut

is its Sobolev derivative. Combining Eq. 4.19 with Eq. 4.5, we obtain

that there exists C1
R > 0 such that

d

dt

∥∥∥U(1)
t

∥∥∥2

L2
≤ −

∥∥∥U(1)
t

∥∥∥2

L2
+ β2C1

R

for every t ∈ [0, α). This implies that
∥∥∥U(1)

t

∥∥∥
L2

≤ max

{∥∥∥U(1)
0

∥∥∥
L2

, β

√
C1

R

}

for every t ∈ [0, α). This proves the thesis in the case r = 2,m = 1.
Let us prove the induction step. We shall prove the thesis in the case r,m = r − 1. Let

U : [0, α) → Hm([0, 1],Rk) be a solution of Eq. 4.17 with m = r − 1. We observe that
t 
→ Ut solves as well {

∂tUt = −Gβ

m−1[Ut ],
U0 = u0.

Using the inductive hypothesis and that ||u0||Hm−1 ≤ ||u0||Hm , for every R > 0 there exists
C′

R > 0 such that, if ||u0||Hm ≤ R, we have that

||Ut ||Hm−1 ≤ C′
R (4.20)

for every t ∈ [0, α). Hence, it is sufficient to provide an upper bound to the semi-norm
||U(m)

t ||L2 . Recalling Eq. 4.16, the same computation as before yields

d

dt

∥∥∥U(m)
t

∥∥∥2

L2
≤ −

∣∣∣U(m)
t

∣∣∣2
L2

+ β2
∥∥∥h(m)

Ut

∣∣∣2
L2

for every t ∈ [0, α). Combining Eq. 4.20 with Eq. 4.5, we obtain that there exists C1
R > 0

such that
d

dt

∥∥∥U(m)
t

∣∣∣2
L2

≤ −
∥∥∥U(m)

t

∥∥∥2

L2
+ β2C1

R

for every t ∈ [0, α). This yields Eq. 4.18 for the inductive case r,m = r − 1.

We are now in position to prove that the Cauchy problem Eq. 4.17 admits a unique and
globally defined solution. The proof of the following result follows the lines of the proof of
Theorem 3.8.

Theorem 4.6 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are Cr -regular with r ≥ 2, and that the function a : Rn → R+ designing the end-
point cost is C2-regular. Then, for every integer 1 ≤ m ≤ r − 1 and for every inital datum
u0 ∈ Hm([0, 1],Rk), the evolution equation Eq. 4.17 admits a unique, globally defined and
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continuously differentiable solution U : [0, +∞) → Hm([0, 1],Rk). Moreover, there exists
Cu0 > 0 such that

||Ut ||Hm ≤ Cu0 (4.21)

for every t ∈ [0, +∞).

Proof It is sufficient to prove the statement in the case r ≥ 2,m = r − 1. In virtue of
Lemma 4.5 and Proposition 4.4, the global existence of the solution of Eq. 4.17 follows
from a verbatim repetition of the argument of the proof of Theorem 3.8. Finally, Eq. 4.21
descends directly from Lemma 4.5.

Remark 4.7 We insist on the fact that, under the regularity assumptions of Theorem 4.6,
if the initial datum u0 is Hm-Sobolev regular with m ≤ r − 1, then the solution U :
[0, +∞) → U of Eq. 3.3 does coincide with the solution of Eq. 4.17. In other words, let
us assume that the hypotheses of Theorem 4.6 are met, and let us consider the evolution
equation {

∂tUt = −Gβ [Ut ],
U0 = u0,

(4.22)

where u0 ∈ Hm([0, 1],Rk), with m ≤ r −1. Owing to Theorem 3.8, it follows that Eq. 4.22
admits a unique solution U : [0, +∞) → U . We claim that t 
→ Ut solves as well the
evolution equation {

∂tUt = −Gβ
m[Ut ],

U0 = u0.
(4.23)

Indeed, Theorem 4.6 implies that Eq. 4.23 admits a unique solution Ũ : [0,+∞) →
Hm([0, 1],Rk). Moreover, any solution of Eq. 4.23 is also a solution of Eq. 4.22; therefore,
we must have Ut = Ũt for every t ≥ 0 by the uniqueness of the solution of Eq. 4.22. Hence,
it follows that, if the controlled vector fields F 1, . . . , F k and the function a : Rn → R+ are
regular enough, then for every t ∈ [0, +∞), each point of the gradient flow trajectory Ut

solving Eq. 4.22 has the same Sobolev regularity as the initial datum.

We now prove a pre-compactness result for the gradient flow trajectories. We recall that
we use the convention H 0 = L2.

Corollary 4.8 Under the same assumptions of Theorem 4.6, let us consider u0 ∈
Hm([0, 1],Rk) with the integer m satisfying 1 ≤ m ≤ r − 1. Let U : [0,+∞) → U be the
solution of the Cauchy problem Eq. 3.3 with initial condition U0 = u0. Then, the trajectory
{Ut : t ≥ 0} is pre-compact in Hm−1([0, 1],Rk).

Proof As observed in Remark 4.7, we have that the solution U : [0, +∞) → U of Eq. 3.3
satisfies Ut ∈ Hm([0, 1],Rk) for every t ≥ 0, and that it solves Eq. 4.17 as well. In virtue
of Theorem 2.1, the inclusion Hm([0, 1],Rk) ↪→ Hm−1([0, 1],Rk) is compact for every
integer m ≥ 1; therefore, from Eq. 4.21, we deduce the thesis.

5 Lojasiewicz-Simon Inequality

In this section, we show that when the controlled vector fields F 1, . . . , F k and the function
a : R

n → R+ are real-analytic, then the cost functional Fβ : U → R+ satisfies the
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Lojasiewicz-Simon inequality. This fact will be of crucial importance for the convergence
proof of the next section. For a complete survey on the Lojasiewicz-Simon inequality, we
refer the reader to the paper [7].

In this section, we prove that the functional Fβ : U → R+ defined in Eq. 3.1 satisfies
the Lojasiewicz-Simon inequality for every β > 0. We first show that, when the function
a : Rn → R+ involved in the definition of the end-point cost Eq. 3.5 and the controlled
vector fields F 1, . . . , F k are real-analytic, Fβ is real-analytic as well, for every β > 0. We
recall the notion of real-analytic application defined on a Banach space. For an introduction
to the subject, see, for example, [15].

Definition 5.1 Let E1, E2 be Banach spaces, and let us consider an application T : E1 →
E2. The function T is said to be real-analytic at e0 ∈ E1 if for every N ≥ 1 there exists a
continuous and symmetric multi-linear application lN ∈ L ((E1)

N ,E2) and if there exists
r > 0 such that, for every e ∈ E1 satisfying ||e − e0||E1 < r , we have

∞∑
N=1

||lN ||L ((E1)
N ,E2)

||e − e0||NE1
< +∞

and

T (e) − T (e0) =
∞∑

N=1

lN (e − e0)
N ,

where, for every N ≥ 1, we set lN (e−e0)
N := lN (e−e0, . . . , e−e0). Finally, T : E1 → E2

is real-analytic on E1 if it is real-analytic at every e0 ∈ E1.

In the next result, we provide the conditions that guarantee that Fβ : U → R is real-
analytic.

Proposition 5.2 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are real-analytic, as well as the function a : Rn → R+ designing the end-point cost
Eq. 3.5. Therefore, for every β > 0, the functional Fβ : U → R+ defined in Eq. 3.1 is
real-analytic.

Proof Since Fβ(u) = 1
2 ||u||L2 +βE(u) for every u ∈ U , the proof reduces to show that the

end-point cost E : U → R+ is real-analytic. Recalling the definition of E given in Eq. 3.5
and the end-point map P1 : U → R

n introduced in Eq. 2.20, we have that the former can
be expressed as the composition

E = a ◦ P1.
In the proof of [4, Proposition 8.5] it is shown that P1 is smooth as soon as F 1, . . . , F k are
C∞-regular, and the expression of the Taylor expansion of P1 at every u ∈ U is provided.
In [2, Proposition 2.1], it is proved that, when a : Rn → R+ and the controlled vector fields
are real-analytic, the Taylor series of a ◦ P1 is actually convergent.

The previous result implies that the differential dFβ : U → U∗ is real-analytic.

Corollary 5.3 Under the same assumptions as in Proposition 5.2, for every β > 0, the
differential dFβ : U → U∗ is real-analytic.

Proof Owing to Proposition 5.2, the functional Fβ : U → R+ is real-analytic. Using this
fact, the thesis follows from [15, Theorem 2, p.1078].
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Another key-step in view of the Lojasiewicz-Simon inequality is the study of the Hessian
of the functional Fβ : U → R+. In our framework, the Hessian of Fβ at a point u ∈ U is
the bounded linear operator HessuFβ : U → U that satisfies the identity:

〈HessuFβ [v], w〉L2 = d2
uFβ(v,w) (5.1)

for every v,w ∈ U , where d2
uFβ : U ×U → R is the second differential of Fβ at the point

u. In the next proposition we prove that, for every u ∈ U , HessuFβ has finite-dimensional
kernel. We stress on the fact that, unlike the other results of the present section, we do not
have to assume that F 1, . . . , F k and a : Rn → R+ are real-analytic to study the kernel of
HessuFβ .

Proposition 5.4 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are C2-regular, as well as the function a : Rn → R+ defining the end-point cost
Eq. 3.5. For every u ∈ U , let HessuFβ : U → U be the linear operator that represents the
second differential d2

uFβ : U × U → R through the identity Eq. 5.1. Then, the the kernel
of HessuFβ is finite-dimensional.

Proof For every u ∈ U , we have that

d2
uFβ(v, w) = 〈v, w〉L2 + βd2

uE(v,w)

for every v,w ∈ U . Therefore, we are reduced to study the second differential of the end-
point cost E : U → R+. Recalling its definition in Eq. 3.5 and applying the chain-rule, we
obtain that

d2
uE(v,w) = [DuP1(v)]T ∇2a(xu(1)) [DuP1(w)] + (∇a(xu(1)))T · D2

uP1(v, w), (5.2)

where P1 : U → R
n is the end-point map defined in Eq. 2.20, and where the curve xu :

[0, 1] → R
n is the solution of Eq. 2.6 corresponding to the control u ∈ U . We recall that,

for every y ∈ R
n, we understand ∇a(y) as a row vector. Let us set νu := (∇a(xu(1)))T and

Hu := ∇2a(xu(1)), where Hu : Rn → R
n is the self-adjoint linear operator associated to

the Hessian of a : Rn → R+ at the point xu(1). Therefore, we can write

d2
uE(v, w) = 〈(DuP

∗
1 ◦ Hu ◦ DuP1

) [v], w〉L2 + νu · D2
uP1(v, w) (5.3)

for every v, w ∈ U , where DuP
∗
1 : Rn → U is the adjoint of the differential DuP1 : U →

R
n. Moreover, recalling the definition of the linear operator N ν

u : U → U given in Eq. 2.46,
we have that

νu · D2
uP1(v, w) = 〈N νu

u [v], w〉L2

for every v, w ∈ U . Therefore, we obtain

d2
uE(v,w) = 〈HessuE[v], w〉L2 (5.4)

for every v,w ∈ U , where HessuE : U → U is the linear operator that satisfies the identity:

HessuE = DuP
∗
1 ◦ Hu ◦ DuP1 + N νu

u .

We observe that HessuE is a self-adjoint compact operator. Indeed, N
νu
u is self-adjoint and

compact in virtue of Proposition 2.21, while DuP
∗
1 ◦ Hu ◦ DuP1 has finite-rank and it

self-adjoint as well. Combining Eqs. 5.2 and 5.4, we deduce that

HessuFβ = Id + βHessuE, (5.5)

where Id : U → U is the identity. Finally, using the Fredholm alternative (see, e.g., [6,
Theorem 6.6]), we deduce that the kernel of HessuFβ is finite-dimensional.

547



A. Scagliotti

We are now in position to prove that the functional Fβ : U → R+ satisfies the
Lojasiewicz-Simon inequality.

Theorem 5.5 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R

n → R+ defining end-point cost
Eq. 3.5. For every β > 0 and for every u ∈ U , there exists r > 0, C > 0 and γ ∈ (1, 2]
such that ∣∣Fβ(v) − Fβ(u)

∣∣ ≤ C
∥∥dvFβ

∥∥γ

U∗ (5.6)

for every v ∈ U such that ||v − u||L2 < r .

Proof If u ∈ U is not a critical point for Fβ , i.e., duFβ �= 0, then there exists r1 > 0 and
κ > 0 such that

||dvFβ ||2U∗ ≥ κ

for every v ∈ U satisfying ||v − u||L2 < r1. On the other hand, by the continuity of Fβ , we
deduce that there exists r2 > 0 such that∣∣Fβ(v) − Fβ(u)

∣∣ ≤ κ

for every v ∈ U satisfying ‖v − u‖L2 < r2. Combining the previous inequalities and taking
r := min{r1, r2}, we deduce that, when duFβ �= 0, Eq. 5.6 holds with γ = 2.

The inequality Eq. 5.6 in the case duFβ = 0 follows from [7, Corollary 3.11]. We
shall now verify the assumptions of this result. First of all, [7, Hypothesis 3.2] is satisfied,
being U an Hilbert space. Moreover, [7, Hypothesis 3.4] follows by choosing W = U∗. In
addition, we recall that dFβ : U → U∗ is real-analytic in virtue of Corollary 5.3, and that
HessuFβ has finite-dimensional kernel owing to Proposition 5.4. These facts imply that the
conditions (1)–(4) of [7, Corollary 3.11] are verified if we set X = U and Y = U∗.

6 Convergence of the Gradient Flow

In this section, we show that the gradient flow trajectory U : [0 + ∞) → U that solves
Eq. 3.3 is convergent to a critical point of the functional Fβ : U → R, provided that
the Cauchy datum U0 = u0 satisfies u0 ∈ H 1([0, 1],Rk) ⊂ U . The Lojasiewicz-Simon
inequality established in Theorem 5.5 will play a crucial role in the proof of the convergence
result. Indeed, we use this inequality to show that the trajectories with Sobolev-regular initial
datum have finite length. In order to satisfy the assumptions of Theorem 5.5, we need to
assume throughout the section that the controlled vector fields F 1, . . . , F k and the function
a : Rn → R+ are real-analytic.

We first recall the notion of the Riemann integral of a curve that takes values in U .
For general statements and further details, we refer the reader to [10, Section 1.3]. Let us
consider a continuous curve V : [a, b] → U . Therefore, using [10, Theorem 1.3.1], we can
define ∫ b

a

Vt dt := lim
n→∞

1

n

n−1∑
k=0

Vb−a
n

k
.

We immediately observe that the following inequality holds:∣∣∣∣
∣∣∣∣
∫ b

a

Vt dt

∣∣∣∣
∣∣∣∣
L2

≤
∫ b

a

||Vt ||L2 dt . (6.1)
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Moreover, [10, Theorem 1.3.4] guarantees that, if the curve V : [a, b] → U is continuously
differentiable, then we have:

Vb − Va =
∫ b

a

∂tVθ dθ, (6.2)

where ∂tVθ is the derivative of the curve t 
→ Vt defined as in Eq. 3.2 and computed at the
instant θ ∈ [a, b]. Finally, combining Eqs. 6.2 and 6.1, we deduce that

||Vb − Va ||L2 ≤
∫ b

a

||∂tVθ ||L2 dθ . (6.3)

We refer to the quantity at the right-hand side of Eq. 6.3 as the length of the continuously
differentiable curve V : [a, b] → U .

Let U : [0, +∞) → U be the solution of the gradient flow equation Eq. 3.3 with initial
datum u0 ∈ U . We say that u∞ ∈ U is a limiting point for the curve t 
→ Ut if there exists
a sequence (tj )j≥1 such that tj → +∞ and ||Utj − u∞||L2 → 0 as j → ∞. In the next
result, we study the length of t 
→ Ut in a neighborhood of a limiting point.

Proposition 6.1 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are real-analytic, as well as the function a : Rn → R+ designing the end-point cost.
Let U : [0, +∞) → U be the solution of the Cauchy problem Eq. 3.3 with initial datum
U0 = u0, and let u∞ ∈ U be any of its limiting points. Then, there exists r > 0 such that
the portion of the curve that lies in Br(u∞) has finite length, i.e.,∫

I
||∂tUθ ||L2 dθ < ∞, (6.4)

where I := {t ≥ 0 : Ut ∈ Br(u∞)}, and Br(u∞) := {u ∈ U : ||u − u∞||L2 < r}.

Proof Let u∞ ∈ U be a limiting point of t 
→ Ut , and let (t̄j )j≥1 be a sequence such that
t̄j → +∞ and ||Ut̄j − u∞||L2 → 0 as j → ∞. The same computation as in Eq. 3.16

implies that the functional Fβ : U → R+ is decreasing along the trajectory t 
→ Ut , i.e.,

Fβ(Ut ′) ≤ Fβ(Ut ) (6.5)

for every t ′ ≥ t ≥ 0. In addition, using the continuity of Fβ , it follows that Fβ(Ut̄j ) →
Fβ(u∞) as j → ∞. Combining these facts, we have that

Fβ(Ut ) − Fβ(u∞) ≥ 0 (6.6)

for every t ≥ 0. Moreover, owing to Theorem 5.5, we deduce that there exist C > 0,
γ ∈ (1, 2] and r > 0 such that

|Fβ(v) − Fβ(u∞)| ≤ 1

C
||dvFβ ||γU∗ (6.7)

for every v ∈ Br(u∞). Let t1 ≥ 0 be the infimum of the instants such that Ut ∈ Br(u∞),
i.e.,

t1 := inf
t≥0

{Ut ∈ Br(u∞)}.
We observe that the set where we take the infimum is nonempty, in virtue of the convergence
||Ut̄j − u∞||L2 → 0 as j → ∞. Then, there exists t ′1 ∈ (t1,+∞] such that Ut ∈ Br(u∞)
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for every t ∈ (t1, t
′
1), and we take the supremum t ′1 > t1 such that the previous condition is

satisfied, i.e.,

t ′1 := sup
t ′>t1

{Ut ∈ Br(u∞),∀t ∈ (t1, t
′)}.

If t ′1 < ∞, we set

t2 := inf
t≥t ′1

{Ut ∈ Br(u∞)},

and

t ′2 := sup
t ′>t2

{Ut ∈ Br(u∞),∀t ∈ (t2, t
′)}.

We repeat this procedure (which terminates in a finite number of steps if and only if there
exits t̄ > 0 such that Ut ∈ Br(u∞) for every t ≥ t̄), and we obtain a family of intervals
{(tj , t ′j )}j=1,...,N , where N ∈ N ∪ {∞}. We observe that

⋃N
j=1(tj , t

′
j ) = I , where we set

I := {t ≥ 0 : Ut ∈ Br(u∞)}.
Without loss of generality, we may assume that I is a set of infinite Lebesgue measure.

Indeed, if this is not the case, we would have the thesis:∫
I

||∂tUθ ||L2 dθ =
∫
I

||Gβ [Uθ ]||L2 dθ < ∞,

since ||Gβ [u]||L2 is bounded on the bounded subsets of U , as shown in Eq. 3.18. Therefore,
we focus on the case when the Lebesgue measure of I is infinite. Let us introduce the
following sequence:

τ0 = t1, τ1 = t ′1, τ2 = τ1 + (t ′2 − t2), . . . , τj = τj−1 + (t ′j − tj ), . . . , (6.8)

where t1, t
′
1, . . . are the extremes of the intervals {(tj , t ′j )}j=1,...,N constructed above.

Finally, we define the function σ : [τ0,+∞) → [τ0, +∞) as follows:

σ(t) :=

⎧⎪⎪⎨
⎪⎪⎩

t if τ0 ≤ t < τ1,

t − τ1 + t2 if τ1 ≤ t < τ2,

t − τ2 + t3 if τ2 ≤ t < τ3,

· · · · · ·
(6.9)

We observe that σ : [τ0,+∞) → [τ0,+∞) is piecewise affine and it is monotone
increasing. In particular, we have that

σ(τj ) = tj+1 ≥ t ′j = lim
t→τ−

j

σ (t). (6.10)

Moreover, from Eq. 6.8 and from the definition of the intervals
{(

tj , t
′
j

)}
j≥1

, it follows that

Uσ(t) ∈ Br(u∞) (6.11)

for every t ∈ [τ0,+∞). Let us define the function g : [τ0, +∞) → R+ as follows:

g(t) := Fβ(Uσ(t)) − Fβ(u∞), (6.12)

where we used Eq. 6.6 to deduce that g is always non-negative. From Eq. 6.9, we obtain
that the restriction g|(τj ,τj+1) is C1-regular, for every j ≥ 0. Therefore, using the fact that
σ̇ |(τj ,τj+1) ≡ 1, we compute

ġ(t) = d

dt

(
Fβ(Uσ(t)) − Fβ(u∞)

) = −dUσ(t)
Fβ

(
Gβ [Uσ(t)]

)
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for every t ∈ (τj , τj+1) and for every j ≥ 0. Recalling that Gβ : U → U is the Riesz’s
representation of the differential dFβ : U → U∗, it follows that

ġ(t) = − ∥∥dUσ(t)
Fβ

∥∥2
U∗ (6.13)

for every t ∈ (τj , τj+1) and for every j ≥ 0. Moreover, owing to the Lojasiewicz-Simon
inequality Eq. 6.7, from Eq. 6.11 we deduce that

ġ(t) ≤ −Cg
2
γ (t) (6.14)

for every t ∈ (τj , τj+1) and for every j ≥ 0. Let h : [τ0, ∞) → [0,+∞) be the solution of
the Cauchy problem

ḣ = −Ch
2
γ , h(τ0) = g(τ0), (6.15)

whose expression is

h(t) =
⎧⎨
⎩
(
h(τ0)

1− 2
γ + (2−γ )C

γ
(t − τ0)

)−1− 2γ−2
2−γ

if γ ∈ (1, 2),

h(τ0)e
−Ct if γ = 2,

for every t ∈ [τ0,∞). Using the fact that g|(τ0,τ1) is C1-regular, in view of Eq. 6.14, we
deduce that

g(t) ≤ h(t), (6.16)

for every t ∈ [τ0, τ1). We shall now prove that the previous inequality holds for every
t ∈ [τ0,+∞) using an inductive argument. Let us assume that Eq. 6.16 holds in the interval
[τ0, τj ), with j ≥ 1. From the definition of g, combining Eqs. 6.5 and 6.10, we obtain that

g(τj ) ≤ lim
t→τ−

j

g(t) ≤ lim
t→τ−

j

h(t) = h(τj ). (6.17)

Using that the restriction g|(τj ,τj+1) is C1-regular, in virtue of Eqs. 6.14, 6.15, and 6.17,
we extend the the inequality Eq. 6.16 to the interval [τ0, τj+1). This shows that Eq. 6.16 is
satisfied for every t ∈ [τ0,+∞).

We now prove that the portion of the trajectory that lies in Br(u∞) is finite. We observe
that ∫

I
||∂tUθ ||L2 dθ =

∫
I

||Gβ(Uθ )||L2 dθ =
∫
I

||dUθFβ ||U∗ dθ, (6.18)

where we recall that I = ⋃N
j=1

(
tj , t

′
j

)
. For every j ≥ 1, in the interval (tj , t

′
j ) we use the

change of variable θ = σ(ϑ), where σ is defined in Eq. 6.9. Using Eqs. 6.8 and 6.9, we

observe that σ−1
{(

tj , t
′
j

)}
= (τj−1, τj ) and that σ̇ |(τj−1,τj ) ≡ 1. These facts yield

∫ t ′j

tj

||dUθFβ ||U∗ dθ =
∫ τj

τj−1

||dUσ(ϑ)
Fβ ||U∗ dϑ =

∫ τj

τj−1

√−ġ(ϑ) dϑ (6.19)

for every j ≥ 1, where we used Eq. 6.13 in the last identity. Therefore, combining Eqs. 6.18
and 6.19, we deduce that ∫

I
||∂tUθ ||L2 dθ =

∫ +∞

τ0

√−ġ(ϑ) dϑ . (6.20)
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Then, the thesis reduces to prove that the quantity at the right-hand side of Eq. 6.20 is finite.
Let δ > 0 be a positive quantity whose value will be specified later. From the Cauchy-
Schwarz inequality, it follows that

∫ +∞

τ0

√−ġ(ϑ) dϑ ≤
(∫ ∞

τ0

−ġ(ϑ)ϑ1+δ dϑ

) 1
2
(∫ ∞

τ0

ϑ−1−δ dϑ

) 1
2

. (6.21)

On the other hand, for every j ≥ 1, using the integration by parts on each interval
(τ0, τ1), . . . , (τj−1, τj ), we have that

∫ τj

τ0

−ġ(ϑ)ϑ1+δ dϑ =
j∑

i=1

(
τ 1+δ
i−1 g(τi−1) − τ 1+δ

i g(τ−
i ) + (1 + δ)

∫ τi

τi−1

g(ϑ)ϑδ dϑ

)

≤ τ 1+δ
0 g(τ0) − τ 1+δ

j g(τ−
j ) + (1 + δ)

∫ τj

τ0

h(ϑ)ϑδ dϑ

≤ τ 1+δ
0 g(τ0) + (1 + δ)

∫ τj

τ0

h(ϑ)ϑδ dϑ,

where we introduced the notation g(τ−
i ) := limϑ→τ−

i
g(ϑ), and we used the first inequality

of Eq. 6.17 and the fact that g is always non-negative. Finally, if the exponent γ in Eq. 6.7
satisfies γ = 2, we can choose any positive δ > 0. On the other hand, if γ ∈ (1, 2), we
choose δ such that 0 < δ <

2γ−2
2−γ

. This choice guarantees that that

lim
j→∞

∫ τj

τ0

−ġ(ϑ)ϑ1+δ dϑ =
∫ ∞

τ0

−ġ(ϑ)ϑ1+δ dϑ < ∞,

and therefore, in virtue of Eqs. 6.21 and 6.20, we deduce the thesis.

In the following corollary, we state an immediate (but important) consequence of
Proposition 6.1.

Corollary 6.2 Under the same assumptions as in Proposition 6.1, let the curve U :
[0, +∞) → U be the solution of the Cauchy problem Eq. 3.3 with initial datum U0 = u0. If
u∞ ∈ U is a limiting point for the curve t 
→ Ut , then the whole solution converges to u∞
as t → ∞, i.e.,

lim
t→∞ ||Ut − u∞||L2 = 0.

Moreover, the length of the whole solution is finite.

Proof We prove the statement by contradiction. Let us assume that t 
→ Ut is not converg-
ing to u∞ as t → ∞. Let Br(u∞) be the neighborhood of u∞ given by Proposition 6.1.
Diminishing r > 0 if necessary, we can find two sequences {tj }j≥0 and {t ′j }j≥0 such that
for every j ≥ 0 the following conditions hold:

– tj < t ′j < tj+1;
– ||Utj − u∞||L2 ≤ r

4 ;
– r

2 ≤ ||Ut ′j − u∞||L2 ≤ r;

– Ut ∈ Br(u∞) for every t ∈ (tj , t
′
j ).
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We observe that
⋃∞

j=1(tj , t
′
j ) ⊂ I , where I := {t ≥ 0 : Ut ∈ Br(u∞)}. Moreover, the

inequality Eq. 6.3 and the previous conditions imply that∫ t ′j

tj

||∂tUθ ||U dθ ≥ ||Ut ′k − Utk ||U ≥ r

4

for every j ≥ 0. However, this contradicts Eq. 6.4. Therefore, we deduce that ||Ut −
u∞||U → 0 as t → ∞. In particular, this means that there exists t̄ ≥ 0 such that
Ut ∈ Br(u∞) for every t ≥ t̄ . This in turn implies that the whole trajectory has finite length,
since ∫ t̄

0
||∂tUθ ||L2 dθ < +∞.

We observe that in Corollary 6.2 we need to assume a priori that the solution of the
Cauchy problem Eq. 3.3 admits a limiting point. However, for a general initial datum u0 ∈
U we cannot prove that this is actually the case. On the other hand, if we assume more
regularity on the Cauchy datum u0, we can use the compactness results proved in Section 4.
We recall the notation H 0([0, 1],Rk) =: U .

Theorem 6.3 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are real-analytic, as well as the function a : Rn → R+ designing the end-point cost.
Let U : [0, +∞) → U be the solution of the Cauchy problem Eq. 3.3 with initial datum
U0 = u0, and let m ≥ 1 be an integer such that u0 belongs to Hm([0, 1],Rk). Then, there
exists u∞ ∈ Hm([0, 1],Rk) such that

lim
t→∞ ||Ut − u∞||Hm−1 = 0. (6.22)

Proof Let us consider u0 ∈ Hm([0, 1],Rk) and let U : [0, +∞) → U be the solution
of Eq. 3.3 satisfying U0 = u0. Owing to Theorem 4.6, we have that Ut ∈ Hm([0, 1],Rk)

for every t ≥ 0, and that the trajectory {Ut : t ≥ 0} Hm([0, 1],Rk). In addition, from
Corollary 4.8, we deduce that {Ut : t ≥ 0} is pre-compact with respect to the strong topol-
ogy of Hm−1([0, 1],Rk). Therefore, there exist u∞ ∈ Hm−1([0, 1],Rk) and a sequence
(tj )j≥1 such that we have tj → +∞ and ||Utj − u∞||Hm−1 → 0 as j → ∞. In par-
ticular, this implies that ||Utj − u∞||L2 → 0 as j → ∞. In virtue of Corollary 6.2, we
deduce that ||Ut − u∞||L2 → 0 as t → +∞. Using again the pre-compactness of the tra-
jectory {Ut : t ≥ 0} with respect to the strong topology of Hm−1([0, 1],Rk), the previous
convergence implies that ||Ut − u∞||Hm−1 → 0 as t → +∞.

To conclude, we have to show that u∞ ∈ Hm([0, 1],Rk). Owing to the compact inclu-
sion Eq. 2.9 in Theorem 2.1, and recalling that the trajectory {Ut : t ≥ 0} is pre-compact
with respect to the weak topology of Hm([0, 1],Rk), the convergence Eq. 6.22 guarantees
that u∞ ∈ Hm([0, 1],Rk) and that Ut ⇀Hm u∞ as t → +∞.

In the next result, we study the regularity of the limiting points of the gradient flow trajectories.

Theorem 6.4 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 are real-analytic, as well as the function a : R

n → R+ designing the end-point
cost. Let U : [0, +∞) → U be the solution of the Cauchy problem Eq. 3.3 with initial
datum U0 = u0, and let u∞ ∈ U be any of its limiting points. Then, u∞ is a critical point
for the functional Fβ , i.e., du∞Fβ = 0. Moreover, u∞ ∈ Hm([0, 1],Rk) for every integer
m ≥ 1.
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Proof By Corollary 6.2, we have that the solution t 
→ Ut converges to u∞ as t → +∞
with respect to the strong topology of U . Let us consider the radius r > 0 prescribed by
Proposition 6.1. If du∞Fβ �= 0, taking a smaller r > 0 if necessary, we have that there exists
ε > 0 such that ||duFβ ||U∗ ≥ ε for every u ∈ Br(u∞). Recalling that ||Ut −u∞||U → 0 as
t → +∞, then there exists t̄ ≥ 0 such that Ut ∈ Br(u∞) and for every t ≥ t̄ . On the other
hand, this fact implies that ||∂tUt ||U = ||dUtFβ ||U∗ ≥ ε for every t ≥ t̄ , but this contradicts
Eq. 6.4, i.e., the fact that the length of the trajectory is finite. Therefore, we deduce that
du∞Fβ = 0. As regards the regularity of u∞, we observe that du∞Fβ = 0 implies that
Gβ [u∞] = 0, which in turn gives

u∞ = −βhu∞ ,

where the function hu∞ : [0, 1] → R
k is defined as in Eq. 3.11. Owing to Lemma 4.3,

we deduce that the right-hand side of the previous equality has regularity Hm+1 whenever
u∞ ∈ Hm, for every integer m ≥ 0. Using a bootstrapping argument, this implies that
u∞ ∈ Hm([0, 1],Rk), for every integer m ≥ 1.

Remark 6.5 We can give a further characterization of the critical points of the functional
Fβ . Let û be such that dûFβ = 0. Therefore, as seen in the proof of Theorem 6.4, we have
that the identity

û(s) = −βhû(s)

is satisfied for every s ∈ [0, 1]. Recalling the definition of hû : [0, 1] → R
k given in

Eq. 3.11, we observe that the previous relation yields

û(s) = arg max
u∈Rk

{
−βλû(s)F (xû(s))u − 1

2
|u|22

}
, (6.23)

where xû : [0, 1] → R
n solves{

ẋû(s) = F(xû(s))û(s) for a.e. s ∈ [0, 1],
xû(0) = x0,

(6.24)

and λû : [0, 1] → (Rn)∗ satisfies⎧⎨
⎩

λ̇û(s) = −λû(s)
k∑

i=1

(
ûi (s)

∂F i (xû(s))

∂x

)
for a.e. s ∈ [0, 1],

λû(1) = ∇a(xû(1)).
(6.25)

Recalling the Pontryagin Maximum Principle (see, e.g., [3, Theorem 12.10]), from
Eqs. 6.23–6.25 we deduce that the curve xû : [0, 1] → R

n is a normal Pontryagin extremal
for the following optimal control problem:⎧⎪⎨

⎪⎩
minu∈U

{
1
2 ||u||2

L2 + βa(xu(1))
}

,

subject to

{
ẋu = F(xu)u,

xu(0) = x0.

7 Γ -convergence

In this section, we study the behavior of the functionals (Fβ)β∈R+ as β → +∞ using the
tools of the Γ -convergence. More precisely, we show that the problem of minimizing the
functional Fβ : U → R+ converges as β → +∞ (in the sense of Γ -convergence) to a
limiting minimization problem. A classical consequence of this fact is that the minimizers
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of the functionals (Fβ)β∈R+ can provide an approximation of the solutions of the limiting
problem. Moreover, in the present case, the limiting functional has an important geometrical
meaning, since it is related to the search of sub-Riemannian length-minimizing paths that
connect an initial point to a target set. The results obtained in this section hold under mild
regularity assumptions on the vector fields F 1, . . . , F k and on the end-point cost a : Rn →
R+. Finally, for a complete introduction to the theory of Γ -convergence, we refer the reader
to the monograph [8].

In this section, we shall work with the weak topology of the Hilbert space U :=
L2([0, 1],Rk). We first establish a preliminary result. We consider a L2-weakly convergent
sequence (um)m≥1 ⊂ U , and we study the convergence of the sequence (xm)m≥1, where,
for every m ≥ 1, the curve xm : [0, 1] → R

n is the solution of the Cauchy problem Eq. 2.6
corresponding to the admissible control um.

Lemma 7.1 Let us assume that the vector fields F 1, . . . , F k defining the control sys-
tem Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2. Let us consider a sequence
(um)m≥1 ⊂ U such that um ⇀L2 u∞ as m → ∞. For every m ∈ N ∪ {∞}, let
xm : [0, 1] → R

n be the solution of Eq. 2.6 corresponding to the control um. Then, we have
that

lim
m→∞ ||xm − x∞||C0 = 0.

Proof Being the sequence (um)m≥1 weakly convergent, we deduce that there exists R > 0
such that ||um||L2 ≤ R for every m ≥ 1. The estimate established in Lemma 2.2 implies
that there exists CR > 0 such that

||xm||C0 ≤ CR, (7.1)

for every m ≥ 1. Moreover, using the sub-linear growth inequality Eq. 2.3, we have that
there exists C > 0 such that

|ẋm(s)| ≤
k∑

j=1

|Fj (xm(s)|2|uj
m(s)| ≤ C(1 + CR)

k∑
j=1

|uj
m(s)|,

for a.e. s ∈ [0, 1]. Then, recalling that ||um||L2 ≤ R for every m ≥ 1, we deduce that

||ẋm||L2 ≤ C(1 + CR)kR (7.2)

for every m ≥ 1. Combining Eqs. 7.1 and 7.2, we obtain that the sequence (xm)m≥1 is
pre-compact with respect to the weak topology of H 1([0, 1],Rn). Our goal is to prove that
the set of the H 1-weak limiting points of the sequence (xm)m≥1 coincides with {x∞}, i.e.,
that the whole sequence xm ⇀H 1 x∞ as m → ∞. Let x̂ ∈ H 1([0, 1],Rn) be any H 1-
weak limiting point of the sequence (xm)m≥1, and let (xm�

)�≥1 be a sub-sequence such that
xm�

⇀H 1 x̂ as � → ∞. Recalling Eq. 2.8 in Theorem 2.1, we have that the inclusion
H 1([0, 1],Rn) ↪→ C0([0, 1],Rn) is compact, and this implies that

xm�
→C0 x̂ (7.3)

as � → ∞. From Eq. 7.3 and the assumption Eq. 2.2, for every j = 1, . . . , k it follows that

||Fj (xml
) − Fj (x̂)||C0 → 0 (7.4)
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as � → ∞. Let us consider a smooth and compactly supported test function φ ∈
C∞

c ([0, 1],Rn). Therefore, recalling that xm�
is the solution of the Cauchy problem Eq. 2.6

corresponding to the control um�
∈ U , we have that

∫ 1

0
xm�

(s) · φ̇(s) ds = −
k∑

j=1

∫ 1

0

(
Fj (xm�

(s)) · φ(s)
)

u
j
m�

(s) ds

for every � ≥ 1. Thus, passing to the limit as � → ∞ in the previous identity, we obtain

∫ 1

0
x̂(s) · φ̇(s) ds = −

k∑
j=1

∫ 1

0

(
Fj (x̂(s)) · φ(s)

)
u

j∞(s) ds. (7.5)

Indeed, the convergence of the right-hand side is guaranteed by Eq. 7.3. On the other hand,
for every j = 1, . . . , k, from Eq. 7.4 we deduce the strong convergence Fj (xm�

) · φ →L2

Fj (x̂) · φ as � → ∞, while u
j
m�

⇀L2 u
j∞ as � → ∞ by the hypothesis. Finally, observing

that Eq. 7.3 gives x̂(0) = x0, we deduce that{ ˙̂x(s) = F(x̂(s))u∞(s), for a.e. s ∈ [0, 1],
x̂(0) = x0,

that implies x̂ ≡ x∞. This argument shows that xm ⇀H 1 x∞ as m → ∞. Finally, the thesis
follows using again the compact inclusion Eq. 2.8.

The standard theory of Γ -convergence requires the domain of the functionals to be a
metric space, or, more generally, to be equipped with a first-countable topology (see [1,
Chapter 12]). Since the weak topology of U is first-countable (and metrizable) only on the
bounded subsets of U , we shall restrict the functionals (Fβ)β∈R+ to the set

Uρ := {u ∈ U : ||u||L2 ≤ ρ},
where ρ > 0. We set

Fβ
ρ := Fβ |Uρ ,

where Fβ : U → R+ is defined in Eq. 3.1. Using Lemma 7.1 we deduce that for every
β > 0 and ρ > 0 the functional Fβ

ρ : Uρ → R+ admits a minimizer.

Proposition 7.2 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2, and that the function a : Rn → R+
designing the end-point cost is continuous. Then, for every β > 0 and ρ > 0 there exists
û ∈ Uρ such that

Fβ
ρ (û) = inf

Uρ

Fβ
ρ .

Proof Let us set β > 0 and ρ > 0. If we show that Fβ
ρ : Uρ → R+ is sequentially

coercive and sequentially lower semi-continuous, then the thesis will follow from the Direct
Method of calculus of variations (see, e.g., [8, Theorem 1.15]). The sequential coercivity is
immediate, since the domain Uρ is sequentially compact, for every ρ > 0. Let (um)m≥1 ⊂
Uρ be a sequence such that um ⇀L2 u∞ as m → ∞. On one hand, in virtue of Lemma 7.1,
we have that

lim
m→∞ a(xm(1)) = a(x∞(1)), (7.6)
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where for every m ∈ N ∪ {∞} the curve xm : [0, 1] → R
n is the solution of the Cauchy

problem Eq. 2.6 corresponding to the admissible control um. On the other hand, the L2-weak
convergence implies that

||u∞||L2 ≤ lim inf
m→∞ ||um||L2 . (7.7)

Therefore, combining Eqs. 7.6 and 7.7, we deduce that the functional Fβ
ρ is lower semi-

continuous.

Before proceeding to the main result of the section, we recall the definition of
Γ -convergence.

Definition 7.3 The family of functionals (Fβ
ρ )β∈R+ is said to Γ -converge to a functional

Fρ : Uρ → R+ ∪ {+∞} with respect to the weak topology of U as β → +∞ if the
following conditions hold:

– for every (uβ)β∈R+ ⊂ Uρ such that uβ ⇀L2 u as β → +∞ we have

lim inf
β→+∞Fβ

ρ (uβ) ≥ Fρ(u); (7.8)

– for every u ∈ U there exists a sequence (uβ)β∈R+ ⊂ Uρ called recovery sequence such
that uβ ⇀L2 u as β → +∞ and such that

lim sup
β→+∞

Fβ
ρ (uβ) ≤ Fρ(u). (7.9)

If Eqs. 7.8 and 7.9 are satisfied, then we write Fβ
ρ →Γ Fρ as β → +∞.

Remark 7.4 Let us assume that Fβ
ρ →Γ Fρ as β → ∞, and let us consider a non-

decreasing sequence (βm)m≥1 such that βm → +∞ as m → ∞. For every u ∈ Uρ and for
every sequence (uβm)m≥1 ⊂ Uρ such that uβm ⇀L2 u as m → ∞, we have that

Fρ(u) ≤ lim inf
m→∞ Fβm

ρ (uβm). (7.10)

Indeed, it is sufficient to “embed” the sequence (uβm)m≥1 into a sequence (uβ)β∈R+ such
that uβ ⇀L2 u as β → +∞, and to observe that

lim inf
β→+∞Fβ(uβ) ≤ lim inf

m→∞ Fβm
ρ (uβm).

Combining the last inequality with the lim inf condition Eq. 7.8, we obtain Eq. 7.10.

Let a : Rn → R+ be the non-negative function that defines the end-point cost, and let us
assume that the set D := {x ∈ R

n : a(x) = 0} is non-empty. Let us define the functional
Fρ : Uρ → R ∪ {+∞} as follows:

Fρ(u) :=
{ 1

2 ||u||2
L2 if xu(1) ∈ D,

+∞ otherwise,
(7.11)

where xu : [0, 1] → R
n is the solution of Eq. 2.6 corresponding to the control u.

Remark 7.5 A situation relevant for applications occurs when the set D is reduced to a
single point, i.e., D = {x1} with x1 ∈ R

n. Indeed, in this case the minimization of the limit-
ing functional Fρ is equivalent to find a horizontal energy-minimizing path that connect x0
(i.e., the Cauchy datum of the control system Eq. 2.6) to x1. This in turn coincides with the
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problem of finding a sub-Riemannian length-minimizing curve that connect x0 to x1 (see
[4, Lemma 3.64]).

We now prove the Γ -convergence result, i.e., we show that Fβ
ρ →Γ Fρ as β → ∞ with

respect to the weak topology of U .

Theorem 7.6 Let us assume that the vector fields F 1, . . . , F k defining the control system
Eq. 2.6 satisfy the Lipschitz-continuity condition Eq. 2.2, and that the function a : Rn → R+
designing the end-point cost is continuous. Given ρ > 0, let us consider Fβ

ρ : Uρ → R+
with β > 0. Let Fρ : Uρ → R+ ∪ {+∞} be defined as in Eq. 7.11. Then, the functionals

(Fβ
ρ )β∈R+ Γ -converge to Fρ as β → +∞ with respect to the weak topology of U .

Remark 7.7 If ρ > 0 is not large enough, it may happen that no control in Uρ steers x0 to
D, i.e., xu(1) �∈ D for every u ∈ Uρ . In this case, the Γ -convergence result is still valid,
and the Γ -limit satisfies Fρ ≡ +∞. We can easily avoid this uninteresting situation when
system Eq. 2.1 is controllable. Indeed, using the controllability assumption, we deduce that
there exists a control ũ ∈ U such that the corresponding trajectory xũ satisfies xũ(1) ∈ D.
On the other hand, we have that

inf
u∈U Fβ(u) ≤ Fβ(ũ)

for every β > 0. Moreover, using the fact that xũ(1) ∈ D and recalling the definition of Fβ

in Eq. 3.1, we have that

Fβ(ũ) = 1

2
||ũ||2

L2

for every β > 0. The fact that the end-point cost a : Rn → R+ is non-negative implies that
Fβ(u) > Fβ(ũ) whenever ||u||L2 > ||ũ||L2 . Setting ρ = ||ũ||L2 , we deduce that

inf
u∈U Fβ(u) = inf

u∈Uρ

Fβ
ρ (u).

Moreover, this choice of ρ guarantees that the Γ -limit Fρ �≡ +∞, since we have that
Fρ(ũ) < +∞.

Proof of Theorem 7.6 We begin with the lim sup condition Eq. 7.9. If Fρ(u) = +∞, the
inequality is trivially satisfied. Let us assume that Fρ(u) < +∞. Then, setting uβ = u for
every β > 0, we deduce that xu(1) = xuβ (1) ∈ D, where xu : [0, 1] → R

n is the solution
of the Cauchy problem Eq. 2.6 corresponding to the control u. Recalling that a|D ≡ 0, we
have that

Fβ
ρ (uβ) = 1

2
||u||2

L2 = Fρ(u)

for every β > 0. This proves the lim sup condition.
We now prove the lim inf condition Eq. 7.8. Let us consider (uβ)β∈R+ ⊂ Uρ such that

uβ ⇀L2 u as β → ∞, and such that

lim inf
β→+∞Fβ

ρ (uβ) = C. (7.12)

We may assume that C < +∞. If this is not the case, then Eq. 7.8 trivially holds. Let us
extract (βm)m≥0 such that βm → +∞ and

lim
m→∞Fβm

ρ (uβm) = lim inf
β→+∞Fβ

ρ (uβ) = C. (7.13)
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For every m ≥ 0, let xβm : [0, 1] → R
n be the curve defined as the solution of the Cauchy

problem Eq. 2.6 corresponding to the control uβm , and let xu : [0, 1] → R
n be the solution

corresponding to u. Using Lemma 7.1, we deduce that xβm →C0 xu as m → ∞. In partic-
ular, we obtain that xβm(1) → xu(1) as m → ∞. On the other hand, the limit in Eq. 7.13
implies that there exists m̄ ∈ N such that

βma(xβm(1)) ≤ Fβm
ρ (uβm) ≤ C + 1,

for every m ≥ m̄. Recalling that βm → ∞ as m → ∞, the previous inequality yields

a(xu(1)) = lim
m→∞ a(xβm(1)) = 0,

i.e., that xu(1) ∈ D. This argument proves that, if uβ ⇀L2 u as β → ∞ and if the quantity
at the right-hand side of Eq. 7.12 is finite, then the limiting control u steers x0 to D. In
particular, this shows that Fρ(u) < +∞, namely Fρ(u) = 1

2 ||u||2
L2 . Finally, we observe

that

Fρ(u) ≤ lim inf
n→∞

1

2
||uβn ||2L2 ≤ lim inf

n→∞ Fβn
ρ (uβn) = lim inf

β→+∞Fβ
ρ (uβ),

and this establishes the lim inf condition Eq. 7.8.

The next theorem motivates the interest in the Γ -convergence result just established.
Indeed, we can investigate the asymptotic the behavior of the sequence (infUρ F

β
ρ )β∈R+ as

β → +∞. Moreover, it turns out that the minimizers of Fβ
ρ provide approximations of the

minimizers of the limiting functional Fρ , with respect to the strong topology of L2. The first
part of Theorem 7.8 holds for every Γ -convergent sequence of equi-coercive functionals
(see, e.g., [8, Corollary 7.20]). On the other hand, the conclusion of the second part relies
on the particular structure of (Fβ)β∈R+ .

Theorem 7.8 Under the same assumptions of Theorem 7.6, given ρ > 0 we have that

lim
β→∞ inf

Uρ

Fβ
ρ = inf

Uρ

Fρ . (7.14)

Moreover, under the further assumption that Fρ �≡ +∞, for every β > 0 let ûβ be a

minimizer of Fβ
ρ . Then, for every non-decreasing sequence (βm)m≥1 such that βm → +∞

as m → ∞, (ûβm)m≥1 is pre-compact with respect to the strong topology of Uρ , and every
limiting point of (ûβm)m≥1 is a minimizer of Fρ .

Proof For every β > 0 let ûβ be a minimizer of Fβ
ρ , that exists in virtue of Proposition 7.2.

Let us consider a non-decreasing sequence (βm)m≥1 such that βm → +∞ as m → ∞ and
such that

lim
m→∞Fβm

ρ (ûβm) = lim
m→∞ inf

Uρ

Fβm
ρ = lim inf

β→+∞ inf
Uρ

Fβ
ρ . (7.15)

Recalling that (ûβm)m≥1 ⊂ Uρ , we have that there exists û∞ ∈ Uρ and a sub-sequence

(βmj
)j≥1 such that ûβmj

⇀L2 û∞ as j → ∞. Since Fβ
ρ →Γ Fρ as β → +∞, the

inequality Eq. 7.10 derived in Remark 7.4 implies that

Fρ(û∞) ≤ lim
j→∞F

βmj
ρ (uβmj

) = lim inf
β→+∞ inf

Uρ

Fβ
ρ , (7.16)
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where we used Eq. 7.15 in the last identity. On the other hand, for every u ∈ Uρ let (uβ)β∈R+
be a recovery sequence for u, i.e., a sequence that satisfies the lim sup condition Eq. 7.9.
Therefore, we have that

Fρ(u) ≥ lim sup
β→+∞

Fβ
ρ (uβ) ≥ lim sup

β→+∞
inf
Uρ

Fβ
ρ . (7.17)

From Eqs. 7.16 and 7.17, we deduce that

Fρ(u) ≥ Fρ(û∞)

for every u ∈ Uρ , i.e.,
Fρ(û∞) = inf

Uρ

Fρ . (7.18)

Finally, setting u = û∞ in Eq. 7.17, we obtain

Fρ(û∞) = lim
β→∞ inf

Uρ

Fβ
ρ . (7.19)

From Eqs. 7.18 and 7.19, it follows that Eq. 7.14 holds.
We now focus on the second part of the thesis. For every β > 0 let ûβ be a minimizer

of Fβ
ρ , as before. Let (βm)m≥1 be a non-decreasing sequence such that βm → +∞ as

m → ∞, and let us consider (ûβm)m≥1. Since (ûβm)m≥1 is L2-weakly pre-compact, there
exists û ∈ Uρ and a sub-sequence (ûβmj

)j≥1 such that ûβmj
⇀L2 û as j → ∞. From the

first part of the thesis, it descends that û is a minimizer of Fρ . Indeed, in virtue of Eq. 7.10,
we have that

Fρ(û) ≤ lim inf
j→∞ F

βmj
ρ (ûβmj

) = lim
j→∞ inf

Uρ

F
βmj
ρ = inf

Uρ

Fρ,

where we used F
βmj
ρ (ûβmj

) = infUρ F
βmj
ρ and the identity Eq. 7.14. The previous relation

guarantees that

Fρ(û) = inf
Uρ

Fρ, = lim
j→∞F

βmj
ρ

(
ûβmj

)
. (7.20)

To conclude, we have to show that

lim
j→∞

∥∥∥ûβmj
− û

∥∥∥
L2

= 0. (7.21)

Using the assumption Fρ �≡ +∞, from the minimality of û we deduce that Fρ(û) =
1
2 ||û||2

L2 . Hence, Eq. 7.20 implies that

1

2
||û||2

L2 = lim
j→∞F

βmj
ρ

(
ûβmj

)
≥ lim sup

j→∞
1

2
||uβmj

||2
L2 , (7.22)

where we used that Fβ
ρ (u) ≥ 1

2 ||u||2
L2 for every β > 0 and for every u ∈ Uρ . From Eq. 7.22

and from the weak convergence ûβmj
⇀L2 û as j → ∞, we deduce that Eq. 7.21 holds.

Conclusions

In this paper, we have considered an optimal control problem in a typical framework of sub-
Riemannian geometry. In particular, we have studied the functional given by the weighted
sum of the energy of the admissible trajectory (i.e., the squared 2-norm of the control) and
of an end-point cost.

560



A Gradient Flow Equation for Optimal Control ProblemsWith End-point Cost

We have written the gradient flow induced by the functional on the Hilbert space of
admissible controls. We have proved that, when the data of the problem are real-analytic,
the gradient flow trajectories converge to stationary points of the functional as soon as the
starting point has Sobolev regularity.

The Γ -convergence result bridges the functional considered in the first part of the
paper with the problem of joining two assigned points with an admissible length-minimizer
path. This fact may be of interest for designing methods to approximate sub-Riemannian
length-minimizers. Indeed, a natural approach could be to project the gradient flow onto a
proper finite-dimensional subspace of the space of admissible controls, and to minimize the
weighted functional restricted to this subspace. We leave further development of these ideas
for future work.

Appendix A: Proofs of Subsection 2.2

Proof (Proposition 2.3) Using the fact that xu and xu+v are solutions of Eq. 2.6, for every
s ∈ [0, 1] we have that

|xu+v(s) − xu(s)|2 ≤
∫ s

0

k∑
i=1

(∣∣∣F i(xu+v(τ ))

∣∣∣
2
|vi(τ )|

)
dτ

+
∫ s

0

k∑
i=1

(
|F i(xu+v(τ )) − F i(xu(τ )|2|ui(τ )|

)
dτ .

Recalling that ||v||L2 ≤ R, in virtue of Lemma 2.2, we obtain that there exists CR > 0 such
that

sup
τ∈[0,1]

sup
i=1,...,k

|F i(xu+v(τ ))|2 ≤ CR .

Hence, using Eq. 2.10, we deduce that
∫ s

0

k∑
i=1

(
|F i(xu+v(τ ))|2|vi(τ )|

)
dτ ≤ CR

√
k||v||L2 . (A.1)

On the other hand, from the Lipschitz-continuity condition Eq. 2.2, it follows that

|F i(xu+v(τ )) − F i(xu(τ )|2 ≤ L|xu+v(τ ) − xu(τ )|2 (A.2)

for every i = 1, . . . , k and for every τ ∈ [0, 1]. Using Eqs. A.1 and A.2, we deduce that

|xu+v(s) − xu(s)|2 ≤ CR

√
k||v||L2 + L

∫ s

0
|u(τ)|1|xu+v(τ ) − xu(τ )|2 dτ, (A.3)

for every s ∈ [0, 1]. By applying Grönwall inequality to Eq. A.3, we obtain that

|xu+v(s) − xu(s)|2 ≤ eL||u||
L1 CR

√
k||v||L2 ,

for every s ∈ [0, 1]. Recalling Eq. 2.10 and setting

LR := eL
√

kRCR

√
k,

we prove Eq. 2.12.

Proof (Proposition 2.4) Setting R := ||u||L2 + ||v||L2 , we observe that ||u + εv||L2 ≤ R

for every ε ∈ (0, 1]. Owing to Lemma 2.2, we deduce that there exists a compact KR ⊂ R
n
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such that xu(s), xu+εv(s) ∈ KR for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Using the
fact that F 1, . . . , F k are assumed to be C1-regular, we deduce that their differentials are
uniformly continuous on KR . This is equivalent to say that there exists a non-decreasing
function δ : [0, +∞) → [0, +∞) such that δ(0) = limr→0 δ(r) = 0 and∣∣∣∣F i(x2) − F i(x1) − ∂F i(x1)

∂x
(x2 − x1)

∣∣∣∣
2

≤ Cδ(|x1 − x2|)|x1 − x2| (A.4)

for every x1, x2 ∈ KR and for every i = 1, . . . , k. Let us consider the non-autonomous
affine system Eq. 2.14. Owing to Carathéodory Theorem (see [9, Theorem 5.3]), we deduce
that the system Eq. 2.14 admits a unique absolutely continuous solution yv

u : [0, 1] → R
n.

For every s ∈ [0, 1], let us define

ξ(s) := xu+εv(s) − xu(s) − εyv
u(s). (A.5)

Therefore, in view of Eqs. 2.6 and 2.14, for a.e. s ∈ [0, 1] we compute

|ξ̇ (s)|2 ≤ ε

k∑
i=1

|F i(xu+εv(s)) − F i(xu(s))|2|vi(s)|

+
k∑

i=1

∣∣∣∣F i(xu+εv(s)) − F i(xu(s)) − ε
∂F i(xu(s))

∂x
yv
u(s)

∣∣∣∣
2
|ui(s)|

On one hand, using Proposition 2.3 and the Lipschitz-continuity assumption Eq. 2.2, we
deduce that there exists L′ > 0 such that

ε

k∑
i=1

|F i(xu+εv(s)) − F i(xu(s))|2 ≤ L′||v||L2ε
2 (A.6)

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. On the other hand, for every i = 1, . . . , n, com-
bining Proposition 2.3, the inequality Eq. A.4 and the estimate of the norm of the Jacobian
Eq. 2.4, we obtain that there exists L′′ > 0 such that∣∣∣∣F i(xu+εv(s)) − F i(xu(s)) − ε

∂F i(xu(s))

∂x
yv
u(s)

∣∣∣∣
2

≤
∣∣∣∣F i(xu+εv(s)) − F i(xu(s)) − ∂F i(xu(s))

∂x
(xu+εv(s) − xu(s))

∣∣∣∣
2

+
∣∣∣∣∂F i(xu(s))

∂x

(
xu+εv(s) − xu(s) − εyv

u(s)
)∣∣∣∣

2

≤ C
[
δ(L′′||v||L2ε)L

′′||v||L2ε
]+ L|ξ(s)|2.

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Combining the last inequality and Eq. A.6, it
follows that

|ξ̇ (s)|2 ≤ LRε2 + LR|u(s)|1δ(LRε)ε + L|u(s)|1|ξ(s)|2 (A.7)

for a.e. s ∈ [0, 1] and for every ε ∈ (0, 1], where LR := max{L′, L′′}||v||L2 . Finally,
recalling that |ξ(0)|2 = |xu+εv(0)−xu(0)− εyv

u(0)|2 = 0 for every ε ∈ (0, 1], we have that

|ξ(s)|2 ≤
∫ s

0
|ξ̇ (τ )|2 dτ ≤ LRε2 + LR||u||L1δ(LRε)ε + L

∫ s

0
|u(τ)|1|ξ(τ )|2 dτ,

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Using Grönwall inequality and Eq. A.5, we
deduce Eq. 2.13.
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Proof (Lemma 2.5) Let us consider the absolutely continuous curve Nu : [0, 1] → R
n×n

that solves {
Ṅu(s) = −Nu(s)Au(s) for a.e. s ∈ [0, 1],
Nu(0) = Id.

(A.8)

The existence and uniqueness of the solution of Eq. A.8 is guaranteed by Carathéodory
Theorem. Recalling the Leibniz rule for Sobolev functions (see, e.g., [6, Corollary 8.10]),
a simple computation shows that the identity Nu(s)Mu(s) = Id holds for every s ∈ [0, 1].
This proves that Mu(s) is invertible and that Nu(s) = M−1

u (s) for every s ∈ [0, 1]. In order
to prove the bound on the norm of the matrix Mu(s), we shall study |Mu(s)z|2, for z ∈ R

n.
Using Eq. 2.16, we deduce that

|Mu(s)z|2 ≤ |z|2 + ∫ s

0 |Au(τ)|2|Mu(τ)z|2 dτ

≤ |z|2 + L
∫ s

0 |u(s)|1|Mu(τ)z|2 dτ,

where we used Eq. 2.4. Using Grönwall inequality and Eq. 2.10, we obtain that the inequal-
ity Eq. 2.17 holds for Mu(s), for every s ∈ [0, 1]. Using Eq. A.8 and applying the same
argument, it is possible to prove that Eq. 2.17 holds as well for Nu(s) = M−1

u (s), for every
s ∈ [0, 1].

Proof (Lemma 2.10) Let us consider R > 0, and let u,w ∈ U be such that
||u||L2 , ||w||L2 ≤ R. We observe that Lemma 2.2 implies that there exists a compact set
KR ⊂ R

n such that xu(s), xu+w(s) ∈ KR for every s ∈ [0, 1]. The hypothesis that
F 1, . . . , F 2 are C2-regular implies that there exists L′

R > 0 such that the differentials
∂F 1

∂x
, . . . , ∂F k

∂x
are Lipschitz-continuous in KR with constant L′

R . From Eq. 2.16, we have
that

|Ṁu+w(s) − Ṁu(s)|2 = |Au+w(s)Mu+w(s) − Au(s)Mu(s)|2, (A.9)

for a.e. s ∈ [0, 1]. In particular, for a.e. s ∈ [0, 1], we can compute

|Au+w(s) − Au(s)|2 ≤
k∑

i=1

∣∣∣ ∂F i (xu+w(s))
∂x

− ∂F i (xu(s))
∂x

∣∣∣
2
|ui(s)|

+
k∑

i=1

∣∣∣ ∂F i (xu+w(s))
∂x

∣∣∣
2
|wi(s)|,

and using Proposition 2.3, the Lipschitz continuity of ∂F 1

∂x
, . . . , ∂F k

∂x
and Eq. 2.4, we obtain

that there exists L′′
R > 0 such that

|Au+w(s) − Au(s)|2 ≤ L′′
R||w||L2 |u(s)|1 + L|w(s)|1, (A.10)

for a.e. s ∈ [0, 1]. Using once again Eq. 2.4, we have that

|Au(s)|2 ≤ L|u(s)|1, (A.11)

for a.e. s ∈ [0, 1]. Combining Eqs. A.10–A.11 with the triangular inequality at the right-
hand side of Eq. A.9, we deduce that

|Ṁu+w(s) − Ṁu(s)|2 ≤ C′
R

(
L′′

R||w||L2 |u(s)|1 + L|w(s)|1
)

+L|u(s)|1|Mu+w(s) − Mu(s)|2,
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for a.e. s ∈ [0, 1], where we used Lemma 2.5 to deduce that there exists C′
R > 0 such

that |Mu+w(s)| ≤ C′
R for every s ∈ [0, 1]. Recalling that the Cauchy datum of Eq. 2.16

prescribes Mu+w(0) = Mu(0) = Id, the last inequality yields

|Mu+w(s) − Mu(s)|2 ≤
∫ s

0
|Ṁu+w(τ) − Ṁu(τ )|2 dτ

≤ C′′
R||w||L2 + L

∫ s

0
|u(s)|1|Mu+w(τ) − Mu(τ)|2 dτ,

for every s ∈ [0, 1], where we used Eq. 2.10 and where C′′
R > 0 is a constant depending

only on R. Finally, Grönwall Lemma implies the first inequality of the thesis. Recalling
that s 
→ M−1

u (s) and s 
→ M−1
u+w(s) are absolutely continuous curves that solve Eq. A.8,

repeating verbatim the same argument as above, we deduce the second inequality of the
thesis.

Proof (Proposition 2.1) In virtue of Proposition 2.7, it is sufficient to prove that there exists
LR > 0 such that ∥∥∥gj

s,u+w − g
j
s,u

∥∥∥
L2

≤ LR‖w‖L2 (A.12)

for every j = 1, . . . , n and for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R,
where g

j
s,u+w, g

j
s,u are defined as in Eq. 2.22. Let us consider u,w ∈ U satisfying

||u||L2 , ||w||L2 ≤ R. The inequality Eq. A.12 will in turn follow if we show that there exists
a constant LR > 0 such that∣∣∣Mu+w(s)M−1

u+w(τ)F (xu+w(τ)) − Mu(s)M
−1
u (τ )F (xu(τ ))

∣∣∣
2

≤ LR||w||L2 , (A.13)

for every s ∈ [0, 1], for every τ ∈ [0, s] and for every u,w ∈ U that satisfy
||u||L2 , ||w||L2 ≤ R. Owing to Proposition 2.3 and Eq. 2.2, it follows that there exists
L′

R > 0 such that
|F(xu+w(s)) − F(xu(s))|2 ≤ L′

R||w||L2 , (A.14)

for every s ∈ [0, 1] and for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Using the
triangular inequality in Eq. A.13, we compute∣∣∣Mu+w(s)M−1

u+w(τ) F (xu+w(τ)) − Mu(s)M
−1
u (τ )F (xu(τ ))

∣∣∣
2

≤ |Mu+w(s) − Mu(s)|2
∣∣∣M−1

u+w(τ)

∣∣∣
2
|F(xu+w(τ))|2

+|Mu(s)|2
∣∣∣M−1

u+w(τ) − M−1
u (τ )

∣∣∣
2
|F(xu+w(τ))|2

+|Mu(s)|2
∣∣∣M−1

u (τ )|2
∣∣∣F(xu+w(τ)) − F(xu(τ ))|2

for every s ∈ [0, 1] and for every τ ∈ [0, s]. Using Eq. A.14, Lemma 2.5 and Lemma 2.10
in the last inequality, we deduce that Eq. A.13 holds. This concludes the proof.

Appendix B: Proofs of Subsection 2.3

Proof (Lemma 2.13) It is sufficient to prove the statement for the operator Lu : U → V .
Indeed, if Lu is bounded and compact, then L∗

u : V → U is as well Indeed, the boundedness
of the adjoint descends from Remark 2.12, while the compactness from [6, Theorem 6.4]).
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Using Lemma 2.6, we obtain that, for every u ∈ U , there exists C > 0 such that the
following inequality holds

||Lu[v]||C0 ≤ C||v||U , (B.1)

for every v ∈ U . Recalling the continuous inclusion C0([0, 1],Rn) ↪→ V , we deduce that
Lu is a continuous linear operator. In view of Theorem 2.1, in order to prove that Lu is
compact, it is sufficient to prove that, for every u ∈ U , there exists C′ > 0 such that

||Lu[v]||H 1 ≤ C′||v||U (B.2)

for every v ∈ U . However, from the definition of Lu[v] given in Eq. 2.29, it follows that

d

ds
Lu[v](s) = ẏv

u(s)

for a.e. s ∈ [0, 1]. Therefore, from Eq. 2.14 and Lemma 2.6, we deduce that Eq. B.2 holds.

Proof (Lemma 2.14) Recalling the continuous inclusion C0([0, 1],Rn) ↪→ V , it is suffi-
cient to prove that for every R > 0 there exists LR > 0 such that, for every s ∈ [0, 1], the
following inequality is satisfied

|Lu+w[v](s) − Lu[v](s)|2 ≤ LR||w||U ||v||U (B.3)

for every v ∈ U and for every u,w ∈ U such that ||u||U , ||w||U ≤ R. On the other hand,
Eq. 2.30 implies that

|Lu+w[v](s) − Lu[v](s)|2
≤
∫ s

0
|Mu+w(s)M−1

u+w(τ)F (xu+w(τ)) − Mu(s)M
−1
u (τ )F (xu(τ ))|2|v(τ)|2 dτ .

However, using Proposition 2.3, Lemma 2.5 and Lemma 2.10, we obtain that there exists
L′

R > 0 such that∣∣∣Mu+w(s)M−1
u+w(τ)F (xu+w(τ)) − Mu(s)M

−1
u (τ )F (xu(τ ))

∣∣∣
2

≤ L′
R||w||U

for every s, τ ∈ [0, 1] and for every u,w ∈ U such that ||u||U , ||w||U ≤ R. Combining the
last two inequalities, we deduce that Eq. B.3 holds.

Proof (Lemma 2.20) Let us start with Mν
u : U → V . Using Lemma 2.5 and Eq. 2.4, we

immediately deduce that there exists C1 > 0 such that

||Mν
u[v]||V ≤ C1||v||U

for every v ∈ U . As regards Sν : C0([0, 1],Rn) → V , from Eq. 2.45 we deduce that

∣∣Sν
u [v](τ )

∣∣
2 ≤

(
k∑

i=1

|ui(τ )||Sν,i
u (τ )|2

)
||v||C0

for every v ∈ U and for a.e. τ ∈ [0, 1]. Moreover, from Lemma 2.5, from Lemma 2.2 and
the regularity of F 1, . . . , F k , we deduce that there exists C′ > 0 such that∣∣∣Sν,i

u (τ )

∣∣∣
2

≤ C′
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for every τ ∈ [0, 1]. Combining the last two inequalities and recalling that u ∈ U =
L2([0, 1],Rk), we deduce that the linear operator Sν

u : C0([0, 1],Rn) → V is continuous.

Appendix C: Proofs of Section 3

Proof (Lemma 3.1) We observe that the functional E : U → R+ is defined as the
composition

E = a ◦ P1,

where P1 : U → R
n is the end-point map defined in Eq. 2.20. Proposition 2.4 guarantees

that the end-point map P1 is Gateaux differentiable at every u ∈ U . Recalling that a : Rn →
R+ is assumed to be C1, we deduce that, for every u ∈ U , E is Gateaux differentiable at u

and that, for every v ∈ U , the following identity holds:

duE(v) =
n∑

j=1

∂a(xu(1))

∂xj
DuP

j

1 (v), (C.1)

where xu : [0, 1] → R
n is the solution of Eq. 2.6 corresponding to the control u ∈ U .

Recalling that DuP
1
1 , . . . , DuP

n
1 : U → R are linear and continuous functionals for every

u ∈ U (see Proposition 2.7), from Eq. C.1 we deduce that duE : U → R is as well. Finally,
from Eq. 2.21 we obtain Eq. 3.6.

Lemma 3.4 Let us consider R > 0. In virtue of Eq. 3.6, it is sufficient to prove that there
exists LR > 0 such that∣∣∣∣

∣∣∣∣∂a(xu+w(1))

∂xj
g

j

1,u+w − ∂a(xu(1))

∂xj
g

j

1,u

∣∣∣∣
∣∣∣∣
L2

≤ LR||w||L2 (C.2)

for every j = 1, . . . , n and for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R.
Lemma 2.2 implies that there exists a compact set KR ⊂ R

n depending only on R such that
xu(1), xu+w(1) ∈ KR for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Recalling that
a : Rn → R+ is assumed to be C2-regular, we deduce that there exists L′

R > 0 such that∣∣∣∣∂a(y1)

∂xj
− ∂a(y2)

∂xj

∣∣∣∣
2

≤ L′
R|y1 − y2|2

for every y1, y2 ∈ KR . Moreover, combining the previous inequality with Eq. 2.12, we
deduce that there exists L1

R > 0 such that∣∣∣∣∂a(xu+w(1))

∂xj
− ∂a(xu(1))

∂xj

∣∣∣∣
2

≤ L1
R||w||L2 (C.3)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. On the other hand, using Eq. A.12, we
have that there exists L2

R > 0 such that∣∣∣
∣∣∣gj

1,u+w − g
j

1,u

∣∣∣
∣∣∣
L2

≤ L2
R||w||L2 (C.4)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Combining Eqs. C.3 and C.4, and
recalling Eq. 2.25, the triangular inequality yields Eq. C.2.
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12. Polyak B. T. Gradient method for the minimization of functionals. USSR Comput. Math. Math. Phys.
1963;3(4):864–878.

567

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/1.9781611973488
https://doi.org/10.1007/978-3-662-06404-7
https://doi.org/10.1017/9781108677325
https://doi.org/10.1007/978-0-387-70914-7
https://doi.org/10.1016/S0022-1236(02)00102-7


A. Scagliotti

13. Simon L. Asymptotics for a class of non-linear evolution equations, with applications to geometric
problems. Ann. Mat. 1983;118:525–571. https://doi.org/10.2307/2006981.

14. Simon L. Theorems on regularity and singularity of energy minimizing maps. Lecture notes in
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