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1 Introduction

The bipartite entanglement corresponding to a spatial bipartition has been intensively
investigated in the past three decades by employing methods of quantum field theories,
quantum may-body systems and quantum gravity (see e.g. the reviews [1-7]).

Consider a quantum system in a state p and a bipartition of the space A U B which
provides a corresponding factorisation of the Hilbert space H = H4 @ Hp. When p is pure,
the bipartite entanglement is measured by the entanglement entropy S4, which is defined
as the von Neumann entropy of the reduced density matrix pa = Try,(p), namely

Sa = —Tr(palogpa) = lim s (1.1)

(hereafter the notation Tr(...) = Try, (... ) is adopted). The entanglement entropy can be
obtained also through the replica limit, i.e. the analytic continuation o — 1 of the Rényi

entropies
1

—

s = — log[Tr(p})] (1.2)

where o # 1 is a real and positive parameter; hence we identify 51(41) = S4. The single copy

entanglement [8-10] is obtained as the limit o — 400 of the Rényi entropies (1.2), where
Tr(p%) = >°; AF in terms of the eigenvalues \; € [0, 1] of pa; hence 51(400) = —log(Amax),
with A,.. being the largest eigenvalue of p4s. The entanglement entropies include the
entanglement entropy S4, the Rényi entropies Sga) and the single copy entanglement Sj(fo).

For relativistic quantum field theories in d+1 spacetime dimensions and in their ground
state, the entanglement entropies of a region A are divergent quantities as the ultraviolet
(UV) cutoff € vanishes and the leading divergence Sga) oc Area(0A)/e?=1 4 - - provides the
area law [11-14], where the dots denote subleading terms as € — 0. An important exception
to this behavior is observed for conformal field theories in d = 1, where for the entanglement
entropies of an interval A = [—R, R| on the line we have 5’1(4&) = &(1+ L)log(2R/e)+-- - as
e — 0, being c the central charge of the model [15-17]. In the presence of spatial boundaries,
the entanglement entropies depend also on the boundary conditions (b.c.). For instance, in
a d = 1 boundary conformal field theory on the half line > 0 and in its ground state, for
the entanglement entropies of an interval A = [0, R] adjacent to the boundary it has been
found [17] that Sga) = 5(1+4 1)log(2R/e) + -+ and that the subleading constant term
contains the Affleck-Ludwig boundary entropy [18], which encodes the boundary conditions
and provides a monotonic function along a boundary renormalization group flow [19-21].

The properties of the bipartite entanglement in a quantum field theory depend on the
nature of the spacetime symmetry. In order to gain some new insights on this relation, it is
worth investigating the bipartite entanglement in non-relativistic quantum field theories.
Insightful non-relativistic models exhibit the Lifshitz invariance [22-26],where the time
and space coordinates scale in a different way, characterised by the Lifshitz exponent z > 0
(relativistic field theories have z = 1). Various quantities in these models have been studied,
also in higher dimensions, including the entanglement entropies [27-38]. A remarkable
property of the entanglement entropies for the free fermions at finite density in generic
dimension is the violation of the area law [28, 29, 39).



We focus on the d = 1 free fermionic spinless Schrédinger field theory at zero temper-
ature and finite density u. This is a free non-relativistic quantum field theory with z = 2
which describes the dilute spinless Fermi gas in d = 1 [40, 41]. When this model is defined
on the line, the entanglement entropies of an interval [— R, R] C R have been studied in [42],
finding that they are finite functions of the dimensionless parameter n = Rky > 0, where
kr is the Fermi momentum, and that the entanglement entropy S is a monotonically
increasing function of 1. The © = 0 case has been considered earlier in [43-45].

In this manuscript we investigate the above mentioned Schrédinger field theory on
the half line x > 0 with scale invariant boundary conditions (that are of either Neumann
or Dirichlet type) imposed at the origin = 0. In these models the mean value of the
particle density exhibits Friedel oscillations, which depend on the boundary conditions and
decay with the distance from the boundary [46]. We study the entanglement entropies of
the interval A = [0, R] adjacent to the boundary of the half line. We find that also these
entanglement entropies are finite functions of the dimensionless parameter n = Rkr > 0.
In these models the entanglement entropy displays an oscillatory behaviour, differently
from the entanglement entropy of the interval on the line considered in [42]. We remark
that in our analyses the dispersion relation w(k) o k? is not approximated through a linear
dispersion relation at the Fermi points (Tomonaga’s approximation) [47, 48].

The finiteness of the entanglement entropies in these models on the half line is a
consequence of the analogous property which holds for the entanglement entropies of an
interval on the line [42]. The latter follows from the properties of the solution of the sine
kernel spectral problem in the interval on the line, which has been found in a series of
seminal papers by Slepian, Pollak and Landau [49-52] and it is written in terms of the
prolate spheroidal wave functions (PSWF) of order zero (see also the overview [53] and
the recent book [54]). Also the numerical evaluation of these functions has been carefully
investigated (see [54] and references therein). The relevance of this spectral problem for
the entanglement in free fermionic systems has been highlighted in [55].

The procedure described in [42] for the entanglement entropies of the interval on the
line, which follows the one discussed in [56-59] for some lattice models, can be adapted
to the entanglement entropies of an interval adjacent to the boundary of the half line in a
straightforward way and this leads us to write analytic expressions for the expansions of
the entanglement entropies in the regimes of small and large values of 77. These results are
based on the expansions of the Bessel kernel tau function reported in [60-63], specialised
to two specific values of the parameter in the Bessel kernel. We remark that the complete
expansions found in [61, 62] have been obtained by applying to the Painlevé III; equation
the method (Kyiv formula) introduced in [64] for the Painlevé VI equation. Also some
results [65-69] obtained in lattice models are relevant for our analyses.

The outline of this manuscript is as follows. In section 2 we briefly describe the
free fermionic spinless Schrodinger field theory on the half line at finite density and finite
temperature, focussing on the zero temperature limit and on the scale invariant boundary
conditions. The entanglement entropies of the interval A = [0, R] for this model, which are
the main results of this manuscript, are discussed in section 3. In section 4 we extend the
analysis to a hierarchy of Lifshitz fermion fields with integer Lifshitz exponents z > 1. The



expansions of the entanglement entropies as n — 0 and n — oo are investigated in section 5
and section 6 respectively. In section 7 we explore the Schatten norms and the relation
between S4 and the charge cumulants [70-72]. Some conclusions are drawn in section 8.
The appendices A, B and C contain the derivations of some results reported in the main
text and also further technical details.

2 Free Schrodinger field theory on the half line at finite density

The dynamics of the free fermionic Schrodinger field theory on the half line x > 0 is defined
by the equation of motion

(i O + % 83) Y(t,z) =0 (2.1)

where m > 0 is the mass and v is a complex quantum field. This field satisfies the equal-
time canonical anticommutation relations

{¢(t7$1) ) ¢*(t7$2)} = (5($1 - 332) {d](t’ 1‘1) ) ¢(t,$2)} = {¢*(t7 xl) ) ¢*(t7 $2)} =0
(2.2)
and the boundary condition

lim (0; —9)¢(t,z) =0 (2.3)

z—0t

where the parameter 9 has dimension of mass and parametrizes all self-adjoint extensions
of the Hamiltonian — 5% 92 on the half line [73].
The solution of the boundary value problem defined by (2.1)—(2.3) for ¥ > 0 reads

oo . : kE+iv dk k2
—iw(k)t [ ,ikx —ikx — 4
P(t,x) = /0 e (e + 0 ¢ ) a(k) 5 w(k) o (2.4)

where the oscillators {a(k) : k > 0} and their Hermitian conjugates {a*(k) : k > 0}
generate a standard canonical anticommutation relation algebra A

{a(k), a*(p)} =27 d(k — p) {a(k), a(p)} = {a*(k), a"(p)} = 0. (2.5)

The phase factor iig in the integrand of (2.4) describes the reflection from the boundary

at x = 0. For ¥ < 0, in addition to the scattering states there exists a bound state e’*
with energy w,(9) = 9?/(2m). Since in this paper we focus on the scale invariant points
¥ =0 and ¥ = oo, for details in treating this bound state we refer to [74].

In order to implement the finite density condition, we adopt the Gibbs representation
of the algebra A. In this representation, the basic two-point correlators are [75]

. 1

(a*(p)a(k))pu = 1T P 2" 6(k—p) (2.6)
) Blk)

(a(p) a™(k))pu = T3 o 27 6(k —p) (2.7)



where 5 > 0 is the inverse temperature and p is the chemical potential in the Fermi
distribution in (2.6). Combining (2.4) with (2.6) and (2.7), one obtains the following
two-point functions
o0 oiw(k)(ti2—ie)
<1/)*(t1a$1)¢(t2»$2)>ﬁ,uzlwm
00 g—iw(k)(t12—ie) oBlw(k)—4]

TPt =]

) o~ 210 _,~ \ dk
—ikxzi2 —ikz1o —ikz12 | 2 2
(e +e +/~c—i196 > o (2.8)

(W (200" (ta,m2)) g0 = /

: g~ 21 o~ \dk

ikx12 ikx12 ikxio | 2V 2.9
(e e k1o >27r (29)
where

tia =1t — 1o T2 =21 — T2 Tig =21 + T9. (2.10)

We remark that, for the free models that we are considering, the two-point func-
tions (2.8) and (2.9) fully characterize the model at quantum level. From these functions,
the Hilbert space H, the action of the quantum field on A and the symmetry content (a
unitary group representation of the spacetime symmetries on H) can be reconstructed [76].
Notice that space translations are broken because of the presence of a boundary, while
dilatations are broken at finite density p > 0.

As mentioned above, in this manuscript we study the limiting regimes where ¥ = 0 and
¥ — oo, which are scale invariant and define respectively the Neumann (+) and Dirichlet
(—) boundary conditions, i.e.

lim 0y¢4(t,x) =0 lim ¢_(t,z) =0. (2.11)
z—0t

z—0t

From (2.4) one gets

© ~ - dk
_ —iw(k)t ( ikx —ikx “h
Y+ (t, ) —/0 e (e +e )a(kz) 5 (2.12)
Taking the limits ¥ — 0 and ¥ — oo in (2.8) and (2.9), one finds
o o—ikz12 4 efikglg) dk
* — iw(k)(tu—ia) < _
(Wit a) b)) = [ e o o (213)
. oikzia 4 eikim) eBlw(k)—p] dk
* _ —iw(k)(t12—ie) ( S
(st 00) Vb2, = [ e i 5 21

At equal times t; = to = t and in the zero temperature limit 5 — oo, the integration
over k in (2.13) and (2.14) can be easily performed and gives

Sin(kpl’lg) sin(kpfm)

* = + 2.1
<wi(t7xl)wﬂ:<ta x?))oo,u . T F12 ( 5)
sin(kpx12) | sin(kpZi2)
t Tt o =0 - + — 2.16
(Ve (t,21) VL (t, 22)) oo, (712) p— T (2.16)
where kp is the Fermi momentum
ke = \/2mpu. (2.17)



In this regime, the correlators (2.8) and (2.9) can be expressed as

ke gmikTz

(¥ (t, 1) (t, 22) oo = (W (t, 1) Yy (£, 22) ooy + 200 - (2.18)
kp ik;lz dk
((t, 1) (¢, 22))oopu = (V4 (6, 21) YL(E, 22)) oo, — Ziﬁ/kF ;+w 5. (219)

The expression (2.15) allows us to evaluate the mean value of the particle densities for
the two b.c’s that we are considering. The result is

(048 2))ooss = (L (0, 2) . 1,2)) = o2 o D) sin(2ky)

2.20
2rx ( )

= <Q(t7 $>>oo,,u:l:

where (0(t,7))o0,u = kr/m is the mean value of the particle density on the whole line,

2rx

which is independent of the position. Thus, (2.20) shows the Friedel-type oscillations [46]
around the particle density on the line, whose amplitude decays with the distance from the
boundary. The densities vanish for y = 0, as expected. We find it worth considering the
following normalised densities

{0t 2))ooy _ (0(t: 7))o sin(2x)
ke kg 2T x

which are functions of the dimensionless parameter Y.

X = ke (2.21)

In this paper we study the entanglement entropies of the bipartition [0, R] U [R, c0)
of the half line for the system described above. This bipartition of the half line naturally
leads us to consider the normalised densities (2.21) evaluated at the entangling point = R,

(026, Wocys _ {0(t R)) ooy, sin(2)
ke kg 2 n
Another natural quantity to introduce is the mean particle number N4 + in the interval
A = [0, R], namely

which read

n=keR. (2.22)

Nax = /OR<Qi(t>$)>oo,u do = 14 5120 (2.23)

T 2

where Si(z) = [; w dt is the sine integral function. The dimensionless parameter n plays

a fundamental role throughout our analysis. In the regime of large 7, for (2.23) we have!

n 1 cos(2n)
Nas="Tx(--
AE T o (4 41

) +0(1/n%) 0 — 00. (2.25)

Since for the Schrédinger problem on the whole line [42] the mean particle number in
the interval [—R, R] is Noacr = 2n/m, one can rewrite (2.23) as

1 Si(2
Nat+ — - Noacr = ii( il
2 2T

The expressions in (2.21), (2.26) and (2.25) provide the red and blue curves in figure 4.

(2.26)

!The expansion of Si(z) as z — oo reads [77]

~ cos(2) i (=1)"(2n)!  sin(z) i (=1D)"(2n+1)! (2.24)

T
2 z z2n 22

Si(z) =

n=0 n=0

where the two series are asymptotic.



3 Entanglement entropies

The main quantities investigated in this manuscript are the entanglement entropies
(see (1.1) and (1.2)) for the free Schrodinger field at finite density and zero temperature on
the half line x > 0 when the spatial bipartition is given by the interval A = [0, R| and its
complement. The Gaussian nature of the state in this free fermionic model allows to com-
pute these entanglement entropies through the spectra associated to the spectral problems
described in section 3.1. The entanglement entropies are then evaluated in section 3.2.

3.1 Spectral problems

Since we are dealing with a free fermionic model, the entanglement entropies can be eval-
uated from the two-point functions on the half line for either Neumann (+) or Dirichlet
(=) b.c., namely (see (2.15))

sin[kg(z — y)] " sin[kp (x + y)]
m(x —y) m(x+y)

Ko (kp;2,y) (3.1)

These kernels satisfy
0

and therefore define projection operators on the half line. This property implies that the
finite density states, which generate the correlation functions (2.15) and (2.16), are pure
states [78].

It is straightforward to observe that the sine kernel, which provides the two-point
function of the same model on the line, is related to the kernels (3.1) as follows
sinfke(z —y)] Ky (kesz,y) + K (ki 2, y)

- . (3.3)

Ksine(k;F;xvy) W(l‘—y) 2

Considering the kernels (3.1) reduced to A = [0, R] C R™, after rescaling R, the
corresponding spectral problems read

1
/0 Ky(nsz,y) fEmsy) dy = v fE (s 2) z € [0,1] (3.4)

where v;F = (1) are functions of 5. In order to solve (3.4), first we consider the auxiliary
spectral problem associated to the sine kernel, i.e.

1
/_leme(n;x,y) famiy)dy = Yo fu(n;2) z € [-1,1] (3.5)

whose eigenvalues and eigenfuctions can be expressed in terms of the prolate spheroidal
wave functions (PSWF) [79-81]. The eigenvalues in (3.5) can be written in terms of the
radial PSWF of zero order Ry, [49, 54, 82]

2
Tn = ?T] Ron(n, 1) n € Ny (3.6)



while the corresponding eigenfunctions are expressed through the angular PSWF of zero
order Sy, as follows

falms) = -+ 5 Sonl, ) (37)

which also satisfy
fa(mi =) = (=1)" fu(m; 2) - (3.8)

The spectral problems (3.4) can be related to the sine kernel spectral problem (3.5)
by first rewriting the latter one in the form

P sinh@ =yl tsinln@ = )] oo .
[1 Ca(z—y) fn(n;y) dy +/0 (z — ) fay)dy = v falisz)  z €| 1(,31]9).

Changing the variable y — —y in the first integral of (3.9) and using the parity condi-
tion (3.8), one obtains

n (tsinf(@+y)] .o L sin[n(z — y)] _ _ ,
(—1) /0 an(n,y)dy +/0 W S y)dy = v fu(n;z). (3.10)

Finally, by comparing (3.4) and (3.10), for Neumann b.c. we have
Yo =Yon o () = fon(n; @) neNo xel01] (3.11)

while for Dirichlet b.c. one gets

Tn = Von+1 fo (152) = foni1(n; @) neNy xel0,1]. (3.12)

The spectrum {v,} in (3.5) has been extensively discussed in the literature [54]. In
particular, v, € (0,1) for any n € N and any n > 0. For a fixed value of 7, these
eigenvalues are non-degenerate and decrease with n. Furthermore, v, —+ 0 asn — oo in a
super-exponential way. The critical index

no = f” € N (3.13)

can be identified where 7,, ~ 1/2. This critical index allows to partition the spectrum
in three different sets where +, behave in a characteristic way [83, 84]. For numerical
purposes, we have used that 7, ~ 0 when n > 2(ng + 2).

3.2 Entanglement entropies

The eigenvalues of the spectral problems (3.4) provide the entanglement entropies of an
interval A = [0, R] C R*. For Neumann and Dirichlet b.c., they are given respectively by

Sﬁlo,ézr =Y salnt) Sﬁlof)_ =Y salmm) (3.14)
n=0 n=0
where .
sa(2) = g log[z® + (1 - 2)°]. (3.15)
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Figure 1. Entanglement entropy of an interval A = [0, R] adjacent to the boundary of the half-
line, for Neumann b.c. (red curve S4 ) and Dirichlet b.c. (blue curve S4 ), obtained numerically
from (3.14). The black curve corresponds to the entanglement entropy Saacr of an interval of
length 2R on the line. The relation (3.18) occurs among these quantities.

In the limits « — 1 and a — oo, this function becomes respectively

_J —log(1—z) 2¢€]0,1/2]

s(w) = — xlog(x) — (1-x) log(1 - ) soo() = { ~ log(z) v (1/2,1]

(3.16)

that are employed in (3.14) to evaluate the entanglement entropy S + and the single copy

entanglement Sj(fl) as follows

lim ST = S lim S4 =55 (3.17)

Summing up the two expressions for the entanglement entropies in (3.14) corresponding
to the two different boundary conditions, one obtains

Sien = SWL+ 8 (3.18)

)

where Séi)c g are the entanglement entropies of an interval of length 2R on the line for the

Schrédinger field theory at zero temperature and finite density, which have been studied
in [42]. Since Sgai are positive functions of 7 and Séi?cR is finite for any given 7 (the proof

has been reported in section 4 of [42]), also ngi are finite functions of 7.
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Figure 2. Entanglement entropies for either Neumann (left panel) or Dirichlet (right panel)
boundary conditions. The data points have been obtained numerically from (3.14), while the
dashed lines correspond to the small (see section 5) and large (see section 6) interval expansion.

In figure 1 we show Sy +, evaluated numerically from (3.14), and compare them with
the entanglement entropy Ss4 - r of an interval of length 2R on the line. These three quan-
tities are related through (3.18). The numerical analysis has been performed as explained
n [42], by employing an optimised Fortran code provided to us by Vladimir Rokhlin.
In particular, the infinite sums (3.14) have been truncated to n < 2(ng + 2), where ng
is the critical index (3.13). We checked numerically that the entanglement entropies do
not change significantly by including more terms. This truncation criterion, which is the
one adopted in [42], has been applied to evaluate numerically all the quantities in this
manuscript that involve a sum over the spectra (3.11) and (3.12).

The main feature to highlight in figure 1 is the fact that S+ are not monotonic
functions. Instead, So4cr is a monotonic function as proved in [42]. The proof of this
feature of Sy4 g exploits the invariance under translations, which does not hold for the
model on the half line.

In figure 2 and figure 3 we also show the entanglement entropies 51(402: for different
values of a, obtained numerically from (3.14).

Since y;F € (0,1) for any n € N and 5 > 0 in (3.14), we can adapt to our case the
procedure employed in [56, 57] to evaluate the entanglement entropies in some spin chains,
as done in [42] for the entanglement entropies of an interval on the line for the Schrodinger
model at finite density and zero temperature. This allows to write (3.14) as the following
contour integral in the complex plane

51(403[ = lim 1£sa(z) 0, log(ry) dz (3.19)
where s4(%) is the holomorphic function obtained from (3.15). The closed path € encircles
the interval [0,1] C R and is parameterised by the infinitesimal parameters € and § through
its decomposition € = €oUC_UE; UC, where € and €; are two arcs of radius €/2 centered
in 0 and 1 respectively, while €1 are the segments belonging to the horizontal lines x + id
with z € R and intersecting €y and €; (see e.g. figurel of [56], where a similar path is

~10 -



shown); hence ¢ — 0 implies 6 — 0. The functions 74+ in the integrand of (3.19) are the
tau functions associated to the kernels (3.1)

7y = det(I — 271 Ky) = H (1—2719) (3.20)
n=0

i.e. the Fredholm determinants of the corresponding kernels, where I denotes the identity
operator, z € C and ~;© are the eigenvalues of K., which are obtained from the eigenvalues
of the sine kernel K. (see (3.11) and (3.12)). From this relation, it is straightforward to
observe that the tau function 7. = det(] — z‘lei“e) associated to the sine kernel can be
written in terms of the tau functions in (3.20) as follows?

Tsine — T—‘,— T— (321)

(see also Proposition 1 in [85] with aupee = 0).

The relation (3.21), combined with (3.19), provides (3.18) in a straightforward way.
This observation can be extended to a class of quantities having the form G4 = 37,5 9(7n),
where g(0) = 0. Indeed, by writing these quantities like in (3.19) and exploiting (3.21), one
finds the relation Gogcr = Ga++Ga -, where G4 - r corresponds to G 4 for the interval
[—R, R] on the line, and G4 + to G4 for the interval [0, R] adjacent to the boundary of the
half line where either Neumann (+4) or Dirichlet (—) are imposed at the origin. Also the
Schatten norms (7.3) (see section 7) belong to this class of quantities and (7.6) gives the
above mentioned relation for them.

Fredholm determinants of integrable kernels occur in many interesting problems in
physics and mathematics. In particular, the Fredholm determinants (3.20) are related to
some probability distribution of the level spacings for random matrices [86] and to the
inverse scattering problem [87].

In our analyses we exploit in a crucial way the fact that the Fredholm determi-
nants (3.20) are related to the solutions of a particular Painlevé III differential equation [60,
88, 89]. In particular, the kernels (3.1) can be obtained as special cases of a Bessel kernel
(see (A.5)) and the relation between the corresponding spectral problems is discussed in the
appendix A. This allows to write the tau functions 74+ in (3.19) as special cases of the tau
function of this Bessel kernel (see (A.11)). The auxiliary sigma function associated to this
Bessel kernel tau function satisfies a particular Painlevé I1I; differential equation (see (A.8)
and (A.9)). Combining these observations, the relation between the Painlevé I1I; and IIT}
(see (A.16)) and the small 7 expansion of 74 given in [60] (see appendix B.2), we obtain

91/8 ,
T+(n) = T2 P8 1/ Tur (n°/4)

0.=0.=+1/4 (3.22)
where the tau function 7, (t) in [61] is employed. The explicit expressions of the tau
functions occurring in the r.h.s. of (3.22) are discussed below (see (5.9) and (6.1)).
Analytic expressions for the expansions of 71 as 7 — 0 and 7 — oo have been obtained
in [61, 62]. In section 5.2 and section 6, we have employed them into (3.19) to get analytic

2The relation (3.21) implies osine = o+ 4+ o for the corresponding auxiliary functions (see [61] and also
appendix A).
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Figure 3. Entanglement entropies 51(40")7 for Dirichlet boundary conditions. The dashed lines
(shown only for n > 10) correspond to the large 7 expansion discussed in section 6.

results for the corresponding expansions of Sj(fi. In figure 2 and figure 3, the dashed
curves have been found from these analytic expansions, while the curves identified by the
empty markers have been obtained numerically through (3.14), in the same way described
for figure 1. In particular, we have used (5.12) for small n and the expressions discussed
in section 6 (see e.g. (6.7), (6.9) and (6.11)) for large n. We emphasise that S,(fj)i are
oscillating functions of n for any value of @ > 0. A remarkable agreement between the
numerical results and the analytic expressions for the small and large n expansions is
observed. Furthermore, in figure 2 an intermediate regime of 1 can be identified where the
curves corresponding to the small and large n expansions overlap. The size of this crossover
regime depends both on the boundary condition and on the value of a.

While in figure 2 the entanglement entropies Sj(fi are shown only for n € [0,7], a

larger domain has been considered in figure 3, where only Sj(f)_ are reported because the

(a)

curves for S Aa . are qualitatively very similar. In figure 3 one observes the logarithmic
growth of the entanglement entropies (in particular, from (6.7) and (6.9) we have that
51(40,{3: = (14 1) log(n)+O(1) as n — oo) and also their oscillatory behaviour. For a given
value of «, the amplitude of the oscillations vanishes as 7 — oco. Instead, this amplitude
increases with a for a given value of 7.

We find it worth introducing the following combinations of entanglement entropies
(o) (o)
A+~ 54,

2

(03 e 1 (03
B = s L s, = =

-3 (3.23)
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Figure 4. Entanglement entropy, normalised density at the entangling point (2.22) and mean
particle number in the interval (2.23) in the case of Neumann b.c., where half of the corresponding
quantity on the line has been subtracted (see (3.23) for o = 1, (2.26) and (2.25)) to highlight the
oscillatory behaviour.

where (3.18) has been employed. For boundary conformal field theories in d = 1, the r.h.s.
of (3.23) can be defined for any conformally invariant boundary condition: the resulting
combination, which depends on the boundary condition imposed at the origin of the half
line, is UV finite [17]. In the Schrédinger models that we are considering, both S(a)

and Séj)cR in the r.h.s. of (3.23) are finite functions of 7; hence this property holds for
any linear combination of these two quantities. In the closing paragraph of section 6 an
interesting feature of the special combination (3.23) is highlighted.

Since S24 cr is a monotonic function [42] while S 4 display an oscillatory behaviour
(see figure 1), the combinations (3.23) in the special case of & = 1 are oscillating functions
of i for both Neumann and Dirichlet boundary conditions. In figure 4 we focus on Neumann
b.c. as prototypical case, and compare the combination (3.23) for « = 1 with the density at
the entangling point (2.22), which exhibits the Friedel oscillations, and the mean particle
number in the interval (2.23). The oscillatory behaviours are highlighted when half of the
corresponding quantities on the line are subtracted (see (3.23) for & =1 and (2.26)). The
density at the entangling point (2.22) can be rewritten as follows

(0 (1, oo — 5 ({0(t, R)) ooy + {0t ~R))oe)| = = (324)

2kg /T
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where the r.h.s. provides the Friedel oscillations and the quantity within the square brack-
ets has a form similar to the one of the other quantities displayed in figure 4. The func-
tions in (3.24) oscillate around zero with decreasing amplitudes and their zeros corre-
spond to 2n = nm, where n € N and n > 0. These zeros correspond to the values of
n where the critical index (3.13) has jump discontinuities. The parity of the critical in-
dex is a m-periodic function of n taking values +1 for n € [km, (k+ 1/2)7) and —1 for
n € [(k+1/2)m, (k+ 1)7), where k € Ng. When ng is even, the eigenvalue 7,, contributes
to Sa4; hence one expects Say 2 Sa— (i.e. Ba4+ 2 0), as observed for this curve in
figure 4 for n 2 5. Analogously, B4 + < 0 when ng is odd.
In figure 4, a remarkable agreement between By y and (3.24) is observed for n >
4. This can be explained by anticipating some results discussed in section 6 about the
expansion of S 4+ at large 1 (see (6.9), (6.12) and (2.22)), which allow to write
B {ox(t, R))ooyu — (0t; R))oo

1
Sas = =log(4 -t
ax =g og(4n) + 5 T

+0(1/n?) (3.25)

where E; is the constant (6.10) in the special case of & = 1. The expansion (3.25) tells
us that the Friedel oscillations occurring in the normalised density at the entangling point
provide the first subleading correction of the entanglement entropy in the regime of large 7,
which vanish as  — 0o0. As for the mean particle number in the interval (see the blue solid
curve in figure 4, obtained from (2.26) and (2.25)), its oscillations have the same frequency
and they are shifted by 7/4.

The entanglement entropies of the interval adjacent to the boundary of the half line
display oscillations (see e.g. figure 1, figure 2 and figure 3); hence it is worth asking whether
a monotonically increasing function of n can be constructed. Since Sgofi > 0, it is natural
to consider

n
s§l = /0 S () de . (3.26)

Let us investigate the class of functions of 7 whose generic element is G() = >-,50 9(7n),
where g(z) — 0 as x — 0 in a proper way to guarantee the convergence of the series
that defines G. Since the spectrum of the sine kernel satisfies the following property (see
eq. (3.51) in [54])
2

741 = E Tn fn(n; 1)2 (3'27)
we have that G'(n) = 3,509 ()7, with v;, > 0; hence the condition ¢'(x) > 0 for
z € (0,1) implies G'(n) > 0. The expressions in (3.26) correspond to the particular choice

given by ¢'(x) = so(z) and to the restriction to the eigenvalues of the sine kernel spectral
problem labelled by either even or odd values of n.

4 Integer Lifshitz exponents

In this section we study a hierarchy of two component Lifshitz fermion fields (¢, z) whose
time evolution on the half line z > 0 is given by

iog O — —i030:)" | Y(t,z) =0 zeN (4.1)

1
@y
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where
_ [ it z) (10 (10
¢(t’x)_<w2(t,x)> 00_(0 1) 03-(0 _1>. (4.2)

We assume in addition that 1;(¢, x) satisfy the equal-time anti-commutation relations (2.2)

and introduce the generalised Fermi momentum
ke = (2m)~VEpb (4.3)

Notice that kp1 = i, kr2 = kg, and kg, — 2m for z — oo.

From (4.1) it follows that for z = 1 the fields v;(t,x) are the left and right moving
components of a massless Dirac fermion (¢, z) on the half line. For z = 2 one has instead
two independent Schrodinger fields (2.1). It is useful to consider first these two cases
because the ones corresponding to z = 2n — 1 and z = 2n for any n € N can be studied as
direct extensions of the models having z = 1 and z = 2 respectively.

The Dirac case z = 1 has been considered in detail in [90]. It has two types of boundary
conditions at x = 0 that ensure energy conservation. The boundary condition

P1(t,0) = e (¢, 0) a, € 10,27) teR (4.4)

preserves the electric charge but not the helicity, while the opposite holds for the boundary
condition

P1(t,0) = e 1% b3 (t,0) @, € [0,27) teR. (4.5)

The boundary conditions (4.4) and (4.5) define respectively the vector and axial phases
of the massless Dirac fermion on the half line. Notice that both (4.4) and (4.5) provide a
scale invariant coupling of components with different chirality at « = 0. For this reason
the kernels of the spectral problem for the entanglement entropies in the two phases have
off-diagonal elements. In fact, by imposing (4.4) or (4.5) for any z = 2n — 1, one finds

K(kpon-1;2 —y) e K(keon-1;2+7Y)
Kop1(z,y;) = ' ’ 7 €0y, s
=175 ) (e_‘aK(kp,Qn—l;—ﬂ?—y) K(keon-1;—2 +y) o€ lov o)
(4.6)
where "
e oK
Kl = ———— + 4.
(15 ¢) S — i) e—0 (4.7)

hence K,_1 can be written in terms of the correlators as discussed in [90].

For z = 2n one finds instead two fully decoupled Schrodinger fields and either the
Neumann or the Dirichlet boundary conditions (see (2.11)) can be imposed for each of
them (the case z = 2 has been discussed in section 2). Accordingly,

K1,kK9 € {+,—} (48)

Ky, (ke on; T, 0
KQn(l',y;:‘il,K/Q) — < 1( F,2 y) )

0 Kng (kF,Zn;xvy)

where K are given by (3.1).
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When z = 2n—1 the entanglement entropies for the interval A = [0, R] can be expressed
in terms of the eigenvalues (s of the spectral problem

R
[ Ko ) o)y = Gows) o) = 910 SER.
0 Dy(z, 5)
(4.9)
The solution of (4.9) is given by
1-— h
¢ = tanh(rms) (4.10)
2
and
Dy (z,5) = elfr2n—12g (g Dy(z,5) = e Fr2n—1Temiag (o) (4.11)

for z € [0, R], and (s and ¢s(x) satisfy the simpler and well known [91-93] spectral problem

R 1
/ ¢s(y) dy = (s ¢s($> T € [_R7 R] : (4'12)

_R 2mi(x —y — ie)

We remark that the dependence on ky 2,—1 and « is carried by the eigenfunctions, while the
eigenvalues (s are independent of these parameters. The explicit form [91-93] of ¢s(x) is not
needed because the entanglement entropies are fully expressed in terms of the eigenvalues.
Thus, all the Lifshitz fermions with odd z have the entanglement entropies of the relativistic
massless Dirac fermion, i.e.
(a) 1 1
¢ = (1 + a) log(2R /) + O(1) s 1. (4.13)

It is worth mentioning that the independence of the spectrum on kg 2,—1 leads to a well
known logarithmic ultraviolet divergency, which induces the presence of the UV cutoff €
in (4.13).

When z = 2n we have two independent Schrodinger fields and each of them satisfy
either the Neumann or the Dirichlet boundary condition. Therefore

g(@) _ glo) + 51(4‘)’41)&2 K1,K2 € {+,—} z2=2n (4.14)

Asrr,ke T M AR

where 5’1(407‘,1 is given by (3.14) with the substitution ky — kg 25,

The mean particle density (2.20) of the Schrédinger fermion exhibits Friedel oscilla-
tions. It turns out that such oscillations are absent for the massless Dirac fermion z = 1
on the half line. In fact, in this case, for both the vector and axial phases, one finds [90]

‘ " |l
(0(t, @)oo = (07 Y1: (2, T))oo,u + (3 P2 (t, 7)) oo = . (4.15)
where : --- : denotes the normal product. The mixed correlation functions in the vector

and axial phases are given by
12 . ek
(Y aba (8, 2)) ooy = €71 py—- sin(px) (12 (t, )00, =€ By sin(px) (4.16)

respectively, which display an oscillatory behaviour.
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5 Small  expansion

In this section we investigate the expansion of the entanglement entropies as n — 0 by
employing two different methods. The first approach (section 5.1) is based on the expan-
sion of the PSWF, while the second one (section 5.2) exploits the expansion of the tau
functions (3.22).

5.1 PSWF approach

The asymptotic behaviour of the PSWF leads to the following small 7 expansion for the
eigenvalues [54, 94]

Yn = Jn 772n+1 [1 + an, 772 + 0(774)] (5-1)
where )
. 2 22n(nl)3 5 2n + 1
gn = — # ap = — 3 5 - (5.2)
7\ (2n)! (2n + 1)! (2n —1)%2(2n + 3)

By using (5.1) combined with either (3.11) for Neumann b.c. or (3.12) for Dirichlet b.c.
into (3.14), we obtain the expansions of the entanglement entropies reported below.
As for the entanglement entropy, for Neumann b.c. we find

2 2 2 2
Sa+ = —=nlog(n) + =[1 —log(2/m)] n — = n° + — n’ log(n)
T T T 97

+ % (; log(2/m) — 732) m + 34? (; a 7r12> n'+0(n’logm)  (53)

which comes only from vy because s(v2,) = O(n°log(n)) when n > 1. Instead, for Dirichlet
b.c. we obtain

Sa-= - % i log(n) + % [1 —log(2/(9m))] 1° + % 1 log(n)
+ % log(2/(97)) n° — 512 7%+ O(n" log(n)) (5.4)

where only ~; has been employed because s(vyap4+1) = 0(777 log(n)) when n > 1. Comparing
the leading terms of (5.3) and (5.4), we have that S4 4+ > S4 _ when n — 0, which can
be observed from figure 1 and from the top panels of figure 5, where the solid blue lines
correspond to the expressions in (5.3) and (5.4).

The analysis performed for the entanglement entropy can be adapted to find the ex-
pansion of the Rényi entropies (3.14) with « # 1 as n — 0. We focus on the cases where
« > 1 and finite. For Neumann b.c. we find

(a)  « n 4 1> 9 2<1 1> 3} 2n
= 142 - _Z 202 _ = i) .
Sa+ a—l{{ +7T+<37T2 3)" +7T 2 )T (5.5)
1 2 2 1 1 2 1) /6 2 2\ ¢
_{+n+< (ot )_)n2+ (ot >( (at )—1)173} <n>
o T T 9 7 T T

1 2 22a+1) 1 o 2
a2 (2 5) ] (2)
20 T 9 T

() o
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while for Dirichlet b.c. we obtain

9 1 21
glo) _ _@ (1 9 1 3) 2 5.6
A a—1 75774_97r77 9 (5.6)

2c
1 3 4, 2 3> 23\ 1 (2 .
<a 95" T op " (977 9\ on +0(").

The derivation of the expansions (5.5) and (5.6) is reported in appendix B.1. Notice that

the relevance of the various terms in these expansions as n — 0 depends on «.
The expansion of the single copy entanglement as 7 — 0 can be studied in a similar
way, by employing the function s () in (3.16). When Neumann b.c. are imposed, we find

2 2 2 /4 1 4 /1 1
gl — =2 = n? <—> 3 (—) tro@ 5.7
ar =t st (S -g)r (5 —g)n +O0W) (5.7)
while for Dirichlet b.c. the expansion of the single copy entanglement reads
2 2 2
gle) _ 3 _ 5 6 L 0. 5.8
he = g —m g +00) (5.8)

The relation (3.18) can be employed to check the above expansions. Indeed, by sum-
ming up either (5.3) and (5.4), or (5.5) and (5.6), or (5.7) and (5.8), we recover the
expansions found in section 7.2 of [42].

In figure 5 we compare the small 7 expansions reported above (blue solid lines) with
the corresponding exact curves, obtained numerically through (3.14) (black empty circles).
The cases @« =1, a = 3 and @ — oo are considered, for both boundary conditions. Notice
that these small 1 expansions do not capture the first local maximum of the corresponding
curves.

5.2 Tau function approach

The expansion of the entanglement entropies as 7 — 0 can be found by plugging into (3.19)
the expansion of 7 in this regime. In the appendix B.2 the latter expansion is obtained
as a special case of the expansion given in the Conjecture 4 of [61]. The result reads
1 > 1,11 2)n(2nFL)
(2141 1o y) /2o
4’4

T+ — 777411/2 e772/4 ZOCHI/ iZ’i on
n=

Ba(n;n?/4) (5.9)

where the coefficients are written in terms of the Barnes G-function G(z) as follows

[G(1+6+6)G(1+6-5)]

Cone (0,0,) G(1+26)G(1—25)

(5.10)

The functions By (n;t) are defined in (B.16) and the first terms of their Taylor expansions
for small ¢ are reported in (B.17) and (B.18). Thus, the expressions in (5.9) are double
expansions; both in positive powers of n and in negative powers of z.

Approximate analytic expressions for the entanglement entropies in the regime of small
n can be found by adapting the analysis performed in [42] for the interval on the line to
the cases we are considering on the half line.
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Figure 5. Entanglement entropies Sj(f) for @ = 1 (top panels), a« = 3 (middle panels) and o — oo
(bottom panels) in the small 7 regime. The blue solid curves correspond to the expansions obtained
through the PSWF (see section 5.1), while the coloured dashed curves have been found through

the expansion (5.9) of the tau function (see section 5.2 and (5.12)).

Given a positive integer N’ > 1, let us truncate (5.9) by discarding the terms of order
o(iV). This condition provides also a truncation of the series in n occurring in (5.9) to
n < Ni, where Ny = N4 (N). The functional form of Ny (N') depends on the boundary
condition. Since o(1/2V*) terms in (5.9) have been neglected, denoting by 7y . the
resulting finite sum, we have that 7ar v, = P Pn_ n(2), where Py, ar(z) is a polynomial
of degree N1 whose coefficients are polynomials in 7 of different degrees that are smaller
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than or equal to NV. Thus

Ny

0. log(Tn . Ny) = Z

i=1

1 Ny

z— 2z z

(5.11)

where z; € Py, n are the zeros of Py, ar(z), that are highly non trivial functions of 7.
According to the Abel-Ruffini theorem, the roots of a polynomial of degree five or higher
cannot be written through radicals. This fundamental algebraic obstruction tells us that
analytic results can be found only for N1 < 4.

Plugging the finite sum (5.11) into (3.19) and exploiting that s,(0) = 0, one obtains

S = sa(3) % € PrnoaN[0,1] (5.12)

where only the zeros of Py, ar(z) belonging to [0,1] contribute. The finite sums (5.12)
approximate the entanglement entropies in the small 1 regime. The analytic expressions
for (5.12) have been obtained by combining the procedure discussed in the appendix E.2
of [42] with the results in the appendix B.2. The results are quite lengthy and not very
instructive; hence they have not been reported here.

Some curves obtained from (5.12) are shown in figure 5 and figure 2, for either Neu-
mann (left panels) or Dirichlet (right panels) boundary conditions, and they correspond to
coloured dashed lines. The exact curves obtained numerically are indicated through empty
markers. In figure 5 we have considered Ny, N_ € {1,2,3,4} and the largest values of N
providing them. In particular, we have that N, (5) = 1, Ny(14) = 2, N, (27) = 3, and
N, (44) = 4 for Neumann boundary condition and N_(9) = 1, N_(20) = 2, N_(35) = 3,
and N_(54) = 4 for Dirichlet boundary condition. In figure 2 we have reported the curves
corresponding to Ni(44) = 4 and N_(54) = 4, for various values of . It is evident in
figure 5 that the agreement between the approximations obtained from (5.12) and the cor-
responding exact curves improve as N1 increases. The best approximations for small 7
obtained from (5.12) (see figure 2 and the red curves in figure 5) nicely reproduce the first
two oscillations of the entanglement entropies.

6 Large n expansion

In this section we study the expansions of the entanglement entropies as 7 — oo, which
are obtained by plugging the expansions of the tau functions 74 in this regime into (3.19).

The expansion of the Painlevé IIT] tau function given in eq. (A.30) of [62], properly
specialised to the cases we are considering, provides the large n expansions of the tau
functions 74+ in (3.22). This analysis is described in the appendix C.1 and the results read

iZ(v+n el2n(ntv) V+TL
Tizzei2(+)ma(1+u+n) (1—v—n) Z (6.1)
new n p=
h
o V—ilo (1-1/2) (6.2)
~om 8 '
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and
1
Do(v) =1 Di(v) = —iv? Da(v) = —3 V2 (20 + 507 +1). (6.3)

We find it worth remarking that the expansions (6.1) is an asymptotic series in 1/n [62];
hence also the corresponding expansions of the entanglement entropies derived from them
are asymptotic. The expansion (6.1) is not valid for z € [0, 1], where a different expansion
of 71 is expected (see e.g. [95] for z = 1).

In order to study the expansion of the entanglement entropies (3.19) as n — oo, we
find it convenient to write (6.1) as follows

T+ = %i,oo 7;,00 (64)
where 74 ~ is the term corresponding to n = 0 and p = 0 in (6.1), namely

FilZv i2vn (x(1 G(1 -
Fyo = T2 eGL J;”) (1=v) (6.5)
(47)

while T3 o reads

e O G4 v G- v —n) & Dy(v )
Tioo = Z (&) (4n)n(n+2u) Gl4+v)G(1l—-v) pz::() (2n)?

nez

(6.6)

The term (6.5) corresponds to eq. (1.35) of [63] specialised to our cases (see appendix C.1).

Plugging (6.4) into (3.19), the following decomposition for Sﬁf"i is obtained

Sk = Sk oo T Sk oo (6.7)

where Sﬁﬁ‘lm, which originates from log(7+ ), provides the leading contributions to the

entanglement entropies for large n; while gl(fioo comes from log(7+ ~) and gives the
subleading corrections that vanish when 1 — oo.
The leading terms occurring in Sj(fi « can be found by first taking the logarithm

of (6.5), i.e.
log (7 00) = 1201 — v log(4n) + igy +1log[G(1 —v)G(v +1)] (6.8)

and then plugging the resulting expression into (3.19). While the integrals corresponding
to the linear terms in v in the r.h.s. of (6.8) vanish, the remaining terms provide non
vanishing contributions to the entanglement entropies and the result reads

o 1 1 E,
Sﬁl,i,oo =133 (1 + a> log(4n) + -5 (6.9)

where the constant term FE, is

E, = (1 + 1) /OOO (acbch(t) (csch(t/a) — aesch(t)) — e_2t> dt . (6.10)

a a2 -1 6 t

We remark that (6.9) is independent of the boundary condition. Furthermore, (6.9) is
equal to half of the corresponding terms in the large 1 expansion of SéZ)C]R (see eq. (8.16)
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of [42]), which has been previously found in the lattice [56, 57, 59] by using the Fisher-
Hartwig conjecture, and also in the continuum by employing a result of Slepian [94], as
shown in [55, 96] (see also [34] for a rigorous derivation of the logarithm term). The fact

(a)

that the leading terms in the large 1 expansions of S, } are half of the corresponding ones

(a)

for S5 /g can be observed in figure 1.

The term S( ) « in (6.7) is obtained from (6.6) and contains all the subleading con-
(@)

tributions in the large 1 expansion of S 4,+» Which vanish for n — oo. It can be written as

follows
(D)
S(a) — A+,00,N . 6.11
A,£,00 szjo (477)N ( )

In the appendix C.3 the derivation of the coefficients 51(401 oo for N € {0,1,2} is described.
These are non trivial functions of 1 that vanish when n — oo and their expressions are
reported in the following.

When N = 0, for the entanglement entropy and the Rényi entropies with a # 1 we
find respectively (see the appendix C.3.3)

> (2k — 1) [(k — 1)1? sin(2n) 3
k 1 _ 5
SA:I:ooO = +sin(2n) E + ()71 =+ 1 (1 — 16?72) +O0(1/n)
k=1

(6.12)
and

g _ 2 L ARSI YORY

J

where §i, = i(k—1/2) and Q(Jx /) = rgigﬁfgz;%ﬁ (see (C.32) and (C.53) respectively).

The coefficient 51(401100’1 is derived in the appendix C.3.4. For @« = 1 and a # 1 we

obtain respectively

s 2k — 1) [(k — D)2 P(g 2
SAioo 1 = £cos(2n) Z k+1 )Eiﬁ)%)l] 1(8k) = :':6082(7]17) + 0(1/773)
k=1

(6.14)

with P;(Jx) = —6k? + 6k — 2 coming from (C.59), and

51(407‘;00’1 -2 ] i sin[(2n— ) } 2771 Yr/ ) <m>j (6.15)

o — i=1

where Py (yp/a) = —3[(2k — 1)/a] — 3.

Finally, for gx(f)i,oo,l with either & =1 or o # 1 we find (see the appendix C.3.5)

> — — 1112 o .
gAthZ—éiﬁm@mg;@Jﬁﬂ(% 1) [(k 1£$Zﬁ@“ Poa(Gr)]

= F——"2 1001/ (6.16)
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Figure 6. Entanglement entropy for Neumann b.c. in a range where the large 1 expansion
(see (6.7), (6.9), and (6.11)) deviates from the curve obtained numerically (black points).

where P o (k) — P2.a(9r) = —18k* + 16k — 8k + 3 is obtained from (C.74) and (C.76), and

s (@+DBe?-7) 2 & AR + Q) \?
A,i,OO,Q_ 480(3 Oé—ljglcos 277 2 ] k;PQ(]ﬂyk/a) (47])(2k_1)/a

(6.17)

with Py (j;y) defined as (from (C.76), (C.77) and (C.78))

Po(i;y) = — Poe(y) + Poa(y) + (1 — §) Pacly) = 185 y* —3j y* + % +20iy° —5iy. (6.18)

In the appendix C.3.6 some consistency checks for the analytic expressions of 51(40‘1 0o, N
reported above have been discussed. In particular, we have considered the limit a — 1,
the relation (3.18) and the double scaling limit of the lattice results obtained in [69].

In figure 6, figure 7 and figure 8, the curves for the entanglement entropies found
numerically are compared with the curves corresponding to the analytic expressions valid
at larg 1) obtained from (6.7), (6.9) and (6.11), where S4 4+ o v and §1(4017007N are respec-
tively (6.12) and (6.13) for N =0, (6.14) and (6.15) for N = 1, and (6.16) and (6.17) for
N = 2. We show these results only for Neumann b.c. because the ones for Dirichlet b.c.
are qualitatively very similar.

In figure 6 the entanglement entropy Sj4 4 is considered: the exact curve is labelled
by the black circles, the dashed grey line correspond only to the leading terms (6.9) and
the dashed coloured lines are obtained by including also the three subleading terms having
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Figure 7. Oscillatory behaviour of the entanglement entropies with a > 1 for Neumann b.c. in
the large n regime. The dashed curves are obtained from (6.7), (6.9) and (6.11) with N < 2.
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Figure 8. The Rényi entropy of order o = 20 for Neumann b.c. in the regime of large 7.

— 24 —



N € {0,1,2} in (6.11). The analytic approximation that takes into account also the
subleading terms nicely reproduce the exact curve for n 2 6.5. For smaller values of 7,
the subleading term corresponding to N = 0 is not enough to capture the exact curve.
When 1 < 2.5 all the approximate curves obtained from an analytic expression that we
have considered deviate from the one of Sy ;.

In figure 7 we focus on the range n € [990,1000], where 7 takes large values and the
amplitude of the oscillations is small. The curves for the Rényi entropies found numerically
(coloured circles) are nicely captured by the corresponding approximate analytic expres-
sions (dashed lines) found by including all the subleading terms that we have evaluated
(i.e. the ones having N € {0,1,2} in (6.11)), truncated at order O(1/n3).

In figure 8 we consider S 4 In a regime where 7 is large enough and show how the
agreement between the exact curve (black circles) and the ones obtained from the analytic
expressions of the large 1 expansion truncated at some order improves as the number
of subleading terms in this truncated sum increases, i.e. when higher orders in 1/n are
included. The dashed grey line corresponds to the leading terms (6.9).

We find it worth remarking that the oscillating terms in S A +,00,N and S 'A,—,00,N have
opposite signs (see (6.12), (6.14) and (6.16)), while the non oscillating ones (only the
constant in (6.16) for the terms we are considering) are equal to half of the corresponding
ones in the large 1 expansion of Séj)cR [42]. This implies that the oscillating terms cancel
in the r.h.s. of (3.18) (see also (C.86)) and therefore Ss4 g does not oscillate, as found
n [42]. Notice that, instead, this exact cancellation of the oscillating terms in the r.h.s.
of (3.18) does not occur when o # 1.

By applying the above observations to the combination (3.23), we find that the non
oscillating terms simplify, for any o > 0. This cancellation is due to the relative factor of
~1/2 between S, and S\ in (3.23).

7 Cumulants expansion

In this section we discuss the relation, found in [70-72], between entanglement entropy and
the charge cumulants for the models that we are considering.

The cumulants of the time independent local charge operator Q4+ = [, 0+(t = 0,z)dx
are Cj(f) = [81’2 log ((el¢@a.+))]| c—o» Where k > 1. Their generating function can be expressed
in terms of the tau function (3.20) as follows [42, 70, 72, 97]

log[(e94£)] = Tr[log (I + (e —1) K1) ] = Tr[log (I — 2 ' K4)] = log(r+)  (7.1)

where I is the identity operator, Ky are the kernels (3.1) and { = 27y, with v = v(z)
being defined in (6.2).
From (7.1), one finds that the first cumulants are given by

cVh =Te(Ky)  CYL=Te(Ke-K2)  CYL =Te(Ks-3K3+2K%) (7.2)

where the Schatten p-norm of the kernels (3.1) is defined as

[e.9]

T(KD) =3 6 el (73)
n=0
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Figure 9. Cumulant expansion of the entanglement entropy for Neumann b.c. (see (7.4)). The
inset zooms in on a range of small values of 7, where a complete overlap is observed when g, is
large enough.

The n-th cumulant Ciﬂc is a finite linear combinations of the Schatten norms (7.3) with
p € Nand p = 1,...,n; hence we can evaluate numerically the cumulants by computing
the Schatten norms from (7.3), as done for the entanglement entropies.

In [70-72] a remarkable relation between the entanglement entropies and the charge
cumulants has been studied (the final form has been reported in [71]). A similar relation
has been found also for the Rényi entropies with integer index [72]. Focussing only on the
entanglement entropy for simplicity, for the models we are considering this relation reads

il 0 odd n
SA7:|: - qhﬁrgo Z a/n(q) C1(472|: an(Q) = 2 i M even n (74)
n=1 Rl k'k

where Sj(k,n) are the unsigned Stirling numbers of the first kind. We remark that the
coefficients in (7.4) are independent of 7; hence the dependence on 7 of Sy + is encoded
only in the cumulants.

In figure 9 we show some results about the cumulant expansion (7.4) in the case of
Neumann b.c. (the curves for Sy _ are very similar). The black crosses correspond to the
curve obtained numerically, while the curves identified by the empty markers are given by
the finite sums obtained by restricting (7.4) to n < ¢ua, + 1, for different values of gy ay.-
The approximation of the exact curve improves as ¢,.., increases. Notice that a complete
agreement is obtained for small values of 7, as highlighted in the inset of figure 9.
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Figure 10. Schatten norms (7.3) for some values of p, when either Neumann (+) or Dirichlet (—)
b.c. are imposed, in the large n regime (see (7.8)).

In [70] the cumulant expansion S + = limg 00 > o _ 1 @n Cg?)i has been first proposed,
where @, = limy o a,(q) = 2¢(n) and ((z) is the Riemann zeta function. This expansion
is divergent [71]. Indeed, testing numerically this expansion, we found that its deviation
from the entanglement entropy increases with q.

The Schatten norms, and consequently also the cumulants, can be expressed in terms
of the tau function (3.20) by adapting to (7.3) the procedure leading to the contour inte-
gral (3.19) for the entanglement entropies. The result reads

1
Tr(K%) = lim —jlézp 0, log(7+)dz peN. (7.5)
¢

€,0—0 271

This expression allows us to write the expansions of the Schatten norms in the regimes of
small and large n by adapting to these quantities the analyses discussed in section 5 and
section 6 for the entanglement entropies, as done in [42] for the interval on the line.

From (3.21) and (7.5), it is straightforward to observe that

Tr(K?,) = Tr(K%) + Tr(K?) (7.6)

where Tr(KZ%,.) are the Schatten norms for the interval [—R, R] on the line considered
in [42]. The case p = 1 of (7.6) is interesting because the Lh.s. is known analytically. In
particular, by employing eq. (3.55) in [54], we have

2n

= Te(Ky) + Tr(K-). (7.7)
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Figure 11. Schatten norms (7.3) for some values of p in the small 5 regime, when either Neumann
(4) or Dirichlet (—) b.c. are imposed. The dashed black curves have been obtained through (7.9)
in the best approximation where analytic expressions can be found (see section 5.2).

In the regime of large 7, by using (C.5) into (7.5) we find that

Te(K?) = £ — Lf(p) log(47) + + + Co(p) + o(1) (7.8)

s 27 4
where v =~ 0.577 is the Euler-Mascheroni constant, 1(x) is the digamma function (notice
that (1) = —~g) and Cy(p) is independent of the boundary conditions because it comes
from the term log|G(1 +v) G(1 —v)] in (C.5). The linear and the logarithmic terms in the
expansion (7.8) are independent of the boundary conditions and they are equal to 1/2 of the
corresponding terms in the expansion of the Schatten norms of the two-point function for
the interval on the line (see eq. (9.17) of [42]). The dependence on the boundary conditions
occurs in the constant term of (7.8).

The proper combination of the expansions (7.8) provide the corresponding expansions
of the cumulants (see (7.2)). In particular, one finds that the linear terms of (7.8) simplify in
the combinations (7.2) and therefore Cgi = ﬁi") log(4n) + O(1) as n — oco. By employing
this observation in (7.4), we conclude that all the cumulants contribute to the leading
logarithmic term of S 4 in (6.9).

In figure 10 we show the numerical results of the Schatten norms for different orders
p, evaluated numerically through (7.3) in the range n € [1,100]. Subtracting the leading
divergent terms for large values of 7, the resulting expression tends to a constant as n — oo
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which depend both on p and on the boundary condition. The dependence on the boundary

conditions of the O(1) term in (7.8) occurs only through the term £1/4; indeed, by using

the curves reported in figure 10, we have checked that the curves for Tr(K?) — [Z —

v
YE+¥(p)
272

constant value, which corresponds to Cy(p).

log(4n) £ %] associated to different boundary conditions oscillate around the same

In the regime of small 7, the analysis discussed in section 5.2 for the entanglement
entropies can be applied to the Schatten norms in a straightforward way. The approximate
analytic expressions for Tr(K% ) as n — 0 read

> & 2 € Pny v N [0,1] (7.9)
J

where Py, n and Z; have been introduced in section 5.2. In figure 11 we compare the
numerical results for Tr(K%) when n € [0,12] with the best analytic expressions (dashed
black curves) obtained from (7.9) as discussed in section 5.2 for the entanglement entropies.
The agreement is remarkable in a range of n whose width decreases with p.

8 Conclusions

We studied the entanglement entropies ng)i of an interval adjacent to the boundary of
the half line for the free fermionic spinless Schrodinger field theory at finite density u
and zero temperature, along the lines of the analysis made in [42] of these quantities for
an interval on the line. We have considered the models characterised by scale invariant
boundary conditions (2.11) at the origin of the half line, which are of either Neumann (+)
or Dirichlet (—) type.

The spectral problems (3.4) can be solved (see section 3.1) through the sine kernel
spectral problem in the interval on the line, whose solution has been found by Slepian,
Pollak and Landau in the seminal papers [49-53]. The corresponding eigenvalues 7.-,
which are functions of the dimensionless parameter 7 introduced in (2.22), can be written
in terms of the PSWF, as shown in (3.11), (3.12) and (3.6). The relation (3.18) and the
results of [42] allow to prove that 51(403: are finite functions of 7 (see e.g. in figure 1, figure 2
and figure 3). We remark that S 4 display an oscillatory behaviour, differently from
So4 c R, as shown in figure 1.

The numerical evaluation of S,(f)i has been performed as described in [42]. In this
manuscript we have obtained analytic expressions for the expansions of S +, both in the
small 7 regime (see (5.12) and figure 5) and in the large 7 regime (see (6.7), (6.9), (6.11)
with the coefficients corresponding to N € {0, 1,2} written explicitly in section 6, and
figure 3). These analytic results are based on the expansions of the Fredholm determinants
74+ in (3.20), that are given by (5.9) and (6.1). Since 71 are special cases of the Bessel
kernel tau function [60, 88, 89] (see (A.11)), these expansions have been obtained from the
expansions found in [61] and [62] for the Painlevé III} tau functions as n — 0 and n — co
respectively (see the appendices B.2 and C.1). Some terms of the small 7 expansions of
Sgoji have been obtained also through the properties of the PSWF (see section 5.1).
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The large 7 expansion of S4 4 can be also written as in (3.25) and this form highlights
the fact that the first correction vanishing as 7 — oo can be expressed through the Friedel
oscillations occurring in the normalised density at the entangling point (2.22) (see figure 4).

In section 4 we have shown that the results obtained for the Schrédinger model, whose
Lifshitz exponent is z = 2, can be employed to obtain the corresponding ones for a hierarchy
of two component Lifshitz fermion fields on the half line having even z. In the same section,
we have considered also a hierarchy of Lifshitz fermion fields on the half line with odd
values of z, whose first model (z = 1) corresponds to the massless Dirac fermion on the
half line [90].

Finally, we have discussed the expansion (7.4), found in [70-72], of S4 in terms of
charge cumulants (see figure 9), and the Schatten norms (7.3) by adapting the procedure
described for the entanglement entropies (see figure 10 and figure 11).

Various directions can be explored to extend the results discussed in this manuscript.
Considering free non-relativistic models, it would be interesting to study the entanglement
entropies when the system is in a generic Gibbs state, where both the density and the tem-
perature are non vanishing [98—-100]. Furthermore, it would be very insightful to investigate
the same problems also for non-relativistic bosonic fields. Besides a physical boundary, a
point-like defect provides another way to break the invariance under translations that would
be interesting to explore for non-relativistic field theories [101-107]. It is worth consider-
ing also the entanglement entropies of more complicated spatial bipartitions, given e.g. by
two disjoint intervals on the line [92, 108-114] or by a single interval not adjacent to the
boundary of the half line [69, 90]. Interesting models where it is important to understand
the properties of the bipartite entanglement include the relativistic massive models and
their non-relativistic limit [115-117]. The most important generalisations to study are the
non-relativistic interacting models, like e.g. the d = 1 spinfull fermionic field with a quartic
interaction [40, 118, 119]. Another important direction to pursue involves the analysis of the
entanglement entropies in gravitational theories with non-relativistic symmetries [120-123].

Acknowledgments

It is our pleasure to thank Alexander Its and Oleg Lisovyy for insightful conversations and
suggestions. We are grateful to Giulio Bonelli, Pasquale Calabrese, Maurizio Fagotti, Da-
vide Fioravanti, Pavlo Gavrylenko, Domenico Seminara, German Sierra, Wolfgang Spitzer,
Luca Tagliacozzo and Alessandro Tanzini for useful discussions. ET acknowledges the In-
stituto de Fisica Teérica (Madrid) for warm hospitality and support during part of this
work. ET’s research has been conducted within the framework of the Trieste Institute for
Theoretical Quantum Technologies (TQT).

— 30 —



A A Bessel kernel and a Painlevé 111

Let us consider the Bessel kernel [60, 89, 124]
BB JT) — VT Jaly) JaVE)

Kg(a;z,y) = 2@ —y) (A1)
_ \/E Ja—l—l(\/g) Ja(\/@) - \/37 Ja-i-l(\/y) Ja(ﬁ) (A 2)
B 2(z —y) '
1 1
- Z/o Jo(VT5) Ju(/75) ds o> -1 (A.3)

where £ > 0 and y > 0 with = # y, J;,(§) = 0:J4(€) and some identities for Bessel functions
have been employed.?
The kernels (3.1) can be expressed in terms of the Bessel kernel (A.1) as follows

Ki(nz,y) = 2n*VTy KB<:F;;(nx)2,(ny)2>- (A.5)

This identity leads us to write the spectral problems (3.4) as

1 1
2772/0 dy /Ty KB<:F2 s (nx)?, (ny)Q) o (y) = v fof (n52). (A.6)
In terms of & = (nz)? and of the integration variable § = (ny)?, this becomes
o LN e Vg fi vz
/ dg KB<3F;:c,y> (n:(/n) = (?74 = fn). (A7)
0 2 Vi Vi

Comparing this expression with (3.4), one realises that the spectral problem associated

to Ky(F3;2,y) in the interval [0,7% € Rt and the one associated to K4 (n;z,y) in the

interval [0,1] € R* discussed in section 3 have the same spectrum; hence they share the
same tau function.

The Fredholm determinant 73(t) = det(I — 2~ ' Kjp) associated to the integral operator

Ky acting on the interval [0,¢], whose kernel is (A.1), can be studied by introducing the
auxiliary function

os(t) = — tolog|ms(t)] . (A.8)

This function satisfies the following Painlevé III equation [60, 88, 89]
(tag)2+(4(71’3—1) (op —toy) O']/3—CL2<O'],3)2 =0 (A.9)

with the boundary condition
t1+a

t— 0t A.10
22204001+ a) (2 + a) + ~ ( )

op(t) =

3The expressions in (A.2) and (A.3) have been obtained by using respectively £J.(€) = aJo (&) —&Juy1(€)

and
2Jat1(22)Ja(§2) — §Ja(T2) Jat1(F2)
72 — gQ :

/zJa(iz)Ja(ﬂz) dz = 2 (A.4)
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where the dots correspond to subleading terms. Notice that, while the differential equa-
tion (A.9) is not affected by the sign of a, its boundary condition (A.10) depends on it.
Combining the observations collected above, we have that

T+(n) = TB(nQ)]a:jFl/Q. (A.11)

We remark that two different versions of the Painlevé III; differential equation have
been introduced in the literature, which are usually denoted by Painlevé I11; and Painlevé
IIT} [125]. In the o-form of Jimbo, Miwa and Okamoto, the Painlevé III; reads

0, — 0,)>
(tof)* + (4ot 1) (o — toh) oy — 400,00~ 0 0 (A
while the Painlevé IIT] is
(t Uﬁl’)Q - [4(0411’)2 — 1] (our — topy) +40.0. 01y — (93 + 93) =0 (A.13)

where the notation of [61] has been adopted. These differential equations are invariant
under (04, 60,) — (=0, —0,). The solutions of (A.12) and (A.13) are related as follows (see
e.g. remark 2 in [126])

t
UIII<t) = — Onr (t/4) + é + 0*9* . (A14)

The tau functions associated to the solutions of (A.12) and (A.13) are defined respectively
by

UIII (t) = — t 8t log [TIII (t)] UIII’ (t) = t at log [TIII/ (t)} . (A15)
From these definitions and the relation (A.14), one finds that
THI/ (t/4)

T (t) o /8 1005 " (A.16)

As for the Bessel kernel (A.1), the differential equation (A.9) satisfied by its auxiliary
function (A.8) corresponds to (A.12) in the special case given by 6, = 6, = +a/2. In our
analysis we set 0, = 0, = —a/2.

The relations (A.11) and (A.16) provide (3.22) up to a proportionality constant whose
derivation is reported in the appendix B.2 (see (B.15)).

B On the small n expansion

In this appendix we describe the technical details underlying some results concerning the
expansions of the entanglement entropies as 7 — 0 reported in section 5.

B.1 PSWF approach

In the following we discuss the derivation of the expansions of Sj(fi given in (5.5) and (5.6).
For finite v # 1, the expression (3.15) can be written as so () = Sq,1(2) + 5q,2(2), with

a ! 2?2 23 2t
Sa’l(x)zl—abg(l_w):a—l x+?+§+z+0(x5) (B.1)
1 e )J+1
sap(@) = 7= log[L+xa(2)] = — Xja () (B.2)
7=1

where we have introduced xs(z) = [/(1 — 2)]°.
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The contribution to (5.5) and (5.6) coming from s, 1(z) is given by

a | 93 - 5 5 nt 5
Sa,l(’VO):ﬁ 9077+?7I + g*‘a Gon® + 4 2+ ag +0(n°) (B.3)

a

7 o
-1

5 10| 00" (B.4)

Sa,1(71) = o [ém?’ +qiann” +
in terms of (5.2); while sa1(721) = O(1®) and s4.1(y2n41) = O(n7) when n > 1. As for
the contribution to (5.5) and (5.6) originating from s 2(x), all the eigenvalues must be
considered; indeed for generic a we have

xs(10) = don’ {1 + Bgon + (ﬁ&o + W;”gé) "’ (B.5)
+/3(56+ 1) <6a0+(,6’+290 }+O (5+0)
X5 (2n) = Gon Uty {1 + Bagnn2} + O (n+Alnt)) n>1  (B.6)
and
xs(n) = {1+ Ban? + Bgn*} + O () (B.7)
X5 (V2n11) = o™ 4 Banan? | + O () n>1. (BS)

Combining the above results, we arrive to
(a) - G 2, (G0 -~ \.oa, (90,2 )4
Sat = o1 |0t | oo | g0k |1

2 ~2
+Z +9077+ (ao+(1a+1)92 >n2+(ja+1)§o <&o+(ja+2)969> 773] e

DR ( Ry )gaznfa“”*”}+0<nmin{5’4+a}> (B.9)

n=1j=1

«o 1
Sl = {(gm + g’ + > Z gl (m+&1n2+§1n3> (B.10)

SRS JHle a(4n 1 ~ min o
+Z Z<_ 9%n+ g (4n+3) (ja +a2n+1772> } +0(n {7,443 })_

n=1j=1

We remark that, despite (B.9) and (B.10) contain an infinite number of terms, only a finite
number of them are O(n™™{>4+a}) or O (nmind74432}) onee o has been fixed. In particular,
when o > 1, from (B.9) and (B.10) we obtain the expansions (5.5) and (5.6) by discarding
the terms of order O(n°) and O(n") respectively.
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B.2 Tau function approach

In this appendix we derive (5.9) as special cases of the expansion of the Painlevé 11T} tau
function found in [61].
The Conjecture 4 of [61], combined with (A.11) and (A.16), provides the following

ansatz

Co. 11 )20+ 11 )
== W%CIII/<i47i4’Ui+n) St & (2> BIII’(i47i4vai+n; n /4>

(B.11)

where the explicit expressions of Cyy (6, 0y,5) and Byy (0, 60,,6;t) are reported in [61].%
In our cases we need the special case given by Cyy(60,60,5) (see (5.10)).

The parameters Co +, 6+ and syp 1 in (B.11) are fixed by imposing the proper be-

haviour as n — 0. This behaviour is obtained by employing the small 1 expansion of the

eigenvalues (see (5.1) and (5.2)) into the definition (3.20) of the tau functions 74, finding

3 2 2 3
=130t —goao - +0@®) =1-=24+ 2T L o) (B.12)
z z Tz 9m z
3 5 3 5
. n . . 7N 7 2 2 7 7
1 L I -—1-=2X 4, = 7 B.1
T glz 91a12+0(77) 91 z+757r z+0(n) (B.13)

which agree with the expansions obtained from eq. (1.22) of [60].

In order to get consistency between (B.11) and the expansions in (B.12) and (B.13),
first we observe that both 74 and BHI/(i%, ii, 6+ +mn;n%/4) do not diverge as n — 0. This
tells us that the factor 1 /nl/ 8 multiplying the series in the r.h.s. of (B.11) must simplify
with the factor (n/ 2)2‘3:2‘#4?&"“"2 in the summand of the series in (B.11); hence 64+ = 1/4.

For this specific value of 64, we have that

CIII/(+i,+jl,i+n>]n>0: 0 CI“'<_111’_411’111+”>|71<0: 0 (B.14)
which simplify (B.11) in a significant way. For n = 0 we have Cyy (:I:%, :I:i, %) = x¥1/2,
Then, by considering the terms corresponding to n € {—1,0, 1} in (B.11), which involve
also By (3, £, 3 + n; n°/4) for these values of n, agreement with (B.12) and (B.13) is
obtained when
91/8 o
Co+ = —E12 S+ = 27 . (B.15)

Combining the above results, we find that the expansion (B.11) simplifies to (5.9),
with
01 11
) — S [ A g B.1
B:I:(nvt) Z B/\,u( 4’ 474:Fn) 3 ( 6)
A peY
where Y is the set of all Young diagrams (see section 3.1 of [61] for a more detailed expla-
nation) and the coefficients B/{f};(ﬁ*, 0,,0) are given by eq. (4.19) of [61]. From (B.16), we

4The parameter & corresponds to the one denoted by ¢ in [61].
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obtain the following expansions of By (n;t) for some values of n

2 3t t6 t7 18 9
1) = 1+t — B.1
B (051) + +'2 +_6_+ +120%_720_%5040 40320 362880 (B17)

Bo(lit) = 14 ¢y 2o 733 5 187483, 4481800 o 24147213
9 450 7350 | 7144200 = 864448200 = 292183491600
25, 1003, 67979 , 338600363 , 74803 5

2t) =1 —t
Bi(Zit) = 1+ +7350 +2668050 +88376488200 +14607684O

B, (3:1) = 1+ﬂt—|— 5289 o 1216997 5 = 22574889473 ,
R 121 40898 54108054 7568418161304
113 2797321 , = 6943216561 5 34818356971

+ 095 T 21078450 T T 320013558150 . T 12442127140872

where the dots denote subleading terms; while for the expansions of B_(n;t) corresponding

to the same values of n we find
t2 3 t4 t5 t6 t7 t8 t9
B_(0;t) = 1+¢ —
(0:) = ++24_6+ +120+720+5040+40320+362880+
B (1:t) = 1+§t+ 369 2 6887 3y 680459 4y 20582899 -
B 25 2450 198450 96049800 16232416200
B (2:1) = 1+41 +126409 2 1266497 3 4321645 M 45832437061 5
a 81 960498 54108054 1348539192 126661543608600
B (3:1) = 1+§ . 130929 , 526486511 16747684673123
B 169 1022450 23934532050 5840887463353800
145 38897 o 2786241737 4 8223548620739
B_(4;t) = 1+ —1t+
289 306850 129592267350 2986329051875400

and By (n;t) =1+... when n > 5. We have access to more terms in these expansions, but

(B.18)

they have not been written here to avoid lengthy expressions. In the case of n = 0, these
expansions lead us to conjecture that B4 (0;t) = e'.

The best results reported in section 5.2 for the small 7 expansions of the entanglement
entropies involve a polynomial of fourth degree in z. This is achieved by employing the ex-
pansion of By (n;t) and B_(n;t) up to O(t?), where the pairs (n, p) are given respectively by

(n,p) € {(0,23),(1,22),(2,20), (3,15), (4,9), (5,0) } (B.19)
(n,p) € {(0,28),(1,26),(2,23), (3,17), (4,10), (5,0)} (B.20)

and whose first terms are reported in (B.17) and (B.18).

C On the large 1 expansion

In this appendix we discuss the derivation of some results o the expansion of the entangle-
ment entropies as n — oo employed in section 6.
C.1 Tau functions

Consider the expansion of the Painlevé III} tau function given in eq. (A.30) of [62]. In the

cases we are exploring 0, = 0, = £1/4 (see the appendix A); hence this expansion becomes
) D (D 2

) = 57 Y PG rn,s) Y 2O s o)

1Y
nez p=0 § 16
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where
7rA2 G(l +ﬁ)2

(27‘()9 902 02-1/6
and Dy, (7) for p € {0, 1,2} have been reported in (6.3). The function (C.1) is parameterised
by P and 7.

Combining the expansion (C.1) with (A.11) and (A.16), we find that the tau functions
occurring in (3.19) can be written as

€(D,s) = e 3 Hivstig (C.2)

T/ (772/4) (0‘3)

7+ =N
+ £ P8 /8

2 oo
— 28Ny 3 PR el5 (et Hi2n(vatn) G +ve +7n) > Dplve +0) (C.4)

net (2m) (et () etm)® 2= (2m)°

where the parameters Ny, vy and Py (which depend on z but are independent of 1) occur
in the first terms of the large n expansion of 7.

The leading terms in the expansion of log 71 as 7 — oo have been reported in eq. (1.35)
of [63] and, in our notation,’ they read (see also (6.8))

log(7+) = i2vn — 2 log(4n) + i g v+log[G(1+v)G(1—v)]+0(1/n) (C.5)

where v is given by (6.2). Comparing (C.5) with the term having n = p = 0in (C.4), we find

_ (27T)l/ G(l — V) iZ(£v—v?)
Ne = i G+

which are independent of 7, as expected. The constant P+ cannot be obtained from the

vy =v (C.6)

terms reported in (C.5) because it occurs in the subleading contributions of (C.4) having
n # 0.

We find the parameter P_ in terms of z by imposing that 7_ in (C.4) agrees with the
proper limit of the corresponding lattice result obtained for the XX model in the semi-
infinite chain with open boundary conditions [65-69]. In particular, from eq. (39) of [69]
and by employing the notation adopted there, we have the following lattice result®

Dy(N)

a1y Jt e

— o 21BkF there £ Z iz (B+n) [4(€ +1/2) ] sin(kg there)
nez

X e_inF,there e_QikF,theren(E""l/Q) G(l +n+ 6) G(l —n — /8>

where ¢ is the number of consecutive sites of the block located at the beginning of the
semi-infinite chain and § = 5~ log()‘ﬂ) The parameter A in (C.7) and z are related by
A =2z — 1; hence = —v, with v being defined in (6.2).

In the double scaling limit given by ¢ — +00 and kg tpere — 01 With £ kg ipee = 17 kept

fixed (which implies Ly, jere = 4(€ + 1/2) [sin(ke tnere)| — 47), the expression (C.7) becomes

Dg( Z o 2 I/+n) 127](1/+n) G(l + v+ n) G(l -V — n) ' (C8)
(A+1 (4m) (v+n)?
5Comparing with the notation in eq. (1.35) of [63], we have tihere = 772, Uthere = —27i v and Ghere = F1/2.

5The expression (C.7) has been obtained by simply removing a factor exp(—2iBkr there £) in eq. (39)
of [69]. The proper limits of (C.7) agree with eq. (36) of [69] and with the expansion (C.5).
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By imposing that this expansion coincides with the series in n given by the truncation of
7_ in (C.4) obtained by considering only the term p = 0 in the second series, we find”

e—127r1/

P_. =i

- (C.10)

Finally, plugging the expressions for v_, N_ and P_ (see (6.2), (C.6) and (C.10))
into (C.4), the expression for 7_ reported in (6.1) is obtained.
The ansatz for 74 can be found by using the relation (3.21), with [61]

2 .
; Gl4+v+n)G(l—v—n) . Di(v+n)
_— idn(v+n) Zp N7 (C.11)
Tsine € - .
nze:z (44" p§::0 (dni)p

8 In

where v and Dj"(v) are given respectively in (6.2) and in egs. (8.3)-(8.5) of [42].
particular, by using (6.1), (C.11) and (C.4) for 7_, 7., and 74 respectively into (3.21), we
obtain a relation that allows to determines the parameter P as function of z. Denoting by

ny, n— and ng,, and by p4, p— and p,. the labels n and p respectively in the corresponding

expressions (C.4), (6.1) and (C.11), from the term having ny = n_ = ng, > 1 and
P+ = P— = Psine = 0 We arrive to
e—i27r1/
Pp = —i (C.12)
z

Finally, the expression for 74 in (6.1) is obtained by plugging (C.6) and (C.12) into (C.4).

Let us remark that it would be worth providing an alternative derivation of the pa-
rameters N4, v1 and Py in (C.4) through the connection formula for the Painlevé I11;, as
done in [42] for the interval on the line, where the connection formula for the Painlevé V
given in [127] has been employed.

C.2 A consistency check

In the final part of the appendix C.1, the ansatz for 74 in (6.1) has been obtained by re-
quiring the validity of (3.21), but only few terms of the resulting series have been employed
to fix the parameters occurring in (C.4) for 7. Hence, the relation (3.21) can be used as
consistency check of the expressions for 74 and 7,;,. given in (6.1) and (C.11) respectively,
where free parameters do not occur. This analysis is performed by reorganising in the
powers of 7 the expansions involved in (3.21).

As for 7., (see (C.11)), let us first change (n, k) into (n, j), where j = 2n% + k; hence
for each n € Z we have j € {2n?,2n% + 1,---}. This leads to write (C.11) as follows

g Gl+v+n)?2Gl—-—v—n)?® .
_ 4 ( + ) sine
Tsine — § . E :2 S jj—2n2 (4n)2u(u+2n)+j j—2n2 (V + n) . (0-13)
nes j=2n

"In this calculation we have used the identities

Gl-v)GA+v+n) J(n=D)m
Glv+1) o

T+ 1)I(-v)]"GA-n—-v) Iv+ 1) (-v) = (C.9)

and that 1/sin(rv) = —2ize™ (from (6.2)).
8The expression (C.11) coincides with eq. (8.1) of [42] after some manipulations.
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The condition j > 2n? for any n € Z is equivalent to —n(j) < n < n,(j) with j € Ny,
where we have introduced n,(j) = |/j/2]. Thus, 7.,. can be written as

o0 ns(7) . 2 )2
Tsine = Z . j Z (_1)”261477(V+n) G(l s n) G(l - n) ;iiEQnQ (V + TL) .

i 2v(v+2
= n)y S i/ (4m) 2 (v 20)
(C.14)
Performing the same manipulations for 74 in (6.1) as well, one obtains the following ex-
pansions
00 nn(f)
n Gl+v+n)Gl—v—mn) .2
_ +iZ (v+n) 1277(n+1/) j—n )
-y, > OV gy
Jj=0 n——nh

(C.15)
where n,,(j) = [V7] -
By writing the expressions (C.14) and (C.15) as 7y, = 32720 Teine,j and 74 = 37720 T4
respectively, we find that (3.21) is equivalent to

J
Toine,j = Zn,z T_ -l Vj€eNp. (C.16)
=0

We have checked the validity of this relation only for j € {0,1,2}, finding agreement. In
order to check (C.16) also for j > 3, one needs the explicit expressions for Dy (v) with k > 3.

C.3 Subleading terms of the entanglement entropies

In this subsection we discuss the evaluation of gﬁla,)mo in (6.7), where k € {4+, —}, which
contains the subleading terms of the entanglement entropies that vanish as n — oo. These

terms are obtained from the expansion (6.6).

C.3.1 Expansion of the vanishing term

By using (3.19) and (6.4), for the term 5% n (6.7) we have

Anoo

5 = tim —j{dzsa ). 10g (Toro) = — lim —fdzs ) log (Tase) (C.17)

€,0—0 271 €,0—0 271

where an integration by parts has been performed and the closed path € in the complex
plane, which is parameterised by € > 0 and § > 0, has been described in the text be-
low (3.19). The integrals along € and € in (C.17) vanish as € — 0. In order to evaluated
the remaining two terms, one needs the limit of 7y o as z — x £10™, with = € [0,1]. The
dependence on z in the expansion (6.6) occurs through v = v(z) in (6.2), which gives

1 1
%g% V| _oiis %13%% log[l — (z +10)7'] = :I:i—l—%log(l/x—l). (C.18)

This suggests to adopt y = % log(1/x — 1) as integration variable in the remaining two
integrals; hence (C.17) becomes

56 = o /_ +Ooooﬁ’a(y) 108 (Taooly—4y-1) =108(Teoclye iyy1) |y (C19)

2mi
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where, for « = 1 and « € (0,1) U (1, 00), we have respectively

7'['2 jye:
Si(y) = _[cosh(jiy)]z §(y) = —— [tanh(my) — tanh(ary)] . (C.20)

The change of integration variable y — —y in the second term of (C.19) leads to

Shroo = 5 / dy 8, (y)[log (7;00) + log (7;00) ] (C.21)
where .
773,[00 = H,OO’y:if/ U= 3 +iy (C.22)

which can be written explicitly by using (6.6) and the result reads

ZZ ) 12m72’€ Gl+o+n)G1Fv—

n) -

nel k= O

Let us first perform the change of variable n — —n only for 7.t . This allows to
write (C.23) as

:Fl’{ e:F12m7 4 2iyn ~ ~
T =% Z 7 n2_n(+k”) 9% G, () Dy(£7 F n) (C.24)
n€Z k=0 (4n)

where
Gl+7v—n)G(1—7v+n)

Gn = Gn(7) = AT GA—7) (C.25)
which can be written also as
Gng—1(D) = 1__[ F(I;(i—;f)ﬁ) Gnoo(?) =1 Gu=1(9) =[] m (C.26)

The expression (C.24) suggests to introduce j = n? — n + k to replace the index k. Thus,
for any n € Z, we have j > n? — n, which can be equivalently reformulated by introducing
i(j) = |/ + 1/4 — 1/2] and considering the values of n such that —7i(j) < n < 7(j) + 1
for any j € Ny. For instance, we have n(0) = n(1) = 0, n(2) = n(3) = n(4) = n(5) = 1,
etc.. These manipulations allow to write (C.24) as follows

o RE . i(j)+1 , N ‘ ,
= Z (47;] Ry, = Z( 4)($i/€)"e¢l " (4p) 2 20NN G () Djtn_n2(£P Fn).
J= n=—n(J
(C.27)
By introducing ﬁio as follows
Rro=1+Ry, (C.28)
where
. Fi2p 2iy _ F(% — iy)
Rio=Fin P2 ()W Qy) Q) =Gi(f) = =22 (C.29)
F(§ + iy)
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the expression of Rf ; in (C.27) can be written as

S (R )
Rij = Z (Rio)n G (9 )2J+n n? Djtnn2(£0 Fn) Gn(D) = gn(~)n . (C.30)
n=—r(j) 1(7

By exploiting the identity I'(x 4+ 1) = 2 I'(x), one finds that

ITp=t (y + 9e) " n>2
Gn(P) =11 n € {0,1} (C.31)
ety (v —o)*C" Y -1
where .
At this point, let us consider
00 0 yiN
:l: >y K?
log(7,:5%) = log(1 + R )+ log< 2 > 2 ) (C.33)
where we have introduced
R:i:
By =N (C.34)
' 1+R.o

and

) . k k
yﬁo = log(l + Rio) yﬁi’Nﬂ = Z(_l)zj':l ri+1 (2:]1—73 H r7 C 35)

TN ] 17’]

being T defined as the set made by the integer decompositions of N € N, namely

k
TN = {((plvrl)v--')(pkvrk)) € (N2)k s.t. pP1L> > Pk and Zp]r] = N} (036)

j=1
For instance, for N € {1,2,3,4} we have
T = {(1. 1)} T, = {((2,1),((1,2))} (C.37)
T = {((3,1), (2.1, (1,1)). ((1,3))} (C.38)

Ty = {((4.), (3.1, (1, 1), ((2,2)), ((2,1): (1,2)), ((1,4)) | (C.39)

which respectively provide the following expression for y;f N (from (C.35))

1 2
y;ic,l = Br:@t,l y/:it,Q = B$2 - 5(3,351) (C-40)
1 3
Vs = B;'fg — By By + 5 (Byy) (C.41)
1 1
VE = By - BEBE — (B + BE,(BE)? — 1(BE)*. (C.42)

In our analysis only N =1 and N = 2 have been employed.
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Finally, by employing the expansions (C.33) into (C.21), the subleading terms of the
entanglement entropies in (6.7) can be written in the form (6.11) with

~(a 1 +<>oA _
S e = 55 [ S0)(Von + Vin) dy (C.43)

271 J 0o
where the function §/ (y) is given in (C.20).

C.3.2 Useful integrals

In the forthcoming analyses, we systematically encounter the integrals

elz(l 1) o) .
P = /+ SR £ (RE) | P)ay ez (Caq)

o4,k 271 o

where P(y) is a polynomial and the factor ¢'T (¥ has been introduced for later convenience
(in order to facilitate the construction of the trigonometric functions).

Since the integral (C.44) for j = 0 can be performed analytically, in the following we
consider only the cases where j # 0. The integrand in (C.44) involves an integer power
of ﬁio defined in (C.29); hence the integral (C.44) can be evaluated by applying the
residue theorem. It is convenient to choose a closed integration path that includes a half
circumference at infinity lying either to the upper half plane or to the lower half plane, for
j > 0or j < 0 respectively.

As for the singularities of the integrand occurring in (C.44), the function (y) has
simple zeros in the upper half plane for y = {j;, and simple poles in the lower half plane for
y = — 0k, where k € N. The opposite holds for 1/Q(y). Furthermore, for k € N we have

Qy) = (=D (k= 1) (y — ) + O((y — 9)?) (C.45)
1/9(y) = i(~1)F[(k — D (y + 9x) + O((y + 3)?) - (C.46)

The function §(y) has double poles for y = + ¢ with k& € N, and

N _ Uk AN g _ Uk NN —
i +O0((y—9x) ") W) =~ +O0((y+9r)7") . (C4T)

Instead, considering the function &, (y) for finite & # 1 and decomposing it as follows

g (y) = 2 - tanh(ry) + tanh(amy) (C.48)

o — 1l -«
one observes that the first term has simple poles for y = 4§, with residues equal to
a/(a— 1), while the second term has simple poles for y = + g /c, with k£ € N and residues
equal to 1/(1 — «).

The above observations lead us to evaluate the integral (C.44) by considering o = 1
and finite o # 1 separately.

When o = 1, one finds Iljfjﬁ[P] = 0 for |j| > 2 because the zeros of ﬁio are simple
while the poles of §(y) are double. For j € {1, —1}, by using (C.45), (C.46) and C.47), we
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get

2 eFi20P (g, ) 1

§(y) Ry Ply) = Fir (—1)"(2k— 1) [(k—1)!] +0((y—)°)  (C.49)

2(4n)*P=1 Y=gk
ei12
$) ) = im0 Gt e 0l (©50

where k € N. Thus, for the integral (C.44) in these cases we obtain (here j € {—1,1} and
§ = sign(j))

PG sin(2 for Z;"
Pl = s Stk Do - (T P o

1 7 Ii

For finite « # 1, the contribution of the first term in the r.h.s. of (C.48) vanish because
its simple poles cancel with the simple zeros of R x0- As for the contribution of the second
term in the r.h.s. of (C.48) to (C.44), we find

564(1:” - - 5+ \J
ZP S0 {( ) ’y eyfa T (Rico) ’?F&yk/a} (C.52)

o) (oSl Y {oxlin B

(4n)@k=1)/a —sin[(2n — %)]] for 7 ik

Ty, Pl =

o,j,K

where £ = sign(j) again and

1 (3-&+Y
Q(yk/a) - Q(—@k/a) - F(%—i—% _ g) : (0'53)

C.3.3 N =0 term

The first term in (6.11) corresponds to N = 0 and its coefficient §1(40170070 can be evaluated
from (C.43) and (C.35) specialised to N = 0. First one expands (C.35) as follows

00 j+1 .
yf:-;to = log(1 Z RE )] (C.54)
7=1
finding that (C.43) for N = 0 can be written as
S(a) 1 0 -7+1 oo N N Sy o\j
SA R,00,0 T Z /oo Sa(y) [(RN,O) + (RH,O) } dy (0'55)

which is a series whose coefficients are the integrals Iotj [P] in (C.44) with j > 1 and
P(y) = 1 identically. When o = 1, we can employ (C.51) specialised to this case (i.e. for
P(y) =1, k = +1 and £ = +1), finding (6.12). For finite o # 1, from (C.55) and (C.52)
specialised to this case, we obtain (6.13).
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C.34 N =1 term

As for the N = 1 term in (6.11), its coefficient Sj(élioo , can be found through (C.43)
and (C.35) specialised to this case (the expression of RE 1 can be obtained from (C.30)),

that give .
L e 2Ry, ) )
+ Rn 0
From this expression and the expansion
1 )i+ (et il
= = ) (F1)TH(RE) (C.57)
1+Reo i3
we find that (C.43) in this case becomes
(e 1 +Oo ]+1 too ~
S et = 542 S [Pu(#)+Da(- dy+z [ s (C.58)

<2 | (Rq) (Dy(~7+1) = D1 (~2)) + (Rfy) (Da(5 - 1)~ Di(7) dy} .
By observing that D1 (7) + D1(—#) = 0 and introducing

2D(EPF ) - DA = FIP) P =65 (CHY)

we find that (C.58) can be written as
= 1 & +oo s N .
SA ,K,00, 1= 27 Z J+1 / S;(y) [(Rn 0)] — (R;O)j} 731 (y) dy (060)

whose summand takes the form (C.44). Thus, when a = 1, from (C.51) we obtain (6.14);
while for finite a # 1 we arrive to (6.15) by employing (C.52) in (C.60).

C.3.5 N =2 term

The coefficient 5,(40,!)1,00,2 occurring in the term labelled by N = 2 in the r.h.s. of (6.11) is
given by (C.43) and (C.35) specialised to N = 2.
In order to obtain BiQ, first we construct Rf,Q from (C.30), finding

_G4(?)
= 5F

~,0

RE, +ADy(£0) + 4 RE Do F 1) + (RE)? Ga () (C.61)

and then use (C.34), which leads to

Bi, = gif ) +4Dy(£0) — G_1 (D) (C.62)
K,0
L% [G_1(9) — ADo(4D) + 4 Do(£5 F 1)] + @ Ga(D).
1+ Ry, 1+ Ry,
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By using this expression and (C.56) into (C.35) for N = 2, one obtains

1
ynig = Bfg -3 (BEEDQ = y;fza + y;t,Q,b + y;tg,c + yj,z,d + y/:@t,Q,e (C.63)
where
+ 7@,1(5) + ~ N2 5 ~
Vira="7= VE, y=4Ds(+0) ~2D1 (+7)?~G_1(7) (C.64)
K,0
+ 7?%0 5 ~ ~ ~ ~ ~ ~
V=T s {G1(9)—ADa(£)+4Dy (£5F1) —4Dy (£7) [Py (£5F1) D1 (+7)] } (C.65)
~,0
~ 4 \2 54 2
+ (Rio)™ 5 - + ( Rio ) N 12
2 =—2(—= Dy (£0F1)-D; (+5)] . .66
=g 00 ia= 2 e ) [P D) (C.66)

In (C.65) and (C.66), we can employ (C.57) and
1 - ” 54 \j—2
m = 2(—1)](3 — 1)(73:,0)] : (C.67)
K, j=
Plugging (C.63) into (C.43), we find that

~1(46,Y/1,oo,2 = \704,& + ja,b + ja,c + ja,d + ja,e (068)

where the terms in the r.h.s. are the integrals provided by (C.64), (C.65) and (C.66), that
are defined respectively by

1 too L L
Joa = 55 [ 56 (Reg) ™ + (Rig) ™ |Paaly) dy (C.69)
1 [too
Jab =52 8, (y) Pap(y) dy (C.70)
Toe = SV [0 (Rl + (R Pacty) )
a,c = =~ ori ) K,0 K,0 2,c :
Lo [T S—\J | (Bt \J
Toa = 55 2D | @[ (R + (R | Paatw) dy (C.72)
Tae = o D1 - 1) / W[ Ry + (RE | Paclwyay (€79
ae = i = o « ~,0 K,0 € .
in terms of the polynomials given respectively by
Poa(y) = Ga(0) = (y— 1) = (y—i/2)? (C.74)
Pop(y) = 4Do(—07) — 2D1(—)? +4D2(¥) — 2 D1 (9)* — 2G_1(P)
= —10y* +20iy> + 1592 — biy — 5/8 (C.75)
,PZC(y) = g~_1(l7) — 4D2(:|217) =+ 4D2(:|:17 F 1) — 4D1 (:l:ﬂ) [Dl(ﬂzlp F 1) — 'Dl(ﬂ:lj)]
= —18y* — 201y + 43 + 6iy — 3/8 (C.76)
Poa(y) = Ga(p) = (y+1in)" = (y+1/2)° (C.77)
Poely) = 2[Dy (25 F1) — Dy ()] = —18y* + 39> — 1/8. (C.78)
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The integrals occurring in (C.69)—(C.73) have the form (C.44). Hence, when o« = 1 w can
use (C.51) for these integrals, finding

0 2k — 1)[(k — 1)1 Po.a(—ik) 1
Ji,a = K sin(2n) ;::1 ()71 Jip=—¢ (C.79)
o 2k — 1)[(k — 1)1 Pac(y
Tre = sz 2= W) g =0 (e
where Py q(—9k) = (Jk + 91)% = —k* and Pa (k) = —18k* + 16k3 — k? — 8k + 3. Then,

the expression (6.16) is obtained by plugging (C.79) and (C.80) into (C.68) specialised to
a=1.

For positive and finite « # 1, by applying (C.52) to the integrals occurring in (C.69)—
(C.73), we find

o= oo i 20) 3 Pralounfo) e o= EEEED (e
Ja,cz—ilgjlcos[(zn—) }Zm /@) (%) (C.82)
de:iiws[(%—) ]Z%d yi /) (%) (C.83)
N i 1-5) cos[(%]—g) ]szd (/) (%) (C.84)

in terms of the polynomials in (C.74)—(C.78) evaluated at yi/c. Finally, the expres-
sion (6.17) is obtained by combining (C.81)—(C.84) into (C.68).

C.3.6 Consistency checks

It is important to provide some consistency checks for the analytic expressions of the
subleading terms obtained in this appendix and reported in section 6. In the following we
consider the replica limit (3.17), the relation (3.18) and the double scaling limit of some
lattice results.

As for the replica limit (3.17), in the expansion (6.11) it means that 51(40100 N —

gA,i,w,N as « — 1 for any N € Ng. When N = 0, from (6.12), (6.13) and
. Q(gk/a) _ k+1 | 2
iﬂ Ta_1 (=" (k —1/2)[(k — 1)] (C.85)

we conclude that only the term corresponding to ] = 1 gives a non vanishing result in the

sum over j occurring in (6.13); hence 5’1(4 )i 000 SA+.000asa— 1. Similarly, from (6.14)—

(6.17), we have checked that Sﬁl’lm,N — Sa+con as a— 1also for N € {1,2}.

Another consistency check is The validity of the relation (3.18) order by order in the
large 1 expansion in another consistency check. From (6.9), it is straightforward to realise
that this relation holds for the leading terms; hence (3.18) can be verified by checking that

SO o 85 v = 4N SCL N e Ny (C.86)
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for the coefficients of the expansions (6.11), where S’go‘io y for the interval [-R, R] C R on

the line have been determined in [42] for N € {0,1,2}.
When N = 0, first we split (6.13) as follows

0o T\9,;] 00 ~ 27
3(a) 2 cos[(2n — §)24] ( Qgr/a) ) ©
) = , _Nefa) 87)
A,k,00,0 ; 2j Z (47])(219—1)/04
1

because it straightforwardly leads to observe that the terms coming from the second line
of (C.87) cancel in (C.86), while the remaining ones combine into 51(4%())0,0, as expected.
The validity of (C.86) for N = 1 has been checked by employing (6.15). Finally, we have
checked (C.86) for N = 2 by first observing that the terms corresponding to odd values of
j cancel in the sums over j (see (6.17)) occurring in the Lh.s. of (C.86), and then that the

remaining terms give

() s _ (e@+1)(Ba*=17)
SA,+,00,2 + SA,—,oo,Q - 2403 (088)
4 & , s s Qgr/a) \7
1. D (=1) cos(dnj) Y Pa(2); i/ a) <(4((2;€/_1))/a>
Jj=1 k=1 77)

which agrees with the result for §g‘i@2 found in [42].

It is important to verify that our results agree with the proper limit of the correspond-
ing ones obtained on the lattice. In particular, taking the double scaling limit (defined in
the text above (C.8)) of the expression in eq. (57) of [69], we find that dq nere — 51(40,6)—,00,0
(see (6.13)), as expected.

In the literature we have not found lattice results whose continuum limit provide the
subleading terms corresponding to (6.15) and (6.17). These lattice results can be obtained
by studying the subleading corrections to (C.7), as done e.g. in [59] for the block in the
infinite XX chain.
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