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We propose and perform a joint analysis of the two different mass estimates of galaxy clusters, namely,
the hydrostatic and caustic techniques. First, we show comprehensively that the mass bias between these
two techniques can be possibly alleviated when cluster-specific assumptions constrained using the
hydrostatic technique are utilized within the caustic technique. While at face value this demotes the caustic
technique from a completely independent method, this allows one to further tighten the constraints on the
cluster mass and, subsequently, allows us to test modifications to gravity. Implementing the aforementioned
formalism for two well-observed massive galaxy clusters, A2029 and A2142, we highlight the proof of
concept. In the current implementation, we use this method to constrain the chameleon and Vainshtein
screening. As anticipated, we show that the joint analysis can help improve the constraints on these
modified gravity scenarios.
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I. INTRODUCTION

The accurate determination of galaxy cluster masses
stands as a cornerstone in our quest to understand the
evolution of cosmic structures and exploit clusters [1–3]
as indispensable cosmological tools [4–6]. Beyond their
significance in the broader cosmological context, cluster
mass determination holds a pivotal role in deciphering the
intricate astrophysical processes governing both baryonic
and dark matter physics within these clusters, encompass-
ing the hot gas of the intracluster medium (ICM) and
member galaxies, as well as the thermodynamical proper-
ties of the clusters in the outskirts [7–10].
Cluster mass measurement, however, presents an intri-

cate challenge, primarily because the dominant dark matter
component can only be indirectly probed, often relying
on assumed fitting functions such as the Navarro-Frenk-
White (NFW) profile [11]. Determining the total mass
of a cluster traditionally hinges upon the gravitational
influence it exerts on the properties of the ICM and member

galaxies [12] or its gravitational lensing effect on the light
originating from background sources [13]. The most
accurate and precise mass estimation techniques include
hydrostatic masses determined from x-ray observations
of the ICM, caustic techniques based on galaxy
dynamics [14], kinematics of the galaxy cluster members
solving the Jeans equation (for example, [15]), and weak
gravitational lensing measurements [16].
The gold standard for cluster mass estimation has long

been hydrostatic masses derived from x-ray observations
of the ICM [12]. Nevertheless, the accuracy of these
estimates can be compromised by departures from hydro-
static equilibrium or the presence of nonthermal pressure
sources, including turbulence and cosmic rays, often
leading to systematic underestimations of the true mass
by 10%–30% [12,17]. Recent advances in both techniques
and data quality have spotlighted these biases, sparking a
reevaluation of hydrostatic mass estimates against alter-
native methods, such as weak gravitational lensing [12,18].
Among the most robust mass estimation techniques, weak
gravitational lensing measurements, which probe the dis-
tortion of background source light due to the cluster’s
gravitational field, offer unparalleled precision and inde-
pendence from dynamical assumptions. Nevertheless, they
too necessitate high-quality data, including extensive gal-
axy redshifts and lensed sources, as well as assumptions
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in deprojection to reconstruct the shape of the three-
dimensional mass profile (e.g., [19]).
This paper embarks on an exploration of caustic tech-

niques for mass profiling, serving as a promising comple-
ment to weak gravitational lensing [20,21]. The caustic
method relies on identifying unique structures within line-
of-sight velocity and projected-radius space that mirror the
cluster’s escape velocity profile. These caustics provide a
means to reconstruct the cluster’s enclosed mass, extending
far beyond the virial radius [14,22,23].
Similar to the lensing measurements [24–26], caustic

masses remain agnostic to the dynamical state of clusters
and are resilient against the physical processes that can bias
hydrostatic mass estimates. In practice, the caustic tech-
nique capitalizes on overdense envelopes in phase-space
diagrams, mapping the line-of-sight velocity versus pro-
jected radius for galaxies inhabiting cluster infall regions
[14,27,28]. These envelopes’ edges, referred to as the
caustic profile [AðrÞ], can be extracted from observational
data [23], though needing intricate techniques. An inherent
assumption in caustic mass estimates is the constancy of the
filling factor F βðrÞ, a parameter linked to the ratio of mass
gradient to gravitational potential [14,23]. Nevertheless,
N-body simulations have unveiled breakdowns in this
approximation within cluster inner regions, potentially
resulting in an overestimate of up to 10%–20% at r500,
i.e., the radius enclosing an average overdensity of 500
times the critical density of the Universe at that redshift (see
Sec. V), increasing at smaller radii [23]. While hydrostatic
and caustic methods operate independently, each resting
on distinct assumptions and systematic uncertainties, they
exhibit reasonable agreement on average [29,30]. While a
significant scatter is present between the two estimators,
mass estimates align to within approximately 20% over the
full radial range sampled by both techniques [18].
In the pursuit of alleviating biases between hydrostatic

and caustic masses [18,29], we speculate on the effects
of relaxing the constant F βðrÞ assumption [14,22]. To this
end, we explore varying F βðrÞ under the framework of
general relativity (GR) [assuming a Λ cold dark matter
(ΛCDM) universe] and two modified gravity models:
chameleon [31] and Vainshtein screening [32]. The
Lagrangian of the chameleon screening theory includes
the usual Einstein-Hilbert Lagrangian plus the scalar field,
in addition to the Standard Model fields coupled minimally
to gravity [33–37]. In this model, we obtain interesting
phenomenology on cosmological scales, while simultane-
ously screening modified gravity (MG) effects in high-
density environments, allowing it to avoid Solar System
constraints. Thus, GR is obtained in regions of high density,
while in low-density environments we observe the effects
of the modified potentials. The Vainshtein screening [38]
is a useful mechanism for the higher-order scalar
tensor [32,39]. In Vainshtein screening, the gravitational
potentials are modified inside the matter sources [40–45].

This mechanism allows to hide via nonlinear effects—
typically for source distances smaller than a so-called
Vainshtein radius, which depends on the source and the
theory considered—some degrees of freedomwhose effects
are then only left important at large distances, e.g., for
cosmology. Both these theories have been tested using
galaxy clusters [46,47].
Our analysis aims to shed light on the resultant impact on

the caustic mass and, by extension, the mass bias, scruti-
nizing diverse regions of the modified gravity parameter
space. The structure of this paper unfolds as follows:
Section II offers a concise overview of the caustic tech-
nique. In Sec. III, we delve into the intricacies of screening
mechanisms within the framework of modified gravity
scenarios. Section V outlines our approach, encompassing
data sources, methodology, and analytical techniques.
Our results, from the current investigation, are presented
in Sec. VI. Finally, Sec. VII provides concluding remarks.
Throughout this work, we assume H0 ¼ 70 km=sMpc−1
and Ωm ¼ 0.3 in the estimation of the critical density
ρcrit ¼ 8πG=3HðzÞ2 with the standard ΛCDM background
having HðzÞ2 ¼ Ωmð1þ zÞ3 þ 1 −Ωm.

II. THE CAUSTIC METHOD

The caustic technique, as introduced by [27] and further
developed in subsequent works [14,23,28], provides a
unique approach to estimate the mass of the clusters,
utilizing the escape velocity profile of member galaxies
within the cluster. This technique extends our insights from
the central cluster region to radii as large as 3 times the
cluster’s virial radius, denoted as r200, where r200 signifies
the radius of a sphere with an average density 200 times the
critical density (ρcrit) of the background universe. This is
particularly valuable because, at such large radii, galaxy
clusters might not be in complete dynamical equilibrium,
based solely on galaxy redshift data.
Hierarchical clustering, a prominent formation mecha-

nism for galaxy clusters, involves the aggregation of
smaller systems. Unlike a purely radial infall expected in
the spherical collapse model, this process incorporates
substantial nonradial velocities (e.g., White et al. [48]),
resulting in a complex velocity distribution of the galaxies
within clusters (see reviews in [23,28]). The primary reason
for this distribution is completely dependent on the local
gravitational potential [27], coupled with the influences of
surrounding groups and tidal fields. When visualized in a
redshift diagram, portraying the line-of-sight velocity
versus projected distance from the cluster center (the so-
called projected phase space), cluster members delineate
a distinctive trumpet-shaped region symmetric along the
radial axis [49–51].
Within this framework, the caustic surface serves as a

crucial demarcation, defining the boundaries of this
trumpet-shaped region. The amplitude of these caustics,
denoted as AðrÞ, diminishes as we move away from the
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cluster center, and it is intrinsically tied to the average
velocity component hv2i [26]. In a spherically symmetric
system, the escape velocity v2escðrÞ is directly related to
the gravitational potential ΦðrÞ and is a nonincreasing
function of radial distance. The highest observable velocity
corresponds to the escape velocity. Therefore, A2ðrÞ at a
projected radius r⊥ effectively measures the average
velocity component along the line of sight at the three-
dimensional radius r ¼ r⊥.
To quantify this average velocity component, the veloc-

ity anisotropy profile βðrÞ is utilized, which characterizes
the velocity distribution’s deviation from isotropy. This
profile βðrÞ is expressed as 1 − ðhv2θi þ hv2ϕiÞ=2hv2ri, where
vθ, vϕ, and vr are the longitudinal, azimuthal, and radial
velocity components of galaxies, respectively (e.g., [14]).
The velocity anisotropy is generally an unknown variable in
kinematics analyses, and it should be correctly modeled
along with the other dynamical quantities. Parametric
methods (e.g., [15,52,53]) assume specific—physically
motivated—profiles that are fitted to the observed veloc-
ity and position fields. Kinematics determinations based
on the Jeans equation lead to a degeneracy between βðrÞ
and the total cluster mass (the so-called “mass anisotropy
degeneracy”); if additional information on the mass
profiles is provided (such as from x-ray or weak lensing
analyses), nonparametric reconstructions can be per-
formed by inversion of the data (e.g., [54], see also [55]
and references therein).
The gravitational potential profile is related to the caustic

amplitude through the function gðβÞ, given by

gðβÞ ¼ 3 − 2βðrÞ
1 − βðrÞ : ð1Þ

As such, after estimating the caustic amplitude, βðrÞ
becomes the sole unknown factor in estimating the gravi-
tational potential. It is worth emphasizing that the caustic
technique does not depend on assumptions regarding
dynamical equilibrium, the shape of gðβÞ, or the gravita-
tional potential profile ΦðrÞ individually. Instead, it quan-
tifies the combined effect of gðβÞ and ΦðrÞ in terms of the
caustic amplitude A2ðrÞ,

−2ΦðrÞ ¼ A2ðrÞgðβÞ: ð2Þ

This equation implies that the caustic technique can
estimate a combination of the gravitational potential profile
and the velocity anisotropy parameter β. This provides
valuable insights into the dynamical properties of spherical
systems, particularly in the context of galaxy clusters and
their mass profiles. The equation for the caustic mass
profile of a spherical system can be expressed as

GMð< rÞ ¼
Z

r

0

A2ðrÞF βðrÞdr; ð3Þ

where F βðrÞ ¼ F ðrÞgðβÞ and

F ðrÞ ¼ −2πG
ρðrÞr2
ΦðrÞ : ð4Þ

In this context, ρðrÞ is the density profile of the spherical
system (which we assume to be the NFW profile) and ΦðrÞ
stands for the gravitational potential profile.
Equation (3) relates the mass profile to the density profile

of a spherical system and a profile cannot be inferred without
knowing the other. In hierarchical clustering scenarios,
the function F ðrÞ does not exhibit strong variations with
respect to radial distance r [14,27]. Similarly, F βðrÞ also
changes slowly with r if the velocity anisotropy parameter β
is governed by a slowly varying function gðβÞ.
The practical utility of this technique becomes evident

when applied to individual clusters. It typically provides
accurate escape velocity and mass profiles, though there
may be occasional deviations from the actual profile. For
example, when the observed galaxy sample has low com-
pleteness1 toward the outskirts of the cluster, the estimated
caustic surface could be subsequently lower and eventually
provide a lower mass estimate. This is also very evident in
the flattening of the mass profile when no galaxies are
present within the sample (see also Appendix D). This
method holds significant relevance as an alternative to
gravitational lensing for measuring mass in a cluster’s outer
regions [26]. Unlike lensing, it can be applied to clusters at
any redshift, provided there are a sufficient number of
galaxies for a proper redshift diagram analysis.
An important milestone in the application of the caustic

technique was the work of Geller et al. in [57]. They
employed this method to measure the mass profile of the
Coma cluster, extending their analysis to an impressive
10 h−1Mpc from the cluster center. Their findings
demonstrated that the NFW profile provides an excellent
fit to the cluster density profile at these extensive radii,
thereby challenging the viability of the isothermal sphere
as a cluster model. Subsequently, Biviano and Girardi [58]
applied the caustic technique to a composite cluster,
stacking data from 43 clusters in the Two Degree
Galaxy Redshift Survey (Colless et al. [59]). Their results
also aligned with earlier lensing and x-ray analyses,
affirming the method’s robustness and accuracy in estimat-
ing cluster mass profiles.

III. MODIFIED GRAVITY AND SCREENING
MECHANISMS

In this section, we briefly describe the modified gravity
scenarios assessed in the current work and the underlying
screening mechanisms.

1Completeness measures the number of member galaxies
available in the sample with accurate spectroscopic redshifts [56].
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A. Chameleon screening

The chameleon model [33,34,36,37,60] modifies gravity
by introducing a scalar field nonminimally coupled with
the matter components and gives rise to a fifth force that
can be of the same order as the standard gravitational force.
The chameleon mechanism is a two-parameter model.
The chameleon model parameter β determines the strength
of the fifth force when it is not screened. The second
chameleon parameter ϕ∞ controls the effectiveness of the
screening mechanism, describing the transition from the
inner region of a cluster where gravity may be Newtonian
to the outer region where the fifth force contributes. The
critical radius, where the transition occurs, is determined by
both ϕ∞ and β. In the absence of environmental effects, ϕ∞
can be regarded to be the cosmological background value
of the chameleon field.
The chameleon mechanism operates whenever a scalar

field couples to matter in such a way that its effective mass
depends on the local matter density. The scalar-mediated
force between matter particles can be of gravitational
strength, but its range is a decreasing function of ambient
matter density, thereby avoiding detection in regions of
high density. Deep in space, where the mass density is low,
the scalar is light and mediates a fifth force of gravitational
strength, but near Earth, where experiments are performed
and where the local density is high, it acquires a large mass,
making its effects short range and, hence, unobservable.
This is achieved with a canonical scalar field with suitable
self-interaction potential VðϕÞ, which is a decreasing
function of ϕ [60]. For instance, we assume a usual
power-law potential of the form VðϕÞ ¼ Λnþ4ϕ−n, how-
ever, the scalar field constrained within the cluster is not
sensitive to parameters fΛ; ng [31]. The theory (in the
weak-field limit and for the nonrelativistic matter) is
given by [31,61]

Lchameleon ¼ −
1

2
ð∂ϕÞ2 − VðϕÞ − gϕ

MPl
ρm: ð5Þ

The dimensionless coupling parameter g is assumed to
be Oð1Þ, corresponding to the gravitational strength
coupling. In regions of high density, the mass of the
chameleon field increases. The range of interaction
decreases, thus screening the effect of the fifth force
and recovering GR. In low-density environments, the
fifth force is unscreened and the effects of the chameleon
field can be observed. The modified gravitational poten-
tial under this mechanism is given by [31,62]

dΦðrÞ
dr

¼ GNMðrÞ
r2

þ β
dϕ
dr

; ð6Þ

where ϕðrÞ is the chameleon field.
The chameleon field mediates a long-range fifth force

when the matter density is still large compared to the

background and the scalar field has not settled in the
minimum of the effective potential. The chameleon field
becomes effective beyond a critical radius rc, below which
the field is completely screened. This radius is determined
by [31]

1þ rc
rs

¼ βρsr2s
MPlϕ∞

: ð7Þ

The chameleon field [31] in the two limits is given by

ϕðrÞ ¼
(
ϕs½r=rsð1þ r=rsÞ2�≡ ϕintð≈0Þ ðr < rcÞ;
− βρsr2s

MPl

lnð1þr=rsÞ
r=rs

− C
r=rs

þ ϕ∞ ≡ ϕout ðr > rcÞ;
ð8Þ

where

C ≈ −
βρsr2s
MPl

lnð1þ rc=rsÞ þ ϕ∞rc=rs; ð9Þ

ϕ∞ −
βρsr2s
MPl

ð1þ rc=rsÞ−1 ≈ 0: ð10Þ

B. Vainshtein screening

In the case of Vainshtein screening, the additional degrees
of freedom are screened through a nonlinear mechanism.
In Vainshtein screening, the gravitational potentials are
modified inside the matter sources. These modifications
are screened outside the sources and GR is recovered in low-
density environments, as required by tests of gravity. GR is
not recovered everywhere within the Vainshtein radius as the
screening breaks down there. The Vainshtein radius rV is
given by the curvature of the object [63,64].
The modified gravitational potential is now given

as [40–43,47,65]

dΦðrÞ
dr

¼ Geff
N MðrÞ
r2

þ Ξ1Geff
N M00ðrÞ; ð11Þ

where Geff
N is the modified Newton’s constant defined as

Geff
N ¼ γ̃N × GN and 0 represents the derivative with respect

to r. The effective parameter of the theory Ξ1 is related to
the physical parameters as [65,66]

Ξ1 ¼ −
ðα1 þ βHÞ2
2ðαH þ 2β1Þ

: ð12Þ

In [47], we set γ̃N ¼ 1 when presenting the final results,
as this parameter will be completely degenerate with
normalization of mass term MðrÞ. Hence, the assessment
was limited only to the parameter Ξ1, as the physical
parameters can only be disentangled when the weak lensing
potential is utilized complementary to the hydrostatic
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potential [47,65]; in the case of Vainshtein screening, the
gravitational potential and the weak lensing potential are
different. In the current work, although a joint analysis
with different mass-estimating techniques is utilized, the
potential is the same, unable to break additional degen-
eracies. However, we anticipate that the improvement in
the constraints of mass should help with better con-
straining the Ξ1 parameter. Although the γ̃N is uncon-
strained, we leave it as a free parameter when performing
the joint importance sampling analysis, to assess the
improvement in the constraints. Note that both for the
chameleon and the Vainshtein screening mechanisms we
are solely interested in the modifications to the gravita-
tional potential given by Eqs. (6) and (11) to perform the
comparisons with the caustic surface estimated through
the phase space of galaxies.

IV. DATA

In this work, we analyze x-ray and spectroscopic data of
two massive galaxy clusters, A2029 and A2142, at redshifts
z ¼ 0.0784 and z ¼ 0.08982, respectively.

A. Hydrostatic data

These clusters have been amply studied, establishing their
hydrostatic masses and other thermodynamic properties,
within the XMM cluster outskirts project (X-COP) compi-
lation presented in [10,67,68], which have been earlier
utilized to test modified gravity scenarios [10,47,69–71].
Note that these two clusters are relaxed [10] and have no
nonthermal pressure support at large radii [67].

B. Caustic data

Meanwhile, the necessary data required for estimating
caustics are sourced from two references: [56] for A2029
and [72] for A2142. These datasets, detailed in Figs. 2
and 3, consist of galaxy right ascension, declination, and
redshift information within the A2029 and A2142 clusters.
These data form the foundation for constructing the
velocity profiles of these clusters, as visually represented
in Figs. 2 and 3. For A2142 we have 2239 galaxies and for
A2029 we have 982 galaxies. The membership selection of
these galaxies for the formation of the caustics is done
using the method detailed in [22]. Note that these two
clusters also have very high ∼95% sample completeness of
the member galaxies, which allows for a more accurate
estimation of the caustic surface.
In effect, we choose to work with these two clusters as

they have very good hydrostatic and caustic data simulta-
neously. The analysis can be extended to clusters that have
both the dynamics and kinematics observed, however,
subject to the precision of the individual measurements
(for example, the Coma cluster [56]). We anticipate the
possibility of extending the analysis to a larger sample [29],
where 44 galaxy clusters were used to estimate the

hydrostatic and caustic bias. Improved hydrostatic obser-
vations NIKA2 [73] and possible improvements of the
observed kinematics would benefit from the application of
the method implemented here. To calculate the gravita-
tional potentials associated with GR, chameleon scalar-
tensor (CS), and vector scalar-tensor (VS) models, as well
as the resulting profile F βðrÞ from the hydrostatic data
(HS), we employ the Markov chain Monte Carlo (MCMC)
chains, as utilized to constrain the models in [47,69,74].
These chains contain all the essential parameters, such as
MHS

200, R
HS
200, c

HS
200, and the modified gravity parameters.

V. METHOD

Under the assumption that the cluster is mostly dominated
by dark matter, specifically in the range beyond ∼30 kpc
which we consider, we can model the mass density using the
NFW profile [75–77], which is given as [11]

ρðrÞ ¼ ρs
ðr=rsÞð1þ r=rsÞ2

; ð13Þ

where ρs is the characteristic density, and rs is the character-
istic radius, where the logarithmic slope s ¼ d ln ρ=d ln r
takes the isothermal value s ¼ −2. The corresponding mass
profile [47,65] in terms of the MΔ and concentration cΔ is
given as

Mð< rÞ ¼ MΔ
lnð1þ cΔxÞ − cΔx=ð1þ cΔxÞ
lnð1þ cΔÞ − cΔ=ð1þ cΔÞ

; ð14Þ

where x ¼ r=RΔ, cΔ ¼ RΔ=rs, and

MΔ ¼ Δ
4

3
πρcðzÞR3

Δ: ð15Þ

We appropriately assume the value of the Δ to be the
usual valueΔ ¼ 200when making comparisons. We utilize
the NFW mass profile to assess the masses in the GR
scenario and also in the Vainshtein and chameleon screen-
ing scenarios, as we have earlier done in [47,69,74],
respectively. The assumption of NFW profile in the current
implementation is supported by the fact that it is the best-
fitting profile in the GR case [12]. As the caustic technique
is essentially independent of such an assumption on the
mass profile, it could be an interesting exercise to assess
the same for different assumptions of the mass profile,
which we leave for a future discussion. In our preliminary
assessment, we find that a varied assumption of the mass
profile, for example, Burkert [78], makes little to no
difference in the final constraints obtained on the modified
gravity parameters.

A. Computing F βðrÞ
In the computation of F βðrÞ, we rely on the expressions

detailed in Eqs. (4) and (1). Here, ρðrÞ, as defined in
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Eq. (13), serves as a crucial component andΦðrÞ represents
the gravitational potential. In the context of general
relativity, ΦðrÞ corresponds to the familiar Newtonian
potential. In the CS and VS models, ΦðrÞ assumes the
forms outlined in Eqs. (6) and (11), respectively.
We perform the calculation for F βðrÞ across 1000

profiles, each corresponding to distinct parameter values
drawn from the MCMC2 samples obtained after fitting the
hydrostatic data, see [74] for chameleon and [47] for
Vainshtein screening. In the resulting plot depicted in
Fig. 1, the solid lines represent the mean values extracted
from these profiles, while the shaded region encompasses
the 95% C.L. allowed regions of the profiles.

B. Measuring AðrÞ
To determine the caustic amplitude, denoted as A2ðrÞ,

we employ a methodology based on the velocity dispersion
profile derived from observational data. This technique,
as described in [14], relies on the velocity distribution of
galaxy clusters. We begin by utilizing velocity data
obtained from the members of galaxy clusters, as provided
in the datasets [56,72] for A2029 and A2142, respectively.

Following the selection of velocities [22],3 taking into
account the full phase space [80] for inclusion in the caustic
diagram, we proceed to define the caustic surfaces using
the technique detailed in [14]. Consider a collection of N
galaxies, each characterized by coordinates x ¼ ðr; vÞ,
where we conveniently rescale both r and v. We adopt
an adaptive kernel method to estimate the density distri-
bution of these galaxies within the redshift diagram.
This density is then expressed as

fqðxÞ ¼
1

N

XN
i¼0

1

h2i
K

�
x − xi

hi

�
: ð16Þ

And the kernel function KðtÞ is defined as

KðtÞ ¼
�
4π−1ð1 − t2Þ3 t < 1

1 otherwise:
ð17Þ

The local smoothing length, denoted as hi, depends on
both the local density and an optical smoothing length hopt,
which is given by

hopt ¼
3.12

N1=6

�
σ2r þ σ2v

2

�
1=2

: ð18Þ

Here, σr and σv represent the marginal standard deviations
of the galaxy coordinates. Additionally, a local smoothing
factor λi is introduced as λi ¼ ½γ=f1ðxiÞ�1=2, where f1 is
calculated from the density distribution. Notably, we set
hc ¼ λi ¼ 1 for any i, and log γ is computed asP

i log½f1ðxiÞ�=N.
The amplitude A2ðrÞ at a fixed radial distance r is then

determined by solving the equation fqðr; vÞ ¼ κ. More
specifically, the first upper and lower solutions, denoted as
vu and vd, are identified away from the maximum of
fqðr; vÞ, closest to v ¼ 0. The amplitudeAðrÞ is computed
as minfjvuj; jvdjg. It is worth noting that the prescription
AðrÞ ¼ min jvuj; jvdj is equivalent to AðrÞ ¼ ðvu − vdÞ=2
in the case of an isolated spherically symmetric system.
While we obtain fqðr; vÞ uniquely except for the choice

of q,4 it is important to highlight that there exists an infinite
range of thresholds κ that can be employed to determine
AðrÞ. In practice, it is reasonable to assume that, particu-
larly in the central region, the cluster has reached a state of
virial stability. Thus, within this central region, the equation
hv2esciR ¼ hv2iR holds. Here, the angular brackets indicate
an average computed over the entire sphere of radius R,

FIG. 1. We show the profiles of F βðrÞ constructed utilizing
the constraints on the gravitational potential obtained by fitting
the hydrostatic data. Top: we show the profiles for the cluster
A2029, for GR (green), chameleon screening (blue), and
Vainshtein screening (red). Similarly, on the bottom we show
the same for the cluster A2142. Note that the GR case coincides
with the upper limit of the chameleon scenario, appearing as an
overlap of the lines.

2We utilize the EMCEE code [79] publicly available at https://
github.com/dfm/emcee.

3We use part of the code provided in [22] to produce the
caustic surfaces and extract the caustic amplitude for the mass
calculation.

4The value of q could be assumed between 5 and 10, and we
validate that it does not affect the estimation of the caustic profile,
within the estimated error. In the current work, we utilize q ¼ 10,
finding no major difference with the assumed value.
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considering velocities in three dimensions. In our specific
dataset, for example, from [56], we only have access to
one-dimensional velocity information. Therefore, the
methodology also assumes that, if the velocity field
exhibits approximate isotropy in the central region, our
expression remains valid. Consequently, we have hv2iκ;R ¼R
R
0 A2ðrÞΦðrÞdr=R R

0 ΦðrÞdr, where ΦðrÞ represents the
integral of fqðr; vÞ. It is important to emphasize that
hv2esciκ;R is the only quantity that depends on the chosen
threshold κ.
To select an appropriate κ, we minimize the function

defined as

Sðκ; RÞ ¼ jhv2esciκ;R − 4hv2iRj2: ð19Þ

Here, we define the radial distance R as the mean projected
distance of cluster members from the cluster center, and
hv2iR represents the one-dimensional velocity dispersion of
the cluster members. This comprehensive methodology
enables us to robustly estimate the caustic amplitude and,
by extension, gain insights into the cluster’s dynamical
properties and mass distribution.
The uncertainty in the measured value of AðrÞ depends

on the number of galaxies contributing to the determination
of AðrÞ [23]. Therefore, we define the relative error,

δAðrÞ=AðrÞ ¼ κ=maxffqðr; vÞg; ð20Þ

where the maximum value of fqðr; vÞ is along the v axis
at fixed r. The resulting error on the cumulative mass
profile is

δMi ¼
Xi

j¼1

j2mjδAðrjÞ=AðrjÞj; ð21Þ

where mj is the mass of the shell frj−1; rjg and i is the
index of the most external shell.

C. Comparing A2ðrÞ
As a preliminary assessment, we utilize Eq. (2) to

perform a comparison between the gravitational potential
on the lhs estimated using the hydrostatic equilibrium and
the caustic surface on the rhs, using the phase-space data
of the galaxies. The fundamental definition of A2ðrÞ is
articulated in Eq. (2). In our investigation, we undertake a
comparative study involving caustic profiles derived from
empirical observations and theoretical projections ofA2ðrÞ.
The latter is determined through both Eq. (2) and the
inversion of Eq. (3). While Eq. (2) yields a prediction for
A2ðrÞ independent of F βðrÞ, Eq. (3) provides predictions
contingent upon F βðrÞ. We meticulously scrutinize how
A2ðrÞ behaves under constant and varyingF βðrÞ scenarios.
Additionally, these equations allow us to quantitatively

assess the fluctuations in A2ðrÞ within the context of
modified gravitational potentials while assuming an
NFW mass profile, as defined in Eq. (14). This approach
empowers us to estimate the requisite mass adjustments to
align a modified gravitational potential with the observed
A2ðrÞ. In essence, this methodology provides an indirect
route for evaluating the impact of modified gravity on mass
bias, an essential aspect of our study, serving as both a
justification and validation of our findings. A direct method
for obtaining caustic mass involves the straightforward
application of Eq. (3). This approach constitutes the core of
our caustic mass determination.
The computation of caustic profiles and the assessment

of caustic amplitude primarily rely on the velocities and
velocity dispersion of galaxy clusters, as outlined by [22].
Detailed insights into the methodology for obtaining caustic
amplitude, denoted asA2ðrÞ, can be found in [14,22]. In the
existing literature, F βðrÞ is typically approximated as either
0.5 [14] or 0.65 [22]. In contrast, we implement a more
comprehensive approach by utilizing the complete expres-
sion for F βðrÞ involving Eqs. (4) and (1) a priori derived
independently from the hydrostatic data, which in turn is the
important aspect of our joint analysis.
In GR scenarios, the gravitational potential generated by

the cluster ΦðrÞ is commonly known to be [14]

ΦðrÞ ¼ −
GMð< rÞ

r
− 4πG

Z
∞

r
ρðxÞxdx; ð22Þ

and ρðrÞ is the NFW density profile given in Eq. (13). It is
straightforward to evaluate F ðrÞ in this scenario,

FNFWðrÞ ¼
r2

2ðrþ rsÞ2
1

lnð1þ r=rsÞ
; ð23Þ

where rs is the scale radius [28]. Furthermore, we extend
our analysis to modified gravity scenarios by evaluating
F βðrÞ using our modified potentials, Eqs. (6) and (11).
This multifaceted approach equips us to comprehensively
explore the intricate interplay between mass predictions,
gravitational potentials, and modified gravity scenarios.
In Figs. 2 and 3, we present a comparative analysis of the
caustic profiles derived from the two methodologies. In
each plot, the blue line labels the caustic profile obtained
with the caustic technique, while the green line, labeled as
Hydrostatic-GR/CS/VS, shows the caustic profile inde-
pendently predicted by the hydrostatic equilibrium analysis
for the three models, respectively.
Remarkably, the caustic profiles obtained through these

two methods exhibit a commendable level of agreement.
The caustic profiles estimated using a constant F βðrÞ ¼
0.65 also agree reasonably well, except for the innermost
regions. Similarly, an F βðrÞ ¼ 0.5 underestimates the
caustic profile, and consequently, we can anticipate that
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the mass estimated assuming F βðrÞ ¼ 0.5 would also be
an underestimation. In the current analysis, alongside our
method to utilize the hydrostatic data, we also assume
F βðrÞ ¼ 0.5 or F βðrÞ ¼ 0.65 to illustrate the differences
and further discuss the implications, especially in the
modified gravity scenarios. While an analysis to anticipate
a F βðrÞ in the modified gravity scenarios is not present, a
recent analysis [81] in the case of GR finds F βðrÞ ¼
0.4� 0.08 using simulations [82], which is in agreement
with the 0.5 value. To further illustrate potential deviations
in the caustic profiles and—by extension—the mass
profiles induced in the non-GR case, in the central and
left plots of Figs. 2 and 3 we additionally show caustic
profiles for a few specific values of the modified gravity
parameters in both Vainshtein and chameleon screening.

VI. RESULTS AND DISCUSSION

We begin by presenting our results for the construction
of the caustic profiles for the two clusters considered in our
analysis. In Figs. 2 and 3, we show the caustic profiles of
the clusters A2029 and A2142, respectively. Alongside the
reconstructed caustic surface (blue), we also show the

caustic surface as anticipated by the hydrostatic technique
assuming an NFW mass profile (green), which essentially
is a first step validation to further proceed with the joint
analysis. In general, we notice a very good agreement
between the two estimates. In the center and the right
panels, we show the same comparison against the chame-
leon and Vainshtein screening, respectively. In the case of
chameleon screening, especially for cluster A2029, one can
notice a sharp deviation of the caustic surface predicted by
hydrostatic equilibrium at the screening radius. It is worth
pointing out that this radial range is fairly outside the range
covered by hydrostatic data and cannot be constrained;
however, when compared with the caustic surface, one can
easily rule out certain parameter space that provides such a
large deviation. Essentially, this demonstrates the added
advantage of the joint analysis including the caustic
technique that can probe the outskirts of the galaxy cluster.
In the case of the Vainshtein screening, however, the
modifications are not limited to the radial range larger
than the screening radius, as the fifth force penetrates the
inner regions of the galaxy clusters. This can be easily
understood by contrasting the modifications of the gravi-
tational potential in these two modified gravity scenarios

FIG. 3. Same as Fig. 2, but for the cluster A2142. Note the change in the radial range with respect to cluster A2029.

FIG. 2. Caustic profiles for the cluster A2029. We show the caustic profile and the corresponding uncertainty in shaded blue regions,
alongside the phase-space distribution of the galaxies. Left: we compare the caustic profiles estimated using the hydrostatic data in the
case of GR, shown in green. The caustic profile estimated using the hydrostatic data and a constant F βðrÞ ¼ 0.65 is shown in red.
Center: Same as the left panel, comparing against the caustic surface estimated using the hydrostatic data in the case of chameleon
screening. Right: Same as the other two panels, comparing the caustic surface in the case of Vainshtein screening. For the chameleon and
Vainshtein screening cases, we show a few expected caustic surfaces for various values of assumed values of the modified gravity
parameters.
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[see Eqs. (6) and (11)]. We begin by contrasting our caustic
mass estimates to those present in literature to validate our
procedure, assuming a constant F βðrÞ.

A. Joint constraints on mass

First, we assess the constraint on mass in the standard
GR case taking into account the appropriate F βðrÞ, well
constrained using the hydrostatic data. In Fig. 4, we show
the marginalized posteriors for the hydrostatic mass com-
pared against the caustic mass when assuming a constant
F βðrÞ, which are also reported in Table I. As it can be seen
from the contours, the caustic mass evaluated at RCau

200
5

is mildly anticorrelated with the MHS
200, while the mass

estimated at RHS
200 from the caustic mass profile shows a

positive correlation, which is an expected behavior. Once
we perform the importance sampling, all the mass estimates
are positively correlated and heavily affected by the F βðrÞ
derived using the hydrostatic data.
We find that the mass bias earlier quoted in the

comparison of the hydrostatic mass and the caustic mass
is completely alleviated in our joint analysis. For instance,
Ettori et al. [12] quote a 6.5σ and 3.9σ discrepancy between
the two masses, for the clusters A2029 and A2142,
respectively. These clusters are among the high significance

of deviation analyses within the X-COP compilation.
However, this should not come as a surprise, as it is well
known that the global assumption of F βðrÞ ¼ 0.5 [26] or
F βðrÞ ¼ 0.65 [22] can lead to such a bias. As can be seen
in Table I, yielding lower mass values, the assumption of
F βðrÞ ¼ 0.5 leads to a larger bias with resepect to the
F βðrÞ ¼ 0.65 case. When taking the appropriate hydro-
static F βðrÞ, we find the mass bias to be no more than
∼0.03–0.1, at a significance of ≲1σ for both the clusters
(see the last column of Table I). For the sake of comparison,
we also show the mass reconstructed using constant F βðrÞ
and our method in Fig. 9. Incidentally, the assumption of
F βðrÞ ¼ 0.65 yields a very good agreement between the
independent hydrostatic and caustic mass estimates. In the
case of A2142, the assumption of F βðrÞ ¼ 0.65 is, in fact,
in slightly better agreement than our analysis using the
hydrostatic data.
On the other hand, we also find that the caustic mass is

mildly larger than the hydrostatic masses. For ease of
comparison, we present the posteriors of the masses within
the GR case in Fig. 5. Given the very good agreement
between the hydrostatic mass and the caustic mass obtained
within our formalism, we now perform an importance
sampling analysis to obtain the joint constraint on the mass
of the cluster. The corresponding values of the constraints
on mass are reported in the penultimate column of Table I
and shown as red posteriors in Fig. 5. Our joint analysis
formalism allows us to obtain tighter constraints on the
mass of the clusters. To the best of our knowledge, this is

FIG. 4. Left: we show the 68% and 95% confidence levels of the M200 values, estimated using the hydrostatic data, assuming the
constant F βðrÞ ¼ 0.65 cases. The unfilled contours represent the final importance sampled posteriors corresponding to the penultimate
column of Table I.

5The RCau
200 is simply evaluated as the radius within which the

average density is 200 times the critical density, after the mass
profile is reconstructed.
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the first combined analysis between these two mass
estimation techniques, forward modeling of the hydrostatic
data and caustic technique, to obtain a joint constraint that
now allows us to extend the formalism to alternate theories
of gravity, which indeed is the primary goal of the current
investigation.

B. Constraints on modified gravity

As mentioned in the previous section, finding very good
agreement between the hydrostatic and caustic masses
inferred with our method in the GR case, now we extend
to the modified gravity case simultaneously assessing both
mass bias and the constraints on the additional fifth force

parameters. In Tables II and III, we compare the constraints
on mass and modified gravity parameters. We show a
simple comparison of the constraints when assuming
F βðrÞ ¼ 0.5, to highlight the scenario wherein the caustic
mass is inferred independent of the hydrostatic mass, and
then a joint analysis is performed. This is a valid scenario
given that the masses in the modified gravity models are
less constrained and allow posteriors that can be consistent
withF βðrÞ ¼ 0.5, and hence can provide varied constraints
for the modified gravity parameters (see Appendix C).
Note that this comparison should be taken at face value
only for illustrative purposes. In Figs. 6 and 7, we show the
confidence level of the posteriors for the same, for the
modified gravity parameters.

1. Chameleon screening

As can be seen in the Fig. 6, the joint analysis of the
hydrostatic and caustic techniques helps reduce the degen-
erate region between mass (M500) and the coupling con-
stant (β2) parameter, which we earlier elaborated upon
in [74]. Traditionally, the approach to alleviate this degen-
eracy and obtain constraints was to assume a mass prior
obtained using weak lensing techniques, and in [74], we
introduced an internal mass prior which is the constraint on
the mass obtained when restricting the analysis to β2 ≥ 0.5.
In the current work, we utilize the caustic technique to
fulfill the role of a prior, however, the formalism is not to
utilize a mass prior but to perform an importance sampling
while simultaneously constraining the mass from the
caustic technique. The ability of the caustic technique to
improve the constraints heavily relies on the mass estimates
alone. In Table II, we show the joint mass estimates, which
are once again tighter than either of the individual masses.
In the last column of Table II, we show the mass bias
between the hydrostatic and the caustic techniques, where
we find a very good consistency within ≲1σ.
Needless to say, as can be seen in Fig. 6, the constraint on

ϕ∞;2 for the case of β2 ¼
ffiffiffiffiffiffiffiffi
1=6

p
, which corresponds to the

specific case of fðRÞ gravity are also largely reduced for

FIG. 5. Comparison of the posteriors on the mass estimates
from different techniques and the joint analysis, for the clusters
A2029 (top) and A2142 (bottom).

TABLE I. Constraints on the mass in the case of GR, shown as 68% C.L. limits. In the second and third columns, we show the
constraints obtained using the hydrostatic data only. In columns 5 and 6, we quote the caustic mass estimates and in column 7 we show
the joint mass estimate. In the last column, we show the mass bias between the hydrostatic and caustic techniques. Column 4 shows the
corresponding F βðrÞ assumption used in the analysis to estimate the caustic mass.

Cluster RHS
200 (Mpc) MHS

200 ð1014M⊙Þ F βðrÞ RCau
200 (Mpc) MCau

200 ð1014M⊙Þ MJoint
200 ð1014M⊙Þ MHS

200=M
Cau
200

A2029 2.08þ0.03
−0.03 11.04þ0.50

−0.47 HS 2.11þ0.03
−0.03 11.43þ0.55

−0.54 11.21þ0.33
−0.34 0.97þ0.07

−0.07
0.65 2.02þ0.03

−0.03 10.25þ0.51
−0.49 10.79þ0.39

−0.38 1.08þ0.07
−0.07

0.50 1.86þ0.03
−0.03 7.89þ0.39

−0.38 9.76þ0.05
−0.11 1.40þ0.09

−0.09

A2142 2.15þ0.03
−0.03 12.39þ0.57

−0.52 HS 2.23þ0.06
−0.03 13.70þ1.06

−0.95 12.75þ0.43
−0.43 0.90þ0.09

−0.08
0.65 2.20þ0.04

−0.04 13.20þ0.84
−0.79 12.63þ0.47

−0.44 0.94þ0.07
−0.07

0.50 2.02þ0.04
−0.04 10.16þ0.65

−0.61 11.62þ0.41
−0.40 1.22þ0.10

−0.09
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both the clusters. We infer a joint constraint of ϕ∞;2 < 0.18
at 99% C.L., using only the two clusters here. This is a very
good constraint and is comparable to the joint analysis
present in [74], where five clusters were utilized with weak
lensing priors, ϕ∞;2 < 0.13 at the same confidence level.
This improvement here is essentially because the caustic
mass we constrain, taking into account the F βðrÞ already
constrained using the hydrostatic data, is much tighter than

the weak lensing masses present in [83] (see Table I
in [74]), which were utilized in [74] (see Table II therein).

2. Vainshtein screening

In the case of Vainshtein screening, we have earlier
established the constraints on the Ξ parameter in [47]. As
can be seen in the third column of Table III, the current
clusters in A2029 and A2142 are very good examples for

FIG. 6. We show the 68% and 95% C.L. contours in the case of the chameleon screening, for the clusters A2029 (left) and A2142
(right). The light blue filled contours show the constraints obtained using only the hydrostatic data. Similarly, the contours outlined in
dark blue show the joint analysis including the caustic technique.

TABLE II. Same as Table I, but for the case of chameleon screening. Note here we do not present the case of F βðrÞ ¼ 0.65. In
columns 8 and 9, we present the constraints on the MG parameters, fϕ∞;2; β2g obtained from our joint analysis.

Cluster RHS
200 (Mpc) MHS

200 ð1014M⊙Þ F βðrÞ RCau
200 (Mpc) MCau

200 ð1014M⊙Þ MJoint
200 ð1014M⊙Þ ϕ∞;2 β ¼

ffiffi
1
6

q
β2 MHS

200=M
Cau
200

A2029 2.04þ0.04
−0.13 10.41þ0.62

−1.91 HS 2.08þ0.05
−0.10 11.02þ0.75

−1.57 10.84þ0.39
−0.58 0.24þ0.29

−0.18 � � � 0.94þ0.13
−0.12

0.50 1.86þ0.04
−0.03 7.83þ0.38

−0.37 7.87þ0.42
−0.46 0.36þ0.12

−0.03 0.28þ0.03
−0.03 1.32þ0.12

−0.23

A2142 2.14þ0.03
−0.13 12.20þ0.53

−2.13 HS 2.20þ0.07
−0.13 13.19þ1.20

−2.21 12.48þ0.44
−0.74 0.28þ0.35

−0.21 � � � 0.91þ0.15
−0.10

0.50 2.02þ0.04
−0.04 10.18þ0.59

−0.65 10.28þ0.78
−0.64 0.45þ0.36

−0.12 0.22þ0.04
−0.04 1.18þ0.11

−0.19

TABLE III. Same as Table I, but for the case of Vainshtein screening. Note here we do not present the case ofF βðrÞ ¼ 0.65. In column
9, we show the constraints on the MG parameter, in this case, Ξ1 obtained from our joint analysis.

Cluster RHS
200 (Mpc) Ξ1 γ̃NMHS

200 F βðrÞ RCau
200 (Mpc) γ̃NMCau

200 ð1014M⊙Þ γ̃NMJoint
200 ð1014M⊙Þ Ξ1 MHS

200=M
Cau
200

A2029 2.09þ0.11
−0.09 −0.04þ0.19

−0.12 11.16þ1.92
−1.40 HS 2.10þ0.04

−0.04 11.32þ0.68
−0.64 11.15þ1.15

−1.01 −0.00þ0.10
−0.09 0.98þ0.15

−0.11
0.50 1.86þ0.03

−0.03 7.84þ0.39
−0.38 8.78þ0.53

−0.44 −0.18þ0.06
−0.06 1.43þ0.25

−0.19

A2142 2.04þ0.07
−0.06 −0.20þ0.10

−0.08 10.50þ1.04
−0.87 HS 2.19þ0.05

−0.05 13.01þ0.96
−0.90 11.80þ1.05

−0.94 −0.10þ0.11
−0.06 0.81þ0.09

−0.07
0.50 2.01þ0.04

−0.04 10.04þ0.64
−0.62 10.21þ0.60

−0.58 −0.21þ0.07
−0.06 1.05þ0.13

−0.11
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GR and mild deviation from the GR case, respectively.
In this context, the joint analysis is very helpful in
constraining the modified gravity parameter Ξ1. First, as
described in Sec. III (see also [47]), within the Vainshtein
screening the gravitational potential and the weak lensing
potential are distinct and a joint analysis would be needed
to correctly constrain the running of the gravitational
constant Geff

N . As the F βðrÞ necessary to constrain the
caustic mass is the gravitational potential as well, we do not
immediately break the degeneracy between the γ̃N and
MHS

200. We present the constraints on the combination of
these parameters in Table III.
In the case of cluster A2029, we find a 2 times tighter

constraint for the parameter Ξ1 ¼ 0.0� 0.10 with respect
to the constraint of Ξ1 ¼ −0.04þ0.19

−0.12 obtained using only
the hydrostatic data. This constraint is obtained while
having no bias between the estimates, with MHS

200=M
Cau
200 ¼

0.98þ0.15
−0.11 , which shows a complete consistency. On the

other hand, cluster A2142, which shows a mild ∼2σ
deviation with Ξ1 ∼ −0.20þ0.10

−0.08 using only the hydrostatic
data, is now more consistent with GR within ∼1σ,
having Ξ1 ¼ −0.10þ0.11

−0.06 . Note that this is a shift in the
parameters, with no major improvement in the relative
constraint. This improvement in the agreement with GR
is essentially because the masses estimated using the
hydrostatic method and the caustic method have a bias
of MHS

200=M
Cau
200 ¼ 0.81þ0.09

−0.07 , which is about the same
significance ≥ 2σ as the earlier for modified gravity
using the hydrostatic data alone. Nevertheless, we

perform the joint analysis as the inconsistency is only
of the order of ∼2σ.
In this context, it is also interesting to note that, for

the cluster A2142, in the case of F βðrÞ ¼ 0.5, we find
that the mass bias is no longer at a ∼2σ significance as
earlier and is completely consistent with unity being
MHS

200=M
Cau
200 ¼ 1.05þ0.13

−0.11 . This is, however, accompanied
by the joint constraint of Ξ1 ¼ −0.21� 0.07, which is a
3σ detection of modified gravity. We find this to be an
interesting observation: if one demands the masses
estimated using the two techniques to be consistent as
a prior before assessing the joint constraint on the
modified gravity parameters, this hypothetical case where
the assumption of F βðrÞ ¼ 0.5 is not justified seems to
provide better agreement and detection of deviation from
GR. At face value, not having a mass bias, in this case,
could imply that the extreme bias quoted in [12] could be
completely alleviated by simply changing the gravity
model with the assumption of F βðrÞ. However, it is
important to assess the F βðrÞ correctly, before addressing
the mass bias, as we have done consistently in our
formalism, even though the data show a mild bias. As
can be seen in Table III, this is not the case for cluster
A2029, which is completely consistent with GR.

VII. CONCLUSION

Joint analysis of different mass-estimating techniques
of galaxy clusters has been time and again utilized in
constraining accurately the mass and consequently testing

FIG. 7. We show the 68% and 95% C.L. contours in the case of the Vainshtein screening, for the clusters A2029 (left) and A2142
(right). The filled contours show the constraints obtained using only the hydrostatic data and the contours outlined with darker red show
the joint analysis including the caustic technique.
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modified gravity theories [31,47,62,71,74,84–86]. In the
same spirit, here we have assessed the ability of the caustic
technique [23,27,28] to aid in testing modified gravity
scenarios for the first time, to the best of our knowledge.
The main implications and findings are as follows:
(i) First, we validate our formalism in GR, obtaining

joint constraints on the mass of the two clusters.
Essentially, this is aided by the fact that we see no
mass bias, which is quoted in [10]. While we have
already confirmed and found that the mass bias is
reduced when the hydrostatic F βðrÞ is taken into
account, another possible way to alleviate the mass
bias would be by assuming a modified gravity
scenario.

(ii) We have shown that the caustic technique can
robustly aid in testing the gravity within galaxy
clusters. We have tested for the cases of Vainshtein
and chameleon screening. We also perform a hypo-
thetical analysis: in the case where the caustic mass
is estimated independently, how it could lead to
spurious detection of modified gravity.

(iii) In the case of the Vainshtein screening, we were able
to obtain tighter constraints on the free parameter
with respect to the solely hydrostatic analysis. In
particular, for the cluster A2142, the x-ray data
provided a constraint below the expectation of GR,
Ξ1 ∼ −0.2, with ∼2σ significance, while the joint
analysis reduces the tension to Ξ1 ¼ −0.10þ0.11

−0.06 at
≲1σ. For cluster A2029, the consistency with GR
remains intact with an improvement on the bounds at
the same confidence level of a factor of ∼2 in the
joint analysis.

(iv) For the case of chameleon screening, we find that the
caustic technique aids in reducing the degeneracy
between the mass estimates (M500) and the coupling
constant (β2), as can be seen in Fig. 6. Given this,
we estimate a competitive joint constraint of ϕ∞;2 ≲
0.18 at 3σ C.L., using only the two clusters utilized
in this work. This further reinforces the utility of the
caustic technique in constraining the modified grav-
ity parameters.

Although in the current work, we have limited ourselves
to two clusters as proof of concept to explore the possibility,
the formalism can be easily extended to several individual
clusters stacked [81,87–89] for both the hydrostatic data
(see, for example, [62,90]) and caustic phase space, which
we intend to extend as one of the future directions. Note that
our constraints obtained using only individual clusters are
already an improvement (see Sec. VI B) over stacked
analysis in [62], which utilizes priors from weak lensing
in contrast to our approach of using the caustic technique.
This improvement is mainly due to two factors: improve-
ment in the hydrostatic data [12], as reported in our earlier
work [74], and the joint analysis with caustic information
performed here. However, the caustics allow us to constrain

better the overall posteriors of fϕ∞;2; β2g, reducing the
multimodal behavior for the ϕ∞;2 constraints for β ¼ ffiffiffiffiffiffiffiffi

1=6
p

in the case of the fðRÞ model.
We anticipate the current formalism to help perform a

thorough investigation of the modified gravity models
utilizing the caustics as an independent observable along-
side the already well-explored weak lensing and the
hydrostatic datasets. We also intend to extend our formal-
ism to other modified gravity, nonstandard dark matter
scenarios [70,71], with nonlocal effects on the dark matter
mass profiles, in future communications. Aside from these,
we also intend to perform joint analysis of the kinematics,
dynamics, and weak lensing datasets, exploring the poten-
tial to constrain the modified gravity parameters and break
degeneracies within them.
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APPENDIX A: ERROR ESTIMATION IN THE
CAUSTIC TECHNIQUE

In this appendix, we highlight a few systematics that
affect the estimated caustic mass. The caustic technique
heavily relies on the methods utilized to set the so-called
“caustic” surface. The caustic surface is estimated as the
edge of the galaxy cluster assessed through the distribu-
tion of the galaxies in the line-of-sight velocity and the
projected radius from the center of the clusters. We utilize
our importance-sampling-like approach instead of a like-
lihood-based technique, as the error estimation of the
caustic surface relies on the density of the galaxies, which
can be estimated at every radius instead of data with error
bars that can be incorporated into a simple Gaussian
likelihood.

APPENDIX B: COMMENT ON THE
ANISOTROPY PROFILE gβðrÞ ASSUMPTION

As mentioned in the main text, we have assumed a fixed
anisotropy profile of the galaxy phase space in the current
analysis. To check the robustness of our statement, we also
fit the anisotropy profile using the MG-MAMPOSSt code [85],
which provides joint mass density and orbit anisotropy
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reconstructions in GR and several modified gravity scenar-
ios. More in detail, MG-MAMPOSSt relies on data in the
projected phase space of member galaxies; it solves the
spherically symmetric Jeans equation, assuming a shape for
the three-dimensional velocity distribution and dynamical
relaxation of the system. The code implements a parametric
determination of the kinematic quantities (i.e., gravitational
potential, number density of galaxies, and velocity
anisotropy) by performing a maximum likelihood fit in
the projected phase space.
Assuming both GR and one of the modified gravity

frameworks, namely, chameleon screening, we reconstruct
the mass distribution and the anisotropy profile of A2029
and A2142. In all cases, we adopt an NFW model for the
matter density distribution, while the velocity anisotropy is
parametrized with a generalized Tiret model (e.g., [55]),

βgTðrÞ ¼ β0 þ ðβ∞ þ β0Þ
r

r − rβ
; ðB1Þ

where β0, β∞ represent the central anisotropy and the
anisotropy at a large distance from the center, respectively;
rβ is a characteristic radius that we assume to be equivalent
to the scale radius rs of the total mass profile. Equation (B1)
provides a quite general description of possible orbit
anisotropy profiles in galaxy clusters. For both clusters,
we consider galaxies that lie in projection within
R ∼ 1.1RHS

200, to ensure the validity of Jeans equation.
Nevertheless, we checked that reasonable changes (10%)
in that limit provide negligible effects on the final results.
We further exclude the central region (R < 0.05 Mpc),

where the dynamics are dominated by the brighter
central galaxy.
We use the anisotropy profile reconstructed with

MG-MAMPOSSt to validate the statement that our assumption
has a negligible effect on the inferred final caustic mass.
Essentially, this is because the anisotropy profile, which
requires the knowledge of R200, is degenerate with the
cluster viral radius and hence with the total mass. However,
since the hydrostatic technique constrains the same quan-
tity much more tightly than the anisotropy profile itself, we
find that fixing it to a constant is largely valid and makes
minimal changes to the conclusions made here.

APPENDIX C: INCORRECT ASSUMPTIONS OF
F βðrÞ IN MODIFIED GRAVITY

It is well established that the F βðrÞ in the inner regions
of the cluster is not a constant and assuming so can lead to
biases. In this appendix, we show as an example the
potential of the caustic technique to very well constrain
the modified gravity scenarios in case the F βðrÞ derived
from hydrostatic equilibrium differs from that constrained
using alternate techniques or simulations. This is particu-
larly important in the modified gravity scenarios, where the
constraints on the mass are relaxed when using the hydro-
static equilibrium data (see Fig. 9). As a test case, we show
this through the example of the cluster A2029, when
assuming F βðrÞ ¼ 0.5 as an independent estimate.
When performing the joint analysis, the essential improve-
ment in the constraints on the modified gravity model
parameters is valid if and only if the caustic masses are

FIG. 8. Left: we show the constraints on the modified gravity parameters in the case of the chameleon screening when assuming a
F βðrÞ ¼ 0.5. Right: same as left panel, but for the case of the Vainshtein screening.
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inferred utilizing the a priori constrained masses using the
hydrostatic technique. For instance, in Fig. 8, we show the
joint constraints from the importance sampling against
the hydrostatic-only constraints, wherein the caustic tech-
nique assumes a constant F βðrÞ ¼ 0.5. One can immedi-
ately notice the well-bounded constraints on the parameters
fϕ∞;2; β2g, which are spurious posteriors indicating evi-
dence for modified gravity in the current comparison.
However, as shown in Figs. 6 and 7, for the cluster
A2029, while the caustic technique helps to tighten the
posterior assuming the correct F βðrÞ, does not indicate any
deviation from GR. Needless to say, we make equivalent
conclusions also in the case of the cluster A2142.

APPENDIX D: MASS PROFILES

In Fig. 9, we show the mass profiles in various
scenarios. We find that the model-independent caustic
mass profile is in very good agreement with the NFW-
based mass profile constrained using the hydrostatic data.
We also find an overall slightly lower mass profile when
assuming the F βðrÞ ¼ 0.5 and a very good agreement
when using F βðrÞ ¼ 0.65, while showing no discernable
change in the shape of the profile. The caustic mass

profile also shows a tendency to get flattened in the
outskirts of the cluster, which is a better assessment of the
mass profile in contrast to assuming a mass profile such
as NFW which asymptotically increases. While we retain
the comparison in the main text to the mass M500 of the
cluster, which is convenient for performing statistical
analysis, we could also place upper limits on the total
mass of the cluster using the caustic mass profile. Note
that the mass profiles reconstructed using the caustic
technique flatten out, seemingly suggesting an asymp-
totically converging total mass of the cluster. However,
this is only an artifact of the reconstruction technique,
wherein the caustic surface A2ðrÞ artificially goes to zero
where no galaxies are present. This, in turn, implies the
integrand in Eq. (3) goes to zero, providing constant mass
values after a certain radial range. Therefore, we note
that, while we show the mass profiles going out to 6 Mpc,
the nature of the increase of mass should be inferred from
the NFW-based extrapolation or the flattened caustic
mass profiles. In this context, it is also possible to utilize
a value of mass say at Δ ¼ 100 to perform our joint
analysis, which we intend to leave for a future inves-
tigation while improving the joint analysis.

FIG. 9. We compare the mean and the 68% confidence level regions of the mass profiles obtained using the hydrostatic and caustic
techniques. Top: mass profiles in the case of GR (left), chameleon screening (center), and Vainshtein screening (right). In each of the
panels, we show the NFW-based mass profile (yellow), model-independent reconstructed mass profile using the caustic technique,
assuming hydrostatic F βðrÞ (green) and constant F βðrÞ ¼ 0.65 (red). Bottom: same as top panel, for the cluster A2142.
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