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Abstract

We study invariants of almost complex, almost symplectic and almost Hermitian
manifolds.

First, we use the Nijenhuis tensor to measure how far an almost complex struc-
ture is from being integrable. We prove that the space of maximally non-integrable
structures is open and dense or empty in the space of almost complex structures.
Then, we provide a technique that allows to produce almost complex structures
whose Nijenhuis tensor has arbitrary prescribed rank on parallelizable manifolds,
and we use the rank to classify invariant structures on 6-dimensional nilmanifolds.

From a cohomological point of view, we give definitions of Bott–Chern and
Aeppli cohomologies of almost complex manifolds, based on the operators d and
dc, and of their almost symplectic counterparts, based on the operators d and
dΛ. These cohomologies generalize the usual notions of Bott–Chern and Aeppli
cohomologies and of symplectic cohomologies of Tseng and Yau. We also explain
the importance of the operators δ and δ̄, a suitable generalization of the complex
operators ∂ and ∂̄. In the non-integrable setting, these cohomologies do not admit
a natural bigrading. However, they naturally have a Z2-splitting induced by the
parity of forms.

Finally, we deal with spaces of harmonic forms on compact almost Hermi-
tian manifolds. We describe a series of Laplacians that generalize the complex
Bott–Chern and Aeppli Laplacians and the symplectic Laplacians of Tseng and
Yau. We formulate a general version of Kodaira–Spencer’s problem on the metric-
independence of the dimensions of the kernels of such Laplacians. It turns out
that these invariants are especially well-behaved on 4-manifolds. If the 4-manifold
admits an almost Kähler metric, we find a series of metric-independent invariants,
solving the generalized Kodaira–Spencer’s problem. Motivated by the complex
case, we show that the invariants we defined have a strong link with topological
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invariants. On almost Kähler 4-manifolds, they essentially reduce to topological
numbers and to the almost complex invariants h1d+dc and h

−
J . Motivated by a con-

jecture of Li and Zhang on the generic vanishing of h−J , we conjecture that h1d+dc
generically vanishes. We are able to confirm our conjecture on high-dimensional
manifolds.

We complement the theoretical results with a large number of examples on
locally homogeneous manifolds of dimension 4 and 6, where we explicitly compute
the rank of the Nijenhuis tensor, the almost complex cohomologies and the spaces
of harmonic forms.
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Introduction

Almost complex structures appeared for the first time in the work of Ehresmann
[36] and the role they play in the understanding of complex and symplectic struc-
tures is well-known to experts. In this thesis we are especially interested in al-
most complex structures as a generalization of complex structures, but one should
not forget their importance in symplectic geometry and the theory of pseudo-
holomorphic curves, see [44], [65] and [66].

On the complex side, existence of almost complex structures is the main known
obstruction to the existence of complex structures. However, understanding if an
almost complex manifold admits a complex structure is an extremely difficult
problem. A direct way to show that a manifold M is complex is to take an
almost complex structure J on it and to check if its Nijenhuis tensor vanishes at
every point. Such a J is called integrable, and Newlander–Nirenberg’s theorem
guarantees that it corresponds to a complex structure on M [74]. If dimRM = 2,
every almost complex structure is integrable by dimensional reasons. Since we
are mostly interested in non-integrable structures, we will not discuss again the
2-dimensional case in this thesis. If dimRM = 4, there are examples of almost
complex 4-manifolds that do not admit complex structures. The first examples
are due to Van de Ven [105], Yau [112] and Brotherton [18]. The problem of
whether or not an almost complex 4-manifold admits a complex structure is now
well-understood in terms of Enriques–Kodaira classification of complex surfaces,
or, more recently, in terms of almost complex invariants [30]. If dimRM ≥ 6, there
is no known example of an almost complex manifold without complex structures.
Finding such an example or showing that every almost complex 2m-manifold with
2m ≥ 6 admits a complex structure is today an open problem [111].

When dealing with complex and symplectic manifolds, we have several invari-
ants of cohomological or analytical nature at our disposal. The ones relevant for
this thesis are the Nijenhuis tensor, the classical Dolbeault, Bott–Chern and Aeppli
cohomologies, the symplectic cohomologies of Tseng and Yau, see [100] and [101],
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and, after fixing a suitable Riemannian metric, the spaces of harmonic forms of
complex and symplectic Laplacians. A general definition of these invariants valid
for almost complex or almost symplectic manifolds could provide a way to study
the properties of those structures and to compare them to integrable complex
structures or to symplectic structures, giving further insight on the problem of
finding integrable structures.

The search for invariants of almost complex structures that generalize complex
invariants is a very natural problem that can be dated back to Kodaira and Spencer
[47]. In spite of that, significant progresses in the field are all very recent and
concentrated after 2018, when [29] appeared in its first version on the arXiv. The
rise in interest is mostly due to the works of Cirici and Wilson [28] and [29], focused
on the introduction of Dolbeault cohomology of almost complex manifolds and the
study of harmonic forms on almost Kähler manifolds, and to those of Holt and
Zhang on the original Kodaira–Spencer’s problem, see [52] and [53]. We give later
in this introduction a review of the literature on the topic.

The goal of this thesis is to define new almost complex and almost Hermitian
invariants that generalize the cohomologies of complex manifolds and the spaces
of harmonic forms of Hermitian manifolds. We analyze the relations between the
invariants we introduce and other known invariants of almost complex manifolds,
and we study how they are related to integrability of almost complex structures.
Ultimately, we are able to show that certain invariants are a sufficient tool to
distinguish between different almost complex structures and we underline a link
with the topology of the underlying manifold that becomes especially significant
on 4-manifolds. The definition of many of the invariants we introduce naturally
extends to almost symplectic manifolds. We will take some detour from almost
complex structures to discuss that in details. The invariants studied in this the-
sis are mostly of three kinds: the rank of the Nijenhuis tensor, cohomological
invariants and spaces of harmonic forms.

The rank of the Nijenhuis tensor

Let (M,J) be an almost complex manifold and let

NJ : TM ⊗ TM −! TM

be its Nijenhuis tensor. The complex rank of the distribution ImNJ ⊆ TM pro-
vides an invariant of the almost complex structure

rkNJ : M ! N

that can be thought as a measure of non-integrability for J . On the one hand,
we find complex structures, for which rkNJ identically vanishes. On the other
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hand, we have maximally non-integrable structures, for which rkNJ is maximal
at every point. This natural class of structures, present in the literature also
under the name of totally non-integrable structures in [11] and [69], is one of the
main sources of examples of non-integrable structures. Among the others, we wish
to recall [23], [25], [58], [72] and [107], where the rank of the Nijenhuis tensor
is explicitly studied and related to properties of almost complex structures. To
motivate the abundance of maximally non-integrable structures in the literature,
one has to appeal to their flexibility: a generic local perturbation of an almost
complex structure is maximally non-integrable and every Nijenhuis tensor is locally
induced by an almost complex structure, see [58] and [69]. When passing to global
statements, two aspects must be addressed: existence and density.

Existence of maximally non-integrable structures follows from the work of
Coelho, Placini and Stelzig [32], where a h-principle for almost complex struc-
tures is established. As a consequence, if dimRM ≥ 10, maximally non-integrable
structures always exist, while on compact manifolds of lower dimension there are
obstructions to their existence.

Density of maximally non-integrable structures is the first original result of this
thesis. Denote by J the space of almost complex structures on M .

Theorem A. Let M be a compact almost complex manifold and let C be a path-
connected component of J . Let Ck be the subspace of C of almost complex structures
whose Nijenhuis tensor has rank at least k at every point of M . Then Ck is either
open and dense or empty in C.

Density of structures has to be intended in the C∞-topology induced on J by
thinking of its elements as smooth sections of the twistor bundle.

Corollary B. Let M be a compact almost complex manifold. Then the space of
maximally non-integrable almost complex structures onM is either open and dense
or empty in each path-connected component of J .

The main tools used in proving Theorem A are local estimates for the rank of
NJ along small deformations of almost complex structures and existence of real
analytic sections of real analytic vector bundles.

A preferred class of manifolds on which to study the rank of NJ is that of par-
allelizable manifolds, in particular solvmanifolds. On parallelizable manifolds, we
can describe small deformations of almost complex structures in terms of complex
valued functions and controlling the rank of NJ amounts to finding solutions to
a system of PDEs. While the set-up is general, we can solve the PDEs on spe-
cific examples to produce a large number of explicit complex and almost complex
structures whose NJ has arbitrary constant rank on solvmanifolds of dimension
4 and 6. Note that these structures are not necessarily invariant. Indeed, even
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though every solvmanifold admits maximally non-integrable structures, there are
many examples where every invariant structure is not maximally non-integrable.
Motivated by this, we focus on 6-dimensional nilmanifolds and study the possible
values of the rank of invariant structures, providing a complete classification. Note
that in dimension 6 the possible values for rkNJ go from 0 to 3, and that the case
of vanishing rank was already treated by Salamon [81].

Theorem C. Let M = Γ\G be a 6-dimensional nilmanifold and let g be the Lie
algebra of G. Then

(i) M admits an invariant almost complex structure of rank 3 if and only if g is
isomorphic to one of

(0, 0, 12, 13, 14 + 23, 34− 25), (0, 0, 12, 13, 14, 34− 25),
(0, 0, 12, 13, 14 + 23, 24 + 15), (0, 0, 12, 13, 14, 23 + 15),
(0, 0, 12, 13, 23, 14), (0, 0, 12, 13, 23, 14− 25),
(0, 0, 12, 13, 23, 14 + 25), (0, 0, 0, 12, 14− 23, 15 + 34),
(0, 0, 0, 12, 14, 15 + 23), (0, 0, 0, 12, 14, 15 + 23 + 24),
(0, 0, 0, 12, 14, 15 + 24), (0, 0, 0, 12, 13, 14 + 35),
(0, 0, 0, 12, 23, 14 + 35), (0, 0, 0, 12, 23, 14− 35),
(0, 0, 0, 12, 14, 24), (0, 0, 0, 12, 13− 24, 14 + 23),
(0, 0, 0, 12, 14, 13− 24), (0, 0, 0, 12, 13 + 14, 24),
(0, 0, 0, 12, 13, 14 + 23), (0, 0, 0, 12, 13, 24),
(0, 0, 0, 12, 13, 23);

(ii) M does not admit an invariant almost complex structure of rank 2 if and
only if g is isomorphic to one of

(0, 0, 0, 12, 13, 23), (0, 0, 0, 0, 0, 12 + 34),
(0, 0, 0, 0, 0, 12), (0, 0, 0, 0, 0, 0);

(iii) M does not admit an invariant almost complex structure of rank 1 if and
only if g is isomorphic to one of

(0, 0, 12, 13, 14 + 23, 34− 25), (0, 0, 0, 0, 0, 0).

The classification for 6-dimensional nilmanifolds and the techniques used in
the proof show that there is a connection between algebraic properties of the Lie
algebras and the rank of NJ . Under suitable assumptions, we can establish a
similar constraint for rkNJ in terms of the topology of the underlying manifold
valid in any dimension.
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Theorem D. Let M = Γ\G be a solvmanifold of completely solvable type and let
J be an invariant almost complex structure on M . Then we have that

rkNJ ≤ dimRM − b1(M).

We will see later that the topology determines almost entirely the invariants
of arbitrary structures (not necessarily invariant) on compact almost complex 4-
manifolds.

Bott–Chern and Aeppli cohomologies

On complex manifolds, not necessarily compact, Bott–Chern and Aeppli cohomolo-
gies are well-understood and widely studied invariants of the complex structure.
They have been introduced by Bott and Chern [17] and by Aeppli [1], respectively,
see also the works of Bigolin [14] and [15]. Unlike Dolbeault cohomology, they take
into account the simultaneous action of ∂ and ∂̄ and, if the manifold is compact,
they are finite-dimensional and their complex dimensions can be used to charac-
terize deep cohomological properties of the complex structure, like the ∂∂̄-lemma
[6].

The first generalization of complex cohomologies to almost complex manifolds
was given by Cirici and Wilson [29], who introduced an almost complex version of
Dolbeault cohomology. Later, Coelho, Placini and Stelzig [32] gave a definition of
Bott–Chern and Aeppli cohomologies of almost complex manifolds based on the
use of the operators ∂ and ∂̄. In this thesis, we give a different definition of Bott-
Chern and Aeppli cohomologies that is based on the use of the operators d and
dc. If (M,J) is an almost complex manifold, we define its Bott–Chern and Aeppli
cohomologies as the usual Bott–Chern and Aeppli cohomologies of the operators
d and dc computed on a suitable subcomplex B• of the complex of forms and on
the associate quotient complex C•, respectively. Our construction of cohomologies
is inspired by the definition of Coelho, Placini and Stelzig, while the choice of
the operators d and dc is closer to the original definition of Bott and Chern and
resembles the choice made by Tseng and Yau in their definition of symplectic
cohomologies. While in the complex case this change of perspective yields the
same cohomologies, the resulting almost complex cohomologies of the operators d
and dc are different from those built using ∂ and ∂̄. On the same subcomplex B•,
one can naturally define also the Dolbeault, Bott–Chern and Aeppli cohomologies
of the operators δ := ∂ + µ̄ and δ̄ := ∂̄ + µ. In analogy with the complex case,
Bott–Chern and Aeppli cohomologies defined using d and dc or δ and δ̄ coincide.
Thus δ and δ̄ appear to be appropriate generalizations of ∂ and ∂̄, at least in the
context of Bott–Chern and Aeppli cohomologies.

One last feature of using the operators d and dc is that they naturally induce
a Z2-splitting of differential forms into an even and an odd part. Thus, we define
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even and odd versions of de Rham and Bott–Chern cohomologies. Denote by
Hk
d+dc the almost complex Bott–Chern cohomology, by (Hk

d+dc)
even and (Hk

d+dc)
odd

its even and odd versions, respectively, and by Hk
even and Hk

odd the even and odd
versions of de Rham cohomology, respectively. We see that the Z2-splitting of
forms passes to Bott–Chern cohomologies.

Theorem E. There is a natural map

Hk
d+dc −! Hk

even +Hk
odd,

[α]d+dc 7−! [αeven]d + [αodd]d

that induces a Z2-graded decomposition of Bott–Chern cohomology

Hk
d+dc = (Hk

d+dc)
even ⊕ (Hk

d+dc)
odd.

Existence of a Z2-splitting in the context of symplectic cohomologies was al-
ready observed by Tseng and Yau in Section 5 of [100].

On the almost symplectic side, we note that the differential admits a decompo-
sition d = d0 + d1 + . . . induced by the Lefschetz bigrading of forms. The operator
d0 is cohomological and the decomposition of d allows to define a spectral sequence
from the cohomology H•,•

d0
to de Rham cohomology. Remarkably, the vanishing of

the operator d0 encodes interesting geometric properties.

Theorem F. Let (M,ω) be a compact almost symplectic 2m-manifold. If 2m = 4,
then d0 = 0. If 2m ≥ 6, then d0 = 0 if and only if ω is locally conformally
symplectic.

With the same idea we used for Bott–Chern and Aeppli cohomologies of al-
most complex manifolds, we define an almost symplectic version of the symplectic
cohomologies of Tseng and Yau obtained as the cohomologies of the operators d
and dΛ computed on a suitable subcomplex and the associated quotient complex.

Spaces of harmonic forms

Classical Hodge theory for compact Hermitian manifolds establishes an isomor-
phism between Dolbeault, Bott–Chern and Aeppli cohomologies and certain spaces
of harmonic forms obtained as the kernel of suitable self-adjoint elliptic operators,
called the Dolbeault, Bott–Chern and Aeppli Laplacians, respectively. By the
general theory of self-adjoint elliptic operators, the spaces of harmonic forms are
finite-dimensional vector spaces on compact manifolds. Thanks to the isomor-
phism with the cohomologies, this implies that the dimensions of the spaces of
harmonic forms, which in principle depend on the choice of Hermitian metric, are
actually metric-independent.
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As already observed by Kodaira, the Dolbeault Laplacian is an elliptic operator
even on almost Hermitian manifolds. Hence, the dimension of its kernel computed
on (p, q)-forms is an invariant hp,q

∂̄
of the almost Hermitian structure. Motivated

by the isomorphism valid in the complex case, Kodaira and Spencer posed the
following problem, see Problem 20 in [47].

Kodaira–Spencer’s problem. Is hp,q
∂̄

independent of the choice of the [al-
most] Hermitian structure? If not, give some other definition of the hp,q

∂̄
which

depends only on the almost complex structure and which generalizes the hp,q
∂̄

of a
complex manifold.

The first (negative) answer was given by Holt and Zhang almost 70 years later
[53]. They exhibited an example of a compact almost complex 4-manifold for which
the value of h0,1

∂̄
varies for different choices of metric. A metric-independent defini-

tion of the numbers hp,q
∂̄

valid on arbitrary almost complex manifolds has not yet
appeared in the literature, while in dimension 4 a solution was proposed by Cirici
and Wilson [30]. Nevertheless, several authors carried out an intense work in the
study of the spaces of harmonic forms associated to various Laplacians in the hope
of finding a solution to Kodaira–Spencer’s problem. The main differences among
the works on the spaces of harmonic forms lie in which differential operators are
used to build the Laplacians and in the choice of considering Hodge-type Lapla-
cians of the second order or Bott–Chern-type Laplacians of the fourth order. The
possible choices for the operators are ∂̄, δ̄ or d for the Hodge-type Laplacian and
the pairs of operators (∂, ∂̄), (δ, δ̄) or (d, dc) for the Bott–Chern-type Laplacians.
We give an exhaustive review of the literature on the topic.

• The approach using ∂ and ∂̄ has been studied by Cattaneo, Tardini and
Tomassini [26], Holt [48], Holt and Piovani [49], Holt and Zhang [52, 53],
Piovani and Tomassini [79], Tardini and Tomassini [94, 95], for what concerns
the Hodge-type Laplacian ∆∂̄ and by Holt [48], Holt and Piovani [49], Piovani
and Tardini [77], Piovani and Tomassini [78], for what concerns the Bott–
Chern-type Laplacian ∆∂+∂̄. The related invariants are the numbers hp,q

∂̄
and

hp,q
∂+∂̄

.

• The approach using δ and δ̄ has been introduced and studied by Tardini
and Tomassini [96]. They considered the Hodge-type Laplacian ∆δ̄ and the
Bott–Chern-type Laplacian ∆δ+δ̄. The dimensions of the related spaces of
harmonic forms are hk

δ̄
and hk

δ+δ̄
.

• The approach using d and dc was introduced by Cirici and Wilson for the
Hodge-type Laplacian ∆d on almost Kähler manifolds [31] and was furhter
studied by Holt, Piovani and Tomassini on almost complex manifolds [51].
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In this thesis, we introduce for the first time the Bott–Chern-type Laplacian
∆d+dc . In this case, the invariants are hp,qd and hkd+dc .

The focus of the research is in studying the properties of the spaces of harmonic
forms and the dependence on the metric of their dimensions. One of the main
goals of this thesis is to address the problem in full generality. We formulate the
following problem, that appears as a natural generalization of Kodaira–Spencer’s
problem.

Generalized Kodaira–Spencer’s problem.
Let (M,J) be a compact almost complex manifold. Fix an almost Hermitian
structure and consider the associated numbers hk

∂̄
, hk

∂+∂̄
, hk

δ̄
, hk

δ+δ̄
, hp,qd and hkd+dc .

• Are these numbers independent of the choice of almost Hermitian structure?

• Are they independent of the choice of almost Kähler structure?

To address the problem, we summarize and improve the known results. We
also introduce new spaces of harmonic forms built using the operators d and dc.
The main result we obtain on the metric-independence is valid for almost Kähler
4-manifolds.

Theorem G. Let (M,J) be a compact almost complex 4-manifold admitting a
J-compatible almost Kähler metric. Then the numbers hk

δ̄
, hp,qd , hk

δ+δ̄
and hkd+dc do

not depend on the choice of J-compatible almost Kähler metric.

If we think of the description of complex and Kähler surfaces given by the
Enriques–Kodaira classification, it is not surprising that assuming low-dimension
or existence of an almost Kähler metric yields a better behaviour in terms of metric-
independence. Theorem G provides a full answer to the generalized Kodaira–
Spencer’s problem valid for almost Kähler 4-manifolds. In its proof it is essential
to understand the actions of the Hodge ∗ operator and the symplectic ∗s operator,
and the interplay between those actions and the bidegree of forms induced by the
almost complex structure. Along the way, we establish several results that are
interesting on their own, since they hold on almost complex manifolds of arbitrary
dimension or that do not admit almost Kähler metrics.

Once established that certain invariants are metric-independent, the next step
is to use them to distinguish between different almost complex structures. The
other natural step is to determine precisely how they are related to each other,
and the two problems are often intertwined. As an example, on compact com-
plex surfaces, the dimensions of Dolbeault, Bott–Chern and Aeppli cohomology
groups not only are metric-independent, but they are completely determined by
the topology of the underlying manifold, see [10], and all complex structures on a
given smooth manifold have the same cohomological invariants.
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This is very different from the situation in the almost complex case, where
we have genuine almost complex invariants. Actually, we are able to determine
the precise dependence on topological constants of the almost Kähler invariants
considered in Theorem G.

Theorem H. Let (M,J) be a compact almost complex 4-manifold admitting a
J-compatible almost Kähler metric. Then, for every choice of J-compatible almost
Kähler metric, the invariants hk

δ̄
, hp,qd , hk

δ+δ̄
and hkd+dc are completely determined

by:

• the oriented topology of the underlying manifold (more precisely, by the num-
bers b1 and b−);

• the almost complex invariant h1d+dc;

• the almost complex invariant h−J .

Furthermore, the invariants h1d+dc and h
−
J do not completely determine each other.

We point out that the results of Theorems G and H are partially valid even
without the almost Kähler assumption: the numbers hkd+dc , for k ̸= 3, are almost
complex invariants on arbitrary almost Hermitian 4-manifolds and they depend
only on the topology, on h1d+dc and on h−J . It is not known if the number h3d+dc
depends on the choice of metric in the non-almost Kähler case.

The utility of the numbers h1d+dc and h
−
J , the only degrees of freedom for almost

Kähler invariants, is much wider. We show that they can be used to distinguish
between different almost complex structures. In particular, the number h1d+dc is
able to do so even when other invariants like rkNJ , h

−
J , or symplectic invariants,

fail. Motivated by this and the fact that h1d+dc is completely known for compact
complex surfaces, we formulate the following conjecture.

Conjecture. Let M be a compact almost complex 2m-manifold. Then, the
number h1d+dc vanishes for a generic almost complex structure.

As a consequence of Theorem A, we are able to confirm the conjecture for man-
ifolds that admit maximally non-integrable structures, in particular for manifolds
of dimension at least 10 or for homogeneous spaces.

Aside from the main results described above, the thesis contains a careful
description of the relations occurring among different spaces of harmonic forms
and a discussion of how they are related with the cohomologies. We also establish
several lemmas that allow to simplify or to avoid direct computations of the spaces
of harmonic forms. This is applied to a large number of examples, explicitly
showing how to compute the rank of NJ and the spaces of harmonic forms on:

• every 6-dimensional nilmanifold;
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• every 4-dimensional solvmanifold admitting a complex structure and certain
6-dimensional solvmanifolds;

• compact complex surfaces obtained as a quotient of non-solvable Lie groups,
like the Hopf surface.

Outline of the thesis

This thesis collects the results of the published works [87], [88], [89], [90] and of
the preprint [85], together with material that appears here for the first time. It is
structured as follows.

Chapter 1 presents the fundamentals of almost Hermitian geometry, describing
the action of compatible triples on the space of forms and the integrability condi-
tions for almost complex and almost symplectic structures. It also contains some
well-known result on multicomplexes, on homogeneous manifolds and on small
deformations of almost complex structures. Minor original results are present in
Sections 1.2, 1.3 and 1.4.

Chapter 2 contains a thorough study of the rank of the Nijenhuis tensor. Sec-
tions 2.1 and 2.2 focus on theoretical aspects of almost complex structures, recalling
the important results of [32] and proving Theorem A using real analytic curves of
almost complex structures. In Sections 2.3 and 2.4, we underline algebraic and
topological constraints on the rank of NJ . There, we prove the classification of
invariant structures on 6-dimensional nilmanifolds of Theorem C. We also pro-
vide an explicit method to produce structures of prescribed rank on parallelizable
manifolds and we apply it to obtain a large number of examples.

Chapter 3 is entirely devoted to almost complex and almost symplectic coho-
mologies. On almost complex manifolds, we define the Bott–Chern and Aeppli
cohomologies of the operators d and dc and several cohomologies of the operators
δ and δ̄. We study their main properties and how they are related to each other.
On almost symplectic manifolds, we define the almost symplectic cohomologies of
the operators d and dΛ, and we study the spectral sequence going from the coho-
mologies of the operators dj to the de Rham cohomology. Finally, we underline
how, in the non-integrable setting, the de Rham and Bott–Chern cohomologies
naturally admit a Z2-splitting into even and odd forms.

Chapter 4 deals with spaces of harmonic forms on compact almost Hermitian
manifolds. After introducing these spaces in full generality, we move to the 4-
dimensional case to study their dependence on the choice of metric. Here is where
we prove Theorem G, that solves the generalized Kodaira–Spencer’s problem on
almost Kähler 4-manifolds. In the rest of the chapter, we describe the relations
among different spaces of harmonic forms and their inclusion into the cohomologies
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of Chapter 3. We conclude the chapter with explicit computations of cohomologies
and of harmonic forms on the Kodaira–Thurston manifold.

Chapter 5 consists of two parts. The first part, Sections 5.1 and 5.2, takes a
detour from almost complex structures and focuses on integrable structures. We
precisely determine Bott–Chern numbers of compact complex surfaces in terms of
topological constants and we compute the dimensions of the spaces of harmonic
forms of invariant Hermitian structures on complex surfaces diffeomorphic to solv-
manifolds. In the second part, Sections 5.3 and 5.4, we determine the dependence
on the topology of the almost Kähler invariants computed in Chapter 4, prov-
ing Theorem H. We especially focus on the invariant h1d+dc on arbitrary almost
complex manifolds and we formulate a conjecture on its vanishing, proving it on
high-dimensional manifolds.





CHAPTER 1

Background material

This chapter collects background material that will be used consistently through-
out the thesis. Definitions and results that play a more specific role will be recalled
outside of this chapter, right before they are needed or whenever they are relevant
for the discussion. Any classical textbook on complex geometry will be a good
reference for the basic results. We recommend [10], [43], [54], [55] and [71]. More
recent results, which do not yet appear in books, are accompanied by a reference
to the relevant article. Sections 1.2, 1.3 and 1.4 contain minor original results.

1.1 Multicomplexes and spectral sequences

The definitions we give in this section can be stated in more generality for arbitrary
abelian groups. Since we always deal with the de Rham algebra of a smooth
manifold, we give every definition taking into account also the algebra product
that, on forms, is induced by the wedge product.

A differential (Z,Z)-graded multicomplex (A•,•, d), sometimes simply bigraded
multicomplex or multicomplex, is a (Z,Z)-graded algebra {Ap,q}p,q∈Z endowed with
a linear differential d satisfying the equation d2 = 0 and the graded Leibniz rule

d(a · b) = da · b+ (−1)p+q a · db,

where a ∈ Ap,q, b ∈ Ar,s and · denotes the algebra product. In terms of the

1
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bigrading, it admits a decomposition

d =

jmax∑
j=0

dj (1.1.1)

with
dj : A

p,q −! Ap+j,q−j+1, j = 0, . . . , jmax.

If p and q run over a finite number of indices we say that the multicomplex is
bounded. A double complex, or bicomplex, is a multicomplex with only two differ-
entials. A subcomplex (B•,•, d) of (A•,•, d) is a bigraded subalgebra B•,• ⊆ A•,•

preserved by the action of the differential d. The associated quotient complex
(C•,•, d) is obtained by taking Cp,q := Ap,q/Bp,q endowed with the differential
induced by d.

The bigrading on A•,• naturally induces a grading taking Ak :=
⊕

p+q=k A
p,q.

The (graded) complex A• inherits a filtration induced by the bigrading, i.e., a
sequence of subcomplexes

Ak = F 0Ak ⊇ F 1Ak ⊇ F 2Ak ⊇ . . . ⊇ 0

given by

F pAk :=
⊕
j≥p

Aj,k−j

and compatible with the action of the differential d in the sense that

d(F pAk) ⊆ F pAk+1.

The bigraded cohomology of the multicomplex is the quotient

Hp,q(A•,•, d) :=
F p(ker d ∩ Aq)
F p(Im d ∩ Aq)

.

A bigraded spectral sequence (E•,•
∗ , d∗) is a sequence of multicomplexes (E•,•

r , dr)
indexed by an integer r ≥ 0, each one called page of the spectral sequence, endowed
with a differential

dr : E
p,q
r −! Ep+r,q−r+1

r , d2r|Ep,q
r

= 0,

and such that each page is isomorphic to the cohomology of the previous one

E•,•
r+1

∼= H•,•(E•,•
r , dr).

We say that the spectral sequence degenerates at page r0 if for all r ≥ r0 the
differential dr is trivial. In such a case there is an isomorphism

(E•,•
r , dr = 0) ∼= (E•,•

r0
, dr0) for all r ≥ r0.
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If a spectral sequence degenerates, we set E•,•
∞ := E•,•

r0
, we say that the spectral

sequence converges to E•,•
∞ and we write Ep,q

0 ⇒ Ep,q
∞ . The following is a classical

result on spectral sequences, see unnumbered Proposition on page 440 in [43].

Proposition 1.1.1. Every filtered complex (F •A•, d) has a natural associated spec-
tral sequence obtained setting

Ep,q
0 :=

F pAp+q

F p+1Ap+q

and requiring that E•,•
r+1

∼= H•,•(E•,•
r , dr), where each differential dr is induced by

d.

As a direct consequence, every multicomplex admits an associated spectral se-
quence. Moreover, the differentials dr of the spectral sequence can be explicitly
described, up to isomorphism, in terms of the original decomposition (1.1.1), pro-
viding a useful framework for explicit computations, see [33] for the case of double
complexes and [62] for the general case of multicomplexes.

Finally, we remark that every spectral sequence arising from a bounded multi-
complex always degenerates in a finite number of steps, see Section 5.3 in [19].

1.2 Almost Hermitian manifolds

In this section we describe the space of forms of almost Hermitian manifolds and
the main differential operators studied in this thesis.

Let M be a smooth manifold. Suppose that M has even real dimension 2m.
Denote by TM its tangent bundle and by T ∗M its cotangent bundle. The bundles
of real k-forms and of complex k-forms are the bundles

ΛkR :=
k∧
T ∗M and Λk :=

k∧
T ∗MC,

respectively, where T ∗MC denotes the complexified cotangent bundle. The corre-
sponding spaces of smooth sections are denoted by AkR and Ak, and they are called
spaces of real and complex k-forms, respectively. We endowM with two geometric
structures:

• an almost complex structure onM is an endomorphism of its tangent bundle
J ∈ End(TM) such that J2 = − IdTM ;

• an almost symplectic structure onM is a real non-degenerate 2-form ω ∈ A2
R.
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It is not restrictive to also endow M with a Riemannian metric g. We say that
the triple (J, ω, g) is a compatible triple if for every X and Y vector fields on M
we have that

g(X, Y ) = ω(X, JY ). (1.2.1)

A compatible triple is also called an almost Hermitian structure. Given any two
elements among J , ω and g, the remaining one is uniquely determined by the
compatibility condition (1.2.1). For instance, if J and ω are assigned, we say that

• J is ω-tamed if ω(X, JX) > 0 for every non-zero vector field X;

• ω is J-invariant if ω(JX, JY ) = ω(X, Y ) for all vector fields X and Y .

If both conditions are satisfied, then ω(X, JY ) is symmetric and positive, deter-
mining uniquely a Riemannian metric.

We adopt the following terminology: the term almost Hermitian manifold could
refer to a manifold admitting an almost Hermitian structure, without choosing
a specific structure, or to a quadruple (M,J, ω, g). Similarly, the term almost
complex manifold refers either to a smooth manifold admitting at least one almost
complex structure or to a pair (M,J). The same holds for almost symplectic
manifolds.

Since there are no constraints for the existence of a Riemannian metric, the
spaces of almost complex manifolds, of almost symplectic manifolds and of almost
Hermitian manifolds coincide with each other. We will change the name depending
on which structure we are dealing with.

Action of compatible triples on the space of forms

The existence of a compatible triple induces three operators on Ak: the Hodge ∗
operator, the operator J and the Lefschetz operator L.

The Hodge ∗ operator is induced by the Riemannian metric g. For α and
β ∈ Ak, it is defined by the relation

α ∧ ∗β = g(α, β)Volg,

where Volg is the volume form of the metric. Its action sends Ak into A2m−k and
vice versa. If M is compact, the metric induces an L2-Hermitian product on Ap,q

defined by

⟨α, β⟩ :=
∫
M

α ∧ ∗β. (1.2.2)

Let P : Ak ! Ak+l be any operator of (possibly negative) degree l. The formal
adjoint of P is the unique operator P ∗ : Ak ! Ak−l such that the equality

⟨Pα, β⟩ = ⟨α, P ∗β⟩
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holds for all α ∈ Ak and β ∈ Ak+l. If M is not compact, the Hermitian product is
defined on the space of forms with compact support or on the space of L2-forms,
see [50] for a recent approach to L2-forms related to the theory we present in
Chapter 4.

The almost complex structure J acts on k-forms by duality. For α ∈ Ak and
X1, . . . , Xk vector fields, the duality action is

J∗α(X1, . . . , Xk) := α(JX1, . . . , JXk).

We will omit the superscript ∗ and denote it simply by J . Then J is an endomor-
phism of k-forms satisfying J2 = (−1)k Id. On 1-forms, we have that J2 = − Id,
thus T ∗MC decomposes into (±i)-eigenbundles denoted by T ∗M1,0 and T ∗M0,1,
respectively. The bundle of complex (p, q)-forms is the bundle

Λp,q :=

p∧
T ∗M1,0 ⊗

q∧
T ∗M0,1.

The space of its smooth sections Ap,q is the space of complex (p, q)-forms and
complex conjugation defines an isomorphism Ap,q

∼
−! Aq,p. The space of k-form

decomposes as the direct sum of bigraded spaces as

Ak =
⊕
p+q=k

Ap,q

and there is a natural projection πp,q : A• ! Ap,q. Then J acts on α ∈ Ap,q as
Jα = (−1)q ip+qα and it preserves the bigrading. The space of forms endowed
with the wedge product and the bigrading induced by J inherits the structure of
bigraded algebra (A•,•,∧) with

∧ : Ap,q × Ar,s −! Ap+r,q+s.

The almost symplectic structure ω acts on k-forms by the Lefschetz operator
and its dual operator. The Lefschetz operator L is the operator

L : Ak −! Ak+2,

α 7−! ω ∧ α.

The dual Lefschetz operator Λ: Ak ! Ak−2 is defined as contraction by ω. A
k-form α, with k ≤ m, is called primitive if Λα = 0, or, equivalently, if Lm−k+1α =
0. Denote by Pk the space of primitive k-forms. Every function and 1-form is
primitive and, by definition, there are no primitive k-forms for k > m.

It is convenient to have two other (equivalent) descriptions of the dual Lefschetz
operator. The first one is a local description. Fix local coordinates {xj}2mj=1 and
let

ω =
1

2

∑
j,k

ωjk dx
jk
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be a local expression for ω. The dual Lefschetz operator is given by

Λ :=
1

2

∑
j,k

ωjkι∂j ι∂k ,

where ∂j := ∂/∂xj and the matrix (ωjk) is the inverse of (ωjk).
The second description is given in terms of formal adjoints. Extend the action

of ω from vector fields to differential forms by duality. Then for α and β ∈ Ak the
symplectic adjoint P ∗s of an operator P is defined by the identity

ω(Pα, β) = ω(α, P ∗sβ).

The dual Lefschetz operator Λ is the symplectic adjoint of L. More explicitly,
consider the symplectic ∗s operator defined by the relation

α ∧ ∗s β = ω(α, β)
ωm

m!
.

This is a symplectic version of the Hodge ∗ operator defined for a Riemannian
metric and it sends Ak into A2m−k. The dual Lefschetz operator is

Λ := ∗s L ∗s .

Since ω is non-degenerate, for each k = 1, . . . ,m, powers of the Lefschetz
operator give an isomorphism

Lk : Am−k ∼
−−−−! Am+k, (1.2.3)

called the Lefschetz isomorphism. The inverse of the map Lk is Λk. It is important
to observe that in general L and Λ do not commute and that ΛkLk = Id only on
(m − k)-forms, while LkΛk = Id only on (m + k)-forms. On forms of arbitrary
degree, the action of (powers of) L and Λ is more complicated and we need to take
into account the role played by their commutator, the operator H := [Λ, L].

The action of powers of L on primitive forms allows to define a symplectic
bidegree. Consider the spaces

Lr,s := {ωr ∧ P s : P s ∈ Ps} ⊆ A2r+s.

The triple (L,Λ, H) defines a representation of sl(2,C) acting on A• that induces a
Lefschetz decomposition of the space Ak into bigraded components, see Théorème
3 on page 26 in [108], namely

Ak =
⊕

j≥max{k−m,0}

Lj,k−2j.
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There is a natural projection πr,s : A• ! Lr,s. We refer to the bigrading L•,• as the
Lefschetz bigrading or symplectic bigrading. The Lefschetz isomorphism (1.2.3) is
compatible with the bigrading and it gives isomorphisms

Lm−2r−s : Lr,s ∼
−−−−! Lm−r−s,s.

In contrast to what happens for the bigrading induced by an almost complex
structure, there is no algebra structure induced by the wedge product on L•,•

since the wedge product of primitive forms is not necessarily a primitive form.
Nevertheless, we still have that

Lr,s ∧ Lt,u ⊆
⊕
j≥r+t

Lj,s+u−2j. (1.2.4)

The compatibility condition (1.2.1) allows to express ∗ as

∗ = ∗sJ = J∗s, (1.2.5)

while Théorème 2 on page 23 in [108] gives the explicit expression for the action
of the Hodge ∗ on each summand of the Lefschetz decomposition

∗LrP k = (−1)
k(k+1)

2
r!

(m− k − r)!
Lm−k−rJP k, (1.2.6)

with P s ∈ Ps. In particular, by comparing (1.2.5) and (1.2.6), we see that ∗s acts
on forms of bidegree (p, q) as a multiple of the Lefschetz operator.

Bigraded decomposition of the differential

First, we consider the almost complex point of view and the action of d on the
space of (p, q)-forms. An operator is said to be bigraded of bidegree (r, s) if it
sends (p, q)-forms into (p + r, q + s)-forms. The first observation is that d is not
a bigraded operator. Nevertheless, we have some control on its action: while a
priori we only know that d(Ap,q) ⊆ Ap+q+1, it turns out that

d(Ap,q) ⊆ Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2.

Projecting on the various components of its image, we decompose d as the sum of
four operators, d = µ+ ∂ + ∂̄ + µ̄, where

µ := πp+2,q−1 ◦ d|Ap,q , ∂ := πp+1,q ◦ d|Ap,q ,

∂̄ := πp,q+1 ◦ d|Ap,q , µ̄ := πp−1,q+2 ◦ d|Ap,q .
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The operators ∂ and ∂̄ are conjugate to each other, in the sense that ∂̄α = ∂ᾱ,
and they have bidegree (1, 0) and (0, 1), respectively. The same is true for µ and
µ̄, that have bidegree (2,−1) and (−1, 2), respectively. Separating by bidegree the
terms of the equation d2 = (µ+ ∂ + ∂̄ + µ̄)2 = 0, we obtain the relations

µ̄2 = 0,

µ̄∂̄ + ∂̄µ̄ = 0,

∂̄2 + µ̄∂ + ∂µ̄ = 0,

∂∂̄ + ∂̄∂ + µµ̄+ µ̄µ = 0

(1.2.7)

and the conjugate equations, that imply that (A•,•, µ, ∂, ∂̄, µ̄) is a multicomplex
endowed with four differential, in the sense of Section 1.1.

In addition to µ, ∂, ∂̄ and µ̄, we introduce several operators obtained as linear
combinations of them that will play an essential role in the rest of the thesis. First,
we consider the operator dc := J−1dJ . Taking into account the explicit action of
J on (p, q)-forms, we can write dc in terms of µ, ∂, ∂̄ and µ̄ as

dc = i(µ− ∂ + ∂̄ − µ̄).

From the definition, it follows immediately that (dc)2 = 0, while a short computa-
tion yields

ddc + dcd = 4i(∂̄2 − ∂2).

The operator δ and its conjugate δ̄ are defined by the equations

δ :=
1

2
(d+ idc) = ∂ + µ̄ and δ̄ :=

1

2
(d− idc) = ∂̄ + µ. (1.2.8)

This gives the decompositions

d = δ + δ̄ and dc = i(δ̄ − δ). (1.2.9)

By (1.2.7), (1.2.8) and (1.2.9), we have that

δ2 = −δ̄2 = i

4
(ddc + dcd) = ∂2 − ∂̄2 and δδ̄ = − i

4
(ddc − dcd). (1.2.10)

In particular, we observe that for the pairs of operators (d, dc) and (δ, δ̄) we have
d2 = 0,

(dc)2 = 0,

ddc + dcd ̸= 0,

and


δ2 ̸= 0,

δ̄2 ̸= 0,

δδ̄ + δ̄δ = 0,

(1.2.11)

while the operators ∂ and ∂̄ neither square to zero nor anti-commute.
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Now, we consider the almost symplectic point of view and the action of d on the
space Lr,s. As it happens for the almost complex bigrading, the differential does
not preserve the symplectic bigrading. We see that, even though we have some
control on the action of d, the situation is more complicated than in the almost
complex case, since it involves the differential of ω. The Lefschetz decomposition
of dω is

dω = H + ω ∧ θ, (1.2.12)

where H ∈ A3
R is real primitive 3-form and θ ∈ A1

R is a real (primitive by degree
reasons) 1-form. The form θ is usually called the Lee form of ω.

Proposition 1.2.1. Let (M,ω) be an almost symplectic manifold. Then

d(Lr,s) ⊆
⊕
j≥0

Lr−1+j,s+3−2j.

Proof. Let ωr ∧ P s ∈ Lr,s. Then P s ∈ L0,s = Ps and dP s ∈
⊕
j≥0

Lj,2−sj. By (1.2.4)

and (1.2.12), we have that

d(Lr,s) ⊆ (L0,3 ⊕ L1,1) ∧ (
⊕
j≥0

Lj,2−sj) ⊆
⊕
j≥0

Lr−1+j,s+3−2j.

Projecting on the components of the image of d|Lr,s , we get the decomposition

d =

jmax∑
j≥0

dj, (1.2.13)

with dj := πr−1+j,s+3−2j ◦ d|Lr,s and jmax to be determined. Observe that the
operator dj has symplectic bidegree (j − 1, 3− 2j). For a fixed bidegree (r, s), we
can be more precise on the vanishing of certain differentials.

Lemma 1.2.2. Consider the action of d on Lr,s and decompose the differential
according to (1.2.13). Then

(i) if r + s = m, then d1 = 0;

(ii) if r + s ∈ {m− 1,m} or if r = 0, then d0 = 0;

(iii) dj = 0 for all j > s+3
2
.

Proof. We prove only claim (iii). Claims (i) and (ii) have a similar, simpler,
proof. The proof starts by arranging the bigraded spaces of forms in the Lefschetz
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pyramid

L0,m

L0,m−1 L1,m−1

L0,m−2 L1,m−2 L2,m−2

. .
. ...

. . .

L0,0 · · · · · · · · · Lm,0

see also [101]. The action of the differential on Lr,s corresponds to the arrows

Lr−1,s+3

Lr,s+1

Lr,s

Lr+1,s−1

· · ·

d2

d1

d0

d3

and an arrow with target outside of the pyramid corresponds to a vanishing dif-
ferential. The maximum value of j for which dj ̸= 0 depends on the number of
terms in the Lefschetz decomposition

A2r+s+1 = . . .⊕ Lr+1,s−1 ⊕ Lr+2,s−3 ⊕ . . .

The last term in the decomposition is Lr+s/2,1 if s is even, or Lr+(s+1)/2,0 if s is
odd, giving the upper bound j ≤ ⌊ s+3

2
⌋.

In particular, since primitive forms have at most bidegree m, we have that
jmax = ⌊m+3

2
⌋ in (1.2.13).

Separating bidegrees in the equation d2 = 0, we get the relations

k∑
j=0

djdk−j = 0 for each k ≥ 0, (1.2.14)

that are analogous to the relations (1.2.7) obtained for almost complex operators.
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We need to define one more differential, which has a role similar to that played
by dc on almost complex manifolds: the symplectic co-differential dΛ introduced in
[21], see also [13], [64], [99], [100], [101] and [110] for further relevant developments.
The operator dΛ is defined as the symplectic adjoint of d. On k-forms, it has the
explicit expression

dΛ = (−1)k+1 ∗s d ∗s .

The operators d and dΛ both square to zero, but in general they do not anti-
commute. By the action of d on Lr,s, we determine that dΛ acts on Lr,s as

dΛ(Lr,s) ⊆
⊕
j≥0

Lr−2+j,s+3−2j.

By taking projections on the components of the image, we get the decomposition

dΛ =
∑
j≥0

dΛj with dΛj := πr−2+j,s+3−2j ◦ dΛ|Lr,s .

Each projection dΛj is the symplectic adjoint of dj as given in (1.2.13), namely, we
have that

dΛj = (−1)k+1 ∗s dj∗s
on k-forms. Finally, we observe that, once a compatible triple (J, ω, g) is fixed,
the almost complex differential dc and the symplectic co-differential dΛ completely
determine each other by the relation

(dc)∗ = dΛ. (1.2.15)

1.3 Integrable structures

In this section we discuss integrability conditions of almost complex and almost
symplectic structures that, if satisfied, allow to develop rich cohomological theories.

Let (M,J) be an almost complex manifold. The Nijenhuis tensor of J is the
(2, 1)-tensor defined by

NJ(X, Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X, Y ] (1.3.1)

for all vector fieldsX and Y . IfNJ = 0, we say that J is integrable. A deep theorem
due to Newlander and Nirenberg establishes that an almost complex structure
induces a structure of complex manifold onM (the manifold admits local complex
coordinates with holomorphic change of coordinates) if and only if its Nijenhuis
tensor vanishes [74]. A complex structure is an integrable almost complex structure
and a complex manifold is a pair (M,J) with J integrable.
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Similarly, let (M,ω) be an almost symplectic manifold. If dω = 0, we say that
the almost symplectic structure is integrable and we call it a symplectic structure.
A symplectic manifold is a pair (M,ω) with dω = 0.

When we fix a compatible Riemannian metric, the terminology is more specific.
An almost Hermitian manifold (M,J, ω, g) is said to be almost Kähler if dω = 0,
Hermitian if NJ = 0, or Kähler if both dω = 0 and NJ = 0.

1.3.1 Complex manifolds

Let (M,J), with NJ = 0, be a complex manifold. The condition NJ = 0 holds
if and only if µ̄ = 0, since the operators µ and µ̄ computed on 1-forms can be
identified with the dual of the complexified Nijenhuis tensor via the relation

µ+ µ̄ = −1

4
(NC

J )
∗.

More in general, integrability of J is equivalent to the vanishing of any of the
operators

NJ , µ̄, ∂̄2, δ̄2, ddc + dcd,

or of their complex conjugate. Under the integrability assumption, the operators
δ and δ̄ coincide with ∂ and ∂̄ and the equations (1.2.9) simplify to

d = ∂ + ∂̄ and dc = i(∂̄ − ∂). (1.3.2)

The relations (1.2.7) and (1.2.11) reduce to
∂2 = 0,

∂̄2 = 0,

∂∂̄ + ∂̄∂ = 0,

and


d2 = 0,

(dc)2 = 0,

ddc + dcd = 0.

These are precisely the conditions for which (A•,•, ∂, ∂̄) and (A•,•, d, dc) are double
complexes as defined in Section 1.1, hence it is natural to study the cohomologies
of the operators involved. Taking separately the operators d and dc, we obtain the
cohomologies

Hk
d :=

ker d ∩ Ak

Im d ∩ Ak
and Hk

dc :=
ker dc ∩ Ak

Im dc ∩ Ak
,

which are called complex de Rham cohomology and dc-cohomology, respectively.
Starting with the operators ∂ and ∂̄, we obtain the cohomologies

Hp,q
∂ :=

ker ∂ ∩ Ap,q

Im ∂ ∩ Ap,q
and Hp,q

∂̄
:=

ker ∂̄ ∩ Ap,q

Im ∂̄ ∩ Ap,q
,
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which are called ∂-cohomology and ∂̄-cohomology, respectively. It is not hard
to verify that the action of J gives the isomorphism Hk

d
∼= Hk

dc , while complex
conjugation give the isomorphism Hp,q

∂
∼= Hq,p

∂̄
. We will mostly focus on the de

Rham cohomology and, for historical reasons, on the ∂̄-cohomology, which is also
known as Dolbeault cohomology.

There are two other natural cohomologies associated to a double complex that
take into account the simultaneous action of the differentials: the Bott–Chern
cohomology [17] and the Aeppli cohomology [1]. The Bott–Chern cohomology of
the operators d and dc is

Hp,q
BC :=

ker d ∩ ker dc ∩ Ap,q

Im ddc ∩ Ap,q
,

while their Aeppli cohomology is

Hp,q
A :=

ker ddc ∩ Ap,q

(Im d+ Im dc) ∩ Ap,q
.

By (1.3.2), if we replace d and dc by ∂ and ∂̄ in the definition of the Bott–Chern
and Aeppli cohomologies, the cohomology groups do not change.

There are natural inclusions of Bott–Chern cohomology into Dolbeault and de
Rham cohomologies and natural arrows from Dolbeault and de Rham cohomologies
into Aeppli cohomology that are all induced by the identity on the representatives.
The link between Dolbeault cohomology and complex de Rham cohomology is more
subtle and follows from the existence of a spectral sequence arising from the double
complex, as detailed in the following example.

Example 1.3.1 (Frölicher spectral sequence). The double complex (A•,•, ∂, ∂̄)
admits a natural spectral sequence induced by the filtration of its rows, indexed
by p, or of its columns, indexed by q, as done in Section 1.1. Choosing the row
filtration corresponds to choosing the cohomology of the ∂̄ operator. Explicitly,
the row filtration is

F pAp+q :=
⊕
j≥p

Aj,k−j.

By Proposition 1.1.1, the associated spectral sequence at page 0 is

Ep,q
0 =

F pAp+q

F p+1Ap+q
=
Ap,q ⊕ Ap+1,q−1 ⊕ Ap+2,q−2 ⊕ . . .

Ap+1,q−1 ⊕ Ap+2,q−2 ⊕ . . .
∼= Ap,q

and the differential induced by d is d0 = ∂̄, since we are taking the quotient modulo

Ap+1,q ⊕ Ap+2,q−1 ⊕ . . .
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The first page of the spectral sequence is the cohomology of (Ep,q
0 , d0) and it is

isomorphic to the Dolbeault cohomology, giving Ep,q
1

∼= Hp,q

∂̄
. The differential

induced on E•,•
1 is d1 = ∂ acting on Dolbeault cohomology classes. Since the

double complex of bigraded forms is bounded, the spectral sequence converges in
at most m steps to Ep,q

∞ , a subspace of the cohomology of the differential d = ∂+ ∂̄,
that is, of the de Rham cohomology group Hp+q

d . This induces a bigrading the on
de Rham cohomology in terms of a decomposition

Hk
d
∼=

⊕
p+q=k

Ep,q
∞ .

The spectral sequence we built is known as Frölicher (or Hodge–de Rham) spectral
sequence [39], and is denoted by Hp,q

∂̄
⇒ Hp+q

d . ■

The relations among the cohomologies described above and the Frölicher spec-
tral sequence allow to arrange them in the following diagram

Hp,q
BC

Hp,q

∂̄
Hp+q
d Hp+q

dc Hp,q
∂

Hp,q
A

J

∼ (1.3.3)

Spaces of harmonic forms

Suppose thatM is compact. Fix a J-compatible Riemannian metric and consider
its Hodge ∗ operator. The formal adjoints, see Section 1.2, of the operators d, dc,
∂ and ∂̄ have the explicit expressions

d∗ = − ∗ d∗, (dc)∗ = −J−1 ∗ d ∗ J, ∂∗ = − ∗ ∂̄ ∗ and ∂̄∗ = − ∗ ∂∗,
respectively. The Laplacians of the operators d and ∂̄ are

∆d := dd∗ + d∗d and ∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄,

respectively. The Laplacians of the operators dc and ∂ are obtained from ∆d and
∆∂̄ by the action of J and of complex conjugation, respectively. The corresponding
spaces of harmonic forms are

Hk
d := Ak ∩ ker∆d = {α ∈ Ak : dα = 0 and d∗α = 0},

Hk
dc := Ak ∩ ker∆dc = {α ∈ Ak : dcα = 0 and (dc)∗α = 0},

Hp,q
∂ := Ap,q ∩ ker∆∂ = {α ∈ Ap,q : ∂α = 0 and ∂∗α = 0} and

Hp,q

∂̄
:= Ap,q ∩ ker∆∂̄ = {α ∈ Ap,q : ∂̄α = 0 and ∂̄∗α = 0}.
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The following classical result in operator theory is fundamental in the study of
harmonic forms and Hodge theory.

Lemma 1.3.2. Every self-adjoint elliptic operator on a compact manifold has
finite dimensional kernel and its kernel and image are in orthogonal direct sum.

All of the Laplacians that we described are second-order self-adjoint elliptic
operators, so that the spaces Hk

d, Hk
dc , H

p,q
∂ and Hp,q

∂̄
are finite-dimensional vec-

tor spaces over C. Classical Hodge theory establishes isomorphisms between the
cohomologies and the spaces of harmonic forms

Hk
d
∼= Hk

d, Hk
dc

∼= Hk
dc , Hp,q

∂
∼= Hp,q

∂ and Hp,q

∂̄
∼= Hp,q

∂̄
,

so that the dimensions of the cohomology groups, hence of the spaces of harmonic
forms, provide a series of invariants. The numbers

bk := dimCH
k
d = dimCH

k
dc

are called Betti numbers, and they depend only on the homeomorphism type of
the underlying manifold. The numbers

hp,q
∂̄

:= dimCH
p,q

∂̄
= dimCH

q,p
∂ .

are called Hodge numbers, and they depend on the complex structure J , but not
on the choice of J-compatible Riemannian metric.

The theory develops very similarly for Bott–Chern and Aeppli cohomologies.
One can consider the Bott–Chern Laplacian

∆BC = ∂∂̄(∂∂̄)∗ + (∂∂̄)∗∂∂̄ + ∂∗∂̄(∂∗∂̄)∗ + (∂∗∂̄)∗∂∗∂̄ + ∂∗∂ + ∂̄∗∂̄ (1.3.4)

and the Aeppli Laplacian

∆A = ∂∂̄(∂∂̄)∗ + (∂∂̄)∗∂∂̄ + ∂∗∂̄(∂∗∂̄)∗ + (∂∗∂̄)∗∂∗∂̄ + ∂∂∗ + ∂̄∂̄∗. (1.3.5)

These are fourth-order self-adjoint elliptic operators [82]. Their kernels

Hp,q
BC := Ap,q ∩ ker∆BC and Hp,q

A := Ap,q ∩ ker∆A

are the spaces of Bott–Chern harmonic forms and of Aeppli harmonic forms, re-
spectively. Their explicit expressions are

Hp,q
BC = {α ∈ Ap,q : ∂α = 0, ∂̄α = 0 and (∂∂̄)∗α = 0}

and
Hp,q
A = {α ∈ Ap,q : ∂∂̄α = 0, ∂∗α = 0 and ∂̄∗α = 0}.
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Then, there are isomorphisms

Hp,q
BC

∼= Hp,q
BC and Hp,q

A
∼= Hp,q

A .

Since the Hodge ∗ induces an isomorphism Hp,q
BC

∼= Hm−q,m−p
A , it is not restrictive

to focus only on Bott–Chern harmonic forms. By complex conjugation, we also
haveHp,q

BC
∼= Hq,p

BC . The complex dimensions of the Bott–Chern cohomology groups

hp,qBC := dimCH
p,q
BC = dimCH

m−p,m−q
A

are the Bott–Chern numbers of the complex structure.

Remark 1.3.3. It is relevant to observe that in the literature there are several
non-equivalent definitions of Bott–Chern and Aeppli Laplacians. Nevertheless, all
their spaces of harmonic forms are isomorphic to each other and any property valid
for our choice of Laplacians holds in general. For a detailed discussion we refer
to [50] and to the original references [56], [82] and [106]. In Chapter 4, we adopt
another possible definition of Bott–Chern and Aeppli Laplacians based on the use
of d and dc. On complex manifolds, it is equivalent to (1.3.4) and (1.3.5).

1.3.2 Symplectic manifolds

This section summarizes the theory of the symplectic cohomologies introduced by
Tseng and Yau [100] and further studied in [99], [101] and [102].

Let (M,ω), with dω = 0, be a symplectic manifold. We study the action of
the differential d on bigraded forms. There are two natural double complexes
associated to L•,•, namely (L•,•, d, dΛ) and (L•,•, ∂+, ∂−), built in analogy with
(A•,•, d, dc) and (A•,•, ∂, ∂̄), respectively. For the first one, we note that if dω = 0,
then dΛ is the commutator

dΛ = [d,Λ],

and the operators d and dΛ satisfy the equations of a double complex

d2 = 0, (dΛ)2 = 0 and ddΛ + dΛd = 0.

As we already observed in Section 1.2, in general ddΛ + dΛd ̸= 0. It is not known
if the converse implication is also true. We formulate this as a question.

Question. Let (M,ω) be an almost symplectic manifold such that we have
ddΛ + dΛd = 0 on every form. Is ω necessarily d-closed?

On compact manifolds, we provide an answer when 2m = 4.

Lemma 1.3.4. Let (M,ω) be a compact almost symplectic 2m-manifold such that
d and dΛ anti-commute. Then dωm−1 = 0. In particular, if 2m = 4, then dω = 0.
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Proof. By computing ddΛ+dΛd on an arbitrary function f ∈ C∞(M), we see that

0 = (ddΛ + dΛd)f = dΛdf = ∗s d ∗s df = − 1

(m− 1)!
∗s d(ωm−1 ∧ df) =

= − 1

(m− 2)!
∗s dωm−1 ∧ df,

where we used (1.2.6). Since ∗s is an isomorphism, we have that

dωm−1 ∧ df = 0 (1.3.6)

for every f ∈ C∞(M). Fix x ∈ M and let {xj}2mj=1 be coordinate functions in a
neighborhood U of x. In local coordinates, we can write

dωm−1 =
2m∑
j=1

ωj dx
1...ĵ...2m,

where ĵ denotes missing indices. If we choose f as a smooth extension of xj from
U to M , equation (1.3.6) implies that ωj = 0 for all j = 1, . . . , 2m. Therefore we
have

dωm−1 = 0

on U and, since x is arbitrary, on M . In dimension 2m = 4, this immediately
implies dω = 0.

Remark 1.3.5. Metrics whose fundamental form satisfies dωm−1 = 0 are known
in the literature as (almost) balanced metrics [67], or semi-Kähler [42]. In Lemma
1.3.4, we have proved that the semi-Kähler condition is equivalent to asking that
dω is primitive, or that d and dΛ anti-commute on functions.

To define the double complex (L•,•, ∂+, ∂−), consider the action of d on Lr,s.
Under the assumption dω = 0, the decomposition (1.2.13) simplifies to

d(Lr,s) ⊆ Lr,s+1 ⊕ Lr+1,s−1

and induces a decomposition of d as the sum d = ∂+ + L∂−, where

∂+ := πr,s+1 ◦ d|Lr,s and ∂− := Λ ◦ πr+1,s−1 ◦ d|Lr,s .

Separating by bidegree the terms of the equation (∂++L∂−)
2 = 0 and taking into

account that ∂+ and ∂− commute with the Lefschetz operator, we see that they
satisfy the equations of a double complex

∂2+ = 0, ∂2− = 0 and ∂+∂− + ∂−∂+ = 0,
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when acting on primitive k-forms with k < m. In terms of the dj appearing in
(1.2.13), we have

∂+ = d1 and ∂− = Λd2.

Any operator among d, dΛ, ∂+ and ∂− commutes with L, so that it is enough to
define their cohomologies on primitive forms. The full cohomologies are recovered
by the action of the Lefschetz operator. The cohomologies of the double complex
(L•,•, ∂+, ∂−) are

PHk
∂+

:=
ker ∂+ ∩ Pk

Im ∂+ ∩ Pk
and PHk

∂−
:=

ker ∂− ∩ Pk

Im ∂− ∩ Pk
,

together with their Bott–Chern and Aeppli counterparts

PHk
∂++ ∂−

:=
ker ∂+ ∩ ker ∂− ∩ Pk

Im ∂+∂− ∩ Pk
and PHk

∂+∂−
:=

ker ∂+∂− ∩ Pk

Im(∂+ + ∂−) ∩ Pk
.

In a similar fashion, we define the cohomologies of the double complex (L•,•, d, dΛ).
Clearly, we obtain the de Rham cohomology and the dΛ-cohomology

Hk
dΛ :=

ker dΛ ∩ Ak

Im dΛ ∩ Ak
,

that are isomorphic to each other, see diagram (1.3.7). Then we have the sym-
plectic cohomologies

Hk
d+dΛ :=

ker d ∩ ker dΛ ∩ Ak

Im ddΛ ∩ Ak
and Hk

ddΛ :=
ker ddΛ ∩ Ak

Im(d+ dΛ) ∩ Ak
.

They also admit a primitive version which contains the same information as the
full cohomology. We refer collectively to all of them as symplectic cohomologies.
In full analogy with the theory of complex cohomologies, there are equalities

ker ∂+ ∩ ker ∂− ∩ Ak

Im ∂+∂− ∩ Ak
=

ker d ∩ ker dΛ ∩ Ak

Im ddΛ ∩ Ak
,

and
ker ∂+∂− ∩ Ak

Im(∂+ + ∂−) ∩ Ak
=

ker ddΛ ∩ Ak

Im(d+ dΛ) ∩ Ak
.

We can arrange the cohomologies in a diagram

Hk
d+dΛ

Hk
∂+

Hk
d Hk

dΛ Hk
∂−

Hk
ddΛ

∼ (1.3.7)
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where the arrows are defined by the natural inclusion. The isomorphism between
Hk
d and Hk

dΛ is given by any choice of almost complex structure compatible with
the symplectic form ω. Using the general theory of multicomplexes, one can define
a spectral sequences that relates Hk

∂+
to de Rham cohomology, see Section 3.4.

Spaces of harmonic forms

Suppose that M is compact. Let g be an ω-compatible Riemannian metric on
M , i.e., a metric such that

ω(·, J ·) = g(·, ·)
for some almost complex structure J (we do not require NJ = 0). Denote by d∗

and (dΛ)∗ the formal adjoints of d and dΛ. The Hodge-type Laplacians of d and
dΛ are

∆d := dd∗ + d∗d and ∆dΛ := dΛ(dΛ)∗ + (dΛ)∗dΛ,

respectively. Similarly, one defines the Hodge-type Laplacians of ∂+ and ∂− by

∆∂+ := ∂+∂
∗
+ + ∂∗+∂+ and ∆∂− := ∂−∂

∗
− + ∂∗−∂−,

respectively, and their Bott–Chern-type and Aeppli-type Laplacians by

∆∂++ ∂− := ∂+∂−(∂+∂−)
∗ + (∂+∂−)

∗∂+∂− + ∂∗+∂−(∂
∗
+∂−)

∗ + (∂∗+∂−)
∗∂∗+∂− + ∂∗+∂+ + ∂∗−∂−

and

∆∂+∂− := ∂+∂−(∂+∂−)
∗ + (∂+∂−)

∗∂+∂− + ∂∗+∂−(∂
∗
+∂−)

∗ + (∂∗+∂−)
∗∂∗+∂− + ∂+∂

∗
+ + ∂−∂

∗
−,

respectively. The corresponding Laplacians for d and dΛ are

∆d+dΛ := ddΛ(ddΛ)∗ + (ddΛ)∗ddΛ + d∗dΛ(d∗dΛ)∗ + (d∗dΛ)∗d∗dΛ + d∗d+ (dΛ)∗dΛ

and

∆ddΛ := ddΛ(ddΛ)∗+(ddΛ)∗ddΛ+d(dΛ)∗(d(dΛ)∗)∗+(d(dΛ)∗)∗d(dΛ)∗+dd∗+dΛ(dΛ)∗.

Hodge theory for symplectic manifolds develops in the same way as Hodge
theory for complex manifolds: all the symplectic Laplacians are elliptic and self-
adjoint. Thanks to the compactness of M , they have finite dimensional kernels
and the kernels are isomorphic to the corresponding cohomologies. Even the con-
sequences of Hodge theory are the same, i.e., the symplectic cohomology groups
are finite-dimensional on compact manifolds and the dimensions of the spaces of
harmonic forms, which in principle depend on the metric, are actually metric-
independent, providing the symplectic invariants

hk∂+ , hk∂− , hk∂++∂− = hkd+dΛ and hk∂+∂− = hkddΛ .
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Remark 1.3.6. We recall that the original definition of symplectic cohomologies
and symplectic harmonic forms was given for real forms. Since the symplectic
Laplacians are real operators, computing them on complex forms yields the same
theory.

1.4 Small deformations of almost complex structures

In this section we describe almost complex structures in terms of the twistor bundle
and we study their small deformations. We prove that every continuous curve of
almost complex structures can be approximated by a real analytic curve of almost
complex structures. For more details on the twistor space we refer to [9] and [76],
while for small deformations we refer to [12] and [54].

Let M be a compact almost complex 2m-manifold. We interpret almost com-
plex structures as sections of a suitable bundle, called the twistor bundle. Let
x ∈ M and let TxM be the tangent space at x. The twistor bundle of M is the
fiber bundle Tw !M whose fiber is

Twx := {Jx ∈ End(TxM) : J2
x = − IdTxM},

the space of linear complex structures on TxM . A smooth section of the twistor
bundle corresponds to a local choice of complex structure depending smoothly on
x, hence to a global almost complex structure J on M . While the twistor bundle
is defined for arbitrary even dimensional smooth manifolds, it will admit a global
section if and only if M admits an almost complex structure.

Denote by J the space of almost complex structures onM , or, equivalently, the
space of smooth sections of Tw !M . Since J is the space of sections of a smooth
vector bundle, it naturally admits the structure of a Fréchet manifold induced
by a family of seminorms. In particular, we endow J with the Ck-topology, for
k = 0, . . . ,∞, induced by such seminorms as follows. Fix a Riemannian metric
on M . Denote by ∥·∥ the induced norm on End(TM) and by ∇ the induced
connection on TM extended to End(TM). Two points J0 and J1 ∈ J are ε-close
in the Ck-topology if

sup
j≤k

max
x∈M

∥∇j(J0 − J1)|x∥ < ε.

In the case k = ∞ we take the supremum over k ∈ N. For a general discussion on
topologies on spaces of sections we refer to [57] and [68].

Let J0 ∈ J and let

TJ0J = {L ∈ End(TM) : LJ0 + J0L = 0}

be the tangent space to J at J0. Set I = [0, 1] ⊂ R and denote by ∆ε ⊂ C the
(open) disk of radius ε centered at the origin.
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Definition 1.4.1. A (real) curve of almost complex structures is a continuous map
from I to J . We write it as a family of almost complex structures Jt depending
continuously on the parameter t ∈ I. If Jt depends smoothly on t, we say that Jt
is a smooth curve of almost complex structures.

Definition 1.4.2. Fix J0 ∈ J . A small deformation of J0 is a family of almost
complex structures parametrized by a complex parameter s ∈ ∆ε of the form

Js = (I + Ls)J0(I + Ls)
−1, s ∈ ∆ε, (1.4.1)

where Ls ∈ TJ0J and Ls = sL + o(s). If Ls = sL, we say that Js is a first order
deformation of J0.

A small deformation of J0 naturally defines a curve of almost complex structures
passing through J0 parametrized by s ∈ ∆ε. Taking the restriction of s to the
real axis, we obtain a real curve of almost complex structures parametrized by
t ∈ (−ε, ε) and, up to reparametrization, a curve defined in a neighborhood of I.
If J1 ∈ J is an almost complex structure close enough to J0 in the C0-topology,
then J1 can be written as a small deformation of J0.

A different way of thinking of an almost complex structure J is in terms of a
splitting of the complexified tangent bundle

TMC = TM1,0 ⊕ TM0,1,

where TM1,0 and TM0,1 are the (±i)-eigenbundles of J extended to TMC, re-
spectively. Every almost complex structure determines uniquely such a splitting.
Conversely, every splitting

TMC = L⊕ L̄

determines uniquely J as the endomorphism of TMC whose (±i)-eigenbundles are
L and L̄, respectively. This fact will be used consistently in the rest of this section
and in Chapter 2, as well as in explicit examples.

A curve of almost complex structures Jt defines a family of splittings

TMC = TM1,0
t ⊕ TM0,1

t , t ∈ I.

If t is small enough and Jt is induced by a small deformation of J0, we can view
TM1,0

t as a graph over TM1,0
0 obtained as

TM1,0
t = (Id+Ψ(t))TM1,0

0 ,

where Ψ(t) =
∞∑
j=0

ψj t
j is a power series with coefficients

ψj ∈ T ∗M0,1
0 ⊗ TM1,0

0
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and ψ0 = 0. With respect to the description of Jt as a small deformation of J0, we
have that

Ψ(t) =
1

2
(Lt − iJ0Lt),

while Lt can be recovered from J0 and Jt via the formula

Lt = (I − J0Jt)
−1(I + J0Jt), (1.4.2)

see Remark 3.1 in [12]. Conversely, a power series Ψ(t) with Ψ(0) = 0 does not
necessarily give rise to a small deformation of almost complex structures and one
has to deal with convergence issues. When we talk about small deformations of
almost complex structures we always mean that the power series in t is convergent
in a neighborhood of 0.

Among curves of almost complex structures, a special role is played by those
that are locally described by a formal deformation of almost complex structures
that is actually convergent.

Definition 1.4.3. We say that a curve of almost complex structures Jt is real
analytic if for each t0 ∈ I there exists δ > 0 such that

Jt = (I + Lt−t0)Jt0(I + Lt−t0)
−1 for t ∈ (t0 − δ, t0 + δ),

and if the power series described by Lt−t0 is convergent in a neighborhood of t0
with positive radius of convergence. It will be clear from the proof of Lemma
1.4.6 that one can think of real analytic curves as Cω,∞-sections of a suitable fiber
bundle in the sense of [57].

To deal with real analytic curves it is convenient to endow the twistor bundle
with an analytic structure.

Definition 1.4.4. An analytic structure (or Cω-structure) on M is the datum of
a maximal atlas whose transition functions are analytic. M endowed with a Cω-
structure is an analytic manifold. If M and N are analytic manifolds, an analytic
function (or Cω-function) f : M ! N is a function that is analytic after composing
with local charts on M and N .

Definition 1.4.5. An analytic fiber bundle (or Cω-fiber bundle) over M is a fiber
bundle π : E ! M where E is an analytic manifold and π is a surjective analytic
map. An analytic section (or Cω-section) of a Cω-fiber bundle is a section that is
also a Cω-function.

Every smooth manifold admits an analytic structure compatible with its smooth
structure. This guarantees that the total space of the twistor bundle admits an
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analytic structure. Nevertheless, endowing Tw ! M with a structure of analytic
bundle requires some additional care.

First, we need an approximation result for analytic sections. By Steenrod’s
approximation theorem, see Section 6.7 in [91], every continuous section σ0 of a
smooth fiber bundle B !M can be approximated by a smooth section σ∞, once a
metric is fixed on B. Furthermore, the section σ∞ can be taken in such a way that
it coincides with σ0 on a closed subset of B on which σ0 is already smooth. The
problem of approximating a smooth section σ∞ with a Cω-section on a Cω-fiber
bundle was left open by Steenrod, but a solution was found later by Shiga, see [83]
or Proposition 2 in [84]. The approximation is arbitrarily good in the C∞-topology
of the space of sections and can be performed outside of a closed subset on which
σ∞ is already analytic. We refer to Section 30.12 in [57] for a modern treatment
of the approximation problem.

Consider π : Tw ! M as a smooth vector bundle. Fix a Cω-structure on
M compatible with the underlying smooth structure. Endow the total space Tw
with a Cω-structure induced by those on M and on Twx. Then π is a smooth
map between analytic manifolds and can be approximated by an analytic map πω.
Since the Cω-structure on Tw is induced by the one on M , the map πω is still a
bundle projection and the Cω-fiber bundle structure is well-defined.

The second result we need is a deep theorem due to Grauert [41] and Morrey
[70]. They show that the choice of analytic structure we made on M is essentially
unique: two Cω-structures compatible with the same smooth structure on M are
Cω-diffeomorphic. In particular, this guarantees that every smooth invariant we
compute is independent of the initial choice of analytic structure on M , thus it is
independent of the choice of analytic structure on Tw.

Lemma 1.4.6. Let M be a compact almost complex manifold and let J0 and J1
be two almost complex structures on M . Suppose that there exists a continuous
curve of almost complex structures Jt, t ∈ I, between J0 and J1. Then Jt can be
approximated by a real analytic curve of almost complex structures.

Proof. For an arbitrary smooth manifold N , continuous curves from I to N can
be seen as continuous sections of the product fiber bundle I ×N ! I. Hence, we
can think of Jt as a section of the fiber bundle I × Tw ! I ×M that depends
continuously on t ∈ I and smoothly on x ∈M . Endow Tw with a Cω-fiber bundle
structure as described above. Then Jt is a continuous section of a Cω-fiber bundle.
By Proposition 2 in [84], we approximate it by a Cω-section J̃t. By [83], up to a
small perturbation with fixed endpoints of Jt in a neighborhood of t = 0 and t = 1,
the approximation can be performed keeping the endpoints fixed since {0} ×M
and {1} ×M are closed Cω-submanifolds of I ×M . To prove that J̃t is a real
analytic curve of almost complex structures in the sense of Definition 1.4.3, fix
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t0 ∈ I and let t ∈ I be close enough to t0. As in (1.4.2), consider the operator

L̃t := (I − J̃t0 J̃t)
−1(I + J̃t0 J̃t).

Then L̃t defines a small deformation J̃deft of J̃t0 . We need to prove that J̃deft

coincides with the curve J̃t in a neighborhood of t0. Since J̃t is analytic in t, so
is L̃t. The same is true for J̃deft , that is completely determined by L̃t in a small
neighborhood of t0. Hence J̃t and J̃

def
t are both analytic in t. Taking derivatives

of (1.4.1) and (1.4.2), it is immediate to check that their derivatives at t = t0
coincide, so that J̃t = J̃deft .

1.5 Invariant structures on quotients of Lie groups

Let G be a connected and simply connected Lie group of dimension 2m, let g be
its Lie algebra and let g∗ be its dual Lie algebra. Fix a trivialization of TG by
left-invariant vector fields so that

TG ∼= C∞(G)⟨e1, . . . , e2m⟩, ej ∈ g.

Let e1, . . . , e2m be a basis of g∗ dual to e1, . . . , e2m. Then g and g∗ are the span

g = R⟨e1, . . . , e2m⟩ and g∗ = R⟨e1, . . . , e2m⟩.

Consider the graded algebra

Akg :=
k∧
g∗

endowed with the differential defined as the dual of the Lie bracket: for X, Y ∈ g
and a ∈ g∗, we set

da(X, Y ) := −a([X, Y ])

and extend it as a graded derivation to A•
g. The differential graded algebra (A•

g, d)
is the Chevalley–Eilenberg complex of g [27]. The cohomology of the Chevalley–
Eilenberg complex is the Lie algebra cohomology of g

Hk(g) :=
ker d ∩ Akg
Im d ∩ Akg

.

The Lie algebra structure of g is completely described in terms of the differentials
dej ∈

∧2 g∗. For brevity, we denote ek ∧ el by ekl and we write

g = (c1klkl, . . . , c
2m
kl kl),
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where we are summing over repeated indices and we mean that

dej =
∑
k,l

cjkle
kl.

As an example, the Lie algebra of the complex 3-dimensional Heisenberg group is
isomorphic to the 6-dimensional real Lie algebra with structure equations

de5 = e13 − e24, de6 = e14 + e23 and dej = 0 for j = 1, 2, 3, 4.

It will be simply denoted by

g = (0, 0, 0, 0, 13− 24, 14 + 23).

Endow g with a compatible triple (J, ω, ⟨·, ·⟩), where J ∈ End(g) is such that
J2 = − Id, ω is a non-degenerate element of A2

g and ⟨·, ·⟩ is an inner product on g.
In addition, we ask that they satisfy the compatibility condition

⟨X, Y ⟩ = ω(X, JY )

for all X and Y ∈ g. If g is endowed with a compatible triple, the Chevalley–
Eilenberg complex admits a bigrading defined in terms of J or ω and the differential
admits decompositions analogous to those presented in Section 1.2. If NJ = 0 or
dω = 0, then one can compute the complex or symplectic cohomologies of g as the
corresponding cohomologies of the Chevalley–Eilenberg complex.

Observe that Lie groups are parallelizable, thus G will always admit an almost
complex structure. We focus on a special class of structures that has a stronger
connection with the Lie algebra of G. A left-invariant almost complex structure
on G is an almost complex structure that is invariant under left translation. Left-
invariant almost complex structures descend naturally to g. Conversely, every
endomorphism J ∈ End(g) satisfying J2 = − Id induces a left-invariant structure
on G by C∞(G)-linearity. Similarly, a left-invariant non-degenerate 2-form cor-
responds to a non-degenerate element of

∧2 g∗ and a left-invariant metric on G
corresponds to an inner product on g.

Since in most cases G will not be compact, to deal with compact manifolds we
assume that G admits a co-compact discrete subgroup Γ. Consider the left-action
of elements in Γ and the quotient M := Γ\G. Then M is a compact smooth 2m-
manifold whose tangent space coincides with that of G and is isomorphic to g. In
particular, M is parallelizable and admits an almost complex structure.

The derived series {g(k)}k≥1 of g is defined by

g(1) := [g, g] and g(k+1) := [g(k), g(k)] for k ≥ 1.
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If g(k) = {0} for some k, we say that g is solvable. A solvable Lie algebra is called
completely solvable if adX has real eigenvalues for all X ∈ g. The descending
central series {gk}k≥1 of g is defined by

g1 := [g, g] and gk+1 := [g, gk] for k ≥ 1.

If gk = {0} for some k, we say that g is nilpotent. In particular, every nilpotent
Lie algebra is completely solvable and every completely solvable Lie algebra is
solvable. We say that G is solvable, completely solvable or nilpotent if its Lie
algebra is solvable, completely solvable or nilpotent, respectively.

If Γ ⊆ G is a co-compact discrete subgroup andG is solvable or nilpotent we call
M = Γ\G solvmanifold or nilmanifold, respectively. If G is completely solvable,
we say that M is a solvmanifold of completely solvable type. An almost complex
structure on M is said to be invariant if it is induced on M by an almost complex
structure on g. An almost complex structure on G is said to be Γ-invariant if it
is invariant under left translation by elements of Γ. In terms of the basis of g, an
almost complex structure J sends ej to a linear combination of e1, . . . , e2m with
coefficients in

• R, if J is an invariant structure on M or a left-invariant structure on G;

• C∞(M), if J is an arbitrary almost complex structure onM or a Γ-invariant
structure on G;

• C∞(G), if J is an arbitrary almost complex structure on M .

Note that smooth functions on M correspond to smooth functions on G that are
also Γ-periodic.

For invariant structures on M , one should consider two kind of cohomologies.
The first one is the genuine cohomology of the structure computed on the smooth
manifold. The second one is the invariant cohomology, i.e., the cohomology of
the corresponding structure on g computed on the Chevalley–Eilenberg complex.
Similarly, for a left-invariant structure on a Lie group we can consider its usual
cohomology or its left-invariant cohomology. In general the two cohomologies
are different. However, under certain assumption we know that the de Rham
cohomology of M can be computed using invariant forms, see [46] and [75].

Theorem 1.5.1. The de Rham cohomology of nilmanifolds and of solvmanifolds
of completely solvable type is isomorphic to the invariant de Rham cohomology.

In general, understanding if invariant and non-invariant cohomologies coincide
is a difficult task and, in the case of Dolbeault cohomology, it is the object of open
conjectures, see, for instance, [80]. In Chapter 5, we will compare invariant and
non-invariant harmonic forms.



CHAPTER 2

Rank of the Nijenhuis tensor

In this chapter we deal with the Nijenhuis tensor of almost complex manifolds. We
study the local behaviour of its rank along small deformations of the almost com-
plex structure and we prove that maximally non-integrable structures are generic:
they form a set that is either open and dense or empty in each path-connected
component of the space of almost complex structures. Then we focus on paral-
lelizable manifolds. We describe a method that allows to produce almost complex
structures whose Nijenhuis tensor has arbitrary prescribed rank. On homogeneous
spaces, we show that, under certain assumptions, the rank of the Nijenhuis ten-
sor admits an upper bound in terms of topological invariants. On 6-dimensional
nilmanifolds, we provide a classification of invariant almost complex structures
according to the rank of their Nijenhuis tensor.

2.1 The rank as a measure of non-integrability

Let (M,J) be an almost complex 2m-manifold and let NJ be the Nijenhuis tensor
of J , see (1.3.1). Its image defines a distribution V ⊆ TM given by Vx := Im(NJ |x)
at every x ∈M . The Nijenhuis tensor has symmetries induced by the action of J
on vector fields. We have that

NJ(JX, Y ) = NJ(X, JY ) = −JNJ(X, Y ). (2.1.1)

27



28 CHAPTER 2. RANK OF THE NIJENHUIS TENSOR

Hence, the distribution V is invariant under the action of J and it has even real
rank at every point. The rank of the Nijenhuis tensor is the map

rkNJ : M −! N,

x 7−!
1

2
dimR Vx = dimC Vx

and in general it is not constant on M . An important observation is that the
rank of NJ corresponds to the complex dimension of the image of the operator µ̄
computed on (1, 0)-forms

rkNJ |x = dimC µ̄x(A
1,0
x ).

For brevity, we will sometime refer to the rank of NJ as the rank of J . If 2m ≥ 6,
its possible values vary between 0 and m. If 2m = 4, the only possible values are
0 and 1. If rkNJ |x = 0 for all x ∈ M , then NJ = 0 and J is integrable. One can
think of the rank as measure of how far is J from being integrable and it is natural
to ask which kind of structures are the farthest possible from the integrable ones.

Definition 2.1.1. An almost complex structure J is said to be maximally non-
integrable if for all x ∈M we have that

rkNJ |x =

{
m if 2m ≥ 6,

1 if 2m = 4.

Integrable and maximally non-integrable structures are the extremal cases
among structures of constant rank. An intermediate but still relevant situation is
that of everywhere non-integrable structures.

Definition 2.1.2. An almost complex structure J is said to be everywhere non-
integrable if NJ |x ̸= 0 for all x ∈M .

In dimension 2m = 4, the notions of maximally non-integrable and everywhere
non-integrable structure coincide. As the following example shows, it is not hard,
on certain manifolds, to find structures of constant rank for every choice of rank.
In Section 2.3, we develop a general framework that allows to produce structures
of arbitrary constant rank on parallelizable manifolds and that provides a large
number of examples.

Example 2.1.3 (Almost complex structures of constant rank on tori).
Let T be a 2m-dimensional torus and let J be an invariant almost complex

structure on T . Then J corresponds to an almost complex structure on the Lie
algebra of R2m, the universal cover of T . Since g := Lie(R2m) is abelian, we have
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that NJ(X, Y ) = 0 for all X and Y ∈ g, and every invariant structure on T must
be integrable. Nevertheless, T admits non-invariant almost complex structures of
arbitrary constant rank k whose construction, which we now recall, is performed
in Theorem 14 and Remark 15 in [32].

Think of T as a quotient of Cm by the standard lattice (Z[2πi])m. This induces
complex coordinates on T . Denote by {dzj}mj=1 the corresponding global frame of
(1, 0)-forms and consider the forms {ωj}mj=1 defined by

ωj := dzj + fjdz̄
j, j = 1, . . .m,

where fj ∈ C∞(T ). As long as the constraint |fj|2 ̸= 1 is satisfied for all j, the
forms ωj define an almost complex structure on T by requiring that they span the
(1, 0)-tangent bundle T 1,0M . The choice of functions

fj =


A+ eiℜ(zj+1) j = 1, . . . k − 1,

A+ eiℜ(z1) j = k,

0 j = k + 1, . . . ,m,

where A ∈ C is a constant such that |A| ≥ 2, gives an almost complex structure of
constant rank k on T . The only case not covered by the above argument is k = 2
in dimension 2m = 6, that can be obtained with a slight modification of the ωj.
We refer to [32] for the details. ■

Maximally non-integrable structures not only are the less integrable almost
complex structure. They also appear in the literature as a preferred source of
examples when dealing with almost complex structures, see Introduction. This
is essentially due to the fact that such structures are the generic almost complex
structure, while integrable structures appear as the less generic kind of almost com-
plex structures. Heuristically speaking, given a linear morphism of vector spaces
L ∈ Hom(V,W ), with dimV = dimW , “having image of maximal dimension” is
a genericity condition for L: it can be perturbed to an invertible operator since
invertible matrices form a dense subset of Hom(V,W ). However, the generaliza-
tion of this fact to almost complex structures is not straightforward. This is the
topic of Section 2.2, where we show that maximally non-integrable structures form
an open and dense set in each path-connected component of the space of almost
complex structures, as soon as they exist, see Theorem 2.2.4 and Corollary 2.2.5.

Actually, maximally non-integrable structures might not exist on arbitrary
manifolds. The following result is essentially due to Armstrong [8], if 2m = 4,
and to Bryant [20], if 2m = 6. It gives necessary and sufficient conditions for
existence of maximally non-integrable structures on compact manifolds of low di-
mension.
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Theorem 2.1.4. Let M be a compact 2m-manifold and let χ and σ be the Euler
characteristic and the signature of M , respectively. Then M admits a maximally
non-integrable almost complex structure if and only if

• (1− b1 + b+) is even and 5χ+ 6σ = 0, if 2m = 4;

• it admits a spin structure, if 2m = 6.

In dimension 8 there are necessary conditions [32]. In dimension at least 10,
maximally non-integrable structures always exist on arbitrary (not necessarily
compact) manifolds. The result on existence of maximally non-integrable struc-
tures on high-dimensional manifolds is a consequence of a more general result on
the flexibility (genericity) of almost complex structures: an h-principle [32]. In
order to deal with flexibility of structures, it is convenient to introduce the spaces
of structures whose rank is bounded from below. For every k, consider the set

Jk := {J ∈ End(TM) : J2 = − Id and rkNJ |x ≥ k for all x ∈M}.

The set J0 is the space of all almost complex structures on M . We denote it
simply by J , see Section 1.4. The space J1 is the space of everywhere non-
integrable structures, while Jm is the space of maximally non-integrable structures
(if 2m ≥ 6). For a fixed J ∈ J , let NJ be the set of (2, 1)-tensors satisfying (2.1.1).
The space of formal Nijenhuis tensors associated to Jk is the space

Nk := {(J,N) : J ∈ J , N ∈ NJ and rkN |x ≥ k for all x ∈M}.

At least locally, every (2, 1)-tensor satisfying (2.1.1) is the Nijenhuis tensor of
some (local) almost complex structure, see Theorem 5 in [58] or Proposition 1.1
in [69]. As it happens for almost complex structures, a simple local description of
the Nijenhuis tensor does not translate to a simple global one.

Theorem 2.1.5 (h-principle, Theorem A in [32]). Let M be an almost complex
manifold. For every integer k the map sending J to its Nijenhuis tensor induces
a homotopy equivalence

Jk −! Nk.

By transversality, it is possible to establish existence of special structures on
high dimensional manifolds.

Corollary 2.1.6 (Corollary A.1 in [32]). Every almost complex structure on an
almost complex 2m-manifold is homotopic to an everywhere non-integrable one if
2m ≥ 6 and to a maximally non-integrable if 2m ≥ 10.

In particular, maximally non-integrable structures always exist on manifolds
of dimension at least 10, while everywhere non-integrable structures always exist
on manifolds of dimension at least 6.
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2.2 Density of maximally non-integrable structures

Let (M,J) be a compact almost complex manifold. The compactness assumption
guarantees that the local description of small deformations of almost complex
structures given by (1.4.1) holds, cf. page 257 in [54]. Let Jt, |t| < ε, be a small
deformation of J = J0, see Section 1.4, and let NJt be the Nijenhuis tensor of Jt.
Along small deformations of almost complex structures we are able to control the
rank of the Nijenhuis tensor.

Lemma 2.2.1. Let M be a compact almost complex 2m-manifold. Let J0 be an
almost complex structure on M and let

Jt = (I + Lt)J0(I + Lt)
−1, t ∈ (−ε, ε),

be a small deformation of J0. Then for every a ∈ (0, ε) and for every x ∈ M , we
have that

rkNJt |x ≥ max{rkNJ0 |x, rkNJa |x}
for all t ∈ [−a, a] except a finite number.

Proof. Fix x ∈ M . Let U be a small neighborhood of x and let {ωjt}mj=1 be a
local co-frame of (1, 0)-forms with respect to Jt. The operator µ̄t computed on the
co-frame can be written as

µ̄t ω
j
t =

∑
k<l

Gj
kl(t)ω

k̄l̄
t ,

where Gj
kl ∈ C∞(M × (−ε, ε)) is a power series in the t variable that converges on

(−ε, ε). Fix a ∈ (0, ε) and set

kx := max{rkNJ0|x, rkNJa|x}.

Let G be the matrix (Gj
kl(t)) and consider all the determinants of the kx × kx

minors of G. They are power series in t that converge on [−a, a], therefore each
of them either has a finite number of zeros or identically vanishes. Since kx =
max{rkNJ0|x, rkNJa|x}, at least one determinant does not identically vanish along
the curve Jt, showing that rkNJt|x ≥ kx for all t ∈ [−a, a] except a finite number.

Let C be a path-connected component of the space of almost complex struc-
tures. For every k = 0, . . . ,m, consider the set

Ck := C ∩ Jk = {J ∈ C : rkNJ |x ≥ k for all x ∈M}.

To extend the results of Lemma 2.2.1 from local to global, we use a compactness
argument and the existence of real analytic curves, see Definition 1.4.3.



32 CHAPTER 2. RANK OF THE NIJENHUIS TENSOR

Proposition 2.2.2. Let M be a compact almost complex 2m-manifold. Let J0
and J1 be two almost complex structures on M . Suppose that there exists a real
analytic curve of almost complex structures Jt joining J0 and J1. If Jt ∈ Ck for
some t ∈ I, then Jt ∈ Ck for all t ∈ I except a finite number.

Proof. Without loss of generality, we can assume that Jt is defined on (−ε, 1+ ε).
Since Jt is a real analytic curve, for each t

∗ ∈ I there exists a compact neighborhood
I∗ of t∗ such that Jt is a small deformation of Jt∗ for all t ∈ I∗. Cover I with such
neighborhoods and, by compactness of I, extract a finite subcover {tj, Ij}rj=0 with
0 = t0 < t1 < . . . < tr = 1 and Ij ∩ Ij+1 ̸= ∅, for j = 0, . . . , r − 1. On each Ij, the
power series describing the small deformation of Jtj is convergent.

Since M is compact, we can cover it with a finite number of neighborhoods
{xs, Us}qs=1 such that TxsUs

∼= Us×R2m. By assumption, there exist j̃ ∈ {0, . . . , r}
and t̃ ∈ Ij̃ such that Jt̃ ∈ Ck. By Lemma 2.2.1 applied locally on Us to the curve Jt,
t ∈ Ij̃, we have that rkNJt |x ≥ k for all t ∈ Ij̃ except a finite number. The result
of Lemma 2.2.1 applies to all x ∈ Us for the same values of t. Two consecutive
intervals have non-empty overlap and we can repeat the argument on each Ij. We
conclude that rkNJt|x ≥ k for all x ∈ Us and for all t ∈ I except a finite number.
Finally, since we coveredM with a finite number of open sets, we have that Jt ∈ Ck
for all t ∈ I except a finite number.

The proposition can be reformulated as follows:

Corollary 2.2.3. Let M be a compact almost complex manifold and let Jt, t ∈ I,
be a real analytic curve of almost complex structures on M . Then for every x ∈M
we have that

rkNJt |x = max
t∈I

{rkNJt |x}

for all t ∈ I except a finite number.

Proof. This is a direct consequence of Proposition 2.2.2 and an elementary fact:
level sets of a continuous real function f defined on an interval I and satisfying
the following property{

for all x ∈ I there exists εx such that for all y ∈ Iε := (x− ε, x+ ε)
we have f(y) = maxIε f except for a finite number of y

}
are discrete, except for the level set f−1(max f).

We are ready to state and prove the main result on the density of Ck.

Theorem 2.2.4. Let M be a compact almost complex manifold and let C be a
path-connected component of J . Let Ck be the subspace of C of almost complex
structures of rank at least k at every point of M . Then Ck is either open and dense
or empty in C.
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Proof. Let C be a path-connected component of J . Suppose that Ck ⊆ C is not
empty. Let J1 ∈ Ck and let J0 ∈ C be any almost complex structure. Let Jt be
a continuous curve of almost complex structures joining J0 and J1. Up to small
perturbations, we can assume that Jt is a real analytic curve by Lemma 1.4.6. By
Proposition 2.2.2, and since J1 ∈ Ck, we have that Jt ∈ Ck for all t ∈ I except a
finite number. In particular, every neighborhood of J0 contains almost complex
structures in Ck. Openness of Ck follows by lower semi-continuity of the rank of NJt

with respect to t, and by the fact that if J0 ∈ Ck, then almost complex structures
close to J0 in the C0-topology are small deformations of J0.

As a direct consequence, we deduce that maximally non-integrable structures
are generic almost complex structures.

Corollary 2.2.5. Let M be a compact almost complex manifold. Then the space
of maximally non-integrable almost complex structures on M is either open and
dense or empty in each path-connected component of J .

By Theorem 2.2.4 and the existence of structures on high-dimensional mani-
folds, we get the following approximation theorem.

Theorem 2.2.6. Let M be a compact almost complex 2m-manifold. Then every
almost complex structure on M can be approximated arbitrarily well in the C∞-
topology by

• an everywhere non-integrable structure if 2m ≥ 6;

• a maximally non-integrable structure if 2m ≥ 10.

Proof. By Corollary 2.1.6, existence of everywhere or maximally non-integrable
structures is guaranteed on each path-connected component in dimension 2m ≥ 6
or 2m ≥ 10, respectively. Approximation in the C0-topology is a direct conse-
quence of the existence of these structures and of Theorem 2.2.4. To prove ap-
proximation in the C∞-topology, it is enough to observe that the perturbed curve
of almost complex structures J̃t obtained in Lemma 1.4.6 is analytic in t.

Example 2.2.7 (Invariant structures on solvmanifolds.). By Corollary A.4
in [32], every invariant almost complex structure J0 on a solvmanifold is homotopic
to a maximally non-integrable one. By Theorem 2.2.6, one can find maximally
non-integrable structures in each neighborhood of J0. We show with an explicit
example that this is the case for structure of arbitrary constant rank.

Proposition 2.2.8. Let M be any complex parallelizable 3-dimensional solvman-
ifold. Then there exists an integrable structure J0 on M for which we can find
curves of almost complex structures Jks , k ∈ {0, 1, 2, 3}, such that
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(i) Jk0 = J0;

(ii) Jks has constant rank k for all s ̸= 0, |s| < ϵ.

In particular, each neighborhood of J0 contains almost complex structures whose
Nijenhuis tensor has arbitrary constant rank.

Proof. We give a description of complex parallelizable 3-dimensional solvmanifolds
in Section 2.3.3. We show here the computations for maximally non-integrable
structures on the Nakamura manifold N . Consider the curve of almost complex
structures on N defined by the co-frame of (1, 0)-forms

ω1
s := ϕ1 + sϕ2̄ + sϕ3̄, ω2

s := ϕ2 +
s

2
ϕ2̄ and ω3

s := ϕ3 +
s

2
ϕ3̄,

obtained deforming the standard complex structure on N in the direction of the
maximally non-integrable almost complex structure (2.3.11). The same computa-
tions performed in Section 2.3.3 show that

µ̄sω
1
s = − 4s

4− |s|2
ω1̄2̄ +

4s

4− |s|2
ω1̄3̄ +

32|s|2

4− |s|2
ω2̄3̄,

µ̄sω
2
s =

2s

4− |s|2
ω1̄2̄ +

4s3 + 8|s|2

(4− |s|2)2
ω2̄3̄ and

µ̄sω
3
s =

2s

4− |s|2
ω1̄3̄ − 4s3 + 8|s|2

(4− |s|2)2
ω2̄3̄,

giving a maximally non integrable structure for all s ̸= 0 such that |s| ≠ 2.
Computations for the other cases proceed in the same way, replacing (2.3.11) with
(2.3.12) or (2.3.13).

With a slight modification of the example above, one can produce structures
of constant rank k0 that admit a neighborhood containing structures of arbitrary
constant rank k1 for each k1 ≥ k0. This is done replacing N and the structures
considered in Proposition 2.2.8 with 6-dimensional nilmanifolds endowed with the
structures provided in Table 2.1. ■

2.3 Structures of prescribed rank on parallelizable
manifolds

We illustrate a general method to build almost complex structures of prescribed,
possibly constant, rank on parallelizable 2m-manifolds. Starting from an arbitrary
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almost complex structure J0, we build an almost complex structure J1 depending
on J0 and m2 smooth functions. Computing rkNJ1 amounts to finding solutions
of a system of first order PDEs involving the smooth functions parametrizing J1.
Despite the lack of a general solution, on specific manifold we are able to solve the
system and to produce the desired structures.

2.3.1 Outline of the general procedure

LetM be a parallelizable 2m-manifold. Fix a frame of vector fields {Ej}2mj=1 giving
a parallelism of TM and let J0 be an almost complex structure on M . The choice
of J0 determines a co-frame of (1, 0)-forms {ϕj}mj=1, and vice versa. Assume that
the differentials dϕj are known. Consider on M the almost complex structure J1
defined by the co-frame of (1, 0)-forms

ωj := ϕj + f jk ϕ
k̄, j = 1, . . .m,

where we are summing over repeated indices and the f jk are complex-valued smooth
functions on M . Let Φ be the matrix

Φ := (f jk) ∈Mm×m(C
∞(M))

and let P be the matrix

P :=

Idm Φ

Φ̄ Idm

 . (2.3.1)

The forms ωj are independent as long as

D := det(P ) ∈ C∞(M)

is a never-vanishing function on M . In such a case, J1 is a well-defined almost
complex structure. Since we described J1 in terms of differential forms, instead of
computing rkNJ1 , it is convenient to compute the rank of the map µ̄1 associated
to J1 on (1, 0)-forms. The differential of ωj is

dωj = dϕj + f jk dϕ
k̄ + df jk ∧ ϕ

k̄.

We have to express it in function of {ωj, ωj̄}mj=1 and then take its (0, 2)-bidegree
part with respect to the bigrading induced by J1.

Let {ψj, ψj̄}mj=1 be a frame of vector fields dual to {ωj, ωj̄}mj=1. In such a frame,
we can write for any h ∈ C∞(M) the projection on bidegree (0, 2) as

(dh ∧ ϕk̄)0,2 = F k
lp(h)ω

l̄p̄,
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where F k
lp are suitable (0, 1)-vector fields in C

∞(M)⟨ψj̄⟩mj=1. By assumption, we are

given an explicit expression for dϕj and dϕj̄ that can be written in terms of smooth
functions on M and of the 2-forms ϕjk, ϕjk̄ and ϕj̄k̄. By inverting the matrix P ,
one can compute the co-frame {ϕj, ϕj̄}mj=1 in function of the co-frame {ωj, ωj̄}mj=1.
Taking the projection on bidegree (0, 2), we obtain an explicit expression for µ̄1ω

j

in terms of the functions f jk , of their first order derivatives F
k
lp(f

j
k) and of a basis

of (0, 2)-forms {ωj̄k̄}. The rank of µ̄1 can be prescribed imposing conditions on
the f jk and the F k

lp(f
j
k). Finding functions satisfying such constraints provides a

structure with the desired rank.

In practice, the approach we described is strongly limited by the difficulty of
the computations involved, both on the side of the linear algebra, and on that of
solving the final system of PDEs. In our applications, we will put ourselves in the
best case scenario, making assumptions based on the following remarks:

1. the almost complex structure J1 depends on the initial choice of J0. The
standard choice

J0Ek = Em+k and J0Em+k = −Ek, k = 1, . . . ,m,

allows to immediately find the starting co-frame of (1, 0)-forms and their
differentials;

2. increasing the dimension ofM drastically increases the difficulty of the com-
putations. We will focus on manifolds of dimension 4 and 6;

3. by choosing a manifold for which smooth functions can be explicitly written,
or at least put in a manageable form, the final system of PDEs can be solved
more easily.

2.3.2 Dimension 4: the Kodaira–Thurston manifold

We use the Kodaira–Thurston manifold as a toy model for the computations of
the rank of µ̄. The 4-dimensional examples are less significant since the only
possible values of the rank are 0 and 1. Nevertheless, they allow to greatly simplify
computations and to clearly illustrate the ideas involved.

We begin by briefly recalling the construction of the Kodaira–Thurston mani-
fold. Consider the 3-dimensional real Heisenberg group

H3 :=


1 x z

1 y
1

 : x, y, z ∈ R

 .
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The Kodaira–Thurston manifold KT is the 4-dimensional nilmanifold defined by

KT := H3/(H3 ∩ SL(3,Z))× S1.

Denote by t the coordinate on S1. A basis of invariant vector fields on KT is

{e1 = ∂t, e2 = ∂x, e3 = ∂y + x ∂z, e4 = ∂z}

and the dual basis of invariant 1-forms is

{e1 = dt, e2 = dx, e3 = dy, e4 = dz − x dy}.

The only non-vanishing Lie bracket of vector fields is [e2, e3] = e4 and the only
non-vanishing differential is de4 = −e23. It is well-known that KT admits both
complex and symplectic structures, but it has no Kähler structure [98]. It also
admits non-integrable almost complex structures.

We will perform the construction described in Section 2.3.1 twice: first we
start from a complex structure and produce maximally non-integrable structures.
Then we start from a maximally non-integrable structure and produce integrable
structures.

From complex to almost complex

Let J0 be the complex structure on KT given by

J0 e1 := −e4 and J0 e2 := e3.

A corresponding basis of (1, 0)-forms for J0 is given by

ϕ1 := dx+ i dy and ϕ2 := dz − x dy + i dt,

with differentials

dϕ1 = 0 and dϕ2 = − i

2
ϕ11̄.

Consider the co-frame of (1, 0)-forms given by

ω1 := ϕ1 + e ϕ1̄ + f ϕ2̄ and ω2 := ϕ2 + g ϕ1̄ + hϕ2̄,

where e, f , g and h ∈ C∞(KT ) are complex-valued smooth functions on KT . Re-
quiring that ω1 and ω2 have bidegree (1, 0) determines an almost complex structure
J1 on KT as long as

D := det(P ) = 1− f̄ g−fḡ+|f |2|g|2−|e|2−|h|2+|e|2|h|2−fgēh̄− f̄ ḡeh ∈ C∞(KT )
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never vanishes on KT , where P is as in (2.3.1). We characterize integrability of
J1 in terms of conditions on the functions e, f , g, h and their derivatives. Direct
computations show that

P−1 =
1

D


1− f̄ g − |h|2 f̄ e+ fh̄ e|h|2 − e− fgh̄ g|f |2 − f − f̄ eh

ēg + ḡh 1− fḡ − |e|2 f |g|2 − g − ḡeh h|e|2 − h− fgē

ē|h|2 − ē− f̄ ḡh ḡ|f |2 − f̄ − f ēh̄ 1− fḡ − |h|2 f ē+ f̄h

f̄ |g|2 − ḡ − gēh̄ h̄|e|2 − h̄− f̄ ḡe eḡ + gh̄ 1− f̄ g − |e|2


Hence, the expressions of the ϕj in function of the ωj are

ϕ1 = 1
D

[
(1− f̄ g − |h|2)ω1 + (f̄ e+ fh̄)ω2 + (e|h|2 − e− fgh̄)ω1̄ + (g|f |2 − f − f̄ eh)ω2̄

]
and

ϕ2 = 1
D

[
(ēg + ḡh)ω1 + (1− fḡ − |e|2)ω2 + (f |g|2 − g − ḡeh)ω1̄ + (h|e|2 − h− fgē)ω2̄

]
.

The differentials of the ωj are

dω1 = f dϕ2̄ + de ∧ ϕ1̄ + df ∧ ϕ2̄ and

dω2 = (1 + h) dϕ2̄ + dg ∧ ϕ1̄ + dh ∧ ϕ2̄.
(2.3.2)

Since

ϕ11̄ =
1

D

[
−f̄ ω12 − (1− |h|2)ω11̄ + f̄h ω12̄ − fh̄ ω1̄2 − |f |2 ω22̄ + f ω1̄2̄

]
,

we have that

(dϕ2̄)0,2 = − i

2
(ϕ11̄)0,2 = − i

2

f

D
ω1̄2̄. (2.3.3)

Denote by {ξj, ξj̄} the frame dual to {ϕj, ϕj̄} and by {ψj, ψj̄} the one dual

to {ωj, ωj̄}. By duality, the frame {ψj, ψj̄} depends on {ξj, ξj̄} via (P−1)t. The

(0, 2)-bidegree part of the 2-forms dh ∧ ϕj̄ is

(dh ∧ ϕj̄)0,2 = F j(h)ω1̄2̄, (2.3.4)

where

F 1(h) :=
1

D

[
(f ē+ f̄h)ψ1̄(h)− (1− fḡ − |h|2)ψ2̄(h)

]
and

F 2(h) :=
1

D

[
(1− f̄ g − |e|2)ψ1̄(h)− (eḡ + ḡh)ψ2̄(h)

]
.

(2.3.5)



2.3. STRUCTURES OF PRESCRIBED RANK 39

Finally, we can compute µ̄1ω
j taking the (0, 2)-bidegree part of (2.3.2). By

(2.3.3) and (2.3.4), we obtain

µ̄1ω
1 =

(
− i

2D
f 2 + F 1(e) + F 2(f)

)
ω1̄2̄ and

µ̄1ω
2 =

(
− i

2D
f(1 + h) + F 1(g) + F 2(h)

)
ω1̄2̄.

The system of PDEs{
− i

2D
f 2 + F 1(e) + F 2(f) = 0,

− i
2D
f(1 + h) + F 1(g) + F 2(h) = 0,

allows to control integrability of J1. First, we look for constant solutions. They
correspond to invariant almost complex structures on KT . The system reduces to{

− i
2
f 2 = 0,

− i
2
f(1 + h) = 0.

We can conclude that J1 is integrable if and only if f = 0. In any other case, its
rank is equal to 1. This is true as long as D does not vanish, i.e., as long as |e| ≠ 1
and |h| ≠ 1.

We now aim at finding maximally non-integrable almost complex structures
that are not invariant, looking for non-constant functions such that at least one
between µ̄1ω

1 and µ̄1ω
2 never vanishes. To simplify the computations, we take e

and h to be identically zero. We must find f and g ∈ C∞(KT ) such that at every
point either

− i

2D
f 2 + F 2(f) ̸= 0 or − i

2D
f + F 1(g) ̸= 0.

The terms involved have the explicit expressions

ψ1 =
1

D

[
(1− f̄ g) ξ1 + ḡ(f̄ g − 1) ξ2̄

]
and

ψ2 =
1

D

[
(1− fḡ) ξ2 + f̄(fḡ − 1) ξ1̄

]
,

where D = (1− fḡ)(1− f̄ g) must be never-vanishing. By substituting

F 1(g) = − 1

D
(1− fḡ)ψ2̄(g) = − 1

D
(ξ2̄ − fξ1)(g) and

F 2(f) =
1

D
(1− f̄ g)ψ1̄(f) =

1

D
(ξ1̄ − gξ2)(f)

in the PDEs, we have that it must be

− i

2D
f 2 +

1

D
(ξ1̄ − gξ2)(f) ̸= 0 or − i

2D
f − 1

D
(ξ2̄ − fξ1)(g) ̸= 0.



40 CHAPTER 2. RANK OF THE NIJENHUIS TENSOR

Proposition 2.3.1. For every never vanishing f ∈ C∞(KT ), there exists a max-
imally non-integrable almost complex structure Jf on KT .

Proof. We impose g = 0, so that the equations reduce to

− i

2D
f 2 +

1

D
ξ1̄(f) ̸= 0 or − i

2D
f ̸= 0.

Any never vanishing f provides a maximally non-integrable almost complex struc-
ture obtained taking ω1 = ϕ1 + f ϕ2̄ and ω2 = ϕ2. Note that if e = g = h = 0,
then D = 1, and the resulting structure is well defined.

From almost complex to complex

Let J0 be the almost complex structure of constant rank 1 given by

J0 e1 := −e2 and J0 e3 := −e4. (2.3.6)

A basis of (1, 0)-forms is

ϕ1 := dx+ i dt and ϕ2 := dz − x dy + i dy,

and the differentials are

dϕ1 = 0 and dϕ2 =
i

4
(ϕ12 − ϕ12̄ + ϕ1̄2 − ϕ1̄2̄).

Proceeding in the same way as in the previous paragraph, we build a structure
J1 depending on functions e, f , g and h ∈ C∞(KT ). The 2-forms ϕ12 and ϕ12̄

expressed in the co-frame {ωj, ωj̄} are

ϕ12 =
1

D

[
ω12 − g ω11̄ − hω12̄ − e ω1̄2 + f ω22̄ + (eh− fg)ω1̄2̄

]
and

ϕ12̄ =
1

D

[
−h̄ ω12 + gh̄ ω11̄ + (1− f̄ g)ω12̄ + eh̄ ω1̄2 + f̄ e ω22̄ − e ω1̄2̄

]
,

and the only non-zero differential is

dϕ2 =
i

4D

[
(1 + h̄− ē− ēh̄+ f̄ ḡ)ω12 + (−gh̄− ḡh− g − ḡ)ω11̄

+(−1 + f̄ g + ēh− h+ ē)ω12̄ + (1− fḡ − eh̄− e+ h̄)ω1̄2

+(−f̄ e− f ē+ f + f̄)ω22̄ + (−1 + e− h+ eh− fg)ω1̄2̄
]
.

The corresponding operator µ̄1 computed on (1, 0)-forms is given by

µ̄1ω
1 =

(
− i

4D
(1− e+ h− eh+ fg)f + F 1(e) + F 2(f)

)
ω1̄2̄ and
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µ̄1ω
2 =

(
− i

4D
(1− e+ h− eh+ fg)(1 + h) + F 1(g) + F 2(h)

)
ω1̄2̄,

where the F j are as in (2.3.5). In order to find an integrable structure we must
solve the following system of PDEs

− i
4(1− e+ h− eh+ fg)f + (fē+ f̄h)ψ1̄(e)− (1− fḡ − |h|2)ψ2̄(e)

+(1− f̄g − |e|2)ψ1̄(f)− (ḡe+ gh̄)ψ2̄(f) = 0,

− i
4(1− e+ h− eh+ fg)(1 + h) + (fē+ f̄h)ψ1̄(g)− (1− fḡ − |h|2)ψ2̄(g)

+(1− f̄g − |e|2)ψ1̄(h)− (ḡe+ gh̄)ψ2̄(h) = 0,

(2.3.7)

where the operators ψj̄ have the expressions

ψ1̄ =
1

D

[
(ē|h|2 − ē− f̄ ḡh) ξ1 + (ḡ|f |2 − f̄ − f ēh̄) ξ2

+(1− fḡ − |h|2) ξ1̄ + (f ē+ f̄h) ξ2̄

]
and

ψ2̄ =
1

D

[
(f̄ |g|2 − ḡ − gēh̄) ξ1 + (h̄|e|2 − h̄− f̄ ḡe) ξ2

+(eḡ + gh̄) ξ1̄ + (1− f̄ g − |e|2) ξ2̄
]
.

Invariant complex structures, i.e., constant solutions, are obtained solving{
− i

4
(1− e+ h− eh+ fg)f = 0,

− i
4
(1− e+ h− eh+ fg)(1 + h) = 0.

The solutions {f = 0, h = −1} or {f = 0, e = 1} lead to a vanishing D, thus J1 is
an invariant complex structure if and only if 1− e+ h− eh+ fg = 0 and D does
not vanish. This can be easily achieved by setting f = e−1 ̸= 0 and g = h+1 ̸= 0.

Regarding non-constant solutions, finding an expression for the general solu-
tions of (2.3.7) is a difficult task. We rather provide a family of explicit solutions.

Proposition 2.3.2. For every never vanishing f ∈ C∞(KT ) depending only on
the x variable, there exists an integrable almost complex structure Jf on KT .

Proof. Recall that the frame {ξ1, ξ2} of (1, 0)-vector fields can be written in terms
of real vector fields as

ξ1 =
1

2
(∂x − i∂t) and ξ2 =

1

2
(∂z − i(∂y + x∂z)).



42 CHAPTER 2. RANK OF THE NIJENHUIS TENSOR

Let f ∈ C∞(KT ) be a never vanishing function that depends only on the x
variable, e.g., f(x) = A+ cos(2πx), where A is a real constant such that A > 1 or
A < −1. It is not hard to check that the choice

e = f + 1, f, g = f and h = f − 1,

gives a solution of (2.3.7), and that the corresponding J1 is a well-defined complex
structure on KT .

We conclude pointing out that the technique employed in this section allows to
build new complex structures on the Kodaira–Thurston manifold. The same idea
could be used to produce new complex structures on other manifolds as soon as
one can show that the associated PDE admits at least one solution.

2.3.3 Dimension 6: holomorphically parallelizable complex solv-
manifolds

We explicitly compute almost complex structures of arbitrary constant rank on
complex parallelizable solvmanifolds of complex dimension 3. There are three
such manifolds [73], namely the 6-dimensional torus, the Iwasawa manifold and
the holomorphically parallelizable Nakamura manifold. By Corollary A.4 in [32],
they all admit a maximally non-integrable almost complex structure. However,
only the Nakamura manifold admits an invariant one.

2.3.3.1 Torus

For the case of the torus, we refer to Theorem 14 in [32] or to Example 2.1.3.

2.3.3.2 Iwasawa Manifold

For the Iwasawa manifold, we only show the results of the computations, since they
follows closely those performed in Section 2.3.2 for the Kodaira–Thurston manifold,
with the added difficulty of working in dimension 6. We find the possible rank for
invariant structures and fill the gaps exhibiting explicit non-invariant structures.

Let HC
3 be the complex Heisenberg group

HC
3 :=


1 z1 z3

1 z2
1

 : z1, z2, z3 ∈ C


whit the group operation induced by matrix multiplication. The Iwasawa manifold
is the quotient

I := HC
3 /(HC

3 ∩ SL(3,Z[i])).
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The complex structure inherited from C induces on I a basis of (1, 0)-forms {ϕj}3j=1

whose differentials are

dϕ1 = 0, dϕ2 = 0 and dϕ3 = −ϕ12.

This corresponds to a complex structure on the Lie algebra

(0, 0, 0, 0, 13− 24, 14 + 23).

Consider the 1-forms

ω1 := ϕ1 + e ϕ1̄ + f ϕ2̄ + g ϕ3̄,

ω2 := ϕ2 + p ϕ1̄ + q ϕ2̄ + r ϕ3̄,

ω3 := ϕ3 + s ϕ1̄ + t ϕ2̄ + uϕ3̄,

where e, f, g, p, q, r, s, t and u ∈ C∞(I). Let P be as in (2.3.1). Requiring the
ωj to have bidegree (1, 0) defines an almost complex structure J1 on I as long as
D := det(P ) ∈ C∞(I) never vanishes.

We first focus on invariant structures, that correspond to taking the functions
e, . . . , t and u to be constant. Following Section 2.3.1, we are able to build invariant
structures of rank 1 and 2, see also Table 2.1. An invariant structure of rank 2 is
given by

ω1 := ϕ1 + ϕ3̄, ω2 := ϕ2 + 2ϕ2̄ and ω3 := ϕ3.

An invariant structure of rank 1 is given by

ω1 := ϕ1, ω2 := ϕ2 + ϕ3̄ and ω3 := ϕ3.

The following proposition on structures of rank 3 follows either from Corollary
2.4.3 or from Theorem 2.4.15.

Proposition 2.3.3. The Iwasawa manifold does not admit invariant maximally
non-integrable almost complex structures.

To find maximally non-integrable structures, let e, f, g, q, r and u be complex
smooth functions on I, and consider the following (1, 0)-forms:

ω1 := ϕ1 + e ϕ1̄ + f ϕ2̄ + g ϕ3̄,

ω2 := ϕ2 + q ϕ2̄ + r ϕ3̄,

ω3 := ϕ3 + uϕ3̄.

They define an almost complex structure J1 as long as

D = (1− |e|2) (1− |q|2) (1− |u|2) ̸= 0.
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Following again Section 2.3.1, for any h ∈ C∞(I) we write

(dh ∧ ϕj̄)0,2 =
3∑

k, l=1
k<l

F j̄

k̄l̄
(h)ωk̄l̄.

The explicit expressions for the F j̄

k̄l̄
in terms of the frame {ξj, ξj̄} dual to {ϕj, ϕj̄}

are

F 1̄
1̄2̄ =

1

D
[(1− |u|2) f ξ1 + (1− |u|2) q ξ2 − (1− |u|2) ξ2̄],

F 1̄
1̄3̄ =

1

D
[(g − g|q|2 + frq̄ + fur̄) ξ1 + (r + qur̄) ξ2 − u ξ3 − (rq̄ + ur̄) ξ2̄ + ξ3̄],

F 1̄
2̄3̄ =

1

D
[(−r|f |2 + gqf̄ − fuḡ) ξ1 + (−gqē+ frē− quḡ) ξ2 + u(f ē+ qf̄) ξ3

+ (gē+ rf̄ + uḡ) ξ2̄ − (f ē+ qf̄) ξ3̄],

F 2̄
1̄2̄ =

1

D
[− (1− |u|2) e ξ1 + (1− |u|2) ξ1̄],

F 2̄
1̄3̄ =

1

D
[− e(rq̄ + ur̄) ξ1 + (rq̄ + ur̄) ξ1̄],

F 2̄
2̄3̄ =

1

D
[(g + erf̄ + euḡ) ξ1 + (1− |e|2) r ξ2 + (1− |e|2) ξ3

− (gē+ rf̄ + uḡ) ξ1̄ − (1− |e|2) ξ3̄],
F 3̄
1̄2̄ = 0,

F 3̄
1̄3̄ =

1

D
[e ξ1 − ξ1̄],

F 3̄
2̄3̄ =

1

D
[− (f + eqf̄) ξ1 − (1− |e|2) q ξ2 + (f ē+ qf̄) ξ1̄ + (1− |e|2) ξ2̄].

This allows to write µ̄1 on (1, 0)-forms as

µ̄1ω
1 =

(
−g (1− |u|2) + F 1̄

1̄2̄(e) + F 2̄
1̄2̄(f)

)
ω1̄2̄

+
(
−g (rq̄ + ur̄) + F 1̄

1̄3̄(e) + F 2̄
1̄3̄(f) + F 3̄

1̄3̄(g)
)
ω1̄3̄

+
(
g (gē+ rf̄ + uḡ) + F 1̄

2̄3̄(e) + F 2̄
2̄3̄(f) + F 3̄

2̄3̄(g)
)
ω2̄3̄,

µ̄1ω
2 =

(
−r (1− |u|2) + F 2̄

1̄2̄(q)
)
ω1̄2̄

+
(
−r (rq̄ + ur̄) + F 2̄

1̄3̄(q) + F 3̄
1̄3̄(r)

)
ω1̄3̄

+
(
r (gē+ rf̄ + uḡ) + F 2̄

2̄3̄(q) + F 3̄
2̄3̄(r)

)
ω2̄3̄,
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µ̄1ω
3 =

(
−(eq + u) (1− |u|2)

)
ω1̄2̄

+
(
−(er + ruq̄ + u (eq + u) r̄) + F 3̄

1̄3̄(u)
)
ω1̄3̄

+
(
(gq − fr + guē+ ruf̄ + u (eq + u) ḡ) + F 3̄

2̄3̄(u)
)
ω2̄3̄.

To further simplify the computations, we impose e = u = 0. Taking the
determinant of the 3 × 3 matrix defined by the coefficients of µ̄1ω

j with respect
to the basis {ωk̄l̄}, we see that J1 is maximally non-integrable if and only if the
function

G := (g q − f r)

[
g ξ1̄(r)− r ξ1̄(g) +

1

D
(ξ1̄(g) ξ1̄(q)− ξ1̄(f) ξ1̄(r))

]
never vanishes on I. In terms of the zj coordinates, we have that ξ1̄ =

∂
∂z1̄

. Denote
by x1 the real part of z1. The following choice of functions leads to a non-vanishing
G at every point:

g(x1) = cos(2πx1), r(x1) = sin(2πx1),

q(x1) =
1

2
cos(2πx1) and f(x1) =

1

2
sin(2πx1).

(2.3.8)

This provides a non-invariant maximally non-integrable almost complex structure
on I. Furthermore, it is immediate to check, using the explicit expression for µ̄1,
that the functions

f = 0, q = 0, g = h and r = h, (2.3.9)

where h ∈ C∞(I) is any never-vanishing function, give a non-invariant structure
of constant rank 1 on I, while the choice

f = 0, q = 0, g = sin(2πx1) and r = cos(2πx1), (2.3.10)

gives a non-invariant structure of constant rank 2. Using the prototype structures
we just defined, we build families of non-invariant almost complex structures of
prescribed constant rank

Proposition 2.3.4. The Iwasawa manifold admits the following families of almost
complex structures of constant rank:

• a family J3
h of maximally non-integrable structures parametrized by never-

vanishing h ∈ C∞(I) such that ξ1̄(h) = 0 and |h| ≤ 1;

• a family J2
h of structures of constant rank 2 parametrized by never-vanishing

h ∈ C∞(I) such that ξ1̄(h) = 0;
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• a family J1
h of structures of constant rank 1 parametrized by never-vanishing

h ∈ C∞(I).

Proof. Let h ∈ C∞(I) be a never-vanishing function and let Jh be the almost
complex structure defined by the (1, 0)-forms

ω1 := ϕ1 + hf ϕ2̄ + hg ϕ3̄,

ω2 := ϕ2 + hq ϕ2̄ + hr ϕ3̄,

ω3 := ϕ3,

where f, g, q and r ∈ C∞(I). The family of structures J1
h is obtained choosing the

functions f , g, q and r as in (2.3.9), since in this case the rank of Jh is 1. Further
assuming that ξ1̄(h) = 0, the choice of f , g, q and r as in (2.3.10), provides a
family of structures of constant rank 2. Finally, if we also assume |h| ≤ 1, and
take f , g, q and r as in (2.3.8), then Jh is a well-defined maximally non-integrable
almost complex structure.

2.3.3.3 Nakamura manifold

The Nakamura manifold admits invariant structures of any constant rank. Since
the computations are substantially the same as in Section 2.3.3.2, we omit the
details.

Let G be the Lie group C⋉ψ C2, with coordinates z1, z2, z3, where

ψ(z1) :=

[
ez1 0
0 e−z1

]
.

The Nakamura manifold is the quotient

N := Γ\G,

where Γ ⊆ G is a suitable lattice [73]. A basis of holomorphic (1, 0)-forms that
trivializes the complexified tangent bundle is given by

ϕ1 := dz1, ϕ2 := e−z1dz2 and ϕ3 := ez1dz3,

and the differentials are

dϕ1 = 0, dϕ2 = −ϕ12 and dϕ3 = ϕ13.

The Nakamura manifold admits invariant structures of all possible ranks. We give
an explicit example for each of them. A structure of rank 3 is defined by the
(1, 0)-forms

ω1 := ϕ1 + ϕ2̄ + ϕ3̄, ω2 := ϕ2 +
1

2
ϕ2̄ and ω3 := ϕ3 +

1

2
ϕ3̄. (2.3.11)
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A structure of rank 2 is given by

ω1 := ϕ1, ω2 := ϕ2 + ϕ3̄ and ω3 := ϕ3 + 2ϕ2̄, (2.3.12)

while a structure of rank 1 is given by

ω1 := ϕ1, ω2 := ϕ2 + ϕ3̄ and ω3 := ϕ3. (2.3.13)

2.4 Invariant almost complex structures on compact
quotients of Lie groups

In this section we compute the rank of the Nijhenuis tensor of almost complex
structures on 6-dimensional nilpotent real Lie algebras. As a consequence, for
each 6-dimensional nilmanifold we determine whether or not it admits an invariant
almost complex structure whose Nijenhuis tensor has a given rank. If such a
structure exists, we provide an explicit choice of complex parameters that allows
to build it starting from an assigned almost complex structure. We also deduce a
topological upper bound for the rank of NJ on solvmanifolds of completely solvable
type.

2.4.1 Classification of invariant structures on 6-dimensional nil-
potent real Lie algebras

We determine the possible values of the rank of the Nijenhuis tensor of almost
complex structures on 6-dimensional nilpotent real Lie algebras. There are 34 iso-
morphism classes of 6-dimensional nilpotent Lie algebras, see [63] or [81]. Adopting
the notation of Section 1.5, we give a list of them in the first column of Table 2.1.
The main result is the following classification theorem.

Theorem 2.4.1. A 6-dimensional nilpotent real Lie algebra g admits an almost
complex structure whose Nijenhuis tensor has rank 3 if and only if it is isomorphic
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to one of

(0, 0, 12, 13, 14 + 23, 34− 25), (0, 0, 12, 13, 14, 34− 25),

(0, 0, 12, 13, 14 + 23, 24 + 15), (0, 0, 12, 13, 14, 23 + 15),

(0, 0, 12, 13, 23, 14), (0, 0, 12, 13, 23, 14− 25),

(0, 0, 12, 13, 23, 14 + 25), (0, 0, 0, 12, 14− 23, 15 + 34),

(0, 0, 0, 12, 14, 15 + 23), (0, 0, 0, 12, 14, 15 + 23 + 24),

(0, 0, 0, 12, 14, 15 + 24), (0, 0, 0, 12, 13, 14 + 35),

(0, 0, 0, 12, 23, 14 + 35), (0, 0, 0, 12, 23, 14− 35),

(0, 0, 0, 12, 14, 24), (0, 0, 0, 12, 13− 24, 14 + 23),

(0, 0, 0, 12, 14, 13− 24), (0, 0, 0, 12, 13 + 14, 24),

(0, 0, 0, 12, 13, 14 + 23), (0, 0, 0, 12, 13, 24),

(0, 0, 0, 12, 13, 23).

A 6-dimensional nilpotent real Lie algebra g does not admit an almost complex
structure whose Nijenhuis tensor has rank 2 if and only if it is isomorphic to one
of

(0, 0, 0, 12, 13, 23), (0, 0, 0, 0, 0, 12 + 34),

(0, 0, 0, 0, 0, 12), (0, 0, 0, 0, 0, 0).

A 6-dimensional nilpotent real Lie algebra g does not admit an almost complex
structure whose Nijenhuis tensor has rank 1 if and only if it is isomorphic to one
of

(0, 0, 12, 13, 14 + 23, 34− 25), (0, 0, 0, 0, 0, 0).

The proof of the theorem is a collection of smaller results, each one dealing
with a different value of the rank. We proceed to determine the rank of the
almost complex structures existing on each of them. For the rest of the section we
will directly work with almost complex structures defined on the elements of g∗,
adopting the corresponding notation.

Structures of rank 3

Lie algebras for which A1
R ∩ ker d is high-dimensional never admit maximally non-

integrable almost complex structures. This is a direct consequence of the following
lemma, that holds for arbitrary Lie algebras in any dimension.

Lemma 2.4.2. Let g be a 2m-dimensional Lie algebra and let k be the real di-
mension of A1

R ∩ ker d. Then for any almost complex structure J on g we have
that

rkNJ ≤ 2m− k.
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Proof. Let J be an almost complex structure on g. Then

rkNJ = dimC(A
0,2 ∩ Im µ̄) ≤ dimC(A

2 ∩ Im d)

= dimC C⟨de1, . . . , de2m⟩ = 2m− k.

It follows immediately that several Lie algebras do not admit maximally non-
integrable almost complex structures.

Corollary 2.4.3. Let g be any 6-dimensional nilpotent Lie algebra with b1 ≥ 4.
Then g does not admit maximally non-integrable almost complex structures.

There are three 6-dimensional nilpotent Lie algebras without maximally non-
integrable structures that are not covered by Corollary 2.4.3. Also in this case,
non-existence follows from a general result.

Proposition 2.4.4. Let g be a 2m-dimensional Lie algebra such that

A2
R ∩ Im d ⊆ e1 ∧ A1

R.

If 2m ≥ 6, then g does not admit maximally non-integrable almost complex struc-
tures.

Proof. Let J be an almost complex structure on g. Consider the (1, 0)-form

ω1 := e1 + iJe1

and complete it to a basis of (1, 0)-forms {ω1, . . . , ωm}. By the assumption on
A2

R ∩ Im d, we have that

A2 ∩ Im d = C⟨de1, . . . de6⟩ ⊆ e1 ∧ A1.

Taking the projection on bidegree (0, 2), we conclude that

rkNJ = dimC(A
0,2 ∩ Im µ̄)

≤ dimCC⟨(e1)0,1⟩ ∧ (A1)0,1

= dimC(ω
1̄ ∧ A0,1) = m− 1,

where (·)0,1 denotes the projection on bidegree (0, 1). If 2m ≥ 6, then rkNJ cannot
be maximal.

Corollary 2.4.5. None of the following Lie algebras admits a maximally non-
integrable almost complex structure:

(0, 0, 0, 12, 13, 14), (0, 0, 0, 12, 14, 15), (0, 0, 12, 13, 14, 15). (2.4.1)
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The following existence result completes the classification of Lie algebras ad-
mitting a maximally non-integrable structure.

Proposition 2.4.6. Any 6-dimensional nilpotent Lie algebra with b1 ≤ 3 and not
listed in (2.4.1) admits a maximally non-integrable almost complex structure.

Proof. We prove existence of a maximally non-integrable almost complex structure
by explicitly building it. Let g = R⟨e1, . . . , e6⟩ be a nilpotent Lie algebra. Consider
the almost complex structure J0 defined by the co-frame of (1, 0)-forms

ϕ1 := e1 + ie2, ϕ2 := e3 + ie4 and ϕ3 := e5 + ie6.

Let J1 be the almost complex structure defined by the (1, 0)-forms

ω1 := ϕ1 + e ϕ1̄ + f ϕ2̄ + g ϕ3̄,

ω2 := ϕ2 + p ϕ1̄ + q ϕ2̄ + r ϕ3̄,

ω3 := ϕ3 + s ϕ1̄ + t ϕ2̄ + uϕ3̄,

with e, f, g, p, q, r, s, t and u complex parameters satisfying the condition det(P ) ̸=
0 and P defined as in (2.3.1). For the choice of parameters described in the second
column of Table 2.1, J1 is a maximally non-integrable almost complex structure
on the corresponding Lie algebra.

Structures of rank 2

We begin with an elementary fact, of which we give a proof for completeness.

Lemma 2.4.7. Let g∗ = R⟨e1, . . . , e2m⟩ be the dual of a Lie algebra g. Fix an
almost complex structure J on g∗. Suppose that for some indices j, k ∈ {1, . . . , 2m}
we have that (ejk)0,2 = 0. Then (ek)0,1 and (ej)0,1 are proportional to each other.

Proof. Fix a basis of (0, 1)-forms {ωj̄}mj=1. In terms of the basis, we can write

(ej)0,1 = A1 ω
1̄ + . . .+ Am ω

m̄ and

(ek)0,1 = B1 ω
1̄ + . . .+Bm ω

m̄,

with Aj and Bj ∈ C for j = 1, . . . ,m. The condition (ejk)0,2 = 0 implies that the
matrix [

A1 · · · Am
B1 · · · Bm

]
has rank 1. Since (ej)0,1 and (ek)0,1 cannot be the zero form because they are the
projection on bidegree (0, 1) of a real form, the only possibility is that (ej)0,1 and
(ek)0,1 are proportional to each other.
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We are ready to classify Lie algebras that admit a structure of rank 2.

Proposition 2.4.8. Every 6-dimensional nilpotent Lie algebra different from

(0, 0, 0, 12, 13, 23), (0, 0, 0, 0, 0, 12 + 34),

(0, 0, 0, 0, 0, 12) or (0, 0, 0, 0, 0, 0)
(2.4.2)

admits an almost complex structure of rank 2.

Proof. By Lemma 2.4.2, any algebra among (0, 0, 0, 0, 0, 12 + 34), (0, 0, 0, 0, 0, 12)
and (0, 0, 0, 0, 0, 0) admits only structures of at most rank 1. We directly prove
that there are no structures of rank 2 on the Lie algebra g = (0, 0, 0, 12, 13, 23).

Let J be an almost complex structure on g. We study the (0, 2)-bidegree
part of the forms e12, e13 and e23. First, suppose that (ejk)0,2 = 0 for some
jk ∈ {12, 13, 23}. Due to the symmetries in the indices {1, 2, 3} and {4, 5, 6} of
the Lie algebra, we can assume that (e12)0,2 = 0. By Lemma 2.4.7, we have that
(e1)0,1 and (e2)0,1 are proportional to the same (0, 1)-form α. The forms

ϕj := ej + iJej, j = 1, . . . , 6,

are a set of generators of A1,0. If (e1)0,1 and (e2)0,1 are proportional to α, then we
have µ̄ϕj ∈ C⟨α ∧ (e3)0,1⟩, that implies rkNJ ≤ 1.

Suppose now that (ejk)0,2 ̸= 0 for all jk ∈ {12, 13, 23}. We further split the
argument into three cases.

Case 1: two among (e12)0,2, (e13)0,2 and (e23)0,2 are multiple of each other.
Again, for the symmetries of the Lie algebra we can assume that

(e1)0,1 ∧ (e2)0,1 = A(e1)0,1 ∧ (e3)0,1,

with A ∈ C \ {0}. This implies that

(e2)0,1 = A(e3)0,1 + γ, (2.4.3)

where γ is a (0, 1)-form in the kernel of the map (e1)0,1 ∧ •. Consider the form

ω1̄ := e1 − iJe1

and complete it to a basis of (0, 1)-forms {ω1̄, ω2̄, ω3̄}, so that

γ = C1ω
1̄ + C2ω

2̄ + C3ω
3̄, with Cj ∈ C. (2.4.4)

The condition (e1)0,1 ∧ γ = 0 gives C2 = C3 = 0. Thus γ is a multiple of ω1̄, hence
of (e1)0,1, since ω1̄ = 2(e1)0,1. By (2.4.3) and (2.4.4), we have that

(e2)0,1 ∧ (e3)0,1 = (A(e3)0,1 + γ) ∧ (e3)0,1 = 2C1(e
13)0,2.
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In particular, this gives that (e23)0,2 is a multiple of (e13)0,2. Since all of the (ejk)0,2,
for jk ∈ {12, 13, 23}, are multiple of each other, NJ has at most rank 1.

Case 2: one among (e12)0,2, (e13)0,2 and (e23)0,2 is a linear combination of the
remaining two. By symmetry, we can assume that

(e12)0,2 = A(e13)0,2 +B(e23)0,2 = (A(e1)0,1 +B(e2)0,1) ∧ (e3)0,1,

where A and B ∈ C are both non-zero, or else we would reduce to Case 1. Since
(e12)0,2 ̸= 0, consider the forms

ωj̄ := ej − iJej, j = 1, 2,

and complete them to a basis of (0, 1)-forms {ω1̄, ω2̄, ω3̄}. Proceeding as in the
previous case, it is straightforward to see that

(e3)0,1 = C(e1)0,1 +D(e2)0,1,

which implies that the forms (e13)0,2 and (e23)0,2 are both multiple of (e12)0,2. The
conclusion that rkNJ ≤ 1 follows as in the first case.

Case 3: all of the forms (e12)0,2, (e13)0,2 and (e23)0,2 are independent over C.
We prove that µ̄ has necessarily rank 3. Consider the (1, 0)-forms

ϕj := ej + iJej, j = 1, 2, 3.

The projections on bidegree (0, 2) of the forms ejk are independent over C by
assumption. They can be expressed in terms of the ϕj as

(e12)0,2 =
1

4
ϕ1̄2̄, (e13)0,2 =

1

4
ϕ1̄3̄ and (e23)0,2 =

1

4
ϕ2̄3̄.

This implies that also the ϕj, for j = 1, 2, 3, are independent, and so they are a
basis of (1, 0)-forms. In terms of the real basis ej, we can write J in block form as

J =

[
A B
C D

]
.

From the identity J2 = − Id, we obtain the relation

A2 +BC = − Id . (2.4.5)

Computing the rank of µ̄ amounts to compute the rank of the matrix B, since

µ̄ϕj = − i

4
(Bj1ϕ

1̄2̄ +Bj2ϕ
1̄3̄ +Bj3ϕ

2̄3̄), j = 1, 2, 3.
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The complex 1-forms {ϕj, ϕj̄}3j=1 can be written in terms of the ej as

(ϕ1, ϕ2, ϕ3, ϕ1̄, ϕ2̄, ϕ3̄)t = Q(e1, e2, e3, e4, e5, e6)t,

where Q is the block matrix

Q =

Id−iA −iB

Id+iA iB

 .
Since {ϕj, ϕj̄}3j=1 is a basis of 1-forms, Q must be invertible and the matrix

Q∗Q =

[
2(Id−iA)(Id+iA) i[(I − iA)B − (I + iA)B]

−i[B(I + iA)−B(I − iA)] B2

]
is positive definite. In particular, its principal minor

(Id+iA)(Id−iA) = Id+A2

is also positive definite, and by (2.4.5) it is equal to BC. This forces B, and thus
µ̄, to have rank 3, concluding the proof of the fact that (0, 0, 0, 12, 13, 23) has no
almost complex structure whose Nijenhuis tensor has precisely rank 2.

Finally, we prove that each 6-dimensional nilpotent Lie algebras not listed in
(2.4.2) admits an almost complex structure of rank 2 by explicitly building it, as
we did in the proof of Proposition 2.4.6. The explicit choice of constants providing
the desired structure can be found in the third column of Table 2.1.

Structures of rank 1

The only 6-dimensional nilpotent Lie algebras without almost complex structures
of rank 1 are

(0, 0, 0, 0, 0, 0) and (0, 0, 12, 13, 14 + 23, 34− 25). (2.4.6)

For the former, this is again an immediate consequence of Lemma 2.4.2, while for
the latter it is the content of the following proposition.

Proposition 2.4.9. Any almost complex structure on the Lie algebra

(0, 0, 12, 13, 14 + 23, 34− 25)

has at least rank 2.
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The proof of Proposition 2.4.9 proceeds assuming the existence of a structure
of rank 1 on g = (0, 0, 12, 13, 14 + 23, 34 − 25) and splitting the argument into
several main cases, according to whether or not the projection on bidegree (0, 2) of
d-exact 2-forms is zero. In each of the cases, we reach an absurd by contradicting
the following well-known lemma on the linear algebra of almost complex structures
(or a direct consequence of it), of which we give a proof for the sake of completeness.

Lemma 2.4.10. Let V be a 2m-dimensional real vector space and let {ej}2mj=1 be
a basis of V . Fix an almost complex structure J on V and consider the projection
π0,1 : V C ! V 0,1 . Then the space

S := C⟨π0,1(ej), π
0,1(ek), π

0,1(el)⟩,

with j ̸= k, k ̸= l and j ̸= l has at least complex dimension 2.

Proof. Summing over repeated indices, we can write Jej = Jkj ek, with Jkj ∈ R.
Since ej is a real vector, its (0, 1)-bidegree part cannot be zero and is given by

π0,1(ej) =
1

2
(ej + iJej).

Thus S is at least 1-dimensional. Assume by contradiction that S has precisely
dimension 1. Then the vectors (ek + iJek) and (el + iJel) are proportional, up to
non-vanishing complex constants, to (ej + iJej), that is,

(ej + iJej) = A(ek + iJek) = B(el + iJel), with A and B ∈ C \ {0} .

Writing explicitly the vectors in terms of the element of the basis, we obtain a
system of equations with coefficients A, B and Jkj . We are interested in the part
involving only ej and ek: 

1 + iJ jj = iAJkj = iBJ lj,

iJ jk = A(1 + iJkk ) = iBJ lk.

From the first equation we have that Jkj ̸= 0 and J lj ̸= 0, obtaining the value for
the constants

A = −i
(1 + iJ jj )

Jkj
and B = −i

(1 + iJ jj )

J lj
.

Substituting in the second equation, we are left with

iJ jk = −i
(1 + iJ jj )(1 + iJkk )

Jkj
=
J lk
J lj

(1 + iJ jj ).
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From the equality iJ jk = J lk(1 + iJ jj )/J
l
j, we deduce that both J lk and J jk must

vanish. The remaining equation (1 + iJ jj )(1 + iJkk ) = 0 leads to the contradiction

(J jj )
2 = −1, concluding the proof.

We also need the following lemma.

Lemma 2.4.11. Let g∗ = R⟨e1, . . . , e2m⟩ be the dual of a Lie algebra g. Fix an
almost complex structure J on g∗. Suppose that for some j, k ∈ {1, . . . , 2m}, with
j < k, the form (ek)0,1 is proportional to (ej)0,1. Then Jej and Jek ∈ R⟨ej, ek⟩.

Proof. With the same notation of the proof of Lemma 2.4.10, we have, passing to
the dual, that

(ej)0,1 = − i

2
(J jp + iδjp)e

p.

The forms (ej)0,1 and (ek)0,1 are multiple of each other if and only if the matrix[
J j1 · · · J jj + i · · · J jk · · · J j2m
Jk1 · · · Jkj · · · Jkk + i · · · Jk2m

]
has rank 1. Imposing that the determinant of each of its 2 × 2 minors vanishes
and separating real and imaginary part, we see that J must satisfy the relations

Jkk = −J jj ,
(J jj )

2 + J jkJ
k
j = −1,

J jp = Jkp = 0, if p /∈ {j, k}.
(2.4.7)

By (2.4.7), we conclude that Jej = J jj e
j + J jke

k and Jek = Jkj e
j − J jj e

k.

We can now prove that any almost complex structure on g has at least rank 2.

Proof of Proposition 2.4.9. By [81], there are no complex structures on g. Let
J be an almost complex structure on g and assume by contradiction that it has
precisely rank 1. The (1, 0)-forms {ϕj := ej + iJej}6j=1 are a set of generators of
A1,0, so we can compute the rank of µ̄ focusing only on the ϕj. We have that

µ̄ϕj = i(J jk − iδjk)(de
k)0,2.

The rank of µ̄ is the rank of a suitable submatrix obtained removing from J− i Id6

the columns corresponding to the indices for which (dek)0,2 = 0, and taking linear
combinations of such columns if (dej)0,2 is a non-zero multiple of (dek)0,2. Since
de1 = de2 = 0, we work with a 6 × 4 matrix and we identify for each case which
among the (dek)0,2 vanish and which are proportional to each other.
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Case A: (e12)0,2 = (e13)0,2 = 0. By Lemma 2.4.7, the assumption (e12)0,2 = 0
implies that (e1)0,1 and (e2)0,1 are proportional. Similarly, we have that (e1)0,1 is
proportional to (e3)0,1, contradicting Lemma 2.4.10.

Case B: (e12)0,2 = 0 and (e13)0,2 ̸= 0. Again by Lemma 2.4.7, we have that
(e2)0,1 = A(e1)0,1 for some A ∈ C \ {0}. Consider the 2-form

α := (e14+23)0,2 = (e1)0,1 ∧ ((e4)0,1 + A(e3)0,1).

If α is not a multiple of (e13)0,2, then (e4)0,1 is independent of (e1)0,1 and (e3)0,1,
giving a basis of (1, 0)-forms {ϕ1, ϕ3, ϕ4}. In terms of such a basis, we have that

(e13)0,2 =
1

4
ϕ1̄3̄, (e14+23)0,2 =

1

4
(ϕ1̄4̄ + Aϕ1̄3̄)

and

(e34−25)0,2 =
1

4
ϕ3̄4̄ + ϕ1̄ ∧ γ,

for some (0, 1)-form γ. These (0, 2)-forms are independent, thus the rank of µ̄ is
determined by the corresponding columns of J− i Id6, i.e., by the rank of the 6×3
matrix U := (J jk + iδjk), with j = 1, . . . , 6, and k = 4, 5, 6. Since µ̄ has rank 1, so
does U , and we can apply repeatedly Lemma 2.4.11 to its columns to deduce the
condition J3

3 = −i, reaching an absurd.
The proof of Case B is concluded if we prove that α cannot be a multiple of (e13)0,2.
Assume by contradiction that (e14+23)0,2 is a multiple of (e13)0,2. Then necessarily
(e4)0,1 is a linear combination

(e4)0,1 = B(e1)0,1 + C(e3)0,1.

If B ̸= 0, we can redefine the elements of the basis ej setting

ê4 := e4 − Ce3,

so that (ê4)0,1 = B(e1)0,1 = B/A (e2)0,1. This contradicts Lemma 2.4.10.
If B = 0, then (e4)0,1 = C(e3)0,1, giving a simple expression for the projection on
bidegree (0, 2) of de6:

β := (e34−25)0,2 = −A(e1)0,1 ∧ (e5)0,1.

If β is proportional to (e13)0,2, then

(e5)0,1 = D(e1)0,1 + E(e3)0,1.

As above, if D = 0, we immediately get a contradiction to Lemma 2.4.10. The
same follows when D ̸= 0, by redefining ê5 := e5 − Ee3.
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If β is not proportional to (e13)0,2, then the matrix that determines the rank of µ̄
is [

0 0 J3
4 J4

4 + i J5
4 J6

4

0 0 J3
6 J4

6 J5
6 J6

6 + i

]t
.

By Lemma 2.4.11 applied to (e3)0,1 and (e4)0,1, it must be J3
6 = J4

6 = 0. Imposing
the condition rk µ̄ = 1, we easily obtain the contradiction J3

3 = −i, proving that
α is not a multiple of (e13)0,2, and thus proving our claim in Case B.

Case C: (e12)0,2 ̸= 0. The proof is similar to that of case B, with slightly
longer computations.

An existence result completes the classification.

Proposition 2.4.12. Every 6-dimensional nilpotent Lie algebra different from
(2.4.6) admits an almost complex structure of rank 1.

Proof. The existence of a structure of rank 1 is proved as in Proposition 2.4.6.
The constants providing the desired structure are presented in the fourth column
of Table 2.1.

Complex structures

The classification of 6-dimensional nilpotent Lie algebras admitting a complex
structure was carried out by Salamon [81]. For the sake of completeness, in the
last column of Table 2.1 we give explicit constants that allow to obtain examples
of complex structures following the idea of the proof of Proposition 2.4.6. The
only Lie algebras on which a complex structure cannot be obtained in this way
are (0, 0, 0, 12, 23, 14 − 35) and (0, 0, 0, 0, 12, 14 + 25). In these two cases, it is
immediate to check that the co-frame of (1, 0)-forms

ϕ1 := e1 + ie3, ϕ2 := e4 + ie5, ϕ3 := −e2 + ie6 (2.4.8)

defines a complex structure on (0, 0, 0, 12, 23, 14− 35), while the co-frame

ϕ1 := e1 + ie2, ϕ2 := e4 + ie5, ϕ3 := e3 + ie6 (2.4.9)

defines a complex structure on (0, 0, 0, 0, 12, 14 + 25).

Remark 2.4.13. By Theorem 2.5 in [81], complex structures on 6-dimensional
nilpotent Lie algebras have two types of canonical basis. Type (I) has the form

ω1 = e1 − ie2, ω1 = e3 − ie4, ω1 = e5 − ie6,

while type (II) has the form

ω1 = e1 − ie2, ω1 = e4 − ie5, ω1 = e3 − ie6.
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We point out that when we give examples of explicit structures, we are deforming
a (possibly non-integrable) structure with a basis of type (I). The Lie algebras on
which a complex structure cannot be obtained in this way are precisely those that
admit only complex structures of type (II) [81].

2.4.2 Consequences on locally homogeneous manifolds

The classification by rank of almost complex structures on 6-dimensional nilpo-
tent Lie algebras allows to establish which 6-dimensional nilmanifolds admit an
invariant almost complex structure of a certain rank.

Theorem 2.4.14. Let M = Γ\G be a 6-dimensional nilmanifold and let g be
the Lie algebra of G. Then M admits an invariant almost complex structure of
rank k if and only if g admits an almost complex structure of rank k, according to
Theorem 2.4.1.

Proof. Fix an almost complex structure J on M . There is a bijection between
invariant almost complex structures on M and almost complex structures on g,
see Section 1.5, and the rank of NJ on M is equal to the rank of the almost
complex structure induced by J on g. This, together with Theorem 2.4.1, proves
our claim.

More in general, we can establish a topological upper bound for the rank of
invariant almost complex structures on solvmanifolds of completely solvable type
of arbitrary dimension.

Theorem 2.4.15. Let M = Γ\G be a solvmanifold of completely solvable type.
Let J be an invariant almost complex structure on M . Then we have that

rkNJ ≤ dimRM − b1(M).

Proof. Let g be the Lie algebra of G. Given any invariant almost complex structure
J on M , there is a corresponding almost complex structure J̃ on g, and rkNJ =
rkNJ̃ . Let b1(g) be the real dimension of the first Lie algebra cohomology group
of g

H1(g) = (ker d ∩ A1)/(Im d ∩ A1) = (ker d ∩ A1),

see also Section 1.5. By Lemma 2.4.2, we have that

rkNJ = rkNJ̃ ≤ 2m− dimR(A
1
R ∩ ker d) = 2m− b1(g).

By Hattori’s theorem [46], see also Section 1.5, there is an isomorphism

Hk(g) ∼= Hk
d

with the de Rham cohomology of M , so that b1(g) = b1(M).
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2.4.3 Table of the possible ranks

This section contains the table summarizing the possible ranks of almost complex
structures on 6-dimensional nilpotent Lie algebras. The first column lists the 34
isomorphism type of Lie algebras. The remaining columns list whether or not a
structure of prescribed rank exists on each of them. When such a structure exists,
the choice of parameters e f g

p q r
s t u


provided in the table, allows to obtain it starting from a fixed almost complex
structure, see proof of Proposition 2.4.6. The non-existence of structures is proved
in Section 2.4.1. By the word generic, we mean that a generic almost complex
structure will have the corresponding rank.

Remark 2.4.16. The computations for the rank presented in Table 2.1 have been
checked using Wolfram Mathematica, Version 13.1.

Table 2.1: Classification of invariant almost complex
structures by rank on 6-dimensional nilpotent Lie alge-
bras.

Lie Algebra Rank 3 Rank 2 Rank 1 Rank 0

(0, 0, 12, 13, 14 + 23, 34− 25)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No No

(0, 0, 12, 13, 14, 34− 25)
Generic0 0 1

0 0 0
0 2 0


Yes0 0 0
0 0 0
0 0 0


Yes0 −1
2

−1
4
+ i

2

0 0 −1
2

0 0 0

 No

(0, 0, 12, 13, 14, 15) No
Generic0 0 0

0 0 0
0 0 0


Yes0 0 0
0 1 1
0 −4 1

 No

(0, 0, 12, 13, 14 + 23, 24 + 15)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0

0 1 1

0 −2 + 2
√
2 1

 No

(0, 0, 12, 13, 14, 23 + 15)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0
0 0 2
0 2 1

 No
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(0, 0, 12, 13, 23, 14)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 12, 13, 23, 14− 25)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0
0 0 2
0 2 1

 No

(0, 0, 12, 13, 23, 14 + 25)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0
0 1 −1
0 2 1


Yes0 0 0
0 1 −1
0 2 i



(0, 0, 0, 12, 14− 23, 15 + 34)
Generic0 0 1

0 0 0
0 1 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 14, 15 + 23)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 14, 15 + 23 + 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 14, 15 + 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 14, 15) No
Generic0 0 0

0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 13, 14 + 35)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 23, 14 + 35)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 12, 23, 14− 35)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes

See (2.4.8)

(0, 0, 0, 12, 14, 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 1 1
0 2 1
0 0 2


Yes0 0 0
0 0 0
0 0 2


Yes0 0 0
0 0 0
0 0 0


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(0, 0, 0, 12, 13− 24, 14 + 23)
Generic0 0 1

0 2 0
0 0 0


Yes0 0 1
0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 1

2


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 12, 14, 13− 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 3



(0, 0, 0, 12, 13 + 14, 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0

0 0 0
0 0 −1+2i

5



(0, 0, 0, 12, 13, 14 + 23)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0

0 0 0
0 0 −1

3



(0, 0, 0, 12, 13, 24)
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 0 0

0 2i 0
0 0 −3i



(0, 0, 0, 12, 13, 14) No
Generic0 0 0

0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 2


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 12, 13, 23)
Generic0 0 1

0 0 0
0 0 0

 No
Yes0 0 0
0 0 0
0 0 2


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 0, 12, 15 + 34) No
Generic0 0 1

0 0 0
0 1 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 0, 12, 15) No
Generic0 0 1

0 0 0
0 1 0


Yes0 0 0
0 0 0
0 0 0

 No

(0, 0, 0, 0, 12, 14 + 25) No
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes

See (2.4.9)

(0, 0, 0, 0, 13− 24, 14 + 23) No
Generic0 0 1

0 2 0
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 0, 12, 14 + 23) No
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 −i 0
0 0 0
0 0 0


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(0, 0, 0, 0, 12, 34) No
Generic0 0 1

0 0 1
0 0 0


Yes0 0 0
0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 0, 12, 13) No
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0


Yes0 −1/6 0

0 2 0
0 0 2



(0, 0, 0, 0, 0, 12 + 34) No No
Generic0 0 0

0 0 1
0 0 0


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 0, 0, 12) No No
Generic0 0 1

0 0 0
0 0 0


Yes0 0 0
0 0 0
0 0 0



(0, 0, 0, 0, 0, 0) No No No Generic



CHAPTER 3

Cohomologies of non-integrable structures

In this chapter we review the existing cohomologies of almost complex manifolds
and we introduce three new cohomologies: the Bott–Chern and Aeppli cohomolo-
gies of the operators d and dc; the cohomologies of the operators δ and δ̄ and the
associated Bott–Chern and Aeppli cohomologies; the J-even and J-odd cohomolo-
gies induced by the parity of the action of J on forms. We also explain how to
extend our definitions to almost symplectic manifolds.

3.1 A short review of the existing cohomologies

In this section we briefly recall the definitions of several relevant cohomologies of
almost complex manifolds, namely the J-invariant and J-anti-invariant cohomolo-
gies of Draghici, Li and Zhang, the Dolbeault cohomology of Cirici and Wilson,
and the Bott–Chern and Aeppli cohomologies of Coelho, Placini and Stelzig.

In addition, it is worth mentioning that there are two cohomologies that do not
play a role in this thesis but are related to our studies. They are the transverse
Dolbeault cohomology introduced by Cahen, Gutt and Gutt [24], and the refined
Dolbeault cohomology introduced by Lin [61]. We invite the reader to consult the
original references for the details.

The J-invariant and J-anti-invariant cohomologies

The J-invariant and J-anti-invariant cohomologies have been introduced and ini-
tially studied by Draghici, Li and Zhang in [34], [35] and [60], with the purpose of
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understanding the tamed and compatible cones of almost complex manifolds.
Let (M,J) be an almost complex manifold. Then J acts on k-forms as J2 =

(−1)k Id, see Section 1.2. In particular, on 2-forms J is an involution and Λ2

decomposes into its (±1)-eigenspaces

Λ2 = Λ+ ⊕ Λ−.

Smooth sections of Λ+ and Λ− are called J-invariant and J-anti-invariant forms,
respectively, and they are denoted by

A+ = {α ∈ A2 : Jα = α} and A− = {α ∈ A2 : Jα = −α}.

The bidegree of α completely determines its J-invariance and we have

A+ = A1,1 and A− = A2,0 ⊕ A0,2.

The J-invariant and J-anti-invariant cohomologies of J are the subgroups of de
Rham cohomology given by

H+
J := {[α] ∈ H2

d : α ∈ A+} and H−
J := {[α] ∈ H2

d : α ∈ A−},

respectively. On compact manifolds, they are finite-dimensional since they are
subgroups of de Rham cohomology. We denote by h+J and h−J their respective
dimensions, that are an invariant of the almost complex structure. In dimension
4, the numbers h±J also occur as the dimension of the spaces of harmonic forms

H1,1
J := A1,1 ∩ ker∆d and H(2,0)(0,2)

J := (A2,0 ⊕ A0,2) ∩∆d, (3.1.1)

and we have
h+J = dimCH1,1

J and h−J = dimC H(2,0)(0,2)
J .

For this reason, it is common to find the notation

H1,1
J = H+

J and H
(2,0)(0,2)
J = H−

J .

The Dolbeault, Bott–Chern and Aeppli cohomologies of almost
complex manifolds

The first generalization of Dolbeault cohomology to almost complex manifolds was
introduced by Cirici and Wilson [29].

Let (M,J) be an almost complex manifold. Since µ̄2 = 0, one can consider the
µ̄-cohomology

Hp,q
µ̄ :=

ker µ̄ ∩ Ap,q

Im µ̄ ∩ Ap,q
.
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Then ∂̄ induces a well-defined map ∂̄ : Hp,q
µ̄ ! Hp,q+1

µ̄ that satisfies ∂̄2 = 0. The
Dolbeault cohomology of (M,J) is the cohomology

Hp,q
Dol :=

ker ∂̄ ∩Hp,q
µ̄

Im ∂̄ ∩Hp,q
µ̄

.

If J is integrable, then Hp,q
Dol coincides with the usual Dolbeault cohomology. In

general Hp,q
Dol is infinite-dimensional, even on compact manifolds [32]. Furthermore,

finite-dimensionality of the Dolbeault cohomology completely characterizes inte-
grability of J on almost complex 4-manifolds [30]. For a comparison of Dolbeault
cohomology of almost complex manifolds and J-invariant cohomology, we refer to
[86].

A notion of Bott–Chern and Aeppli cohomology related to the Dolbeault co-
homology was introduced by Coelho, Placini and Stelzig [32]. Consider the sub-
complex of A•,• given by

B•,• := A•,• ∩ kerµ ∩ ker µ̄ ∩ ker ∂2 ∩ ker ∂̄2

and the quotient complex

C•,• := A•,•/(Imµ+ Im µ̄+ Im ∂2 + Im ∂̄2).

Then the Bott–Chern cohomology of (M,J) is the cohomology

Hp,q
BC :=

ker ∂ ∩ ker ∂̄ ∩Bp,q

Im ∂∂̄ ∩Bp,q

and the Aeppli cohomology of (M,J) is the cohomology

Hp,q
A :=

ker ∂∂̄ ∩ Cp,q

(Im ∂ + Im ∂̄) ∩ Cp,q
.

If J is integrable, these cohomologies coincide with the usual Bott–Chern and
Aeppli cohomologies. Together with the Dolbeault cohomology, they fit into a
diagram

Hp,q
BC

Hp,q
Dol Hp+q

d Hp+q
dc Hp,q

Dol

Hp,q
A

J

∼

where Hp,q
Dol ⇒ Hp+q

d is a version of the Frölicher spectral sequence of Example
1.3.1 valid for multicomplexes, see [29]. For an almost symplectic version of the
spectral sequence, see Section 3.4.
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3.2 Cohomologies of the operators d and dc

Let (M,J) be an almost complex manifold with non-integrable J . Let dc be the
conjugate of d by the action of J . Then d and dc satisfy the equations d2 = 0 and
(dc)2 = 0, see Section 1.2. Since J is not integrable, we have ddc + dcd ̸= 0. Thus,
(A•, d, dc) is not a double complex and its Bott–Chern and Aeppli cohomologies
are not well-defined.

We introduce a subcomplex and a quotient complex of A•, see Section 1.1, on
which d and dc anti-commute. A similar construction has been performed also in
[32] to give a different definition of Bott–Chern and Aeppli cohomologies of almost
complex manifolds, see Section 3.1.

Definition 3.2.1. Consider the subcomplex B• ⊆ A• given by

B• := A• ∩ ker(ddc + dcd)

and the quotient complex of A• given by

C• :=
A•

Im(ddc + dcd)
.

Proposition 3.2.2. The complexes (B•, d, dc) and (C•, d, dc) are Z-graded double
complexes.

Proof. If α ∈ Bk, then dα ∈ Bk+1. Indeed, since d and dc anti-commute on B•

and d2 = 0, we have that

(ddc + dcd)dα = ddcdα = −d(ddc)α = 0.

Similarly, if α ∈ Bk, then dcα ∈ Bk+1. Finally, we have that ddc + dcd = 0 on B•

by definition. If α and β ∈ B•, then

(ddc + dcd)(α ∧ β) = (ddc + dcd)α ∧ β + α ∧ (ddc + dcd)β = 0,

so that α ∧ β ∈ B•. The proof for (C•, d, dc) is similar.

We are ready to define Bott–Chern and Aeppli cohomologies for almost complex
manifolds.

Definition 3.2.3. Let (M,J) be an almost complex manifold. The Bott–Chern
cohomology of (M,J) is the Bott–Chern cohomology of (B•, d, dc), i.e.,

Hk
d+dc :=

ker(d : Bk ! Bk+1) ∩ ker(dc : Bk ! Bk+1)

Im(ddc : Bk−2 ! Bk)
.

The Aeppli cohomology of (M,J) is the Aeppli cohomology of (C•, d, dc), i.e.,

Hk
ddc :=

ker(ddc : Ck ! Ck+2)

Im(d : Ck−1 ! Ck) + Im(dc : Ck−1 ! Ck)
.
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In the complex case our definition of Bott–Chern and Aeppli cohomologies
coincides with the usual one: if J is integrable then ddc + dcd = 0 on all forms, so
that B• = A• and C• = A•. We now describe the basic properties of Bott–Chern
and Aeppli cohomologies.

Proposition 3.2.4. Aeppli cohomology has the structure of module over Bott–
Chern cohomology. In particular, there is a well-defined pairing

Hk
d+dc ×Hℓ

ddc −! Hk+ℓ
ddc ,

([α]d+dc , [γ]ddc) 7−! [α ∧ γ]ddc .

Proof. Let [α]d+dc ∈ Hk
d+dc . Then, we can write

[α]d+dc = α + ddcβ,

where dα = 0, dcα = 0 and β ∈ Bk−2. Pick any [γ]ddc ∈ Hℓ
ddc , so that we have

[γ]ddc = γ + dη + dcθ

up to (ddc + dcd)-exact forms, where ddcγ = [0]C• . To prove the proposition it is
enough to check that [α ∧ γ]ddc is a well-defined cohomology class. We have that
ddc(α∧γ) = [0]C• since α is d-closed and dc-closed, and γ is ddc-closed. Moreover,
the cohomology class does not depend on the choice of representative since

(α+ddcβ)∧ (γ+dη+dcθ) = α∧γ+α∧dη+α∧dcθ+ddcβ∧γ+ddcβ∧dη+ddcβ∧dcθ.

When we pass to cohomology, the second, third, fifth and sixth terms on the
right hand side vanish because they are d-exact or dc-exact. The fourth term is
both d and dc-exact, since when computing Aeppli cohomology, we are considering
classes in C•.

Proposition 3.2.5. There is a diagram of cohomologies

Hk
d+dc

Hk
d Hk

dc

Hk
ddc

J

∼

that generalizes diagram (1.3.3) to the case of almost complex manifolds.
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Proof. Let [α]d+dc ∈ Hk
d+dc . Then, we can write [α]d+dc = α + ddcβ. On the one

side, we have that dα = 0 and that ddcβ is d-exact. Thus, the form α defines
a de Rham cohomology class. On the other side, we also have dcα = 0 and
ddcβ = −dcdβ, so it also defines a dc-cohomology class. Hence, the morphisms
from Bott–Chern cohomology to the de Rham and dc-cohomologies are given by
the identity on the representatives. Let now [γ]d ∈ Hk

d . Then, we have that

ddcγ = (ddc + dcd)γ,

which is the zero class in C•, so that γ defines an Aeppli cohomology class. Chang-
ing representative in the de Rham cohomology class modifies γ by a d-exact form,
preserving the corresponding Aeppli cohomology class. The same proof holds for a
dc-cohomology class. Thus, the morphisms from the de Rham and dc-cohomologies
to Aeppli cohomology are given by the identity on the representatives composed
with the projection on C•.

The morphisms going from the Bott–Chern cohomology to the de Rham and
dc-cohomologies are not injective nor surjective. The same holds for those going
from the de Rham and dc-cohomologies to the Aeppli cohomology. This is true
even if J is integrable, see, for example, [2].

The next proposition establishes that Bott–Chern and Aeppli cohomologies
are preserved under pseudo-holomorphic maps and are almost complex invari-
ants. A map between almost complex manifolds f : (M,J) ! (M ′, J ′) is pseudo-
holomorphic if

df ◦ J = J ′ ◦ df. (3.2.1)

Theorem 3.2.6. Let (M,J) and (M ′, J ′) be two almost complex manifolds. Let
f : M !M ′ be a pseudo-holomorphic map. Then f induces a morphism of differ-
ential Z-graded algebras

f ∗ : H•
d+dc(M

′, J ′) −! H•
d+dc(M,J),

and a morphism of differential Z-graded modules over Bott–Chern cohomology

f ∗ : H•
ddc(M

′, J ′) −! H•
ddc(M,J).

If in addition f is a diffeomorphism, then f ∗ is an isomorphism.

Proof. The pullback f ∗ commutes with d. By (3.2.1), it also commutes with dc.
In particular, it sends the double complexes (B•, d, dc) and (C•, d, dc) defined for
(M ′, J ′) into the analogous objects defined for (M,J), and it defines a morphism
on the cohomologies. If f is also a diffeomorphism, then M = M ′ and df is an
isomorphism. Thus J = df−1 ◦ J ′ ◦ df and f ∗ is an isomorphism with inverse
(f−1)∗.
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In principle, one could be tempted to define a bigraded version of Bott–Chern
and Aeppli cohomologies for d and dc. However, if J is not integrable, the operator
ddc does not preserve the bigrading and giving such a definition would require to
impose further conditions on the subcomplex B• that would make the construc-
tion less natural. Nevertheless, if (p, q) ∈ {(1, 0), (0, 1), (2, 0), (0, 2)}, one can still
consider the bigraded spaces

Hp,q
d+dc := ker d ∩ Ap,q,

since d-closed (p, q)-forms coincide with dc-closed (p, q)-forms, while for (p, q) =
(1, 1) one can set

H1,1
d+dc :=

ker d ∩ A1,1

Im(ddc : ker(ddc + dcd) ∩ C∞(M) ! ker(ddc + dcd) ∩ A1,1)
.

Using the bigraded cohomology groups we just defined, we can prove a bigraded
splitting in the case of 1-forms.

Proposition 3.2.7. Let (M,J) be an almost complex manifold. Then

H1
d+dc = H1,0

d+dc ⊕H0,1
d+dc .

Proof. A Bott–Chern cohomology class in H1
d+dc is given by a 1-form α that is

d-closed and dc-closed. Furthermore, there are no ddc-exact 1-forms for degree
reasons. Split α according to the bidegree as

α = α1,0 + α0,1.

Since α is both d-closed and dc-closed, the forms α1,0 and α0,1 are both d-closed
and dc-closed since they have pure bidegree. Hence, they define two Bott–Chern
cohomology classes in H1,0

d+dc and H1,0
d+dc , respectively. The converse inclusion is

immediate.

We point out that a bigraded splitting does not hold outside of 1-forms unless
J is integrable. In the integrable case, the cohomology groups we computed on k-
forms naturally split into bigraded components that coincide with the usual Bott–
Chern and Aeppli cohomology. We give here a cohomological proof of this fact.
For a similar statement valid for spaces of harmonic forms on compact Hermitian
manifolds, see Corollary 4.1.3.

Lemma 3.2.8. Let (M,J) be a complex manifold. Then

Hk
d+dc =

⊕
p+q=k

Hp,q
BC and Hk

ddc =
⊕
p+q=k

Hp,q
A .
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Proof. We prove the claim for Bott–Chern cohomology. The claim for Aeppli
cohomology is proved similarly. The inclusion

⊕
p+q=kH

p,q
BC ⊆ Hk

d+dc is immediate.

For the opposite inclusion, let [α]BC ∈ Hk
d+dc and let

α =
∑
p+q=k

αp,q

be the bidegree decomposition of α. Since α is both d-closed and dc-closed, we
have that the forms

αeven :=
∑
p even

αp,q and αodd :=
∑
p odd

αp,q

are both d-closed. Consider the equation

0 = dαev = ∂̄α0,k + ∂α0,k + ∂̄α2,k−2 + . . .

and separate the terms by bidegree. Since the operators ∂ and ∂̄ have bidegree
(1, 0) and (0, 1), respectively, and since two summands of αeven differ in bidegree
p by at least 2, all the terms ∂αp,q and ∂̄αp,q, for p even, have different bidegree.
Hence, for all (p, q) with p even, it must be ∂αp,q = ∂̄αp,q = 0. With a similar
reasoning applied to αodd, we have that dαp,q = 0 for all (p, q), so that αp,q ∈
Ap,q ∩ ker d ∩ ker dc. This shows that each αp,q defines a cohomology class in
Hp,q
BC . Choosing another representative in [α]BC we add a term ddcβ. Since in

the complex case ddc has bidegree (1, 1), the projection of ddcβ on each of its
components of bidegree (p, q) is still ddc-exact and gives a well-defined cohomology
class [αp,q]BC ∈ Hp,q

BC .

3.3 Cohomologies of the operators δ and δ̄

By (1.2.10), on an arbitrary almost complex manifold, the operators δ and δ̄ anti-
commute but do not square to zero, and their cohomology is not well-defined.
Nevertheless, again by (1.2.10), the space of forms where ddc + dcd = 0 coincides
with the space of forms where δ̄2 = 0. Thus, the subcomplex B• seems to be a
natural space on which to define the cohomologies of δ and δ̄.

Definition 3.3.1. The δ-cohomology of (M,J) is the cohomology

Hk
δ :=

ker(δ : Bk −! Bk+1)

Im(δ : Bk−1 −! Bk)
.

The δ̄-cohomology of (M,J) is the cohomology

Hk
δ̄
:=

ker(δ̄ : Bk −! Bk+1)

Im(δ̄ : Bk−1 −! Bk)
.



3.4. COHOMOLOGIES OF THE OPERATORS d AND dΛ 71

In the same fashion as Definition 3.2.3, we define the Bott–Chern and Aeppli
cohomologies of the operators δ and δ̄.

Definition 3.3.2. The (δ + δ̄)-cohomology of (M,J) is

Hk
δ+δ̄

:=
ker(δ : Bk ! Bk+1) ∩ ker(δ̄ : Bk ! Bk+1)

Im(δδ̄ : Bk−2 ! Bk)
.

The δδ̄-cohomology of (M,J) is

Hk
ddc :=

ker(δδ̄ : Ck ! Ck+2)

Im(δ : Ck−1 ! Ck) + Im(δ̄ : Ck−1 ! Ck)
.

In the integrable case, Bott–Chern and Aeppli cohomologies built using the
operators d and dc or ∂ and ∂̄ coincide. This is still true in the non-integrable case
for Bott–Chern and Aeppli cohomologies defined using the operators d and dc or
δ and δ̄.

Proposition 3.3.3. Let (M,J) be an almost complex manifold. Then

H•
d+dc = H•

δ+δ̄ and H•
ddc = H•

δδ̄.

Proof. By (1.2.8) and (1.2.9), we have that

ker d ∩ ker dc = ker δ ∩ ker δ̄.

By (1.2.10), there is an equality

Im(ddc : Bk−2 −! Bk) = Im(δδ̄ : Bk−2 −! Bk),

so that we conclude that
Hk
d+dc = Hk

δ+δ̄.

The equality between Aeppli cohomology and δδ̄-cohomology follows with a similar
reasoning, since we are computing the cohomologies on forms in C•.

3.4 Cohomologies of the operators d and dΛ

In this section we describe almost symplectic cohomologies built using the oper-
ators d and dΛ and the decomposition of the differential (1.2.13) induced by the
symplectic bigrading of forms.

Let (M,ω) be an almost symplectic manifold. Let Lr,s be the space of forms
of Lefschetz bidegree (r, s) and let d = d0 + d1 + . . . be the decomposition of
the differential induced by the Lefschetz bigrading, with dj : Lr,s ! Lr−1+j,s+3−2j,
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see Section 1.2. This provides us with a multicomplex (L•,•, d = d0 + . . .). The
associated total complex is the de Rham complex (A•, d), where

Ak =
⊕

2r+s=k

Lr,s

is given by the Lefschetz decomposition. The natural filtration to put on the
multicomplex is the Lefschetz filtration [99]

F pAk =
⊕
r≤p

Lr,k−2r.

In particular, the space F 0Ak coincides with the space of primitive k-forms. Fol-
lowing Section 1.1, every filtered complex admits a natural spectral sequence.

Theorem 3.4.1. The multicomplex (Lr,s, d = d0 + . . .) admits a natural spectral
sequence (Er,s

q , dq) converging to de Rham cohomology Er,s
q ⇒ H2r+s

d whose first
page is isomorphic to the cohomology of the d0 operator.

In the symplectic case, the first non-trivial page of the spectral sequence is
isomorphic to the cohomology of the ∂+ operator and we have convergence Hr,s

∂+
⇒

H2r+s
d .

Proof. The multicomplex (Lr,s, d = d0 + . . .) admits the Lefschetz filtration and
it is bounded by Lemma 1.2.2. Thus, by Proposition 1.1.1, it admits an associ-
ated spectral sequence that degenerates in a finite number of steps. Furthermore,
the spectral sequence converges to the cohomology of the total complex (A•, d),
which is the de Rham cohomology, inducing a bigrading on H2r+s

d that general-
izes the symplectic bigrading induced by the Lefschetz decomposition, see [100].
By (1.2.14), we have that d20 = 0 and its cohomology is well-defined. By [62],
we can write down explicitly the pages of the spectral sequence in terms of the
differentials. The first page is

Er,s
1

∼=
{ωr ∧ β : d0(ω

r ∧ β) = 0 and β ∈ Ps}
{d0(ωr+1 ∧ γ) : γ ∈ Ps−3}

,

which is isomorphic to the cohomology of the d0 operator. The second page is

Er,s
2

∼=
{ωr ∧ β : d0(ω

r ∧ β1) = 0 and d1(ω
r ∧ β1) + d0(ω

r+1 ∧ β2) = 0}
{d0(ωr+1 ∧ γ1) + d1(ωr ∧ γ2) : d0(ωr ∧ γ2) = 0}

,

with β1 ∈ Ps, β2 ∈ Ps−2, γ1 ∈ Ps−3 and γ2 ∈ Ps−1.
In the symplectic case, all the differentials vanish except for d1 and d2, which

coincide with ∂+ and ∂−, respectively. We have that Er,s
1

∼= Lr,s and Er,s
2

∼= Hr,s
∂+

∼=
ωr ∧ PHs

∂+
, where PHs

∂+
is the primitive symplectic cohomology as defined in

Section 1.3.2.
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We focus for a moment on the symplectic case and on the double complex
(Lr,s, ∂+, ∂−). The spectral sequence we defined allows to write a more precise
version of diagram (1.3.7)

Hr,s
d+dΛ

Hr,s
∂+

H2r+s
d H2r+s

dΛ
Hr,s
∂−

Hr,s
ddΛ

∼

By general facts on spectral sequences of double complexes, the maps considered
in the above diagram are isomorphisms if and only if the ddΛ-lemma (or, equiv-
alently, the ∂+∂−-lemma) holds, see [4] for more details. In particular, if the
ddΛ-lemma holds, the spectral sequence degenerates at the first page and the de
Rham cohomology splits under the action of the Lefschetz operator as

Hk
d =

⊕
j≥0

ωj ∧ PHk−2j
d .

In such a case, the symplectic manifold satisfies the Hard Lefschetz condition.
Going back to almost symplectic manifolds, we point out an interesting geomet-

ric interpretation of the operator d0. Recall that an almost symplectic structure
ω is called locally conformally symplectic, see [103] and [104], if

dω = ω ∧ θ, with dθ = 0.

Theorem 3.4.2. Let (M,ω) be a compact almost symplectic 2m-manifold. If
2m = 4, then d0 = 0. If 2m ≥ 6, then d0 = 0 if and only if ω is locally conformally
symplectic.

Proof. On almost symplectic manifold, the Lefschetz decomposition of dω is

dω = H + ω ∧ θ.

We show that d0 identically vanishes if and only if H = 0. If d0 = 0, in particular
we have

0 = d0ω = π0,3(dω) = H.

Conversely, suppose that H identically vanishes and let ωr ∧ β ∈ Lr,s. Then, we
have

d0(ω
r ∧ β) = πr−1,s+3 ◦ d(ωr ∧ β) = πr−1,s+3(ωr ∧ dβ + rωr ∧ θ ∧ β) = 0,
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proving our claim. On 4-manifolds, the form H identically vanishes since there
are no primitive 3-forms, so that d0 = 0 always. If 2m ≥ 6, the vanishing of H is
equivalent to having dω = ω ∧ θ. From the equation

0 = d2ω = d(ω ∧ θ) = ω ∧ dθ,

we see that dθ = 0 and that ω is locally conformally symplectic.

We are ready to define almost symplectic versions of the symplectic cohomolo-
gies of Tseng and Yau using the same idea of Bott–Chern and Aeppli cohomologies
of almost complex manifolds.

Definition 3.4.3. Consider the subcomplex B• ⊆ A• given by

B• := A• ∩ ker(ddΛ + dΛd)

and the quotient complex of A• given by

C• :=
A•

Im(ddΛ + dΛd)
.

The complexes (B•, d, dΛ) and (C•, d, dΛ) are Z-graded double complexes.

Definition 3.4.4. Let (M,ω) be an almost symplectic manifold. The almost
symplectic cohomologies of (M,ω) are

Hk
d+dΛ :=

ker(d : Bk ! Bk+1) ∩ ker(dΛ : Bk ! Bk−1)

Im(ddΛ : Bk ! Bk)

and

Hk
ddΛ :=

ker(ddΛ : Ck ! Ck)

Im(d : Ck−1 ! Ck) + Im(dΛ : Ck+1 ! Ck)
.

If ω is symplectic then d and dΛ anti-commute and our definition coincides
with the one given by Tseng and Yau. The almost symplectic cohomologies are a
well-defined invariant of the almost symplectic structure. The proof follows closely
that of Theorem 3.2.6, therefore it is omitted. With a slight abuse of terminology,
we say that a map between almost symplectic manifolds f : (M,ω) ! (M ′, ω′) is
a symplectomorphism if

f ∗ω′ = ω.

Theorem 3.4.5. Let (M,ω) and (M ′, ω′) be two almost symplectic manifolds. Let
f : M ! M ′ be a symplectomorphism. Then f induces a morphism of differential
Z-graded algebras

f ∗ : H•
d+dΛ(M

′, ω′) −! H•
d+dΛ(M,ω),

and a morphism of differential Z-graded modules over H•
d+dΛ

f ∗ : H•
ddΛ(M

′, ω′) −! H•
ddΛ(M,ω).

If in addition f is a diffeomorphism, then f ∗ is an isomorphism.



3.5. COHOMOLOGIES OF EVEN AND ODD FORMS 75

3.5 Cohomologies of even and odd forms

In this section we describe several cohomologies induced by the action of J on
k-forms. In a natural way they admit a Z2-grading that induces a Z2-splitting of
Bott–Chern cohomology. A similar splitting appears naturally in the context of
the symplectic cohomologies, see Section 5 in [100].

Recall that J2 acts on k-forms as (−1)k Id, see Section 1.2. This naturally
induces a splitting of Λk into the (±i)-eigenbundles of J if k is odd, or into its
(±1)-eigenbundles if k is even. In terms of the bigrading of forms, it is easy to
determine the eigenbundles. For example, if k ≡ 0 mod 4 the (+1)-eigenbundle of
J is given by

⊕
p even Λ

p,k−p. This motivates the definition of the following spaces
of forms. We set

Akeven :=
⊕
p+q=k
p even

Ap,q and Akodd :=
⊕
p+q=k
p odd

Ap,q. (3.5.1)

Definition 3.5.1. If α ∈ Akeven, we say that α is an even k-form. Similarly, if
α ∈ Akodd, we say that α is an odd k-form.

This provides a direct sum decomposition

Ak = Akeven ⊕ Akodd, (3.5.2)

that allows to split α ∈ Ak into an even part and an odd part

α = αeven + αodd,

given by the projections on the subspaces defined in (3.5.1). The same splitting can
be given for forms in Bk, see Definition 3.5.6. It is immediate from the definition
to check that the wedge product of forms of the same parity is even, while the
wedge product of forms of opposite parity is odd. Thus the decomposition (3.5.2)
endows A• with a Z2-graded algebra structure. With respect to the Z2-grading on
Ak, we have that complex conjugation reverses the parity of forms when k is odd,
while it preserves the parity when k is even.

Definition 3.5.2. Let P : A• ! A• be a differential operator. We say that P is
even if it preserves the parity of forms, that is, if

P (A•
even) ⊆ A•

even and P (A•
odd) ⊆ A•

odd.

We say that P is odd if it reverses the parity of forms, that is, if

P (A•
even) ⊆ A•

odd and P (A•
odd) ⊆ A•

even.
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The differential d is neither even nor odd, but it admits a splitting into an even
and an odd part that correspond to the operators δ̄ and δ, respectively. Indeed,
when computing d on even forms, δ is the projection of d onto odd forms, while δ̄
is the projection onto even forms. The parities of most of the operators we study
can be determined without effort and are collected in the next proposition.

Proposition 3.5.3. We have the following properties:

(i) the composition of operators of the same parity is even;

(ii) the composition of operators of opposite parity is odd;

(iii) the operators δ and δ̄ are odd and even, respectively;

(iv) the operator 4iδδ̄ = ddc − dcd is odd;

(v) the operator −4iδ2 = ddc + dcd is even;

(vi) the operator ddc restricted to B• is odd.

Proof. We have that (i) and (ii) follow immediately from the definition of even
and odd operators, that (iii) follows from the explicit expression of δ and δ̄ in
terms of µ, ∂, ∂̄ and µ̄, and that (iv) and (v) are a consequence of (i − iii). For
(vi), let α ∈ B•. Then (ddc + dcd)α = −4iδ2α = 4iδ̄2α = 0. In particular, by
(1.2.9), we also have that

ddcα = i(δ + δ̄)(δ̄ − δ)α = i(δ̄2 + 2δδ̄ − δ2)α = 2iδδ̄α.

Thus, when restricted to B•, the operator ddc coincides with δδ̄ up to a constant
and it is odd.

Using even and odd forms, one can define the associated subgroups of the de
Rham cohomology.

Definition 3.5.4. Let (M,J) be an almost complex manifold. The J-even coho-
mology of (M,J) is

Hk
even(M,J) := {[α] ∈ Hk

dR : α ∈ Akeven}.

The J-odd cohomology of (M,J) is

Hk
odd(M,J) := {[α] ∈ Hk

dR : α ∈ Akodd}.
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The J-even and J-odd cohomologies are a special case of the cohomology HS
J ,

see [5], obtained by taking S = {(p, q) : p is even} and S = {(p, q) : p is odd},
respectively. They also generalize the notions of cohomologies introduced by
Draghici, Li and Zhang, see Section 3.1. Indeed, if k = 2, we have that

H2
even = H−

J and H2
odd = H+

J .

Apart from generalizing well-known cohomologies, the J-even and J-odd coho-
mologies arise naturally in the context of Bott–Chern cohomology of almost com-
plex manifolds.

Theorem 3.5.5. There is a natural map

Hk
d+dc −! Hk

even +Hk
odd,

[α]d+dc 7−! [αeven]d + [αodd]d.
(3.5.3)

Proof. The theorem is a consequence of the fact that a k-form α is d-closed and
dc-closed if and only if its even and odd parts are both d-closed. Decompose
α = αeven + αodd. The almost complex structure J acts on even and odd forms
as multiplication by a constant, and the two constants differ by a sign. More
precisely, we have that

Jαeven = (−i)kαeven and Jαodd = −(−i)kαodd,

so that

dα = 0 ⇔ dαeven + dαodd = 0 and dcα = 0 ⇔ dαeven − dαodd = 0.

In particular, the form α defines a Bott–Chern cohomology class if and only if
αeven and αodd define two de Rham cohomology classes. This provides the map
(3.5.3).

We recall that, if k = 2 and (M,J) is a compact almost complex 4-manifold,
then de Rham cohomology splits as the direct sum of J-invariant and J-anti-
invariant cohomologies, see Theorem 2.3 in [35]. Since de Rham cohomology classes
are defined up to d-exact forms and d is neither an even nor an odd operator, we
have that Hk

even ∩Hk
odd ̸= {0}. In particular, in general there is no splitting

Hk
d = Hk

even ⊕Hk
odd.

However, we can define cohomologies in the context of Bott–Chern cohomology
that take into account the parity of the forms involved.



78 CHAPTER 3. COHOMOLOGIES OF NON-INTEGRABLE STRUCTURES

Definition 3.5.6. Consider the subcomplexes

B•
even := B• ∩ A•

even and B•
odd := B• ∩ A•

odd.

Let (Hk
d+dc)

even be the space of Bott–Chern cohomology classes computed on even
forms

(Hk
d+dc)

even :=
ker d ∩ ker dc ∩ Akeven

Im(ddc : Bk−2
odd ! Bk

even)
,

and let (Hk
d+dc)

odd be the space of Bott–Chern cohomology classes computed on
odd forms

(Hk
d+dc)

odd :=
ker d ∩ ker dc ∩ Akodd

Im(ddc : Bk−2
even ! Bk

odd)
.

Using these cohomologies, we can prove the desired splitting.

Corollary 3.5.7. The map (3.5.3) induces a Z2-graded decomposition of Bott–
Chern cohomology

Hk
d+dc = (Hk

d+dc)
even ⊕ (Hk

d+dc)
odd.

Proof. Let [α]d+dc ∈ Hk
d+dc be a Bott–Chern cohomology class. Writing the repre-

sentatives according to the parity of the forms, we have that

[α]d+dc = αeven + αodd + (ddcβ)even + (ddcβ)odd,

where β ∈ Bk−2. By (vi) of Proposition 3.5.3, we know that ddc is an odd operator
on B•. Furthermore, the space Bk−2 splits into its even and an odd part, so that

(ddcβ)even = ddc(βodd) and (ddcβ)odd = ddc(βeven),

proving that the even and odd parts of a ddc-exact form are both ddc-exact. Finally,
since ddc+ dcd is even, the even and odd part of a form in B• are still in B•. This
implies that the even and odd part of any representative provide a well-defined
splitting of Bott–Chern cohomology.

The bigraded splitting of Proposition 3.2.7 follows as an easy consequence of
Corollary 3.5.7 in degree 1.



CHAPTER 4

Harmonic forms on almost Hermitian manifolds

In this chapter we introduce several Laplacians on compact almost Hermitian
manifolds that generalize the Bott–Chern and the Aeppli Laplacians of complex
manifolds and the symplectic Laplacians of symplectic manifolds. We extensively
study the associated spaces of harmonic forms, determining their basic properties,
their symmetries and the relations occurring among spaces of harmonic forms of
different Laplacians. We are mainly interested in solving a problem posed by
Kodaira and Spencer: find a generalization of Hodge numbers and Bott–Chern
numbers from complex to almost complex manifolds. In our context, the problem
reduces to determine whether or not the dimensions of the space of harmonic forms
we introduced depend on the choice of J-compatible Riemannian metric. While
a general result on metric-independence at the moment seems out of reach, if the
manifold has dimension 4 or the almost Hermitian structure is almost Kähler,
the situation drastically improves and we are able to provide a solution to the
Kodaira–Spencer’s problem. Noteworthy, all the spaces of harmonic forms we
introduce injects into the cohomologies defined in Chapter 3.

4.1 Almost Hermitian Laplacians

Let (M, g) be a compact Riemannian manifold. Let P and Q be first-order differ-
ential operators on A• of degree ±1. Denote by P ∗ and Q∗ their formal adjoints.
The Hodge-type Laplacian of P is the operator of the second order

∆P := PP ∗ + P ∗P.

79



80 CHAPTER 4. HARMONIC FORMS

The Bott–Chern-type Laplacian of P and Q is the operator of the fourth order

∆P+Q := PQQ∗P ∗ +Q∗P ∗PQ+ P ∗QQ∗P +Q∗PP ∗Q+ P ∗P +Q∗Q,

while the Aeppli-type Laplacian of P and Q is the operator of the fourth order

∆PQ := PQQ∗P ∗ +Q∗P ∗PQ+ P ∗QQ∗P +Q∗PP ∗Q+ PP ∗ +QQ∗.

Observe that the Bott–Chern-type and the Aeppli-type Laplacians differ from each
other only for a term of the second order and that their fourth-order part are not
symmetric in P and Q. The space of P -harmonic k-forms is the space

Hk
P := Ak ∩ ker∆P .

Similarly, the spaces of (P + Q)-harmonic k-forms and of PQ-harmonic k-forms
are

Hk
P+Q := Ak ∩ ker∆P+Q and Hk

PQ := Ak ∩ ker∆PQ,

respectively. If the space of forms admits a bigrading, it is natural to define a
bigraded version of the spaces of harmonic forms obtained as the kernel of the
Laplacians restricted to bigraded forms. The corresponding spaces of harmonic
(p, q)-forms are denoted by Hp,q

P , Hp,q
P+Q and Hp,q

PQ, respectively. Using the L2-inner
product of forms defined in (1.2.2), we have an explicit description of the spaces
of harmonic forms:

Hk
P = {α ∈ Ak : Pα = 0 and P ∗α = 0},

Hk
P+Q = {α ∈ Ak : Pα = 0, Qα = 0 and (PQ)∗α = 0},

Hk
PQ = {α ∈ Ak : PQα = 0, P ∗α = 0 and Q∗α = 0}.

Let (M,J, ω, g) be a compact almost Hermitian 2m-manifold. We make explicit
choices for P and Q as differential operators induced by the almost Hermitian
structure. We first focus on the almost complex point of view. Consider the pairs
of almost complex operators

(P,Q) ∈ {(d, dc), (∂, ∂̄), (δ, δ̄)}.

Then we have the Hodge-type Laplacians

∆d, ∆dc , ∆∂, ∆∂̄, ∆δ and ∆δ̄.

The corresponding spaces of graded harmonic forms are

Hk
d, Hk

dc , Hk
∂, Hk

∂̄, Hk
δ and Hk

δ̄ .
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Since the action of J induces a bigrading on forms, we also have bigraded versions

Hp,q
d , Hp,q

dc , Hp,q
∂ , Hp,q

∂̄
, Hp,q

δ and Hp,q

δ̄
.

Similarly, one can consider the Bott–Chern-type Laplacians

∆d+dc , ∆dc+d, ∆∂+∂̄, ∆∂̄+∂, ∆δ+δ̄, and ∆δ̄+δ,

and the Aeppli-type Laplacians

∆ddc , ∆dcd, ∆∂∂̄, ∆∂̄∂, ∆δδ̄, and ∆δ̄δ,

together with the associated spaces of graded or bigraded harmonic forms. To
reduce the number of spaces we have to deal with, we observe the following ele-
mentary symmetries of the Laplacians under the action of J , of the Hodge ∗ and
of complex conjugation. The almost complex structure induces the symmetries

∆dJ = J∆dc , ∆d+dcJ = J∆dc+d and ∆ddcJ = J∆dcd,

that give isomorphisms of graded harmonic forms

Hk
d
∼= Hk

dc , Hk
d+dc

∼= Hk
dc+d and Hk

ddc
∼= Hk

dcd, (4.1.1)

respectively, together with similar isomorphisms for bigraded harmonic forms. In
the same way, complex conjugation gives the isomorphisms

Hk
∂
∼= Hk

∂̄, Hk
δ
∼= Hk

δ̄ , Hk
∂+∂̄

∼= Hk
∂̄+∂ and Hk

δ+δ̄
∼= Hk

δ̄+δ. (4.1.2)

The Hodge ∗ operator gives a series of isomorphisms between forms of different
degree. Up to the isomorphisms (4.1.1) and (4.1.2), they reduce to

Hk
d
∼= H2m−k

d , Hk
∂̄
∼= H2m−k

∂̄
and Hk

δ̄
∼= H2m−k

δ̄

for harmonic forms coming from the Hodge-type Laplacians, and to

Hk
d+dc

∼= H2m−k
dcd , Hk

∂+∂̄
∼= H2m−k

∂̄∂
and Hk

δ+δ̄
∼= H2m−k

δ̄δ

for harmonic forms coming from the Bott–Chern-type and the Aeppli-type Lapla-
cians. In particular, up to isomorphism, we can restrict ourselves to the study of
the spaces of graded harmonic forms

Hk
d, Hk

∂̄, Hk
δ̄ , Hk

d+dc , Hk
∂+∂̄, Hk

δ+δ̄,

and to their bigraded version. For the Hermitian case, a detailed study of the
symmetries induced by the action of compatible triples on the space of forms can
be found in [109].
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From the almost symplectic point of view, we consider the pair (P,Q) = (d, dΛ).
The associated Laplacians are

∆d, ∆dΛ , ∆d+dΛ , ∆dΛ+d, ∆ddΛ and ∆dΛd,

while the corresponding spaces of graded harmonic forms are

Hd, HdΛ , Hd+dΛ , HdΛ+d, HddΛ and HdΛd.

In this case, computing bigraded harmonic forms means to consider the restriction
of the Laplacians to the spaces Lr,s. We are particularly interested in the spaces
of primitive harmonic s-forms, that is, the kernels of the Laplacians computed
on L0,s, which we denote by PHs

d, PHs
d+dΛ and PHs

ddΛ . The almost symplectic
Laplacians satisfy the symmetries induced by the symplectic ∗s operator

∗s∆d+dΛ = ∆dΛ+d ∗s and ∗s ∆ddΛ = ∆dΛd ∗s,

that give isomorphisms

Hk
d+dΛ

∼= H2m−k
dΛ+d

and Hk
ddΛ

∼= H2m−k
dΛd

.

Similarly, the symmetries induced by J are

J∆d = −∆dΛJ, J∆d+dΛ = ∆ddΛJ and J∆dΛ+d = ∆dΛdJ,

that give isomorphisms

Hk
d
∼= Hk

dΛ , Hk
d+dΛ

∼= Hk
ddΛ and Hk

dΛ+d
∼= Hk

dΛd,

respectively. Up to isomorphism, we are left with the spaces

Hk
d, Hk

d+dΛ , PHk
d and PHk

d+dΛ .

An essential property in developing Hodge theory on complex or symplectic
manifolds is the ellipticity of the Laplacians. It turns out that ellipticity of the
operators we consider is independent of the integrability of J or of ω.

Theorem 4.1.1. Let η be any symbol among d, ∂̄, δ̄, d+dc, ∂+∂̄, δ+ δ̄ and d+dΛ.
Then the Laplacian ∆η is a self-adjoint elliptic operator and there is decomposition
of graded k-forms

Ak = Hk
η

⊥
⊕ Im∆η. (4.1.3)

Furthermore, the space Hk
η is finite-dimensional.
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Proof. The fact that ∆η is self-adjoint follows from the definition. Ellipticity of ∆d

is established by classical Hodge theory of Riemannian manifolds. Ellipticity of
the remaining Laplacians follows by showing that they coincide, up to lower-order
terms, with an elliptic operator. We write down the proof for η = d + dc. The
remaining cases follow similarly. Denote by ∼= the equality up to terms of order at
most one. Then we have that:

• ddc + dcd has order one, so that ddc ∼= −dcd;

• d(dc)∗ + (dc)∗d has order one by the Kähler identities for almost Hermitian
manifolds, see [28] or [37], so that d(dc)∗ ∼= −(dc)∗d.

We can conclude that

∆d+dc
∼= ddc(ddc)∗ + (ddc)∗ddc + d∗dc(d∗dc)∗ + (d∗dc)∗d∗dc ∼=
∼= dd∗dc(dc)∗ + d∗d(dc)∗dc + d∗ddc(dc)∗ + dd∗(dc)∗dc =

= ∆d∆dc
∼= (∆d)

2,

which is elliptic. The proofs involving the operator dΛ follow similarly taking into
account that, by (1.2.15), on almost Hermitian manifolds we have dΛ = (dc)∗. The
orthogonal direct sum decomposition between image and kernel of the Laplacians
and the finite-dimensionality of the kernel follow from the theory of self-adjoint
elliptic operators on compact manifolds, see Lemma 1.3.2.

Since the spaces of harmonic (p, q)-forms, with p+ q = k, are subspaces of the
spaces of harmonic k-forms, they are finite-dimensional. The complex dimensions
of the spaces of harmonic forms are denoted by

hkη := dimC Hk
η and hp,qη := dimCHp,q

η ,

and they depend on the initial choice of almost Hermitian structure. If needed,
we specify the almost Hermitian structure from which the dimensions depend by
writing hkη(J, ω, g) and h

p,q
η (J, ω, g).

In general, a decomposition similar to (4.1.3) does not hold for bigraded forms
unless ∆η preserves the bigrading.

Proposition 4.1.2. Let (M,J, ω, g) be a compact almost Hermitian manifold.
Then there is an inclusion ⊕

p+q=k

Hp,q
η ⊆ Hk

η (4.1.4)

that induces an inequality ∑
p+q=k

hp,qη ≤ hkη. (4.1.5)

If ∆η preserves the bigrading, then the equality holds in (4.1.4) and (4.1.5).
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Proof. The inclusion (4.1.4) is immediate since η-harmonic (p, q)-forms, with p +
q = k, are in particular η-harmonic k-forms. Suppose that ∆η preserves the
bigrading of forms. Let α ∈ Hk

η and let

α =
∑
p+q=k

αp,q

be its bidegree decomposition. Then the bidegree decomposition of ∆ηα is

0 = ∆ηα = ∆η(
∑
p+q=k

αp,q) =
∑
p+q=k

∆ηα
p,q.

Since ∆η preserves the bigrading, each summand ∆ηα
p,q must vanish separately,

showing the direct sum decomposition. The claims on the dimensions of the spaces
of harmonic forms follow easily.

Motivated by Proposition 4.1.2, we ask the following question:

Question: does the equality in (4.1.4) or (4.1.5) imply that the Laplacian ∆η

preserves the bigrading?

There are several instances of Laplacians that preserve the bigrading: the
Laplacians ∆d+dc and ∆ddc on complex manifolds and the Laplacians ∆∂̄ and ∆∂+∂̄

on almost complex manifolds. This immediately gives a bigraded decomposition
of the spaces of harmonic forms.

Corollary 4.1.3. Let (M,J) be a compact complex manifold. Then, for every
choice of J-compatible metric, we have

Hk
d+dc =

⊕
p+q=k

Hp,q
BC and Hk

ddc =
⊕
p+q=k

Hp,q
A .

In particular, hkd+dc =
∑

p+q=k

hp,qBC and hkddc =
∑

p+q=k

hp,qA .

Corollary 4.1.4. Let (M,J) be a compact almost complex manifold. Then, for
every choice of J-compatible metric, we have

Hk
∂̄ =

⊕
p+q=k

Hp,q

∂̄
and Hk

∂+∂̄ =
⊕
p+q=k

Hp,q

∂+∂̄
.

In particular, hk
∂̄
=

∑
p+q=k

hp,q
∂̄

and hk
∂+∂̄

=
∑

p+q=k

hp,q
∂+∂̄

.

Corollary 4.1.3, together with Hodge theory, provides a different proof of
Lemma 3.2.8 valid on compact complex manifolds.

Next, we show that the numbers hkη are preserved under morphisms of almost
Hermitian manifolds, so that they define almost Hermitian invariants.
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Theorem 4.1.5. Let (M,J, ω, g) and (M ′, J ′, ω′, g′) be two compact almost Her-
mitian manifolds of the same dimension and let f : M !M ′ be a surjective smooth
map preserving the compatible triple, i.e., satisfying

df ◦ J = J ′ ◦ df, f ∗ω′ = ω and f ∗g′ = g. (4.1.6)

Then we have that

hkη(J
′, ω′, g′) ≤ hkη(J, ω, g).

If in addition f is a diffeomorphism, then

hkη(J
′, ω′, g′) = hkη(J, ω, g).

If any two conditions among those in (4.1.6) hold, then also the remaining one
is satisfied.

Proof. If α is η-harmonic with respect to the almost Hermitian structure (J ′, ω′, g′),
then f ∗α is η-harmonic with respect to (J, ω, g) by (4.1.6). Furthermore, the
differential df is injective because f ∗g′ = g. Since M and M ′ have he same
dimension, it is also surjective at every point of M . We show that the pull-back
f ∗ is injective. Let α ∈ Ak(M ′) and assume that f ∗α|x = 0 for all x ∈ M . Fix
x′ ∈M ′. Let v′1, . . . , v

′
k ∈ Tx′M

′. Since the maps f and df are surjective, then there
exist v1, . . . , vk ∈ TxM such that df |xvj = v′j, where j = 1, . . . , k, and x ∈ f−1(x′).
Therefore, we have that

α|x′(v′1, . . . , v′k) = α|x′(df |xv1, . . . , df |xvk) = f ∗α|x(v1, . . . , vk) = 0.

For any x′ ∈M ′, this gives α|x′ = 0 and consequently α = 0, showing the inequality
hkη(J

′, ω′, g′) ≤ hkη(J, ω, g). If in addition f is a diffeomorphism, applying the above
argument to

f−1 :M ′ !M

we obtain that hkP (J, g) ≤ hkP ′(J ′, g′), proving the equality.

The last step of classical Hodge theory is to show that the dimensions of the
spaces of harmonic forms are independent of the choice of Riemannian metric. For
instance, consider the space Hk

d consisting of d-harmonic forms. Its dimension is
independent of any choice and is actually a topological invariant, the k-th Betti
number of the manifold M . Similarly, integrability of J guarantees that there are
isomorphisms between Dolbeault, Bott–Chern and Aeppli cohomologies and the
corresponding spaces of harmonic forms on Hermitian manifolds. The same is true
for the symplectic cohomologies on almost Kähler manifolds. In view of that, we
formulate the following problem.
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Generalized Kodaira–Spencer’s problem.
Let (M,J) be a compact almost complex manifold. Fix a J-compatible Rieman-
nian metric and let η be any symbol among d, ∂̄, δ̄, d + dc, ∂ + ∂̄ and δ + δ̄.
Determine if the numbers hkη and h

p,q
η depend on the choice of Riemannian metric.

The first simple observation is that, for every choice of η, the lowest and top
degree numbers are always equal to 1 since harmonic functions are necessarily
constant and since harmonic top forms are constant multiples of the volume form.

4.2 Dependence on the choice of metric

In this section we study the dependence on the metric of the numbers hkη on almost
Hermitian 4-manifolds. Thanks to the restriction on the dimension, we are able
to show that several of them do not depend on the choice of metric. The situation
significantly improves if we assume that the metric is almost Kähler, where we find
a solution to the generalized Kodaira–Spencer’s problem, see Theorems 4.2.3 and
4.2.7.

The section is structured as follows: we begin each paragraph with the descrip-
tion of the known metric-dependence (or independence) of the invariants. This is
summarized in several diagrams where we adopt the notation

, : almost complex invariant

! : almost Kähler, possibly almost complex invariant

: almost Kähler, not almost complex invariant

/ : metric-dependent

The rest of each paragraph contains the proof of the main statement. The proof will
be based on results spread across several papers, that will be properly referenced,
and several original results that we prove on the go.

Dependence on the metric of the numbers hk
∂̄
, hp,q

∂̄
, hk

∂+∂̄
and hp,q

∂+∂̄

For these numbers the situation is almost entirely known.

Theorem 4.2.1. Dependence on the metric of the numbers hp,q
∂̄

is described by the
diagram

1 ,
h1,0
∂̄

h0,1
∂̄

, /
h2,0
∂̄

h1,1
∂̄

h0,2
∂̄

, ,
h2,1
∂̄

h1,2
∂̄

/ ,
1 ,

(4.2.1)
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Dependence on the metric of the numbers hp,q
∂+∂̄

is described by the diagram

1 ,
h1,0
∂+∂̄

h0,1
∂+∂̄

, ,
h2,0
∂+∂̄

h1,1
∂+∂̄

h0,2
∂+∂̄

, , ,
h2,1
∂+∂̄

h1,2
∂+∂̄

! /
1 ,

(4.2.2)

Dependence on the metric of the numbers hk
∂̄
and hk

∂+∂̄
is described by the table

k 0 1 2 3 4

hk
∂̄

, / / ,
hk
∂+∂̄

, , , / ,

Recall that the isomorphism induced by the Hodge ∗ gives an equality

hp,q
∂̄

= hm−p,m−q
∂̄

. (4.2.3)

In general, the numbers hp,0
∂̄

do not depend on the choice of metric by bidegree
reasons. Holt and Zhang showed that there exists an almost complex 4-manifold
such that h0,1

∂̄
varies for different choices of almost Kähler metric, see [52] and [53].

By (4.2.3), we know the situation also for h2,0
∂̄
, h2,1

∂̄
and h1,2

∂̄
. The remaining number

h1,1
∂̄

is independent of the choice of almost Kähler metric [53] but it depends on
the choice of almost Hermitian metric [94]. This proves the situation described in
diagram (4.2.1). By Lemma 4.1 and Theorem 4.2 in [48], the numbers hp,q

∂+∂̄
are

metric-independent for (p, q) any among (1, 0), (0, 1), (2, 0), (0, 2) and (1, 1). For
(p, q) = (2, 1) and (p, q) = (1, 2), we have the following result.

Lemma 4.2.2. Let (M,J) be a compact almost complex 4-manifold admitting a
J-compatible almost Kähler metric. Then for every choice of J-compatible almost
Kähler metric we have that

H2,1

∂+∂̄
∼= H1,0

∂̄
and H1,2

∂+∂̄
∼= H0,1

∂̄
.

Proof. The proofs of the two isomorphisms are similar. We prove only the first
one, which is provided by the Hodge ∗ operator. Let α1,0 ∈ H1,0

∂̄
. Then ∂̄α = 0.

After taking the Hodge ∗, we obtain that ∂ ∗ α1,0 = 0 by bidegree reasons, that
∂̄ ∗ α1,0 is proportional to ∂̄(ω ∧ α1,0) = ω ∧ ∂̄α1,0 = 0 and that ∂∂̄ ∗ (∗α1,0) = 0.
This proves the inclusion

∗(H1,0

∂̄
) ⊆ H2,1

∂+∂̄
.

For the opposite inclusion, we need to use the almost Kähler identities [31]. Since
the Hodge ∗ is an isomorphism between (2, 1)-forms and (1, 0)-forms, any form in
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H2,1

∂+∂̄
can be written as ω∧α1,0 for some α1,0 ∈ A1,0. Moreover, since ∂̄(ω∧α1,0) =

0, the form ∂̄α1,0 is primitive, and since ∂∂̄ ∗ (ω ∧ α1,0) = 0, we have ∂∂̄α1,0 = 0.
By the almost Kähler identities, we have that

i∂̄∗∂̄α1,0 = [Λ, ∂]∂̄α1,0 = Λ∂∂̄α1,0 − ∂Λ∂̄α1,0 = 0,

where in the last equality we used the fact that ∂̄α1,0 is primitive and ∂∂̄α1,0 = 0.
This shows that ∂̄α1,0 = 0 and proves the opposite inclusion.

By diagram (4.2.1) and Lemma 4.2.2 we conclude that h1,2
∂̄

depends on the

choice of almost Kähler metric, while h2,1
∂̄

does not. This gives the situation de-
scribed in diagram (4.2.2). Finally, by Corollary 4.1.4, it is easy to determine
dependence on the metric of the dimensions of the spaces of graded harmonic
forms.

Dependence on the metric of the numbers hk
δ̄
, hp,q

δ̄
, hk

δ+δ̄
and hp,q

δ+δ̄

The Laplacians associated to the operators δ and δ̄ do not preserve the bigrading.
Hence, there is a substantial difference in considering graded or bigraded invariants.
Furthermore, the spaces of δ̄-harmonic and (δ+δ̄)-harmonic forms involve in a non-
trivial way the action of µ and µ̄, so that they differ from the spaces of ∂̄-harmonic
and (∂ + ∂̄)-harmonic forms.

Theorem 4.2.3. Dependence on the metric of the numbers hp,q
δ̄

is described by the
diagram

1 ,
h1,0
δ̄

h0,1
δ̄

, !

h2,0
δ̄

h1,1
δ̄

h0,2
δ̄

, ,
h2,1
δ̄

h1,2
δ̄

! ,
1 ,

(4.2.4)

Dependence on the metric of the numbers hp,q
δ+δ̄

is described by the diagram

1 ,
h1,0
δ+δ̄

h0,1
δ+δ̄

, ,
h2,0
δ+δ̄

h1,1
δ+δ̄

h0,2
δ+δ̄

, , ,
h2,1
δ+δ̄

h1,2
δ+δ̄

! !

1 ,

(4.2.5)

Dependence on the metric of the numbers hk
δ̄
and hk

δ+δ̄
is described by the table

k 0 1 2 3 4

hk
δ̄

, ! ! ,
hk
δ+δ̄

, , , ! ,
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In degree 1, the spaces H1,0

δ+δ̄
, H0,1

δ+δ̄
and H1

δ+δ̄
are independent of the choice of

metric since the equation δδ̄ ∗ α = 0 is trivially satisfied for bidegree reasons. A
short computation shows the equalities of spaces

H1,0

δ̄
= H1,0

∂̄
and H0,1

δ̄
= H0,1

∂̄
∩ kerµ,

that give metric-independence for h1,0
δ̄
. We also observe that there are bigraded

decompositions

H1
δ̄ = H1,0

δ̄
⊕H0,1

δ̄
and H3

δ̄ = H2,1

δ̄
⊕H1,2

δ̄
. (4.2.6)

Let H(2,0)(0,2)
J be the space of harmonic forms defined in (3.1.1). In degree 2, we

prove the following decompositions of harmonic forms.

Theorem 4.2.4. Let (M,J) be a compact almost complex 4-manifold. Fix a J-
compatible almost Hermitian metric on M . Then:

• there is a decomposition of δ̄-harmonic 2-forms

H2
δ̄ = H1,1

∂̄
⊕H(2,0)(0,2)

J ;

• there is a decomposition of (δ + δ̄)-harmonic 2-forms

H2
δ+δ̄ = H1,1

∂+∂̄
⊕H(2,0)(0,2)

J .

Proof. It is immediate to verify that the inclusions

H1,1

∂̄
⊕H(2,0)(0,2)

J ⊆ H2
δ̄ and H1,1

∂+∂̄
⊕H(2,0)(0,2)

J ⊆ H2
δ+δ̄

hold. For the opposite inclusions, we first prove that H2
δ̄
⊆ H1,1

∂̄
⊕H(2,0)(0,2)

J . Let
α ∈ H2

δ̄
, so that δ̄α = 0 and δ ∗ α = 0. Writing α as the sum of bigraded forms

α = α2,0 + α1,1 + α0,2 and imposing that α is δ̄-harmonic, we have that

0 = δ̄α = (∂̄ + µ)(α2,0 + α1,1 + α0,2) =

= ∂̄α2,0 + ∂̄α1,1 + ∂̄α0,2 + µα2,0 + µα1,1 + µα0,2 =

= ∂̄α2,0 + µα0,2 + ∂̄α1,1,

since several terms vanish by bidegree reasons. Separating the bidegrees, we obtain
that

∂̄α1,1 = 0 and ∂̄α2,0 + µα0,2 = 0. (4.2.7)
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Similarly, since (2, 0) and (0, 2)-forms are self-dual, we see that

0 = δ ∗ α = (∂ + µ̄) ∗ (α2,0 + α1,1 + α0,2) =

= (∂ + µ̄)(α2,0 + ∗α1,1 + α0,2) =

= ∂α0,2 + µ̄α2,0 + ∂ ∗ α1,1,

from which we get the equations

∂ ∗ α1,1 = 0 and ∂α0,2 + µ̄α2,0 = 0. (4.2.8)

Combining (4.2.7) and (4.2.8), we immediately deduce that α1,1 ∈ H1,1

∂̄
and that

α2,0 + α0,2 is d-closed and self-dual, thus d-harmonic, proving the first part of the
theorem. For the second part, we prove the inclusion H2

δ+δ̄
⊆ H1,1

∂+∂̄
⊕ H(2,0)(0,2)

J .

Let α ∈ H2
δ+δ̄

. Then δα = 0, δ̄α = 0 and δδ̄ ∗α = 0. Writing α as the sum of forms
of pure bidegree, following the same computations of the first part of the proof of
this theorem and imposing the conditions δα = 0 and δ̄α = 0, we get that

∂α1,1 = 0, (∂ + µ̄)(α2,0 + α0,2) = 0,

∂̄α1,1 = 0, (∂̄ + µ)(α2,0 + α0,2) = 0.
(4.2.9)

Starting from the equation δδ̄ ∗ α = 0, we observe that in general

δδ̄ = (∂ + µ̄)(∂̄ + µ) = ∂∂̄ + ∂µ+ µ̄∂̄ + µ̄µ, (4.2.10)

while on 4-manifolds equation (4.2.10) simplifies to δδ̄ = ∂∂̄+ µ̄µ and the operator
δδ̄ has bidegree (1, 1). Thus, by bidegree, we have that

0 = δδ̄ ∗ α = (∂∂̄ + µ̄µ) ∗ α1,1 = ∂∂̄ ∗ α1,1. (4.2.11)

Finally, from (4.2.9) and (4.2.11), we conclude that α1,1 ∈ H1,1

∂+∂̄
and α2,0 + α0,2 ∈

H(2,0)(0,2)
J . This completes the proof of the theorem.

The dimension h−J of the space H(2,0)(0,2)
J depends only on the almost complex

structure, see Section 3.1. From the decompositions of Theorem 4.2.4 and from
the fact that µ and µ̄ vanish on (1, 1)-forms on 4-manifolds, it follows that h1,1

δ̄
and

h1,1
δ+δ̄

depend on the metric as h1,1
∂̄

and h1,1
∂+∂̄

, respectively. In particular, h1,1
δ̄

is an

almost Kähler invariant, while h1,1
δ+δ̄

is an almost complex invariant. In bidegree
(2, 0), we have the following lemma.

Lemma 4.2.5. Let (M,J) be a compact almost complex 4-manifold. For any
choice of J-compatible metric, we have that

H2,0

δ̄
= H2,0

d .

Furthermore, the dimension h2,0
δ̄

is independent of the choice of metric.
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Proof. Let α ∈ A2,0. Since (2, 0)-forms are self-dual, metric-independence follows
by observing that

H2,0
d = A2,0 ∩ ker d.

To prove the equality of the spaces of harmonic forms, let α ∈ H2,0

δ̄
. Then δ̄α = 0

and µ̄ ∗ α = 0. Since α is self-dual, we also have that µ̄α = 0 and, by bidegree,
∂α = 0. In particular, dα = d ∗ α = 0.

Note that by Lemma 5.6 in [31], if J is not integrable then h2,0d = h2,0
δ̄

= 0. By
the isomorphisms

H2,0

δ̄
∼= H0,2

δ̄
and H2,0

d
∼= H0,2

d

induced by the Hodge ∗ and complex conjugation, we get metric-independence
of the numbers h2,0

δ̄
, h0,2

δ̄
, h2,0d and h0,2d . This leaves only the numbers h0,1

δ̄
=

h2,1
δ̄
, h2,1

δ+δ̄
= h1,2

δ+δ̄
and h3

δ+δ̄
. Furthermore, since the action of δ and δ̄ induces a

decomposition of 3-forms into bigraded forms and since δδ̄ has bidegree (1, 1) on
4-manifolds, we also have h1,2

δ+δ̄
= 1

2
h3
δ+δ̄

. Under the almost Kähler assumption, we
are able to prove their metric-independence.

Theorem 4.2.6. Let (M,J) be a compact almost complex 4-manifold admitting a
J-compatible almost Kähler metric. Then the numbers hk

δ̄
, hp,q

δ̄
, hk

δ+δ̄
and hp,q

δ+δ̄
do

not depend on the choice of J-compatible almost Kähler metric.

Proof. By Proposition 6.10 in [96], on almost Kähler manifolds we have that Hk
δ̄
=

Hk
δ+δ̄

. Therefore, we just need to prove the theorem for hk
δ̄
or hk

δ+δ̄
. As already

observed, the number h1
δ+δ̄

is independent of the choice of almost Hermitian metric.

By Theorem 4.2.4, also h2
δ+δ̄

is metric-independent. Finally, we have that

h1δ+δ̄ = h1δ̄ = h3δ̄ = h3δ+δ̄,

proving metric-independence of hk
δ̄
= hk

δ+δ̄
. For bigraded invariants, the only

number of which we do not know metric-independence is h0,1
δ̄
. Let α ∈ H0,1

δ̄
. Since

H0,1

δ̄
= H0,1

∂̄
∩ kerµ,

the only non-trivial differential is ∂α = δα. We show that actually δα = 0. This
gives the equality h0,1

δ̄
= h0,1d , hence the metric-independence by Corollary 5.9 in

[31]. The norm of δα is

∥δα∥2 =
∫
M

δα ∧ ∗δα =

∫
M

(δ + δ̄)α ∧ ∗(δ + δ̄)ᾱ =

∫
M

dα ∧ ∗dᾱ.

The form dᾱ is a primitive (1, 1)-form, hence anti-self-dual, since dᾱ = ∂̄ᾱ and

ω ∧ ∂̄ᾱ = ∂̄(ω ∧ ᾱ) = ∂̄ ∗ ᾱ = ∂ ∗ α = 0
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by the vanishing of the differentials on α. By Stokes’s theorem, we conclude that

∥δα∥2 =
∫
M

dα ∧ ∗dᾱ =

∫
M

dα ∧ ∗dᾱ = 0.

This proves the situation described in the diagrams (4.2.4) and (4.2.5). The
dependence on the metric of the spaces of graded harmonic forms follows by the
direct sum decompositions of equation (4.2.6) and of Theorem 4.2.4.

Dependence on the metric of the numbers hp,qd , hkd+dc and hp,qd+dc
The numbers hp,qd and hp,qd+dc are symmetric in p and q, while hp,qd satisfy the addi-

tional symmetry hp,qd = hm−p,m−q
d .

Theorem 4.2.7. Dependence on the metric of the numbers hp,qd is described by the
diagram

1 ,
h1,0d h0,1d

h2,0d h1,1d h0,2d , ,
h2,1d h1,2d

1 ,

(4.2.12)

Dependence on the metric of the numbers hp,qd+dc is described by the diagram

1 ,
h1,0d+dc h0,1d+dc , ,

h2,0d+dc h1,1d+dc h0,2d+dc , , ,
h2,1d+dc h1,2d+dc ! !

1 ,

(4.2.13)

Dependence on the metric of the numbers hkd+dc is described by the table

k 0 1 2 3 4

hkd+dc , , , ! ,

In degree 1, the numbers h1,0d+dc and h
0,1
d+dc do not depend on the choice of metric

for degree reasons and the action of d and dc induces a bigraded decomposition
of the space H1

d+dc into bigraded forms, that gives h1,0d+dc = h1,0d+dc = 1
2
h1d+dc . By

Theorem 4.1 in [51], the numbers h1,0d and h0,1d depend on the choice of metric and
by Corollary 5.9 in [31], they do not depend on the choice of almost Kähler metric.

In degree 2, the numbers h2,0d and h0,2d do not depend on the choice of metric
by Lemma 4.2.5. Let α ∈ H2,0

d . Then dα = 0. Since α is anti-self-dual, we have
that

(ddc)∗α = ∗dcd ∗ α = ∗dcdα = 0.
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Thus, there are equalities of spaces

H2,0
d+dc = A2,0 ∩ ker d = H2,0

d ,

which imply metric-independence for the numbers h2,0d+dc and h0,2d+dc . To show that
also h2d+dc is metric-independent, we establish a decomposition for H2

d+dc . Consider
the decomposition of ω with respect to the Hodge Laplacian

ω = h(ω) + dη + d∗µ, (4.2.14)

where h(ω) is d-harmonic, η ∈ A1 and µ ∈ A3. Define the 2-form γ0 as

γ0 := −d ∗ µ− d∗µ. (4.2.15)

Note that we have

∗γ0 = − ∗ d ∗ µ+ ∗2d ∗ µ = d∗µ+ d ∗ µ = −γ0, (4.2.16)

hence γ0 is anti-self-dual. Since anti-self-dual forms have necessarily bidegree (1, 1),
we also have that

Jγ0 = γ0. (4.2.17)

Theorem 4.2.8. Let (M,J, ω̃, g̃) be a compact almost Hermitian 4-manifold and
let (ω, g) be a Gauduchon metric in the same conformal class of (ω̃, g̃). Then

H2
d+dc = C⟨ω + γ0⟩ ⊕ H−

g ⊕H(2,0)(0,2)
J .

In particular, h2d+dc = b− + 1 + h−J and it is metric independent.

Proof. Let g be a metric in the same conformal class of g̃. If α ∈ A2, then ∗gα =
∗g̃α. As a consequence, the space H2

d+dc is invariant under conformal changes of
metric. In each conformal class of metric there always exists a Gauduchon metric
[40], i.e., a metric for which ddcω = dcdω = 0. Therefore, we assume that g is a
Gauduchon metric in the same conformal class of g̃.

We first prove the inclusion C⟨ω + γ0⟩ ⊕ H−
g ⊕ H(2,0)(0,2)

J ⊆ H2
d+dc . The form

ω + γ0 is d-closed since

d(ω + γ0) = d(h(ω) + dη − d ∗ µ) = 0,

it is dc-closed by (4.2.17) and it is (ddc)∗-closed by (4.2.16) and because the metric

is Gauduchon. Forms in H−
g ⊕ H(2,0)(0,2)

J are necessarily (d + dc)-harmonic since
they are d-harmonic and have bidegree either (1, 1) or (2, 0) + (0, 2).
We now prove the opposite inclusion. Let α ∈ H2

d+dc . Write α using the Lefschetz
and bidegree decomposition as

α = fω + γ1,1 + γ(2,0)(0,2),
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with γ1,1 and γ(2,0)(0,2) primitive forms and f ∈ C∞(M). Since dα = 0 and dcα = 0,
we have that

d(fω + γ1,1) = 0 (4.2.18)

and
dγ(2,0)(0,2) = 0. (4.2.19)

The form γ(2,0)(0,2) is d-closed and primitive, thus d-harmonic, which implies that
γ(2,0)(0,2) ∈ H(2,0)(0,2)

J . On the other side, we have that

0 = (ddc)∗α = − ∗ dcd ∗ (fω + γ1,1 + γ(2,0)(0,2)) =

= − ∗ dcd(fω − γ1,1 + γ(2,0)(0,2)) =

= −2 ∗ dcd(fω),

where in the last equality we used (4.2.18) and (4.2.19). Since the metric is Gaudu-
chon, we have that

0 = dcd(fω) = dcdf ∧ ω − df ∧ dcω + dcf ∧ dω.

Consider the real operator P : C∞(M) ! C∞(M) given by

P (f) := ∗(dcdf ∧ ω − df ∧ dcω + dcf ∧ dω).

By the same argument of the proof of Theorem 4.3 in [78], P is strongly elliptic,
thus f must be constant. Consider the form

β1,1 := γ1,1 − fγ0.

The form β1,1 is anti-self-dual by (4.2.16), and it is also d-closed by (4.2.14),
(4.2.15) and (4.2.18). Therefore, it is d-harmonic and β1,1 ∈ H−

g . The claim
follows writing α as

α = f(ω + γ0) + β1,1 + γ(2,0)(0,2),

with f constant, β1,1 ∈ H−
g and γ(2,0)(0,2) ∈ H(2,0)(0,2)

J .

The space H1,1
d+dc coincides with the (1, 1)-bidegree part of the decomposition of

Theorem 4.2.8, hence h1,1d+dc = b− + 1 and it is metric-independent. For the space

H1,1
d , by Theorem 5.7 in [31] or by [53], the dimension h1,1d is independent of the

choice of almost Kähler metric since it coincides with h1,1
∂̄
. However, in general it

depends on the conformal class of metric. This is the content of Theorem 3.1 in
[48], of which we give now an alternative proof.

Theorem 4.2.9. Let (M,J) be a compact almost complex 4-manifold. Let g be a
J-compatible metric. Then

h1,1d =

{
b− + 1 if g is conformally almost Kähler,

b− otherwise.
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Proof. The spacesH1,1
d andH1,1

d+dc are invariant under conformal changes of metric.

Hence, we can suppose that g is a Gauduchon metric. Let α ∈ H1,1
d . From the

equations dα = 0 and d ∗ α = 0, we have that dcd ∗ α = 0, which shows the
inclusion H1,1

d ⊆ H1,1
d+dc . By the decomposition of Theorem 4.2.8, we have the

chain of inclusions
H1,1
d ⊆ H1,1

d+dc = H−
g ⊕ C⟨ω + γ0⟩.

Suppose that h1,1d = b−+1. Then there is an equality of vector spacesH1,1
d = H1,1

d+dc

by dimensional reasons. In particular, the form ω + γ0 is d-closed and d∗-closed.
By (4.2.16), we have

d(ω + γ0) = 0 and d(ω − γ0) = 0,

which implies that dω = 0 and that the Gauduchon metric is actually almost
Kähler. Conversely, if g is conformally equivalent to an almost Kähler metric,
then the almost Kähler metric and the Gauduchon metric in the conformal class
of g coincide by uniqueness of the Gauduchon metric [40]. In this case, the form
ω + γ0 is d-harmonic and H1,1

d+dc = H1,1
d since H−

g is trivially contained in H1,1
d .

This gives the equality h1,1d = h1,1d+dc = b− + 1.

This proves the situation described in diagram (4.2.12). In degree 3, there
is no general result for the numbers h2,1d+dc , h

1,2
d+dc and h3d+dc . Nevertheless, if the

metric is almost Kähler they are all metric-independent. The result for h3d+dc is
a consequence of Corollary 4.3.4, that gives the equality h3d+dc = b1. In bidegrees
(2, 1) and (1, 2), it is a consequence of the following lemma.

Lemma 4.2.10. Let (M,J) be a compact almost complex 4-manifold. For any
choice of J-compatible almost Kähler metric there is an isomorphism

H2,1
d+dc

∼= H1,0

∂̄
.

In particular, the numbers h2,1d+dc and h1,2d+dc do not depend on the choice of almost
Kähler metric.

Proof. The isomorphism betweenH2,1
d+dc andH1,0

∂̄
is given by the Hodge ∗ operator.

Let α1,0 ∈ H1,0

∂̄
. By the proof of Corollary 5.9 in [31], we have that dα1,0 = 0. Up

to a constant, the Hodge ∗ acts as wedge product by ω. Thus we have

d ∗ α1,0 = d(ω ∧ α1,0) = ω ∧ dα1,0 = 0.

Clearly, we have that dc ∗ α1,0 = 0, while

dcd ∗ (∗α1,0) = dcdα1,0 = 0.
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This proves the inclusion ∗H1,0

∂̄
⊆ H2,1

d+dc . For the opposite inclusion, let α2,1 ∈
H2,1
d+dc . The action of the Hodge ∗ send α2,1 to α1,0, with α2,1 = ω∧α1,0. From the

equation
0 = dα2,1 = d(ω ∧ α1,0) = ω ∧ ∂̄α1,0,

we see that ∂̄α1,0 is primitive, hence it is anti-self-dual. From the equation dcd ∗
α2,1 = 0, we see that

0 = dJdα1,0 = 2(∂∂̄ + ∂̄2)α1,0.

Taking only the term in bidegree (2, 1) and using anti-self-duality of ∂̄α1,0, we
conclude that

0 = ∗∂∂̄α1,0 = − ∗ ∂ ∗ ∂̄α1,0 = ∂̄∗∂̄α1,0,

so that ∂̄α1,0 = 0 and α1,0 ∈ H1,0

∂̄
.

With this we have shown the situation described in diagram (4.2.13). The
claim for hkd+dc follows easily.

We conclude this paragraph with an alternative proof of the fact that, on almost
Kähler 4-manifolds, there is an equality H1,0

∂̄
= H1,0

d . The original proof is due to
Cirici and Wilson [31], see also Lemma 4.1 in [61].

Lemma 4.2.11. Let (M,J) be a compact almost complex 4-manifold endowed with
an almost Kähler metric. Then

A1,0 ∩ ker ∂̄ ⊆ A1,0 ∩ ker d ∩ ker d∗.

Proof. Note that a (1, 0)-form α is d-harmonic if and only if ∂̄α = ∂α = µ̄α =
∂∗α = 0. Indeed, the remaining equations are automatically satisfied by bidegree
reasons. Suppose that ∂̄α = 0. We have to prove that ∂α = µ̄α = ∂∗α = 0.
Observe that ∂α has bidegree (2, 0), while µ̄α has bidegree (0, 2). Hence δα = 0 if
and only if ∂α = 0 and µ̄α = 0. We have that

∥δα∥2 =
∫
M

δα ∧ ∗δα =

∫
M

(δ + δ̄)α ∧ ∗(δ + δ̄)ᾱ =

∫
M

dα ∧ ∗dᾱ,

where in the second equality we used the fact that δ̄α = ∂̄α = 0. Since dᾱ =
∂̄ᾱ+ µᾱ has bidegree (2, 0) + (0, 2) for any choice of almost Hermitian metric, dᾱ
is necessarily a self-dual form, and we have

∥δα∥2 =
∫
M

dα ∧ ∗dᾱ =

∫
M

dα ∧ dᾱ =

∫
M

d(α ∧ dᾱ) = 0,

by Stokes’ theorem, showing that ∂α = µ̄α = 0. For the last equation, we have
that

∂∗α = − ∗ ∂̄ ∗ α = i ∗ ∂̄(ω ∧ α),
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where ω is the fundamental form of the almost Kähler metric. Finally, we compute
that

∂̄(ω ∧ α) = ∂̄ω ∧ α + ω ∧ ∂̄α = 0,

completing the proof of the lemma. Note that this last equation is the only instance
in the proof where we use that the metric is almost Kähler.

Dependence on the metric of the numbers hkd+dΛ
On almost Hermitian 4-manifolds, the problem of metric-independence for the
numbers hkd+dΛ reduces to computing the spaces of (d + dΛ)-harmonic primitive
forms. Clearly, we have h0d+dΛ = h4d+dΛ = 1. Every 1-form is primitive, and we
have the following proposition valid in arbitrary dimension.

Proposition 4.2.12. Let (M,J, ω, g) be a compact almost Hermitian 2m-manifold.
Then there is an inclusion H1

d+dΛ ⊆ H1
d. If dω = 0, then H1

d+dΛ = H1
d.

Proof. Let α ∈ H1
d+dΛ . Then α is d-closed and (ddΛ)∗-closed. From the equation

(ddΛ)∗α = 0, we have that

0 = dJ ∗ d ∗ α = −dJd∗α = −dd∗α,

since J acts trivially on functions. Therefore, we have that d∗α = 0 and that α
is d-harmonic. If dω = 0, the opposite inclusion also holds. Indeed, let α ∈ H1

d.
Then we immediately have dα = 0 and (ddΛ)∗α = dcd∗α = 0. Moreover, since
dω = 0, we also have dΛα = (dΛ − Λd)α = 0 since α is d-closed and has degree
1.

Remark 4.2.13. The equality h1d+dΛ = b1 on symplectic manifolds is a well-known
fact, see Lemma 2.7 in [13].

In degree 2, there is a decomposition between primitive forms and multiples of
the fundamental form ω.

Theorem 4.2.14. Let (M,J, ω, g) be a compact almost Hermitian 4-manifold and
let PH2

d+dΛ be the space of (d+ dΛ)-harmonic primitive 2-forms. Then

H2
d+dΛ =

{
C⟨ω⟩ ⊕ PH2

d+dΛ if dω = 0,

PH2
d+dΛ if dω ̸= 0.

Proof. The inclusions C⟨ω⟩ ⊕ PH2
d+dΛ ⊆ H2

d+dΛ and PH2
d+dΛ ⊆ H2

d+dΛ are imme-
diate. For the opposite inclusions, let α ∈ H2

d+dΛ and let

α = fω + γ1,1 + γ(2,0)(0,2)
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be its Lefschetz and bidegree decomposition. Since α is d-closed and dΛ-closed, we
have that

0 = dJ ∗ α = d(fω − γ1,1 − γ(2,0)(0,2)) = d(2fω − α) = 2d(fω). (4.2.20)

Thus, we have ddc(fω) = dcd(fω) = 0 and, with the same argument of the proof
of Theorem 4.2.8, we deduce that f is constant. Since fω is d-closed, dΛ closed
and self-dual, it is also (d+ dΛ)-harmonic. In particular, the form γ1,1 + γ(2,0)(0,2)

is primitive and (d+ dΛ)-harmonic. If dω = 0, we obtain that

H2
d+dΛ = C⟨ω⟩ ⊕ PH2

d+dΛ ,

proving the first part of the theorem. For the second part, by (4.2.20) we have
that

0 = d(fω) = fdω,

with f constant. In particular, if dω ̸= 0, then f = 0.

4.3 Relations among spaces of harmonic forms

In this section we prove general inclusions or equalities among the spaces of har-
monic forms introduced in Section 4.1 that will be used in Section 4.5 and Chapter
5 for explicit computations. Sometimes we require additional assumptions on the
integrability of the involved structures.

We begin with a series of equalities whose proof follows easily from the explicit
description of the spaces of harmonic forms.

Proposition 4.3.1. Let (M,J, ω, g) be a compact almost Hermitian 2m-manifold.
Then there are equalities of spaces

Hk
d ∩Hk

dc = Hk
δ ∩Hk

δ̄ , Hk
d+dc ∩Hk

δ+δ̄ = Hk
dc+d ∩Hk

δ+δ̄

and

Hk
ddc ∩Hk

δδ̄ = Hk
dcd ∩Hk

δδ̄.

We now establish a series of inclusions of spaces of harmonic forms.

Theorem 4.3.2. Let (M,J, ω, g) be a compact almost Kähler 2m-manifold. Then
there is an injection

Hk
d+dc ↪−! Hk

d+dΛ .

In particular, we have that hkd+dc ≤ hkd+dΛ.
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Proof. Let α ∈ Hk
d+dc . Since α is d-closed, dc-closed and (ddc)∗-closed, we have

that
0 = (dcd)∗(Jα) = d∗dΛ(Jα) = d∗(dΛ− Λd)(Jα) = d∗d(ΛJα),

which implies dΛ(Jα) = dΛ(Jα) = 0. Furthermore, we also have d(Jα) = 0. In
particular, the form Jα is both d-closed and dΛ-closed, and it defines a symplectic
cohomology class [Jα]d+dΛ ∈ Hk

d+dΛ . Taking the (d+ dΛ)-harmonic representative

of [Jα]d+dΛ , we have a well-defined map Hk
d+dc ! Hk

d+dΛ . The map is injective

because if Jα = dΛdβ for some β ∈ Ak, then

0 = −Jdα = dc(Jα) = (dΛ)∗dΛdβ,

giving Jα = dΛdβ = 0.

The opposite inclusion in general does not hold. For instance, one can endow
the Kodaira–Thurston manifold with an almost Kähler structure such that h1d+dc =
2 and h1d+dΛ = b1 = 3, see Proposition 4.5.1. Nevertheless, we can prove the
opposite inclusion on (2m− 1)-forms.

Theorem 4.3.3. Let (M,J, g, ω) be a compact almost Hermitian 2m-manifold.
Then we have

H2m−1
dΛ+d

⊆ H2m−1
dc+d .

If in addition dω = 0, then H2m−1
d+dΛ

= H2m−1
dΛ+d

= H2m−1
d+dc .

Proof. Let α ∈ H2m−1
dΛ+d

. Since α is (dΛd)∗-closed, we have that

0 = d∗J−1dJα = d∗dJα,

where we used the fact that J acts trivially on top-forms. Hence, we conclude
that dcα = 0. By the equation dΛα = 0, we have that dJ ∗ α = 0. Thus Jα is
(d+ dc)-harmonic, since

(ddc)∗Jα = dΛd∗Jα = 0,

so that α is (dc + d)-harmonic. This proves the inclusion H2m−1
dΛ+d

⊆ H2m−1
dc+d . If

dω = 0, by Theorem 4.3.2 we have that

H2m−1
dΛ+d

⊆ H2m−1
dc+d

∼= H2m−1
d+dc ↪−! H2m−1

d+dΛ
= H2m−1

dΛ+d
,

giving the equality of the spaces and concluding the proof.

Corollary 4.3.4. Let (M,J, ω, g) be a compact almost Hermitian 2m-manifold.
Then we have h1d+dΛ ≤ h2m−1

d+dc . If dω = 0, then we have h2m−1
d+dc = b1.



100 CHAPTER 4. HARMONIC FORMS

Proposition 4.3.5. Let (M,J, g, ω) be a compact almost Kähler 4-manifold. Then
we have

H2
d+dc ⊆ H2

d+dΛ .

The inclusion can be strict.

Proof. Let α ∈ H2
d+dc . Using the decomposition of Theorem 4.2.8, we can write

α = c ω + γ1,1 + α2,0 + α0,2,

with c constant, γ1,1 primitive and anti-self-dual and α2,0 + α0,2 primitive and
self-dual. Then we have

dΛα = (dΛ− Λd)α = dc = 0

and

ddΛ ∗ α = ddΛ(cω − γ1,1 + α2,0 + α0,2) = ddΛ(α− 2γ1,1) = −2ddΛγ1,1 = 0,

so that α ∈ H2
d+dΛ . For the second part of the proposition, we give an explicit

example. On the Kodaira–Thurston manifold endowed with the almost Kähler
structure of Section 4.5, we have that h1d+dc = 2 and h2d+dc = 4, while h1d+dΛ = 3
and h2d+dΛ = 5, see Example 3.4 in [100].

Theorem 4.3.6. Let (M,J, ω, g) be a compact almost Kähler 2m-manifold. Sup-
pose that we have Hk

dc ⊆ Hk
d+dc for some k. Then Hk

d+dc = Hk
d and hkd+dc = bk.

Proof. Let α ∈ Hk
d+dc and let

α = hdc(α) + dcη + (dc)∗γ

be its Hodge decomposition with respect to ∆dc . Since α is dc-closed, we have that
(dc)∗γ = 0. The form

dcη = α− hdc(α)

is (d + dc)-harmonic because it is the difference of two harmonic forms by the
assumption on Hk

dc . From the equation (ddc)∗α = 0, we deduce that

(dc)∗d∗dcη = (dc)∗d∗(α− hdc(α)) = 0.

By (1.2.15) and dω = 0, we have that

0 = (dc)∗d∗dcη = dΛd∗(dΛ)∗η = −dΛ(dΛ)∗d∗η,

which implies ⟨dΛ(dΛ)∗d∗η, d∗η⟩ = 0. Therefore (dΛ)∗d∗η = −d∗(dΛ)∗η = 0. Fi-
nally, we have that dα = 0 since α ∈ Hk

d+dΛ and that d∗α = d∗(dΛ)∗η = 0. This

gives α ∈ Hk
d and Hk

d+dc ⊆ Hk
d. To conclude, observe that

Hk
d+dc ⊆ Hk

d
∼= Hk

dc ⊆ Hk
d+dc ,

which gives the equality of the spaces.
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We also have a Hermitian counterpart of Theorem 4.3.6 that allows to explicitly
compute the numbers hkd+dΛ when J is integrable.

Theorem 4.3.7. Let (M,J, ω, g) be a compact Hermitian 2m-manifold. Suppose
that we have Hk

dΛ ⊆ Hk
d+dΛ for some k. Then Hk

d+dΛ = Hk
d and hkd+dΛ = bk.

Proof. The proof follows closely that of Theorem 4.3.6, replacing dc by (dc)∗. Let
α ∈ Hk

d+dΛ and let

α = hdΛ(α) + dΛη + (dΛ)∗γ

be its Hodge decomposition with respect to ∆dΛ . Since α is dΛ-closed, we have
(dΛ)∗γ = 0. From the equation (ddΛ)∗α = 0, we deduce that

dcd∗dΛη = dcd∗(α− hdΛ(α)) = 0.

By (1.2.15) and integrability of J , we have

0 = dcd∗dΛη = dcd∗(dc)∗η = −dc(dc)∗d∗η,

which implies (dc)∗d∗η = −d∗(dc)∗η = 0. Since dα = 0, d∗α = d∗(dc)∗η = 0 and

Hk
d+dΛ ⊆ Hk

d
∼= Hk

dΛ ⊆ Hk
d+dΛ ,

the theorem is proved.

We conclude this section with a decomposition for H3
δ+δ̄

valid on almost Her-
mitian 4-manifolds.

Lemma 4.3.8. Let (M,J) be a compact almost complex 4-manifold. Then for
every choice of J-compatible Hermitian metric we have that

H3
δ+δ̄ = H2,1

∂+∂̄
⊕H2,1

∂+∂̄
.

Proof. Let α ∈ H2,1

∂+∂̄
. Then ∂̄α = 0 and ∂∂̄ ∗ α = 0. Observe that

δα = (∂ + µ̄)α = 0

by bidegree reasons and that

δ̄α = (∂̄ + µ)α = ∂̄α = 0

by bidegree reasons and ∂̄α = 0. By (4.2.11), we have that

δδ̄ ∗ α = (∂∂̄ + µ̄µ) ∗ α = ∂∂̄ ∗ α = 0
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since µα = 0. This shows the inclusion H2,1

∂+∂̄
⊆ H3

δ+δ̄
. Noting that the equations

δα = 0, δ̄α = 0, δδ̄ ∗ α = 0 are symmetric by complex conjugation, we also have

H2,1

∂+∂̄
⊆ H3

δ+δ̄
. For the opposite inclusion

H3
δ+δ̄ ⊆ H2,1

∂+∂̄
⊕H2,1

∂+∂̄
,

let α ∈ H3
δ+δ̄

. Write α as the sum of bigraded forms α = α2,1 + α1,2. By bidegree
reasons and the equation δα = 0, we have

0 = δα = (∂ + µ̄)(α2,1 + α1,2) = ∂α1,2.

Similarly, from the equation δ̄α = 0, we deduce that ∂̄α2,1 = 0. Finally, from the
equation δδ̄ ∗ α = 0, we get

0 = δδ̄ ∗ α = (∂∂̄ + µ̄µ) ∗ (α2,1 + α1,2).

Since δδ̄ has bidegree (1, 1), we can separate the bidegrees to get two equations{
∂∂̄ + µ̄µ ∗ α2,1 = 0,

∂∂̄ + µ̄µ ∗ α1,2 = 0.

Observing that µ̄µ ∗ α2,1 = 0 (for bidegree reasons), that µµ̄ ∗ α1,2 = 0 (bidegree
reasons) and that ∂∂̄ + µ̄µ = −∂̄∂ − µµ̄, all of our equations reduce to{

∂̄α2,1 = 0,

∂∂̄ ∗ α2,1 = 0,

{
∂α1,2 = 0,

∂̄∂ ∗ α1,2 = 0,

proving that α2,1 ∈ H2,1

∂+∂̄
and α1,2 ∈ H2,1

∂+∂̄
, and thus our lemma.

4.4 Relations with the cohomologies

A natural question to ask is whether or not the Bott–Chern and Aeppli cohomolo-
gies introduced in Section 3.2 are isomorphic to some space of harmonic forms.
In general, this is not the case since Proposition 4.5.2 shows that H2

d+dc might be
infinite-dimensional even on compact manifolds. However, we have an equality
between Bott–Chern cohomology and (d + dc)-harmonic forms in degrees k = 0
and k = 1, and an inclusion in other degrees. A similar result holds for Aeppli
cohomology, providing an isomorphism H1

d+dc
∼= H2m−1

ddc .

Proposition 4.4.1. Let (M,J) be a compact almost complex manifold. Then for
any choice of J-compatible metric we have

H0
d+dc = H0

d+dc = C and H1
d+dc = H1

d+dc .
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In particular, the cohomology group H1
d+dc is finite-dimensional. Furthermore,

there is an inclusion

Hk
d+dc ∪Hk

dc+d ↪−! Hk
d+dc .

Proof. The fact that H0
d+dc = H0

d+dc = C and H1
d+dc = H1

d+dc follows immediately
from the explicit expression of Bott–Chern cohomology and of (d + dc)-harmonic
forms. Let now α ∈ Hk

d+dc . Then dα = 0 and dcα = 0, so that the identity defines
a map from Hk

d+dc to Hk
d+dc . Assume that α defines the zero class in Bott–Chern

cohomology, that is α = ddcβ, with β ∈ B•. Since α is harmonic, we have that

0 = (ddc)∗α = (ddc)∗ddcβ,

and 0 = ⟨(ddc)∗ddcβ, β⟩ = ∥ddcβ∥2. This implies that α = ddcβ = 0, proving
injectivity. The same argument applies to (dc + d)-harmonic forms.

A similar statement is true for Aeppli cohomology.

Proposition 4.4.2. Let (M,J) be a compact almost complex manifold. Then for
any choice of J-compatible metric we have

H0
ddc = H0

ddc = C, H2m
ddc

∼= H2m
ddc

∼= C and H2m−1
ddc

∼= H2m−1
ddc .

In particular, the cohomology group H2m−1
ddc is finite-dimensional. Furthermore,

there is an inclusion

Hk
ddc ∪Hk

dcd ↪−! Hk
ddc .

Proof. We first prove the injectivity of

Hk
ddc ↪−! Hk

ddc .

Injectivity for Hk
dcd ↪! Hk

ddc follows with a similar proof. Let α ∈ Hk
ddc . Then

ddcα = 0, so that the projection on the quotient complex Ck defines a map from
Hk
ddc to Hk

ddc . Assume that α defines the zero class in Aeppli cohomology, that is
α = dβ + dcγ. Since α is harmonic, we have that

0 = d∗α = d∗dβ + d∗dcγ and 0 = (dc)∗α = (dc)∗dβ + (dc)∗dcγ.

As a consequence we obtain that

∥dβ∥2 + ⟨dβ, dcγ⟩ = 0 and ∥dcγ∥2 + ⟨dβ, dcγ⟩ = 0.

In particular, we have that ∥dβ + dcγ∥2 = 0, proving injectivity.
We now prove the isomorphisms in degree k ∈ {0, 2m − 1, 2m}. The statement
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for functions follows immediately from the definition. Let α ∈ A2m. Using the
harmonic decomposition for ∆ddc of Theorem 4.1.1, we have that

α = c V ol +∆ddcβ =

= c V ol + ddc(ddc)∗β + d(dc)∗dcd∗β

+ dcd∗d(dc)∗β + dd∗β + dc(dc)∗β =

= c V ol + dγ + dcη,

where γ and η are (2m−1)-forms and c is a constant. Note that a similar decompo-
sition holds also for (2m− 1)-forms since (ddc)∗ddcβ = 0 if β ∈ A2m−1. Passing to
Aeppli cohomology, we obtain the existence of harmonic representatives. Unique-
ness follows from the injectivity of Hk

ddc ↪−! Hk
ddc .

Using the isomorphism H1
d+dc

∼= H2m−1
dcd induced by the Hodge ∗ operator, we

deduce an isomorphism for Bott–Chern and Aeppli cohomologies.

Corollary 4.4.3. Let (M,J) be a compact almost complex 2m-manifold. Then
there is an isomorphism

H1
d+dc

∼= H2m−1
ddc .

4.5 Cohomologies and harmonic forms on the Kodaira–
Thurston manifold

In this section we compute the Bott–Chern and Aeppli cohomologies and the
spaces of harmonic forms for an almost Kähler structure on the Kodaira–Thurston
manifold.

Let KT be the Kodaira–Thurston manifold as defined in Section 2.3.2. Con-
sider the symplectic form

ω0 := e12 + e34,

the ω0-compatible almost complex structure J0 given in (2.3.6) and the associ-
ated metric g0. Then (KT , J0) admits a co-frame of (1, 0)-forms {ϕ1, ϕ2} with
differentials

dϕ1 = 0 and dϕ2 =
i

4
(ϕ12 − ϕ12̄ + ϕ1̄2 − ϕ1̄2̄).

Denote by {ξ1, ξ2} the dual frame of (1, 0)-vector fields. We first compute the
spaces of (d+ dc)-harmonic forms.
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Proposition 4.5.1. The spaces of (d+ dc)-harmonic forms on KT endowed with
the almost Kähler structure (J0, ω0, g0) are

H0
d+dc = C,

H1
d+dc = C⟨ϕ1, ϕ1̄⟩,

H2
d+dc = C⟨ϕ12 + ϕ1̄2̄, ϕ12̄ + ϕ1̄2, ϕ11̄, ϕ22̄⟩,

H3
d+dc = C⟨ϕ122̄, ϕ21̄2̄, ϕ121̄ + ϕ11̄2̄⟩,

H4
d+dc = C⟨ϕ121̄2̄⟩.

Proof. The claim for k ∈ {0, 4} is immediate. For k = 1, we need to establish
which 1-forms are both d-closed and dc-closed. This is equivalent to finding d-
closed (1, 0)-forms. Let α ∈ A1,0. Then

α = fϕ1 + gϕ2,

with f and g ∈ C∞(M). Writing explicitly the equation dα = 0 and separating
the bidegree of the forms, we deduce that f must be constant and g = 0, hence
we have the equality H1

d+dc = C⟨ϕ1, ϕ1̄⟩.
We now compute invariant (d+ dc)-harmonic 2-forms and we show that there

is no non-invariant (d + dc)-harmonic 2-form. Let α ∈ A2. Assume that α is
invariant. In terms of a basis of invariant 2-forms, we have

α = aϕ12 + eϕ11̄ + fϕ12̄ + gϕ1̄2 + hϕ22̄ + bϕ1̄2̄,

with a, b, e, f, g and h ∈ C. By computing separately the differential on the even
and the odd part of α, we see that the constants must satisfy a = b and f = g.
Moreover, the condition (ddc)∗α = 0 is satisfied since all invariant 3-forms are
d-closed. This gives the inclusion

C⟨ϕ12 + ϕ1̄2̄, ϕ12̄ + ϕ1̄2, ϕ11̄, ϕ22̄⟩ ⊆ H2
d+dc .

Moreover, we also have that

b2(KT ) = 4 = dimC(C⟨ϕ12 + ϕ1̄2̄, ϕ12̄ + ϕ1̄2, ϕ11̄, ϕ22̄⟩) ≤ h2d+dc ≤ b2(KT ),

by Theorem 4.2.8. This implies the equality of the spaces and that all (d + dc)-
harmonic 2-forms are invariant. Finally, we know the space of (d + dc)-harmonic
3-forms thanks to Theorem 4.3.3 and the computations of Section 3.4 in [100]
rewritten in terms of complex forms.

We now compute the almost complex Bott–Chern cohomology group H2
d+dc of

(KT , J0) and we show that it is infinite-dimensional. To compute the Bott–Chern
cohomology of 2-forms, let

α = aϕ12 + eϕ11̄ + fϕ12̄ + gϕ1̄2 + hϕ22̄ + bϕ1̄2̄,
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with a, b, e, f, g and h ∈ C∞(M), be a 2-form. Direct computations show that
α is d-closed and dc-closed if and only if there exist functions a, b, e, f, g and h
satisfying the system 

ξ2̄(a) = ξ2(b) = 0,
i
4
(a− b) + ξ1̄(a) = 0,
i
4
(a− b) + ξ1(b) = 0,

ξ1(h) = ξ2(f),

ξ1̄(h) = −ξ2̄(g),
i
4
(f − g)− ξ2(e)− ξ1(g) = 0
i
4
(f − g) + ξ2̄(e)− ξ1̄(f) = 0.

(∗)

Separating the bidegree, we introduce the spaces

H := {aϕ12 + bϕ1̄2̄ : (∗) holds }

and
I := {eϕ11̄ + fϕ12̄ + gϕ1̄2 + hϕ22̄ : (∗) holds }

Thus, we can describe the Bott–Chern cohomology.

Proposition 4.5.2. The second Bott–Chern cohomology group of KT endowed
with the almost complex structure (2.3.6) is

H2
d+dc

∼= H⊕ I
M

,

where
M = {ξ1ξ1̄(θ)ϕ11̄ : θ ∈ C∞(M) and ξ2(θ) = ξ2̄(θ) = 0}.

In particular, the space H2
d+dc is infinite-dimensional.

Observe that the splitting of H2
d+dc as the sum of the space H and the quotient

I/M corresponds to the splitting of Bott–Chern cohomology into even and odd
part of Corollary 3.5.7.

Proof. The space of d-closed and dc-closed 2-forms is given by

H⊕ I.

To compute Bott–Chern cohomology, we have to quotient by ddcθ, where θ ∈
C∞(M) is such that (ddc + dcd)θ = 0. By (1.2.10), the function θ must be ∂2-
closed and ∂̄2-closed. From the first condition, we have that

0 = ∂2θ = (ξ1ξ2(θ)− ξ2ξ1(θ) +
i

4
ξ2(θ))ϕ

12 = − i

4
ξ2̄(θ)ϕ

12,
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where the last equality follows from the commutator relation

[ξ1, ξ2] = − i

4
(ξ2 + ξ2̄).

This implies that ξ2̄(θ) = 0. Similarly, we have that ξ2(θ) = 0. Finally, since
(ddc + dcd)θ = 0, we can compute

ddcθ = 2iξ1ξ1̄(θ)ϕ
11̄,

showing that we have to quotient by M. To show that H2
d+dc contains an infinite-

dimensional subspace, consider

S := {hϕ22̄ : ξ1(h) = 0 and ξ1̄(h) = 0}.

Clearly S ⊂ H2
d+dc and it is infinite-dimensional because it strictly contains the

family of functions {cos(2πny)}n∈N.





CHAPTER 5

Almost complex and topological invariants

In this chapter we discuss the relations between the almost complex invariants
defined in Chapter 4 and the topological invariants of the underlying manifold. The
classical theory of compact complex surfaces shows that their Hodge and Bott–
Chern numbers depend only on topological invariants. Motivated by this, we find
an explicit expression for Bott–Chern numbers in terms of topological constants.
The study of the dependence on the topology for almost Kähler invariants on 4-
manifolds inspires a conjecture on the generic vanishing of h1d+dc , which we are
able to prove in high dimension.

5.1 Bott–Chern diamond of compact complex sur-
faces

The goal of this section is to compute Bott–Chern numbers of compact complex
surfaces and to show that they depend only on the topology of the underlying
manifold. More precisely, they do not depend on the choice of complex structure,
but only on the numbers b1, b

+ and b−. This is a result that was already implicitly
contained in the work of Teleman [97], see also [92].

Let (M,J) be a compact complex surface without boundary. We are interested
in the following invariants, see also Section 1.3.1:

• the Betti numbers bk, for k = 0, . . . , 4. Since M is an oriented closed mani-

109
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fold, its Betti numbers reduce to

k 0 1 2 3 4
bk 1 b1 b2 b1 1

• the Hodge numbers hp,q
∂̄
, for p, q = 0, 1, 2, that can be arranged in the so

called Hodge diamond

h0,0
∂̄

h1,0
∂̄

h0,1
∂̄

h2,0
∂̄

h1,1
∂̄

h0,2
∂̄

h2,1
∂̄

h1,2
∂̄

h2,2
∂̄

• the Bott–Chern and Aeppli numbers hp,qBC and hp,qA , for p, q = 0, 1, 2. By
duality between Bott–Chern and Aeppli cohomologies, we have that hp,qBC =
hm−p,m−q
A for all p and q. Thus, knowing Bott–Chern numbers completely

determines Aeppli numbers. We arrange Bott–Chern numbers in the Bott–
Chern diamond

h0,0BC
h1,0BC h0,1BC

h2,0BC h1,1BC h0,2BC
h2,1BC h1,2BC

h2,2BC

It is a well-known fact that, while a priori Hodge numbers depend on the choice
of complex structure, for compact complex surfaces they actually depend only on
the first Betti number b1 and on the positive and negative self-intersection numbers
b+ and b−, with b+ + b− = b2. For the sake of completeness, we give here a precise
statement, whose proof follows from Theorems 2.7 and 2.14 of Chapter 4 in [10].

Theorem 5.1.1. Let (M,J) be a compact complex surface. If b1 is even, then the
Hodge diamond of (M,J) is

1
b1
2

b1
2

b+−1
2

b− + 1 b+−1
2

b1
2

b1
2

1
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If b1 is odd, then the Hodge diamond of (M,J) is

1
b1−1
2

b1+1
2

b+

2
b− b+

2
b1+1
2

b1−1
2

1

Corollary 5.1.2. Hodge numbers of compact complex surfaces depend only on the
topology of the underlying manifold.

We state and prove a similar result valid for Bott–Chern numbers.

Theorem 5.1.3. Let (M,J) be a compact complex surface. If b1 is even, then the
Bott–Chern diamond of (M,J) is

1
b1
2

b1
2

b+−1
2

b− + 1 b+−1
2

b1
2

b1
2

1

If b1 is odd, then the Bott–Chern diamond of (M,J) is

1
b1−1
2

b1−1
2

b+

2
b− + 1 b+

2
b1+1
2

b1+1
2

1

Proof. As we observed for general spaces of harmonic forms, we have h0,0BC = h2,2BC =
1 for every compact complex surface. By [97], see also [3] and [7], on compact
complex surfaces we have that

h1,0BC + h0,1BC + h2,1BC + h1,2BC = 2b1 (5.1.1)

and that

h2,0BC + h1,1BC + h0,2BC =

{
b2 if b1 is even,

b2 + 1 if b1 is odd.
(5.1.2)

Since Bott–Chern numbers are symmetric in p and q, we can simplify (5.1.1) and
(5.1.2) to get

h1,0BC + h2,1BC = b1 (5.1.3)
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and

2h2,0BC + h1,1BC =

{
b2 if b1 is even,

b2 + 1 if b1 is odd.
(5.1.4)

If b1 is even, then (M,J) admits a Kähler metric, see [22] or [59]. Since the numbers
hp,qBC are independent of the choice of metric, it is enough to compute them for
a Kähler metric. On Kähler manifolds, there is an isomorphism Hp,q

BC
∼= Hp,q

∂̄
.

Therefore the Bott–Chern diamond of compact complex surfaces with b1 even
coincides with their Hodge diamond given in Theorem 5.1.1.

Suppose now that b1 is odd. For any choice of metric g, we have H1,0
BC = H1,0

∂̄
.

Indeed, writing explicitly the spaces of harmonic forms, we have that

H1,0
BC = A1,0 ∩ ker ∂ ∩ ker ∂̄ and H1,0

∂̄
= A1,0 ∩ ker ∂̄.

By Lemma 2.1 of Chapter 4 in [10], every holomorphic form on a compact complex
surface is d-closed, thus A1,0 ∩ ker ∂̄ = A1,0 ∩ ker ∂ ∩ ker ∂̄, giving the equality of
the two spaces, and allowing to deduce that

h1,0BC = h0,1BC = h1,0
∂̄

=
b1 − 1

2
.

By (5.1.3), we also obtain

h2,1BC = h1,2BC =
b1 + 1

2
.

The number h1,1BC can be computed either using Lemma 2.3 in [97], using Theorem
4.2.8 applied to an integrable J together with Lemma 3.2.8, or applying Theorem
4.2 in [48], since in the complex case d and dc or ∂ and ∂̄ are interchangeable in the
definition of Bott–Chern cohomology. It turns out that, for Bott–Chern numbers,
we have

h1,1BC = b− + 1. (5.1.5)

Finally, by (5.1.4) and (5.1.5), we have

h2,0BC = h0,2BC =
b+

2
,

concluding the proof.

Note that one has h1,1BC = b− + 1 independently of the parity of b1, in contrast
to what happens for h1,1

∂̄
.

Corollary 5.1.4. Bott–Chern and Aeppli numbers of compact complex surfaces
depend only on the topology of the underlying manifold.
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5.2 The numbers hkd+dc and hk
d+dΛ

of invariant com-

patible triples

In this section we determine the numbers hkd+dc and hkd+dΛ of compact complex
surfaces that are diffeomorphic to solvmanifolds endowed with an invariant com-
patible triple. Along the way, we establish results valid more in general for compact
quotients of Lie groups by a lattice. For a short description of compact quotients
of Lie groups, we refer to Section 1.5.

The main result of this section is the following:

Theorem 5.2.1. Let M be a 4-dimensional solvmanifold endowed with an invari-
ant compatible triple (J, ω, g) with integrable J . Then the numbers hkd+dc and h

k
d+dΛ

are independent of the choice of invariant compatible triple.

The proof of Theorem 5.2.1 follows from several lemmas that are valid in a
slightly more general setting and that will be useful later for explicit computa-
tions, see Example 5.2.5. As a consequence of the proof, we will also compute the
numbers hkd+dc and h

k
d+dΛ of compact complex surfaces diffeomorphic to solvmani-

folds. The resulting numbers are summarized in Tables 5.1 and 5.2.
We begin by taking care of 1-forms.

Lemma 5.2.2. Let M = Γ\G be a compact quotient of a Lie group by a lattice
endowed with an invariant almost symplectic structure ω. Then h1d+dΛ = b1 and it
is metric-independent.

Proof. Fix a compatible metric g. The inequality h1d+dΛ ≤ b1 holds for arbitrary
almost Hermitian manifolds. For the opposite inequality, let α ∈ H1

d be a d-
harmonic 1-form. Then dα = 0 and (ddΛ)∗α = dcd∗α = 0 for any choice of
compatible metric. Since ω is invariant, the 3-form ∗sα is invariant, thus it is
d-closed and we have dΛα = 0.

The following lemma allows us to deal with the space H3
d+dΛ .

Lemma 5.2.3. Let (M,J, ω, g) be a compact Hermitian 2m-manifold. Suppose
that for every γ ∈ H1

ddc we have that

(dc)∗d∗dγ = 0.

Then, we have H2m−1
d+dΛ

= H2m−1
d+dc ∩ ker∆d+dΛ and h2m−1

d+dΛ
≤ h2m−1

d+dc .

Proof. By the isomorphism H2m−1
d+dΛ

∼= H1
dΛd induced by ∗s, it is enough to compute

dΛd-harmonic 1-forms. Let {γ1, . . . , γt} be a basis of H1
d+dc , let α ∈ H1

dΛd and let

α =
t∑

j=1

Ajγj + (ddc)∗β + df + dcg



114 CHAPTER 5. ALMOST COMPLEX AND TOPOLOGICAL INVARIANTS

be the harmonic decomposition of α with respect to ∆ddc , with Aj ∈ C, f and
g ∈ C∞(M) and β ∈ A3. Since (dΛ)∗α = dcα = 0 and γj ∈ H1

ddc , we have

0 = ddcα = ddc(ddc)∗β,

obtaining (ddc)∗β = 0. On the other side, we have that

0 = dΛdα =
t∑

j=1

Aj(d
c)∗dγj + (dc)∗ddcg.

Taking the inner product with dg and using the assumption (dc)∗d∗dγj = 0, we
can write

0 =
t∑

j=1

Aj⟨(dc)∗d∗dγj, g⟩+ ⟨ddcg, dcdg⟩ = −∥ddcg∥2,

which implies that g is constant. Finally, from

0 = d∗α = d∗df

we deduce that f is constant, that α =
∑

j Ajγj ∈ H1
ddc and that H1

dΛd can be

computed as H1
ddc ∩ ker∆dΛd.

Proposition 5.2.4. Let M = Γ\G be a 4-dimensional compact quotient of a Lie
group by a lattice and let (J, ω, g) be an invariant compatible triple on M with J
integrable. Then we have

H3
d+dΛ = H2,1

d ∪H1,2
d .

Proof. Since the compatible triple is invariant, any 1-form γ automatically satisfies
the equation (dc)∗d∗dγ = 0. By Lemma 5.2.3, we have that

H3
d+dΛ

∼= H1
dΛd = H1

ddc ∩ ker∆dΛd = A1 ∩ ker∆ddc ∩ ker∆dΛd.

Let γ ∈ A1∩ker∆ddc ∩ker∆dΛd. Since ∆ddcγ = 0 and ∆dΛdγ = 0, the form γ must
satisfy the equations

dcγ = 0, d∗γ = 0, (dc)∗γ = 0, dcdγ = 0 and dΛdγ = 0.

We show that dγ = 0. Let

dγ = fω + β1,1 + β(2,0)(0,2) (5.2.1)

be the Lefschetz and bidegree decomposition of dγ, with β1,1 and β(2,0)(0,2) primitive
forms and f ∈ C∞(M). From the equations

0 = d2γ = d(fω + β1,1 + β(2,0)(0,2)),

0 = dcdγ = −Jd(fω + β1,1 − β(2,0)(0,2)) and

0 = dΛdγ = − ∗s d(fω − β1,1 − β(2,0)(0,2)),
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we get d(fω) = 0, dβ1,1 = 0 and dβ(2,0)(0,2) = 0. Since each of the terms in (5.2.1)
is d-closed, we have that

d∗dγ = − ∗ d(fω − β1,1 + β(2,0)(0,2)) = 0,

which implies that dγ = 0 and that γ is both d-harmonic and dc-harmonic. As
a consequence, the (1, 0)-bidegree part and (0, 1)-bidegree part of γ are both d-
harmonic. This shows thatH1

dΛd = H1,0
d ∪H0,1

d and, after applying the isomorphism
given by the Hodge ∗, it concludes the proof of the proposition.

We are ready for the proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. LetM be a 4-dimensional solvmanifold admitting a com-
plex structure. By [45], M is one of the following:

(A) a complex torus;

(B) a hyperelliptic surface;

(C) an Inoue surface of type SM ;

(D) a primary Kodaira surface;

(E) a secondary Kodaira surface;

(F) an Inoue surface of type S±.

By Theorem 5.1.3, the numbers hkd+dc depend only on b1, b
+ and b− and not

on the choice of compatible triple (not necessarily invariant).
All invariant structures on the torus and the hyperelliptic surface (cases (A)

and (B)) are Kähler structures, therefore the numbers hkd+dΛ coincide with the
Betti numbers and they are independent of the choice of compatible triple.

Cases (C), (E) and (F) can be treated simultaneously since they have the
same Betti numbers, namely b1 = 1 and b2 = 0. By Theorem 5.1.3, we have that
h1d+dc = b1−1 = 0, that h2d+dc = b2+1 = 1 and that h3d+dc = b1+1 = 2. By Lemma
5.2.2, we have h1d+dΛ = b1 = 1. By Theorem 4.3.7 and the fact that there are no
d-harmonic 2-forms since b2 = 0, we have that h2d+dΛ = b2 = 0. By Proposition

5.2.4, we have that H3
d+dΛ = H2,1

d ∪ H1,2
d . In particular, since H2,1

d
∼= H1,2

d via
complex conjugation, the number h3d+dΛ must be even. Moreover, the intersection

of H2,1
d and H1,2

d is trivial and both spaces inject into H3
d. Thus h3d+dΛ is an even

number and satisfies h3d+dΛ ≤ b1 = 1. This shows that h3d+dΛ = 0.
Case (D) has to be treated separately, since the Betti numbers in this case are

b1 = 3 and b2 = 4. By Theorem 5.1.3, we immediately have h1d+dc = 2, h2d+dc = 5
and h1d+dc = 4. By Lemma 5.2.2, we have that h1d+dΛ = b1 = 3. By Proposition
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5.2.4, with the same reasoning as in cases (C), (E) and (F), we know that h3d+dΛ
is even and h3d+dΛ ≤ b1 = 3, so that either h3d+dΛ = 0 or h3d+dΛ = 2. We show

that h3d+dΛ = 2 by showing that there is at least one (d + dΛ)-harmonic 3-form.
Fix an invariant compatible triple (J, ω, g). By Theorem 3.1 in [81], since primary
Kodaira surfaces are nilmanifolds Γ\G and the complex structure is invariant, we
can find, up to a linear transformation of the Lie algebra of G, a basis of invariant
(1, 0)-forms {ϕ1, ϕ2} such that dϕ1 = 0 and dϕ2 = ϕ11̄. Since g is an invariant
metric, the (2, 1)-form ∗ϕ1 is invariant and d(∗ϕ1) = 0. Moreover, we also have
d∗(∗ϕ1) = − ∗ dϕ1 = 0. This implies that ∗ϕ1 ∈ H2,1

d and that h3d+dΛ = 2.
To conclude the proof, we show that H2

d = H2
dc ⊆ H2

d+dΛ , which implies that
h2d+dΛ = b2 = 4 by Theorem 4.3.7. Consider the decomposition

H2
d = H+

g ⊕H−
g

between self-dual and anti-self-dual harmonic forms. Forms in H−
g are anti-self-

dual, thus they have bidegree (1, 1) and they are primitive. Moreover, they are
also d-closed. If α ∈ H−

g , then dα = 0, dΛα = − ∗s d ∗s α = ∗sdα = 0 and
(ddΛ)∗α = dcd∗α = dc ∗ dα = 0. This gives the inclusion H−

g ⊆ H2
d+dΛ . For the

inclusion H+
g ⊆ H2

d+dΛ , we observe that on primary Kodaira surfaces we have b+ =

2 and, as long as the compatible triple is invariant, we also have H+
g = C⟨ϕ12, ϕ1̄2̄⟩,

where {ϕ1, ϕ2} is the preferred basis of [81] we considered above in the proof, up
to normalization. Indeed, we have that dϕ12 = 0 and ∗ϕ12 is an invariant (2, 0)-
form since the metric is invariant. Finally, also ∗sϕ12 is an invariant (2, 0)-form
since ω is invariant, and one has that dϕ12 = 0, dΛϕ12 = − ∗s d ∗s ϕ12 = 0 and
(ddΛ)∗ϕ12 = dcd∗ϕ12 = 0, proving that H+

g ⊆ H2
d+dΛ and that h2d+dΛ = 4.

The results proved in this section and in Section 5.1 can be used to compute
the numbers hkd+dc and hkd+dΛ in the case of complex surfaces not necessarily dif-
feomorphic to solvmanifolds, as we illustrate in the example below.

Example 5.2.5 (Hopf surface). Let M = S1 × S3 be the Hopf surface. There
exists a parallelism for T ∗M given by {e1, e2, e3, e4}, with differentials

de1 = 0, de2 = −e34, de3 = e24 and de4 = −e23.

Note that M is the quotient of a non-solvable Lie group by a lattice.

Proposition 5.2.6. Let (M,J, ω, g) be the Hopf surface endowed with an invariant
compatible triple with J integrable. Then the numbers hkd+dc and hkd+dΛ are

k 0 1 2 3 4

hkd+dc 1 0 1 2 1
hkd+dΛ 1 1 0 0 1
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Proof. By Theorem 5.1.3, we have that h1d+dc = 0, h2d+dc = 1 and h3d+dc = 2. To
compute hkd+dΛ , we resort to several different arguments. Lemma 5.2.2 gives that
h1d+dΛ = b1 = 1. Since there is no d-harmonic 2-form, Theorem 4.3.7 tells us that
h2d+dΛ = 0. Finally, by Proposition 5.2.4 and the same reasoning used in the proof
of Theorem 5.2.1, we conclude that h3d+dΛ = 0.

The fact that almost complex and almost symplectic invariants are determined
by the topology of the underlying manifold is not surprising, especially on solv-
manifolds, see Theorem 2.4.15. ■

Table 5.1: The numbers hkd+dc and hkd+dΛ of the complex torus, the hyperelliptic
surface and the Inoue surface SM .

(A) Complex torus (B) Hyperelliptic surface (C) Inoue surface SM
k hkd+dc hkd+dΛ hkd+dc hkd+dΛ hkd+dc hkd+dΛ
0 1 1 1 1 1 1
1 4 4 2 2 0 1
2 6 6 2 2 1 0
3 4 4 2 2 2 0
4 1 1 1 1 1 1

Table 5.2: The numbers hkd+dc and hkd+dΛ of the primary and secondary Kodaira
surface and the Inoue surface S±.

(D) Primary Kodaira surface (E) Secondary Kodaira surface (F) Inoue surface S±

k hkd+dc hkd+dΛ hkd+dc hkd+dΛ hkd+dc hkd+dΛ
0 1 1 1 1 1 1
1 2 3 0 1 0 1
2 5 4 1 0 1 0
3 4 2 2 0 2 0
4 1 1 1 1 1 1
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5.3 The number h1d+dc as an almost complex invari-
ant

In this section we show that the numbers h1d+dc and h
−
J are the only almost complex

invariants of almost Kähler 4-manifolds that do not depend on the topology of the
underlying manifold. We also explain how to use h1d+dc to distinguish between
different almost complex structures.

In Section 4.2, we saw that on compact almost complex 4-manifolds, the num-
bers hk

δ̄
, hp,qd , hk

δ+δ̄
and hkd+dc are almost Käler invariants. We now determine their

precise dependence from the topology of the underlying manifold and other almost
complex invariants.

Theorem 5.3.1. Let (M,J) be a compact almost complex 4-manifold admitting a
J-compatible almost Kähler metric. Then for every choice of J-compatible almost
Kähler metric, the invariants hk

δ̄
, hp,qd , hk

δ+δ̄
and hkd+dc are completely determined

by:

• the oriented topology of the underlying manifold (more precisely, by the num-
bers b1 and b−);

• the almost complex invariant h1d+dc;

• the almost complex invariant h−J .

Furthermore, the invariants h1d+dc and h
−
J do not completely determine each other.

In the proof of the theorem, we explicitly compute the numbers hk
δ̄
, hp,qd , hk

δ+δ̄

and hkd+dc in terms of b1, b
−, h1d+dc and h−J , see Table 5.3.

Proof. Fix an arbitrary J-compatible almost Kähler metric. The cases k = 0
and k = 4 are easy to deal with. For the remaining values of k, note that by
Proposition 6.10 in [96], we have that hk

δ̄
= hk

δ+δ̄
. By Theorem 4.2.4, we have that

h2
δ+δ̄

= b− + 1 + h−J . By the isomorphism given by the Hodge ∗, we also have

h1
δ+δ̄

= h3
δ+δ̄

. Hence, the only degrees of freedom for hk
δ̄
and hk

δ+δ̄
are h1

δ+δ̄
and h−J .

By Theorem 4.2.8, we have that h2d+dc = b−+1+h−J and, by Corollary 4.3.4, we
obtain h3d+dc = b1. Again, the only degrees of freedom for hkd+dc are h1d+dc and h−J .
Furthermore, we observe that since d = δ + δ̄ and dc = i(δ̄ − δ), one immediately
deduces that h1

δ+δ̄
= h1d+dc .

For the numbers hp,qd , by Lemma 5.6 in [31], we have that h2,0d = h0,2d = 0. By
Theorem 4.2.9, we have that h1,1d = b− + 1. By the symmetries induced by the
Hodge ∗ and by the results of [31], we finally obtain h1,0d = h0,1d = h2,1d = h1,2d = h1,0

∂̄
.
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To conclude the proof of the first part of the theorem, we prove that on compact
almost Kähler 4-manifolds h1d+dc = 2h1,0d . By definition, one has that

H1
d+dc = A1 ∩ ker d ∩ ker dc = (A1,0 ∩ ker d)⊕ (A0,1 ∩ ker d),

hence h1d+dc = 2dimC(A
1,0 ∩ ker d). Again by definition, we also have that h1,0d =

dimC(A
1,0 ∩ ker d ∩ ker d∗). Finally, note that

A1,0 ∩ ker d ∩ ker d∗ ⊆ A1,0 ∩ ker d ⊆ A1,0 ∩ ker ∂̄ = A1,0 ∩ ker d ∩ ker d∗,

where the last equality follows from Lemma 4.2.11. This implies the equality of
spaces

H1,0
d = H1,0

∂̄
= A1,0 ∩ ker d

and shows that h1d+dc = 2h1,0d . The second part of the theorem follows from the fact
that there exists a symplectic 4-manifold (M,ω) and a curve of almost complex
structures Jt, with t ∈ (−ϵ, ϵ), such that:

• ω is an almost Kähler metric for each Jt;

• h1d+dc(Jt) varies for different values of t;

• h−Jt = 0 for all t ∈ (−ϵ, ϵ).

The symplectic 4-manifold and the curve of almost complex structures that we
have to consider are those given in Example 5.3.2 below, where we also prove the
first two claims we made on Jt. To prove that h−Jt = 0 for all t ∈ (−ϵ, ϵ), note that,
for this specific example, we have b+ = b− = 1 and that, by Corollary 3.4 in [35],
if b+ = 1 then h−J = 0 for all tamed almost complex structures.

Table 5.3: The numbers hk
δ̄
, hp,qd , hk

δ+δ̄
and hkd+dc of compact almost Kähler 4-

manifolds.
k 1 2 3

(p, q) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (2, 1) (1, 2)

hk
δ̄

h1d+dc b− + 1 + h−J h1d+dc

hk
δ+δ̄

h1d+dc b− + 1 + h−J h1d+dc

hp,qd
1
2
h1d+dc

1
2
h1d+dc 0 b− + 1 0 1

2
h1d+dc

1
2
h1d+dc

hkd+dc h1d+dc b− + 1 + h−J b1
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Example 5.3.2 (The number h1d+dc distinguishes between almost Kähler
structures). Let Sol(3) be the only 3-dimensional solvable, non-nilpotent, Lie
group. Let M be the 4-manifold obtained as a quotient of Sol(3) × R by a co-
compact lattice. A co-frame of left-invariant forms onM is given by {e1, e2, e3, e4}
with structure equations

de3 = −e13 and de4 = e14.

The manifoldM admits no complex structures, see [16], but it admits a symplectic
structure

ω := e12 + e34.

For t ∈ R small enough, let Jt be the family of ω-compatible almost Kähler
structures defined in Section 6.1 in [38]. Explicitly, a basis of (1, 0)-forms is given
by

ϕ1
t = e1 + i

(
1 + t2

1− t2
e2 − 2t

1− t2
e4
)

and

ϕ2
t = e3 + i

(
2t

1− t2
e2 +

1 + t2

1− t2
e4
)
.

Direct computations show that real forms are expressed in terms of complex forms
as

e1 =
1

2
(ϕ1

t + ϕ1̄
t ), e3 =

1

2
(ϕ2

t + ϕ2̄
t )

and

e4 = − i

2

(1− t2)(1 + t2)

1 + 6t2 + t4

(
ϕ2
t − ϕ2̄

t −
2t

1 + t2
(ϕ1

t − ϕ1̄
t )

)
.

Consequently, the differentials of the (1, 0)-co-frame are

dϕ1
t = −1

2

t(1 + t2)

1 + 6t2 + t4

(
ϕ12
t − ϕ12̄

t + ϕ1̄2
t − ϕ1̄2̄

t +
4t

1 + t2
ϕ11̄
t

)
and

dϕ2
t = −1

4
(ϕ12

t + ϕ12̄
t + ϕ1̄2

t + ϕ1̄2̄
t ) + 1

4
(1+t2)2

1+6t2+t4

(
ϕ12
t − ϕ12̄

t + ϕ1̄2
t − ϕ1̄2̄

t + 4t
1+t2

ϕ11̄
t

)
.

Recall that h1d+dc(Jt) = 2 dimC(ker d ∩ A1,0
t ) and let

α = fϕ1
t + gϕ2

t

be a d-closed (1, 0)-form. In particular, we have that

0 = µ̄α =

(
1

2

t(1 + t2)

1 + 6t2 + t4
f − 1

4
g
(
1 +

(1 + t2)2

1 + 6t2 + t4

))
ϕ1̄2̄
t ,
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which implies that

g = ctf, with ct =
t(1 + t2)

1 + 4t2 + t4
. (5.3.1)

Taking the coefficients of dα corresponding to ϕ1̄2
t and ϕ11̄

t , we get the following
system of equationsξ1̄(g)−

1
2
t(1+t2)

1+6t2+t4
f − 1

4
g
(
1− (1+t2)2

1+6t2+t4

)
= 0,

−ξ1̄(f)− 2t2

1+6t2+t4
f + t(1+t2)

1+6t2+t4
g = 0.

(5.3.2)

Combining (5.3.1) and (5.3.2), we deduce that:

• for t ̸= 0 small enough, it must be f = g = 0. Thus α = 0 and h1d+dc(Jt) = 0;

• for t = 0, we have g = 0. From the equation dα = 0, it is not hard to see
that f must be constant, that α = fϕ1

0 and that h1d+dc(Jt) = 2. ■

As a consequence, we have that h1d+dc can be used to distinguish between almost
complex structures compatible with the same symplectic form.

Proposition 5.3.3. There exists a compact symplectic 4-manifold (M,ω) admit-
ting two ω-compatible almost Kähler structures J1 and J2 such that

h1d+dc(J1) ̸= h1d+dc(J2).

In particular, h1d+dc distinguishes between almost complex structures compatible
with the same symplectic form.

The utility of h1d+dc in distinguishing between almost complex structure is not
limited to low-dimensional examples.

Proposition 5.3.4. There exists a smooth 6-manifold admitting two almost com-
plex structures J1 and J2 such that

h1d+dc(J1) ̸= h1d+dc(J2).

In particular, h1d+dc allows to distinguish between almost complex structures. More-
over, one can take J1 and J2 in such a way that

rkNJ1|x = rkNJ2|x

at every point x and h1d+dc(J1) ̸= h1d+dc(J2). Thus h1d+dc allows to distinguish
between almost complex structures whose Nijenhuis tensors have the same rank.
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Proof. Let I be the Iwasawa manifold endowed with the standard complex struc-
ture determined by the (1, 0)-co-frame

ϕ1 := dz1, ϕ2 := dz2 and ϕ2 := dz3 − z1dz
2,

with differentials

dϕ1 = 0, dϕ2 = 0 and dϕ3 = −ϕ12.

Let J1 be the almost complex structure defined by the (1, 0)-forms

ω1 := ϕ1, ω2 := ϕ2 + ϕ3̄ and ω3 := ϕ3,

with differentials

dω1 = 0, dω2 = −ω1̄2̄ + ω1̄3 and dω3 = −ω12 + ω13̄.

Then rkNJ1 = 1 at every point. We show that

h1d+dc(J1) = 2 dimC(ker d ∩ A1,0) = 2.

Let α = fω1 + gω2 + hω3 ∈ ker d ∩ A1,0, with f , g and h ∈ C∞(M). Then

0 = dα = df ∧ ω1 + dg ∧ ω2 + dh ∧ ω3 − gω1̄2̄ + gω1̄3 − hω12 + hω13̄.

Taking the coefficient of ω1̄2̄, we see that g = 0, while taking the coefficients of
ωj̄3, for j = 1, 2, 3, we obtain ∂̄h = 0, so that h is constant. This leaves us with
the equation

df ∧ ω1 − hω12 + hω13̄ = 0. (5.3.3)

Let {ψj}3j=1 be the dual frame to {ωj}3j=1. Explicitly, we can write

ψ1 =
∂

∂z1
, ψ2 =

∂

∂z2
+ z1

∂

∂z3
and ψ3 =

∂

∂z3
− ∂

∂z2̄
− z̄1

∂

∂z3̄
.

In particular, it is immediate to check that [ψj, ψj̄] = 0 for j = 1, 2, 3. By (5.3.3),
we have that ψ1̄(f) = ψ2̄(f) = 0 and ψ3̄(f) = h, which implies that

(ψ1ψ1̄ + ψ2ψ2̄ + ψ3ψ3̄)f = ψ3(h) = 0,

since h is constant. The operator (ψ1ψ1̄ +ψ2ψ2̄ +ψ3ψ3̄) is real and elliptic, thus f
is constant and h = 0, proving that h1d+dc(J1) = 2.
Let J2 be the almost complex structure defined by the (1, 0)-forms

ω1 := ϕ1, ω2 := ϕ2 and ω3 := ϕ3 +
1

2
ϕ3̄.

We still have rkNJ2 = 1. In the same way as we did in the first part of the proof,
one sees that h1d+dc(J2) = 4, proving the claim.
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Remark 5.3.5. By taking products of M with a complex torus, we produce ex-
amples in higher dimension. More examples where h1d+dc distinguishes between
almost complex structures can be found directly on the torus T 2m. By Example
2.1.3, there exists almost complex structures Jk on T 2m, with k ∈ {0, . . . ,m} and
2m ≥ 6, such that rkNJk = k. A straightforward computation shows that, for
those specific structures, we have h1d+dc = 2(m− k).

Proposition 5.3.4 shows that the number h1d+dc distinguishes between almost
complex structures whose Nijenhuis tensors have both rank 1. However, it can-
not distinguish between maximally non-integrable almost complex structures on
manifolds of dimension at least 6.

Proposition 5.3.6. Let (M,J) be an almost complex 2m-manifold. If 2m ≥ 6
and there exists x ∈M such that rkNJ |x is maximal, then h1d+dc = 0.

Proof. By assumption, the map µ̄x : A
1,0
x ! A0,2

x is injective. Therefore, there are
no global d-closed (1, 0)-forms. Indeed, assume by contradiction that α ∈ A1,0 is
d-closed and non-zero. Then in a neighborhood of x ∈ M we would have µ̄α = 0,
contradicting the assumption that µ̄x is injective.

A similar statement for 4-manifolds cannot hold. For instance, the almost
complex structure on the Kodaira–Thurston manifold we consider in Section 4.5
is maximally non-integrable and it has h1d+dc = 2. Another obstruction for the
possible values of h1d+dc is given by the first Betti number.

Lemma 5.3.7. Let (M,J) be an almost complex 2m-manifold. Then

h1d+dc ≤ b1.

Proof. We prove thatH1
d+dc injects into de Rham cohomology. From the definition,

it follows that
H1
d+dc = (A1,0 ∩ ker d) ∪ (A0,1 ∩ ker d).

Let α ∈ H1
d+dc . Then α = α1,0 + α0,1, with α1,0 and α0,1 both d-closed, so that α

defines a de Rham class. To prove injectivity, suppose that

α1,0 + α0,1 = df

for some f ∈ C∞(M). By bidegree, we have that α1,0 = ∂f and α0,1 = ∂̄f . Since
dα1,0 = 0, we have that ∂2f + ∂̄∂f + µ̄∂f = 0. In particular, by bidegree reasons
we have ∂̄∂f = 0, which implies that f is constant. This gives α1,0 = ∂f = 0 and
α0,1 = ∂̄f = 0.

Corollary 5.3.8. Let (M,J) be an almost complex 2m-manifold such that b1 ∈
{0, 1}. Then h1d+dc = 0.

We invite the reader to compare the results of Lemma 5.3.7 and Corollary 5.3.8
with Corollary 4.6 in [31] and Lemma 4.2 in [51].
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5.4 A conjecture on h1d+dc

In their study of J-anti-invariant cohomology, Draghici, Li and Zhang conjectured
that the number h−J generically vanishes on almost complex 4-manifolds, that is,
that the space of almost complex structures admits an open and dense subset on
which h−J = 0, see Conjecture 2.4 in [34]. The conjecture was proved in [34] in
the case b+ = 1, and in [93] in the general case. The number h−J , as well as many
invariants we consider in this thesis, admits an interpretation as the dimension of
the kernel of a suitable elliptic operator. By classical results in operator theory,
it is upper semi-continuous with respect to small deformation of the metric and
its value can only decrease. Hence, it seems natural to ask if a vanishing result
similar to that for h−J holds for other almost complex invariants.

In Theorem 5.3.1, we established that the only almost complex invariants of
almost Kähler 4-manifolds are the numbers h1d+dc and h

−
J . Since we already know

the generic vanishing of h−J , we focus on the number h1d+dc . We formulate the
following conjecture.

Conjecture. Let M be a compact almost complex 2m-manifold and let J be
the space of almost complex structures on M . Then h1d+dc generically vanishes on
J .

Thanks to the approximation theorem for maximally non-integrable structures,
we are able to confirm the conjecture on manifolds of dimension at least 10.

Theorem 5.4.1. LetM be a compact almost complex manifold of dimension 2m ≥
10. Then for a generic almost complex structure we have h1d+dc = 0.

Proof. By Theorem 2.2.6, the space of maximally non-integrable structures is open
and dense in the space of almost complex structures. By Proposition 5.3.6, if J is
maximally non-integrable and 2m ≥ 6 we have that h1d+dc(J) = 0.

More in general, on every almost complex manifold of dimension 2m ≥ 6, one
has that h1d+dc = 0 generically on each path connected component of J on which
there exists at least one maximally non-integrable structure. By Corollary 5.3.8,
the conjecture also holds on almost complex manifolds with b1 = 0 or b1 = 1 of
every dimension.
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