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Actually, we are the white rabbit

being pulled out of the hat.

The only difference between us and the white

rabbit is that the rabbit does not realize it is

taking part in a magic trick. Unlike us.

We feel we are part of something mysterious

and we would like to know how it all works.

—– Jostein Gaarder
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Siete la cosa che più mi mancherà di Trieste e spero che un giorno le nostre strade possano

rincrociarsi. Tra tutti, un ringraziamento speciale a Diego per la gentilezza, il sostegno e

l’amore che continui a darmi ogni giorno, anche nei momenti più difficili. Averti conosciuto
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Abstract

In General relativity (GR), the formation of spacetime singularities is proved to be in-

evitable in the gravitational collapse of very compact objects and in the early universe.

These singularities are considered the sign of the breakdown of the theory and the proof

of its intrinsic incompleteness. The common belief is that their formation will be pre-

vented in a full, potentially quantum, completion of GR. In this view, it is reasonable to

assume that non-singular, or regular, metrics can provide an effective description of the

outcome of gravitational collapse and of the early universe, providing a valid alternative

to the Big Bang and to singular black holes. This thesis covers various aspects of this

theme.

Firstly we deal with a classification of the possible local regularization of spacetime singu-

larities. Indeed, in recent years, a systematic, quantum gravity agnostic, study has been

carried out to catalogue all the conceivable non-singular, continuous geometries arising

from evading Penrose’s focusing theorem in gravitational collapse. In this study, we ex-

tend this inquiry by systematically examining all potential non-singular, continuous ex-

tensions into the past of an expanding Friedmann–Lemâıtre–Robertson–Walker (FLRW)

metric.

Subsequently, we discuss the construction of global regular metrics that embody the

aforementioned possible local regularizations of black holes singularities. In particular,

we present a new rotating regular black hole whose inner horizon has zero surface gravity

for any value of the spin parameter, and is therefore stable against mass inflation.

Finally we study the phenomenological properties of these regular alternatives to sin-

gular black holes, to which we refer as black hole mimickers. Namely we investigate

the gravitational waves signal generated by their merger, in particular their ringdown

signal. This is characterized by a different spectrum of quasinormal modes (QNMs)

with respect to singular black holes and, in the case of horizonless mimickers, by the

appearance of echoes after the prompt ringdown, that is a series of secondary pulses

with progressively smaller amplitudes. We compute this spectrum of QNMs enlighten-

ing a common misunderstanding regarding the study of gravitational perturbations in

such regular spacetimes. We also investigate the effect of non-linear interactions on the

echoes part of the signal and its sensitivity to the internal structure of the emitting ob-

ject. In particular, we find that if one considers the increase of the central object mass

due to the partial absorption of the energy carried by perturbations, the echo signal

can be quite different and non-periodic. Furthermore, when gravitational perturbations

are assumed to travel thorough the object instead of being reflected at the surface, the

echoes signal appears to be very sensitive to the structure of the innermost region of the

mimicker.

This research fits into the broader context of exploring alternatives to classical cosmo-

logical and black hole models, aiming to test new (quantum) physics beyond General

Relativity in extreme density and curvature environments.
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Part I

Introduction: the problem of

singularities in General Relativity

Everything straight lies’,

murmured the dwarf disdainfully.

‘All truth is crooked,

time itself is a circle.

—– Friedrich Nietzsche
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General Relativity as an incomplete theory

The gravitational force, albeit weaker then the other interactions, dominate our macro-

scopic world, keeping us grounded on Earth, building planets, galaxies and cosmic struc-

tures.

So, not surprisingly, among what we call fundamental interactions, gravity was the

first to be formally studied, in the 17th century by Newton.

Despite this, in certain respects, a complete and deep understanding of gravity still

remains the main challenge of contemporary physics. Indeed, even if the theory of General

Relativity was developed over a century ago, its integration into a comprehensive quantum

field theory, as achieved with other interactions, remains elusive.

Beside being non-renormalizabile as a quantum field theory, GR presents also sev-

eral conceptual and observational issues. One of the main ones is certainly its intrinsic

incompleteness. Indeed, GR predicts the formation of singularities in different physical

scenarios. To understand why this implies incompleteness of the theory, we need to better

investigate the concept of singularity.

One straightforward approach might be to define a singularity as a point where the met-

ric becomes singular, failing to be adequately differentiable. This means that there must

exist some local observable quantities (some curvature scalar) whose (position-dependent)

value “blows up” in the vicinity of a certain point. However, this approach presents a

challenge: we could simply remove these singular points and argue that the remaining

manifold encompasses all of spacetime.

However, even though we exclude singular points from our definition of spacetime, we

can still detect the “gaps” left behind by their removal through the presence of incomplete

geodesics. Therefore, it appears logical to base our definition of spacetime singularities

on the notion of geodesic incompleteness. A geodesic is defined incomplete if it cannot

be extended beyond a finite value of the affine parameter, i.e. it is possible to reach the

end of such geodesic at a finite value of its affine parameter. While the incompleteness

of spacelike geodesics lacks specific physical significance given their unimportance in the

theory of relativity, the incompleteness of timelike and null geodesics, that represents the

trajectories of massive and massless particles, holds significant implications. It suggests

the potential existence of particles whose trajectories cease to exist after (or before) a

certain period of time, as measured by them. In essence, these particles would seemingly

be annihilated or created at the singularity. Thus it is clear that geodesic incompleteness

entails a loss of predictability of the theory.

These singularities appear in different solutions of the Einstein equations as the

Schwarschild and Kerr metric describing respectively static and rotating black holes or the

Friedmann-Lemâıtre-Robertson-Walker metric describing an homogeneous and isotropic

universe. However the existence of singular solutions alone does not imply that these

singularities really exist in nature. To really prove that GR is an incomplete theory failing

to predict what happens at the center of a black hole and at the beginning of the universe

we need to prove that the formation of these singularities is inevitable under generic

assumptions. This proof resides in a series of singularity theorems, developed throughout

the 1960s and ’70s by Penrose and Hawking, which we will discuss in more detail in the

next section.
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Due to these theorems it is possible to conclude that in the framework of General Rel-

ativity singularities are both conceptually problematic and inevitably present in different

physical scenario. For this reason, the idea that they represent the breakdown of GR and

of our understanding of the gravitational interaction is largely diffused.

The common belief is that new (quantum) physics beyond General Relativity will

definitely address the issues related to spacetime singularities.

In particular, considerable effort has been directed into investigating the hypothesis

that this singularities regularization, even if realized through some unknown mechanisms

beyond GR, can be captured effectively within the standard tools of differential geometry.

Indeed, under this hypothesis, it is possible to construct and study regular effective models

that serve as alternatives to singular black holes to describe the dark compact objects

populating our universe.

These models, to which one usually refer as black hole mimickers, may exhibit horizons,

and thus represent regular black holes, or they may lack horizons, in which case they

are referred as horizonless compact objects. In both cases they are expected to present

phenomenological differences with respect to singular models.

For these reason, the Gravitational waves (GWs) signal coming from the coalescences

of compact objects could be a powerful tool to probe the regularization of spacetime

singularities. Such observations could allow us to test the hypothesis that the merging

compact objects are not singular GR black holes but rather some regular alternatives,

and potentially they could even provide us some hints about any new (quantum) physics

responsible for this regularization.

From the first GWs observed signal in 2015 [1], the three ground-based observatory

LIGO, Virgo and KAGRA have detected more than 90 events, comprising the multimes-

senger event GW170817 [2–4], and they have now started the fourth observing run.

Other potentially useful observations could come from the electromagnetic emission

of the matter surrounding these compact objects. Through the observation of this emis-

sion, the Event Horizon Telescope team succeeded in generating the first “image” of the

supermassive black holes M87* [5–12] and Sgr A*, at the center of our galaxy [13–18].

So far, the accuracy of all these observations has not been sufficient to impose strict con-

straints on the nature of the dark compact objects sourcing them. However, future ground-

based [19–24] and space-based [25–27] gravitational-wave detectors have been planned.

These will reach higher signal to noise ratio (SNR) potentially leading to detection of new

physics.

This thesis is inserted in such flourishing context. Its aim is to explore the theory and

phenomenology of regular solutions, intended as tools for the investigation of new physics

beyond General Relativity. We will start by reviewing the definite proof of GR incom-

pleteness: the singularities theorems. From this, we will see how the introduction of new

physics beyond General Relativity allows for the evasion of the theorems, the construction

of regular alternative models and the study of their phenomenological signatures.

9



Singularity theorems

In this section, we review the assumptions and the main content of the first singularity

theorem. Before entering in its precise statement, we will recall some important geometric

concepts, useful in the study of the causal structure of a spacetime and thus central in the

derivation of the singularity theorems, as well as in the search for possible ways to evade

them, as we will see in Chapter 1 and Chapter 2.

The expansion parameter and the Raychaudhuri equations

The action of gravity on a multidimensional set of neighbouring timelike or null geodesics

is described by the Raychaudhuri equations. Such set, to which we usually refer as a

congruence, describe the trajectory of a bundle of photons or of a cloud of massive particles.

For every geodesic of the congruence we can define a normalized tangent vector uµ =
dxµ

dλ , such that uµuµ = 1 (or uµuµ = 0 for null congruences), and we shall assume that

the geodesics are affinely parametrized uµ∇µu
ν = 0. The expansion of such congruence

is defined as θ = ∇µu
µ and it tells us how much our cloud of particle is expanding

or contracting isotropically. Its evolution along the geodesic and affinely parametrized

congruence is given by the Raychaudhuri equation:

dθ

dλ
= −θ

2

3
− σµνσ

µν + ωµνω
µν −Rµνu

µuν (0.0.1)

for time-like geodesics, and

dθ

dλ
= −θ

2

2
− σµνσ

µν + ωµνω
µν −Rµνu

µuν (0.0.2)

for null geodesics.

Here σµν is the shear tensor that tells us how things get elongated or squashed along

the congruence and ωµν is the twist tensor describing the rotation of the particles of the

cloud as they move forward along the congruence. They can be defined in terms of the

gradient tensor Bµν ≡ ∇νuµ: the shear is its symmetric and traceless part, the twist is its

antisymmetric part and the expansion is its trace. Also the evolution of the shear and of

the twist along the congruence is given by the other two Raychaudhuri equations that we

don’t report here but can be found for instance in [28, 29].

Note that the expansion parameter we have denoted here can be seen exactly as the

variation of the volume orthogonal to a given congruence. Thus it is given by:

θ =
1

δV (3)

δV (3)

δλ
(0.0.3)

for timelike geodesics and

θ =
1

δA(2)

δA(2)

δλ
(0.0.4)

for null geodesics (since the submainfold orthogonal to a null vector is two-dimensional).
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Trapping surfaces and horizons

The expansion parameter that we just introduced allows us to define a new important

local concept connected with the presence of horizons and singularities: future (past)

closed trapped surfaces. These are closed spacelike surfaces such that their area tends to

decrease locally along any possible future (past) direction.

We shall now explain more rigorously what does this mean in the case of future trapped

surface, the definition of a past trapped surface is exactly dual.

If we draw the future-directed null geodesics orthogonal to a closed space-like two-

surface (we draw the lightcones departing from each point of the surface), we see that

all the vectors emanating from a certain point can be expressed as a linear combination

of two future directed null vectors V µ
± . In flat spacetime, one of them is pointing inward

toward the internal region delimited by the surface and we call it ingoing, while the other is

pointing outward and we call it outgoing. The expansion of ingoing geodesic θ− is always

negative while in flat spacetime the expasion of outgoing geodesic θ+ is positive.

In strong gravity regimes, lightcones can tilt towards the interior of the two-surface in

such a way that also θ+ is negative. In this case the surface will be trapped. Indeed, since

time-like observers are forced to travel inside the light cones, if these cones become enough

tilted, any timelike observer in the surface will be causally connected with a smaller region

in the future, in other worlds it will not be able to exit (to escape) the region delimited

by the two-surface.

Summirizing, a closed trapped surface is a closed, spacelike, two-surface such that both

ingoing and outgoing geodesics are converging (have negative expasion). The limit case in

which θ+ = 0, is called a marginally trapped surface.

The set of all the points on a three-surface Σ through which a trapped surface passes

is called trapped region. The boundary of a trapped region is an apparent horizon, thus it

is an outer marginally trapped surface. The extension of an apparent horizon towards the

past and the future of Σ is a three dimensional surface called the trapping horizon of the

spacetime.

For a stationary black hole, the apparent horizon coincides with the event horizon but

in general they are two different concepts, as instance, during a collapse, the apparent

horizon is always included inside the event horizon. Indeed, the event horizon is defined

as the border of the region that is not causally connected with future null infinity and

thus is a global notion, in order to define it we need to know a priori what is the infinite

future evolution of our spacetime.

Contrary, the apparent horizon is a local notion, and as such in principle observable.

In practice, the apparent horizon is the boundary of a region through which at some time

anything cannot escape from, the event horizon is the boundary of a region through which

at any time anything cannot escape from.

Global hyperbolicity

The first singularity theorem rely on a quite strong but physically justified assumption

about the causal structure of the spacetime: global hyperbolicity. Let S be a closed,

achronal set. We define the future (past) domain of dependence of S as the set of all points

p such that every past (future) inextendible causal curve through p intersects S. The full
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domain of dependence of S, is the union of the past and future domain of dependence.

A closed achronal set for which the full domain of dependence covers all the mainfold

is called a Cauchy hypersurface. A spacetime that admits a Cauchy hypersurface is said to

be globally hyperbolic. The complete history of causal observers is predictable in a global

hyperbolic spacetime given appropriate initial data on the Cauchy hypersurface. In a

generic spacetime, there might be limits to the Cauchy evolution: these are called Cauchy

horizons. If a spacetime is not globally hyperbolic, the full domain of dependence of each

surface will be limited and will not cover all the mainfold, in this case the boundary of the

full domain of dependence is a Cauchy horizon. As we will see in Section 3.4.1, Cauchy

horizons are expected to be unstable because of a phenomena called mass inflation. For

this reason it is usually believed that all physical spacetime are actually global hyperbolic.

The Penrose theorem

We are now ready to discuss the first singularity theorem developed by Penrose in the

original paper [30].

According to this theorem, a spacetime (M, gµν) cannot be null geodesically complete

if:

• The “null convergence condition”, Rabk
akb ⩾ 0 ∀ null vector ka, holds. This implies

in GR the null energy condition, i.e. the energy density measured along any null

curve must be non-negative.

• The manifold is a time orientable, globally hyperbolic spacetime, M = R × Σ3

admitting a non-compact Cauchy hypersurface.

• At some point, a closed trapped surface T 2 forms.

The proof of the theorem then proceeds in two steps. The first one consists in show-

ing that an initial negative expansion (on the trapped surface) and the null convergence

condition are enough to prove, via the Raychaudhuri equation, that the expansion will

become infinitely negative in the future for some finite value of the affine parameter of a

null congruence orthogonal to T 2. This point at which the expansion goes to −∞ is called

focusing point. The second step consisted in a ingenious use of topological arguments to

prove that assuming the regularity of the focusing point is incompatible with the presence

of a non-compact Cauchy hypersurface.

The original singularity theorem above summarized, actually proves that at the end of

a gravitational collapse, either the spacetime is geodesically incomplete or it must develop

a Cauchy horizon so that the presence of a non-compact Cauchy hypersurface cannot hold.

This motivated Penrose and Hawking to formulate a second theorem in 1970 not re-

lying on Cauchy hypersurfaces, and hence also extendible to closed universes, where non-

compact Cauchy hypersurfaces are absent [31]. We will not enter in the detail of this

theorem because as we will see, also when we will deal with closed universe, for spatially

homogeneous and isotropic spacetimes, the framework provided by the original Penrose

theorem suffices to the scope of our work.
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Beyond the singularity theorems

The singularities theorems proved that, in the GR framework, the formation of singularities

is inevitably in different physical scenario.

When considering General Relativity as an effective field theory, these singularities

emerge in a high curvature regime where higher-order corrections to GR would become

substantial.

This implies that the formation of singularities could potentially be avoided in theories

that extend beyond GR. In these theories, higher-order terms will modify the Einstein

equations. If one interpret this modifications as an effective stress-energy tensor, the

equations of motion in this theories can be cast as:

Rµν −
1

2
gµνR = Tµν + T eff

µν (0.0.5)

This effective stress-energy tensor can generally violate the null energy condition, which is

one of the key assumptions in singularity theorems. Therefore, these theorems might be

circumvented, leading to a scenario where the final state of gravitational collapse (or the

initial state of an expanding universe) could result in a regular, singularity-free geometry.

This idea becomes even more plausible when considering quantum effects. As already

mentioned, it is reasonable to expect that a full quantum gravity theory, in whatever form

it takes, will provide insights into the nature of singularities.

We must say however, that there is no certainty in this expectation, mainly because

quantum gravity might not be expressible in the conventional language of differential

geometry.

Despite this uncertainty, adopting the following assumptions seems like a sensible work-

ing hypothesis for this thesis:

• General Relativity is extended by incorporating some form of “new physics” which

could be related to quantum gravity.

• Gravitational phenomena can be effectively described using the traditional tools of

pseudo-Riemannian geometry, specifically a spacetime manifold and a Lorentzian

metric.

Under this assumptions it is possible to study and classify the possible non-singular

geometries evading the singularity theorems, as regular black holes, horizonless compact

objects and regular expanding universes, with the main purpose of understanding which

could be the possible phenomenological effects of this regularization.

This type of classification has already been performed for static and spherically sym-

metric black hole spacetime in [32] and we will summarize the results in the first part

of this thesis in Chapter 1. Then we will extend this classification to homogeneous and

isotropic cosmological spacetimes in Chapter 2.

In the second part of the thesis we will move to the specific construction of global

solutions that embody the previously classified regularizations and we will discuss about

their self-consistency and stability. After an introduction on the topic in Chapter 3, we

will introduce a specific regular metric describing a rotating black hole in Chapter 4. Even

if other solutions of rotating regular black holes were already present in literature, they
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suffered several issues, in particular they described objects unstable under a phenomenon

known as mass inflation. With our new solution we wanted to prove that it is possible to

construct a spacetime in which this unstable process can not take place.

In the third part, we will move to investigate some phenomenological features of the

previously introduced regular alternatives to GR black holes in order to understand if

and how it could be possible, through GWs observations, to prove that the astrophysical

compact objects that populate our universe are not singular black holes. In particular in

Chapter 5 we will summarize background knowledge on the topic. In Chapter 6 we will

focus on the effects of regularization on the ringdown signal and their possible detectability

with the next future gravitational detectors. In the case of horizonless solutions the usual

ringdown is expected to be followed by a series of “echoes”, in Chapter 7 we will discuss

how for the correct study of this part of the signal, non linear effects and back-reaction

should definitely be taken into account. Furthermore, in Chapter 8 we will show that this

echoes signal can carry information about the structure of the innermost region of the

emitting object, a region where quantum gravity effects are expected to dominate.

14





Part II

Classification of the possible

regularizations

Not knowing when the Dawn will come,

I open every Door

—– Emily Dickinson
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Chapter 1

Background: classification of

regular alternatives to black holes

Following the Penrose Theorem as a guide, we want to understand how to avoid the

formation of a singularity at the end of a gravitational collapse.

One possibility to evade the theorem is certainly to violate the last of its assumptions

that is not to form any closed trapped surface during the collapse, meaning there will

be no black hole (no horizon). This kind of regularization leads to the formation of an

horizonless compact object (sometimes referred to as exotic compact object (ECO)). In

literature, there is a notable number of examples of horizonless models, developed in the

framework of candidate quantum gravity theories or considering the effect of new exotic

degrees of freedom. We will briefly review their general features in Section 1.2.

The other possibility, chosen in [32], is to consider that even if a trapped surface is

formed, the violation of the null convergence condition allows to evade the theorem and to

avoid reaching a focusing point at finite affine distance. In this case the resulting spacetime

will be a regular black hole (RBH), in the sense that it will present a trapped region (an

thus an horizon) but it will be geodesically complete. In [32] it has been proven that

the taxonomy of this kind of regular geometries is remarkably short. We will now briefly

review their analysis in Section 1.1.

1.1 Null expansion-based classification of regular black holes

In addition to the general working assumptions of this thesis I, the authors of [32] assume

for their classification global hyperbolicity, spherical symmetry and the presence of a

trapped surface. In this set-up we can classify different geometries depending on the

behavior of radial null congruences. Starting from a reference value of the affine parameter

λ∗ along an outgoing null congruence, from Eq. (0.0.4), the rate of change of the area

element δA orthogonal to the congruence for λ = λ0 > λ∗ is determined by the following

equation:

ln

(
δA+|λ=λ0

δA+|λ=λ∗

)
=

∫ λ0

λ∗

dλ θ+(λ). (1.1.1)

where θ+(λ) is the expansion of the congruence at λ. Note that we are choosing a reference

point λ∗ for which δA+|λ=λ∗ ̸= 0. As it was shown in [32], a corollary of this equation is
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that a congruence has a focusing point at a finite affine distance λ = λ0 (δA+|λ=λ0 = 0)

if and only if θ+|λ=λ0
= −∞. Since we are assuming that a trapped surface is present

in our spacetime, there will be a value of λ for which the expansion θ+ vanishes. From

that point on, outgoing geodesics will tend to focus: inside the trapped region θ+ will be

negative and δA will continue to decrease until one reach the focusing point. In order

to avoid that the spacetime is geodesically incomplete we need to modify the spacetime

geometry in the vicinity of the focusing point, either creating a defocusing point (θ+ = 0

and changes sign again) or displacing the focusing point to infinite affine distance. We can

thus proceed to a systematic consideration of all the possible regularization based on three

parameters, i.e., the value of the affine parameter λdefocus for which we have a defocusing of

the outgoing congruence, the value of the radius R(λdefocus) of the area element orthogonal

to the congruence at that point, and the value of the ingoing congruence expansion at that

point, θ−(λdefocus) = θ̄.

Case A Defocusing point at a finite affine distance, λdefocus = λ0 .

A.I: (λ0, R0, θ̄ < 0): The expansion θ+ vanishes and changes sign at a finite affine

distance λ = λ0 or, in terms of the radius of the area element orthogonal to

the null outgoing congruence, at a value R0 = R(λ0) > 0. On the other hand,

the expansion of the intersecting ingoing radial null geodesics remains negative

until (and including) λ0, so that θ̄ = θ−|λ=λ0
< 0.

A.II: (λ0, R0, θ̄ ⩾ 0): The only difference with respect to the previous case is that

the expansion of the intersecting ingoing radial null geodesics does not remain

negative at R0 = R(λ0), θ̄ = θ−|λ=λ0
⩾ 0.

Case B Defocusing point at an infinite affine distance, λdefocus = ∞.

B.I: (∞, R∞, θ̄ < 0): The expansion θ+ vanishes in the limit λ → ∞, in a manner

such that the integral in Eq. (1.1.1) is convergent. The corresponding asymp-

totic value of the radius of the area element orthogonal to the outgoing null

congruence is R∞ = limλ0→∞R(λ0) > 0. The expansion of the intersecting

ingoing radial null geodesics remains negative there, so that θ̄ = θ−|λ→∞ < 0.

B.II: (∞, R∞, θ̄ ⩾ 0): The only difference with respect to the previous case is that

the expansion of the intersecting ingoing radial null geodesics does not remain

negative at R∞ = limλ0→∞R(λ0), θ̄ = θ−|λ→∞ ⩾ 0.

B.III: (∞, 0, θ̄ < 0): The expansion θ+ vanishes in the limit λ→ ∞, in a manner such

that the integral in Eq. (1.1.1) is divergent. Thus, the radius of the area element

orthogonal to the congruence vanishes asymptotically along these geodesics (in

other words, there is an asymptotic focusing point), R∞ = limλ0→∞R(λ0) = 0.

The expansion of the intersecting ingoing radial null geodesics remains negative

at 0, so that θ̄ = θ−|λ→∞ < 0.

B.IV: (∞, 0, θ̄ ⩾ 0) The only difference with respect to the previous sub-case is that

the expansion of the intersecting ingoing radial null geodesics does not remain

negative, θ̄ = θ−|λ→∞ ⩾ 0.

Case C No defocusing point, λdefocus = ∅.
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C.I: (∅, 0, θ̄ < 0): The expansion θ+ remains negative (but finite) in the limit λ →
∞, which in particular implies that the integral in Eq. (1.1.1) is divergent.

Thus, the radius of the area element orthogonal to the congruence vanishes

asymptotically along these geodesics. The expansion of the intersecting ingoing

radial null geodesics continues to be negative, so θ̄ = θ−|λ→∞ < 0.

C.II: (∅, 0, θ̄ ⩾ 0): The only difference with respect to the previous sub-case is that

the expansion of the intersecting ingoing radial null geodesics does not remain

negative, θ̄ = θ−|λ→∞ ⩾ 0.

We will now briefly discuss these different cases separately in order to understand in

more detail the properties of these spacetimes.

Case A.I and B.I: simply connected regularizations

In Case A.I, the defocusing point is attained at a finite affine distance and the ingoing

congruence exhibits negative expansion there. An inner trapping horizon develops within

the outer trapping horizon; the two horizons eventually merge within a finite time, leaving

no black hole behind. This scenario represents a black hole (BH) that exists for a limited

amount of time and stays regular throughout. Note that our geometric analysis does

not provide any hint about the dynamical process behind this disappearance of the black

hole. Such process could either be Hawking radiation or some other process taking place

in shorter time scales, for instance the transition to a white hole [33, 34]. The limiting

case (B.I), where the two horizons merge in infinite time, is referred to as an everlasting

horizon. A spacetime entering these cases will be simply connected i.e. its topology will

be the same as Mikowski spacetime.

Case A.II and B.II: multiply connected regularizations

In Case A.II, the defocusing point is attained at a finite affine distance as before but the

expansion of the ingoing congruence is non-negative at that point, implying it must be zero

at some location along the congruence between the trapped surface and the defocusing

point. Consequently, the two-spheres orthogonal to the two null congruences never shrink

to a point, their radius exhibits a local minimum as a function of the affine parameters

along the two congruences. This minimum forms a (dynamical) wormhole throat, but since

the throat is situated behind a trapping horizon, the wormhole is considered “hidden”

(and the throat can only be crossed in one direction). The extreme case (B.II) where the

throat is infinitely distant is referred to as an asymptotic hidden wormhole. A spacetime

entering these cases, containing a wormhole throath, will be path-connected but not simply

connected. Indeed, a closed path that winds around the wormhole throat cannot be shrunk

to a point, this kind of spacetime is said to be multiply connected.

Remaning singular cases

In practical terms, sub-cases B.III and C.I fall into the same category, as both of these

situations can be understood as the limiting case in which the focusing point is pushed

to an infinite affine distance along outgoing null geodesics. The same comment applies to
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cases B.IV and C.II, that only differ from the previous sub-cases in the behavior of the

expansion of the null congruence θ−. All these cases can be proven to describe a space-

time that presents a curvature singularity at infinite affine distance along outgoing null

geodesics, but generally finite affine distance along ingoing null geodesics.

In conclusion, under some minimal geometric assumptions it is possible to construct

an exhaustive classification of geometries describing in effective terms the regularization of

black holes due to quantum gravity effects or new phisics. The result of this classification

is that the most generic regular black hole spacetimes can be divided into two classes:

simply connected geometries, to which we also refer as evanescent horizons RBHs, and

multiple connected geometries to which we also refer as hidden wormholes. These two

categories can include geometries that are quite intricate. For example, in the case of

evanescent horizons, there might be more than two horizons, nested one inside the other,

for this reason from now on we will refer to geometries entering this class as multiple

horizons RBHs. However, these horizons must form pairs and merge within a finite time.

Similarly, in the hidden wormhole scenario, multiple horizons (on both sides of the throat)

and multiple throats may exist.

Figure 1.1: Scheme of the possible spherically symmetric regular alternatives to singular
black holes. The multiple-horizons RBHs and the simply connected horizonless objects
are shown in the same color because in Chapter 3 we will see that they can be often
described by the same metric, the same happens for hidden wormholes and horizonless
wormholes. The vast zoo of simply-connected horizonless compact objects is summarized
here according to the Buchdhal theorem: each box contains some of the known objects
violating a particular assumption of the theorem.

20



1.2 The zoo of horizonless compact objects

The previous analysis focused on how to prevent the formation of a singularity inside

a trapped region, violating the weak convergence condition. However, as we mentioned,

another possibility to evade the Penrose theorem is to prevent the formation of the trapped

region itself.

In General Relativity, a trapping horizon usually forms in a region of relatively low

curvature, where the effects of new physics are expected to be minimal, at least at the

classical level. However, already incorporating semiclassical effects (in the sense of quan-

tum field theory in curved spacetimes) could significantly change this scenario, allowing

for the existence of horizonless compact solutions. Notable examples in literature are

gravastars [35–37] or semiclassical stars [38, 39], other examples come from candidate

quantum gravity scenarios like fuzzballs [40, 41] or the introduction of exotic matter like

boson stars [42, 43]. Most of these horizonless alternatives to BHs are simply connected,

but multiply connected models, such as wormholes [44, 45], are also possible. In general

the main phenomenological features of an horizonless object are:

• The size. For some models a true surface is present and it allows for an unambiguous

definition of the radius r0. In other models the modifications with respect to the

black hole geometry extend in all the spacetime, decreasing with the radial distance.

However, it is still possible to define an effective radius below which these modifica-

tions are of O(1). The size is usually described through a compactness parameter

such as σ = r0
rBH
0

− 1 or C = 2M/r0 with rBH
0 the horizon radius for a BH of the

same mass M and spin a;

• The reflection properties of the surface. These can be encoded in an absorption

coefficient κ measuring the fraction of the energy that can be semi-permanently lost

inside the region r ⩽ r0. This absorption can be due to the inelastic interaction

with the horizonless object, when exciting internal degrees of freedom in the bulk,

or simply due to propagation in the interior region.

• The tails. These are the modifications with respect to the BH geometry that extend

outside the radius. Since at infinite radial distance r we need to recover asymp-

totic flatness, these tails must decay with the r, typically polynomial but possibly

modulated by functions of compact support.

In order for these horizonless compact objects to represent valid black hole mimickers,

they need to share some key features of the exterior black-holes spacetime. In addition

to asymptotic flatness, a desirable property is to be compact enough to posses a pho-

ton sphere, i.e. a circular closed orbit for null geodesics, outside the putative surface of

the object. Horizonless objects with such feature are usually indicated as ultra-compact

objects.

Finally we want to remark that every horizonless compact object will violate at least

one of the assumptions of the Buchdhal theorem [46] that sets an upper limit to the

compactness of a spherical distributions of matter in hydrostatic equilibrium. Specifically,

it states that a self-gravitating object with compactness higher than CBuch = 2M/r0 =

8/9, must violate at least one of the following assumptions:
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• General Relativity

• spherical symmetry

• single perfect fluid description of interior matter

• approximate isotropy of the fluid, i.e the tangential pressure is equal or mildly smaller

then the radial one

• non-negative radial pressure and energy density

• decreasing of the energy density as one moves outwards

This is a powerful instrument to navigate through the vast zoo of horizonless compact

objects, indeed they can be classified according to which of these assumptions they violate

[47].
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Chapter 2

Classification of regular

alternatives to the Big Bang

The previous classification was restricted to spherically symmetric compact objects, we

want now to apply the same analysis to cosmological scenarios. In particular we want

to classify the possible regular manifolds describing an expanding and (at least approx-

imately) homogeneous and isotropic universe. These are described by the FLRW met-

ric [48]:

ds2 = −dt2 + a2(t)
[
dr2 +R2(r)

(
dθ2 + sin2 θdφ2

)]
, (2.0.1)

with R(r) = (sin r, r, sinh r) if (k = 1, 0,−1) respectively.

2.1 Trapped regions in FLRW geometries

Since they are crucial for our analysis, we will now analyse the congruences of null geodesics

of the FLRW metric and the conditions under which a trapped region is formed in such

spacetime. The family of past-directed radial null geodesics in a FLRW universe has

tangent vector field [49]:

V µ
± =

1

a(t)

(
−1,± 1

a(t)
, 0, 0

)
=
dxa

dλ
, (2.1.1)

where dλ = −a(t)dt ± a(t)2dr is an affine parameter1. Note that the + sign indicates

outgoing geodesics, while the − indicates ingoing geodesics. Along such null geodesics,

from Eq. (2.0.1) we have dr/dt = ∓1/a and thus λ = −2
∫
a(t)dt.

The expression for the expansion of such geodesics is then2

θ± =
2

a2(t)

[
−ȧ(t) ± ∂R(r)/∂r

R(r)

]
, (2.1.2)

1Note that these two null vectors are defined only up to a multiplicative function of the respective
orthogonal null coordinate. The redefinition V± → g(u∓)V±, with g(u∓) > 0 and du± = −dt/a(t) ± dr,
stills results into affinely parameterized vector fields. However, u± are constant along the respective
orthogonal geodesics, which implies V a

±∇ag(u∓) = 0. Hence, this redefinition changes expansions by a
positive multiplicative factor and therefore does not affect our identification of trapped regions.

2The expression provided for the expansion is not the usual one derived as ∂t lnA, where A is the proper
cross-sectional area [28], but it is that divided by 1/a(t) in order to coincide with the divergence of the
tangent vector normalized as in Eq. (2.1.1).
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in terms of the time t, or

θ± =
2

a2(λ)

[
2a(λ)a′(λ) ± ∂R(r)/∂r

R(r)

]
, (2.1.3)

in terms of the affine parameter λ. In these expressions as well as in the rest of the chapter,

ȧ = da/dt and a′ = da/dλ, so that ȧ = −2aa′ = −(a2)′. Due to the one-to-one relation

between λ and t, we can choose any of these variables to parametrize null geodesics. In

the following, we will always use t for this purpose. When working with specific geodesic

congruences we will always choose, without loss of generality, a reference point λ = λ⋆
such that t(λ⋆) = 0.

Let us now discuss the structure of trapped surfaces for expanding universes. In the

flat and open case, taking into account that R(r) is always a positive and monotonically

increasing function in its range of definition, any expanding universe [ȧ(t) > 0 or a′(λ) < 0]

satisfies

θ− ⩽ 0, (2.1.4)

while

θ+

{
> 0 if ∂ lnR(r)/∂r > ȧ,

⩽ 0 if ∂ lnR(r)/∂r ⩽ ȧ.
(2.1.5)

In the closed case, R(r) is no more a monotonically increasing function, and can assume

negative values. However, we also have to take into account that, in such universe, θ+ < 0

does not correspond necessarily to a trapped region since for some values of r outgoing

and ingoing geodesics exchange roles, as we shall elaborate in Sec. 2.5. Thus, one has to

check the sign of both θ+ and θ−, and a trapped region is present only if both of them are

negative. We get

θ+

{
> 0 if ∂ lnR(r)/∂r > ȧ,

⩽ 0 if ∂ lnR(r)/∂r ⩽ ȧ.
(2.1.6)

θ−

{
> 0 if ∂ lnR(r)/∂r < −ȧ,
⩽ 0 if ∂ lnR(r)/∂r ⩾ −ȧ.

(2.1.7)

The function ∂ lnR(r)/∂r goes from +∞ at r = 0 to 0 at r = ∞ for the flat case

(k = 0), from +∞ to 1 in the open case (k = −1) and from +∞ and −∞ for the closed

case (k = 1). Hence, both flat and closed expanding universes always have trapped surfaces

with the structure depicted in Fig. 2.1, which is also shared by open universes with ȧ > 1.3

Figure 2.2 shows the causal structure of a decelerating FLRW metric and its trapped

region, which will exist for the open case only for ȧ > 1. Trapped surfaces appear for

sufficiently large distances to the reference point r = 0 being used. However, due to

homogeneity and isotropy, the choice of reference point is fiduciary and has no physical

meaning. This is different with respect to spherically-symmetric black holes, in which the

gravitational potential has a defined center. Hence, in a FLRW spacetime it is enough

to show that a point belongs to a trapped surface to conclude that all points belong to

trapped surfaces. In other words, there are no trapped regions in the usual sense: either

3Note that, as we have chosen k to be dimensionless following standard conventions, a(t) has dimensions
of length. As we are also choosing units in which c = 1, ȧ(t) is dimensionless.
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Figure 2.1: Structure of trapped surfaces (dark gray) in a given slice of constant time t of FLRW
spacetimes (for open universes, it is necessary that ȧ > 1 for trapped surfaces to exist). The solid
circle indicates the location of the marginal trapped surface for a given value of ȧ, and the arrows
pointing to the dashed line indicate how this location changes as ȧ increases.

all points are trapped, or no points are trapped.

Figure 2.2: Penrose diagram of a singular decelerating universe. The shaded region is the one
containing trapped surfaces (which, for open universes, requires ȧ > 1 in order to exist). Note
that the shading indicates trapped points with respect to a fiduciary reference point which has no
physical meaning: due to homogeneity and isotropy, either all points are trapped, or no points are
trapped.

Finally, regardless of the spatial curvature and the structure of the trapping surfaces,

imposing regularity of curvature invariants implies some further constraints on the nature

of the scale factor as a function of time. The Ricci scalar R takes the form

R =
6
[
k + a(t)ä(t) + ȧ2(t)

]
a(t)2

, (2.1.8)

while the Kretschmann scalar K reads

K =
12
[
a2(ä)2 + (k + ȧ2)2

]
a4

. (2.1.9)
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As a consequence, a(t) must be at least a C2 function to avoid curvature singularities.

2.2 Null expansions-based classification of regular cosmo-

logical spacetimes

We shall now analyze the possible conditions under which a singularity in the past of a

FLRW universe can be avoided, starting with some general considerations.

For flat and open universes (that is, well approximated by either k = 0 or k = −1

FLRW spacetimes), the discussion is parallel to the one for spherical static black holes

in Chapter 1, with the only difference that we will consider congruences of past-directed

(instead of future-directed) null geodesics. Hence, the different geometric possibilities for

these cases are in one-to-one correspondence to the possible ways in which spacetimes

can be deformed to avoid focusing points (see the classification in Section 1.1). For gen-

eral closed universes, Penrose’s theorem does not apply, and therefore the aforementioned

classification would not apply without further considerations. However, as discussed in

Sec. 2.5, this classification is still meaningful for homogeneous and isotropic closed uni-

verses.

As explained in Sec. 2.1, moving to bigger values of the affine parameter along the

considered past-directed null congruences corresponds to move towards the past (i.e., to

smaller values of t), and in the following equations we will always choose, without loss

of generality, a reference point λ = λ⋆ such that t(λ⋆) = 0. As we start with negative

expansion for some of the past directed outgoing null geodesics (we start in a past trapped

region), the avoidance of a focusing point requires at some point a change of sign for θ+
and hence that the latter vanishes.

However, differently from the black-hole cases studied, for cosmological spacetimes, the

expansion does not vanish at the same value of the affine parameter for all null geodesics.

We shall name the point at which θ+ = 0 for the most trapped null geodesic, and thus

θ+ ⩾ 0 for all null geodesics, the defocusing point.

We can now proceed to a systematic consideration of all the possible regularizations of

FLRW universes. In doing so we shall use the same classification reported in Section 1.1.

We will discuss the different cases separately in order to understand in more detail the

properties of these spacetimes and, in particular, the implications of the homogeneity and

isotropy assumptions. Given the quite different nature of closed universes, we shall treat

first the flat and open cases in Sec. 2.3 and 2.4, and consider separately the closed case in

Sec. 2.5.

2.3 Regular Flat FLRW universes

We shall now discuss in detail the different cases of Section 1.1 for a flat FLRW universe.

We will be using often the expression for the expansion of ingoing and outgoing null

geodesics, Eq. (2.1.2), specialized to k = 0 so that R(r) = r:

θ± =
2

a2(t)

[
−ȧ(t) ± 1

r(t)

]
=

2

a2(t)r(t)
[−ȧ(t)r(t) ± 1] . (2.3.1)
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In order to have a more clear physical interpretation of this expression, it is useful to

rewrite it as

θ± =
2

a(t)

[
− ȧ(t)

a(t)
± 1

a(t)r(t)

]
=

2

a(t)

[
−H(t) ± 1

a(t)r(t)

]
. (2.3.2)

We see that null rays for which the comoving radius a(t)r(t) lies outside the Hubble

sphere 1/H(t), are trapped. The Hubble sphere is the point in which the recession velocity

due to the cosmological expansion equates the speed of light [50, 51] (indeed, the Hubble

radius is sometimes called the “speed of light sphere” [50]). Now, consider two past-

directed outgoing null geodesics, they have a tendency to move away from each other but,

since they are past directed, these experience a contraction of the universe that tends to

bring them closer. They will effectively move away from each other only if their velocity

is larger than the “contraction” velocity of the universe, that is, if their comoving radius

is inside the Hubble sphere. The remaining null geodesics, lying outside 1/H(t), will

inevitably get closer to each other driven by the “contraction” of the spacetime, and are

indeed trapped.

2.3.1 Cases A.I and A.II (λ0, R0)

For a given congruence of outgoing null geodesics that is trapped at t = 0, it is required

that θ+ < 0, which means that

ȧ(0) >
1

r(0)
→ ȧ(0)r(0) > 1. (2.3.3)

The existence of a defocusing point at a finite affine distance t = t0 requires the condition

ȧ(t0) =
1

r(t0)
→ ȧ(t0)r(t0) = 1. (2.3.4)

Hence, a relative deceleration towards the past is required. Also, it is necessary that the

decreasing scale factor does not vanish in the interval t ∈ [0, t0). Otherwise, we would

have θ+(t) = −∞, thus signaling the formation of a focusing point, which we were trying

to avoid (the limiting case in which a(t0) → 0 slow enough so that θ+(t0) → 0 is discussed

below). The condition in Eq. (2.3.4) must be satisfied for some value of t0 along all

congruences. As shown next, this imposes a stronger constraint on ȧ(t).

Proposition: All congruences of null geodesics are untrapped at finite affine distance

λ corresponding to time t if and only if the derivative of the scale factor with respect to

the time, ȧ(t), vanishes.

Proof: Let us assume that ȧ(t) does not vanish for any value of t, and show that

this implies the existence of at least a past-directed null geodesic that does not have a

defocusing point at finite affine distance. Let us take a reference geodesic, for which

1 − ȧ(0)r(0) < 0, (2.3.5)

thus implying that θ+(0) < 0, while

1 − ȧ(t0)r(t0) (2.3.6)
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has an indefinite sign. Let us now multiply r(t) by a positive constant factor N , which

yields another geodesic with a larger value of the radius. We still have that

1 − ȧ(0)Nr(0) = 1 − ȧ(0)r(0) − (N − 1)ȧ(0)r(0) < 0, (2.3.7)

so this second congruence was still trapped originally. Moreover, it always exists a value

of N such that

1 − ȧ(t0)Nr(t0) < 0. (2.3.8)

This holds for any finite value of t0, thus showing that there always exists a past-directed

outgoing null geodesic that remains trapped, thus reaching a contradiction.

Regarding the converse implication, if we impose ȧ(t0) = 0, then the expansion of any

past-directed congruence of null geodesics is positive.

Hence, spacetimes in this class are geodesically complete if and only if the derivative

of the scale factor vanishes at some t = t0, while the scale factor remains non-zero at

t = t0. Indeed, the limiting case in which also the scale factor vanishes is not admissible

— as it would entail a manifest curvature singularity. For t < t0, in order to avoid the

formation of further trapped surfaces, ȧ(t) ⩽ 0. Hence, spacetimes in this class describe a

bounce between a contracting and an expanding universe where a future trapped region is

continuously connected with a past trapped region, being both delimited by the trapping

horizon r = ±1/a(t).

t

Figure 2.3: Bouncing universe: behavior of the scale factor a(t), of its derivative to respect to
time and of the Hubble radius 1/|H(t)| = a(t)/ȧ(t). The defocusing point ȧ(t) = 0 is reached in a
finite affine distance and it is preceded by a “contracting” phase in which ȧ(t) < 0.

Note that we are implicitly assuming that the scale factor is an analytic function of time

which, if dropped, would allow also the possibility that a(t) vanishes in a closed interval or

half-line (in the latter case, the geometry describes an expanding universe emerging from

a stationary phase [52]). Analytical solutions that are effectively emergent are however

possible, for example the expansion can be preceded by an oscillatory phase in which ȧ is

0 on average (see [53] for a specific realization). These solutions embody a hybrid nature,

drawing from both emergent and bouncing universe scenarios, as ȧ assumes also negative

values during the “emergent” phase.

As we have mentioned above, the expansion does not vanish at the same value of
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t t

Figure 2.4: Effectively emergent universe and emergent universe: behavior of the scale factor a(t), of
its derivative to respect to time and of the Hubble radius 1/|H(t)| = a(t)/ȧ(t). The defocusing point
ȧ(t) = 0 is reached in a finite affine distance and it is preceded either by a “stationary” phase in which
ȧ(t) is 0 on average (in the effectively emergent case — left panel) or exactly 0 (in the emergent case
— right panel).

the affine parameter for all null outgoing geodesics. Furthermore, the homogeneity and

isotropy assumptions strongly constrain the behavior of ingoing geodesics with respect to

the outgoing ones. Indeed, if θ+(t) = 0, then

θ−(t) = − 4

a2(t)r(t)
⩽ 0. (2.3.9)

Hence, it is not possible to achieve at the same time θ+(t) = 0 and θ−(t) ⩾ 0 for all

null geodesics (Case A.II) within the family of geometries being considered.

An analogous reasoning leads to the same conclusions also for the case B.II, B.IV and

C.II, thus we neglect this discussion about ingoing geodesics in the next sections.

2.3.2 Cases B.I and B.II (∞, R∞)

This case is similar to A.I, but now the defocusing point is at an infinite affine distance

λdefocus = ∞. Since a(t) is always finite, this means that tdefocus = −∞. We have that the

integral

λdefocus = λ∗ + 2

∫ 0

−∞
dt a(t) (2.3.10)

is divergent, while the integral

ln

(
δA+|λ=∞
δA+|λ=λ∗

)
=

∫ 0

−∞
dt a(t)θ+(t) =

∫ 0

−∞
dt

2

a(t)

(
−ȧ(t)+

1

r(0) +
∫ 0
t dt′/a(t′)

)
(2.3.11)

must not be negatively divergent (> −∞), where we have used the expression r(t) =

r(0) +
∫ 0
t dt′/a(t′) obtained along geodesics, with tangent vector given by Eq. 2.1.1.

Proposition: All congruences of null geodesics are untrapped at infinite affine distance

if and only if the derivative of the scale factor with respect to the time, ȧ(t), vanishes for
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Figure 2.5: Penrose Diagram of a bouncing or emergent universe.

t→ −∞.

Proof: The proof proceeds as the one for Case A.I simply putting t0 = −∞.

Example: Let us require to have a regular expanding universe at any time thus

ȧ(t) ⩾ 0 and a(t) > 0 for any t. In order to have the defocusing at infinite affine distance

we then need limt→−∞ ȧ(t) = 0. A simple analytic profile for a(t) is then a(t) = a0+b0e
Ht,

that is a sort of “regularized inflation”. With this choice the integral in Eq. (2.3.11) goes

t

Figure 2.6: Regular inflating universe: behavior of the scale factor a(t), of its derivative to respect
to time and of the Hubble radius 1/|H(t)| = a(t)/ȧ(t). The defocusing point ȧ(t) → 0 is reached
in an infinite affine distance.

to +∞. It is possible to prove that this is a generic feature of each regular spacetime

entering this case.

Proposition: For a regular expanding flat FLRW spacetime with complete defocusing

at infinite affine distance [ȧ(t) vanishes for t → −∞] the integral in Eq. (2.3.11) diverges

positively, ln
(
δA+|λ=∞/δA+|λ=λ∗

)
= +∞.

Proof: If the spacetime is regular, a(t) ̸= 0 ∀t, then the first term in the integral
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Eq. (2.3.11), ∫ 0

−∞
dt

(
− 2

ȧ(t)

a(t)

)
, (2.3.12)

is negative but finite. Indeed, if a(t) ̸= 0 the integrand in the equation above is finite,

thus the integral from 0 to tB with tB arbitrarily small, but finite, cannot diverge. On the

other hand, since a(t) is a monotonically increasing function in the interval t ∈ [−∞, tB]

and it starts from a value a(−∞) > 0, we have∫ tB

−∞
dt

(
− 2

ȧ(t)

a(t)

)
>

∫ tB

−∞
dt

(
− 2

ȧ(t)

a(−∞)

)
= −2

(
a(tB)

a(−∞)
− 1

)
> −∞. (2.3.13)

Let us therefore focus on the second term:∫ 0

−∞

2 dt

a(t)
[
r(0) +

∫ 0
t dt′/a(t′)

] . (2.3.14)

As mentioned before, we are choosing a reference point λ∗ corresponding to t = 0 at

which δA is finite4 and thus a(t = 0) = a0 is a finite positive number. Since a(t) is a

monotonically increasing function from −∞, a(t) < a0 in all the interval [0,−∞) thus∫ 0

−∞

2 dt

a(t)
[
r(0) +

∫ 0
t dt′/a(t′)

] > ∫ 0

−∞

2 dt

a0

[
r(0) +

∫ 0
t dt′/a(t′)

] . (2.3.15)

We can split this integral into two pieces by defining a negative value of t, tB1,∫ 0

−∞

2 dt

a0

[
r(0) +

∫ 0
t dt′/a(t′)

] =

∫ 0

tB1

2 dt

a0

[
r(0) +

∫ 0
t dt′/a(t′)

]+

∫ tB1

−∞

2 dt

a0

[
r(0) +

∫ 0
t dt′/a(t′)

] ,
(2.3.16)

with the first term being finite, so that any divergent behavior (if present) is isolated in

the second term. Let us therefore focus on this second term, introducing another auxiliary

value of the time tB2 > tB1 and expanding a(t) near −∞ as a(t) = a−∞ +a1/t+a2/t
2 + ...,

so that ∫ tB1

−∞

2dt

a0

[
r(0) +

∫ 0
t dt′/a(t′)

]
=

∫ tB1

−∞

2dt

a0

[
r(0) +

∫ 0
tB2

dt′/a(t′) +
∫ tB2

t dt′/ (a−∞ + a1/t′ + a2/t′2 + . . . )
]

=

∫ tB1

−∞

2dt

a0

[
r(tB2) +

∫ tB2

t dt′ (1/a−∞ + b1/t′ + b2/t′2 + . . . )
]

=

∫ tB1

−∞

2dt

a0 [g(tB2) − t/a−∞ − b1 ln |t| + b2/t+ . . . ]
, (2.3.17)

where we introduced g(tB2) = r(tB2) + tB2/a−∞ + b1 ln |tB2|− b2/tB2 that is not a function

4This is always possible through a linear rescaling of the time coordinate t → t+ c with c an arbitrary
constant.

31



Figure 2.7: Penrose diagram of a regular universe of Case B.I (asymptotic defocusing e.g. a(t) =
a0 + b0e

Ht)

of t. Since the integrand goes to 0 in the t→ −∞ limit at most as 1/t, the integral in the

last line is divergent.

This analysis is general enough for being in principle applicable also to the case B.II.

Nonetheless, as explained at the end of Sec. 2.3.1, case B.II, cannot be realized, within the

family of geometries being here considered, given that the conditions θ+ = 0 and θ− ⩾ 0

are never realized simultaneously for all null geodesics.

2.3.3 Cases B.III and B.IV (∞, 0)

In this cases, the defocusing point is at an infinite affine distance and the integral in

Eq. (2.3.11) is divergent (−∞). As discussed below, these case are singular.

Proposition: If the integral in Eq. (2.3.11) is negatively divergent (it goes to −∞),

then a(t) → 0 for some t, and thus the spacetime is also singular.

Proof: We will prove the equivalent proposition: if a(t) ̸= 0 ∀t (including the limit

t→ −∞), then the integral Eq. (2.3.11) cannot be negatively divergent. Indeed, the term

proportional to 1/r(t) is always positive thus, to prove that the integral is greater than

−∞, we only need to focus on the following piece∫ 0

−∞
dt

(
− 2

ȧ(t)

a(t)

)
. (2.3.18)

which however, as already proved, is never negatively divergent [see, in particular, Eq. (2.3.13)

in the previous section].

Finally note, that the above reasoning is strictly needed for case B.III only, given that

case B.IV, as explained at the end of Sec. 2.3.1, is not realizable within the family of

geometries being considered.

2.3.4 Cases C.I and C.II (∅, 0)

In this case, there is some geodesic for which θ+ remains negative for λ→ +∞ (t→ −∞).

This can happen only if ȧ(t) remains positive in the infinite domain (−∞, 0]. Thus, if a(t)
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is finite at the point t = 0, it must have crossed or reached the value of 0 at some point in

the past. This proves that there is a curvature singularity, and therefore these spacetimes

cannot be regular.

Note that, as explained at the end of Sec. 2.3.1, aside from this singular behavior, it

would not be possible to realize Case C.II within the family of geometries being considered.

Figure 2.8: Scheme of the allowed flat homogeneous and isotropic regular geometries. These
geometries are classified according to: i) the value of the affine parameter at which all outgoing
null geodesics are defocused λdef so that θ+(λdef ) = 0; ii) the area element orthogonal to the
congruence at λdef ; iii) the derivative of the scale factor for λ > λdef that is in the past with
respect to the defocusing (t < tdef ).

2.4 Regular Open FLRW universes

We shall now discuss in detail the different cases of Section 1.1 for an open FLRW universe.

The expansion of ingoing and outgoing null geodesics, Eq. (2.1.2), particularized to k = −1,

i.e. R(r) = tan r, is

θ±(t) =
2

a2(t)

[
−ȧ(t) ± 1

tanh r(t)

]
=

2

a2(t) tanh r(t)
[1 − ȧ(t) tanh r(t)] . (2.4.1)

2.4.1 Cases A.I and A.II (λ0, R0)

Proposition: All congruences of null geodesics are untrapped at finite affine distance λ

corresponding to time t if and only if ȧ(t) ⩽ 1.

Proof: Let us assume that ȧ(t) remains greater than 1 for any value of t, and show

that this implies the existence of at least a past-directed null geodesic that does not have

a defocusing point at finite affine distance. Let us take a reference geodesic, for which

1 − ȧ(0) tanh r(0) < 0, (2.4.2)

thus implying that θ+(0) < 0, while

1 − ȧ(t0) tanh r(t0) = 0. (2.4.3)
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Let us now multiply r(t) by a positive constant factor N , which yields another geodesic

with a larger value of the radius. Then we have that:

tanhNr(t) = M tanh r(t) (2.4.4)

with M > 1 since tanh(x) is monotonically increasing in [0,+∞). Thus we still have that

1 − ȧ(0) tanhNr(0) = 1 − 2Mȧ(0) tanh r(0) =

1 − ȧ(0) tanh r(0) − ȧ(0)(M − 1) tanh r(0) < 0, (2.4.5)

so this second geodesic was still trapped originally. Moreover, it always exists a value of

N such that

1 − ȧ(t0) tanhNr(t0) = 1 −Mȧ(t0) tanh r(t0) < 0. (2.4.6)

This holds for any finite value of t0, thus showing that there always exists a past-directed

outgoing null geodesic that remains trapped, thus reaching a contradiction. Regarding

the converse implication, if we impose ȧ(t0) ⩽ 1, then ȧ(t0) tanh r(t0) ⩽ tanh r(t0) ⩽ 1

and thus the expansion of any past-directed null geodesic is positive.

Note that, for open universes, it is possible to have singular spacetimes without trapped

regions if a(t) vanishes, for instance a(t) = et. In this case there is a naked curvature

singularity at t = −∞ where θ± = ±∞, which is therefore not a focusing point. Hence,

the condition ȧ ⩽ 1 is necessary, but not sufficient for regularity.

As in the flat case, the homogeneity and isotropy assumptions strongly constrain the

behavior of ingoing geodesics with respect to the outgoing ones. Indeed, if θ+(t) = 0, then

θ−(t) = − 4

a2(t) tanh r(t)
⩽ 0. (2.4.7)

Hence, it is not possible to achieve at the same time θ+(t) = 0 and θ−(t) ⩾ 0 for all null

geodesics within the family of geometries being considered, and therefore case A.II cannot

be realized.

An analogous reasoning leads to the same conclusions for cases B.II, B.IV and C.II, thus

we will not repeat explicitly this discussion about ingoing geodesics in the next sections.

2.4.2 Cases B.I and B.II (∞, R∞)

In this case, the defocusing point is at an infinite affine distance, and the integral in

Eq. (2.3.11) is convergent.

Proposition: This case cannot be realized, if one pushes the defocusing point to ∞
then the integral in Eq. (2.3.11) diverges.

Proof: To have the defocusing point at ∞, ȧ → 1 for t → −∞. This can be seen

following the proof of Case A.I simply putting t0 = −∞. If ȧ → 1 for t → −∞ it always

remains positive in the infinite domain (−∞, t(0)], thus if a(t) is finite at the point t = 0,

it must have crossed or reached the value of 0 at some point in the past. This proves that

the integral in Eq. (2.3.11) diverges and that there must be a curvature singularity.

As explained at the end of Sec. 2.4.1, Case B.II cannot be achieved within the family

of geometries being considered.
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2.4.3 Cases B.III and B.IV (∞, 0)

The defocusing point is at an infinite affine distance and the integral in Eq. (2.3.11) is

divergent (it goes to −∞).

Proposition: This case is singular.

Proof: If ȧ → 1 for t → −∞ it always remain positive in the infinite domain

(−∞, t(0)), thus if a(t) is finite at the point t = 0, it must have crossed or reached

the value of 0 at some point in the past. This proves that there must be a curvature

singularity.

Note that, as explained at the end of Sec. 2.4.1, it is not possible to achieve Case B.IV

within the family of geometries being considered.

2.4.4 Cases C.I and C.II (∅, 0)

This case is singular, and the proof proceeds as for case B.III.

As discussed at the end of Sec. 2.4.1, it is impossible to achieve case C.II within the

family of geometries being considered.

Figure 2.9: Scheme of the allowed open homogeneous and isotropic regular geometries. These
geometries are classified according to: i) the value of the affine parameter at which all outgoing
geodesics are defocused λdef | θ+(λdef ) = 0; ii) the value of the affine parameter at which the
universe ceases to contract/expand that is λȧ=0; iii) the area element orthogonal to the congruence
at λdef ; iv) the derivative of the scale factor for λ > λdef , i.e. for t < tdef .

2.5 Regular Closed FLRW universes

In the case of a closed universe, the non-compactness assumption of the Penrose theorem

is no more guaranteed, thus in general we would have to rely on the Hawking-Penrose

theorem. However, as we will show in the following, in the specific case of a homogeneous

and isotropic universe (describable by the FLRW metric), simpler assumptions suffice to

prove the presence of a singular focusing point.

The first part of Penrose’s theorem makes no use of the presence of a non-compact

Cauchy hypersurface, and thus is also valid for any generic closed spacetime, it shows that
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an initial negative expansion and the null convergence condition are enough to prove the

presence of a focusing point in which the expansion will become infinitely negative. What

is no more guaranteed for closed spacetimes is that this focusing point is singular.

The expansion of null geodesics in a closed FLRW spacetime is given by:

θ± =
2

a2(t)

[
−ȧ(t) ± 1

tan r(t)

]
. (2.5.1)

Note that 1/ tan r is a periodic function thus we can evaluate it in r ∈ [0, π], taking values

∞ for r → 0, 0 for r → π/2 and −∞ for r → π. Both poles (0 and π) correspond to

R(r) = 0, and the reason for which the expansions there blow up with different signs is

geometrical and essentially the same reason for which the expansion of geodesics in flat

Minkowski blows up at r = 0. These points are then regular focusing points.

Using this expression for the expansions we now show that, in presence of a trapped

region where both expansions θ± are negative, a singular focusing point is always present

if the timelike convergence condition holds (this implies the strong energy condition in

GR). In order to isolate the divergent behavior at the focusing point, while avoiding the

divergences caused by the poles, it is useful to introduce the following quantity:

θ = θ+ + θ− = −2ȧ(t)

a2(t)
. (2.5.2)

If both θ± are negative initially, and thus a trapped surface is present, then also θ will have

an initial negative value θ0 < 0. On the other hand, θ is the expansion of a past-directed

time-like congruence of geodesics with tangent vector Ua = (−2, 0, 0, 0)/a(t)) and, as such,

it satisfies the Raychaudhuri equation with zero twist and shear:

dθ

dλ
= −θ

2

3
−RµνU

µUν . (2.5.3)

From the timelike convergence condition (Rµνu
µuν ⩾ 0 ∀uµ timelike) — or the strong

energy condition if one assumes the Einstein field equations — we have that

dθ±
dλ

⩽ −
θ2±
3
, (2.5.4)

so that, in the best case scenario (the expansion taking the least negative value possible),

we have
dθ

dλ
= −θ

2

3
. (2.5.5)

Solving this differential equation results in the expression

θ−1 = θ−1
0 +

λ

3
, (2.5.6)

which indicates that θ will reach −∞ for a finite value of the affine parameter (in particular,

−3θ−1
0 ).

On the other hand, taking a look at the functional form of θ in Eq. (2.5.2), we see that

it can reach −∞ only if a(t) = 0 or ȧ(t) → +∞. Both cases correspond to a divergence of

the Ricci scalar in Eq. (2.1.8) and thus this focusing point is associated with a curvature
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Figure 2.10: Path of geodesics in a two-dimensional closed spacetime. As we can see the ingo-
ing/outgoing nature of trajectories changes at the equator and the poles.

singularity.

In summary, we have proved that a spacetime satisfying the following assumptions

cannot be geodesically complete:

• It is a homogeneous and isotropic solution of Einstein equations.

• The timelike convergence condition holds.

• At some point a closed past-trapped surface forms.

Based on this result, let us continue with our aim of characterizing the different possible

regular solutions with a trapped region, following the classification discussed in Section

Section 1.1.

2.5.1 Case A

The reasoning is similar to the corresponding case for flat spacetime but taking into account

that now θ+ < 0 does not correspond necessarily to a trapped region, since outgoing and

ingoing geodesics exchange roles for some values of r (see Fig. 2.10). We thus have to check

the sign of both θ+ and θ−, and a trapped region is indeed present if both are negative.

Proposition: All congruences of null geodesics are untrapped at finite affine distance

λ corresponding to time t if and only if the derivative of the scale factor with respect to

the time, ȧ(t), vanishes.

Proof: Let us assume that ȧ(t) does not vanish but remains positive for any value

of t. Then for any t all the geodesics for which −ȧ(t) < 1/ tan r(t) < ȧ(t) would have

θ± < 0 and thus would be trapped. These trapped geodesics always exist. Indeed since,

for the periodic nature of the metric functions, r can be taken in the finite interval [0, π],

it is always possible to choose an initial value for the photon position r(0) such that

r(t) is sufficiently near π/2 to satisfy the previous trapping condition. Conversely, if ȧ(t)

becomes negative, θ+ < 0 only for geodesics with 1/ tan r(t) < ȧ(t) < 0 while θ− < 0 only

for geodesics with 1/ tan r(t) > −ȧ(t) > 0. Thus there are no geodesics for which both θ+
and θ− are negative, and therefore no trapping region if ȧ(t) becomes negative.
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Hence, also for the closed case, this class describes a bounce with ȧ(t) vanishing between

a contracting and an expanding universe (or, if we drop the assumption that the scale factor

is an analytic function of time, an expanding universe emerging from a stationary phase).

For what regards the distinction between case A.I and A.II, we saw that in a closed

universe outgoing and ingoing geodesics exchange roles for some values of r (see Fig. 2.10).

The homogeneity and isotropy assumption strongly constrain the behavior of one fam-

ily of geodesics with respect to the other. Indeed, if θ+(t) = 0, then

θ−(t) = − 4

a2(t) tan r(t)
, (2.5.7)

and if θ−(t) = 0, then

θ+(t) = − 4

a2(t) tan r(t)
. (2.5.8)

Hence, it is not possible to achieve at the same time θ+(t) = 0 and θ−(t) ⩾ 0 (or θ−(t) = 0

and θ+(t) ⩾ 0) for all null geodesics (case A.II) within the family of geometries being

considered.

An analogous reasoning leads to the same conclusions also for the case B.II, B.IV and

C.II thus we neglect this discussion about ingoing geodesics in the next sections.

2.5.2 Case B

Analogously to the Case A, all congruences of null geodesics are untrapped at infinite

affine distance if and only if the derivative of the scale factor with respect to the time,

ȧ(t), vanishes for t→ −∞. The proof proceeds as in Case A, simply considering t→ −∞.

Differently from the flat and open case, we can no longer use the integral in Eq. (1.1.1)

to distinguish between cases B.I (no focusing point) and B.III (asymptotic focusing point)

since in this case this integral always diverges for long enough geodesics (even for regular

spacetimes), due to the divergent behavior of the term 1/ tan [r(t)] in the expansion.

However, the presence of a singularity can be still detected in the behavior of geodesics

since it is signaled by the vanishing of the universe radius a(t) that causes the negative

divergence of both expansions, θ± → −∞.

Note that, as explained in 2.5.1, it is not possible to achieve Case B.II and B.IV within

the family of geometries being considered.

2.5.3 Case C

We can show that curvature invariants must be singular in this case. By definition, there

is now some congruence for which both θ± remain negative for λ→ +∞ (t→ −∞). From

Eq. (2.5.1), we can conclude that this can happen only if ȧ(t) remains positive in the semi-

infinite domain (−∞, 0]. As a consequence, if a(t) is finite at t = 0, it must have crossed

or reached the value of 0 at some point in the past due to its derivative being definite

positive in a semi-infinite domain. This proves that there is a curvature singularity.

Note that, as explained in 2.5.1, it is not possible to achieve Case C.II within the

family of geometries being considered.
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Figure 2.11: Scheme of the allowed closed homogeneous and isotropic regular geometries. These
geometries are classified accprding to: (i) the value of the affine parameter at which all outgoing
geodesics are defocused λdef , so that θ+(λdef ) = 0; (ii) a(λdef ) or equivalently the value of both
expansions for the same value of the affine parameter [note that, if a(λdef ) = 0, then θ±(λdef ) =
−∞]; (iii) the derivative of the scale factor for λ > λdef , i.e. for t < tdef .

2.6 Conclusions

This chapter delves into the behavior of null geodesics within various spacetime geometries

in the context of cosmology. The investigation primarily focused on the behavior of the

expansion of null congruences with the aim of classifying from a geometric standpoint

the possible regularizations of the initial singularity. Distinct scenarios emerged based on

the behavior of the expansion and the presence and extension of trapped regions. These

scenarios are:

• A bouncing universe.

• An expanding universe emerging from a stationary phase.

• An asymptotically emergent universe where the scale factor is always decreasing

towards the past but never vanishes. An example of scale factor with these char-

acteristics is an inflating universe, with a characteristic exponential behavior of the

scale factor but with the addition of a constant that corresponds to the asymptotic

value of a(t) towards the past.

The analysis of closed universes presented unique challenges due to the violation of the

non-compactness assumption and to the diverging nature of certain functions influencing

geodesic expansions. Despite this, it was established that, also in this case, true defocusing

points at finite or infinite affine distance are contingent upon specific behaviors of the scale

factor derivative with respect to time. Moreover, the absence of defocusing leads to the

inevitable occurrence of a curvature singularity.

Regarding the physical interpretation of the bouncing solutions, it is interesting to

keep in mind the following consideration. The metric alone does not provide any real

information regarding the direction in which time flows. GR is time-symmetric, as flipping
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the t-direction on a globally hyperbolic manifold results in another valid solution to the

field equations.5

The scenario of a universe contracting to a minimum scale factor and then expanding

stems from the implicit assumption that the direction of time remains the same before and

after the bounce. However, it is possible to imagine a scenario in which the two parts of

spacetime separated by the defocusing point have opposite time directions. In this case,

we would have two identical expanding bouncing universes joined at the defocusing point

(the bounce). The reason why we expect the inversion of time direction to be possible at

the bounce is because, besides being a stationary point for the expansion of the universe, it

is also a point at which we expect quantum gravitational effects to play an important role,

causing this possible inversion. If for example, as in the Hartle-Hawking no boundary

proposal [54], near the would-be-singularity time becomes imaginary, it would lose any

privileged direction there, making the subsequent appearance of an opposite arrow of time

more natural. Furthermore, this scenario seems also to connect to similar ideas advanced

to address the so called “arrow of time” problem [55, 56].

In conclusion, this study elucidates the diverse range of regular possibilities within

cosmological models, shedding light on the interconnections between geodesic behavior,

singularities, and the evolution of the universe. These findings not only contribute to our

theoretical understanding of the universe’s behavior but also pave the way for refining

cosmological models based on observational data and theoretical considerations. Efforts

to probe these possible regularizations with empirical observations and astrophysical data

would be instrumental in refining and validating cosmological models. Even if it seems

difficult to test such a remote region of the cosmological spacetime, there are already works

showing how quantum gravitational effects responsible for the regularization of the initial

singularity can leave some imprints on observables of the late-time universe [57–59]

5Note that, due to the fact that at the bounce ȧ(t) = 0, this would be possible while keeping the metric
components at least C1, and could be possibly fine-tuned so that at the bounce one also has ä(t) = 0 so
as to ensure regularity of curvature tensors as well.
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Part III

Global solutions and their stability

All things by immortal power,

Near or far,

Hiddenly

To each other linked are,

That thou canst not stir a flower

Without troubling of a star

—– Francis Thompson
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Chapter 3

Background: constructing regular

alternatives to black holes

In this chapter, we show how to construct specific global solutions that embody the pre-

viously classified local regularizations and we will discuss about their self-consistency and

stability. We will focus on metrics describing both static and rotating compact objects.

Instead, we will not delve into the specifics of the aforementioned global regular metric

describing cosmological spacetime as bouncing or emergent universes. For further infor-

mation, in addition to the previously cited literature, refer also to [60–63].

Conditions for the regularity of the curvature scalars

In order to prove the regularity of the considered alternative models, we will always check

the absence of curvature singularities.

In spacetimes that are both static and spherically symmetric, the Kretschmann scalar,

being a sum of squares, is always non-negative. For this reason, it can be demonstrated

that in such spacetimes, the Kretschmann scalar is bounded if and only if all the compo-

nents of the Riemann tensor in an orthonormal frame are also bounded. Thus, in a static

and spherically symmetric spacetime, the boundedness of the Kretschmann scalar suffices

to guarantee that all scalar polynomials constructed from the Riemann tensor (along with

the metric and the Levi-Civita fully antisymmetric tensor) are also bounded [64].

When these symmetry assumptions are removed, the situation becomes significantly

more complex. In a generic spacetime, there are seventeen algebraically independent cur-

vature invariants. A comprehensive set of these invariants has been provided in [65]. To

assert that a spacetime is devoid of scalar polynomial curvature singularities, theoretically,

the boundedness of all these invariants must be verified. Fortunately, the effective models

examined in this thesis exhibit a high degree of symmetry, thus obviating the need for

this laborious verification process in most instances. For example, the most frequently

encountered simply connected rotating regular black holes are classified as Petrov type

D and Segre type [(1, 1), (1, 1)]. In such cases, the number of independent curvature

invariants is reduced to four [66, 67]. Similarly, in multiply connected models, the regular-

ization process is generally designed in such a manner that the boundedness of curvature

invariants is immediately apparent.
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The effective matter content

Based on the assumptions outlined in Part I, the effective models we aim to develop do not

necessarily have to be solutions of General Relativity. Nevertheless, Einstein’s equations

can still be utilized to study the geometries and, specifically, to measure the deviations

from vacuum GR. Our models are intended to represent, to a first approximation, isolated

astrophysical objects, and any deviation from vacuum GR should be attributed to the

hypothetical new physics assumed to prevent singularity formation — rather than to the

presence of ordinary matter. In some cases, we will calculate the Einstein tensor and

set it equal to the stress-energy tensor of what we refer to as effective sources. This

term is chosen for its convenience and intuitiveness, but it should be understood that

we do not assume the existence of any real matter source. Therefore, one should not be

concerned if the effective sources appear ’exotic’, for example, due to the violation of some

energy conditions. In fact, from our perspective, the violation of energy conditions is not

a disadvantage but rather a necessary feature of singularity regularization. As we will

see, it is often feasible to find classical theories that incorporate these effective models as

solutions. Generally, these theories consist of GR supplemented with some form of non-

linear electrodynamics, meaning the Lagrangian is a non-linear function of the Maxwell

scalar, and potentially a phantom scalar field, i.e. one whose kinetic term has an opposite

sign compared to conventional scalar fields [68–71]. Additionally, such solutions have

been derived in certain specific alternative gravity theories [72–77].

3.1 Spherically symmetric and static models

A static spacetime can be foliated by hypersurfaces orthogonal to a timelike Killing vector

field, denoted as χµ. Spherical symmetry indicates that these hypersurfaces can themselves

be foliated by two-dimensional spheres. One can then introduce a time coordinate t

associated with the orbits of χµ and two coordinates θ and ϕ analogous to standard

spherical coordinates. A fourth coordinate r can be introduced to label the different

spheres within a constant-t hypersurface. This coordinate, termed “radius” for simplicity,

generally lacks direct physical interpretation. In these coordinates, the metric becomes

diagonal and can be expressed as:

ds2 = −e−2ϕ(r)f(r)dt2 +
dr2

f(r)
+ h(r)(dθ2 + sin θ2dφ2) (3.1.1)

One can always redefine the radial coordinate to “gauge away” one between ϕ and h, since

in literature there are examples of both “gauge” choices we will keep both ϕ and h as free

functions in this section. The requirement of asymptotic flatness and of a clearly defined

Newtonian limit can be expressed as straightforward criteria on the free functions f, ϕ,

and h:

f(r)
r→∞−−−→ 1 − 2M

|r|
+O(r−2), e−2ϕ(r) r→∞−−−→ 1 +O(r−2), h(r)

r→∞−−−→ r2(1 +O(|r|−3)

(3.1.2)

This general metric can posses horizons and wormhole throats. To formally characterise

them we need to analyse the expansion of null geodesics. For this purpose, we chose two
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future-directed radial null geodesics with tangent vectors normalized as V+V− = −1:

V µ
+ =

(
−e

ϕ(r)

2
,
f(r)

2
, 0, 0

)
V µ
− =

(
− 1

e−ϕ(r)f(r)
,−1, 0, 0

)
, (3.1.3)

The expansion of such geodesics is then:

θ+ =
f(r)h′(r)

h(r)
θ− = −h

′(r)

h(r)
(3.1.4)

The horizons corresponds to marginally trapped surfaces at which θ+ vanishes, this hap-

pens when f(r) = 0. Wormhole throats corresponds to the surfaces at which both expan-

sions vanish, this happens when h′(r) = 0.

3.1.1 Simply connected solutions: from multiple horizons RBHs to hori-

zonless stars

In literature a vast variety of simply connected solutions (i.e. of the ”multiple horizons”

type) has been explored [78–82]. The defining characteristic of a simply connected space-

time is that any closed path can be contracted to a point, therefore the spheres centred

at the origin will also be contractible to a point, which cannot be anything but the ori-

gin r = 0. Hence, it must be h(0) = 0. Usually a choice of minimal deviation from

Schwarzschild is performed putting

ϕ(r) = 0, h(r) = r2, (3.1.5)

and in analogy with the Schwarzschild metric we can write:

f(r) = 1 − 2m(r)

r
. (3.1.6)

Thus the regularization consist in substituting the usual mass parameter M with what is

usually called Misner-Sharp mass function m(r) [83, 84]. From asymptotic flatness we

require

lim
r→∞

m(r) = M. (3.1.7)

As previously explained, in order to ensure curveture regularity in spherically symmetric

spacetimes it is sufficient to require the boundedness of the Kretschmann scalar. In this

case it reads:

RµναβRµναβ = f ′′(r)2 + 4
f ′(r)2

r2
+ 4

(1 − f(r))2

r4
. (3.1.8)

Imposing the boundedness of RµναβRµναβ translates in a simple requirement on the

Misner-Sharp mass close to r = 0:

m(r) = cℓ−2r3 +O(r4), (3.1.9)
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Model m(r)

Bardeen [78] M r3

(r2+ℓ2)3/2

Hayward [79] M r3

r3+2Mℓ2

Dymnikova [80] M
[
1 − exp(− r3

2Mℓ2
)
]

Fan–Wang [81] M r3

(r+ℓ)3

Table 3.1: Some of the most popular RBH models. More examples e.g. in Refs. [89–93]

with c a dimensionless number of order one and ℓ a non-negative length scale to which we

will refer as “regularizing” or “regularization” parameter1.

Thus, for small r, the metric reads:

ds2 = −[1 − 2cℓ−2r2 +O(r3)]dt2 + [1 + 2cℓ−2r2 +O(r3)]dr2 + r2(dθ2 + sin θ2dφ2),

(3.1.10)

describing a de Sitter core if c > 0, an anti de Sitter core if c = 0 or a Minkowsky core

if c = 0. Indeed, the Einstein tensor for small r becomes the one corresponding to a

(effective) cosmological constant:

Gµν = Λeffgµν =
6c

ℓ2
. (3.1.11)

It is important to note that these geometries are generally non-singular only for r ⩾ 0.

If the coordinate r is allowed to take negative values, spacetime singularities might still

occur, either as divergences in curvature or through geodesic incompleteness [87, 88]. The

restriction of the domain of r to [0,+∞) aligns with the interpretation of r as a radius.

Some widely studied choices of m(r) are summarized in Table 3.1.

For all models, in the limit ℓ → 0 the Schwarzschild metric is recovered. Also the

presence/absence and the number of horizons depend on the value of ℓ. Indeed the horizons

are determined by the roots of f(r) = 0. Since f(r) goes to 1 both at the center and at

infinity and it is continuous, horizons will always be in pair: for any outer event horizon

there will be an inner horizon. Note however that the position of the two horizons can

coincide resulting in a single degenerate horizon. Concluding, depending on the value of

ℓ, we can have three different cases:

• ℓ is in (0, ℓ∗) for some model dependent threshold ℓ∗ and the spacetime presents

multiple horizons.

• ℓ = ℓ∗ the horizons degenerates into a single extremal (i.e. with vanishing surface

gravity) horizon.

• ℓ > ℓ∗ and the spece-time presents no horizons, it describes a regular, horizonless

1In some studies a less stringent regularity condition is imposed: singularities in the curvature scalars
can be present but the stress energy tensor must be integrable [85, 86]. In these case the condition on the
mass parameter near 0 reduces to m(r) ∝ r2
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exotic compact object.

3.1.2 Multiply connected solutions: from hidden wormholes to traversable

wormholes

For this case we will initially work in the gauge in which ϕ(r) = 0 but h(r) is non-trivial,

we will see however that an equivalent choice is to put h(r) = r2 but ϕ(r) ̸= 0. Differently

from the previous case, in multiply connected spacetime the aerial radius
√
h never reduces

to zero. We will assume to have two asymptotically flat regions for r → ±∞ connected

through a global minimum of h, which we locate without loss of generality at r = 0. This

means that:

h(0) = ℓ2 h′(0) = 0 and h′′(0) ⩾ 0 (3.1.12)

with ℓ a length scale that, as in the case of simply connected solutions, we will call

“regularizing” or “regularization” parameter. The Kretschmann scalar is then:

RµναβRµναβ =
3f2h′4

4h4
+ f ′′2 − fh′2

2 + f ′h′ + 2fh′′

h3
+

4 + f ′2h′2 + 2ff ′h′h′′ + 2f2h′′2

h2

(3.1.13)

from which it is clear that no curvature singularities are present if h(r) ̸= 0 for r ∈
(−∞,+∞). Usually in literature we find minimal models in which:

f(r) = 1 − 2M√
h(r)

. (3.1.14)

In these models the geometry of the core will depend on the choice of h(r) and in general it

will not possess any clear interpretation in terms of the three simple maximally symmetric

spaces.

The spacetime presents both horizons located at the roots of f(r) = 0 and wormhole

throats located at the roots of h′(r) = 0, from 3.1.12 is clear that one of these is at r = 0.

Depending on the position of the throat with respect to the horizons, we can have an

hidden throat that is shielded by one or more horizons, a null throat that coincide with an

horizon or a traversable throat that is a timelike hypersurface, not shilded by any horizon

and thus crossable in both ways by causal curves. Usually the “regularizing” parameter ℓ

will enter the metric functions in such a way that depending on its value the spacetime will

interpolate between these three cases. A popular example of this kind of regularization is

the Simpson-Visser (SV) metric [64, 94]:

ds2 = −
(

1 − 2M√
r2 + ℓ2

)
dt2 +

dr2(
1 − 2M√

r2+ℓ2

) + (r2 + ℓ2)(dθ2 + sin2 θdφ2). (3.1.15)

Similar examples are described in [95–97].

The SV model corresponds to the simple choice h(r) = r2 + ℓ2, it is symmetric under

the inversion r → −r and thus describe two identical universes connected by throat at

r = 0, we will refer to the positive-r region as our universe and to the negative-r region as
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the other universe. Depending on the value of ℓ, it can describe three different scenarios:

• if ℓ < 2M there are two horizons one for each universe and r = 0 is an hidden throat,

• if ℓ = 2M the horizons degenerate in one extremal horizon (with vanishing surface

gravity) located at the null throat,

• if ℓ > 2M there are no horizon and the throat at r = 0 is a traversable throat.

For phenomenological applications it is useful to rewrite the SV metric in a different

gauge that correspond to the change of coordinates
√
r2 + ℓ2 → r̃. In this gauge the radial

coordinate is defined in [0,+∞) and every value of r̃ describe a couple of points ±r one

for each universe of the old gauge. The new metric line reads:

ds2 = −
(

1 − 2M

r̃

)
dt2 +

dr̃2(
r̃2−ℓ2

r̃2

) (
1 − 2M

r̃

) + r̃2(dθ2 + sin2 θdφ2) (3.1.16)

that correspond to the line element 3.1.1 with:

ϕ(r) =
1

2
ln

(
1 − ℓ2

r2

)
, f(r) = 1 − 2

r

[
M

(
1 − ℓ2

r2

)
+
ℓ2

2r

]
, h(r) = r2. (3.1.17)

We will use this other gauge in Chapter 6.

3.2 Rotating models

Although precisely measuring the spin of astrophysical black holes can be challenging, it

is well established that their angular momentum is generally non-zero. Consequently, any

phenomenologically relevant model of compact objects must incorporate rotation . How-

ever, this introduces significant challenges, even within General Relativity. For instance,

consider the problem of determining the metric for a star: Birkhoff’s theorem guarantees

that in spherical symmetry, the vacuum metric outside the star is the Schwarzschild met-

ric, so one only needs to solve Einstein’s equations for the star’s interior. In contrast, with

only axial symmetry, there is no assurance that the exterior metric is Kerr, as no analogous

theorem to Birkhoff’s exists in this scenario. Departing from GR, the complications only

increase, making the construction of rotating models from scratch particularly difficult.

Luckily, there exist a method, the Newman-Janis procedure (NJP), to find the sta-

tionary and axially symmetric “counterpart” of a given static spacetime. The NJP was

first identified in the 1960s as a method to connect the Schwarzschild solution with the

Kerr solution. Shortly after, it was employed to derive the Kerr–Newman metric from the

Reissner–Nordström solution [98]. Importantly, the method has been widely applied to

create rotating solutions in alternative gravity theories [99–101] (although see [102]) and

rotating regular black holes [103, 104]. Despite its achievements, the method contains some

perplexing arbitrariness — which we will discuss in more detail below — and a complete

understanding of its mechanism is still missing. Some foundational work has been done

in [105], and further insights were provided by [106–108], more recently, new perspectives

have emerged from the study of scattering amplitudes [109, 110]. Nevertheless, the status

of the NJP remains highly controversial to this day.
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In our framework, spacetimes generated using the NJP are valid examples since we are

considering them from an “effective” perspective and we are focusing on phenomenological

uses only; however, the method’s limitations are significant and must be acknowledged.

There exist two version of the NJP, for the details about both of them, we refer the

reader to the original papers [111–113]. Here we only report the final form of the rotating

version of the metric 3.1.1 obtained with the most modern version of the method:

ds2 =
Ψ

Σ

[
−
(

1 − 2H

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2 +

A sin2 θ

Σ
dφ2 − 4Ha sin2 θ

Σ
dt dφ

]
, (3.2.1)

where

Σ = K + a2 cos2 θ, 2H(r) = K − f(r)h(r), ∆ = f(r)h(r) + a2,

A =
(
K + a2

)2 − a2∆ sin2 θ, K = h(r)eϕ(r).

The previously mentioned arbitrariness of the method is encoded in the arbitrary con-

formal factor Ψ(r, θ). In order to recover the Kerr metric from the Schwarschild one, we

need to impose Ψ(r, θ) = Σ(r, θ) that seems to be a very natural choice. Furthermore, if a

metric can be interpreted as solution of some non-linear electrodynamics, that is the case

for many regular black holes metrics, the field equations imply the same condition Ψ = Σ.

However more generally one can impose only to recover the original static metric in the

limit a→ 0 which means to impose

lim
a→0

Ψ(r, θ) = r2. (3.2.2)

3.2.1 Simply connected solutions

Using as static seed the popular simple connected regular solutions described in Sec-

tion 3.1.1 (f(r) = 1− 2m(r)
r , ϕ(r) = 0 and h(r) = r2) and making the simple choice Ψ = Σ

one obtains from 3.2.1 a metric similar to the Kerr one but with a mass function m(r) in

place of the mass parameter, the so called Gürses-Gürsey metric:

ds2GG = −
(

1 − 2m(r)r

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2 − 4m(r)a sin2 θ

Σ
dt dφ+

A sin2 θ

Σ
dφ2

(3.2.3)

where
Σ = r2 + a2 cos2 θ, ∆ = r2 + a2 − 2m(r)r

A =
(
r2 + a2

)2 − ∆a2 sin2 θ

Note however that there can be motivations to take into account also a possible angular

dependence of the mass function (assuming m = m(r, θ)), for example if one wants to

obtain a solution that respects the locality principle [114–116]. The general properties of

the spacetime in 3.2.3 have been investigated in [117, 118]. It is Petrov type D and thus

it has four independent second-order curvature invariants. Imposing their boundedness

we obtain the same conditions that guaranteed regularity for the static and spherically
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symmetric case:

m(0) = m′(0) = m′′(0) = 0 (3.2.4)

However if we take m(r) = cℓ−2r3 as for the static case, the curvature invariants exhibit

a bizarre behavior near the would-be singularity (i.e. r = 0 and θ = π
2 ). Specifically, they

are typically proportional to:

r2

r2 + a2 cos2 θ
. (3.2.5)

This means that the limit r → 0, θ → π/2 does not exist. Indeed if one take before the

limit r → 0 keeping θ fixed one gets zero while if one takes before θ → π/2 and then r → 0

one gets a finite non-zero result. In other words, the curvature invariants are bounded but

not continuous at the would-be singularity. Moreover, since in these models the ring r = 0

can be crossed in finite proper time for any θ ̸= π/2, the maximal analytical extension

of these spacetimes generally reaches negative values of r, similar to the Kerr spacetime.

In this domain, the Killing vector related to rotational symmetry can become timelike,

suggesting that the spacetime can contain closed timelike curves. Additionally, various

commonly adopted forms of m(r) exhibit poles in the r < 0 region, potentially indicating

new spacetime singularities [87, 88]. Both these problems can be circumvented introducing

an angular dependence in the mass function as in the examples previously cited [114–116].

3.2.2 Multiply connected solutions

Using as static seed one of the most popular model of multiply connected regular solutions,

i.e. the SV model described in Section 3.1.2 (f(r) = 2M√
r2+ℓ2

, ϕ(r) = 0 and h(r) = r2 + ℓ2),

and making the simple choice Ψ = Σ, one obtains from 3.2.1 the following line element:

ds2 = −

(
1 − 2M

√
r2 + ℓ2

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2 − 4Ma sin2 θ

√
r2 + ℓ2

Σ
dt dφ+

A sin2 θ

Σ
dφ2,

(3.2.6)

where now Σ,∆ and A are

Σ = r2 + ℓ2 + a2 cos2 θ

∆ = r2 + ℓ2 + a2 − 2M
√
r2 + ℓ2,

A =
(
r2 + ℓ2 + a2

)2 − ∆a2 sin2 θ.

This spacetime is not algebraically special, however its regularity is manifest in these

coordinates. Indeed, for every value of ℓ ̸= 0 the Kerr singularity is excised and r = 0

becomes a regular surface of finite size (ℓ2) which observers may cross: a wormhole throat.

Like in the corresponding static model, r is defined in (−∞,∞) and the metric is symmetric

under the reflection r → −r, thus the spacetime is composed of two identical universes

glued at r = 0 where the wormhole throat lies. This throat can be traversable or null

and can or cannot be shielded by one, two (one for each universe) or four (two for each

universe) horizons, depending on the value of ℓ and a. Indeed, the horizons lies at roots
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of ∆ = 0:

r2± =
(
M ±

√
M2 − a2

)2
− ℓ2 (3.2.7)

For further details see the original papers. [104, 119]

3.3 The “regularization” parameter

We have observed that regularizing the singularity usually introduces a new length scale

ℓ, which influences the curvature near the would-be singularity. In the simply connected

case, ℓ2 is proportional to the inverse of the effective cosmological constant associated with

the dS or AdS core geometry. In the multiply connected case, ℓ2 represents the area of

the throat that replaces the singularity.

To better understand the significance of this regularization scale, consider the gravi-

tational collapse of some energy density, assuming simplistically that the collapse follows

General Relativity predictions until a certain threshold, beyond which new physical ef-

fects dominate. If these new effects are related to quantum gravity, might be linked to

the Planck scale, the presumed scale of quantum gravity. Choosing a specific Planck-

scale quantity involves assumptions about quantum gravity’s behavior. A natural choice

is ℓ ∼ ℓplanck, implying quantum effects become dominant when the collapsing object’s

radius is around the Planck length. This aligns with perturbative quantum gravity results,

which suggest metric fluctuations become significant at lengths smaller than the Planck

length and the theory becomes strongly coupled at the Planck mass energy scale.

An alternative, suggested by loop quantum cosmology, identifies the threshold with

reaching Planckian density [34, 120]. In this scenario, ℓ ∼ ℓP (M/mP )1/3 where M is the

collapsing matter’s mass, resulting in a larger ℓ than the previous scenario. However, for

astrophysically relevant masses, ℓ would still be much smaller than M. Indeed it would be

of order of 10−26M⊙ while typical astrophysical black hole masses, range from about 3M⊙
to 102M⊙ for stellar black holes observed by LIGO-Virgo-Kagra, and up to 1010M⊙ for

supermassive black holes.

In such scenarios, gravitational collapse always leads to the formation of an horizon

whenever GR predicts it. The resulting regular black hole geometries are likely similar to

GR solutions, with deviations too small to be observable.

However, these assumptions might be too simplistic. A regularization at the Planck

scale could be followed by a dynamic process leading to a stable configuration, possibly

unrelated to the quantum gravity scale. This process could preserve or destroy the horizon,

resulting in a regular black hole or an horizonless object [121]. Another possibility is the

emergence of new physics and semiclassical effects before reaching the Planckian regime,

potentially preventing horizon formation altogether [122–125].

Therefore, these regularized models aim to provide a reasonable phenomenological

description of astrophysical black holes, and one should remain open to the scale of new

physics, considering values of ℓ that could be comparable to the object’s mass.

Finally, the choice to use a length scale is somewhat arbitrary, motivated by the equiva-

lence of length and mass/energy dimensions in c = G = 1 units and the natural association

of new physics with high-energy or small-distance GR extensions. However, regulariza-
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tion actually require an area scale ℓ2, roughly corresponding to the upper bound of the

curvature.

3.4 Viability and Instabilities

Both the classification of the possible geometrical regularization done in Chapter 1 and

the construction of specific models performed in this chapter were purely geometric in

nature and thus they not address the dynamical mechanisms that are needed in order to

form and to stably maintain in existence (or not) these objects.

If analysed through the lens of General Relativity or semiclassical gravity these models

can indeed presents some issues and instabilities. Even if one can think that the modified

quantum gravity dynamic would prevent the onset of such instabilities, it is still reasonable

to expect that far from the high curvature region of the would be singularity (and from

the high energy regime of the collapse) the effective dynamic of these objects should not

significantly deviate from the one predicted by GR. For this reason, a brief discussion

about these dynamical issues is in order.

Instead, we will not discuss the related issue of the formation mechanisms for these

objects. As explained, most models are built in a phenomenological way, simply correcting

classical solutions. The lack of a robust quantum gravity framework at the foundations

of these solutions translates into an almost complete ignorance of the physical dynamical

mechanisms necessary in order to prevent the formation of the singularity or even of the

horizon during the collapse. As mentioned in Section 3.3, some attempts to deal with this

problem in loop quantum gravity or in the semiclassical framework can be found in [34,

120–126].

3.4.1 Mass inflation

Many of the models described in this chapter, in particular all the ones with simply

connected topology, present an inner horizons behind the event horizon. This raised some

debate about their stability because of a phenomenon known as mass inflation that is an

unlimited growth of mass caused by the presence of small perturbations near the inner

horizon. This phenomenon is usually analyzed using two simplified models: the “double-

shell” model by Poisson and Israel [127], and a variant by Ori [128].

In the double-shell model, perturbations to a spherically symmetric background are

represented by two null shells, one ingoing and the other outgoing, which intersect at a

point. At this crossing point, junction conditions are imposed on the metric components

to maintain continuity. These conditions, along with assumptions about the late-time

behavior of the ingoing shell (such as satisfying Price’s law), demonstrate that the Mis-

ner–Sharp mass between the two shells increases without bound as the crossing point

approaches the inner horizon. This exponential divergence affects the curvature and its

timescale is determined by the inner horizon’s surface gravity.

Ori’s model replaces the ingoing null shell with a more realistic continuous influx of null

dust. The analysis follows a similar process and yields comparable results. Consequently,

it is generally believed that in General Relativity, the back-reaction of perturbations on

the geometry causes the inner horizon to shrink to r = 0.
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Both models were initially designed to study the stability of the Reissner–Nordström

inner horizon but are also applicable to RBHs with inner horizons.

Some researchers argue that certain RBHs show a polynomial, rather than exponential

[129], divergence, which is much milder, especially when considering Hawking evaporation

[130]. However it was later understood that that although the divergence may appear

polynomial at late times, it is always preceded by an exponential phase [131, 132].

Additionally, the classical mechanism has a semiclassical counterpart suggesting dif-

ferent outcomes [133–135]. When quantum perturbation back-reaction is considered, the

inner horizon appears to be pushed outward, making the fate of perturbed inner horizons

unclear. Furthermore the timescale of the semiclassical mass inflation instability seems

to depend on the difference between the surface gravity of the two horizons rather then

uniquely on the inner horizon one.

In Chapter 4 we will discuss how the instability related to classical mass inflation

could be quenched. We will do so by constructing a rotating model of a RBH whose

inner horizon has been appropriately engineered. The resulting “inner-extremal” RBH

could seem somewhat artificial, and it should be considered as a proof of concept that

models of simply connected RBHs without classical mass inflation are in principle viable.

The construction of models free of the semiclassical mass inflation instability is instead

performed in [136].

3.4.2 Lightring instability

A common feature of horizonless ultracompact objects, like wormholes and exotic stars,

is the presence of a stable lightring, i.e. of a stable circular orbit for massless particles

in addition to the standard unstable one (located at r ∼ 3M for spherically symmetric

objects). This additional stable orbit corresponds to a minimum in the potential of the

field equation for massless linear perturbations causing them to accumulate near this stable

lightring. Indeed the analysis of linear perturbations of numerous horizonless compact

objects [137–139] pointed out the presence of long-living perturbations, semi-trapped in

the minimum and slowly leaking out. In time domain these perturbations decay slower

than 1
t , this leads to the breaking of linear approximation and it is considered an hint of

a non-linear instability.

An intuitive way to see it is the following. In perturbation theory each order is the

source of the next one in the linearized Einstein field equations, then if h(n) is the pertur-

bation at the n-th order, one has

2h(2) ∝ h(1) ∝ 1

tq
→ h(2) ∝ 1

tq−2
(3.4.1)

thus if q ⩽ 1 then h(2) will be increasing with t, so eventually breaking the perturbative

order-expansion.

For the specific case of boson stars, numerical simulations [140] seems to confirm the

presence of a non-linear instability. Furthermore, in the frequency domain these semi-

trapped perturbations are described by frequencies with a very small imaginary part and

a pseudo-spectrum analysis [141] showed that these type of frequencies can be easily

perturbed into unstable modes, i.e. modes with a positive imaginary part. This means
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that small fluctuations in the system, caused for example by enviromental effects, may

trigger growing modes and thus lead to an instability.

In chapter 6, studying linear perturbations of object described by the metric 3.1.1, we

will discuss again of the lightring instability and of its potential connection with another

instability that should plague extremal horizons: the Aretakis instability.

3.4.3 Ergoregion instability

Outside the event horizon of any rotating black hole is a region, known as ergoregion,

in which the Killing vector that corresponds asymptotically to time translations and is

therefore associated with energy conservation, becomes spacelike. This means that in this

region it is possible to have negative energy states and since they can exist outside the

horizon, in principle it is possible to extract energy from the black hole. Indeed, suppose

to have a particle of energy E0 entering the ergorigion and splitting into two particles,

one of energy E1 escaping the black hole and one of energy E2 falling into the black hole.

Since E2, can be negative we can have E1 > E0. This is called the Penrose Process and its

field-theoretical analogue is the superradiant scattering that occurs when the amplitude

of a scattered waves is greater than that of the incoming waves, resulting in energy being

extracted from the object being scattered.

Compact rotating objects that lack an event horizon become unstable when they have

an ergoregion [142]. This ergoregion instability occur in every circumstance in which the

superradinat process repeats indefinitely. For instance, if a BH is encircled by a “mirror”

that reflects the superradiant waves back towards the horizon, amplifying them with each

reflection, the total energy extracted grows exponentially over time. This process, known

as the BH bomb, continues until the radiation pressure destroys the mirror. If the mirror

is within the ergoregion, superradiance can cause an inverted BH bomb, where some

superradiant waves escape to infinity carrying positive energy, reducing the energy within

the ergoregion and eventually causing instability. This can happen with any rotating star

that has an ergoregion, where the mirror can be either the star’s surface or its center if

the star consists of matter that does not interact with the wave. BHs remain stable likely

because the absorption by their event horizon surpasses the superradiant amplification.

The ergoregion instability is present in any star with ergoregions and no horizons but

its time-scale strongly depends on the compactness and spin of the object. For ordinary

astrophysical rotating stars the instability timescales are longer than the Hubble time [143,

144], making the ergoregion instability too weak to affect the star’s evolution significantly.

However, this conclusion changes dramatically for ultra-compact stars for which the insta-

bility timescale can become of order or seconds [145–150]. This seems to seriously threaten

the viability of rotating horizonless alternatives to singular black holes. However, recent

works [151, 152] showed that the this instability can be quenched if the horizonless object

can absorb part of the incoming radiation. Furthermore, it should be taken into account

that when the reflection occurs at the center of the object, because the star’s matter does

not interact at all with the incoming radiation, the time-scale of the instability strongly

depends on the crossing time between the photon sphere and the center. This means that

models with big enough crossing time (see Chapter 8) can have a huge time-scale for this

instability and thus be effectively stable.
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Chapter 4

A stable rotating regular black

hole

In Chapter 3, we observed that simply connected RBHs are plagued by the mass inflation

instability and that the timescale for such phenomenon is determined by the surface gravity

of the inner horizon. This suggests a potential method to mitigate the instability: if the

surface gravity is very small, the instability will take longer to develop. If the surface

gravity is exactly zero, the instability is absent, at least according to the two models

discussed in Section 3.4.1. Ideally, one would want to turn off the inner horizon’s surface

gravity without affecting the outer horizon’s characteristics: specifically, its surface gravity

should remain non-zero, and the two horizons should stay distinct. This means considering

scenarios other than an extremal black hole. In spherical symmetry, a regular black hole

model that achieves this can be easily constructed. This issue is thoroughly examined in

[153], which also presents calculations demonstrating the absence of mass inflation.

Extending this result to include rotation, using a Gürses-Gürsey metric, is not straight-

forward, especially if one aims to maintain m(r) ∝ r3 near the center. Furthermore, these

metrics present other issues discussed in Section 3.2.

However let us recall that the rotating metric that one obtains using the aforementioned

NJP presents additional freedom with respect to the usual Gürses-Gürsey metrics, which

can be encoded in an additional conformal factor Ψ(r, θ):

ds2 =
Ψ

Σ
ds2GG (4.0.1)

Several works in the context of conformal gravity has shown that appropriate choices for

a conformal factor can lead to geodesically complete spacetimes [154–156].

Our goal is therefore to show how one can exploit such freedom to build a RBH that

is free of the issues presented above: in our proposal, Ψ will be used to improve the

appearances of the spacetime close to r = 0, while m(r) will be chosen so as to trim the

properties of the inner horizon.

Note, incidentally, that adding a conformal factor to Eq. (3.2.3) is by no means dis-

ruptive: the spacetime described by the metric (4.0.1) is of Petrov type D, exactly as
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Eq. (3.2.3), with double null directions given by

lµ =

√
Σ

Ψ

1

∆

{
r2 + a2,∆, 0, a

}
, nµ =

√
Σ

Ψ

1

∆

{
r2 + a2,−∆, 0, a

}
; (4.0.2)

these two null vectors can be complemented with

mµ =

√
Σ

Ψ

1√
2 (r + ia cos θ)

{ia sin θ, 0, 1, i csc θ} (4.0.3)

and its complex conjugate m̄µ to form a Kinnersley-like tetrad. When Ψ(r, θ) = ψr(r) +

ψθ(θ) (i.e. it is “separable”), the geometry admits the non-trivial Killing tensor

Kµν = Ψ(r, θ) [lµnν + lνnµ] + ψr(r)gµν . (4.0.4)

In this case, the equations of motion for a test particle of Killing energy per unit mass E

and Killing angular momentum along the axis of rotation per unit mass L are

ṫ =
1

Ψ∆
[AE − 2m(r)arL] , (4.0.5)

ϕ̇ =
1

Ψ∆

[
L

sin2 θ
(Σ − 2m(r)r) + 2m(r)arE

]
, (4.0.6)

Ψ2ṙ2 =
[
(r2 + a2)E − aL

]2 − ∆ (δψr +K) , (4.0.7)

Ψ2θ̇2 = K − δψθ −
(
aE sin θ − L

sin θ

)2

= Q+ cos2 θ

(
E2a2 − L2

sin2 θ

)
− δψθ , (4.0.8)

where δ = 0 for massless particles and δ = 1 for massive ones, while K is the conserved

quantity associated to the Killing tensor (4.0.4), K = Kµν ẋ
µẋν , and Q = K − (Ea−L)2.

Clearly, planar equatorial orbits are possible only if ψθ(π/2) = 0.

In the more general case in which Ψ is not separable, the equations of motion are more

involved and not separable. Motion with θ̈ = θ̇ = 0 can take place on the equator and

on the axis of symmetry if ∂θΨ = 0 there. Note that if Ψ is a function of Σ only this is

always the case, since ∂θΨ = Ψ′∂θΣ = 2a2 cos θ sin θΨ′.

4.1 Regularizing the singularity with Ψ

In this section we discuss how the function Ψ can regularize the spacetime, regardless of the

specific choice of m(r). We assume such Ψ will satisfy a very minimal set of requirements,

namely: Ψ(r, θ) > 0 everywhere, in order to ensure that no additional singularities are

introduced; and

Ψ

Σ
= 1 +O

(
1

r2

)
as r → ∞ , (4.1.1)

so that the spacetime Arnowitt–Deser–Misner (ADM) mass and specific angular momen-

tum are still given by the parameters M = limr→∞m(r) and a, respectively — this is tan-

tamount to a slightly stricter version of the usual asymptotic-flatness condition. (Note, in

particular, that we do not follow the physical interpretation of Refs. [157–159] and hence
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we do not impose the partial differential equations that descend from that reasoning.)

Let us now look for a Ψ that regularizes the singularity of the Kerr BH, i.e. one for

which

ds2 =
Ψ

Σ
ds2Kerr (4.1.2)

is the line element of a spacetime free of scalar polynomial curvature singularities. The

same Ψ will also regularize more general metrics characterized by a generic (analytic)

m(r). As will become clear momentarily, the function Ψ can also “remove” regions of the

spacetime with undesirable features.

A simple example of such Ψ is

Ψ = Σ +
b

r2z
, (4.1.3)

with z a real number, which we will further constrain in a moment, and b a positive

constant with dimensions [M ]2z+2. Note that if b → 0 as M → 0 or as a → 0 one may

recover respectively the Minkowski or the Schwarzschild metric. The Ricci scalar has the

form

R = − 6b r2z

r2Σ2 (b+ r2zΣ)3
Pz (r, cos θ) , (4.1.4)

where Pz (r, cos θ) is an expression (a polynomial in r and cos θ when z is an integer) that

goes to zero at least as fast as Σ2 in the limit r → 0, θ → π/2. Hence, the Ricci scalar

never blows up for z ⩾ 1. However, z = 1 still does not yield a well-defined limit, while

for z > 1 the limit exists and is zero, irrespective of the path taken to reach the would-be

singularity in the r–θ space. Similar remarks hold for the Ricci tensor squared RµνRµν

and the Kretschmann scalar Rµ
νρσR

νρσ
µ .

The ansatz in Eq. (4.1.3) can be written as ψr(r) + ψθ(θ), i.e. it is “separable” in the

terminology previously introduced, and hence has the advantage of leading to separable

equations of motion.

Note that, with z > 1, Ψ is divergent on the whole disk r = 0 — which will have

consequences for CTCs. The fact that this divergence can in fact cancel the divergences

in the curvature scalars is quite remarkable. For these reasons, Eq. (4.1.3) is the choice we

will mostly explore in the remainder of the chapter: in particular, we will often consider

the “minimal” choice z = 3/2, corresponding to the smallest integer exponent of r that

yields a well defined limit of the curvature invariants.

It is also worth mentioning that, if one focuses on the non-spinning case only, lower

values of the exponent z are required. Indeed, in order to regularize the metric

ds2 =
Ψ

r2
ds2Schw , (4.1.5)

with the a→ 0 limit of Eq. (4.1.3)

Ψ = r2 +
b

r2z
, (4.1.6)
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one must have z ⩾ 1/2.

Finally, before moving on, let us add that an interesting alternative to Eq. (4.1.3) can

be represented by the ansatz

Ψ = Σ +
b

Σz
. (4.1.7)

In this case it is easy to check that the Ricci scalar tends to zero for r → 0, θ → π/2 for

any z > 1. The same holds true for the Ricci tensor squared and the Kretschmann scalar,

hence Eq. (4.1.7) seems equivalent to Eq. (4.1.3). Notably, however, in this second case

z = 1 too yields a well-defined, and finite, limit

lim
Σ→0

R = −24a2

b
(4.1.8)

and similar results can be found for RµνRµν and the Kretschmann.1 With this choice, Ψ

only diverges on the ring r = 0, θ = π/2, but not on the disk r = 0, θ ̸= π/2. Equa-

tion (4.1.7) will be juxtaposed to Eq. (4.1.3) in Section 4.1.1 to highlight the properties

that make us prefer the latter.

4.1.1 The spacetime close to r = 0

Although the scalar curvatures we computed are everywhere finite, the components of

the metric still diverge for Σ = 0. Previous works [160] have argued that the resulting

spacetime is in fact geodesically complete, since the would-be singularity is reached in

infinite proper time. Since our choice of conformal factor is slightly different from that

discussed in Ref. [160], we sketch the relevant computations below.

Consider first a particle moving on the equatorial plane θ = π/2 and falling radially

towards r = 0. With E and L being the particle energy and angular momentum per unit

mass, its radial velocity satisfies

Ψ2ṙ2 = RKerr − δ∆(Ψ − r2) . (4.1.9)

Here δ = 0 or 1 for massless or massive particles respectively, and RKerr is the right-hand

side of Eq. (4.0.7) with Ψ = Σ. The proper time it takes for the particle to fall from r0 to

r is

∆τ = −
∫ r

r0

Ψ

[RKerr − δ∆(Ψ − r̃2)]1/2
dr̃ . (4.1.10)

For both our ansatz (Eq. (4.1.3) or Eq. (4.1.7)), one finds that on the equatorial plane

Ψ− r2 = b r−2z > 0 ; therefore the infall time for massless particles (δ = 0) is shorter than

that for massive particles (δ = 1). (Obviously, this is true as long as RKerr−δ∆(Ψ−r2) > 0,

i.e. only where the trajectory is classically allowed: where the condition is not met, such

motion could not take place.)

Let us then focus on massless particles. At r = 0, RKerr = a2(Ea − L)2, while Ψ

1To our knowledge, those built with a Ψ are the only examples of rotating RBHs whose curvature
scalars are continuous and non-zero at the would-be singularity.
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diverges at least as fast as 1/r2. We conclude that massless particles reach the would-be

singularity in an infinite amount of proper time. Given the inequality above, the conclusion

remains true for massive particles.

Next, consider a particle that falls along the axis of symmetry θ = 0. Such particle

could reach the disk r = 0 without encountering the would-be singularity, and potentially

cross it through its center. On-axis motion requires L = 0, so the radial velocity now

satisfies

Ψ2ṙ2 = −δΨ∆ + E2(r2 + a2)2 (4.1.11)

where Ψ is now evaluated at θ = 0. The infall proper time becomes in this case

∆τ = −
∫ r

r0

Ψ√
(r̃2 + a2)2E2 − δ∆Ψ

dr̃ . (4.1.12)

First of all, we can see that it is still true that massless particles fall in a shorter time than

massive ones, therefore we again focus on the former. We have

E∆τlight = −
∫

Ψ

r2 + a2
dr (4.1.13)

and with our ansatz we have

Ψ

r2 + a2
= 1 + b

{
(r2 + a2)−1r−2z for Eq. (4.1.3)

(r2 + a2)−(z+1) for Eq. (4.1.7).
(4.1.14)

In the first case, the integrand diverges faster than r−2z as r → 0, hence the particle will

reach r = 0 in an infinite time. In the second case, instead, the integrand is everywhere

finite. For massive particles, one can show that the infall time remains finite in the second

case but, according to the inequality above, it is infinite in the first.

Therefore, the two choices of Ψ lead to a very different structure of the region close

to the would-be singularity: in the first case, the whole disk r = 0 is (regularized and)

“sent to infinity”; in the second case, only the ring r = 0, θ = π/2 is pushed away, so

that particles can still cross the disk inside the ring. This is a non-negligible difference as

in the case of ansatz Eq. (4.1.3) we end up precluding, to light or matter, access to that

region of the Kerr geometry (r < 0) characterized by the presence of CTCs.

Let us stress that while usually such a region is taken to be nonphysical in the Kerr

geometry, due to the fact that it is shielded by a Cauchy horizon which is widely (albeit

non-unanimously) considered unstable, the same region would represent a problem for us

once we shall have proceeded to stabilize the RBH inner horizon by making it degenerate.

It is henceforth even more pressing for a stable RBH to chose an ansatz such as Eq. (4.1.3)

over that of Eq. (4.1.7).

4.2 Stabilizing the inner horizon with m(r)

As shown in [153], the mass inflation instability can be turned off if the surface gravity of

the inner horizon κ− is made to vanish thanks to a wise choice of the mass function. The
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problem with extending this idea to the rotating case is that we wish to impose several

conditions at the same time. Indeed, we want to: remove the ring singularity; avoid close

timelike curves appearing in the negative r region; have a well-defined limit at the would-

be singularity; and have an inner horizon with vanishing surface gravity. Making all these

conditions coexist seems a daunting task. While we do not have a no-go theorem in this

sense, it is rather clear to a first investigation that, even if viable, such regular metrics

would be too cumbersome for any phenomenological application.

We shall then pursue a different path here, starting from the realization that if we

regularize the singularity with the conformal factor as above, the functional form of the

mass function is left with very few constraints (namely it must be everywhere finite and

it must reduce to the ADM mass M at infinity), and can be easily shaped so to stabilize

the inner horizon.

Since the surface gravity of the inner horizon r− depends on m(r) as

k− ∝ ∂r∆|r=r− , (4.2.1)

if we assume a rational-function form for the mass function, to have a vanishing k− the

inner horizon must be a degenerate root of ∆

∆ ≡ r2 − 2m(r)r + a2 = 0 =⇒ (r − r+)(r − r−)d = 0 , (4.2.2)

for some d ∈ N⩾2. d = 2 is not viable, since it implies that m(r) has a pole at some

positive r. Thus the minimal choice ends up being d = 3 which implies (given also the

required asymptotic behavior) a mass function of the form

m(r) = M
r2 + αr + β

r2 + γr + µ
. (4.2.3)

From Eq. (4.2.2), it can been shown that β cannot be zero and thus the limit of m(r)

for r → 0 is not zero but the finite value Mβ/µ. In this form, m(r) is parametrized by

four coefficients, two of dimension [M ] (α and γ) and two of dimension [M ]2 (β and µ).

However, through Eq. (4.2.2), they can all be expressed as functions of the position of the

two horizons

α =
a4 + r3−r+ − 3a2r−(r− + r+)

2a2M
, (4.2.4)

β =
a2(2M − 3r− − r+) + r2−(r− + 3r+)

2M
, (4.2.5)

γ = 2M − 3r− − r+ , (4.2.6)

µ =
r3−r+
a2

. (4.2.7)

If we choose r+ = M +
√
M2 − a2, i.e. the outer horizon to coincide with its Kerr analog,

our family of metrics can be parametrized in terms of r− only. It is quite remarkable,

and very relevant for phenomenological studies, that in spite of being located beyond

a trapping horizon, the position of the inner horizon can matter for observables in the

outside geometry. An example of this can be exposed by looking at the large-r behavior
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of the mass function:

m(r) ∼M +
M(α− γ)

r
+O(1/r2) , (r → ∞) . (4.2.8)

The second term in the above expansion could be interpreted as an electric charge, and

could lead to a different quadrupole moment with respect to a Kerr BH.

The choice α = γ must be discarded as it forces the inner horizon to coincide with

the Kerr one, and in turn implies a non-zero inner horizon surface gravity (actually the

usual one for the Kerr geometry) making the conformal Kerr metric still unstable to mass

inflation.

Nonetheless, we can introduce a parameter controlling the difference between the inner-

horizon position in our geometry and in Kerr. This parameter will in turn control the

difference α− γ. Let us write then

r− ≡ a2

M + (1 − e)
√
M2 − a2

, (4.2.9)

with e ̸= 0 and e < 2 in order to ensure 0 < r− < r+. Further requiring the mass function

to have no poles implies

−3 − 3M√
M2 − a2

< e < 2 , (4.2.10)

where in the positive (negative) part of the interval r− is larger (smaller) than the Kerr

inner horizon.

With the above choice, it follows that α − γ = O(e3) — the same holds true for all

the other coefficients in the large-r expansion. This suggests that sizable deviations of

r− from its Kerr value could translate into measurable differences in the value of the

quadrupole moment, or in the periastron precession and the orbital frequency in a binary

system [161]. Such differences would all be O(e3), which entails that values of |e| close

to one or smaller might be phenomenologically favored; but the possible impact of e on

astrophysical observables certainly deserves further scrutiny, which we leave for the future.

Let us also note that, with the parametrization (4.2.9), the mass function becomes

m(r) = M +O(e3) and in particular m(r+) = M . This entails, among other things, that

the outer-horizon angular velocity is the same as in Kerr, while its surface gravity is

k+ =
∂r∆(r+)

2(r2+ + a2)
= kKerr

+ +O(e3) . (4.2.11)

Moreover, e → 2 is an extremal limit similar to a → M , since in this limit r− → r+ and

k+ → 0.

Of course, different choices from Eq. (4.2.9) for r− are in principle possible but they

are strongly limited by a series of sanity requirements: the inner horizon must lie within

the outer horizon for all values of a; m(r) must go to M asymptotically; the denominator

of m(r) must have no zeros (for all r > 0), that is γ2 < 4µ; all the coefficients of m(r) must

be finite for all values of a; the extremal limit a → M should remain thermodynamically

unattainable and thus also the surface gravity of r+ should become zero in this limit —
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indeed this is possible only if r− → r+ for a→M .

In conclusion, the complete form of our rotating “inner-degenerate” metric is

ds2 =
Ψ

Σ

[
−
(

1 − 2m(r)r

Σ

)
dt2 − 4am(r)r sin2 θ

Σ
dtdφ+

Σ

∆
dr2 + Σdθ2 +

A sin2 θ

Σ
dφ2

]
,

(4.2.12)

with m(r) given in Eq. (4.2.3) and

Ψ = Σ +
b

r3
, Σ = r2 + a2 cos2 θ, ∆ = r2 − 2m(r)r + a2, A = (r2 + a2)2 − ∆a2 sin2 θ ,

(4.2.13)

where for the power law of Ψ we have chosen the lowest integer that makes the curvature

scalars continuous and finite (see Section 4.1).

Fixing r+ = rKerr
+ and choosing r− as in Eq. (4.2.9), this metric represents a family of

stable, rotating, CTC-free, regular spacetimes with two free parameters (beyond the usual

spin one): the “Kerr-deviation parameter” e and the “conformal parameter” b. Notice

that for a → M the metric becomes conformal to the extremal Kerr, while for a → 0 the

metric becomes conformal to Schwarzschild.

4.3 The rotating “inner-degenerate” RBH as a Kerr black

hole mimicker

In this section we investigate the extent to which our metric (4.2.12) can mimic a Kerr BH:

first we describe the causal structure; then the effective matter content; the position of

ergosurfaces; and finally the location of the light rings and of the innermost stable circular

orbit (ISCO).

4.3.1 Causal structure

To study the casual structure of this spacetime we introduce ingoing null coordinates

dv = dt+
r2 + a2

∆
dr, dψ = dφ+

a

∆
dr , (4.3.1)

that are regular at the horizons. In Fig. 4.1 we plot the equatorial principal null geodesics

in the r–tv∗ plane where tv∗ is defined as

dtv∗ = dv − dr . (4.3.2)

We see that, even if the inner horizon has zero surface gravity, we still have peeling

of geodesics there, the difference with respect to Kerr is in the peeling trend. Since

k− ∝ ∂r∆|r− = 0 and ∂2r∆|r− = 0 this peeling is no longer exponential but scales as

1/t1/2. In fact for the principal null geodesics

dr

dt
= ± ∆

r2 + a2
. (4.3.3)
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Figure 4.1: Ingoing (gray) and outgoing (blue) null rays near the horizons for selected
values of the “Kerr-deviation parameter” e compared with the Kerr ones in the bottom
right panel. The spin parameter is set to a = 0.9M .

Thus near the inner horizon

dr

dt
= ±

∂3r∆|r−
r2− + a2

(r − r−)3 +O(r − r−)4 . (4.3.4)

The causal structure of the spacetime is summarized by the Penrose diagram of Fig. 4.2.

The diagram is completely analogous to that of the Kerr spacetime, except for the fact

that the surface r = 0 — which is timelike — is not a singularity and it can be reached

only after an infinite amount of proper time by any infalling observer. In order to hint

at these differences, we choose to represent r = 0 as a branch of hyperbola instead of a

straight line.

4.3.2 Effective matter content

Clearly, the metric we are considering is not a vacuum solution of GR. Yet, as discussed

in Chapter 3, the Einstein equations can be used to characterize the spacetime by inter-

preting the Einstein tensor Gµ
ν = Rµ

ν − 1
2Rδ

µ
ν as an effective stress–energy tensor and to

quantify deviations of our candidate spacetime with respect to the Kerr one. To properly

characterize the effective matter content, one first needs to project the Einstein tensor

onto an orthonormal tetrad, e.g. the one of Refs. [157–159]. The behavior of the orthonor-

mal components close to spatial infinity is particularly relevant: since the spacetime is

asymptotically flat, they must all tend to zero as r → ∞, but they do so at different rates.
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Figure 4.2: Penrose diagram of the rotating RBH in Eq. (4.2.12). The hypersurface r = 0
is timelike, but reached in infinite proper time by any infalling observer: for this reason it
is drawn not as a straight line but as a curve.

In particular, the slowest decaying (non-zero) components are those on the diagonal, all

the others being of higher order in powers of 1/r. Such components, at infinity, are the

effective energy density and pressures:2

ρ = −pr = pθ = pϕ = −2M(α− γ)

r4
+O(1/r5) . (4.3.5)

Note that these quantities fall off quickly as r → ∞, meaning that quantum-gravity-

induced deviations from the GR vacuum solution are sizable only in a region close to

the object. Moreover, they are O(e3) and do not depend on b; the next-to-leading order

O(1/r5) also does not depend on b. Equation (4.3.5) can lead to violations of the null

energy condition (NEC), which requires ρ + pi ⩾ 0, if α − γ > 0. When the NEC is

2Technically, the energy density and pressures are defined in terms of the eigenvalues of the orthonor-
malized Einstein tensor, when these are real. In asymptotically flat spacetimes, this procedure and the
one presented in the text agree at leading order.
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Figure 4.3: Effective energy density as measured along a null equatorial trajectory, with
L = 0, that falls into a RBH with spin a/M = 0.9. Each plot is relative to a particular
choice of the deviation parameter e and displays curves corresponding to three values of
the conformal parameter b. The two vertical lines mark the location of the inner and outer
horizons.

violated, all the other classical energy conditions are violated too. When instead γ > α,

not only the null but also the weak (NEC + ρ ⩾ 0) and dominant (ρ ⩾ |pi|) energy

conditions are met; the strong energy condition (NEC + ρ + 3pi ⩾ 0) instead is always

violated. Notice also that the above effective matter distribution does not correspond to

any simple realistic matter content. This is not surprising, as this effective stress–energy

tensor gives an insight to the higher-order terms in the still unknown gravitational action.

Moving closer to r = 0, the simple interpretation in terms of energy density and

pressures is not always viable, since there are regions in which the Einstein tensor cannot

be diagonalized over the real numbers: in these regions, the effective matter content is of

type IV in the Hawking–Ellis classification [162]. (The existence of these regions is entirely

due to the presence of the conformal factor: when Ψ = Σ, the effective stress–energy tensor

is of Hawking–Ellis type I for any m(r).)

In order to circumvent this problem, we select particular geodesics and investigate the

effective matter content as measured along them. We focus first on null geodesics: calling

kµ their tangent vector, the contraction

Gµνk
µkν (4.3.6)

is always real and can be interpreted as the energy density measured along the geodesic.

When this quantity is non-positive, the null energy condition is violated. For simplicity,

we choose a geodesic that lies on the equatorial plane (kθ = 0) and that falls towards the

BH with zero angular momentum (L = 0) — cf. Eqs. (4.0.5) to (4.0.8). Clearly, this choice

represents a loss of generality, but is sufficiently illustrative for our purposes.

The result is displayed in Fig. 4.3, for a/M = 0.9 and some choices of the parameters

e and b. The effective energy density measured along the null geodesic is mostly negligible

outside of the BH; inside the outer horizon, it becomes large and negative, signaling a

substantial violation of the null energy condition; and it is exactly zero at r = 0 (although

that point is reached only at infinite affine parameter). The plot of Fig. 4.3a is represen-

tative of all the cases |e| ≳ 1: increasing e slightly moves the negative trough to the right;
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Figure 4.4: Contraction of the Ricci tensor with the tangent vector of a particular timelike
equatorial trajectory (L = 0, E = 1) that falls into a RBH with spin a/M = 0.9. Each
plot is relative to a particular choice of the deviation parameter e and displays curves
corresponding to three values of the conformal parameter b. The two vertical lines mark
the location of the inner and outer horizons.

increasing b, instead, tends to smooth out the trough; but the overall shape of the curve

is not greatly affected. When |e| ≲ 1, the curves exhibit additional features close to the

inner horizon, signaling that the limit e→ 0 is not smooth. Lowering the spin suppresses

the height of all the features just described.

We then move on to timelike geodesics, whose tangent vector we name uµ. As before,

we choose them to lie on the equatorial plane and to fall into the BH with zero specific

angular momentum (uθ = 0, L = 0); we further choose the radial velocity to be zero at

infinity (E = 1). The contraction

Gµνu
µuν (4.3.7)

yields radial profiles that are qualitatively similar to those of Fig. 4.3 and for this reason

we do not report them here. When this quantity is negative, the weak energy condition is

violated. Finally, we complement the analysis by computing

Rµνu
µuν . (4.3.8)

Assuming the Einstein equations, Rµν ∝ Tµν−(T/2)gµν , hence when Eq. (4.3.8) is negative

the strong energy condition is violated. Some results are reported in Fig. 4.4, again for

a/M = 0.9 and a few illustrative choices for e and b. As in the null case, these observers

measure an effective matter content that is practically zero outside of the outer horizon.

Large violations of the strong energy condition are measured inside of the inner horizon.

At variance with the null case, now the curves exhibit a second positive bump before

reaching zero at r = 0. Similarly to the previous case, increasing the value of e pushes

the large negative trough to the right but does not substantially affect its depth, which is

instead controlled by b; the height of the positive bump increases with e. Moreover, for

|e| ≲ 1 additional features appear close to the inner horizon. As before, lowering the spin

suppresses the magnitude of all these features.
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4.3.3 Ergosurfaces

The ergosurfaces are defined by the roots of gtt = 0, or equivalently of r2 − 2m(r)r +

a2 cos2 θ = 0, whose solution can be given in closed form. Since the result is cumbersome,

in Fig. 4.5 we show the embedding in Euclidean space of the horizons and ergosurfaces for

some illustrative choice of the parameters. The main difference with respect to a Kerr BH

is the shape of the inner ergosurface around the poles: values of e closer to the upper and

lower bounds in Eq. (4.2.10) correspond to a more pronounced cuspid around the poles;

for values of e closer to the lower bound, the inner horizon and ergosurface move close and

eventually touch also at the equator; for values of e closer to the upper bound the horizons

move closer as previously said. The conformal factor does not affect the ergosurfaces at

all.

Figure 4.5: Embedding in Euclidean space of the horizons (green and blue surfaces) and
ergosurfaces (red and purple surfaces) for a/M = 0.95 and e = 1.

Finally, let us notice that, since with our choice m(r+) = M , the textbook expression

for the maximal efficiency of the Penrose process [163–166] seems to yield the same result

as in Kerr:

ηmax = 1 −
√

r+
2m(r+)

= 1 −

√
M +

√
M2 − a2

2M
. (4.3.9)

Checking whether this is actually the case would require a more careful analysis of the

motion of test particles in our spacetime — an interesting question which however lies

outside the scope of this work.

4.3.4 Notable equatorial orbits

In order to characterize the spacetime and its deviations away from Kerr from a phe-

nomenological point of view, we compute the coordinate location of the light ring and

the ISCO. We focus on the equatorial plane, where the radial motion is governed by the

function (cf. Eq. (4.0.7))

R = E2r2(r2 + a2) − r2L2 + 2m(r)r(aE + L)2 − δΨ∆ , (4.3.10)

with δ = 0 or 1 for null and timelike geodesics, respectively. Circular orbits correspond to

R = R′ = 0 and are stable if R′′ ⩽ 0. Since the analytical expressions are not particularly

illuminating, the values of rLR and rISCO are computed numerically.
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The location of the light ring, which is a null geodesic, does not depend on Ψ. Its

fractional deviation from its Kerr analog is shown in Fig. 4.6, as a function of the spin,

for some choices of the parameter e. The extrema and sign changes displayed by the

curves of Fig. 4.6 are ultimately determined by the behavior of the function m(r) (and

its derivative), which is not monotonic. The analogous plot for the ISCO is reported in

Fig. 4.7. Contrary to the previous case, rISCO depends on Ψ, hence the curves in the figure

correspond to specific choices of b. In fact, varying the parameter b substantially affects the

location of the ISCO, particularly for high spin. The peculiar spike associated to prograde

orbits and high spin, in particular, can be entirely explained in terms of the behavior of

Ψ: since, as the spin increases, the prograde ISCO shrinks, rISCO enters deeper into the

region where Ψ is markedly different from r2. In order to further explore the parameter

space in the high-spin regime, we set a = 0.998M (roughly the Thorne limit [167]) and

let the parameters vary in the ranges b ∈ [0, 1] and e ∈ [−3 − 3M/
√
M2 − a2, 2], thereby

producing the contour plots of Fig. 4.8.

Despite the much larger interval spanned by e, the gradient of the deviation is dom-

inated by the b component: this is clear for prograde orbits (Fig. 4.8a), but is also true

for retrograde orbits (Fig. 4.8b) if e is restricted to take reasonably small values as in

Fig. 4.8c. Note, however, that even for spins as high as a = 0.998M , except for rather

extreme values of the parameters, the ISCO moves less than a few percent in the prograde

case and less than a few per mil in the retrograde case.

prograde

retrograde
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Figure 4.6: Relative difference in the position of the light ring as a function of the spin
between Kerr and our spacetime with e = 0.9 (dotted lines), e = 1 (dashed lines) and
e = 1.1 (continuous lines). We do not need to specify a value for the conformal parameter
b as null geodesics are insensitive to the conformal factor Ψ. While we display only values
of e near 1, corrections to the light-ring position actually grow very fast with e and they
can be up to order 60% for e→ 2. Note also that the extrema and sign changes displayed
by the curves are ultimately determined by the behavior of the function m(r) (and its
derivative), which is not monotonic.
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Figure 4.7: Difference in the position of the ISCO between Kerr and our spacetime with
e = 1 and b/M5 = 0.8 (continuous lines), b/M5 = 1 (dashed lines) and b/M5 = 1.2
(dotted lines). The prograde orbit, lying in a more internal region of the spacetime where
the conformal factor is greater, presents larger deviations, particularly for high spin.
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(a) Prograde orbits.
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(c) Retrograde orbits, zoom to the region |e| < 1
of Fig. 4.8a.

Figure 4.8: Fractional deviation of the ISCO from its Kerr analog, computed as
rISCO/r

Kerr
ISCO − 1 . Spin a/M = 0.998.
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4.4 Conclusions

We built and studied a new regular alternative to Kerr BHs that is stable under classical

mass inflation. To construct it, we combined the two most common tools for regularization,

in a novel way: we used a mass function to construct a degenerate (zero surface gravity)

and thus stable inner horizon, and a conformal factor to regularize the singularity. In

general, this procedure leads to a family of metrics, depending on the precise choice of the

conformal factor and of m(r).

We decided to focus on a particular form of the conformal factor that accomplishes the

regularization in a minimal way and at the same time ensures the non-existence of CTCs

and the separability of the equations of motion for test particles. With this choice, the

curvature scalars are continuous and tend to zero on the would-be singularity3 thereby

solving a long-standing issue that affects many rotating RBHs. The regularization is

controlled by a scale that we parametrize in terms of the quantity b, with dimensions

[M ]5.

We further took an ansatz for m(r) that is again minimal, in a suitable sense, and

fixed the coordinate location of the outer horizon so that it coincides with its Kerr analog.

The resulting mass function can be expressed entirely in terms of the coordinate location

of the inner horizon, whose deviation from that of Kerr is encoded by the dimensionless

quantity e. In the limit e→ 0 we obtain the conformal Kerr metric that, though regular,

is characterized by the usual surface gravity at the inner horizon (as it should be given

that the surface gravity is conformal invariant) and hence is again unstable under mass

inflation. However, it is important to notice that our metric cannot indefinitely deviate

from the conformal Kerr one since the deviation parameter e must lie in a specific interval

in order for the mass function to be everywhere finite and for the horizons to be well

ordered (0 < r− < r+).

Our metric thus depends on a total of four real parameters: the ADM mass M , the

spin a, the conformal parameter b and the deviation parameter e. The two additional

parameters b and e can be constrained by observations, at least in principle. In particular,

e enters at low order in the parametrized post Newtonian expansion of this object gravi-

tational field, possibly influencing its GWs inspiral signal (see Section 5.1); moreover, it

affects the orbits of massless test particles and therefore shifts the position of the light

ring. Finally e and b both affect the motion of massive test particles, with b having the

dominant effect on the location of the ISCO (at least when e is taken to vary in reasonably

small ranges) especially at high spins.

Let us stress the remarkable relevance of this fact: given that the conformal and

Kerr-deviation parameters might be directly related to quantum-gravitational effects, the

possibility to constrain them via observations on the exterior geometry of the BH is further

evidence that a new window for quantum-gravity phenomenology might be opening via

astrophysical observations.

In conclusion, the rotating RBH geometry proposed here is characterized by a wealth

of physically desirable features that make it a plausible candidate for the end point of a

gravitational collapse to be contrasted with the Kerr geometry to which it can be made

arbitrarily close.

3With a slightly different choice, however, the limit can also be made non-zero.

70



Note however that even if this model is not plagued by classical mass inflation, it would

still be subject to the semiclassical instability. Indeed, the timescale of the semiclassical

mass inflation seems to depend on the difference between the surface gravity of the two

horizons rather then uniquely on the inner horizon one [135]. Thus in order to switch

it off one must construct a truly “extremal” RBH for which k+ = k−. This kind of

regularization has been performed in [136]. Note that the RBHs described it this paper

are “extremal” (k+ = k− = 0) but not maximal rotating (a = M). Indeed they don’t

present any constraint on the spin parameter a and for this reason they still represent

good candidates to describe the non-maximal rotating astrophysical compact objects we

see in our universe.
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Part IV

Phenomenological signatures of

the regularization

He stepped down,

trying not to look long at her,

as if she were the sun,

yet he saw her, like the sun,

even without looking

—– Lev Tolstoj
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Chapter 5

Background: gravitational waves

from BHs mimickers

The direct detection of gravitational waves announced by the Advanced LIGO team in

February 2016, opened a new widow on the Universe and it led to the possibility to

investigate the gravitational interaction in the strong field regime. In particular, the GWs

signal coming from the coalescence of two compact objects represents a powerful tool for

testing the BH paradigm since it carries a lot of information about the merging objects.

We expect that the gravitational wave signal originating from regular objects will present

potentially observable differences with respect to the signal coming from the coalescence

of two singular black holes.

This signal is usually divided into three parts. The first one is the inspiral, during

which the two objects spiral one towards each other as they lose energy to gravitational

radiation. Since this stage is characterised by large distances between the two objects and

small velocities, it can be studied in Post-Newtonian approximation in which the Einstein

equations are solved performing an expansion in terms of the velocity parameter v/c. The

second part is the merger, a rapid phase where the two objects merge to create a final

remnant. This phase can only be described using numerical simulations that consider

the nonlinear aspects of the dynamics. The last phase, called the ringdown, is caused by

the relaxation of the remnant object to its final, stationary state. It can be studied in

perturbation theory, solving for the dynamics of a time-dependent linear perturbation on

the spacetime of the final stable object.

In this chapter, we will summarize how this signal can be used to test the nature of the

merging objects. For more comprehensive reviews on the topic and for detailed results of

these tests on the current observed signals refer to [47, 168–170]. In the successive chap-

ters we will focus specifically on some new results concerning the effects of the singularity

regularization on the post-merger signal. We will not deal with the possible phenomeno-

logical signatures or the Big Bang regularization, the interested reader can refer to [57–59,

171].
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5.1 The Inspiral signal

As we mentioned, the gravitational waveform generated by inspiralling compact binaries

moving in quasi-circular orbits can be described in Post Newtonian (PN) approximation,

expanding the Einstein equations in terms of the orbital velocity v/c, with each O([v/c]2n)

being referred to as of nPN order.

In general, PN corrections enter both the amplitude and the phase of the GWs wave-

form. However corrections in the phase are dominant, especially far from the merger, and

they accumulate in the several cicles of the binary inspiral. For this reason PN coeffi-

cients up to 3.5PN order are usually considered to model the phase while most waveform

models for data analysis keep the amplitude at 0PN order (this is the so called restricted

wave approximation). In this set up, the GWs waveform in the frequency domain can be

modelled as:

h(f) =
1

DL
H(θ, ϕ, ι, ψ,M, η, f)eΦ(tc,ϕc,M,η;f), (5.1.1)

where

Φ (tc, φc,M, η; f) = 2πftc − ϕc − π/4 +

7∑
i=0

[φi + φil ln f ] f (i−5)/3. (5.1.2)

Here DL is the luminosity distance to the source, (θ, ϕ) specify the sky position, (ι, ψ)

give the orientation of the inspiral plane with respect to the line of sight. M is the chirp

mass and η is the symmetric mass ratio, in terms of the components masses (m1,m2)

one has η = m1m2/ (m1 +m2)
2 and M = (m1 +m2) η

3/5 . tc and ϕc are respectively

the time and phase at coalescence. The precise functional dependence of the phase PN

coefficients φi and φil on (M,η) for GR BHs inspirals, can be found in [172]. Note that the

only non-vanishing logaritmic coefficients are φ5l and φ6l. For BHs mimickers we expect

modifications to these coefficients and to the inspiral signal in general, let us see this more

in details.

Multiple moments

In Newtonian gravity, the gravitational potential of a finite density distribution localized

in a region R, can be expressed in the exterior of R as a series of spherical harmonics:

Φ(r) =

∫
ρ (r′)

|r− r′|
d3r′ =

∞∑
l=0

l∑
m=−l

(
4π

2l + 1

)
Mlm

Ylm(θ, φ)

rl+1
(5.1.3)

where ρ is the mass density and

Mlm =

∫ (
r′
)l
ρ
(
r′
)
Y ∗
lm

(
θ′, φ′) d3r′ (5.1.4)

are known as multiple moments. Here l and m are respectively the angular and azimuthal

number labelling each spherical harmonic function (with l ⩾ 0 and |m| ⩽ l).
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This simple description breaks down in general relativity but it is still possible to rig-

orously define relativistic multiple moments [173, 174]. For stationary and asymptotically

flat spacetimes that are smooth enough at infinity [175], it is possible to directly extract

the multiple moments from the metric written in a specific class of coordinate systems

known as “asymptotically Cartesian and mass centered” (ACMC) [176]. These relativis-

tic multiple moments are divided in two sets: the mass multiple moments Mlm that in

the Newtonian limit reduce to the aforementioned Newtonian multiple moments and the

current multiple moments Slm that have no Newtonian analog. All the multiple moments

of a singular black hole in GR can be written in terms of only two parameters that are

the mass M and angular momentum J:

MBH
l + iSBH

l = M l+1(iJ/M2)l (5.1.5)

where we put implicitly m = 0 since all the moments with different m vanish for axisym-

mentric objects. Note that for spherically symmetric BHs, the only non vanishing moment

is the mass M0.

There is no reason for this simple multipolar structure to hold also for a generic compact

object like the regular BHs and horizonless exotic objects we described in the previous

chapters. Still, for a good mimicker of GR BHs, we can assume that deviations from GR

values are perturbative. Hence, we can parametrize the multiple moments of a generic

compact objects as:

Mlm = MBH
l + δMlm Slm = SBH

l + δSlm (5.1.6)

The multipolar structure of an object influence the inspiral signal, modifying the PN

structure of the GWs waveform at different orders. The lowest order contribution is the

quadrupole moment which enters at 2PN order. However, to really put constraints on δM20

is challenging due to the fact that the 2PN term in the GW waveform depends also on

the binary components spins, which have not been measured accurately so far. The future

space mission LISA is expected to provide accurate measurements of the quadrupole and

of a large set of high-order multipole moments. In particular, the inspiral signal coming

from extreme mass ratio binaries is expected to put stronger bounds on the multipolar

structure of the central supermassive object because in these systems the small secondary

object performs a large number of cycles before the merger.

Tidal heating

During the coalescence of two compact objects, part of the energy and angular momentum

is lost through GWs emission at infinity. If the inspiraling objects posses an horizon,

additional energy and angular momentum are absorbed by the horizon. This effect is

known as tidal heating (TH). Horizonless alternatives to BHs, on the other hand, are not

expected to absorb any significant amount of GWs. This absence of tidal heating can leave

a detectable imprint in the inspiral signal, in particular for extreme-mass ratio binaries. In

this case the secondary object moves on geodesical orbits, with orbital parameters evolving

adiabatically because of the energy and angular momentum loss. Even if the energy loss

at the horizon is subleading with respect to the one at infinity, it can still impact the phase
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of the orbits (and hence of the GWs signal) in a detectable way, especially if the central

object is highly spinning.

Tidal deformability

During the coalescence of a compact binary system, the gravitational field of each compo-

nent acts as a tidal field on its companion, inducing a deformation in the spacetime that

can be encoded in the appearance of “tidal-induced multipole moments”. A weak tidal

field can be decomposed into the polar tidal field moments Elm and the axial tidal field

moments Blm.

In the non-rotating case, the ratio between the multipole moments and the tidal field

moments that induces them defines the tidal Love numbers of the body:

k
(l)
E ∝ 1

M2l+1

Mlm

Elm
, k

(l)
B ∝ 1

M2l+1

Slm
Blm

(5.1.7)

For a rotating object, the coupling between its angular momentum and the polar (or

axial) tidal field moments generates current (or mass) multipole moments in accordance

with specific selection rules [177–180]. Consequently, this phenomenon enables the defini-

tion of new categories of “rotational tidal Love numbers” for rotating bodies.

In vacuum GR the Love numbers of BHs are precisely zero both in the spherical sym-

metric case [181, 182] and in the rotating case [183–185]. However, this is not necessarily

true for alternative regular compact objects. For example, the tidal Love numbers of most

horizonless objects have been shown to be generally nonzero and approach zero in the

black hole limit [186].

A non vanishing tidal deformability modifies the phase of the inspiral signal at 5PN

order. This effect can provide a way to test the nature of the emitting objects, especially

in the signal coming from extreme mass ratio binaries.

5.2 The Post-merger signal

The Ringdown

The ringdown refers to the GWs signal emitted by a compact object when it is perturbed

by any process, for example its own formation through the coalescence of a binary system.

It can be studied in perturbation theory by expressing the metric as gµν = g0µν+hµν and

solving the Einstein equations at first order in hµν . Here, g0µν(t, r, θ, ϕ) represents the back-

ground metric of the compact object in its final stable state, while hµu(t, r, θ, ϕ) denotes a

minor perturbation. By exploiting the symmetries of the spacetime, it is possible, at least

in vacuum GR, to separate the angular part from the radial one in the resulting differential

equations. This simplification reduces the problem to solving a Schrodinger-like equation

for certain scalar functions ψ(r, t) related to the radial part of the perturbation functions

in hµν , while the angular part will be given by the spheroidal harmonics Ylm(θ, φ).

Through an harmonic decomposition of the time dependence one can express these

scalar functions as ψlm(r, t) =
∑

n e
−iωlmntψlmn(r). Then, the equations for the radial
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part generically reads:

d2ψlmn

dr2∗
+
(
ω2
lmn − Vlm

)
ψlmn = 0 , (5.2.1)

where r∗ is the tortoise coordinate dr2∗ = g0rr/g
0
ttdr

2.

Upon imposing suitable boundary conditions, such equations are satisfied by a dis-

crete set of complex frequencies ωlmn called quasinormal modes (QNMs) and labeled by

the overtone number n ⩾ 0 (in addition to the angular and azimuthal number of the

corresponding spheroidal harmonics l ⩾ 0 and m with |m| ⩽ l).

Note that in spherical symmetry, the spheroidal harmonics becomes spherical harmon-

ics Ylm(θ, φ) that can be divided in the axial and polar sector accordingly to their behavior

under parity transformations (θ → π−θ and φ→ π+φ). Correspondingly also the QNMs

frequencies can be divided in the polar and axial sector, however for vaccum GR, that is

for the Schwarschild metric, the spectra of frequencies in the two sectors coincide, this is

referred to as isospectrality of polar and axial quasinormal modes. Furthermore, for the

Schwarschild metric, the potential in equation 5.2.1 and consequently the QNMs frequen-

cies ωn depend only on the angular number l, this is referred to as azymuthal degeneracy.

For additional technical details on perturbation theory, refer to [187–191] and references

therein, see also Section 6.6 for perturbations on general spherically symmetric spacetimes.

For the uniqueness theorems, the QNMs frequencies of GR black holes can depend

only on two parameters: the mass and spin of the emitting object, i.e. of the final BH

formed after the merger. This means that in principle measuring two modes (two complex

frequencies) is sufficient to test the hypothesis that the emitting object is a singular GR

black hole. Furthermore, the QNMs of various regular BH mimickers have been computed

in literature [192–197], allowing for model-based tests of the ringdown.

In practice, precision tests of the nature of the emitting objects will probably require

the detection of several ringdown events with the large SNRs expected from third genera-

tion ground based detectors, or from the space-based Laser Interferometer Space Antenna

(LISA).

This idea of viewing the QNMs spectrum of a compact object as a unique fingerprint

of spacetime dynamics (in analogy with atomic spectra), is usually referred to as BH

spectroscopy.

Echoes

Horizonless ultra-compact objects are expected to produce an additional signal after the

ringdown. This signal consists of a series of secondary pulses with progressively smaller

amplitudes. The presence of these echoes of the prompt ringdown is caused by the different

form of the potential in the equation of motion 5.2.1 for gravitational perturbations. In

Fig. 5.1 we can see that in the black hole (or regular black hole) case the potential presents

only a maximum near the photon sphere radius (∼ 3M for a Schwarschild BH). When

the GWs radiation is scattered on this potential peak, it is partially reflected towards

infinity producing the usual prompt ringdown and partially trasmitted in the interior

region where is completely lost in the horizon. If the object is horizonless, the potential

presents an additional reflecting barrier. If the surface of the object can reflect in some
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Horizonless object

Schwarzschild BH

r*

V

Figure 5.1: Potential for gravitational perturbations (Eq. (5.2.1)). In the black hole case
the potential vanish at both r∗ → ±∞ while for horizoless objects an additional reflective
barrier is present at the surface of the object or at its center.

way the gravitational radiation, this barrier will be at its radius. This can happen, for

example, in modified theories of gravity in which the graviton reflects effectively on a hard

wall [198], or in presence of particular quantum effects [199]. If instead, the gravitational

radiation can travel through the interior of the object, the barrier will be located at its

center. In both cases, when GWs are scattered on the photon sphere of such horizonless

spacetimes, the part of the radiation that is transmitted towards the interior is not lost,

it is semi-trapped between the potential peak and the barrier, slowly leaking out towards

infinity each time it hits the potential peak at the photon sphere.

The amplitude of the produced echoes depends on the reflection coefficient (RBH) and

transmission coefficient (TBH) of the wave coming from the left of the photon sphere and

on the reflectivity R of the additional barrier (the surface or the center). After each bounce

in the cavity between the barrier and the photon sphere, the GWs perturbation acquires

a factor RRBH , each time it passes trough the potential peak it aquires a factor TBH .

The photon-sphere barrier acts as a frequency-dependent high-pass filter. For this reason,

while the initial ringdown frequencies can be very similiar to the BH QNMs frequencies,

each following GWs echo exhibits a lower frequency content. The time delay between

echoes is given by the light-crossing time between the potential peak and the reflective

boundary. In spherical symmetric spacetime it reads:

∆techo ≈ 2M − 4Mσ − 4M ln(2σ) + tint (5.2.2)

where the first three terms on the r.h.s. are associated to the travelling time between the

surface at r0 = 2M(1 + σ) and the photon sphere while tint is the travelling time to cross

the object interior.

This picture is obtained in perturbation theory at linear level. However, as we will see

in Chapter 7, non linear interactions and backreaction can play a significant role in this

contest and so drastically change the echoes signal.
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Figure 5.2: Distributions on the remnant mass (blue) and spin (red) fractional deviation
parameters obtained by combining the GWTC-3 events (solid trace). For comparison, we
also show the results obtained using GWTC-2 (dot dashed traces) and GWTC-1 (dashed)
events. The vertical dashed line shows the GR prediction. Triangles mark the GWTC-3
medians, and vertical small bars the symmetric 90% credible intervals. From Ref. [170]

5.3 Performing tests on the gravitational waves signal

We have seen that the gravitational waves signal coming from the coalescence of regular BH

mimickers could present several deviations with respect to the one coming from singular

BHs mergers. In this section we will briefly explain how the signal is analysed to search

for these deviations.

5.3.1 Inspiral-merger-rindown consistency test

A method to verify that a gravitational waveform aligns with the expectations for singular

GR black holes is to analyse the complete inspiral-merger-ringdown signal. Unfortunately,

predictions for the signal coming from the merger phase (that is a highly non-linear phase)

for objects other that GR BHs are practically unknown (however, some notable exceptions

include studies on the evolution of boson stars and axion stars [43, 200–203]).

Nonetheless, it is still possible to perform a model-independent null test comparing

the mass and spin estimates of the final remnant derived in the GR framework from

the inspiral and postinspiral segments of the waveform. Indeed, if General Relativity

accurately represents both the adiabatic and nonlinear stages, the parameters estimated

from each phase should match within the statistical uncertainties. One usually define the

two deviation parameters:

∆Mf

Mf
= 2

M insp
f −Mpostinsp

f

M insp
f +Mpostinsp

f

,
∆χf

χf
= 2

χinsp
f − χpostinsp

f

χinsp
f + χpostinsp

f

. (5.3.1)

Where Mf and χf are the estimated final mass and final dimensionless spin of the

remenant BH.

This inspiral-merger-ringdown consistency test has been applied to events listed in the

third LIGO-Virgo GWs transient catalog with an SNR > 6 in both the inspiral (low-

frequency phase) and postinspiral (high-frequency phase). To achieve this, they divided
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Figure 5.3: Combined GWTC-3 results for the parametrized deviation coefficients of the
inspiral phase. Filled distributions represent the results obtained hierarchically combining
all events. This method allows the deviation coefficients to assume different values for
different events. Unfilled black curves represent the distributions obtained by assuming the
same value of the deviation parameters across all events. Horizontal ticks and dashed white
lines mark the 90% credible intervals and median values obtained with the hierarchical
analysis. From Ref. [170]

the GWs signal into two parts in the frequency domain at some cutoff frequency f IMR
c

related to the ISCO of the assumed remnant Kerr BH. The results for the measurements

are
∆Mf

Mf
= 0.03+0.14

−0.13,
∆χf

χf
= −0.05+0.37

−0.38,

which are compatible with a GR signal within the statistical uncertainties [169]. In Fig. 5.2

we show also the results obtained with the previous first two transient catalogs.

5.3.2 Parametrized tests

Another way to search for deviations from GR in the GWs signal is to put constraints on

parametric deformations of the GWs waveform predicted by GR, without relying on any

specific alternative theory of gravity. In this framework [204, 205], the deviations from

GR are modeled as fractional changes δpi in the parameters pi entering the GWs signal

as pi → (δpi + 1)pi. These fractional changes are then constrained by the data to check

the consistency with the GR values.

For example, we saw that the early-inspiral phase can be analytically described up to

the order (v/c)7 and thus can be parametrized in terms of the PN coefficients φj for j =

0, . . . , 7, as well as the logarithmic terms φjl for j = 5, 6. Moreover, a phenomenological

pre-Newtonian coefficient φ−2, denoting an effective -1PN term, is usually included to

describe the possible contribution due to emission of dipolar radiation, which is absent in

GR.

We can conduct two types of analyses: a single-parameter analysis, where only one of

the parameters is allowed to vary freely while the others remain fixed at their GR values,

and a multiple-parameter analysis, where all parameters are free to vary simultaneously.

The multiple-parameter analysis takes into account correlations between parameters and

offers a more conservative (but less informative) measure of the compatibility between an

individual GWs event and GR.

Fig. 5.3 shows the constraints on the PN parameters obtained combining events of the

third transient catalog LIGO/VIRGO and allowing the coefficients to vary only one at a

81



Figure 5.4: The 90% credible levels of the posterior probability distribution of the fractional devi-
ations in the frequency and damping time of the l = 2,m = 2,n = 0 mode, and their corresponding
one-dimensional marginalized posterior distributions, for events from the first three observing runs
passing a SNR threshold of 8 in both the pre and post-merger signal. Posteriors for the individual
events GW150914 and GW200129-065458 are separately shown. The joint constraints obtained
multiplying the posteriors (given a flat prior) from individual events are given by the filled grey
contours, while the hierarchical method of combination (see caption of Fig. 5.3) yields the black
dot dashed curves in the 1D marginalized posteriors. Adapted from Ref. [170].

time. We can see that all the results are consistent with the GR prediction with at least

90% credibility.

Another particularly powerful parameterized test of the nature of the emitting objects

is the BH spectroscopy. As we mentioned in Section 5.2 it consists in parametrizing

the ringdown part of the signal in terms of the QNMs frequencies in order to search for

deviations with respect to the Kerr spectrum. For a null test of GR using uniquely the

ringdown you need to detect at least two modes (two complex frequencies) and these are

usually parametrized as:

ω(J) =Re[ω(J)] = ω
(J)
Kerr(1 + δω(J)), (5.3.2)

τ (J) =Im[ω(J)] = τ
(J)
Kerr(1 + δτ (J)) (5.3.3)

where (J) = l,m, n labels the considered mode.

In order to obtain more precise results from this analysis, one can try to combine

information from different events to achieve better statistics. There are different meth-

ods in order to stack multiple events, important examples are the Tiger method (Test

Infrastructure for GR) [205, 206] and the Coherent Mode Stacking [207]. In Chapter 6

we will use and briefly discuss another of these methods: the Parspec framework [208]. A

general discussion on BH spectroscopy with multiple observations is beyond the scope of

this work, a complete review on the topic is [209].

Combining the events of the third GWs transient catalog, constraints on the fractional

deviations in the frequency and the damping time of the least-damped quasinormal mode
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has been obtained [210]: δω̂220 = 0.03+0.10
−0.09 and δτ̂220 = 0.10+0.44

−0.39. The probability

distributions from which these estimations come from are shown in Fig. 5.4 with black dot

dashed curves.

5.3.3 Searches for echoes

The presence of echoes in the late-time GWs signal is a clear distinctive feature of hori-

zonless objects. Several approaches have been developed to model echoes and to search

for them in the late GWs signal. The first time-domain echo template was proposed in

[211]. It is based on a standard GR inspiral-merger-ringdown template M and five extra

free parameters:

h(t) = A
∞∑
i=0

(−1)i+1γiM(t+ tmerger + techo − i∆techo, t0) (5.3.4)

where M(t, t0) = Θ(t, t0)M(t) with Θ is a smooth cut-off function. The five free pa-

rameters are: the time-delay between successive echoes ∆techo; the time of arrival of the

first echo techo, that depends on non-linear dynamics near the merger; the cut-off time

t0, which quantifies the part of the GR merger template used to produce the echoes; the

(frequency-dependent) damping factor of successive echoes γ ∈ [0, 1]; the overall amplitude

of the echo template A. The (−1)i term represents the phase inversion of the waveform in

each pulse. This implies that Dirichlet boundary conditions are assumed on the reflecting

barrier (or, more generally, that the reflection coefficient is real and negative [212]). The

phase inversion does not hold for Neumann-like boundary conditions. Extensions of the

original template have been developed in [213, 214].

A more phenomenological time-domain model was suggested in [215] that employs

a superposition of sine-Gaussians with multiple free parameters. While this model is

quite generic, it is burdened by a bigger number of parameters, many of which could be

unnecessarily independent.

A frequency-domain template for nonspinning compact objects was built in [212] by

approximating the BH potential with a Pöschl-Teller potential and assuming that the

source is localized in space. This template depends only on two physical parameter of the

horizonless compact object: the reflection coefficient R of the reflective barrier, which can

be in general a complex function of the frequency, and the width d of the cavity between

the potential peak and the reflective surface, which is directly related to the compactness

of the object.

Another search technique with Fourier windows [216–219] exploit the fact that the

echoes should pile up at specific frequencies (those implied by the cavity delay time)

which are nearly equally spaced.

Some unmodeled searches have also been performed. As instance, a “morphology-

independent” analyses, based on the superposition of generalized wavelets adapted from

burst searches was proposed and performed in [220, 221].

Note that all the generic modeling of echoes described until now assume equal-spacing

between the echoes. In Chapter 7 we will see that, if the effects of non-linear interactions

are taken into account, this approximation fails to be adequate, see also [222, 223] for

other scenarios involving variable spacing between echoes.
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Preliminary evidence suggesting the presence of GWs echoes in the postmerger stage of

binary coalescences observed by Advanced LIGO and Advanced Virgo during the first two

observing runs has been reported [211, 216, 224]. Nonetheless, the statistical significance of

these GWs echoes has been considered low and consistent with noise [225, 226]. Recently,

some negative searches have been performed [221, 227, 228]. Additionally, the LIGO/Virgo

Collaboration conducted a specific search for echoes within the events listed in the second

and third GWs transient catalogs, but found no evidence of GWs echoes [169, 229].

Third-generation gravitational detectors [19–27] are expected to present higher signal-

to-noise-ratio in the ringdown (O(100)-O(1000)), potentially allowing to detect GWs

echoes or to put strong constraints on horizonless models.
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Chapter 6

The ringdown signal: from regular

black holes to horizonless objects

In this chapter we investigate the ringdown, i.e. the QNM spectrum, of regular spherically

symmetric spacetimes.

We study both test-field perturbations and linear gravitational perturbations. For the

latter study, we interpret these metrics as solutions of GR coupled to some suitable matter

source [68–71, 230]. This description, although not unique, makes possible the investiga-

tion of gravitational perturbations, getting above the study of test-field perturbation on a

fixed background.

As a general feature, the QNMs spectra for the regular models that we have considered

present deviations from the spectrum of a Schwarzschild BH. Assuming that the effect of

rotation in more realistic models does not change the picture significantly, we find that for

sufficiently large values of the regularization parameter, and for gravitational-wave events

with large signal-to-noise ratio, these deviations could be detectable with next generation

detectors [19, 25, 231].

The chapter is organized as follows. In Section 6.1 we describe the two specific models

considered in the analysis, their main features and field sources. In Section 6.2 we illustrate

the study of perturbations on these spacetimes, we report the obtained field equations and

the methods used to find the corresponding QNMs. In Section 6.3 we show and comment

our results, while in Section 6.4 we discuss how the differences between the obtained

spectrum for regular models and the spectrum of singular BHs could be detectable stacking

multiple events. The technical details of the derivation of the perturbative equations are

given in the appendix.

6.1 Models

Let us report again the generic form of the line element for a regular spherically symmetric

spacetimes described in Section 3.1, making the “gauge” choice h(r) = r2:

ds2 = −e−2ϕ(r)f(r) dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, f(r) = 1 − 2m(r)

r
. (6.1.1)

We recall that simply connected solutions are described by this line element with
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ϕ(r) = 0 and some given mass function m(r) depending on a regularization parameter ℓ.

Multiple connected solutions are instead obtained putting ϕ(r) ̸= 0. As examples of

the two possible families of regular geometries, in this chapter we consider the Bardeen

and SV models:

Bardeen: ϕ(r) = 0 , m(r) = M
r3

(r2 + ℓ2)3/2
, (6.1.2)

Simpson–Visser: ϕ(r) =
1

2
ln

(
1 − ℓ2

r2

)
, m(r) = M

(
1 − ℓ2

r2

)
+
ℓ2

2r
. (6.1.3)

We saw in Chapter 1 that these two families of solutions pretty much cover all the pos-

sible regularized, spherically symmetric, static, BH spacetimes. 1 Furthermore, depending

on the value of ℓ, they can also describe ultra-compact, horizonless, objects [232] which

will also be considered in this study.

6.1.1 Horizons and photon spheres

A first relevant observation for our analysis is that the Bardeen-like and SV models have

very different features when interpolating from RBHs to horizonless objects. However,

in both cases, there exist two special values of the regularization parameter ℓ, say ℓext
and ℓlight with ℓext < ℓlight, which determine the existence and position of horizons and

photon spheres. This is visually illustrated by comparing Fig. 6.1, where the horizon and

photon-sphere structure of the spacetimes is represented according to the value of ℓ.
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Figure 6.1: Radii of the photon spheres (solid red lines for the inner stable one and solid
purple line the outer unstable one) and horizons (dashed black line) for the Bardeen (left
panel) and SV (right panel) metric. For the Bardeen metric the two horizons merge for
ℓ = 4M/3

√
3 giving way to a stable photon sphere inside the usual unstable one. For

ℓ = 48M
25

√
5

the two photon spheres finally merge leaving a simple compact object. For the

SV metric the horizon becomes a wormhole throat for ℓ = 2M over which a stable photon
sphere resides. For ℓ = 3M the two photon spheres merge and the wormhole throat
becomes an unstable photon sphere.

On the one hand, for ℓ < ℓext a Bardeen-like line element describes a RBH with

two horizons and one unstable photon sphere; for ℓ = ℓext the spacetime becomes an

extremal RBH, in which the two horizons and the unstable photon sphere coincide; for

1We also found spacetimes with an asymptotic regularization of the singular behavior, here we stick to
the more physically realistic ones in which the regularizing effects are supposed to act on a finite region of
spacetime.
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ℓext < ℓ < ℓlight the horizon disappears, the spacetime describes an ultracompact object

with two photon spheres whose distance decreases with increasing values of ℓ, and one of

them is stable. Finally, for ℓ > ℓlight the two photon spheres disappear and nor stable or

unstable null circular orbits are anymore possible around the object. In particular, for the

Bardeen model those special values read ℓext/M = 4
3
√
3

and ℓlight/M = 48
25

√
5
.

On the other hand, the SV metric for ℓ < 2M describes a RBH geometry with a single

horizon shielding a one-way spacelike throat, surrounded by an unstable photon sphere;

for ℓ = 2M the spacetime represents a one-way wormhole with an extremal null throat and

two photon spheres, one of which is stable and located at the throat; for 2M < ℓ < 3M

the wormhole becomes traversable both ways, the throat at

r = ℓ

is timelike and there are two accessible photon spheres; for ℓ > 3M the spacetime has only

one unstable photon sphere located at the throat r = ℓ.

6.1.2 Field sources

As already explained, the above introduced static solutions, can be considered the out-

come of a transient regularization of the gravitational collapse due to quantum gravity.

The implicitly assumption is that such non-classical regime gives way, at late times, to

a stationary configuration that should be a solution a some gravitational theory: a low

energy, effective field theory limit of quantum gravity, whatever this might be. As our

solutions mimic GR ones better and better as one gets away from the objects cores, so we

do expect that any such effective field theory of gravity should be encoding deviations from

GR in strong gravity regimes. Also, it is well known that such theories can often be recast

as GR with non-trivial, and sometimes exotic, matter sources. It is hence reasonable to

explore the interpretation of our geometries as solutions of GR and check their associated

matter content as this is a crucial step for considering their behavior under perturbations.

Within GR, the effective stress-energy tensor associated with the line element (6.1.1)

is given by its Einstein tensor, i.e., Tµ
ν = Gµ

ν/8π. Then, for any given RBH model, one

might question a posteriori the existence of some matter distribution yielding the same

stress-energy tensor.

Notice that the Einstein tensor computed from Eq. (6.1.1) has three independent com-

ponents, meaning that the matter source cannot be uniquely a scalar field (for which

T t
t = T θ

θ), nor an electromagnetic field (for which T t
t = T r

r).

Nonetheless, when ϕ(r) = 0, Gt
t = Gr

r and Bardeen-like RBHs are often interpreted

as solutions of GR coupled to some non-linear electrodynamics with action [68, 69]

S =

∫
d4x

√
−g
(

1

16π
R− 1

4π
L(F )

)
, (6.1.4)

where the electromagnetic Lagrangian is a non-linear function of the electromagnetic field

strength F = 1
4FµνF

µν , with Fµν = 2∇[µAν] being Aµ the electromagnetic potential. The

Maxwell field is frequently assumed purely magnetic and its magnetic charge coincides

with the regularization parameter, which implies that the only non-vanishing component

of the Maxwell field is Fθφ = ℓ sin θ (alternatively, the only non-vanishing component of
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the potential is Aφ = ℓ cos θ) and F = ℓ2/2r4.

The modified Maxwell field equation

∇µ (LFF
αµ) = 0 , (6.1.5)

being LF ≡ ∂L/∂F , is trivially satisfied, while the gravitational equations

Gµν = 2
(
LFFµ

λFνλ − gµνL
)
, (6.1.6)

imply that the electromagnetic Lagrangian is given in term of the metric functions of the

spacetime as in Eq. (6.1.1) (with ϕ = 0)

L(F ) =
m′

r2
, (6.1.7)

where r = r(F ).

In particular, for the model considered in this work

LBardeen =
3M

ℓ3

( √
2ℓ2F

1 +
√

2ℓ2F

)5/2

. (6.1.8)

On the other hand, when ϕ ̸= 0, to model the source it is necessary to introduce

other matter fields. In particular, the SV spacetime could be sourced by a combination of

non-linear electrodynamics and a self-interacting scalar field [70, 71].

S =

∫
d4x

√
−g
(

1

16π
R− 1

4π
L(F ) − ε

2
(∂Φ)2 − V (Φ)

)
, (6.1.9)

where ε = ±1, and the positive (negative) sign corresponds to a canonical (phantom)

scalar field with positive (negative) kinetic energy.

Even in this case, we assume the Maxwell field to be purely magnetic with its magnetic

charge equal to the regularization parameter, so that the modified Maxwell equation is

trivially satisfied. The computation of the gravitational field equations

Gµν = 2
(
LFFµ

λFνλ − gµνL
)

+ 8π
[
ε∂µΦ∂νΦ − gµν

(ε
2

(∂Φ)2 + V (Φ)
)]
, (6.1.10)

reveals that the scalar field is phantom and satisfies

Φ′2 =
ϕ′

4πr
, (6.1.11)

the derivative of the electromagnetic Lagrangian reads

LF =
r2
[
r2f ′′ − 3r2f ′ϕ′ − 2f

(
r2ϕ′′ − r2ϕ′2 + rϕ′ + 1

)
+ 2
]

4ℓ2
, (6.1.12)

which, once integrated, can be substituted in the expression for the scalar potential

V [Φ(r)] =
1 − rf ′ + f (rϕ′ − 1) − 2r2L

8πr2
. (6.1.13)
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Finally, the Klein–Gordon equation is a consequence of the Einstein equations.

In particular, using the metric functions for the SV spacetime we get

LSV =
6M

5

(
2F 5

ℓ2

)1/4

, ΦSV =
1√
4π

arccot

(√
r2 − ℓ2

ℓ

)
, (6.1.14)

VSV =
M sin5

(√
4πΦ

)
10πℓ3

. (6.1.15)

Notice that we have used a different convention with respect to Ref. [70], in particular

we have chosen the scalar field to vanish at spatial infinity.

6.2 Study of perturbations

Assuming the gravito-scalar-magnetic interpretation given in Section 6.1.2, we can study

the full effect of linear perturbations expanding the metric and the matter fields around

their background values. According to their parity symmetry, even or odd, the metric and

matter perturbations can be decomposed respectively in polar and axial contributions.

However since the background metric and the background scalar field are even, while the

background magnetic field is odd, axial electromagnetic perturbations and polar scalar

perturbations are coupled to polar gravitational perturbations, while polar electromagnetic

perturbations are coupled solely to axial gravitational perturbations (being impossible to

have axial scalar perturbations).

If this parity coupling is not taken into account, as it commonly happened in several

recent investigations [233–239], one obtains an incompatible system of equations for the

perturbation functions, which admits only a trivial solution. This has been quite sys-

tematically overlooked in the previously mentioned literature, discarding one of the three

obtained equations, tacitly assuming that it can be obtained from the other two. To

understand the fine details, the interested reader can follow the full derivation of the per-

turbative equations in Section 6.6 and in particular the comment in Footnote 3. On the

other hand, other authors have analyzed linear perturbations carefully, but specialized to

non-linear electrodynamics without scalar fields or viceversa [240–245]. Our perturbative

analysis extends these results to a generic spacetime described by the line element (6.1.1),

interpreted as an exact solution of GR coupled to non-linear electrodynamics and scalar

fields.

6.2.1 Full perturbative analysis

For each parity sector, gravitational, scalar and electromagnetic harmonic perturbations

satisfy a system of coupled non-homogeneous wave equations, which schematically read

d2I
dr2∗

+
(
ω2 − VI

)
I +

∑
J ≠I

cI,J J = 0 , (6.2.1)

where r∗ is the tortoise coordinate defined as dr∗/dr ≡ eϕ/f , for I,J = {A, E} in the

sector in which axial gravitational perturbations are coupled to polar electromagnetic

perturbations, and I,J = {P,B,S} in the sector in which polar gravitational, axial elec-
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tromagnetic and polar scalar perturbations are coupled. The variables {A,P,B, E ,S} are

given combinations of the metric, the electromagnetic potential, and the scalar field per-

turbation functions and their derivatives. The potentials VI and the coefficients cI,J are

given functions of the background metric and fields, and also depend on the harmonic

number l associated to the spherical-harmonics expansion.

For the sake of conciseness, we have only summarised the outcome of such full per-

turbative analysis, which is instead explicitly carried on in Section 6.6. The latter turns

out to be quite involved and dependent on the details of the matter distribution so, as a

complementary analysis, we also present in what follows a test-field perturbations analysis

which, albeit less accurate, has the merit to avoid assumptions on the matter distribution

supporting the geometry. In Section 6.3 we shall see that, reassuringly, the outcomes

between the two kinds of analysis turn out to be qualitatively in agreement.

6.2.2 Test-field perturbations

The previous analysis relies on the interpretation of our metrics as solutions of GR coupled

with some exotic matter. If instead we want to study the ringdown without specifying

the matter distribution of our spacetime, test-field perturbations represent a simple but

informative proxy. Often, the first step is to consider scalar field perturbations on top

of these spacetimes. For spherically symmetric spacetimes, it is possible to extend the

analysis to other spin-s fields, to include axial spin-2 perturbations [246].

The crucial point made in such analyses is that standard matter fields — such as

canonical scalars and Maxwellian electric fields — couple with the polar gravitational

perturbations, while in the axial sector the source stress-energy tensor is left unperturbed.

If true this would imply that spin-2 test fields analysis could already capture some features

of the gravitational QNMs spectrum. However, this is not the case for a purely magnetic

source, and one should be then careful in drawing conclusions.

Within this context, the perturbative equation for scalar, electromagnetic and gravi-

tational axial perturbations for the spacetime described by Eq. (6.1.1) reads [246, 247]

d2ψs

dr2∗
+
(
ω2 − Vs

)
ψs = 0 , (6.2.2)

where ψs is related to the spin-s perturbation field, the tortoise coordinate r∗ is still defined

as dr∗/dr ≡ eϕ/f , and the potential depends on the spin-weight of the perturbation and

the metric functions:

Vs = f e−2ϕ

[
l(l + 1)

r2
+

2
(
1 − s2

)
m

r3
− (1 − s)

(
2m′

r2
+
fϕ′

r

)]
. (6.2.3)

6.2.3 Computation of the quasinormal modes

We now want to solve Eqs. (6.2.1) and (6.2.2) for ω, to compute the quasinormal modes

frequencies, i.e. the late-time response of the compact object to an initial perturbation

that is localized in space. After providing suitable boundary conditions, we use standard

and matrix-valued direct integration techniques [248, 249] for the test-field case and for

the full gravitational case, respectively.
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For the RBH cases, the two boundaries from which we integrate are spatial infinity,

where we impose the solution to be a purely outgoing wave, and the horizon, where we

impose the solution to be a purely ingoing wave.

For the horizonless cases, we still impose the solution to be purely outgoing at spatial

infinity, but for the other boundary condition we make a different choice for the two fam-

ilies. The Bardeen-like metrics with ℓ > ℓext describe ultracompact stars thus we impose

regularity conditions at the origin. Note that in this way we are assuming that the test

field perturbations can travel through the entire object with negligible interaction with

matter (while in the gravitational perturbations case such interaction is self-contained in

the equations of motion). Of course, this assumption may at this point seem unjustified,

it is nonetheless the only one that we can do without introducing a specific, and at this

stage arbitrary, coupling between the object’s matter and our test field (see however our

comment about absorption below). The SV metric with ℓ > 2M represents instead a

traversable wormhole. Its throat, differently from a horizon, is traversable in both di-

rections. Since the geometry on the two sides of the wormhole throat is symmetric, we

assume that the perturbation will inherit the symmetry of the background. This assump-

tion translates into perfect reflection at the throat, which we implement by demanding

the perturbation to vanish there, i.e. ψ(ℓ) = 0.

Both the above assumptions can in principle be modified, e.g. for the Bardeen-like

ultra-compact objects we could introduce an absorption coefficient associated to the star

matter or in the wormhole case we could assume asymmetric stimulation of the wormhole

mouth. We leave these extensions of the present study for future investigations.

The direct integration method we used requires an initial guess for the value of the

quasinormal mode frequency. While in the RBH case we track the mode continuously

starting from its “quasi-Schwarzschild” value obtained for small values of ℓ, in the ultra-

compact case because of the discontinuity in the boundary conditions (there is no horizon)

and the large values of ℓ, we do not have any value as a reference to start from. Thus

we explored carefully the (ωI , ωR) plane in order to find the mode with smaller imaginary

part, that is the fundamental one.

6.3 Results

In what follows we report the QNMs spectra for the considered two families of spherically

symmetric regular spacetimes. We focus on the quadrupolar l = 2 fundamental mode,

which is the dominant one in the gravitational-wave ringdown signal. Note however, that

in the ultracompact horizonless cases, these QNMs become dominant only in the late-

time ringdown signal being preceded by a first part of the signal that is similar to the

Schwarzschild one [250].

For test-field perturbations we explore both the RBH and horizonless branches. For

the Bardeen metric we vary the regularization parameter from ℓ = 0, that is Schwarzschild,

to roughly the maximum value for which the object still possesses a photon sphere. In the

SV spacetime a photon sphere is always present at the throat and thus there is no upper

bound on the value of the regularization parameter, so we let it span in [0, 3.5M ]. We

show our results in Figs. 6.2 and 6.3.

Let us note that some results in the test-field approximation were already present in
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literature, in a specific branch and for specific values of s. Our results are in agreement with

those presented e.g. in Refs. [251–255]. For the full perturbative analysis the computation

in the horizonless branch presents some technical difficulties and numerical instabilities,

therefore we only report the more solid results for the RBH branch, shown in Figs. 6.4

and 6.5. However, in advance with the discussion in Section 6.4, we only need the numerical

values of gravitational QNMs in the RBH branch to assess the possible detectability of

these deviations with the next generation of gravitational-wave detectors.
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Figure 6.2: Quadrupolar l = 2 fundamental mode of the Bardeen metric for test-field
perturbations, s = 0 (blue), s = 1 (light purple) and s = 2 (red). On the left results for
values of ℓ in the RBH branch that is from ℓ = 0 (Schwarzschild) to ℓ = ℓext = 4

3
√
3
M

(extremal RBH). On the right results for values of ℓ in the horizonless branch (ℓ > ℓext).
Note that, in this branch, for values of the regularization parameter near (but not equal
to) the extremal one, the imaginary part is extremely small and thus we have very long
living modes this is not true for the extremal RBH case, indicated by the vertical line in
the left panel.
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Regular Black holes

Bardeen Simpson–Visser

Test s=2 Axial Polar Test s=2 Axial Polar

ℓ/M = 0.2

∆R 0.0075 −0.0012 0.0037 −3 · 10−5 −0.0002 −0.0005

∆I 0.0045 0.0090 0.0090 0.0022 0.0044 0.0044

ℓ/M = 0.6

∆R 0.0808 0.0069 0.0297 −0.0003 −0.0163 −0.0067

∆I 0.0674 0.0776 0.0810 0.0236 0.0292 0.0292

ℓ/M = 1.6

∆R −0.0053 −0.0690 −0.0428

∆I 0.1798 0.1854 0.1776

Horizonless compact objects

Bardeen Simpson–Visser

Test s=2 Test s=2

δ = 0.05

∆R 0.1380 −0.1801

∆I 0.9712 0.9970

δ = 0.10

∆R 0.3613 −0.0310

∆I 0.6441 0.9015

δ = 0.20

∆R 0.0482

∆I 0.5913

Table 6.1: Relative deviations from the quadrupolar fundamental Schwarzschild frequency

∆R/I =
ωR/I−ωS

R/I

|ωS
R/I

| with ωSM = 0.37367−0.08896i, for s = 2 test-field and linear gravitational per-

turbations, both in the axial and polar sectors, for selected valued of the regularization parameter.
For the Bardeen metric there are no results for ℓ/M = 1.6 and δ = 0.2, with δ ≡ ℓ/ℓext − 1, since
for those values of compactness the spacetime not only lose the presence of the horizon but even
of a photon sphere. For both spacetimes results for axial and polar gravitational perturbations are
not reported for horizonless configurations because of the numerical issues present in this branch.
Looking at the test field case, it is easy to see the large increment of ∆I passing from the RBH
configurations to the horizonless ones for small δ.
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Figure 6.3: Quadrupolar l = 2 fundamental mode of the SV metric for test-field pertur-
bations, s = 0 (blue), s = 1 (light purple) and s = 2 (red). On the left results for values
of ℓ in the RBH branch, that is from ℓ = 0 (Schwarzschild) to ℓ = 2M (one-way wormhole
with an extremal null throat). On the right results for values of ℓ in the horizonless branch
(ℓ > 2M). It is worth noticing the relative flatness of the real part curves which highlights
weak deviations from the singular GR solution behavior recovered for ℓ = 0. Note that,
in the horizonless branch (right panel), for values of the regularization parameter near
(but not equal to) the extremal one, the imaginary part is extremely small and thus we
have very long living modes, this is not true for the extremal RBH case, indicated by the
vertical line in the left panel.
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Figure 6.4: Axial (blue) and polar (light purple) l = 2 gravitational mode for the Bardeen
metric for values of ℓ in the RBH branch that is from ℓ = 0 (Schwarzschild) to ℓ = ℓext =
4

3
√
3
M (extremal RBH).
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Figure 6.5: Axial (blue) and polar (light purple) l = 2 gravitational mode for the SV
metric for values of ℓ in the RBH branch that is from ℓ = 0 (Schwarzschild) to ℓ = 2M
(one-way wormhole with an extremal null throat).

6.3.1 Summary

The results for the two families of regular models presents some differences. For what

regards test-field perturbations, the SV spacetime seems to be a better mimicker since,

given a certain value of the regularizing parameter ℓ, its spectrum is more similar to

the Schwarzschild one (i.e |(ωSV − ωS)/ωS | < |(ωBard − ωS)/ωS |). We must say however

that, for SV, ℓ can span a bigger intervals of values and thus the spectrum can reach

higher deviations from Schwarzschild in the imaginary part (some numerical examples are

reported in Table 6.1). Furthermore the corrections to the real part of the frequency in

the RBHs branch are negative (except for s = 1) while for the Bardeen spacetime are

always positive. The reason for this is clear in Schutz-Will WKB approximation [256] in

which ωR ∼ V (rpeak)1/2 (where rpeak is the location of the maximum of the potential).

Indeed, compared to the Schwarzschild spacetime, the peak of the potential in the SV

spacetime is smaller, whereas in the Bardeen spacetime it is higher. This holds for any

spin s of the perturbation except for s = 1. Indeed, for this value of the spin, in the

test-field approximation V SV(rpeak) = V Schw(rpeak) and the small positive corrections in

the QNMs of the SV spacetime are only due to the different location of the peak in tortoise

coordinates.

For what regards full gravitational perturbations instead, the real part of the frequency

for SV RBHs presents stronger deviations from the Schwarzschild one in the axial sector.

For both families of regular models, in the ultracompact branch we found long living

modes associated to the trapping of perturbations near the stable photon sphere. The

damping time grows exponentially with the harmonic number and it is longer for values

of the regularization parameter near the extremal case, that is for more compact con-

figurations. This is not surprising, a more efficient trapping is expected in these cases

since there is more distance between the two photon spheres and a deeper potential well.

The aforementioned conclusions stand robust within our framework; however, it is crucial

to note that they may be influenced by potential interactions between the test field and

matter (e.g., through an absorption coefficient). This consideration is particularly signif-

icant as the stable photon sphere seats comfortably within the region where the matter

stress-energy tensor is non-negligible [232].
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Finally, we also found that the isospectrality between the axial and the polar sector is

broken for both families, mainly in the real part of the frequencies, with deviations that,

as expected, are greater for greater values of the regularization parameter.

6.3.2 A connection between the photon sphere instability and the Are-

takis instability?

We found that also in our new class of horizonless ultracompact objects there are long living

perturbations modes, associated to the presence of a stable photon sphere. As explained

in Section 3.4.2 this is usually assumed to be the hint of a non-linear instability.2 Indeed

the presence of these long living modes in the frequency decomposition is associated with

a total perturbation in time domain that decay slower than 1/t and this leads to the

breaking of linear approximation.

The continuity between RBHs and horizonless objects of our models enlighten the fact

that stable photon sphere responsible for this instability is already present in the limiting

case of extremal RBHs (for ℓ = ℓext) and and its position (in Eddington–Finkelstein

coordinates) coincides with that of the extremal horizon [232, 257]. Actually, this is a

general feature of any extremal horizon: it coincides with an extreme point of the potential

in the equation for null geodesics [258–260]. Interestingly, this case is conjectured to be

affected by another type of instability, the so-called Aretakis instability [261, 262] which

appears to be connected to conserved quantities of extremal horizons.

Presently, and differently from the photon sphere instability, the Aretakis instability

lacks of a sound physical interpretation. In [263, 264] it has been tentatively connected

to the presence of null geodesics trapped near the horizon, that is geodesics that orbit

arbitrarily many times around the horizon before falling in. If this connection will be

confirmed then it will strongly suggest that the Aretakis instability should be interpreted

as a special case of the photon sphere one.

However, we have here to notice that the former has been proven to hold also for

extremal Kerr BHs [262] albeit for these BHs the photon sphere at the horizon is actually

unstable. Of course, also in this case one can observe geodesics that orbit arbitrarily many

times around the horizon before falling in, like it happens around any unstable photon

sphere, but, usually, this is not associated to any new instability.

Furthermore, from our previous analysis, it is clear that the damping times for extremal

RBHs are of the same order of magnitude of that for sub-extremal ones, while ultracompact

objects with stable photon sphere presents very long living modes with damping times

several order bigger. This seems to suggest that the photon sphere instability is not

triggered or partially suppressed for extremal RBHs. Probably this is due to the fact that

an extremal horizon, being an horizon, is not a true stable orbit but can be considered

a metastable photon sphere (see Fig. 6.6). The presence of an horizon, even if extremal,

introduces a source of dissipation: indeed the energy that enters the horizon is completely

lost.

2Note however that, as already remarked, our results were obtained by neglecting the possible inter-
actions of the perturbation with matter. Indeed, it can be shown that generically the matter content of
these spacetimes is not negligible at the location of the stable photon sphere [232]. If this matter absorbs
part of the energy carried by the perturbation, the instability would be most probably tamed.
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Figure 6.6: Difference between a true stable photon sphere present in the spacetime of
compact horizonless objects (left panel) and the “stable” photon sphere present at the
horizon of extremal BHs and RBHs (right panel). The first one causes a real trapping of
modes while in the second case the “trapped” modes pass through the horizon in the BH
region.

In conclusion, at the moment there seems to be no ground for a claim that the Aretakis

instability is the limit of the instability associated to stable photon spheres for ultra-

compact objects when an extremal trapping horizon forms.

6.4 Detectability

At this point one may wonder if these QNMs can be distinguished from the QNMs of

singular GR BHs in the observed gravitational-wave ringdown signals. In other words,

will we ever be able to prove that the merging objects that produce a given ringdown

signal are not singular GR BHs but RBHs? and how many observations we have to

combine to do that?

As a preliminary answer to the above questions, we report here results obtained within

a particular framework for BH spectroscopy, the Parspec framework [208]. One can take

this initial analysis as a proof of principle of detectability of these corrections to BHs

QNMs.

6.4.1 Parspec framework

Parspec is an observable-based parametrization of the ringdown signal of rotating BHs

beyond GR, it was developed for BH solutions in modified gravity but can be adapted

to our phenomenological models of RBHs. We will give here a brief description of this

framework.

Let us assume i = 1, . . . , N independent ringdown detections, for which q QNMs are

measured. Each mode of the i-th source is parametrized as

ω
(J)
i := Re[ω

(J)
i ] =

1

Mi

D∑
k=0

χn
i ω

(k)
J

(
1 + γiδω

(k)
J

)
, (6.4.1)

τ
(J)
i :=

1

Im[ω
(J)
i ]

= Mi

D∑
k=0

χn
i τ

(k)
J

(
1 + γiδτ

(k)
J

)
, (6.4.2)

where J = 1, 2, ..., q labels the mode; Mi and χi ≪ 1 are the detector-frame mass and spin
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of the i-th source; D is the order of the spin expansion; ω
(k)
J and t

(k)
J are the dimensionless

coefficients of the spin expansion for a Kerr BH in GR; γi are dimensionless coupling

constants that can depend on the source i but not on the specific mode J , for γi → 0

the GR BH case is recovered; finally δω
(k)
J and δt

(k)
J are the “beyond Kerr” corrections,

in general since all the source dependence is parametrized in γi, these corrections are

universal dimensionless numbers.

In our analysis, we will assume that ℓ/M is constant. Under this condition, there

will be no dependence of the corrections on the source parameters and thus γi can be

set to 1. This assumption can seem reasonable in the case of a dynamical process of

regularization but it is not necessary correct (see Section 3.3). Relaxing this assumption

will probably worsen our results, rendering the most massive sources irrelevant for our

analysis. However if one consider instead ℓ to be the fixed parameter, the dependece of

the QNMs on M becomes more intricate, as instance bigger mass objects will be regular

BHs while smaller objects will be horizonless. We leave the analysis of this case to future

work.

We assume perturbative corrections, i.e. we assume that γiδω
(k) ≪ 1 and γiδt

(n) ≪ 1.

It should be noted that Mi and χi are extracted assuming GR BHs, i.e. computed from

the full inspiral-merger-ringdown waveform within GR. One should extract mass and spin

of the BH from the inspiral-merger waveform considering also GR deviations, but this can

be very challenging, especially because it requires merger simulations for these RBHs. In

this preliminary analysis, we shall assume the shift on the final mass and spin of the source

to be negligible.

To construct the probability distribution of the beyond Kerr parameters we use a

Bayesian approach: if we indicate with θ̄ the parameters (that in our case are δω
(k)
J and

δt
(k)
J ) and with d̄ a given set of ringdown observations, from the Bayes’ theorem we have

P (θ̄|d̄) ∝ L(d̄|θ̄)P0(θ̄) (6.4.3)

where L(d̄|θ̄) is the likelihood function and P0(θ̄) is the prior on the parameters. Thus from

the likelihood we can obtain the full posterior probability distribution P (θ̄|d̄) through a

Markov chain Monte Carlo (MCMC) method based on the Metropolis-Hastings algorithm.

For each event, the likelihood is chosen to be Gaussian:

L(d̄|θ̄) = N (µ⃗i,Σi) (6.4.4)

where the vector µ⃗i is

µ⃗i = (µ⃗i
(1), ..., µ⃗i

(q))T (6.4.5)

where each µ⃗i
J is a two component vector that depends on the difference between the

observed J = 1, ..., q modes and the parametrized templates in Eq. (6.4.2):

µ⃗
(J)
i =

ω(J)
i − ω

(J)
i,obs

τ
(J)
i − τ

(J)
i,obs

 , (6.4.6)

and Σi is the covariance matrix that includes errors and correlations between the frequen-
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cies and damping times of the i-th source.

Since the observed QNMs correspond to different values of l and m, i.e. they are “quasi-

othonormal”, the covariance matrix Σi = diag(Σ
(1)
i , ....,Σ

(q)
i ) is block-diagonal with each

block corresponding to the J-th mode, and thus the likelihood function can be written as

a product of Gaussian distributions:

N (µ⃗i,Σi) =

q∏
J=1

N (µ
(J)
i ,Σ

(J)
i ) (6.4.7)

Moreover, since we consider N independent detections, the combined likelihood func-

tion of the parameters can be further factorized as:

L(d⃗|θ⃗) =
N∏
i=1

Li(d⃗|θ⃗) =
N∏
i=1

q∏
J=1

N (µ
(J)
i ,Σ

(J)
i ) (6.4.8)

6.4.2 Results

We assume that the masses and spins of the merging objects are measured from the inspiral

signal so that we can considered only one ringdown mode (l = m = 2) in our analysis, we

stick to 0 order in the spin thus we have:

ωi := Re[ωi] =
1

Mi
ω(0)

(
1 + δω(0)

)
, (6.4.9)

τi :=
1

Im[ωi]
= Miτ

(0)
(

1 + δτ (0)
)
. (6.4.10)

where, as already mentioned, we put γi = 1 because we assumed ℓ/M to be the same for

every source.

The analysis can be generalized to higher order in the spin once computed the gravi-

tational QNMs for this rotating RBHs.

We considered the signal coming from the merger remnant of N binary coalescences

as observed by a ground-based 3G detector (ET in the so-called ET-D configuration [19]).

The 2N masses of the binary components are drawn from a log-flat distribution between

[5, 95]M⊙ and the 2N spins from a uniform distribution between [−1, 1]. We do not include

supermassive BHs in the range of masses since ET will be poorly sensitive to them. We

fix the source distance by choosing the SNR of the mode to be 102. We then compute

the mass and the spin of the final BH formed after merger using semianalytical relations

based on numerical relativity simulations in GR [265]. From the final mass of the source

we compute the l = 2 frequency and damping time of a RBHs with that mass, we perform

the analysis for both Bardeen and SV RBHs. We compute the errors on the modes through

a Fisher-matrix approach.

Like we can see in Fig. 6.7, O(100) observations with SNR ≈ 102 are enough to exclude

with 90% confidence level the hypotesis of GR singular BHs that is δω = δτ = 0. This

even for small, but not Planckian, values of the regularization parameter and for both

families of regular models.

For the Bardeen metric, the strongest constraints come from the real part of the fre-

quency in the polar sector: when ℓ > 0.13 its deviation from Schwarzschild real frequency
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Figure 6.7: Probability distribution functions for corrections to the Schwarzschild l =
m = 2 mode when we inject as observations axial/polar QNMs of the Bardeen metric
with ℓ/M = 0.3 (left upper/bottom panel) and axial/polar QNMs of the SV metric with
ℓ/M = 0.3 (right upper/bottom panel). Different colors represents results obtained with
different numbers N of observed sources.
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allows to exclude the GR hypothesis at 90% confidence level. For the SV metric the

strongest constraints come from the real part of the frequency in the axial sector and

to exclude the GR hypothesis we need ℓ ⩾ 0.19. Of course these results depend on the

number of sources and their SNR. Here we referred to the case of O(100) observations

with SNR ∼ 102 which should be routinely available with third generation ground-based

detectors [19, 231].

Note that from the posterior probability distributions is also possible to extract a value

for the observed δω and δτ (with associated errors). This should be the value at which

the posterior is peaked. Thus if one knows the dependence of these corrections from the

regularization parameter (δω(ℓ) and δτ(ℓ)) it is also possible to infer the value of ℓ from

the posterior probability distributions. This dependence could be obtained for example

fitting the numerical results for the RBHs QNMs computed in Section 6.3.

6.5 Conclusions

In this chapter we have studied test-field and gravitational perturbations on top of the two

possible families of spherically symmetric black-hole mimickers, in particular we consid-

ered the Bardeen and SV model. Both families smoothly interpolate between RBHs and

horizonless objects depending on the value of the regularization parameter ℓ that enters

the metric.

The results for these two families of regular models presents some differences. For

what regards test-field perturbations the SV spacetime seems to be a better mimicker

since, given a certain value of the regularizing parameter ℓ, its spectrum is more similar

to the Schwarzschild one (i.e |(ωSV − ωS)/ωS | < |(ωBard − ωS)/ωS |). We noticed how-

ever, that due to the larger span allowed for ℓ in the SV case, this can produce higher

deviations from Schwarzschild in the imaginary part, as explicitly reported in Table 6.1.

Furthermore, the corrections to the real part of the frequency in the RBH branch are neg-

ative in the SV case while for the Bardeen spacetime are positive. For what regards full

gravitational perturbations instead, the real part of the frequency for SV RBHs presents

stronger deviations from the Schwarzschild one in the axial sector. We also proved that

isospectrality between axial and polar QNMs is broken.

For both families of regular models, in the ultracompact branch, we found long living

modes whose damping time grows exponentially with the harmonic index l and is longer

for values of the regularization parameter near the extremal case, that is for more compact

configurations. These modes are associated with the presence of a stable photon sphere

in these spacetime and are usually considered a hint for non-linear instability.

Also the Aretakis instability is expected to affect the extremal RBH case, that is the

limiting case between RBHs and horizonless objects. A linear mode analysis is insufficient

to confirm it, indeed we find damping times for this case to be of the same order of

magnitude of the sub-extremal case.

In general our analysis demonstrates that there are deviations of the QNMs spectrum

of these spacetimes from that of a Schwarzschild BH due to the non-zero value of the

regularization parameter ℓ. So, we analysed the possible detectability of these deviations

in the observed gravitational-wave ringdown signals. The detectability of such deviations

depends on several aspects such as: the number of observations, their SNR and obviously
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the size of the regularization parameter. Using the Parspec framework for the analysis we

showed that these deviations should be detectable in the near future for Bardeen RBHs

with ℓ/M > 0.13 and SV RBHs with ℓ/M > 0.19. Indeed with about hundred observations

with SNR ∼ 100, which should be routinely available with third generation ground-based

detectors [19, 231], it will be possible to exclude the hypothesis of GR singular BHs with

90% confidence level or to cast constraints on the quantum gravity-induced regularization

parameter ℓ. This analysis in only preliminary and we plan to extend it in several ways:

using corrections at higher order in the spin, using a more realistic binary population

for the sources, and treating also the final mass and spin of the remnant as unknown

parameters. We also plan to extend this study on gravitational perturbations to rotating

BH mimickers and to better investigate the presumed instability of the extremal case.

In conclusion, in spite of their preliminary nature, the results of these investigations

should be taken as a strong encouragement that third generation gravitational-wave exper-

iments have the potential not only to further advance our astrophysical understanding of

compact objects but as well to open a new channel into quantum gravity phenomenology.
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6.6 Appendix: Derivation of the perturbative equations

To study linear perturbations we start expanding the metric and the matter field around

their background values,

gµν = g(0)µν + hµν , Aµ = A(0)
µ + δAµ , Φ = Φ(0) + δΦ , (6.6.1)

where g
(0)
µν , A

(0)
µ and Φ(0) represent the background quantities, while hµν , δAµ and δΦ are

small perturbations.

We further decompose the perturbations in spherical harmonics Y lm and separate them

in polar and axial parts according to their parity symmetry, i.e. hµν = hpolarµν + haxialµν , and

similarly for the matter field. In the Regge–Wheeler gauge, hµν can be written as

hpolarµν =
∑
l,m


−f(r)e−2ϕ(r)H lm

0 (t, r) H lm
1 (t, r) 0 0

H lm
1 (t, r)

Hlm
2 (t,r)
f(r) 0 0

0 0 r2K lm(t, r) 0

0 0 0 r2 sin2 θK lm(t, r)

Y lm,

(6.6.2)

haxialµν =
∑
l,m


0 0 hlm0 (t, r)Slm

θ hlm0 (t, r)Slm
φ

0 0 hlm1 (t, r)Slm
θ hlm1 (t, r)Slm

φ

hlm0 (t, r)Slm
θ hlm1 (t, r)Slm

θ 0 0

hlm0 (t, r)Slm
φ hlm1 (t, r)Slm

φ 0 0

 , (6.6.3)

being Slm
b ≡

(
−Y lm

,φ / sin θ, sin θY lm
,θ

)
with b = {θ, φ}.

Likewise, we expand the electromagnetic potential as

δApolar
µ =

∑
l,m

(
ulm1 (t, r)

r
Y lm,

ulm2 (t, r)

rf(r)
Y lm, ulm3 (t, r)Y lm

b

)
, δAaxial

µ =
∑
l,m

(
0, 0, ulm4 (t, r)Slm

b

)
,

(6.6.4)

being Y lm
b ≡

(
Y lm
,θ , Y lm

,φ

)
. Finally, we decompose the scalar perturbation as

δΦ =
∑
l,m

δΦlm

r
Y lm . (6.6.5)

In what follows, we drop the symbol
∑

l,m and the superscript lm to avoid cluttering the

notation. We also assume harmonic time dependence for the perturbation functions, i.e.

for any perturbative quantity δF (t, r) we write δF (t, r) = e−iωtδF̃ (r), but we will omit

the tilde.

The background metric and scalar field are even under parity transformations, while

the background magnetic field is odd. Hence, to linear order, the axial gravitational per-

turbations couple to the polar electromagnetic perturbations (Sector I), while the polar
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gravitational perturbations couple to the axial electromagnetic and the polar scalar per-

turbations (Sector II).

It is relatively easy to check that the equations derived in the next subsections repro-

duce well known results in the appropriate limits, e.g. the Regge–Wheeler–Zerilli gravita-

tional equations for the Schwarzschild spacetime for L = 0, ϕ(r) = 0 and f(r) = 1−2M/r,

or those of Ref. [243] for ϕ(r) = 0.

6.6.1 Sector I: axial gravitational–polar electromagnetic

In this sector the axial gravitational perturbations couple with the polar electromagnetic

perturbations. Let us begin by considering the modified Maxwell equation for a polar

electromagnetic perturbation. At linear order, the field strength squared is unperturbed,

F ≈ F (0). It follows that when computing linear perturbations the Lagrangian and its

derivatives are unperturbed as well, e.g. LF ≈ LF (0) , where LF (0) ≡ ∂L/∂F (0). How-

ever, to avoid an excessive cluttering of the equations, in what follows we drop the “(0)”

superscript.

The t, r and θ components of the modified Maxwell equation read

fu′′1 + f

(
ϕ′ − 2ℓ2LFF

r5LF

)
u′1 +

(
2ℓ2fLFF

r6LF
− rfϕ′ + l(l + 1)

r2

)
u1 + iωu′2

+ iω

(
1

r
− f ′

f
− 2ℓ2LFF

r5LF
+ ϕ′

)
u2 −

l(l + 1)ℓ

r3
h0 = 0 , (6.6.6a)

iωu′1 −
iωu1
r

+

(
l(l + 1)e−2ϕ

r2
− ω2

f

)
u2 +

l(l + 1)ℓfe−2ϕ

r3
h1 = 0 , (6.6.6b)

iωre2ϕu1 + rfu′2 − f

(
2ℓ2LFF

r4LF
+ rϕ′ + 1

)
u2 + iωℓe2ϕh0 + ℓf2h′1

+ ℓf

[
f ′ − f

(
2ℓ2LFF

r5LF
+ ϕ′ +

2

r

)]
h1 = 0 . (6.6.6c)

Equation (6.6.6b) can be solved for u2 and substituting in Eq. (6.6.6a) gives an equation

for u1 with non-homogeneous terms proportional to h0 and h1. Equation (6.6.6c) is a

consequence of the first two equations.

The independent components of the perturbed axial gravitational equations are the

tθ, rθ and θφ

fh′′0 + fϕ′h′0 −
2r2f (rϕ′ + 1) + (l − 1)(l + 2)r2 + 4ℓ2LF

r4
h0 + iωfh′1

+
iωf (rϕ′ + 2)

r
h1 −

4ℓLF

r3
u1 = 0 , (6.6.7a)

iωh′0 −
2iωh0
r

+

(
fe−2ϕ

[
(l − 1)(l + 2)r2 + 4ℓ2LF

]
r4

− ω2

)
h1 +

4ℓLF e−2ϕ

r3
u2 = 0 ,

(6.6.7b)

fe−2ϕh′1 + e−2ϕ
(
f ′ − fϕ′

)
h1 +

iωh0
f

= 0 . (6.6.7c)

Solving for h0 in Eq. (6.6.7c) and substituting in Eq. (6.6.7b) we obtain a dynamical equa-

tion for h1, while Eq. (6.6.7a) is automatically satisfied as a consequence of the previous
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equations and the modified Maxwell equations.3

To make the four independent equations more readable, it is helpful to introduce a

new variable u, which corresponds to the perturbation of the tr component of the Maxwell

tensor,

u ≡ iωru2 − f (u1 − ru′1)

r2f
, (6.6.8)

instead of the perturbations of the potential u1 and u2.

Taking the first and second derivative of Eq. (6.6.8), solving for u′1 and u′′1, and sub-

stituting into Eqs. (6.6.6a) and (6.6.6b) we get

LFu
′ +

r4LF (rϕ′ + 2) − 2ℓ2LFF

r5
u− l(l + 1)LF

r3f
u1 −

l(l + 1)ℓLF

r4f
h0 = 0 , (6.6.9a)

iωLFu+
l(l + 1)LF e−2ϕ

r3
u2 +

l(l + 1)ℓfLF e−2ϕ

r4
h1 = 0 . (6.6.9b)

Solving Eqs. (6.6.7c), (6.6.9a) and (6.6.9b) for h0, u1 and u2 and substituing in Eq. (6.6.7b),

we obtain the gravitational dynamical equation for h1

h′′1 +
(
3f ′

f − 3ϕ′ − 2
r

)
h′1 + 4iωℓLF e2ϕ

l(l+1)f2 u

+
(
f ′2+ω2e2ϕ

f2 − l(l+1)−r2f ′′+2rf ′(2rϕ′+1)−2
r2f

− ϕ′′ + 2ϕ′2 + 2ϕ′

r

)
h1 = 0 , (6.6.10)

while the electromagnetic dynamical equation for u is obtained from Eq. (6.6.8) with the

substitutions above and using Section 6.6.1

u′′ +

(
f ′

f
+ ϕ′ +

4

r
− 2ℓ2LFF

r5LF

)
u′ +

1

f2

[
ω2e2ϕ − f

(
l(l + 1) − rf ′ (rϕ′ + 2)

r2
+

4ℓ2LF

r4
+

2ℓ2LFF f
′

r5LF

)
+f2

(
ϕ′′ +

2rϕ′ + 2

r2
+

6ℓ2LFF

r6LF
−

4ℓ4L2
FF

r10L2
F

+
4ℓ4LFFF

r10LF

)]
u−

il(l + 1)
(
l2 + l − 2

)
ℓe−2ϕ

ωr6
h1 = 0 .

(6.6.11)

Finally, Section 6.6.1 and Eq. (6.6.11) can be written as wave equations by performing

the substitutions h1 = reϕA/f and u = e−ϕE/r2
√
LF , and by introducing a tortoise-like

coordinate dr∗/dr = eϕ/f , to get the coupled system

d2A
dr2∗

+
(
ω2 − VA

)
A +

4iωℓf
√
LF e−2ϕ

l(l + 1)r3
E = 0 , (6.6.12)

d2E
dr2∗

+
(
ω2 − VE

)
E − il(l + 1)(l2 + l − 2)ℓf

√
LF e−2ϕ

ωr3
A = 0 , (6.6.13)

3We stress again that if we had coupled e.g. axial gravitational and electromagnetic perturbations as in
Refs. [233–239] we would have found an inconsistency. Consider for definiteness the gravitational equations
that would have been obtained in this case (for brevity we shall omit them here, but they can be easily
found in the previously cited literature). First, one would get a tt component implying the decoupling of
gravitational and electromagnetic perturbations. Second, the other independent gravitational equations
would provide a system of three coupled equations for h0 and h1. However, contrary to what happens for
Eqs. (6.6.7a) to (6.6.7c), one of the three equations could be no more deduced from the others, and the
only acceptable solution would end up to be the trivial one, i.e. h0 = h1 = 0. A similar argument applies
for the modified Maxwell equations.
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where

VA = fe−2ϕ

(
fϕ′ − f ′

r
+

(l − 1)(l + 2) + 2f

r2

)
, (6.6.14)

VE = fe−2ϕ

[
l(l + 1)

r2
+

4ℓ2LF

r4
+
ℓ2LFF f

′

r5LF
− f

r6

(
ℓ2LFF (rϕ′ + 5)

LF
−

3ℓ4L2
FF

r4L2
F

+
2ℓ4LFFF

r4LF

)]
.

(6.6.15)

6.6.2 Sector II: polar gravitational–axial electromagnetic–polar scalar

In this sector the polar gravitational perturbations couple with the axial electromagnetic

and polar scalar perturbations.

Let us begin with the Klein–Gordon equation

δΦ′′ −
(
ϕ′ − f ′

f

)
δΦ′ +

(
ω2e2ϕ

f2
+
ϕ′

r
− l(l + 1) + rf ′ − r2VΦΦ

r2f

)
δΦ +

rVΦH2

f

−
(

iωre2ϕ

f
H1 −

r(H ′
0 −H ′

2 + 2K ′)

2

)
Φ′ = 0 . (6.6.16)

The field strength squared for an axial perturbation is

F ≈ F (0) + δF =
ℓ2

2r4
− ℓe−iωt [ℓK − l(l + 1)u4]Ylm

r4
. (6.6.17)

In this case, when computing linear perturbations to Eq. (6.1.5) we also expand LF around

F (0), e.g. LF ≈ LF (0) + LF (0)F (0) δF , and similarly for higher derivatives.

With the further gauge choice u3 = 0, the θ component of the modified Maxwell

equations is the only non-vanishing, and reads

u′′4 +

(
f ′

f
− 2ℓ2LFF

r5LF
− ϕ′

)
u′4 +

[
ω2e2ϕ

f2
− l(l + 1)

r2f

(
1 +

ℓ2LFF

r4LF

)]
u4

− ℓ(H0 +H2)

2r2f
+

ℓ

r2f

(
1 +

ℓ2LFF

r4LF

)
K = 0 . (6.6.18)

Lastly, let us consider a polar gravitational perturbation. The θφ component of the

perturbed gravitational equation requires H2 = −H0.

Using the background equations, the other six independent gravitational equations,

namely the tt, tr, tφ, rr, rφ and θθ components, are

fK ′′ +

(
f ′

2
+

3f

r

)
K ′ −

(
(l − 1)(l + 2)

2r2
+

2ℓ2LF

r4

)
K +

fH ′
0

r
+

2rf ′ + 2f (1 − rϕ′) + l(l + 1)

2r2
H0

+
2l(l + 1)ℓLF

r4
u4 +

4f
√
πrϕ′

r2
δΦ′ +

8πr2VΦ − 4f
√
πrϕ′

r3
δΦ = 0 , (6.6.19a)
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K ′ +

(
1

r
− f ′

2f
+ ϕ′

)
K +

H0

r
− il(l + 1)H1

2r2ω
+

4
√
πrϕ′

r2
δΦ = 0 , (6.6.20a)

fH ′
1 +

(
f ′ − fϕ′

)
H1 − iωH0 + iωK − 4iωℓLF

r2
u4 = 0 , (6.6.20b)(

f ′

2
+
f

r
− fϕ′

)
K ′ +

(
ω2e2ϕ

f
− (l − 1)(l + 2)

2r2
− 2ℓ2LF

r4

)
K − 2f (rϕ′ − 1) − 2rf ′ + l(l + 1)

2r2
H0

− 2iωe2ϕ

r
H1 +

2l(l + 1)ℓLF

r4
u4 −

4f
√
πrϕ′

r2
δΦ′ +

8πr2VΦ + 4f
√
πrϕ′

r3
δΦ +

fH ′
0

r
= 0 ,

(6.6.20c)

H ′
0 +

(
f ′

f
− 2ϕ′

)
H0 +K ′ − iωe2ϕ

f
H1 −

4ℓLF

r2
u′4 +

8
√
πrϕ′

r2
δΦ = 0 , (6.6.20d)

fH ′′
0 +

(
2f ′ +

2f

r
− 3fϕ′

)
H ′

0 +

(
2 (rf ′ − 1) − 2f (rϕ′ − 1)

r2
− ω2e2ϕ

f
+

4ℓ2LF

r4

)
H0 + fK ′′

+

(
f ′ +

2f

r
− fϕ′

)
K ′ +

(
ω2e2ϕ

f
+

4ℓ2LF

r4
+

4ℓ4LFF

r8

)
K − 2iωe2ϕH ′

1 −
iωe2ϕ (rf ′ + 2f)

rf
H1

− 4l(l + 1)ℓ

(
LF

r4
+
ℓ2LFF

r8

)
u4 +

8f
√
πrϕ′

r2
δΦ′ +

16πr2VΦ − 8f
√
πrϕ′

r3
δΦ = 0 .

(6.6.20e)

The off-diagonal equations are first-order differential equations in the metric perturbations

and can be solved for H ′
0, H

′
1 and K ′, hence the rr component (6.6.20c) gives an algebraic

relation among the metric perturbation functions, which can be used to eliminate H0 from

the other equations.

Using these relations as well as the background equations, Eqs. (6.6.19a) and (6.6.20e)

are automatically satisfied. Let H1 = ωR, then the relevant equations are the tr and tφ

components, which can be written as a system of two non-homogeneous coupled differential

equations

dK

dr
= α1K + α2R+ J1 ,

dR

dr
= β1K + β2R+ J2 , (6.6.21)

where

α1 = − 1

2ζr3f

(
2fr2

(
rϕ′
[
2f
(
rϕ′ + 1

)
+ ζ − 2l(l + 1)

]
+ ζ − 2l(l + 1) + 2

)
−8fℓ2LF − l(l + 1)r2[ζ − l(l + 1)]

)
− 2rω2e2ϕ

ζf
, (6.6.22a)

α2 =
il(l + 1) [l(l + 1) − 2f (rϕ′ + 1)]

2ζr2
+

2iω2e2ϕ

ζ
, (6.6.22b)
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β1 = −
4f
(
r3ϕ′ [f (rϕ′ + 1) + ζ − l(l + 1)] − [l(l + 1) − 1]r2 − 2ℓ2LF

)
+ r2[ζ − l(l + 1)]2

2iζr2f2

+
2ir2ω2e2ϕ

ζf2
, (6.6.23a)

β2 = −2rfϕ′[3ζ + l(l + 1)] + 2f [2ζ + l(l + 1)] + [ζ − l(l + 1)][2ζ + l(l + 1)]

2ζrf
+

2rω2e2ϕ

ζf
,

(6.6.23b)

J1 = −8ℓfLF

ζr2
u′4 −

4l(l + 1)ℓLF

ζr3
u4 +

8
√
πf

√
rϕ′

ζr
δΦ′

− 16πr2VΦ − 4
√
π
√
rϕ′ [2f (rϕ′ + 2) − l(l + 1)]

ζr2
δΦ , (6.6.23c)

J2 =
8iℓLF

ζr
u′4 +

4iℓ [ζ + l(l + 1)]LF

ζr2f
u4 −

8i
√
π
√
rϕ′

ζ
δΦ′

− 16πr2VΦ − 4
√
π
√
rϕ′ [2f (rϕ′ + 2) + ζ − l(l + 1)]

iζrf
δΦ , (6.6.23d)

and ζ(r) = rf ′ − 2f(2rϕ′ + 1) + l(l + 1).

Now, the procedure to obtain the equation that governs polar gravitational perturba-

tions follows Zerilli’s original derivation. The task now is to find a new couple of functions

R̂ and Ĥ to transform Eq. (6.6.21) into

dK̂

dr̂
= R̂+ Ĵ1 ,

dR̂

dr̂
= −

(
ω2 − V (r)

)
K̂ + Ĵ2 , (6.6.24)

where the new radial variable r̂ is given by dr̂/dr = 1/n(r). To find such transformation

we write

K(r) = g1(r)K̂(r̂) + g2(r)R̂(r̂) , R(r) = k1(r)K̂(r̂) + k2(r)R̂(r̂) ,
dr̂

dr
=

1

n(r)
.

(6.6.25)

Let us introduce the matricial notation

ψ =

K
R

 , A =

α1 α2

β1 β2

 , ψ̂ =

K̂
R̂

 , F =

g1 g2

k1 k2

 , J =

J1
J2

 ,

(6.6.26)

then Eq. (6.6.21) can be written as dψ/dr = Aψ + J , Eq. (6.6.25) as ψ = Fψ̂, which

combined with our request Eq. (6.6.24) give the system

nF−1

(
AF − dF

dr

)
=

 0 1

−ω2 + V (r) 0

 , (6.6.27)

together with the new source terms Ĵ = nF−1J .

Equation (6.6.27) represents four equations that relate g1, g2, k1, k2, n and V in
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terms of α1,2 and β1,2. By equating the coefficients of ω0 and ω2 we get eight equations,

supplemented by the condition detF ̸= 0, for six unknown functions. Yet, the system is

consistent and admits a solution

n(r) = fe−ϕ , (6.6.28a)

g1(r) =
g2e

−ϕ[rf ′ + l(l + 1)] − 2g2fe−ϕ (2rϕ′ + 1) + 2ifk1
2r

, (6.6.28b)

g2(r) = exp

∫
dr

ϕ′ [rf ′ + f + l(l + 1)] + rfϕ′′ − 2rfϕ′2

ζ
, (6.6.28c)

k1(r) = ie−ϕ 1

2ζr2f
(g2[2fr

2
(
rϕ′[2f(rϕ′ + 1) + ζ − l(l + 1)] + ζ − (l − 1)(l + 2) − 4ℓ2LF /r

2
)

+ ζr2[ζ − l(l + 1)]] + 2ζr3fg′2) , (6.6.28d)

k2(r) = − irg2
f

, (6.6.28e)

V (r) =
fe−2ϕ

ζ2r2

[
4f

(
ζ2 − ζ(4λ+ 3) + f [2f + ζ − 4(λ+ 1)] + 2(λ+ 1)2 +

2ζℓ4LFF

r6

)
+ ζ

(
ζ2 − 4ζ(λ+ 1) + 8(λ+ 1)2

)
− r2f ′′

(
ζ[ζ − 4(λ+ 1)] + 2f [4f + ζ − 4(λ+ 1)]

)
+ 2r4ff ′′2 − rϕ′ζ[ζ − 4(λ+ 1)][ζ − 2(λ+ 1)]

+ rϕ′f(4r2(ζ − 5(λ+ 1))f ′′ + 4f
(
9r2f ′′ − 5ζ + 28(λ+ 1)

)
− 5ζ2 + 36ζ(λ+ 1) − 72f2

− 40(λ+ 1)2) + 4r2fϕ′2[f
(
5r2f ′′ + 30f + 12ζ − 34(λ+ 1)

)
+ (ζ − 4(λ+ 1))(ζ − 3(λ+ 1))] + 4r3f2ϕ′3[44f + 9ζ − 24(λ+ 1)] + 48r4f3ϕ′4

+ 8πr3Φ′[f
(
13r2f ′′ − 26f − 5ζ + 26(λ+ 1)

)
− 2ζ[ζ − 4(λ+ 1)] + 64r2f2ϕ′2

+ 4rfϕ′[29f + 5ζ − 16(λ+ 1)]]VΦ + 8πr4
(
42rfϕ′ + ζ

)
V 2
Φ − 2ζr3fϕ′VΦΦ

]
,

(6.6.29a)

where we have introduced λ = (l− 1)(l+ 2)/2. Eq. (6.6.28a) means that the new variable

r̂ is nothing but the tortoise-like coordinate r∗. The new source terms read

Ĵ1 =
8f

ζr2g2

(
ℓLFu4 −

√
πr3ϕ′δΦ

)
, (6.6.30)

Ĵ2 = −8f2e−ϕ

ζr2g2

[
ℓLFu

′
4 −

1

ζr3f

(
ℓLF

[
f
(
r2
[
ζ − 2λ+ 2r(ζ − λ− 1)ϕ′

]
− 4ℓ2LF

)
+r3f2

(
rϕ′′ + 4rϕ′2 + 5ϕ′

)
− 2ζ(λ+ 1)r2

])
u4 −

√
πr3ϕ′ δΦ′ +

1

ζr2f

(
2πζr4VΦ

−f
√
πrϕ′

[
r2
(
ζ + 2λ− r[ζ − 2(λ+ 1)]ϕ′

)
+ 4ℓ2LF

]
+ r3f2

√
πrϕ′

(
rϕ′′ + 4rϕ′2 + 5ϕ′

))
δΦ
]
.

(6.6.31)

The above system and the source terms simplify when the integral in Eq. (6.6.28c) is given

in a closed form, and this depends strongly on the explicit form of the background metric
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functions. Remarkably, for ϕ = ϕ0+ 1
2 log

(
1 − ℓ2/r2

)
, with ϕ0 being an arbitrary constant,

as for the SV spacetime, and for any choice for f , we find g2 = eϕ. We assume it in what

follows.

Finally, combining Eq. (6.6.24) we get a master equation for the polar gravitational

perturbations coupled with the axial electromagnetic and polar scalar perturbations

d2K̂

dr2∗
+
(
ω2 − V (r)

)
K̂ − nĴ ′

1 − Ĵ2 = 0 . (6.6.32)

The very last step is to use the solutions for the gravitational equations to rewrite the

Klein–Gordon and modified Maxwell equations; they read

u′′4 +

(
ζ − 2(λ+ 1)

rf
− 2ℓ2LFF

r5LF
+ 3ϕ′ +

2

r

)
u′4 +

8ℓ
√
πrϕ′

ζr3

(
1 +

ℓ2LFF

r4LF

)
δΦ

+

[
ω2e2ϕ

f2
−
(

1 +
ℓ2LFF

r4LF

)(
8ℓ2LF

ζr4
+

2(λ+ 1)

fr2

)]
u4 +

ℓ

r2

(
1 +

ℓ2LFF

r4LF

)
K̂ ′

+ ℓ

(
1 +

ℓ2LFF

r4LF

)(
2λ− ζ − 2rϕ′ (rfϕ′ + f + ζ − λ− 1)

ζr3
+

4ℓ2LF

ζr5
+
λ+ 1

r3f

)
K̂ = 0 ,

(6.6.33)

δΦ′′ +

(
2f + ζ − 2(λ+ 1)

rf
+ 3ϕ′

)
δΦ′ − 2ℓ

√
rϕ′LF√
πr2

u′4

+

(
ω2e2ϕ

f2
+
VΦΦ

f
− ζ

fr2
+
rϕ′ − 2

r2

)
δΦ = 0 . (6.6.34)

Eqs. (6.6.32) to (6.6.34) can be written as wave equations by introducing new variables

K̂ = P , u4 = f1B + f2P + f3S , δΦ = g1S + g2P + g3B , (6.6.35)

where

f1 =
c1√
LF

, f2 =
ℓ

2r
, f3 =

c3√
LF

, (6.6.36)

g1 =
c3ℓ√
π

∫
dr

√
LFϕ′

r3/2
+ c4 , g2 =

ℓ2

2
√
π

∫
dr

LF
√
ϕ′

r5/2
+ c5 , g3 =

c1ℓ√
π

∫
dr

√
LFϕ′

r3/2
+ c6 ,

(6.6.37)

with c1c4 − c3c6 ̸= 0, so that

d2I
dr2∗

+
(
ω2 − VI

)
I +

∑
J ≠I

cI,J J = 0 , (6.6.38)

for I,J = {P,B,S}. The potentials VI and the coefficients cI,J can be given in closed

form REF but they are cumbersome and we do not report them here.

6.6.3 Static perturbations

Static perturbations are easier to derive and we report them for completeness.

In sector I, the modified Maxwell equations for a polar electromagnetic perturbation
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can be obtained by taking the ω = 0 limit of Eqs. (6.6.6a) to (6.6.6c), i.e.

fu′′1 + f

(
ϕ′ − 2ℓ2LFF

r5LF

)
u′1 +

(
2ℓ2fLFF

r6LF
− rfϕ′ + l(l + 1)

r2

)
u1 −

l(l + 1)ℓ

r3
h0 = 0 ,

(6.6.39a)

u2 +
ℓf

r
h1 = 0 , (6.6.39b)

ru′2 −
(

2ℓ2LFF

r4LF
+ rϕ′ + 1

)
u2 + ℓfh′1 + ℓ

[
f ′ − f

(
2ℓ2LFF

r5LF
+ ϕ′ +

2

r

)]
h1 = 0 ,

(6.6.39c)

while the Einstein equations for an axial gravitational perturbation can be obtained by

taking the ω = 0 limit of Eqs. (6.6.7a) to (6.6.7c), i.e.

fh′′0 + fϕ′h′0 −
2r2f (rϕ′ + 1) + (l − 1)(l + 2)r2 + 4ℓ2LF

r4
h0 −

4ℓLF

r3
u1 = 0 , (6.6.40a)

(l − 1)(l + 2)r2 + 4ℓ2LF

r
h1 +

4ℓLF

f
u2 = 0 , (6.6.40b)

fh′1 +
(
f ′ − fϕ′

)
h1 = 0 . (6.6.40c)

Equation (6.6.39b) can be solved for u2, making Eq. (6.6.39c) automatically satis-

fied. However, this solution is incompatible with Eqs. (6.6.40b) and (6.6.40c) unless

u2 = h1 = 0. The two equations that govern static perturbations in sector I are therefore

Eqs. (6.6.39a) and (6.6.40a).

In sector II, the static Klein–Gordon and modified Maxwell equations can be obtained

by the ω = 0 limit of Eqs. (6.6.16) and (6.6.18),

δΦ′′ −
(
ϕ′ − f ′

f

)
δΦ′ +

(
ϕ′

r
− l(l + 1) + rf ′ − r2VΦΦ

r2f

)
δΦ +

rVΦH2

f
+
r(H ′

0 −H ′
2 + 2K ′)

2
Φ′ = 0 ,

(6.6.41)

u′′4 +

(
f ′

f
− 2ℓ2LFF

r5LF
− ϕ′

)
u′4 −

l(l + 1)

r2f

(
1 +

ℓ2LFF

r4LF

)
u4 −

ℓ(H0 +H2)

2r2f
+

ℓ

r2f

(
1 +

ℓ2LFF

r4LF

)
K = 0 .

(6.6.42)

Again, the θφ component of the perturbed gravitational equation requires H2 = −H0,

but the tr component further imposes H1 = 0, leaving four independent gravitational

equations,

fK ′′ +

(
f ′

2
+

3f

r

)
K ′ −

(
(l − 1)(l + 2)

2r2
+

2ℓ2LF

r4

)
K +

fH ′
0

r
+

2rf ′ + 2f (1 − rϕ′) + l(l + 1)

2r2
H0

+
2l(l + 1)ℓLF

r4
u4 +

4f
√
πrϕ′

r2
δΦ′ +

8πr2VΦ − 4f
√
πrϕ′

r3
δΦ = 0 , (6.6.43a)
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(
f ′

2
+
f

r
− fϕ′

)
K ′ −

(
(l − 1)(l + 2)

2r2
+

2ℓ2LF

r4

)
K +

fH ′
0

r
− 2f (rϕ′ − 1) − 2rf ′ + l(l + 1)

2r2
H0

+
2l(l + 1)ℓLF

r4
u4 −

4f
√
πrϕ′

r2
δΦ′ +

8πr2VΦ + 4f
√
πrϕ′

r3
δΦ = 0 , (6.6.44a)

H ′
0 +

(
f ′

f
− 2ϕ′

)
H0 +K ′ − 4ℓLF

r2
u′4 +

8
√
πrϕ′

r2
δΦ = 0 , (6.6.44b)

fH ′′
0 +

(
2f ′ +

2f

r
− 3fϕ′

)
H ′

0 +

(
2 (rf ′ − 1) − 2f (rϕ′ − 1)

r2
+

4ℓ2LF

r4

)
H0 + fK ′′

+

(
4ℓ2LF

r4
+

4ℓ4LFF

r8

)
K − 4l(l + 1)ℓ

(
LF

r4
+
ℓ2LFF

r8

)
u4 +

8f
√
πrϕ′

r2
δΦ′

+

(
f ′ +

2f

r
− fϕ′

)
K ′ +

16πr2VΦ − 8f
√
πrϕ′

r3
δΦ = 0 . (6.6.44c)

We now solve Eqs. (6.6.44a) and (6.6.44b) forK andK ′. The derivative of Eq. (6.6.44b)

with respect to r, together with the background equations and Eq. (6.6.42), gives an equa-

tion for K ′′. Using these relations and the background equations, Eq. (6.6.44c) is identi-

cally satisfied. The gravitational perturbation are then described by a non-homogenous

differential equation for H0,

fH ′′
0 − η1H

′
0 − η2H0 + J3 = 0 , (6.6.45)

where

η1 =
4ℓ2

∆

(
f ′ − 2fϕ′

)(
LF +

ℓ2LFF

r4

)
− f ′ + f

(
ϕ′ − 2

r

)
, (6.6.46)

η2 =
4ℓ2

∆

(
LF +

ℓ2LFF

r4

)(
l(l + 1)

r2
− 4f ′ϕ′ +

f ′2

f
+

2f (rϕ′ − 1) (2rϕ′ + 1)

r2

)
− 2f ′

(
2ϕ′ +

1

r

)
+
f ′2

f
+

2f (rϕ′ + 1) (2rϕ′ − 1)

r2
+
l2 + l + 2

r2
− 4ℓ2LF

r4
, (6.6.47)

J3 = −4ℓ

r2

[
2fLF

r
−
(
f ′ − 2f (rϕ′ − 1)

r

)(
4ℓ4LFLFF

∆r4
+

4ℓ2L2
F

∆
+ LF

)]
u′4

− 4ℓ(l − 1)l(l + 1)(l + 2)

r2∆

(
LF +

ℓ2LFF

r4

)
u4 −

32ℓ2f
√
πrϕ′

r2∆

(
LF +

ℓ2LFF

r4

)
δΦ′

− 4

r

[
8ℓ2

∆

(
LF +

ℓ2LFF

r4

)(√
πrϕ′

(
f ′

r
+
f (1 − 2rϕ′)

r2

)
− 2πVΦ

)
−
√
πf [rϕ′′ + ϕ′ (2rϕ′ + 3)]

r
√
rϕ′

]
δΦ , (6.6.48)

∆ = (l − 1)(l + 2)r2 + 4ℓ2LF . (6.6.49)

Once the solutions for H0, u4 and δΦ are known, the other metric function perturbation
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is given by

K = −
r2f

[
l(l + 1) − 4r2f ′ϕ′ + 2f (rϕ′ − 1) (2rϕ′ + 1)

]
+ r4f ′2

∆f
H0 −

r4 (f ′ − 2fϕ′)

∆
H ′

0

+
16πr3VΦ + 8r

√
πrϕ′ [f (2rϕ′ − 1) − rf ′]

∆
δΦ − 8r2f

√
πrϕ′

∆
δΦ′

+
4ℓl(l + 1)LF

∆
u4 +

4ℓrLF [rf ′ + 2f(1 − rϕ′)]

∆
u′4 .

(6.6.50)
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Chapter 7

The echoes signal: the role of

absorption and backreaction

As we mentioned in Chapter 5, for horizonless compact object the usual GWs ringdown

signal is followed by a series of echoes. Usually these are studied in linear perturbation

theory, neglecting the possible backreaction of the ECO. This is justified because the

energy in the ringdown is small (from two to three orders of magnitude with respect to

the mass of the object [266, 267]) and diffused on a wavelength of the order or larger than

the ECO radius. However, it can be argued that this linear approximation is actually

dangerous since for good BH mimickers the surface of the ECO is very close to the would-

be horizon [268]. For this reason, the peeling of geodesics will cause an accumulation

of light rays and so a large increase of the perturbation energy density near the surface.

Actually, it can be shown that GWs fluxes can even lead to the violation of the hoop

conjecture [269] and the collapse of the ECO into a BH [270–272]. Thus it seems clear

that non-linear interactions between the ECO and the GWs flux must be considered.

The scope of this chapter is to study possible effects on the echoes waveform due to

backreaction and in particular we shall focus on the effect of the echo absorption on behalf

of the ECO. Indeed, a perfectly reflecting surface is often just an idealization, we expect

instead that part of the radiation can be absorbed by the object for istance through effects

of dissipation or viscosity [273]. The introduction of an absorption coefficient for the ECO

surface is not only physically reasonable, but it also allows to circumvent some ECO’s

instabilities as we discussed in Section 3.4. Indeed, it makes the timescale for the onset of

these instabilities very long and it can even turn them off [151, 152].

However, until now, the only considered effect of absorption on the echoes waveform

is the decreasing of echoes amplitude and energy [152, 274] or the changing of their fre-

quency content in the case of frequency-dependent absorption coefficient [275, 276]. Yet,

it should also imply an increase of the central object mass and consequently a change

of the spacetime in which echoes are propagating. Similar considerations were done in

Ref. [277] in the context of BH ringdown, showing how the change in the BH mass, due

to the absorption of a mode excited at early times, causes a shift in the mode spectrum

and thus the excitation of additional modes.

In the first part of this chapter, we consider the simple instructive case in which we

have no other backreaction effects apart from absorption. We show that this leads to a
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non-constant time delay between echoes and thus the loss of the typical quasi-periodicity

predicted for these signals. This is particularly interesting if we think that, as mentioned

in Section 5.3.3, the strategies used in the searches for echoes in the GWs ringdown are

usually based on the aforementioned quasi-periodicity. Indeed, in Ref. [223] it was shown

that applying a template with constant time interval between echoes may significantly

misinterpret the signals if the variation of this interval is greater than the statistical errors.

In the second part of this investigation, we take into account that, for sufficiently

compact central objects, the absorption of part of the GWs flux can increase the mass

of the object over the hoop limit 2M ⩾ r0. Thus, assuming the stability of these ECOs,

some backreaction mechanism must be present so to prevent the formation of a horizon:

we consider a scenario in which the absorption coefficient depends on the compactness,

and a scenario in which the ECO expands. In both cases we show the effects on the echoes

waveform and time delay.

7.1 Set-up

As a proxy to the more general case of gravitational perturbations, here we study the

evolution of a minimally coupled massless scalar field Φ propagating in a spherically sym-

metric ECO spacetime. As commonly assumed, the scalar field does not couple directly

to any form of matter that might be present within or outside the ECO. Its action reads

S = −1

2

∫
d4x

√
−g gµν∇µΦ∇νΦ . (7.1.1)

We do not assume any specific form for the gravitational action and the ECO spacetime

is characterized by its initial mass M0 and radius r0 greater than its Schwarzschild radius.

We remember that we define the compactness parameter of the object as

σ ≡ r0
2M0

− 1 , (7.1.2)

which is always positive and goes to zero in the BH limit, i.e. σ → 0 as r0 → 2M0. Inde-

pendently of the specific ECO model, the spacetime outside its surface is Schwarzschild.

For r > r0 we have:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θ dφ2

)
, f(r) = 1 − 2M0

r
. (7.1.3)

Because of spherical symmetry, the Klein–Gordon equation in this spacetime is sepa-

rable thus we can decompose the field as Φ(t, r, θ, φ) =
∑

lm
Ψlm(t,r)

r Ylm(θ, φ), where Ylm
are the scalar spherical harmonics. Then the field equation for each mode Ψlm(t, r) is (to

avoid cluttering, in what follows we drop the lm indexes):

∂2Ψ

∂t2
− f2

∂2Ψ

∂r2
− ff ′

∂Ψ

∂r
+ V (r)Ψ = 0 , (7.1.4)
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where a prime represents derivative with respect to the radial coordinate r and

V (r) =

(
1 − 2M0

r

)(
2M0

r3
+
l(l + 1)

r2

)
. (7.1.5)

7.1.1 Energy of the perturbation

To compute the energy of the scalar perturbation, we start with the stress-energy tensor

stemming from the action in Eq. (7.1.1)

Tµν = ∇µΦ∇νΦ − 1

2
gµν∇αΦ∇αΦ . (7.1.6)

We consider the conserved current Jµ = kνT
µν , where kν is the timelike Killing field of

the Schwarzschild spacetime. The conserved energy in a three-dimensional hypersurface

Σ is then

E =

∫
Σ

d3x
√
γ Jµnµ , (7.1.7)

where γ is the induced three-dimensional metric on the hypersurface and nµ is the nor-

malized vector field orthogonal to Σ. In our case Σ is the hypersurface at t = const and

thus nµ = ∇µt/|∇µt| = kµ/
√
f(r). From this, integrating in the angular part, we obtain,

e.g. in Schwarzschild coordinates

E =
1

2

∫
dr

f(r)

[(
∂Ψ

∂t

)2

+ f(r)2
(
∂Ψ

∂r

)2

+ V (r) Ψ2 − f(r)
∂

∂r

(
f(r)

r
Ψ2

)]
. (7.1.8)

These coordinates might look not suitable, as the factor 1/f(r) gets divergent as we ap-

proach the event horizon. However, while the region ∆r in which the field Ψ is diffused

shrinks, it — seen by a static observer at infinity – moves slower and contracts as it ap-

proaches the horizon, reaching it in an infinite amount of time. The two effects compensate

each other, and the energy remains constant.

7.1.2 Varying mass and moving surface

If the object absorbs energy from the scalar field, we have to take into account that its mass

can change in time. We assume that at each instant the spacetime can be described by the

Schwarzschild metric with a different mass M0 →M(t) and f(r) → F (t, r) = 1−2M(t)/r.

Then the Klein–Gordon equation, written in terms of the “initial” tortoise coordinate

r∗ = r + 2M0 ln (r/2M0 − 1), becomes:

∂2Ψ

∂t2
− F 2

f2
∂2Ψ

∂r2∗
− F

f

(
∂F

∂r
− Ff ′

f

)
∂Ψ

∂r∗
+ V (r, t)Ψ +

1

F

∂F

∂t

∂Ψ

∂t
= 0 . (7.1.9)

where the potential V has been promoted as a function of t and r, and r itself is interpreted

as a function of r∗.

In one of the models that we consider the surface of the object moves, and so also

the point at which we impose our boundary conditions, i.e. r0 → r0(t). Thus to solve

the scalar field equation with a time-independent boundary condition we need to choose
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a coordinate in which the surface of the object is fixed in time. For example, if the object

expand in order to stay at constant compactness then x = M0 ln (r/2M(t) − 1) is a good

choice. In these coordinates the Klein–Gordon equation reads

∂2Ψ

∂t2
−M2

0

(
1

r2
− r2Ṁ2

M2(r − 2M)2

)
∂2Ψ

∂x2
− 2ṀM0r

M(r − 2M)

∂2Ψ

∂t∂x

+M0

(
1

r2
− 2M

r3
− rM̈

M(r − 2M)
+
r(r − 4M)Ṁ2

M2(r − 2M)2

)
∂Ψ

∂x
+ V (r, t)Ψ = 0 , (7.1.10)

where the time dependence of M is implicit, and r is interpreted as a function of x.

In these coordinates the surface, at which we impose the boundary condition, is always

at x = x0 = M0 ln (r0/2M0 − 1). Another way to simulate a moving surface is to simply

change, at each time step, the point of the numerical grid at which we impose the boundary

condition, the two methods bring to the same results.

7.1.3 Numerical set-up

In the numerical simulation reported in the next sections we always consider an l = 2

quadrupolar mode and we use as initial condition for Ψ a Gaussian pulse:

∂Ψ(r, 0)

∂t
= Ψ0 exp

(
−(r∗ − rc)

2

2ς2

)
, Ψ(r, 0) = 0 , (7.1.11)

with central value rc = 11M0 and width ς = 2M0; different initial values lead to similar

results. The pulse is initially centered outside the potential barrier V (r), whose peak is

at approximately 3M0, and it is moving inward. The amplitude Ψ0 is chosen in order to

obtain an impulse with energy of order of the one we expect to be contained in the echoes

signals, roughly from two to four orders of magnitude smaller than the mass of the central

object [211].

We evolve Ψ in the time domain using a fourth-order Runge–Kutta integrator and

computing spatial derivatives with finite-difference approximation of second-order accu-

racy [278]. A convergence test of the code is shown in Fig. 7.5 and discussed in Section 7.5.

The non-trivial boundary conditions that we have imposed for our numerical simulations

are described in Section 7.5.1.

During the simulations the mass of the central object increases because of the energy

absorbed from the field, at a given time step, by an amount

κ∆E(t) , (7.1.12)

where κ is the absorption coefficient (see definition below) and ∆E(t) is the field energy

present, at time t, in the last spatial bin of our computational domain corresponding to

the location of the surface of the central object. The method with which we estimate

∆E(t) at each instant is explained in Section 7.5.2.
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7.2 Echoes: absorption beyond the test field limit

In our first scenario, we evolve Ψ according to Eq. (7.1.9), taking into account that the

mass of the compact object can increase during the evolution as a consequence of the

energy absorbed from the scalar field. In fact, whatever is the mechanism responsible

for absorption, the energy of the field is converted in some other kind of energy inside

the object, e.g. thermal energy in the case of dissipative/viscous effects, and since all

energy “gravitates”, this absorption will increase the mass of the object (technically the

Misner-Sharp mass at the horizon or the ADM mass of the static object without the

perturbation).

We define the absorption coefficient as the fraction of the incoming energy Ein that is

lost inside the object:

κ = 1 − Eout

Ein
. (7.2.1)

Given a certain compactness and absorption coefficient, there exists a maximum flux

of energy that the object can sustain without overcoming the hoop limit and collapse into

a BH. It follows that if the energy in the GWs flux is bigger than this maximum, the

collapse will delay part of the echoes signal. In the examples shown here, we have chosen

compactness and absorption coefficients in order to always remain below this limit.

As we already explained in Chapter 5, in linear approximation, the time delay between

echoes is the time that light takes to travel from the potential barrier centered around

rpeak ≈ 3M0 to the ECO surface r0 = 2M0(1 + σ) and back,1 as follows

∆techo = 2

∫ rpeak

r0

dr

f(r)
≃ 2M0 [1 − 2σ − 2 ln(2σ)] , (7.2.2)

where σ is the compactness parameter defined in Eq. (7.1.2).

Nonetheless, if the ECO absorbs a small quantity of energy ∆E from the first echo,

increasing its mass as M0 → M = M0 + ∆E but remaining with the same radius r0, the

ECO compactness parameter for the first and second echoes is different

σ1st echo =
r0

2M0
− 1 , σ2nd echo =

r0
2M

− 1 =
r0

2(M0 + ∆E)
− 1 < σ1st echo . (7.2.3)

As a consequence, also the time delay of the second echo will be different. We give

some numerical examples in Fig. 7.1 and Table 7.1 for selected values of the compactness

and absorption parameters.

In these examples and in the plots that we show across the chapter, it is clear that

even very small absorption coefficients (of order 0.1%–0.01%) lead to significant changes

of the signal. This can seem counterintuitive, given the small amount of energy present in

the echoes. The point is that, although the change in the mass is actually small, for very

1In reality, it should be taken into account also the interaction time ∆tint during which the field travels
inside the interior of the object and it is partially absorbed (see Eq. (5.2.2)). Here, we assume it to be of
the order of the radius of the object and thus negligible with respect to the exterior travel time. However,
there exist models in which the interior spacetime is such that ∆tint becomes dominant [279, 280], one of
these examples will be analysed in Chapter 8. Also ∆tint depends on the compactness parameter. However,
the precise dependence on σ is model-dependent and generically not logarithmic.
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compact objects it is sufficient to cause a big change in their compactness if the radius

remains fixed.

Consider for definiteness an ECO with initial compactness parameter σ0 = 10−7: the

absorption of the amount of energy 5 · 10−8M0 is sufficient to halve its compactness

parameter and, as a result, to significantly change the spacetime in which the field is

propagating. In this example, the time delay between echoes that depends logarithmic

in the compactness parameter, roughly changes from ∆techo/M0 ≈ −4 ln(2σ0) ≈ 61.7 to

∆techo/M0 ≈ 64.5.
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Figure 7.1: Time delay between echoes for fixed position of the surface r0 and variable
mass. The vertical lines represent the asymptotic value of ∆M/M0 for which the BH limit
r0 = 2M0 is exceeded. All values are reported in units of the initial mass of the object
M0.

In Fig. 7.2 we plot the typical waveform for a Gaussian pulse scattered off an ECO

with a small absorption parameter, compared with a perfectly reflecting ECO.

We observe a considerable difference in phase between the two cases due to the afore-

mentioned non-negligible change in the time delay among echoes, in agreement with the

analytical estimate of Eq. (7.2.2).

We also note a difference in the amplitude of the signal. The absorption coefficient is

too small to produce a visible decreasing of the echoes amplitude, yet the first echo has a

smaller amplitude with respect to the perfectly reflecting case, while the subsequent echoes

have even bigger amplitudes. To understand this redistribution of energy is convenient to

look at the field equation in (t, rt) coordinates, where rt is the “time-dependent” tortoise

coordinate rt = r+ 2M(t) ln (r/2M(t) − 1), in which the Klein–Gordon equation remains

a simple wave equation apart from some negligible terms proportional to Ṁ and M̈ .

Nevertheless, the position of the surface in the rt coordinate changes with time and gets

more negative as the mass increases, since the object is becoming more compact. This

means that while the first echo is reflecting on the central object surface, this surface is

moving away from it. Since we are in a reference frame in which the field equation is a

simple wave equation, a movement of the surface causes a Doppler effect, i.e. a decrease

of the frequency content of the field. For this reason, a smaller fraction of the first echo
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σ0 ∆techo/M0 κ E1st echo/M0 ∆t1/M0 E2nd echo/M0 ∆t2/M0

10−3 26.85 6% 10−2 30.54 0.25 · 10−2 32.43

10−4 36.07 6% 10−3 39.74 0.25 · 10−3 41.62

10−5 45.28 6% 10−4 48.94 0.25 · 10−4 50.82

10−5 45.28 0.06% 10−2 48.94 0.25 · 10−2 50.82

10−6 54.49 0.06% 10−3 58.15 0.25 · 10−3 60.03

10−7 63.70 0.06% 10−4 67.36 0.25 · 10−4 69.24

Table 7.1: Given an initial compactness parameter σ0 we report the expected time delays
between echoes ∆techo in the case of a perfect reflecting ECO and the true time delay
between the first and the second echo ∆t1 and between the second and third echo ∆t2 in
the case of an ECO with absorption coefficient κ. These last two time delays are different
to respect to ∆techo because the partial absorption of the energy contained in the first and
second echo changes the compactness of the central object. We assume that the energy in
the second echo is approximately a quarter of that of the first one. All values are reported
in units of the initial mass of the object M0.

will pass through the high-pass filter potential centered at rpeak, while a greater fraction

of it will be bounced back forming the subsequent echoes that therefore will have a greater

amplitude with respect to the perfectly reflecting case. Also the absorption of the second

and third echoes causes an increase of the mass and thus a movement of the surface during

the reflection, but the effect is quite negligible with respect to the previous increase of

amplitude.

7.3 Echoes: absorption and backreaction scenarios

In realistic situations, the energy absorbed from the ringdown signal might be enough

to cause the collapse of the ECO into a BH. Thus, if we want the object to be stable,

we have to take into account some mechanisms that prevent the collapse, whose details

depend obviously on the physics of the object and the specific gravitational field equations.

To have a glimpse on the possible effects on the signal, while remaining agnostic about

the novel physics supporting the ECO, we consider here some simple model-independent

scenarios.

7.3.1 Asymptotic compactness

As a first scenario, the object is allowed to absorb energy varying its compactness up

to a certain limit, say until its surface is at a Planck length from the would-be horizon.

This corresponds to a compactness parameter of order of σPlanck ≈ 10−40 for stellar mass

objects (M ≈ 102M⊙). This situation is particularly reasonable because the ringdown

signal comes from objects that have just been formed in a binary coalescence, thus it is

not obvious that they are already in their definitive stable configuration.

Technically, this situation can occur when the ECO absorption coefficient depends on
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Figure 7.2: Quadrupolar waveform extracted at r∗ = 30M0. The initial Gaussian pulse
has energy E = 4.4 · 10−3M0 and it is scattered off an ECO with initial compactness
parameter σ = 10−7, i.e. r0 = 2.0000002M0. The red dashed line shows the case of a
perfectly reflecting object, while the purple solid line shows the case in which the surface
of the object absorbs incoming radiation with an absorption efficiency of 0.01%.

its compactness and goes to zero as σ → σPlanck. The effects on the echoes waveform

will depend on the initial value of the absorption coefficient, on the velocity with which it

goes to zero and on the value of the asymptotic compactness. If the absorption coefficient

varies very slowly, we obtain the same results of constant absorption, analyzed in the

previous section, and no other backreaction. When instead the absorption coefficient goes

rapidly to zero, only the first echo will be partially absorbed and the time delay will soon

stabilize to a constant value. Among several possible choices, in our computations we have

considered this functional form for the absorption coefficient

κ(σ) = α

(
1 − tanh

β

σ − σPlanck

)
, (7.3.1)

which varies slowly when the compactness is far from the Planck value, and goes smoothly

to zero for σ → σPlanck. The parameters α and β represent, respectively, the initial value

and the velocity with which κ goes to zero. At each step of the simulation

σ(t+ ∆t) =
r0

2M(t) + κ(σ(t))∆E(t)
− 1, (7.3.2)

such that as σ(t) → σPlanck, we have κ(σ) → 0 and thus σ(t+ ∆t) = σ(t).

In Fig. 7.3 we plot the typical waveform for a Gaussian pulse scattered off an ECO

with a compactness-depending absorption parameter, compared with a perfectly reflecting

ECO.

The top and middle panels show our results for, respectively, α = {0.05, 2 · 10−4} and

β = σ0 ·10−3, with σ0 = 10−7. In the first case the initial absorption coefficient is κ0 ≈ 5%.

With an incoming Gaussian pulse of energy E ≈ 10−3M0, this κ0 is sufficient to reach

a very high compactness, and thus a negligible absorption coefficient, already during the

absorption of the very first part of the first echo. For this reason, we observe that the
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Figure 7.3: Quadrupolar waveform extracted at r∗ = 30M0. The initial Gaussian pulse
has energy E = 4.4 · 10−3M0 and it is scattered off an ECO with initial compactness
parameter σ = 10−7, i.e. r0 = 2.0000002M0. We show results for a compactness-dependent
absorption parameter (top and middle panels, for selected values of the parameter α
introduced in Eq. (7.3.1) and β = σ · 10−3) and for a perfectly reflecting ECO (bottom
panel).

time delay among the echoes is approximately constant even if it is larger than in the

perfectly reflecting case shown in the bottom panel. In the second case, the absorption

coefficient is approximately constant and κ0 ≈ 0.02% during the absorption of the first

echo, while it becomes negligible only during the absorption of the third echo. This leads

to non-constant time delays among the first echoes.

We want to mention another possible scenario in which the change in the compactness

stops when the object reaches a limiting value: the absorption coefficient is constant but,

once the asymptotic compactness is reached, the ECO starts expanding to remain in the

same equilibrium configuration. In this case, the first part of the signal will have larger

time delays but this increment of ∆techo will stop once the expansion starts. The reason

for this will be clear in the next section.

7.3.2 Expansion

In another backreaction scenario, to remain stable, the ECO compensates the absorption

by expanding. A reasonable way to model the expansion is to assume that its radius moves

in order to maintain the same initial compactness, according to the following prescription

(in Schwarzschild coordinates)

r0(t+ ∆t)

2 (M(t) + ∆E)

!
=

r0(t)

2M(t)
= σ0 + 1 , (7.3.3)

where ∆E is the amount of energy absorbed from the scalar field in the time interval ∆t.
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In this case, the sole dependence on time in Eq. (7.2.2) is a linear dependence on M(t)

and thus the time delays among echoes will be approximately always the same, as in the

perfectly reflecting case. Obviously, this is true only if the expansion happens fast enough

for the object to be approximately at the same constant compactness at each instant —

note that this could even require superluminal expansion [270].

Alternatively, there might be a transient phase throughout the object has already

absorbed energy but has not expanded enough to reach the original compactness. The

duration τ of the transient phase is crucial to determine the effect that it produces on

the signal. If τ is much smaller than the light crossing time between the surface and the

potential, i.e. τ ≪ ∆techo, when the second echo arrives on the surface, the object will

have already recovered its initial compactness and thus no visible shift in the time delay

will be produced. On the other hand, when τ > ∆techo, the time delay between the first

and the second echo will be longer than in the perfectly reflecting case because the second

echo will arrive on the surface when the compactness is still different from the initial one.

Then, while the object continues to expand, it also continues to absorb small amounts

of energy from subsequent echoes, thus it will reach its initial compactness only when

the energy of these echoes will become negligible. However, we expect its compactness to

become closer and closer to the initial one, and thus the time delay among these subsequent

echoes to become smaller and smaller until it reaches the value corresponding to the initial

compactness. In Fig. 7.4 we plot the waveform for a Gaussian pulse off an ECO whose

surface expands linearly, compared with a perfectly reflecting ECO. In this example we

have chosen the expansion rate v such that the surface moves as r0(t) = r0 + v∆t and the

compactness is modelled as

σ(t+ ∆t) =
r0 + v∆t

2M(t) + κ(σ(t))∆E(t)
− 1 , (7.3.4)

such that the initial compactness is reached after a transient phase τ ≈ 65M0 ⩾ ∆techo
with respect to the beginning of the absorption.

Before closing a final comment is in order. In the previous scenario we have assumed a

BH-like relation between the instantaneous radius and mass, i.e. a direct proportionality

r0(t) ∝M(t). However, the relation between the radius and the mass of star-like compact

objects can be more involved, implying that the compactness of these objects can be

different for different values of the mass — see e.g. Fig. 1 of Ref. [280]. Nonetheless, we

are here considering ultra-compact objects which are good BH mimickers and as such they

are expected to be characterized by a BH-like behavior. It is however worth mentioning

that assuming r0(t) to be a more general function of M(t) would imply that the expanding

ECO would experience a change in its compactness parameter. This, in turn, would lead

to a variation of the time delay among echoes, and to a breaking of the aforementioned

degeneracy with the perfectly reflecting case.

7.4 Conclusions

In this chapter we have analyzed the response of an ECO against scalar perturbations to

discuss possible effects of non-linear interactions on the echoes signal. In the first part,

we have let the central compact object absorb part of the incoming radiation, resulting
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Figure 7.4: Quadrupolar waveform extracted at r∗ = 30M0. The initial Gaussian pulse
has energy E = 4.4 · 10−3M0 and it is scattered off an ECO with initial compactness
parameter σ = 10−7, i.e. r0 = 2.0000002M0. The red dashed line shows the case of a
perfectly reflecting object, while the purple solid line shows the case in which the surface
of the object absorbs incoming radiation with an absorption efficiency of 0.015% and it
expands to achieve the initial compactness in a finite amount of time.

in an increase in its mass and leading to changes in the spacetime in which the scalar

field propagates. The most important effect of this on the echo waveform is the loss of

the quasi-periodicity of the signal. In fact, the absorption of each echo changes the mass

and thus the compactness of the object, and as a result, it increases the time delay among

echoes which depends logarithmically on the compactness. If the absorption continues

without any other backreaction of the object, the time delay will continue to increase.

However, the energy of the nth echo is smaller than the previous ones, hence the change

in the time delays becomes more and more negligible and it stabilizes to a constant value,

unless the ECO collapses into a BH and no other echoes are produced.

In the second part we have considered some possible model-independent scenarios in

which the object reacts to the absorption to prevent its collapse into a BH. In the first

scenario, the ECO can increase its compactness only up to a certain limiting value. This

can happen in at least two different ways: (i) the ECO absorption coefficient decreases

for increasing compactness, going to zero when the asymptotic compactness is reached;

(ii) the absorption coefficient is constant but once the asymptotic compactness is reached

the object starts to expand in order to remain in the same equilibrium configuration.

The characteristic feature of this scenario is that the time delay between echoes gets

longer and longer until it stabilizes to a constant value corresponding to the time delay

of an object with the asymptotic compactness. In the second scenario, the ECO expands

instantaneously in order to prevent the collapse. If the expansion rate maintains the same

initial compactness, the resulting signal will have constant time delays among echoes like

in the case of a perfectly reflecting ECO. However, this type of expansion is an idealization

and physically we expect that the original compactness is not recovered instantly but only

after a transient phase. When the transient phase is much shorter than the time delay

between echoes, the effects on the waveform are negligible; while when it is comparable or

greater than the time delay, the interval among echoes in the resulting signal is initially
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bigger than in the perfect reflecting case but then gets shorter, until it reaches the value

corresponding to the time delay of the object at its initial compactness. It might also be

possible that the mass-radius relation for these objects is not linear as for BHs, and that

stable configurations have different compactness for different values of the mass. In this

case, the object will not expand at constant compactness, breaking the degeneracy with

the perfectly reflecting case.

At this point, one can wonder whether these changes in the time delay are actually

detectable, or whether the signal can still be approximated as quasi-periodic. First of all,

we emphasize that in all cases analyzed here the change in the time delay is a feature

of the first part of the signal. The number of echoes interested by this effect depends on

the initial compactness, the absorption coefficient and the damping factor between echoes,

i.e. the difference in amplitude among subsequent echoes. Anyway, thanks to its bigger

amplitude, it is the first part of the signal that is more likely detectable.

The time delay between the signal and the first echo is subjected to more uncertainties

because it can be affected by non-linear physics during the merger. Thus the observable

for which the effect of absorption might be more important and non-negligible is usually

the difference between the first two time delays: ∆t2 between the first and second echo

and ∆t3 between the second and third echo. As an example, consider an ECO with mass

M0, initial compactness σ = 10−5, an absorption coefficient κ = 0.06% and assume that

the energy carried by the first echo is Eecho ≈ 10−2M0 with a damping factor between the

first and second echo γ = 0.35: the resulting relative difference in the time delays turns

out to be ∆t12 = (∆t2 − ∆t1)/∆t2 ≈ 5.7%.2 Note that in this example, since the total

absorbed energy is Etot = κ
∑∞

n=0 γ
nEecho, the hoop limit r0 = 2M0 is never reached.

Obviously, the difference ∆t12 can be larger if we choose parameters that do not prevent

the overcoming of the hoop limit after the absorption of some of the first echoes.

Finally, we have not considered the possible effects of a frequency-dependent absorption

coefficient. As subsequent echoes contains smaller frequencies to respect to the previous

ones, if the ECO absorbs only higher frequencies than a given critical energy scale, like in

the case of Boltzmann reflectivity [275], subsequent echoes will be less absorbed and the

absorption can even become negligible after some echoes. However, excluding a possible

expansion of the object, it seems that the above described mechanism would additionally

require a non-trivial dependence of the critical energy scale on the compactness of the

object in order to avoid the formation of an horizon. We leave this to future investigations.

In conclusion, we think that the possible phenomenology exposed by this investigation

should be taken into account in future searches for echoes in ringdown signals. In fact, the

strategies adopted in these searches are usually based on the quasi-periodicity of the echoes

signal [211, 281], a feature that we showed can be partially lost in more realistic scenarios.

This seems to indicate that future generic searches for echoes, agnostic to any specific

model of BH mimickers, should give way to more model-dependent analyses which would

take into account the stability, or meta-stability, of such objects. Last but not least, the

relevance of such findings appears to deserve an extension to gravitational perturbations,

and possibly even more relevantly, to rotating geometries. We hope that this study will

then stimulate further investigations and help elaborate a more refined searching strategy.

2Taking into account an interaction time ∆tint ≈ 4M0 during which the field travels inside the interior
of the object, modifies the relative difference as ∆t12 ≈ 5.3%.
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7.5 Appendix: Numerical implementation

In our simulations we have evolved the scalar field using a fourth-order Runge–Kutta in-

tegrator and computing spatial derivatives with finite-difference approximation of second-

order accuracy [278]. To validate our code we have checked the conservation of the energy

and the matching with the time delays computed analytically. We have also performed a

convergence study to guarantee that the numerical resolution is high enough. In the left

panel of Fig. 7.5 we observe that, until the mass of the central object is constant, we find

the expected second order convergence. However, the right panel of Fig. 7.5 shows that

as the field arrives at the surface and absorption is taken into account, the discrete linear

increase of the mass parameter at each time step introduces a dominant linear error.
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Figure 7.5: Left: Convergence study of the evolution of the scalar field at time t = 30M0,
when the mass parameter is still constant. The purple line shows the difference between
results obtained with low (∆t = ∆r∗ = 0.04M0) and medium (∆t = ∆r∗ = 0.02M0)
resolutions, while the red line shows the difference between results obtained with medium
and high (∆t = ∆r∗ = 0.01M0) resolutions multiplied by 4, the expected factor for
second-order convergence. Right: Convergence study of the evolution of the scalar field
at time t = 100M0, when the mass is changed discretely at each time step, introducing
a linear error. The purple line shows the difference between results obtained with low
(∆t = ∆r∗ = 0.04M0) and medium (∆t = ∆r∗ = 0.02M0) resolutions, while the red line
shows the difference between results obtained with medium and high (∆t = ∆r∗ = 0.01M0)
resolutions multiplied by 2, the expected factor for linear convergence. In our simulations
we always use higher resolution, i.e. ∆t = ∆r∗ = 0.001M0.

7.5.1 Boundary conditions

The boundary conditions for the scenarios investigated in this work are non-trivial. As

usual, we impose purely outgoing (i.e. perfectly absorbing) boundary conditions at the

outer boundary. This is because in real physical systems there is no outer boundary and

the radiation escapes away at infinity. To do so, we simply impose the condition

∂Ψ

∂t
+
∂Ψ

∂x
= 0 (7.5.1)

at the outer boundary of our computational domain.
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However, differently from the BH case, at the ECO surface r0 we need to impose

partially reflecting boundary conditions, to account for absorption. One way to implement

it is to insert a fictitious, dissipative region of length l behind r0 and then a perfectly

reflecting boundary condition at r0 − l, so that looking at the reflected wave only from

r0 onwards it will have an effective smaller amplitude. The dissipation, in turn, can be

implemented through two possible methods. One is to switch on a dissipative term in this

region through perfect matched layers [282]. The other method is to pause the simulation

at an instant in which the whole part of the field that has to be reflected is present inside

the fictitious region, then for each point of the region we replace Ψ(r) with (1−κ)1/2Ψ(r)

before the simulation stars over. In any case, the fictitious dissipative region, will cause a

delay in the reflection that can be either deleted in the final results or can be interpreted as

the interaction time between the massive object and the scalar wave. If the central object

is compact enough, as in the cases considered here, this replacement with (1 − κ)1/2Ψ(r)

can be done also without inserting any fictitious region, simply stopping the simulation

when the part of the field that has to be reflected is in the region between the potential

and the surface.

We also checked that we obtain the same results if we simply impose Dirichlet boundary

conditions and multiply each nth echo for (1 − κ)n/2 at the end of the simulation. We

have used this last simple implementation for all the simulations presented here in which

the absorption coefficient is constant. This method has already been studied and applied

even in the frequency domain e.g. in Refs. [283, 284].

Note also that, given the small absorption coefficients used in this work, the effect on

the echoes amplitude is negligible.
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Figure 7.6: Energy present in the spatial bin between r∗ = −45.001M0 and r∗ = −45M0

for the first two echoes of a quadrupolar Gaussian pulse in the spacetime of an ECO with
compactness σ = 2.3 · 10−16.

7.5.2 Absorbed energy

During the multiple reflections of echoes, the central object absorbs part of the energy

of the scalar field and its mass increases, at a given time step, by an amount κ∆E(t),

where κ is the absorption coefficient defined in Eq. (7.2.1) and ∆E(t) is the field energy

present, at time t, in the last spatial bin of our computational domain corresponding to

the location of the surface of the central object.

For this reason we need to know the energy distribution of the echoes that arrive at the

surface. To obtain this distribution we run a simulation in which the central object is very

compact, precisely we put the surface at r∗ = −70M0. Then we look at the energy that pass
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through a fixed point, distant from the reflecting surface to avoid possible deformations

and interference with the reflecting wave. Precisely we chose to evaluate the energy at

r∗ = −45M0. Since the field moves on light rays dr∗ = dt, these energy distribution in

time is equivalent to the spatial energy distribution.

The results obtained in this way for the first two echoes are shown in Fig. 7.6. Taking

into account the right time shift due to the different position of the surface in the true

simulations, we obtain the energy that arrive at the object for each instant.

Note however that the results are poorly influenced by the precise distribution of the

energy but basically depends only on the time of arrival of the echo, its spread and its

total energy.
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Chapter 8

Sensitivity to the inner quantum

core: the ringdown of semiclassical

stars

In this Chapter we investigate some (often) overlooked aspects related to the ringdown of

exotic compact objects. In particular, we study the sensitivity of the ringdown signal to

the properties of their innermost regions. We present results obtained both in frequency

and time domain, highlighting the connection between long living QNMs associated to the

presence of a stable lightring and the echoes signal.

For this investigation we center the analysis on a particular family of static and spher-

ically symmetric exotic compact objects recently found within the framework of quantum

field theory in curved spacetimes [38, 39]. These so-called “semiclassical stars” are a

well-motivated model of horizonless compact objects, as they do not require of any new

physics beyond quantum vacuum polarization. Such solutions are particular suitable for

this analysis since they exhibit an (approximately) Schwarzschild exterior together with a

modified interior composed of a constant-density classical fluid and the cloud of vacuum

polarization generated by the star itself. By varying their classical density, it is possible

to modify the interior metric without affecting the exterior, which has a clear effect in the

QNMs frequencies and the echo waveform.

In this model, as the compactness of the star is increased, quantum vacuum effects

allow to smoothly surpass the Buchdahl limit, opening a window towards studying the

properties of exotic compact objects in the black hole limit.

Let us written the line element of these “semiclassical stars” in the following form:

ds2 = −f(r)dt2 + q(r)dr2 + r2dΩ2, (8.0.1)

where dΩ2 is the line element of the unit sphere. We define the compactness function

as C(r) ≡ 1 − q(r)−1 = 2m(r)/r, whit m(r) the so-called Misner-Sharp mass [83, 84]. In

order to find a regular solution, the authors in [38, 39] incorporated the renormalized stress-

energy tensor (RSET) of massless scalar fields describing quantum vacuum polarization

— an effect expected to be present in any compact star [285–287] — to the Einstein
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equations, so that

Gµ
ν = 8π

(
Tµ

ν +M2
P⟨T̂µ

ν⟩
)
, (8.0.2)

where we recall that we are using geometric units c = G = 1 and thus ℏ = M2
P.

Eq. (8.0.2) takes into account that the physical vacuum of a static star corresponds to

the Boulware vacuum [288] in quantum field theory (whereas the classical vacuum stress

energy tensor would be simply zero). Note that the classical stress-energy tensor (SET)

of the star matter, which we take to be a constant-density fluid [289], and the RSET

are conserved independently; they only influence each other through their impact on the

spacetime.

Noticeably, by taking equations (8.0.2) as a modified theory of gravity to find their

self-consistent solutions, the authors [38, 39] obtained a new type of star supported by

an interior nucleus of negative energy density. When their compactness is small, vacuum

polarization contributes as a perturbative correction over the classical constant-density

solution. However, as compactness approaches the Buchdahl limit C(r0) = 2M/r0 = 8/9

(here M is the ADM mass and r0 is the total radius of the star), which the Schwarzschild

star saturates [290], the RSET grows in magnitude and modifies the interior structure.

As a consequence, semiclassical stars were found to not exhibit an upper bound to their

compactness, but rather to be able to exist also for the compactness range 8/9 < C(r0) <

1. Thus they can serve as a well-motivated black hole mimicker worth bringing under

phenomenological scrutiny.

A distinctive observational feature that only emerges in ultra-compact stars is the

presence of gravitational-wave echoes. Stars with C(r0) > 2/3 develop outer and inner

light rings, which correspond to the presence of unstable and stable circular photon or-

bits, respectively. When the system is perturbed and the light-crossing time between

the two light rings is large enough, echoes can be individually resolved in the late-time

waveform associated to matter fields. In frequency domain, the signal can also be studied

via a complementary analysis involving the QNMs of the system. Since the time delay

between echoes and the associated QNMs are both sensitive to the interior properties of

the star [291, 292], echo detection [293] could constitute not only a direct observation of

horizonless objects more compact than neutron stars, but also a way to extract details

about their interior physical properties.

Two additional comments are pertinent at this stage. The first comment is related

to the presence of an additional scale, MP, in the semiclassical equations (8.0.2). The

introduction of quantum effects breaks the scale invariance of the Schwarzschild interior

solution, meaning that the time delay between echoes (and the quasinormal mode fre-

quencies themselves) does not increase linearly with M as the scale separation between

M and MP increases. This has clear implications on the detectability of echoes which,

as we will show, would become extremely delayed for semiclassical stars surpassing the

Buchdahl limit.

The second comment is related to the spacetime at r = 0, where absence of curvature

singularities implies the metric functions must obey the expansions

q = 1 + q2r
2 +O(r3), f = f0 + f2r

2 +O(r3). (8.0.3)

We will say that the core of the star is “de-Sitter-like” (dSl) if q2 < 0 and f2 > 0 and
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“anti-de-Sitter-like” (AdSl) if q2 > 0 and f2 < 0 (the cores are strict de-Sitter or anti-

de-Sitter only if f = q−1), or “mixed” otherwise. The characteristics of the central core

are relevant for echo detection since, in stars with f0 ≪ f(r0) = 1 − 2M/r0, the dominant

contribution to echo delay comes from a neighbourhood of r = 0. This property was

observed in constant-density solutions [294] and is preserved in their semiclassical version.

Consequently, modifications of the metric in the central regions of the star (for example,

changing from an AdSl to a dSl core) have phenomenological consequences. Since the

central regions of extremely compact objects would be an adequate place where to search

for new physics beyond semiclassical gravity, it is reasonable to think of gravitational-wave

echoes as messengers carrying information about the quantum-gravitational regime.

In this chapter, we present a primer on the phenomenology of semiclassical stars.

Although our analysis is clearly model-dependent, the wide range of compactness values

and the diversity of interior structures displayed by the semiclassical star model (allowing

for AdSl and mixed cores) allows to address more general physical questions about the

phenomenology of exotic compact objects. In Sec. 8.1 we present the classical, uniform-

density solution together with its semiclassical counterpart. In Sec. 8.2 we analyze the

propagation of spin 2 test fields perturbations, showing the qualitative differences that

arise as the star is made more compact. Complementarily, we obtain the fundamental

quasinormal modes of these stars and their scaling with the compactness in Sec. 8.3. In

Sec. 8.4 we detail how modifications in the central regions of these stars affects both

the delay between echoes and the QNMs frequencies. We furthermore discuss about the

connection between the presence of echoes in the time domain and of long-living modes

in the frequency domain and we comment on how both phenomena suggest the necessity

of taking into account non-linear effects. We conclude with some further comments in

Sec. 8.5.

8.1 The semiclassical star model

The existence of upper compactness bounds in stars, as well as their specific values, de-

pends on the properties and equation of state obeyed by the fluid [295–298]. The simplest

stellar model, or constant-density star [289], saturates the hypotheses of the Buchdahl

theorem (see Chapter 1) and its compactness is bounded from above by C(r0) < 8/9. For

clarity, we briefly review the model here.

The SET of the star is modeled as an isotropic perfect fluid

Tµ
ν = (ρ+ p)uµuν + pδµν , (8.1.1)

with p and ρ denoting the pressures and energy density measured by an observer comoving

with the fluid with 4-velocity uµ. Assuming a metric of the form (8.0.1) the covariant

conservation of the SET (8.1.1) implies

∇µT
µ
r = p′ +

f ′

2f
(ρ+ p) = 0. (8.1.2)
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If we assume a uniform energy density fluid

ρ(r) ≡ ρ = const, (8.1.3)

we can solve Eqs. (8.0.2) with MP = 0 and seek for a metric matching the Schwarzschild

one at the star surface r = r0. Such interior metric can be found to be

ds2 = − 1

4

(
3
√

1 − C(r0) −
√

1 − r2C(r0)/r20

)2

dt2

+
(
1 − r2C(r0)/r

2
0

)−1
dr2 + r2dΩ2. (8.1.4)

It is straightforward to check from the above equation that f = 0 at r = 0 for C(r0) = 8/9.

By means of the conservation relation (8.1.2) which, for constant-density fluid, can be

integrated to p = ρ
(√

f(r0)
f(r) − 1

)
, this translates into a diverging pressure at the center,

which is tantamount to say that for this solution, any finite pressure will not be able to

support the star beyond the C(r0) = 8/9 compactness. This is, in a nutshell, the so called

Buchdahl’s limit.

In what follows, while still assuming the equation of state (8.1.3) for the classical fluid,

we shall be interested in solving the full semiclassical Eqs. (8.0.2) incorporating the RSET

as an additional matter source. Obtaining the RSET in spherically symmetric spacetimes

is a complicated procedure requiring, beyond renormalization, also an accurate numerical

computation for the modes in which the quantum field is decomposed. While efforts have

been devoted to calculating RSETs in black hole spacetimes [299–302], this computation is

yet to be attained in stellar spacetimes if not via analytical approximations. While exact

RSETs can be found numerically, this still hinders a proper treatment of their backreaction

on the classical geometry [303].

Following this motivation, in [39] a novel approximation — particularly adapted to

stellar spacetimes — for the RSET of massless minimally coupled scalar fields was devel-

oped. Remarkably, within such framework semiclassically stable star were found. Here,

we omit the technical details, as they can be easily found in the original publication, and

just present the form of the tt and rr components of the so obtained semiclassical stellar

equations (8.0.2)

q′

q
= − q − 1

r
+ 8πrqρ+

M2
P

48πr

{
− 83

20r2q
+

1

15r2
(
105 + 136πr2ρ+ 504πr2p

)
− q

30r2
[
63 + 1054πr2ρ+ 7488π2r4ρ2 + 49πr2

(
53 + 940πr2ρ

)
p+ 56832π2r4p2

]
− q2

15r2
(
1 + 8πr2p

)2 (
3 − 616πr2ρ− 1080πr2p

)
− 11h3

20r2
(
1 + 8πr2p

)4
+8π (ρ+ p) log

[
λ2f

] [
−1 + q

(
1 + 2πr2ρ+ 26πr2p

)
− q2

(
1 + 8πr2p

)2]}
, (8.1.5)
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f ′

f
=
q − 1

r
+ 8πrqp+

M2
P

48πr

{
− 5

4r2q
+

1

15r2
(
21 − 108πr2ρ− 764πr2p

)
+

q

30r2
[
23 − 4πr2ρ

(
3 + 20πr2ρ

)
+ 320πr2

(
5 − 12πr2ρ

)
+ 11904π2r4p2

]
− q2

15r2
(
1 + 8πr2p

)2 (
11 − 180πr2ρ− 228πr2p

)
− 11q3

60r2
(
1 + 8πr2p

)4
+4π (ρ+ p) log

[
λ2f

] [11

3
− q

3

(
3 + 12πr2ρ+ 20πr2p

)
− q2

(
1 + 8πr2p

)2]}
, (8.1.6)

where λ is an arbitrary parameter, introduced by the renormalization prescription,

which was implicitly defined as

log
[
λ2f(r0)

]
=
q(r0)

[
15q(r0) − 40πr20ρ− 6

]
− 9

q(r0)
[
5q(r0) + 24πr20ρ+ 6

]
− 11

(8.1.7)

so to allow for a smooth matching between the interior and exterior solutions [39].

A quick glance at the above equations shows that the right-hand sides of Eqs. (8.1.5, 8.1.6)

contain corrections proportional to M2
P that qualitatively estimate quantum vacuum po-

larization effects. For stars of small compactness, for which p ≪ ρ, semiclassical effects

amount to a perturbative correction over the classical solution. However, when compact-

ness approaches the Buchdahl limit, in which p≫ ρ, terms ∝ p4 in (8.1.5, 8.1.6) overcome

their O(M2
P) suppression, modifying the stellar solutions in a non-perturbative way and

allowing to surpass the Buchdahl limit.

Eqs. (8.1.5, 8.1.6) reduce to their counterparts in vacuum by taking p = ρ = 0. At

sufficiently large distances, the metric obeys the expansions

f = 1 − 2M

r
+
M2

PM
2

90πr4
+O

(
M2

PM
3

r5

)
,

q =

[
1 − 2M

r
−
M2

PM
2

6πr4
+O

(
M2

PM
3

r5

)]−1

. (8.1.8)

Notice that the semiclassical solution is asymptotically flat because we are evaluating the

RSET in the Boulware state, which reduces to the Minkowski vacuum in the asymptotic

regions. With these boundary conditions, the vacuum equations are integrated (assuming

M > 0) from a sufficiently large fiducial radius until some radius r0 > 2M where the

surface of the star is placed. Then, starting from r = r0, Eqs. (8.1.5, 8.1.6) are integrated

inwards with the boundary conditions

p|r=r0
= 0, ρ = const = ρ0, (8.1.9)

where the value of ρ0 compatible with a regular metric must be found numerically [39].

The surface compactness of the star is given by C(r0) = 1 − q(r0)
−1 and can take values

in the interval C(r0) ∈ (0, 1).

Not all values of ρ0 are compatible with a regular metric: numerical explorations

reveal that for any C(r0) < 1 there exists a critical density ρ0 = ρc that corresponds to

the regular solution with smallest ρ0. For ρ0 < ρc we find solutions with naked curvature

singularities, whereas for ρ0 ⩾ ρc we obtain fully regular spacetimes. Since the space
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of parameters is large, we have summarized these cases in Table 8.1. In the following

sections, our analyses will be restricted to critical stars (ρ0 = ρc), which display a core

of the AdSl type. The phenomenology associated to super-critical stars (ρ0 > ρc), which

have cores of the mixed type instead, will be explored in Section 8.4.

Table 8.1: Table depicting the various families of semiclassical stars, depending on their
energy density ρ0 and their surface compactness C(r0). The grey cells correspond to
singular solutions. In dark blue (critical solutions), we have regular stars with an AdSl
core, while in light blue (super-critical solutions) we find stars with mixed cores. In both
cases the solutions can approach the black hole limit arbitrarily.

Figure 8.1 shows the metric functions of a critical semiclassical star with M/MP = 10

and C(r0) = 0.98, far surpassing the Buchdahl limit. Note that, in this work, we take

stars of such small sizes to simplify numerical analyses. Nonetheless, we checked that

the interior properties of semiclassical stars do not suffer any qualitative modification for

larger M/MP ratios. Therefore, we can safely extrapolate the conclusions of this study to

stars of astrophysical size.

As compactness is increased beyond C(r0) = 8/9, the mass function m(r) = r
2(1 −

q(r)−1) = r
2C(r) inside the stars solutions becomes increasingly negative. This effect is a

direct consequence of the negative energy densities generated by the RSET, which grow in

negativity as central pressures increase. All in all, semiclassical stars are a well-motivated

extension of constant-density stars beyond their maximum compactness bound. Once

vacuum polarization effects allow the Buchdahl threshold to be surpassed, we find no

further compactness limits. In the upcoming sections we will explore the phenomenology

associated to the propagation of test fields on these stars.

8.2 Critical solutions: Time domain analysis

In this section we study the time evolution of a test field in the spacetime described in

Section 8.1. Since we are using a test-field approximation, we are neglecting any coupling

between our perturbation field and the perturbations of the matter present in our space-

time. For uniform density stars in GR, the axial matter perturbations vanish [304–306],

this means that test-field perturbations with s = 2 describe accurately the axial sector

of gravitational waves. Since for compactness C(r0) < 8/9 semiclassical corrections are

perturbative, we expect the test field limit to be a good approximation also in the semi-

classical case. For stars with C(r0) > 8/9 instead, the RSET is non-negligible and the

coupling between its perturbations and our field perturbation could lead to non-negligible
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Figure 8.1: Numerical solution of a critical semiclassical star with C(r0) = 0.98, M/MP =
10, ρ = ρc ≃ 0.00112M−2

P . The blue curve is the compactness function C(r) = 1 − q(r)−1

and the red curve corresponds to log f(r). The stellar geometry is regular at r = 0, its
surface is located at r0 ≈ 20.42MP, and the spacetime for r > r0 is very close to the
Schwarzschild solution. The distinctive features of semiclassical stars are their negative
mass interiors (recall that C(r) = 2m(r)/r) and their monotonously decreasing f(r), which
produces large redshifts on outgoing null rays.

Figure 8.2: Potential of the test-field equation for s = l = 2 and compactness C(r0) = 0.98.
The inset is a zoom on the discontinuity of the potential at the star’s surface. The finite
jump in the potential indicates the position of the star surface. Such discontinuity is linked
with the finite jump in ρ at the surface, and poses no problem for the numerical evolution
of test fields.

corrections. Unfortunately, it is not possible at the moment to investigate this further

since our RSET approximation corresponds to a vacuum-expectation value obtained un-

der the assumptions of staticity and spherical symmetry, and is thus not adequate in

time-dependent or non-spherical situations. However, we expect that our qualitative con-

clusions about test-field perturbations will be valid also for the true coupled gravitational

fields.

We recall that, because of the spherical symmetry, we can decompose the field into the

radial part and angular part, the latter being expressed in terms of spherical harmonics.

Then the equation for the radial part of scalar, electromagnetic and gravitational test-field

perturbations is [246, 247]:

∂2ψ

∂t2
− d2ψs

dr2∗
+ Vsψs = 0 , (8.2.1)
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where the tortoise coordinate r∗ is defined as

dr∗ =

√
q

f
dr, (8.2.2)

and s is the spin of the test-field, l is the harmonic index and the potential reads

V (r) =
f(r)s(s− 1)

r2q(r)
+
f(r)(l(l + 1) − s(s− 1))

r2
+

(s− 1)(q′(r)f(r) − q(r)f ′(r)

2rq(r)2
(8.2.3)

The shape of V (r) is reported in Fig. 8.2 for a reference value of the compactness.

We solved Eq. (8.2.1) using a fourth-order Runge–Kutta integrator and computing spatial

derivatives with finite-difference approximation of second-order in accuracy. In the nu-

merical simulation reported in this section we always consider an l = 2 quadrupolar mode

and we use as initial condition for ψ a Gaussian pulse:

ψ(r, 0) = ψ0 exp

(
−(r∗ − rc∗)

2

2ς2

)
, (8.2.4)

∂ψ(r, 0)

∂t
= −ψ0

(r∗ − rc∗)

ς2
exp

(
−(r∗ − rc∗)

2

2ς2

)
, (8.2.5)

with central value rc∗ = r∗(r
c) = r∗(250M) and width ς = 2M ; different initial values lead

to similar results. The pulse is initially centered outside the peak of the potential V (r),

and moves inwards.

8.2.1 Time delay between echoes

For sufficiently compact semiclassical stars, as for every other ultra-compact object with an

exterior region well-approximated by (or exactly described by) the Schwarzschild metric,

the signal in time domain is given by an initial response pulse that is very similar (or

identical) to the one expected from Schwarschild black holes followed by a series of echoes.

As we already mentioned, the distance between them is given by the light-crossing time

between the potential peak and the reflective boundary. In some models, the perturbation

is assumed to be reflected at the surface of the object, leading to a logarithmic dependence

of the light-crossing time (or time-delay) with the compactness σ = C(r0)
−1 − 1 (see

Chapter 5 and Chapter 7). However, a complete reflection of gravitational waves at the

surface is not realistic and one expects instead that the perturbation (or a part of it) can

travel through the interior of the object. In spherical symmetry, this translates into a

reflective boundary condition at the center r = 0.

In this case the full formula for the time delay between echoes (assuming a Schwarzschild

exterior) is given by Eq. (5.2.2), that in terms of C(r0) reads

∆techo = 2M−4M(C(r0)
−1 − 1) − 4M ln

[
2
(
C(r0)

−1 − 1
)]

+ ∆tint . (8.2.6)

We recall that the first three terms on the r.h.s. are associated to the travelling time

between the surface and the light ring while ∆tint is the travelling time to cross the

star. Normally ∆tint has been neglected in the extant literature assuming a low curvature

interior. However this is not the case for our semiclassical solutions where indeed in the
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interior a very large (but finite) time delay is suffered by exiting waves. This can be easily

seen by a direct calculation using the modified geometry.

The light-crossing time a light ray emanating from the photon sphere and getting

reflected at r = 0 needs to reach the photon sphere back is

∆techo = 2

∫ rph

0

√
q

f
dr (8.2.7)

When f(0) ≪ f(r0) and f decreases monotonically towards the center, the dominant

contribution to the crossing time comes from the large time delays suffered by light rays

at the innermost regions of the star. This implies that the logarithmic dependence of

the crossing time on C(r0)
−1 − 1 (that came exclusively from the exterior of the object)

becomes a sub-leading contribution.

The magnitude of the time delay for the semiclassical star model depends on both

the compactness C(r0) and the ratio M/MP between the mass of the object and the

Planck mass MP, which enters the solution through the renormalized stress-energy tensor.

Semiclassical corrections introduce a new length scale that spoils the scale invariance of

the classical solution.

Figure 8.3: Light-crossing time in terms of the compactness for the classical constant
density star (purple line) and semiclassical stars with M/MP = {10, 5, 1} (blue lines from
top to bottom, respectively). Semiclassical solutions are not scale invariant. The origin of
the plateau reached by the light crossing time for sufficiently high compactness is discussed
in the text.

Figure 8.3 displays the qualitative dependency of the crossing time on both compact-

ness and scale separation. Regarding the dependence on the compactness, we observe

an initial growth of the crossing time with C(r0) until a maximum value is reached, fol-

lowed by a subsequent decrease. This behaviour is caused by the decrease of values of

the functions q and f in the stellar interior as C(r0) increases. A Decrease in f leads to

larger time delays, while a decrease in q can be linked to a shrinking of the proper vol-

ume. These effects are perceived by null rays and compensate themselves causing, beyond

certain C(r0) > 8/9 value, a decrease of the crossing time with the compactness.

Regarding the dependence on scale separation between the ADM mass and the Planck

mass, considering the realistic case of a stellar mass object with M/MP ≫ 1, we see that

for low values of the compactness, C(r0) < 8/9, the quantity ∆techo/r0 approaches the

classical solution value and is hence basically independent on M/MP. For very compact
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objects, C(r0) > 8/9, the crossing time ∆techo/r0 grows instead linearly with M/MP. In

between both regimes lies the separatrix C(r0) = 8/9, for which ∆techo/r0 ∝ (M/MP)α,

with α ∈ (0, 1). These scalings are valid for all the three cases of sub-critical, critical and

super-critical density. This scaling of the crossing time, as we will see below, has crucial

implications for the observability of the echo signal.

Figure 8.4 shows three numerical integrations of Eq. (8.2.1) for stars with the same

M/MP and increasing compactness. As it is customary for exotic compact objects, the

time delay between echoes grows with the compactness (although this is not always true,

see Fig. 8.3), and they become clearly identifiable as isolated events when the star is

super-Buchdahl. Because of the linear dependence of the time delay with M/Mp, after

the initial black-hole like response, the subsequent echoes would suffer an extremely large

time delay that would make them essentially impossible to identify as part of the original

signal [294], at least for super-Buchdahl objects with masses much larger than the Planck

mass.

Of course this is a feature of this particular model of semiclassical stars, already in the

same semiclassical set-up it is possible to construct different models starting from classical

matter fluids obeying other, more realistic equations of state instead of using the simple

constant density profile. It is not clear yet if this particular scaling of the time delay found

here will be shared by other models.

8.3 Critical solutions: Frequency domain analysis

We shall now move to study the same s = 2 test-field perturbations in the frequency

domain. This means that we will solve Eq. (8.2.1) assuming an ansatz of the form

ψ(t, r) = eiωtϕ(r), (8.3.1)

where ϕ obeys the boundary conditions

ϕ ≃ eiωr, r → ∞,

ϕ ≃ r1+l, r → 0. (8.3.2)

Numerous methods have been developed for obtaining the quasinormal modes of black

hole and stellar spacetimes (see [307, 308] and references therein), whose utility depends on

the details of the system under consideration. Here, we implement the direct calculation

developed by Chandrasekhar and Detweiler [309]. While its implementation is straightfor-

ward, this method suffers from instabilities that originate from a large sensitivity in the

solution to the radius where the ingoing boundary conditions are imposed [310]. Despite

its limitations, it is possible to generate reliable and precise results for the axial QNMs

of semiclassical stars and to compare them with their classical counterparts. Throughout

this section we take M/MP = 1.

For what regards the boundary conditions at large r, let us remember that our metric

is characterized by the asymptotic behaviour set by the expansions (8.1.8). Henceforth,
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Figure 8.4: Signal received by an observer at r = 250M outside a semiclassical star with
M/MP = 10 for different values of the compactness C(r0). The initial signal is a Gaussian
pulse centered outside the potential peak. We observe an initial Schwarzschild-like signal
associated to the peak of the potential followed by a series of echoes, whose separation
increases with the compactness.

for the ingoing mode we have assumed an asymptotic series solution of the form

ϕ = eiωr
( r

2M
− 1
)2Miω

∞∑
n=0

cn
rn
, (8.3.3)
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and solved for the cn coefficients order by order, so obtaining

c1 =
l (1 + l) i

2ω
c0,

c2 =
(1 − l) l (1 + l) (2 + l) + 12Miω

8ω2
c0, (8.3.4)

as the lowest-order coefficients, with c0 = 1.

At small r, the metric obeys instead the expansions (8.0.3) and we can then find the

following series solution for the outgoing mode

ϕ = rl
∞∑

m=1

dmr
m, (8.3.5)

where, for the lowest-order terms, we obtain

d2 = 0, d3 = −ω
2 + (f2 − f0q2l) (2 + l)

2f0 (3 + 2l)
d1,

d4 = −−3f3 + f0q3 (1 + 2l)

12f0
d1, (8.3.6)

with d1 = 1.

Using these boundary conditions, we shift the value of ω until we find the one that

guarantees a vanishing of the Wronskian between the ingoing and outgoing modes at

some radius rm > r0. In this way, we obtained the fundamental frequency of the l = 2

mode and observed how its value changes with the compactness. Figures 8.5 and 8.6

show the real part and the logarithm of the imaginary part of the fundamental QNMs

frequency, respectively. The corresponding values of the classical, constant density solution

are shown for comparison. We have tested our method comparing with the results in [305]

for constant density stars. For classical stars, we observe a drop in the accuracy of the

method as we approach the Buchdahl limit, but the values for the QNMs frequencies of

the last two points shown in Figs. 8.5 and 8.6 are nonetheless accurate within one order of

magnitude. For semiclassical stars, the QNMs frequency values obtained are accurate at

least to three decimal places under changes in the matching radius rm in the entire range

of compactness values explored.

It is easy to see that the QNMs frequencies of the classical and semiclassical solutions

are characterized by quite distinct behaviours. In the first case, both ωR and ωI tend to 0

in the Buchdahl limit. This behaviour is associated to the divergence of the crossing time in

this limit, which produces an infinite time delay between echoes [294]. In the semiclassical

solution, however, the QNMs frequencies start departing from their classical counterparts

as the Buchdahl limit is approached, since in proximity of such limit semiclassical effects

become relevant. As discussed, the latter also lead to a breakdown of scale invariance

introducing a dependence of the frequencies on M/MP. Finally, let us notice that between

the Buchdahl and the black hole limits, axial QNMs frequencies reach a plateau, not

increasing significantly. We have not explored what happens in the C(r0) → 1 limit since

the features of the solutions in this regime rely strongly on the details of the approximation

adopted for the RSET.
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Figure 8.5: Real part of the QNMs frequencies in terms of the compactness for the classical
and semiclassical models (brown and red, respectively). The classical frequencies approach
0 in the Buchdahl limit, while the semiclassical ones have finite values in all the range
C(r0) < 1. We have taken M = MP = 1.

Figure 8.6: Logarithm of the imaginary part of the QNMs frequencies in terms of the
compactness for the classical and semiclassical models (green and blue, respectively). The
classical frequencies approach 0 in the Buchdahl limit, while the semiclassical ones have
finite values in all the range C(r0) < 1. The presence of small imaginary part is indicative
of long-lived modes and potential non-linear instabilities [311]. Notice the similarity in
behaviour with respect to the real parts in Fig. 8.5. We have taken M = MP = 1.

8.4 Sensitivity to the internal properties of compact objects

Phenomenological studies of black hole mimickers spacetimes attempt to be agnostic about

the interior properties of such objects by imposing a (partial or total) reflective boundary

condition at their surface [312–314]. This restricts echoes and, in general, the ringdown

signal, to be only probes of the spacetime geometry between the surface and the light ring.

However, it is clear that a more physical scenario would allow for perturbations to travel

through the entire object, and consequently to carry out information about its internal

structure. For a spherically symmetric spacetime this assumption would translate into

reflective boundary conditions being imposed at the center of the object rather than at

its surface. Remarkably, by doing so, the ringdown signal becomes also a probe of the

innermost regions where quantum effects are expected to be stronger.
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In this section we compare the phenomenology of compact objects with the same

exterior spacetime but different central regions, showing that echoes and QNMs are indeed

sensitive to the internal structure and hence indirectly to the quantum effects avoiding

singular behaviours at the object core. As particular examples, we take a sub-family of

semiclassical stars with increasing classical energy density and the Dymnikova metric.

8.4.1 Super-critical semiclassical stars

For a star of a given mass M and compactness C(r0), the semiclassical stellar equa-

tions (8.1.5, 8.1.6) allow to freely adjust the value of the classical density ρ0. In previous

sections, all our considerations have been restricted to critical solutions, i.e., those with

ρ0 = ρc (see Table 8.1), for which the central pressure is a global maximum and the region

near r = 0 is of the AdSl type. By taking ρ0 > ρc, we can generate regular stellar solutions

of the same mass and compactness, but whose central pressure has a local minimum at

the center, this feature being reproduced by cores of the dSl type.

Figures 8.7 and 8.8 show respectively the interior metric function f(r) and C(r) =

1 − q(r)−1 for several super-critical solutions. Note that all super-critical solutions have

an identical vacuum exterior and only differ in their interior properties.

Figure 8.7: Logarithm of the redshift function f in terms of the radius for stars with
M = MP = 1 and C(r0) = 0.99 . The dashed line denotes the critical solution with
ρc ≃ 0.055M−2

P . From darker to lighter shades, the curves correspond to super-critical
solutions with ρ0/ρc = {1.001, 1.004, 1.015, 1.04, 1.1, 1.25, 1.6}. Increasing ρ0 diminishes
the redshift suffered by light rays at the center appreciably.

Although there is no change in the position of the outer light ring, the modification

of the stellar interior affects the crossing time (hence the time delay between echoes) as

well as the QNMs frequencies. Particularly, the crossing time diminishes as ρ0 increases

(Fig. 8.9), while the QNMs frequencies increase (Figs. 8.10 and 8.11).

Indeed, inserting expansions (8.0.3) in the potential (8.2.3) for s = 2, l = 2, we have

V =
6f0
r2

+O(r0), (8.4.1)

hence different densities correspond to different values of f0, meaning changes in the slopes

of the centrifugal barrier at r = 0 that, as we see in Fig. 8.12, affect the phase of the echoes

and cause a slightly different modulation of their amplitude with time.

142



Figure 8.8: Compactness function C(r) in terms of the radius for stars with M = MP = 1
and C(r0) = 0.99. The dashed line denotes the critical solution with ρc ≃ 0.055M−2

P .
From darker to lighter shades, the curves correspond to super-critical solutions with
ρ0/ρc = {1.001, 1.004, 1.015, 1.04, 1.1, 1.25, 1.6}. Increasing ρ0 generates a deeper and
broader negative mass interior.

Figure 8.9: Light-crossing time in terms of the density of super-critical solutions with M =
MP = 1 and C(r0) = 0.99. As the star becomes super-critical, the crossing time decreases
appreciably. This behaviour affects the QNMs frequencies, increasing their values with ρ
(see Figs. 8.10 and 8.11).

8.4.2 Dymnikova’s model

The Dymnikova metric [80, 315] is one of the simply connected, spherically symmetric

regular models introduced in Table 3.1.

The line element of this model can be written in the same form of Eq. 8.0.1 with

f(r) = 1− 2m(r)

r
, q(r) = 1/f(r) , and m(r) = M

[
1 − exp(− r3

2Mℓ2
)

]
. (8.4.2)

Note that, for this model, the range of possible scale separations between M and the

regularization parameter ℓ is limited. Indeed, as anticipated, if ℓ/M is too small the

metric presents a pair of horizons (as it is indeed a regular black hole), and if ℓ/M is too

big the object has no light rings. For this reason the range of parameters for which echoes

appear is restricted.

The exterior solution of the Dymnikova’s model closely resembles the one of our semi-
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Figure 8.10: Real part of the l = 2 fundamental QNMs frequencies for super-critical
solutions with M = MP = 1 and C(r0) = 0.99. The frequency values increase with ρ,
similarly to the logarithm of the complex part of the QNMs frequency and the inverse of
the crossing time (see Figs. 8.11 and 8.9)
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Figure 8.11: Logarithm of the complex part part of the l = 2 fundamental QNMs fre-
quencies for super-critical solutions with M = MP = 1 and C(r0) = 0.99. The frequency
values increase with ρ in a tendency very similar to the real part of the frequency and the
inverse of the crossing time (see Figs. 8.10 and 8.9).

classical model. Both models have nearly the same outer light ring and innermost stable

circular orbit position, and the potential for test-field perturbations shares the same shape

from the neighborhood of the light ring to infinity. However, the interior region is quite

different. Near the center, Dymnikova’s metric exhibits a strictly de-Sitter core and the

potential for test-field perturbations has a different shape (w.r.t. the semiclassical star)

especially near r = 0 (see Eq. (8.4.1)).

As a further tests of the sensitivity of echos to the internal structure of the ultra-

compact star we can compare the Dymnikova model with semiclassical star solutions

characterized by the same light-crossing time between the unstable light ring and the

center, i.e. having by construction the same time delay between echoes. Nonetheless,

as shown in Fig. 8.12, one can see that the time-domain signal coming from stars with

different densities presents some differences within them and with Dymnikova’s model.

Indeed, signals coming from different models present slightly different modulations in

amplitude and very different phases that are due, mainly, to the discrepancies in their

potential barrier near r = 0.

We therefore conclude that black hole mimickers spacetimes with similar exterior ge-
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Figure 8.12: Comparison between signals received by an observer at r = 250M outside
objects with similar exterior spacetime but different central region and M/MP = 10. The
initial signal is a gaussian pulse centered outside the potential peak. The Dymnikova
model with ℓ = 1.15M is compared with semiclassical stars with critical density ρc in the
upper panel and with super-critical density ρ = 1.026679ρc in the bottom panel. These
values of ℓ and ρ are chosen in order to have the same ∆techo for the three analysed
solutions. In both cases we can note a slight difference in the modulation of the amplitude
and a different phase between the two signals. This is due to the slightly different trend
of the potential in the region near r = 0.

ometry, i.e. nearly sharing the same position for the external light ring, but differing in

their interior properties will still produce different ringdown signals. Indeed, this realiza-

tion can be seen as the ultra-compact star analogue of the even more striking one that

regularizations of black hole cores lead to solutions which generically have (even if possi-

bly just slightly) different exteriors w.r.t. the singular solutions of GR (at least modulo

nonphysical ad hoc constructions).

8.4.3 Echoes and the stable lightring

We have observed that echoes signal strongly depends on the internal structure of the

object. This is because this part of the waveform is associated with the slow leakage of

perturbations from the region between the unstable light ring and the central centrifugal

barrier (where a stable light ring must always be present [316, 317]). This same process

leads to the appearance of long-living modes in the QNMs spectrum, which are considered
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indicative of non-linear instabilities [137, 316]. These instabilities appear to be confirmed

in some specific models by numerical simulations [140].

Typically, these concerns are not associated with the presence of echoes in the sig-

nal. However, it is worth stressing that echoes are the time-domain counterpart of the

aforementioned long-living modes and can indeed be reconstructed using the first few over-

tones [318], with the late-time part of the echo signal being dominated by the fundamental

modes. Therefore, it is not surprising that a careful analysis of the echo scenario also leads

to the conclusion that non-linear effects and backreaction must play an important role as

we explained in Chapter 7.

It is important to note that the long-living modes forming the late part of the echoes

signal are due to the extended time required for perturbations to travel several times

between the unstable light ring and the reflective barrier. Thus, they can lead to instability

only in the case of a sustained continuous flux of perturbations, allowing for a, possibly

destabilizing, accumulation of energy in the region between the unstable light ring and

the reflective barrier.

Finally, we emphasize that while the extremely long time delay between echoes and

their consequently probable unobservability (discussed in section 8.2) is a model-dependent

feature, the presence of a stable light ring and the consequent semi-trapping of perturba-

tions leading to the appearence of long-living modes is a universal feature of horizonless

objects and a necessary condition for the emission of echoes. Therefore, studying the

ringdown in a fully non-linear regime would be very useful to understand if we can truly

observe echoes and thus probe the innermost regions of these objects.

8.5 Conclusions

In this work, we studied the ringdown signal produced by semiclassical stars, which are

regular stellar solutions to the Einstein equations incorporating the expectation value

in the Boulware vacuum (the natural vacuum in stellar spacetimes) of the renormalized

stress-energy tensor. A distinctive feature of these stars is that the backreaction of vacuum

polarization effects allows for the existence of regular stars surpassing the Buchdahl limit.

Consequently, they can serve as a novel family of black hole mimickers without requiring

new physics beyond GR and quantum field theory in curved spacetimes.

The exterior of these objects corresponds to a perturbatively-corrected Schwarzschild

spacetime, maintaining the same asymptotically flat behavior at large distances up to some

surface r = r0. However, in the interior region r < r0, if the star’s compactness surpasses

the Buchdahl limit, the spacetime is significantly modified by semiclassical corrections.

Notably, by varying their compactness C(r0) and their classical surface density ρ0, we

can modify the internal region of these stars without changing the exterior. This means

that the position of the outer light ring and the innermost stable circular orbit remain the

same as in the Schwarzschild black hole (up to O(M2
P) corrections). This allowed us to

investigate the extent to which the ringdown signal is sensitive to the internal structure

of black hole mimickers.

Our time-domain analysis shows that the initial part of the signal is identical to that

produced by a Schwarzschild black hole1, information about the object being a black

1This is because the exterior spacetime of semiclassical stars is almost identical to the Schwarzschild
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hole mimicker is only carried by the subsequent echoes. Furthermore, we observed that

increasing the compactness of the object generally results in echoes being further separated

and individually resolved. However, for sufficiently compact objects, the crossing time can

decrease with compactness (see Fig. 8.3).

The latest part of the echo signal is dominated by the long-living fundamental QNMs

frequencies, which are highly sensitive to the features of the interior metric. We varied

these features by increasing the compactness of critical solutions (Figs. 8.5, 8.6) and by ex-

ploring super-critical solutions with the same C(r0) but different ρ0 (Figs. 8.9, 8.10, 8.11).

From our analysis, we conclude that echoes unmistakably carry information about the

internal properties of these objects, making even more pressing the question of whether

such echoes are truly observable.

We have shown that if perturbations can travel through the object’s interior, the

time-delay between echoes depends on both the compactness of the object and its internal

structure. It also crucially depends on the ratio between the ADM mass M and the Planck

mass. For super-Buchdahl stars (C(r0) > 8/9), the ratio ∆techo/r0 increases linearly with

the quotient M/MP, making echoes essentially unobservable for stellar-sized objects. For

example, with C(r0) ≈ 0.90, values of ∆techo of the order of seconds — that might lead

to detectable echoes — are possible only for M ≈ 1021MP, or roughly 10−17 solar masses.

For a stellar mass object, the part of the signal that crosses the exterior potential barrier

and travels towards the object’s interior would, in practice, be frozen forever.

Nonetheless, possible mechanisms for observable echoes from such semiclassical stars

could include partial reflections at their surface [319, 320] or ringdown signals from ex-

tremely light primordial objects [321, 322] or morsels formed during binary mergers [323].

Also, it might be possible to find other observables sensitive to the internal structure of

these semiclassical stars, for example in the inspiral-merger part of the signals. We plan

to investigate these issues in future work.

It is important to stress that the extremely delayed echo signals here found, could be

just a feature of this particular model, where semiclassical effects break the scale invariance

of the classical uniform-density solution. Within the same semiclassical framework, other

models can be constructed starting from different classical stress-energy sources. For

example, the approximations used for the RSET can be applied to fluids with barotropic

equations of state [39]. Investigating whether echoes are extremely delayed and thus

unobservable also in these other models would be a desirable analysis to carry on in the

future.

Another aspect, not considered in this study, is the effect of matter on the signal, as

we analyzed test-field perturbations. In the axial sector, classical matter perturbations

vanish, but the RSET is non-zero (albeit small) even outside the star’s surface, potentially

affecting the initial part of the ringdown signal through interactions with quantum matter.

Trust in the results obtained with test field perturbations follows from such effects being

of O(M2
P).

Finally, despite these various possible future lines of investigation, we want to empha-

size a key takeaway from our study of this specific class of semiclassical ultra-compact

stars: they provide us with the general lesson that the core of these exotic objects does

spacetime, for some other BH mimickers models, as the Bardeen or Hayward metrics (Table 3.1), the
exterior spacetime is slightly different and so is the initial ringdown signal.
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matter and that once propagation inside the star core is considered, short-delayed (and

potentially observable) echoes are no longer guaranteed. We can see this conclusions “as a

curse and a blessing”: on the downside, it is evident that testing these objects via echoes

will require in the future an in-depth analysis based on the specific exotic star model. On

the upside, if such analysis will yield promising results for phenomenology, it will open the

door to finally testing quantum gravity effects — hidden in the core of such objects — by

observing gravitational waves. Only time will tell.
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Part V

Final remarks

This thesis dealt with the construction and phenomenological investigation of regular

effective models for describing the early universe and the dark compact objects that we

observe in the sky.

We saw that under the reasonable assumptions of this work I, the regularization of cos-

mological and black holes singularities can be realized through a limited number of local

geometries. In the case of a spherical symmetrical black hole, the regularization can lead to

simply connected geometries presenting at least an additional inner horizon or to multiple

connected geometries presenting an hidden wormhole throat. In the case of an homoge-

neous and isotropic cosmological spacetime, the regularization can only result in simply

connected geometries: a bouncing universe (where the scale factor reaches a minimum in

the past before re-expanding), an emergent universe (where the scale factor reaches and

maintains a constant value in the past), and asymptotically emergent universe (where the

scale factor diminishes continually, asymptotically approaching a constant value in the

past). This analysis of cosmological spacetimes has been particularly interesting because

of the different symmetries and time-dependence of the considered scenario, indeed in an

expanding universe the trapping and defocusing of geodesics are more delicate concepts

to study. This analysis opens the path to the study of the regularization of less symmetric

time-dependent geometries like rotating black holes.

Then, we saw how it is possible to construct specific examples of metrics that embody

these regularizations. For the black hole case, it is also possible to add rotation to these

metrics through the so called Newman-Janis procedure. However the rotating simply

connected regular black holes present in literature exhibit several issues. In particular,

presenting an inner horizon, they are plagued by the mass inflation instability that is an

unbounded growth of perturbations near this horizon. At classical level the time-scale of

this instability is determined by the inner horizon’s surface gravity. We presented a new

rotating regular black hole whose inner horizon has zero surface gravity for any value of the
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spin parameter, and is therefore stable against classical mass inflation. To construct it we

combined two successful strategies for regularizing black holes metrics, i.e. we replaced the

mass parameter with a function of the radius to stabilize the inner horizon and we introduce

a conformal factor to regularize the singularity. Our metric depends on a total of four real

parameters: the ADM mass M , the spin a, the conformal parameter b and the deviation

parameter e. The two additional parameters b and e can be constrained by observations

since they affect the multipolar structure of the object and the orbits of massless and

massive test particles. Given that the conformal and Kerr-deviation parameters might

be directly related to quantum-gravitational effects, the possibility to constrain them via

observations on the exterior geometry of the BH is further evidence that a new window

for quantum-gravity phenomenology might be opening via astrophysical observations.

In general, the possibility to test new (quantum) physics beyond GR through obser-

vations is analysed in the last part of this thesis, that is dedicated to the phenomenology

of BH mimickers. In particular, we focused on the study of the ringdown signal emitted

by such objects.

We studied test-field and gravitational perturbations on two spherically symmetric

regular metrics, each representing an example of one of the two possible families of black

hole mimickers: the Bardeen metric, which is part of the simply-connected family and

interpolates between a multiple horizon black hole and an exotic compact star; and the

SV metric, which is part of to the multiple-connected family and interpolates between

an hidden wormhole and a traversable wormhole. For both families of regular models, in

the horizonless branch, we found long living modes whose damping time grows exponen-

tially with the harmonic index l and is longer for more compact configurations. These

modes are associated with the presence of a stable photon sphere in these spacetime and

are usually considered a hint for non-linear instability. In general our analysis demon-

strates that there are deviations of the QNMs spectrum of these spacetimes from that

of a Schwarzschild BH. We analysed the possible detectability of these deviations in the

observed gravitational-wave ringdown signals using the Parspec framework [208]. The

detectability of such deviations depends on several aspects such as: the number of ob-

servations, their SNR and obviously the size of the regularization parameter entering the

metric functions. We showed that these deviations should be detectable with the next

generation of GWs detectors for macroscopic values of the regularizing parameter. This

analysis in only preliminary and we plan to extend it in several ways: using corrections

at higher order in the spin, using a more realistic binary population for the sources, and

treating also the final mass and spin of the remnant as unknown parameters.

For horizonless mimickers, an additional signal is expected to be emitted after the

prompt ringdown. This consists of a series of secondary pulses with progressively smaller

amplitude and lower frequency content, called echoes. Echoes are caused by the slowly

leaking out of perturbations semi-trapped between the photon sphere and a reflective

barrier at the center or the surface of the object. Usually echoes are studied in linear

approximation, we discussed the possible effect of back-reaction on this part of the signal.

Firstly, we have let the central compact object absorb part of the incoming radiation,

resulting in an increase in its mass and leading to changes in the spacetime in which the

perturbation propagates. The most important effect of this on the echo waveform is the

loss of the quasi-periodicity of the signal. Indeed, the absorption of each echo changes the
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mass and thus the compactness of the object, and as a result, it increases the time delay

among echoes which depends logaritmically on the compactness. Apart from this simple

scenario, we also consider the case in which, in order to preserve its compactness above

the black hole limit, the compact object absorption shuts down in a finite amount of time

or leads to an expansion. In both these cases we find interesting new features that should

be taken into account in future searches. Indeed, the strategies adopted in these searches

are usually based on the quasi-periodicity of the echoes signal, a feature that we showed

can be partially lost in more realistic scenarios.

Finally we investigated the sensitivity of the ringdown singal to the structure of the

innermorst region of the emitting object. For this purpose, we focused on a particular class

of static and spherically symmetric exotic compact objects, denominated semiclassical

stars [38, 39]. Such solutions are particular suitable for this analysis since they exhibit

an (approximately) Schwarzschild exterior together with a modified interior composed of

a constant-density classical fluid and the cloud of vacuum polarization generated by the

star itself. By varying their classical density, it is possible to modify the interior metric

without affecting the exterior.

Often, gravitational perturbations are considered to be reflected at the surface of the

compact objects. This restricts echoes and, in general, the ringdown signal, to be only

probes of the spacetime geometry near the light ring. If instead gravitational perturbations

are assumed to travel thorough the interior object, we found that the echoes signal appears

to be very sensitive to the structure of the innermost region of the mimicker, a region

where we expect new physics effects to dominate. For the specific model of stellar-sized

semiclassical stars, we even found that the interior travel time is sufficiently prolonged

to render the echoes effectively unobservable. This analysis makes evident that, even if

the emission of observable echoes is not guaranteed for every horizonless mimickers, its

potential detection could enable us to explore new (quantum) physics hidden in the core

of such objects.

The different investigations presented here, despite their specific focus, provide us with

several general insights. These can be summarized in the final message that probing new

physics responsible for the putative regularization of spacetime singularities is certainly

possible but not guaranteed. Without even thinking about technical or environmental

issues [324], the regularization itself could be at the moment inaccessible to us even in

principle. As instance, a planckian regularization parameter for our effective models could

lead to a ringdown indistinguishable from the one expected from singular BHs and to

extremely delayed, unobservable echoes.

The author’s opinion is that, despite these uncertainties, it is not only valuable but

even necessary to continue perusing the path of quantum gravity phenomenology and

the search for new physics in the signal coming from extreme gravitational phenomena.

Indeed, at the moment, it represents, if not the most promising, at least one of the very few

instruments we have to provide guidance out of the current crisis of fundamental physics.

The author remains hopeful that one day, not too far in the future, we will be able to

glimpse the imprints of quantum effects in the GWs signals coming from the merger of

compact objects, opening the world to the era of quantum gravity.
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[134] Carlos Barceló et al. “Classical mass inflation versus semiclassical inner horizon

inflation”. In: Phys. Rev. D 106.12 (2022), p. 124006. doi: 10.1103/PhysRevD.

106.124006. arXiv: 2203.13539 [gr-qc].

[135] Tyler McMaken. “Semiclassical instability of inner-extremal regular black holes”.

In: Phys. Rev. D 107.12 (2023), p. 125023. doi: 10.1103/PhysRevD.107.125023.

arXiv: 2303.03562 [gr-qc].

[136] Francesco Di Filippo, Stefano Liberati, and Matt Visser. “Fully extremal black

holes: a black hole graveyard?” In: (May 2024). arXiv: 2405.08069 [gr-qc].

[137] Vitor Cardoso et al. “Light rings as observational evidence for event horizons: long-

lived modes, ergoregions and nonlinear instabilities of ultracompact objects”. In:

Phys. Rev. D 90.4 (2014), p. 044069. doi: 10.1103/PhysRevD.90.044069. arXiv:

1406.5510 [gr-qc].

[138] Felicity C. Eperon, Harvey S. Reall, and Jorge E. Santos. “Instability of super-

symmetric microstate geometries”. In: JHEP 10 (2016), p. 031. doi: 10.1007/

JHEP10(2016)031. arXiv: 1607.06828 [hep-th].

162

https://doi.org/10.1016/j.physletb.2018.09.027
https://arxiv.org/abs/1712.09914
https://doi.org/10.1103/PhysRevD.95.084034
https://link.aps.org/doi/10.1103/PhysRevD.95.084034
https://link.aps.org/doi/10.1103/PhysRevD.95.084034
https://doi.org/10.1103/PhysRevLett.63.1663
https://doi.org/10.1103/PhysRevLett.63.1663
https://doi.org/10.1103/PhysRevLett.67.789
https://doi.org/10.1103/PhysRevLett.67.789
https://doi.org/10.1103/PhysRevD.103.124027
https://doi.org/10.1103/PhysRevD.103.124027
https://arxiv.org/abs/2010.04226
https://doi.org/10.1103/PhysRevD.107.024005
https://arxiv.org/abs/2209.10612
https://doi.org/10.1007/JHEP07(2018)023
https://arxiv.org/abs/1805.02675
https://doi.org/10.1007/JHEP05(2021)132
https://arxiv.org/abs/2101.05006
https://doi.org/10.1088/1361-6382/abf89c
https://arxiv.org/abs/2011.07331
https://doi.org/10.1103/PhysRevD.106.124006
https://doi.org/10.1103/PhysRevD.106.124006
https://arxiv.org/abs/2203.13539
https://doi.org/10.1103/PhysRevD.107.125023
https://arxiv.org/abs/2303.03562
https://arxiv.org/abs/2405.08069
https://doi.org/10.1103/PhysRevD.90.044069
https://arxiv.org/abs/1406.5510
https://doi.org/10.1007/JHEP10(2016)031
https://doi.org/10.1007/JHEP10(2016)031
https://arxiv.org/abs/1607.06828


[139] Joe Keir. “Slowly decaying waves on spherically symmetric spacetimes and ul-

tracompact neutron stars”. In: Class. Quant. Grav. 33.13 (2016), p. 135009. doi:

10.1088/0264-9381/33/13/135009. arXiv: 1404.7036 [gr-qc].

[140] Pedro V. P. Cunha et al. “Exotic Compact Objects and the Fate of the Light-

Ring Instability”. In: Phys. Rev. Lett. 130.6 (2023), p. 061401. doi: 10.1103/

PhysRevLett.130.061401. arXiv: 2207.13713 [gr-qc].

[141] Valentin Boyanov et al. “Pseudospectrum of horizonless compact objects: A boot-

strap instability mechanism”. In: Phys. Rev. D 107.6 (2023), p. 064012. doi: 10.

1103/PhysRevD.107.064012. arXiv: 2209.12950 [gr-qc].

[142] John L. Friedman. “Ergosphere instability”. In: Commun. Math. Phys. 63.3 (1978),

pp. 243–255. doi: 10.1007/BF01196933.

[143] N. Comins and B. F. Schutz. “On the Ergoregion Instability”. In: Proceedings of

the Royal Society of London Series A 364.1717 (Dec. 1978), pp. 211–226. doi:

10.1098/rspa.1978.0196.

[144] Shin’ichirou Yoshida and Yoshiharu Eriguchi. “Ergoregion instability revisited - a

new and general method for numerical analysis of stability”. In: 282.2 (Sept. 1996),

pp. 580–586. doi: 10.1093/mnras/282.2.580.

[145] John L. Friedman. “Ergosphere instability”. In: Communications in Mathematical

Physics 63.3 (Oct. 1978), pp. 243–255. doi: 10.1007/BF01196933.

[146] A. Vilenkin. “Exponential Amplification of Waves in the Gravitational Field of

Ultrarelativistic Rotating Body”. In: Phys. Lett. B 78 (1978), pp. 301–303. doi:

10.1016/0370-2693(78)90027-8.

[147] Vitor Cardoso et al. “Ergoregion instability of ultracompact astrophysical objects”.

In: Phys. Rev. D 77 (2008), p. 124044. doi: 10.1103/PhysRevD.77.124044. arXiv:

0709.0532 [gr-qc].

[148] Vitor Cardoso et al. “Instability of hyper-compact Kerr-like objects”. In: Class.

Quant. Grav. 25 (2008), p. 195010. doi: 10.1088/0264-9381/25/19/195010.

arXiv: 0808.1615 [gr-qc].

[149] Cecilia B. M. H. Chirenti and Luciano Rezzolla. “On the ergoregion instability

in rotating gravastars”. In: Phys. Rev. D 78 (2008), p. 084011. doi: 10.1103/

PhysRevD.78.084011. arXiv: 0808.4080 [gr-qc].

[150] Enrico Barausse et al. “The stochastic gravitational-wave background in the ab-

sence of horizons”. In: Class. Quantum Grav. 35.20 (2018), 20LT01. doi: 10.1088/

1361-6382/aae1de. arXiv: 1805.08229 [gr-qc].

[151] Elisa Maggio, Paolo Pani, and Valeria Ferrari. “Exotic compact objects and how

to quench their ergoregion instability”. In: Phys. Rev. D 96.10 (2017), p. 104047.

doi: 10.1103/PhysRevD.96.104047. arXiv: 1703.03696 [gr-qc].

[152] Elisa Maggio et al. “Ergoregion instability of exotic compact objects: Electromag-

netic and gravitational perturbations and the role of absorption”. In: Phys. Rev. D

99.6 (2019), p. 064007. doi: 10.1103/PhysRevD.99.064007. arXiv: 1807.08840

[gr-qc].

163

https://doi.org/10.1088/0264-9381/33/13/135009
https://arxiv.org/abs/1404.7036
https://doi.org/10.1103/PhysRevLett.130.061401
https://doi.org/10.1103/PhysRevLett.130.061401
https://arxiv.org/abs/2207.13713
https://doi.org/10.1103/PhysRevD.107.064012
https://doi.org/10.1103/PhysRevD.107.064012
https://arxiv.org/abs/2209.12950
https://doi.org/10.1007/BF01196933
https://doi.org/10.1098/rspa.1978.0196
https://doi.org/10.1093/mnras/282.2.580
https://doi.org/10.1007/BF01196933
https://doi.org/10.1016/0370-2693(78)90027-8
https://doi.org/10.1103/PhysRevD.77.124044
https://arxiv.org/abs/0709.0532
https://doi.org/10.1088/0264-9381/25/19/195010
https://arxiv.org/abs/0808.1615
https://doi.org/10.1103/PhysRevD.78.084011
https://doi.org/10.1103/PhysRevD.78.084011
https://arxiv.org/abs/0808.4080
https://doi.org/10.1088/1361-6382/aae1de
https://doi.org/10.1088/1361-6382/aae1de
https://arxiv.org/abs/1805.08229
https://doi.org/10.1103/PhysRevD.96.104047
https://arxiv.org/abs/1703.03696
https://doi.org/10.1103/PhysRevD.99.064007
https://arxiv.org/abs/1807.08840
https://arxiv.org/abs/1807.08840
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