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Abstract

In this paper we consider linear, time dependent Schrödinger equations of the form
i∂tψ = K0ψ + V (t)ψ, where K0 is a strictly positive selfadjoint operator with discrete
spectrum and constant spectral gaps, and V (t) a smooth in time periodic potential. We
give sufficient conditions on V (t) ensuring that K0 +V (t) generates unbounded orbits. The
main condition is that the resonant average of V (t), namely the average with respect to the
flow of K0, has a nonempty absolutely continuous spectrum and fulfills a Mourre estimate.
These conditions are stable under perturbations. The proof combines pseudodifferential
normal form with dispersive estimates in the form of local energy decay.
We apply our abstract construction to the Harmonic oscillator on R and to the half-wave
equation on T; in each case, we provide large classes of potentials which are transporters.

1 Introduction
We consider the abstract linear Schrödinger equation

i∂tψ = K0ψ + V (t)ψ (1.1)

on a scale of Hilbert spaces Hr; here V (t) is a smooth in time 2π-periodic potential and K0 a
selfadjoint, strictly positive operator with compact resolvent, pure point spectrum and constant
spectral gaps. We prove some abstract results ensuring, ∀r > 0, the existence of solutions ψ(t)
whose Hr-norms grow polynomially fast,

‖ψ(t)‖r ≥ Cr 〈t〉r, ∀t� 1 ,

whereas their H0-norms are constant for all times, ‖ψ(t)‖0 = ‖ψ(0)‖0 ∀t. Here 〈t〉 :=
√

1 + t2.
These solutions therefore exhibit weak turbulent behavior in the form of energy cascade towards
high frequencies.
We apply our abstract results to two models: the Harmonic oscillator on R and the half-wave
equation on T. In both cases we exhibit large classes of potentials V (t), bounded, smooth and
periodic in time, so that the Hamiltonian K0 + V (t) generates unbounded orbits.

The phenomenon is purely perturbative: for V = 0 each norm of each solution is constant
for all times. So the central question is the existence of potentials able to transport energy to
high-frequencies; we formalize this notion in the following definition:
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Definition 1.1. We shall say that V (t) is a transporter if there exists a solution ψ(t) ∈ Hr,
r > 0, of (1) with unbounded growth of norm, i.e.

lim sup
t→∞

‖ψ(t)‖r =∞.

If this happens for every nonzero solution we shall say that V (t) is a universal transporter.

Starting with the pioneering work of Bourgain [9], in the last few years there have been
several efforts to construct both transporters [18, 23, 62] and universal transporters [6, 50] for
different types of Schrödinger equations. All these papers provide explicit examples of potentials,
constructed ad hoc for the problem at hand.

The novelty of our result is that we identify sufficient, explicit and robust conditions ensuring
V (t) to be a transporter. Precisely, the resonant average of V (t), defined as

〈V 〉 := 1
2π

∫ 2π

0
eisK0 V (s) e−isK0 ds (1.2)

must have nontrivial absolutely continuous spectrum in an interval, over which it has to fulfill
a Mourre estimate – see (1.1) below (actually we also require that both K0 and V (t) belong to
some abstract graded algebra of pseudodifferential operators, as in [5]).
Our main results prove that any V (t) fulfilling these conditions is a transporter, and so is any
of its sufficiently small, bounded perturbations, see Theorem 1.8 and 1.9. This shows a sort of
“stability of instability”, which we believe is a new phenomenon.

Another novelty of the paper is that the mechanism ensuring transport of energy at high
frequencies is a dispersive phenomenon in the energy space. Indeed, as we will show, equation
(1) is well approximated by the equation i∂tψ = 〈V 〉ψ which, under the previous assumptions
on 〈V 〉, admits solutions dispersing in the energy space as

‖K−k0 e−it〈V 〉Pcφ‖0 . 〈t〉−k‖Kk
0φ‖0 , ∀t ∈ R, (1.3)

where Pc is a projector on the absolutely continuous spectral space of 〈V 〉. In particular, the
Schrödinger flow of 〈V 〉 forces energy to leave any compact set of the frequency space and
flow towards infinity, provoking energy cascade. This is the Fourier analogous of the classical
mechanism of transport of spatial mass to infinity for Schrödinger equations on euclidean spaces,
which goes back to the works of Rauch [55] and Jensen-Kato [42].

The fact that Mourre estimates imply dispersive estimates as above has origin from the work
of Sigal-Soffer in quantum scattering theory [59] and it has been extended by many authors (see
e.g. [60, 27, 43, 41, 29, 2]), see also the recent results [13, 12, 21].
Previous literature. As we already mentioned, the first result is due to Bourgain [9], who
constructed a transporter for the Schrödinger equation on the torus; in this case V (t) is a bounded
real analytic function. Delort [18] constructs a transporter for the harmonic oscillator on R, which
is a time 2π-periodic pseudodifferential operator of order zero. In [6] we proved that ax sin(t),
a > 0, is a universal transporter for the harmonic oscillator on R; in this case the potential is
an unbounded operator. In [50] we constructed universal transporters for the abstract equation
(1), and applied the result to the harmonic oscillator on R, the half-wave equation on T and
on a Zoll manifold; in all cases the universal transporters are time periodic pseudodifferential
operators of order 0. Recently Faou-Raphael [23] constructed a transporter for the harmonic
oscillator on R which is a time dependent function (and not a pseudodifferential operator), and
Thomann [62] has constructed a transporter for the harmonic oscillator on the Bargman-Fock
space. Liang, Zhao and Zhou [47] and Luo, Liang and Zhao [48] construct transporters for the
Harmonic oscillator which are the quantization of polynomial symbols of order at most 2 and are
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quasi-periodic in time. Recently, we have exploited the results of the present paper to contruct
generic transporters for the Harmonic oscillator on R [51]. Finally we recall the long-time growth
result [35] for the semiclassical anharmonic oscillator on Rd.

Before closing this introduction, we mention that constructing solutions with unbounded or-
bits in nonlinear Schrödinger-like equations is a big challenge. After the seminal works by Kuksin
[45, 46], the breakthrough result by Colliander-Keel-Staffilani-Takaoka-Tao [14] constructed long
time unstable orbits for the nonlinear Schrödinger equation on T2. The methods of [14] have
been refined and extended in [32, 33, 36, 31, 30, 28]. However truly unbounded orbits have been
constructed only by Gérard-Grellier for the cubic Szegő equation on T [24, 25], Hani-Pausader-
Tzvetkov-Visciglia the cubic NLS on R × T2 [34] and recently by Gérard-Lenzmann for the
Calogero-Moser derivative NLS [26].

Acknowledgments: We thank Matteo Gallone for helpful discussions on spectral theory and
Dario Bambusi and Didier Robert for useful suggestions during the preparation of this work.

1.1 The abstract result
We start with a Hilbert space H, endowed with the scalar product 〈·, ·〉, and a reference operator
K0, which we assume to be selfadjoint, positive, namely such that

〈ψ;K0ψ〉 ≥ cK0‖ψ‖2 , ∀ψ ∈ D(K1/2
0 ) , cK0 > 0 ,

and with compact resolvent.
We define as usual a scale of Hilbert spaces by Hr := D(Kr

0) (the domain of the operator Kr
0)

if r ≥ 0, and Hr = (H−r)′ (the dual space) if r < 0. Finally we denote by H−∞ =
⋃
r∈RHr and

H+∞ =
⋂
r∈RHr. We endow Hr with the natural norm ‖ψ‖r := ‖Kr

0ψ‖0, where ‖ · ‖0 is the
norm of H0 ≡ H. Notice that for any m ∈ R, H+∞ is a dense linear subspace of Hm (this is a
consequence of the spectral decomposition of K0).
Remark 1.2. By the very definition of Hr, the unperturbed flow e−itK0 preserves each norm,
‖e−itK0ψ‖r = ‖ψ‖r ∀t ∈ R. Consequently, every orbit of equation (1) with V (t) = 0 is bounded.

Following [5], we introduce now a graded algebra A of operators which mimic some funda-
mental properties of different classes of pseudodifferential operators. For m ∈ R let Am be a
linear subspace of

⋂
s∈R L(Hs,Hs−m) and define A :=

⋃
m∈RAm. We notice that the space⋂

s∈R L(Hs,Hs−m) is a Fréchet space equipped with the semi-norms: ‖A‖m,s := ‖A‖L(Hs,Hs−m).
We shall need to control the smoothing properties of the operators in the scale {Hr}r∈R. If

A ∈ Am then A is more and more smoothing if m → −∞ and the opposite as m → +∞. We
will say that A is of order m if A ∈ Am.

Definition 1.3. We say that S ∈ L(H+∞,H−∞) is N -smoothing if ∀κ ∈ R, it can be extended
to an operator in L(Hκ,Hκ+N ). When this is true for every N ≥ 0, we say that S is a smoothing
operator.

We shall also use the following notations. For Ω ⊆ Rd and F a Fréchet space, we will denote
by Cmb (Ω,F) the space of Cm maps f : Ω 3 x 7→ f(x) ∈ F such that, for every seminorm ‖ · ‖j
of F , one has

sup
x∈Ω
‖∂αx f(x)‖j < +∞ , ∀α ∈ Nd : |α| ≤ m . (1.4)

If (1.1) is true ∀m, we say f ∈ C∞b (Ω,F). Similarly we denote by C∞(T,F) the space of smooth
maps from the torus T = R/(2πZ) to the Fréchet space F . We denote by C∞c (Rd,R≥0) the set
of smooth functions with compact support from Rd to R≥0 (hence non-negative). Given two
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operators A,B ∈ L(H), we write A ≤ B with the meaning 〈Aϕ,ϕ〉 ≤ 〈Bϕ,ϕ〉 ∀ϕ ∈ H.

The first set of assumptions concerns the properties of Am:

Assumption I: Pseudodifferential algebra

(i) For each m ∈ R, Km
0 ∈ Am; in particular K0 is an operator of order one.

(ii) For each m ∈ R, Am is a Fréchet space for a family of filtering semi-norms {℘mj }j≥0 such
that the embedding Am ↪→

⋂
s∈R L(Hs,Hs−m) is continuous1.

If m′ ≤ m then Am′ ⊆ Am with a continuous embedding.

(iii) A is a graded algebra, i.e. ∀m,n ∈ R: if A ∈ Am and B ∈ An then AB ∈ Am+n and the
map (A,B) 7→ AB is continuous from Am ×An into Am+n.

(iv) A is a graded Lie-algebra2 : if A ∈ Am and B ∈ An then the commutator [A,B] ∈ Am+n−1
and the map (A,B) 7→ [A,B] is continuous from Am ×An into Am+n−1.

(v) A is closed under perturbation by smoothing operators in the following sense: let A be a
linear map: H+∞ → H−∞. If there exists m ∈ R such that for every N > 0 we have a
decomposition A = A(N) +S(N), with A(N) ∈ Am and S(N) is N -smoothing, then A ∈ Am.

(vi) If A ∈ Am then also the adjoint operator A∗ ∈ Am. The duality here is defined by the scalar
product 〈·, ·〉 of H = H0. The adjoint A∗ is defined by 〈u,Av〉 = 〈A∗u, v〉 for u, v ∈ H∞
and extended by continuity.

It is well known that classes of pseudodifferential operators satisfy these properties, provided
one chooses for K0 a suitable operator of the right order (see e.g. [39]).
Remark 1.4. One has that ∀A ∈ Am, ∀B ∈ An

∀m, s ∃N s.t. ‖A‖m,s ≤ C1 ℘
m
N (A) , (1.5)

∀m,n, j ∃N s.t. ℘m+n
j (AB) ≤ C2 ℘

m
N (A)℘nN (B) ,

∀m,n, j ∃N s.t. ℘m+n−1
j ([A,B]) ≤ C3 ℘

m
N (A)℘nN (B) , (1.6)

for some positive constants C1(s,m), C2(m,n, j), C3(m,n, j).
Remark 1.5. Any A ∈ Am with m < 0 is a compact operator on H.
Indeed write A = AK−m0 Km

0 . Then AK−m0 ∈ A0 is a bounded operator on H (Assumption I (i)–
(iii)), whereas Km

0 ≡ (K−1
0 )−m is compact on H, as K−1

0 is a compact operator by assumption.
The second set of assumptions concerns the operator K0, its spectral structure and an Egorov-

like property, also well known for pseudo-differential operators.

Assumption II: Properties of K0

(i) The operator K0 has purely discrete spectrum fulfilling

spec(K0) ⊆ N + λ

for some λ ≥ 0.
1A family of seminorms {℘m

j }j≥0 is called filtering if for any j1, j2 ≥ 0 there exist k ≥ 0 and c1, c2 > 0 such
that the two inequalities ℘m

j1
(A) ≤ c1℘m

k (A) and ℘m
j2

(A) ≤ c2℘m
k (A) hold for any A ∈ Am.

2This property will impose the choice of the semi-norms {℘m
j }j≥1. We will see in the examples that the natural

choice (‖ · ‖m,s)s≥0 has to be refined.
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(ii) For any m ∈ R and A ∈ Am, the map defined on R by τ 7→ A(τ) := eiτK0 A e−iτK0 belongs
to C∞b (R,Am) and one has

∀j ∃N s.t. sup
τ∈R

℘mj (A(τ)) ≤ C4 ℘
m
N (A)

for some positive constant C4(m, j).

Remark 1.6. Assumption II (i) guarantees that ei2πK0 = ei2πλ. As a consequence, for any
operator V , the map τ 7→ eiτK0V e−iτK0 is 2π-periodic.

The last set of assumptions concerns the resonant average 〈V 〉 of the potential V (t) (see (1))
and its spectrum σ(〈V 〉). Note that if V (t) is selfadjoint ∀t, so is 〈V 〉.

Assumption III: Properties of the potential V (t)
The operator V ∈ C∞(T,A0), V (t) selfadjoint ∀t, and its resonant average 〈V 〉 fulfills:

(i) There exists an interval I0 ⊂ R such that |σ(〈V 〉) ∩ I0| > 0; here |·| denotes the Lebesgue
measure.

(ii) Mourre estimate over I0: there exist a selfadjoint operator A ∈ A1 and a function gI0 ∈
C∞c (R,R≥0) with gI0 ≡ 1 on I0 such that

gI0(〈V 〉) i[〈V 〉, A] gI0(〈V 〉) ≥ θ gI0(〈V 〉)2 +K (1.7)

for some θ > 0 and K a selfadjoint compact operator.

The operator gI0(〈V 〉) above is defined via functional calculus, see Appendix B.
Following the literature, we shall say that 〈V 〉 is conjugated to A over I0.
Remark 1.7. By Mourre theory [53] 〈V 〉 has, in the interval I0, a nontrivial absolutely contin-
uous spectrum with finitely many eigenvalues of finite multiplicity and no singular continuous
spectrum. In general one cannot exclude the existence of embedded eigenvalues in the absolutely
continuous spectrum.3

We are ready to state our main results. The first one says that, under the set of assumptions
above, V (t) is a transporter in the sense of Definition 1.1:

Theorem 1.8. Assume that A is a graded algebra as in Assumption I, and that K0 and V (t) ∈
C∞(T,A0) satisfy Assumptions II and III. Then V (t) is a transporter for the equation

i∂tψ = (K0 + V (t))ψ . (1.8)

More precisely, for any r > 0 there exist a solution ψ(t) of (1.8) in Hr and constants C, T > 0
such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t ≥ T . (1.9)
3 For example consider H ∈ L(L2(T)) given by

(Hu)(x) := cos(x)u(x) + δ(1− δ−1 cos(x))
1

2π

∫
T
u(x)

(
1− δ−1 cos(x)

)
dx , δ ∈

(
−

1
2
,

1
2

)
\ {0} .

H is selfadjoint, a 1-rank perturbation of the multiplication operator by cos(x), it has absolutely continuous
spectrum in the interval (−1, 1), and δ is an embedded eigenvalue with eigenvector u(x) ≡ 1. Moreover H is
conjugated to sin(x) ∂x

i + ∂x
i sin(x) over [− 1

2 ,
1
2 ].
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We also prove a stronger result: namely not only V (t) is a transporter, but also any operator
sufficiently close to it (in the A0-topology). Here the precise statement:

Theorem 1.9. With the same assumptions of Theorem 1.8, there exist ε0 > 0 and M ∈ N such
that for any W ∈ C∞(T,A0), W (t) selfadjoint ∀t, fulfilling

sup
t∈T

℘0
M(W (t)) ≤ ε0, (1.10)

then V (t) +W (t) is a transporter for the equation

i∂tψ =
(
K0 + V (t) +W (t)

)
ψ . (1.11)

More precisely, for any r > 0 there exist a solution ψ(t) in Hr of (1.9) and constants C, T > 0
such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t ≥ T . (1.12)

Let us comment the above results.

1. The growth of Sobolev norms of Theorem 1.8 is truly an energy cascade phenomenon;
indeed the H0-norm of any solution of (1.8) is preserved for all times, ‖ψ(t)‖0 = ‖ψ(0)‖0,
∀t ∈ R. This is due to the selfadjointness of K0 + V (t) (the same is true for solutions of
(1.9)).

2. Estimates (1.8), (1.9) provide optimal lower bounds for the speed of growth of the Sobolev
norms. Indeed we proved [49] that, under the assumptions above4, any solution of (1.8) or
(1.9) fulfills the upper bounds

∀r > 0 ∃ C̃r > 0: ‖ψ(t)‖r ≤ C̃r〈t〉r ‖ψ(0)‖r.

Thus, Theorems 1.8, 1.9 construct unbounded solutions with optimal growth.

3. Theorem 1.9 proves robustness of certain type of transporters under small pseudodifferential
perturbations. This shows a sort of “stability of instability”, which, up to our knowledge,
is new in this context.

4. Actually there are infinitely many distinct solutions undergoing growth of Sobolev norms.
Their initial data are constructed in a unique way starting from functions belonging to the
absolutely continuous spectral subspace of the operator 〈V 〉. We describe such initial data
in Corollary 2.16.

5. Energy cascade is a resonant phenomenon; here it happens because V (t) oscillates at fre-
quency ω = 1 which resonates with the spectral gaps of K0. In [5] we proved that if
V (t) ≡ V(ωt) is quasiperiodic in time with a frequency vector ω ∈ Rn fulfilling the non-
resonant condition

∃γ, τ > 0: |`+ ω · k| ≥ γ

〈k〉τ
∀`, k ∈ Z× Zn \ {0}

(which is violated if V (t) is 2π-periodic) then the Sobolev norms grow at most as 〈t〉ε
∀ε > 0. The 〈t〉ε-speed of growth is also known for systems with increasing [54, 49, 5] or
shrinking [22, 52] spectral gaps and for Schrödinger equation on Td with bounded [10, 17, 8]
and even unbounded [7] potentials.

4 in particular the fact that [K0, V (t)] and [K0, V (t) + W (t)] are uniformly (in t) bounded operators on the
scale Hr
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6. In concrete models one can typically prove that if V (t) is sufficiently small in size and
oscillates in time with a strongly non resonant frequency ω (typically belonging to some
Cantor set of large measure), then all solutions have uniformly in time bounded Sobolev
norms. Therefore the stability/instability of the system depends only on the resonance
property of the frequency ω. We mention just the recent results [4, 6] which deal with the
harmonic oscillator (as we consider it in the applications) and refer to those papers for a
complete bibliography.

7. The most delicate assumption to verify is (1.1). In the applications, one can try to construct
an escape function for the principal symbol 〈v〉 of 〈V 〉. This means to find a symbol a(x, ξ)
of order 1 and number λ ∈ R such that the Poisson bracket {〈v〉, a} is strictly positive
around the energy level λ:

∃c > 0: {〈v〉, a} ≥ c in {(x, ξ) : |〈v〉(x, ξ)− λ| ≤ δ} .

Then symbolic calculus and sharp G̊arding inequality imply that (1.1) holds in the interval
I = (λ− δ, λ+ δ); see [13] Section 6.2 for details.

Now we briefly describe the main ideas of the proof. The first step is to put system (1) into
its resonant pseudodifferential normal form. This is the resonant variant of the normal form
developed in [5] for non-resonant systems (and essentially an abstract version of the normal form
of Delort [18]); it allows, ∀N ∈ N, to conjugate equation (1) to the equation

i∂tφ =
(
〈V 〉+ TN +RN (t)

)
φ (1.13)

where TN is a time independent selfadjoint compact operator and RN (t) is N -smoothing.
Then we analyze the dynamics of the truncated equation

i∂tφ =
(
〈V 〉+ TN

)
φ (1.14)

and prove that it has solutions with decaying negative Sobolev norms and so, by duality, growing
positive Sobolev norms. This is the core of the proof; after this step, it is not difficult to construct
a solution of the complete equation (1.1) exhibiting energy cascade, exploiting that RN (t) is
regularizing. So let us concentrate on (1.1). The goal is to prove a dispersive estimate of the form
(1) with 〈V 〉 replaced by 〈V 〉+ TN . This is delicate because the absolutely continuous spectrum
of 〈V 〉 (which exists by Assumption III (i)) could be completely destroyed by adding TN : a
celebrated theorem by Weyl-von Neumann ensures that any selfadjoint operator (in a separable
Hilbert space) can be perturbed by a compact selfadjoint operator so that its spectrum becomes
pure point (see e.g. [44, pag. 525]). This is exactly the situation we want to avoid, as pure point
spectrum prevents dispersive estimates. To get around this, we exploit that Mourre estimates
are stable under pseudodifferential perturbations. This allows us to prove that 〈V 〉+ TN fulfills
Mourre estimates and thus a dispersive estimate as (1).

We also stress that fulfilling a Mourre estimate seems to be a quite general condition, and in
the applications we exhibit large classes of operators which are transporters. For example, for
the half wave equation we prove that any operator of the form cos(mt)v(x) with v ∈ C∞(T,R)
and m ∈ Z is a transporter provided the m-th Fourier coefficient of v(x) is not zero.

2 Proof of the abstract result
Clearly Theorem 1.9 is stronger than Theorem 1.8 and it includes it in the special case W (t) ≡ 0,
so we shall only prove Theorem 1.9. The proof is divided in three steps; in the first one we put
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system (1.9) in its resonant pseudodifferential normal form. In the second one we analyze the
dynamics of the effective Hamiltonian and prove the existence of solutions with decaying negative
Sobolev norms. The final step is to construct a solution of the complete equation exhibiting
growth of Sobolev norms.

2.1 Resonant pseudodifferential normal form
The goal of this section is to put system (1.9) into its resonant pseudodifferential normal form
up to an arbitrary N -smoothing operator. In this first step we shall only require Assumptions I
and II. It is slightly more convenient to deal with the equation

i∂tψ =
(
K0 + V(t)

)
ψ, V ∈ C∞(T,Am), m ∈ R, (2.1)

and then to specify the result for V(t) = V (t)+W (t) as in (1.9). We define the averaged operator

V̂(t) := 1
2π

∫ 2π

0
eisK0 V(t+ s) e−isK0 ds . (2.2)

We shall prove below that V̂(t) ∈ C∞(T,Am), see Lemma 2.2.

Proposition 2.1 (Resonant pseudodifferential normal form). Consider equation (2.1) with V ∈
C∞(T,A0), V(t) selfadjoint ∀t. There exists a sequence {Xj(t)}j≥1 of selfadjoint (time-dependent)
operators in H with Xj ∈ C∞(T,A1−j) and fulfilling

∀r ∈ R, ∃cr,j , Cr,j > 0: cr,j‖ϕ‖r ≤ ‖e±iXj(t)ϕ‖r ≤ Cr,j‖ϕ‖r, ∀t ∈ R, (2.3)

such that the following holds true. For any N ≥ 1, the change of variables

ψ = e−iX1(t) · · · e−iXN (t)ϕ (2.4)

transforms (2.1) into the equation

i∂tϕ =
(
K0 + Z(N)(t) + V(N)(t)

)
ϕ ; (2.5)

here V(N) ∈ C∞(T,A−N ) whereas Z(N) ∈ C∞(T,A0), it is selfadjoint ∀t, it fulfills

i∂tZ(N)(t) = [K0, Z
(N)(t)] (2.6)

and it has the expansion

Z(N)(t) = V̂(t) + T (N)(t), T (N) ∈ C∞(T,A−1) . (2.7)

Here V̂(t) is the averaged operator defined in (2.1).

In order to prove the proposition we start with some preliminary results. The first regards
the properties of the averaged operator V̂(t).

Lemma 2.2. Let V ∈ C∞(T,Am), m ∈ R, V(t) selfadjoint ∀t. Then the following holds true.

(i) The averaged operator V̂(t) in (2.1) belongs to C∞(T,Am), it is selfadjoint ∀t, it commutes
with i∂t −K0, i.e. i∂tV̂(t) = [K0, V̂(t)] and

∀j, ` ≥ 0 ∃M ∈ N, C > 0 s.t. sup
t∈T

℘mj (∂`t V̂(t)) ≤ C sup
t∈T

℘mM (V(t)) . (2.8)
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(ii) The resonant averaged operator 〈V〉, defined in (1), belongs to Am, it is selfadjoint and

∀j ≥ 0 ∃M ∈ N, C > 0 s.t. ℘mj (〈V〉) ≤ C sup
t∈T

℘mM (V(t)) . (2.9)

(iii) One has the chain of identities

V̂(0) = 〈V〉 = eitK0 V̂(t) e−itK0 = 〈 V̂ 〉, ∀t ∈ R . (2.10)

Proof. (i) The properties V̂ ∈ C∞(T,Am) and V̂(t) selfadjoint ∀t follow from Assumption II and
the fact that V(t) is 2π-periodic in t and selfadjoint ∀t. Let us prove it commutes with i∂t−K0.
Using

∂s
(
eisK0 V(t+ s) e−isK0

)
= eisK0

(
i[K0,V(t+ s)] + ∂sV(t+ s)

)
e−isK0

and the periodicity of s 7→ eisK0 V(t+ s) e−isK0 (see Remark 1.6), we get

∂tV̂(t) = 1
2π

∫ 2π

0
eisK0 ∂tV(t+ s) e−isK0 ds = 1

2π

∫ 2π

0
eisK0 ∂sV(t+ s) e−isK0 ds

= 1
2πi

∫ 2π

0
eisK0 [K0,V(t+ s)] e−isK0 ds = i−1 [K0, V̂(t)]

Estimate (2.2) for ` = 0 follows from Assumption II. For ` ≥ 1 we use induction: assume (2.2)
is true up to a certain `; using ∂`+1

t V̂(t) = −i∂`t [K0, V̂(t)] = −i[K0, ∂
`
t V̂(t)], we get ∀j ∈ N

℘mj (∂`+1
t V̂(t)) ≤ ℘mj ([K0, ∂

`
t V̂(t)]) ≤ C℘mj1

(∂`t V̂(t)) ≤ C℘mj2
(V(t))

using also the inductive assumption. This proves (2.2).
(ii) It is clear that 〈V〉 is time independent, selfadjoint and in Am by Assumption II. Estimate
(2.2) follows from Assumption II.
(iii) Clearly V̂(0) = 〈V〉. Then, as the map τ 7→ eiτK0 V(τ) e−iτK0 is 2π-periodic, one has ∀t ∈ R

eitK0 V̂(t) e−itK0 = 1
2π

∫ 2π

0
ei(t+s)K0 V(t+ s) e−i(s+t)K0 ds = 〈V〉 .

Finally, exploiting this last identity, one has 〈 V̂ 〉 = 1
2π
∫ 2π

0 eitK0 V̂(t) e−itK0dt = 〈V〉 completing
the proof of (2.2).

The second preliminary result regards how to solve the homological equations which appear
during the normal form procedure. More precisely we look for a time periodic operator X(t)
solving the homological equation

∂tX(t) + i[K0, X(t)] = V(t)− V̂(t), (2.11)

where V̂(t) is the averaged operator defined in (2.1). This is done in the next lemma.

Lemma 2.3. Let V ∈ C∞(T,Am), m ∈ R, V(t) selfadjoint ∀t. The homological equation (2.1)
has a solution X ∈ C∞(T,Am) and X(t) is selfadjoint ∀t.

Proof. We look for a solution of (2.1) using the method of variation of constants. In particular
we take X(t) = e−itK0 Y (t) eitK0 for some Y ∈ C∞(R,Am) with Y (0) = 0 to be determined.
Then X solves (2.1) provided ∂tY (t) = eitK0 (V(t)− V̂(t)) e−itK0 , giving

Y (t) =
∫ t

0
eisK0

(
V(s)− V̂(s)

)
e−isK0 ds.
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By Lemma 2.2 and Assumption II, Y ∈ C∞(R,Am) and it is selfadjoint ∀t. Therefore one gets

X(t) =
∫ t

0
ei(s−t)K0

(
V(s)− V̂(s)

)
e−i(s−t)K0 ds.

Again X ∈ C∞(R,Am) and it is selfadjoint ∀t. We show that t 7→ X(t) is 2π-periodic. Indeed,
using also Remark 1.6, we get

X(t+ 2π)−X(t) = e−itK0

∫ 2π

0
eisK0

(
V(s)− V̂(s)

)
e−isK0 ds eitK0

= 2πe−itK0
(
〈V〉 − 〈 V̂ 〉

)
eitK0

(2.2)= 0

proving the claim.

We are ready to prove Proposition 2.1. During the proof we shall use some results proved
in [5] about the flow generated by pseudodifferential operators; we collect them, for the reader’s
convenience, in Appendix A.

Proof of Proposition 2.1. The proof is inductive on N . Let us start with N = 1. We look for a
change of variables of the form ψ = e−iX1(t)ϕ where X1(t) ∈ C∞(T,A0) is selfadjoint ∀t, to be
determined. By Lemma A.1, ψ solves (2.1) iff ϕ fulfills the Schrödinger equation i∂tϕ = H+(t)ϕ
with

H+(t) := eiX1(t) (K0 + V(t)
)
e−iX1(t) −

∫ 1

0
eisX1(t) (∂tX1(t)) e−isX1(t) ds .

Then a commutator expansion, see Lemma A.2, gives

H+(t) = K0 + i[X1(t),K0] + V(t)− ∂tX1 + V(1)(t)

with V(1) ∈ C∞(T,A−1), selfadjoint ∀t. By Lemma 2.3, we choose X1 ∈ C∞(T,A0), selfadjoint
∀t, s.t.

i[K0, X1(t)] + ∂tX1(t) = V(t)− V̂(t) ,

where V̂(t) is the averaged operator in (2.1). With this choice we have

H+(t) = K0 + Z(1)(t) + V(1)(t) , Z(1)(t) := V̂(t) .

By Lemma 2.2, Z(1) ∈ C∞(T,A0), it is selfadjoint ∀t, it commutes with i∂t − K0. The map
e−iX1(t) fulfills (2.1) thanks to Lemma A.3. This concludes the first step.

The iterative stepN → N+1 is proved following the same lines, choosingXN+1 ∈ C∞(T,A−N )
solving the homological equation

i[K0, XN+1(t)] + ∂tXN+1(t) = V(N)(t)− V̂(N)(t)

and adding the remark that eiXN+1Z(N)e−iXN+1−Z(N) ∈ C∞(T,A−N−1). So one puts Z(N+1)(t) :=
Z(N)(t) + V̂(N)(t). Note that V̂(N) ∈ C∞(T,A−N ) and it commutes with i∂t−K0, so does Z(N).

It turns out that property (2.1) implies that eitK0 Z(N)(t) e−itK0 is time independent. A
consequence of this fact is the following corollary.
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Corollary 2.4. Consider equation (2.1) with V ∈ C∞(T,A0), V(t) selfadjoint ∀t. Fix N ∈ N
arbitrary. There exists a change of coordinates UN (t) unitary in H and fulfilling

∀r ≥ 0 ∃cr, Cr > 0: cr‖ϕ‖r ≤ ‖UN (t)±ϕ‖r ≤ Cr‖ϕ‖r, ∀t ∈ R, (2.12)

such that ψ(t) is a solution of (2.1) if and only if φ(t) := UN (t)ψ(t) solves

i∂tφ =
(
〈V〉+ TN +RN (t)

)
φ ;

here 〈V〉 is the resonant average of V (see (1)), TN ∈ A−1 is time independent and selfadjoint
and RN ∈ C∞(T,A−N ).

Proof. Fix N ∈ N and apply Proposition 2.1 to conjugate equation (2.1) to the form (2.1) via
the change of variables (2.1). Then we gauge away K0 by the change of coordinates ϕ = e−itK0φ,
getting

i∂tφ = eitK0
(
Z(N)(t) + V(N)(t)

)
e−itK0 φ.

Define
HN := eitK0 Z(N)(t) e−itK0 , RN (t) := eitK0 V(N)(t) e−itK0 .

The operator RN ∈ C∞(T,A−N ) by Assumption II since V(N) ∈ C∞(T,A−N ).
Let us now prove that HN is time independent. We know by Lemma 2.1 that Z(N)(t) commutes
with i∂t −K0; therefore

∂t
(
eitK0 Z(N)(t) e−itK0

)
= eitK0

(
i[K0, Z

(N)(t)] + ∂tZ
(N)(t)

)
e−itK0 = 0

and therefore

HN = eitK0 Z(N)(t) e−itK0 |t=0 = Z(N)(0) (2.1)= V̂(0) + T (N)(0) (2.2)= 〈V〉+ T (N)(0).

So we put TN := T (N)(0); clearly it belongs to A−1, it is selfadjoint and time independent.
Finally we put UN (t) := eitK0 eitXN (t) · · · eitX1(t); estimate (2.4) follows from (2.1) and Re-

mark 1.2.

Coming back to the original equation (1.9), we apply Corollary 2.4 with V = V + W ∈
C∞(T,A0), getting the following result:

Corollary 2.5. With the same assumptions of Theorem 1.9, the following holds true. Fix N ∈ N
arbitrary. There exists a change of coordinates UN (t), unitary in H and fulfilling (2.4) such that
ψ(t) is a solution of (1.9) if and only if φ(t) := UN (t)ψ(t) solves

i∂tφ =
(
〈V 〉+ 〈W 〉+ TN +RN (t)

)
φ (2.13)

where TN ∈ A−1 is selfadjoint and time independent whereas RN ∈ C∞(T,A−N ).

2.2 Local energy decay estimates
In the previous section we have conjugated the original equation (1.9) to the resonant equation
(2.5). In this section we consider the effective equation obtained removing RN (t) from (2.5),
namely

i∂tϕ = HNϕ, HN := 〈V 〉+ 〈W 〉+ TN , (2.14)
with TN ∈ A−1 of Corollary 2.5. Note that HN is selfadjoint by Lemma 2.2 and Corollary 2.5.
Using Assumption III, we construct a solution of (2.2) with polynomially in time growing Sobolev
norms. Actually we will prove the following slightly stronger result, namely the existence of a
solution with decaying negative Sobolev norms:
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Proposition 2.6 (Decay of negative Sobolev norms). With the same assumptions of Theorem
1.9, consider the operator HN in (2.2). For any k ∈ N, there exist a nontrivial solution ϕ(t) ∈ Hk
of (2.2) and ∀r ∈ [0, k] a constant Cr > 0 such that

‖ϕ(t)‖−r ≤ Cr〈t〉−r ‖ϕ(0)‖r , ∀t ∈ R . (2.15)

Remark 2.7. As HN is selfadjoint, the conservation of the H0-norm and duality give

‖ϕ(0)‖20 = ‖ϕ(t)‖20 ≤ ‖ϕ(t)‖r ‖ϕ(t)‖−r , ∀t ∈ R ,

so that (2.6) implies the growth of positive Sobolev norms:

‖ϕ(t)‖r ≥
1
Cr

‖ϕ(0)‖20
‖ϕ(0)‖r

〈t〉r , ∀t ∈ R .

The rest of the section is devoted to the proof of Proposition 2.6. As we shall see, it follows
from a local energy decay estimate for the operator HN , namely a dispersive estimate of the form

‖〈A〉−k e−iHN t gJ(HN )ϕ‖0 ≤ Ck〈t〉−k‖〈A〉kgJ(HN )ϕ‖0 , ∀t ∈ R (2.16)

where A ∈ A1, J ⊂ I0 is an interval and gJ ∈ C∞c (R,R≥0) with gJ ≡ 1 on J .
Remark 2.8. Actually estimate (2.2) show the existence of infinitely many solutions of (2.2)
with decaying negative Sobolev norms. In particular this happens to any solution with nontriv-
ial initial datum in the (infinite dimensional) set RanEJ(HN ), where EJ(HN ) is the spectral
projection of HN corresponding to the interval J .

We will prove 2.2 exploiting Sigal-Soffer minimal velocity estimates [60, 27, 43, 41, 29, 2],
which are based on Mourre theory which now we recall.

Mourre theory. Let H be a selfadjoint operator on the Hilbert space H, and denote by σ(H)
its spectrum. We further denote by σd(H) its discrete spectrum, σess(H) its essential spectrum,
σpp(H) its pure point spectrum, σac(H) its absolutely continuous spectrum and σsc(H) its singular
spectrum; see e.g. [56] pag. 236 and 231 for their definitions. Furthermore we denote by EΩ(H)
the spectral projection of H corresponding to the Borel set Ω and by mϕ(Ω) := 〈EΩ(H)ϕ,ϕ〉 the
spectral measure associated to ϕ ∈ H.

Assume a selfadjoint operator A can be found such that D(A) ∩H is dense in H. We put

ad0
A(H) := H, adA(H) := [H,A], adnA(H) := [adn−1

A (H),A], ∀n ≥ 2 . (2.17)

Consider the following properties:

(M1) For some N ≥ 1, the operators adnA(H) with n = 1, . . . , N, can all be extended to bounded
operators on H.

(M2) Mourre estimate: there exist an open interval I ⊂ R with compact closure and a function
gI ∈ C∞c (R,R≥0) with gI ≡ 1 on I such that

gI(H) i[H,A] gI(H) ≥ θgI(H)2 + K (2.18)

for some θ > 0 and K a selfadjoint compact operator on H.

If the estimate (2.2) holds true with K = 0 we shall say that H fulfills a strict Mourre estimate.
Mourre theorem [53] says the following:
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Theorem 2.9 (Mourre). Assume conditions (M1) – (M2) with N = 2. In the interval I, the
operator H can have only absolutely continuous spectrum and finitely many eigenvalues of finite
multiplicity. If K = 0, there are no eigenvalues in the interval I, i.e. σ(H) ∩ I = σac(H) ∩ I.

Remark 2.10. The version stated here of Mourre theorem is taken from [3, Lemma 5.6] and [15,
Theorem 4.7 – 4.9], and it has slightly weaker assumptions compared to [53].
Remark 2.11. Mourre theorem guarantees that σsc(H)∩I = ∅ and, in case K = 0, σpp(H)∩I = ∅.
However it does not guarantee that σ(H)∩I 6= ∅; in our case we shall verify this property explicitly.

The key point is that if HN fulfills a strict Mourre estimate (namely with K = 0) then one
can prove a local energy decay estimate like (2.2) for the Schrödinger flow of HN . This is a
quite general fact which follows exploiting minimal velocity estimates [41] and we prove it for
completeness in Appendix C.

So the next goal is to prove that HN satisfies a strict Mourre estimate over a certain interval
J ⊂ I0. During the proof we will use some standard results from functional calculus; we recall
them in Appendix B. We shall also use the following lemma:

Lemma 2.12. Let H ∈ L(H) be selfadjoint. If λ ∈ σac(H), then ∀δ > 0 one has

|[λ− δ, λ+ δ] ∩ σ(H)| > 0 .

Proof. By contradiction, assume that ∃δ0 > 0 such that |[λ− δ0, λ+ δ0] ∩ σ(H)| = 0. As λ ∈
σac(H), there exists f ∈ H such that E[λ−δ0,λ+δ0](H)f 6= 0 and the spectral measure mf =
〈E(H)f, f〉 is absolutely continuous. Then

0 = mf ([λ− δ0, λ+ δ0]) = 〈E[λ−δ0,λ+δ0](H)f, f〉 = ‖E[λ−δ0,λ+δ0](H)f‖20 > 0

giving a contradiction.

Lemma 2.13. There exist ε0, M > 0 such that, provided W fulfills (1.9), the following holds true:

(i) There exists an interval I ⊂ I0 such that |I ∩ σ(HN )| > 0.

(ii) HN fulfills a strict Mourre estimate over I: there exists a function gI ∈ C∞c (R,R≥0) with
supp gI ⊂ I0, gI ≡ 1 on I, and θ′ > 0 such that

gI(HN ) i[HN , A] gI(HN ) ≥ θ′gI(HN )2 . (2.19)

Here I0 is the interval and A is the operator of Assumption III.

Proof. During the proof we shall often use that for A,B,C ∈ L(H) and selfadjoints

A ≤ B ⇒ CAC ≤ CBC, ‖A‖L(H) ≤ a ⇒ −a ≤ A ≤ a . (2.20)

To shorten notation we shall put
H0 := 〈V 〉 .

By Assumption III, H0 fulfills a Mourre estimate over the interval I0.
Step 1: We claim there exists a subinterval I1 ⊂ I0 such that:
• I1 contains only absolutely continuous spectrum of H0, namely

σ(H0) ∩ I1 = σac(H0) ∩ I1 , |σ(H0) ∩ I1| > 0 ; (2.21)
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• H0 fulfills over I0 a strict Mourre estimate: ∃gI1 ∈ C∞c (R,R≥0), gI1 ≡ 1 on I1, supp gI1 ⊂ I0,
such that

gI1(H0) i[H0, A] gI1(H0) ≥ θ

2gI1(H0)2 . (2.22)

To prove this claim, first apply Mourre theorem to H0 (note that (M1) and (M2) are verified
∀N ∈ N by symbolic calculus and Assumption III), getting that σ(H0) ∩ I0 contains only finitely
many eigenvalues with finite multiplicity and absolutely continuous spectrum. In particular
|σpp(H0) ∩ I0| = 0 and by Assumption III (i) it follows that |σac(H0) ∩ I0| = |σ(H0) ∩ I0| > 0.
Now we show that, by shrinking enough the interval I0, a strict Mourre estimate is true. So we
take λ0 ∈ I0 ∩ (σac(H0) \σpp(H0)) and a sufficiently small interval I1(δ) := (λ0− δ, λ0 + δ) ⊂ I0,
δ > 0, which does not contain eigenvalues of H0; this is possible as the eigenvalues of H0 in I0
are finite. Moreover by Lemma 2.12, |σ(H0) ∩ I1(δ)| > 0 for any δ > 0. Now take δ ∈ (0, δ) and
a function gδ ∈ C∞c (R,R≥0) with supp gδ ⊂ I1(δ) and gδ = 1 on I1( δ2 ). We claim that provided
δ ∈ (0, δ) is sufficiently small

‖gδ(H0)Kgδ(H0)‖L(H) ≤
θ

2 , (2.23)

where θ > 0 is the one of Assumption III. Indeed in I1(δ) the spectrum of H0 is absolutely
continuous; this means that ∀ϕ ∈ H, the vector ϕ′ := EI1(δ)(H0)ϕ belongs to the absolutely
continuous subspace of H0, namely its spectral measure mϕ′ is absolutely continuous w.r.t.
the Lebesgue measure. Now, since for any ϕ ∈ H one has by functional calculus gδ(H0) =
gδ(H0)EI1(δ)(H0), one has that

‖gδ(H0)ϕ‖20 = ‖gδ(H0)EI1(δ)(H0)ϕ‖20 =
∫
R
gδ(λ)2 dmϕ′(λ)→ 0 as δ → 0

by Lebesgue dominated convergence theorem. In particular gδ(H0) → 0 strongly as δ → 0 and
then, being K compact, gδ(H0)K → 0 uniformly as δ → 0 (see e.g. [1]). Therefore for δ ∈ (0, δ)
sufficiently small (2.2) holds true.
Using the assumption (1.1), (2.2) and (2.2) we deduce that

gδ(H0) gI0(H0) i[H0, A] gI0(H0) gδ(H0) ≥ θgδ(H0) gI0(H0)2 gδ(H0)− θ

2 ;

next apply g δ
2
(H0) to the right and left of the previous inequality, use again (2.2) and the identity

gI0(H0) gδ(H0) g δ
2
(H0) = g δ

2
(H0) (which follows from gI0 gδ g δ2

= g δ
2
), to get the strict Mourre

estimate (2.2) where I1 := I1( δ4 ) and gI1 := g δ
2

fulfills gI1 ≡ 1 on I1, supp gI1 ⊂ I1( δ2 ). Clearly
I1 fulfills (2.2).
Step 2: Consider the selfadjoint operator

H〈W 〉 := H0 + 〈W 〉 .

We claim there exists a subinterval I2 ⊆ I1 such that
• I2 contains only absolutely continuous spectrum of H〈W 〉, i.e.

σ(H〈W 〉) ∩ I2 = σac(H〈W 〉) ∩ I2 and
∣∣σ(H〈W 〉) ∩ I2

∣∣ > 0 ; (2.24)

• H〈W 〉 fulfills over I2 the strict Mourre estimate

gI2

(
H〈W 〉

)
i[H〈W 〉, A] gI2

(
H〈W 〉

)
≥ θ

4gI2

(
H〈W 〉

)2 (2.25)



2 PROOF OF THE ABSTRACT RESULT 15

for any gI2 ∈ C∞c (R,R≥0) with supp gI2 ⊂ I1, gI2 ≡ 1 on I2.
To prove the claim, we exploit that 〈W 〉 ∈ A0 is a small bounded perturbation of H0, fulfilling,

by (1.4), (2.2)
∃M0 ∈ N, C0 > 0: ‖〈W 〉‖L(H)≤C0[W ]M0 , (2.26)

where we denoted
[W ]M := sup

t∈T
℘0
M (W (t)) .

First let us prove that σ(H〈W 〉)∩ I1 6= ∅. Take again the same λ0 ∈ σ(H0)∩ I1 as in the previous
step. We claim that

dist
(
λ0, σ(H〈W 〉)

)
≤ C0 [W ]M0 . (2.27)

If λ0 ∈ σ(H〈W 〉) this is trivial. So assume that λ0 belongs to the resolvent set of H〈W 〉. As
λ0 ∈ σ(H0), by Weyl criterion ∃(fn)n≥1 ∈ H with ‖fn‖0 = 1 such that ‖(H0 − λ0)fn‖0 → 0 as
n→∞. Then ∀n ≥ 1

1 = ‖fn‖0 = ‖(H〈W 〉 − λ0)−1 (H〈W 〉 − λ0)fn‖0 ≤
1

dist
(
λ0, σ(H〈W 〉)

)‖(H〈W 〉 − λ0)fn‖0

(2.2)
≤ 1

dist
(
λ0, σ(H〈W 〉)

)(‖(H0 − λ0)fn‖0 + C0[W ]M0

)
which proves (2.2) passing to the limit n→∞. Then, provided [W ]M0 is sufficiently small, (2.2)
implies that dist

(
λ0, σ(H〈W 〉)

)
< δ/8. From this we learn that (recall I1 = (λ0 − δ

4 , λ0 + δ
4 ))

σ(H〈W 〉) ∩ I1 6= ∅ . (2.28)

Next we prove the Mourre estimate (2.2); we shall work perturbatively from (2.2). First

gI1(H0) i[H〈W 〉, A] gI1(H0) = gI1(H0) i[H0, A] gI1(H0) + gI1(H0) i[〈W 〉, A] gI1(H0);

we bound the first term in the right hand side above from below using (2.2). Concerning the
second term, we use

∃M1 ∈ N, C1 > 0: ‖i[〈W 〉, A]‖L(H) ≤ C1[W ]M1 (2.29)

(by (1.4), (1.4), (2.2)) and the inequalities (2.2) to bound it from above getting

gI1(H0) i[〈W 〉, A] gI1(H0) ≥ −C1 [W ]M1 gI1(H0)2 .

Therefore we find

gI1(H0) i[H〈W 〉, A] gI1(H0) ≥
(
θ

2 − C1[W ]M1

)
gI1(H0)2 . (2.30)

By (2.2) we can take an open interval I2 ⊂ I1 with

σ(H〈W 〉) ∩ I2 6= ∅ ; (2.31)

take also gI2 ∈ C∞c (R,R≥0) with supp gI2 ⊆ I1 and gI2 ≡ 1 on I2; remark that gI1gI2 = gI2 .
Now we wish to replace gI1(H0) by gI2(H〈W 〉) in (2.2), thus getting the claimed estimate (2.2).
So write

gI2(H〈W 〉) i[H〈W 〉, A] gI2(H〈W 〉) = gI2(H〈W 〉) gI1(H〈W 〉) i[H〈W 〉, A] gI1(H〈W 〉) gI2(H〈W 〉)
= gI2(H〈W 〉) gI1(H0) i[H〈W 〉, A] gI1(H0) gI2(H〈W 〉) (2.32)

+ gI2(H〈W 〉)
((
gI1(H〈W 〉)− gI1(H0)

)
i[H〈W 〉, A] gI1(H0) (2.33)

+ gI1(H〈W 〉) i[H〈W 〉, A]
(
gI1(H〈W 〉)− gI1(H0)

))
gI2(H〈W 〉) (2.34)
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Again we estimate (2.2) from below and the other lines from above. First

(2.2)
(2.2)
≥
(
θ

2 − C1[W ]M1

)
gI2(H〈W 〉) gI1(H0)2 gI2(H〈W 〉) . (2.35)

We still have to bound from below gI2(H〈W 〉) gI1(H0)2 gI2(H〈W 〉). To proceed we use that
gI1(H〈W 〉)− gI1(H0) is small in size, being bounded, via Lemma B.6 and (2.2), by

‖gI1(H〈W 〉)− gI1(H0)‖L(H) ≤ C [W ]M0 . (2.36)

We deduce, using gI1gI2 = gI2 , estimates (2.2) and (2.2), the bound

gI2(H〈W 〉) gI1(H0)2 gI2(H〈W 〉) ≥
(
1− C[W ]M0

)
gI2(H〈W 〉)2 .

Thus we estimate line (2.2) from below using (2.2) and the previous estimate, concluding

(2.2) ≥
(
θ

2 − C1[W ]M1

)(
1− C[W ]M0

)
gI2(H〈W 〉)2. (2.37)

Next consider lines (2.2), (2.2). We use the bound (see (2.2))

‖[H〈W 〉, A]‖L(H0) ≤ C
(
1 + [W ]M1

)
,

and (2.2) to get
(2.2) + (2.2) ≥ −C [W ]M0 (1 + [W ]M1) gI2(H〈W 〉)2. (2.38)

Putting together (2.2) and (2.2) we finally find

gI2(H〈W 〉) i[H〈W 〉, A] gI2(H〈W 〉) ≥
(
θ

2 − C([W ]M1 + [W ]M0 + [W ]M0 [W ]M1)
)
gI2(H〈W 〉)2.

Thus, provided (1.9) holds true for M sufficiently large and ε0 sufficiently small, the strict Mourre
estimate (2.2) follows. Mourre theorem implies that

σ(H〈W 〉) ∩ I2 = σac(H〈W 〉) ∩ I2 .

Using (2.2) and Lemma 2.12 we deduce that
∣∣σ(H〈W 〉) ∩ I2

∣∣ > 0, proving (2.2) .
Step 3: Finally consider the operator

H := HN = H0 + 〈W 〉+ TN = H〈W 〉 + TN .

We claim that, with the same interval I2 of the previous step:
• one has

|σ(H) ∩ I2| > 0 . (2.39)

• H fulfills a Mourre estimate over I2, i.e.

gI2

(
H
)

i[H,A] gI2

(
H
)
≥ θ

4gI2

(
H
)2 +K (2.40)

with K a compact operator.
We shall constantly use that any pseudodifferential operator of strictly negative order is a

compact operator on H (see Remark 1.5); in particular TN ∈ A−1 is compact.
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By Weyl theorem σess(H) = σess(H〈W 〉) and therefore

σ(H) ∩ I2 ⊇ σess(H) ∩ I2 = σess(H〈W 〉) ∩ I2 = σ(H〈W 〉) ∩ I2 ,

since σd(H〈W 〉) ∩ I2 = ∅ having H〈W 〉 no eigenvalues in I2. Then (2.2) follows by (2.2).
To prove (2.2) we work perturbatively from (2.2). Again first we compute

gI2

(
H〈W 〉

)
i[H,A] gI2

(
H〈W 〉

)
= gI2

(
H〈W 〉

)
i[H〈W 〉, A] gI2

(
H〈W 〉

)
+gI2

(
H〈W 〉

)
i[TN , A] gI2

(
H〈W 〉

)
;

we estimate the first term in the r.h.s. above by (2.2), whereas the second term is a compact
operator since [TN , A] ∈ A−1. We obtain

gI2

(
H〈W 〉

)
i[H,A] gI2

(
H〈W 〉

)
≥ θ

4gI2

(
H〈W 〉

)2 +K1 (2.41)

with K1 a compact operator. Now we must replace gI2

(
H〈W 〉

)
with gI2(H). We write

gI2(H) i[H,A] gI2(H) = gI2(H〈W 〉) i[H,A] gI2(H〈W 〉) (2.42)
+
(
gI2(H)− gI2(H〈W 〉)

)
i[H,A] gI2(H〈W 〉) + gI2(H) i[H,A]

(
gI2(H)− gI2(H〈W 〉)

)
(2.43)

This time we use that gI2(H)− gI2(H〈W 〉) is a compact operator, see Lemma B.6. Thus

(2.2)
(2.2)
≥ θ

4 gI2

(
H〈W 〉

)2 +K1 = θ

4gI2(H)2 +K2

where K1, K2 are compact operators. Similarly, using that i[H,A] ∈ A0 is a bounded operator,
we deduce that (2.2) is a compact operator. Estimate (2.2) follows.
Final Step: By (2.2), (2.2), the operator H fulfills Assumption III over the interval I2. Pro-
ceeding as in Step 1, we produce a subinterval I ⊂ I2 such that

|I ∩ σ(H)| > 0 , I ∩ σ(H) = I ∩ σac(H)

over which H fulfills the strict Mourre estimate (2.13), concluding the proof of Lemma 2.13.

The previous result has proved the existence of an interval I over which HN fulfills a strict
Mourre estimate. This implies that HN fulfills dispersive estimates in the form of local energy
decay. In the literature there are various variants of this result, thus in Appendix C we state
and prove the one we apply here.

Corollary 2.14. Fix k ∈ N. For any interval J ⊂ I, any function gJ ∈ C∞c (R,R≥0) with
supp gJ ⊂ I, gJ ≡ 1 on J , there exists a constant Ck > 0 such that

‖〈A〉−k e−iHN t gJ(HN )ϕ‖0 ≤ Ck〈t〉−k‖〈A〉kgJ(HN )ϕ‖0 , ∀t ∈ R , ∀ϕ ∈ Hk . (2.44)

Moreover J can be chosen so that |J ∩ σ(HN )| > 0 and σ(HN ) ∩ J = σac(HN ) ∩ J .

Proof. Apply Theorem C.1, noting that condition (M1) at page 12 is trivially satisfied ∀n ∈ N as
adnA(HN ) ∈ A0 ⊂ L(H), whereas the whole point of Lemma 2.13 was to verify (M2). This gives
estimate (2.14). The right hand side is finite for ϕ ∈ Hk by Lemma 2.15 below, which ensures
that gJ(HN )ϕ ∈ Hk. Finally note that, since |I ∩ σ(HN )| > 0, it is certainly possible to choose
J ⊂ I so that |J ∩ σ(HN )| > 0; as HN fulfills a strict Mourre estimate over I, its spectrum in
this interval is absolutely continuous, so the same is true in J .
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Lemma 2.15. For any k ∈ N, gJ(HN ) extends to a bounded operator Hk → Hk.

Proof. As Kk
0 gJ(HN )K−k0 = gJ(HN ) − [gJ(HN ),Kk

0 ]K−k0 , it is clearly sufficient to show that
[gJ(HN ),Kk

0 ]K−k0 is bounded on H. The adjoint formula (B) gives

[gJ(HN ),Kk
0 ]K−k0 =

k∑
j=1

ck,j adjK0
(gJ(HN ))K−j0 ;

then it is enough to show that adjK0
(gJ(HN )) ∈ L(H). As adjK0

(HN ) is a bounded operator ∀j
(symbolic calculus), the result is an immediate application of Lemma B.5.

We finally prove Proposition 2.6.

Proof of Proposition 2.6. First we show that for any k ∈ N, there exists C2k > 0 such that

‖e−itHN gJ(HN )ϕ‖−2k ≤ C2k 〈t〉−2k ‖gJ(HN )ϕ‖2k, ∀t ∈ R, ∀ϕ ∈ H2k . (2.45)

This follows from Corollary 2.14 with k  2k. Indeed, as A ∈ A1, the operator 〈A〉2k =
(1 + A2)k ∈ A2k and therefore, by symbolic calculus, K−2k

0 〈A〉2k and 〈A〉2kK−2k
0 belong to

A0 ⊂ L(H). Then

‖e−itHN gJ(HN )ϕ‖−2k ≤ ‖K−2k
0 〈A〉2k‖L(H) ‖〈A〉−2ke−itHN gJ(HN )ϕ‖0

≤ C2k〈t〉−2k‖〈A〉2kgJ(HN )ϕ‖0
≤ C2k〈t〉−2k‖〈A〉2kK−2k

0 ‖L(H)‖gJ(HN )ϕ‖2k

proving (2.2). Then linear interpolation with the equality ‖e−itHNϕ0‖0 = ‖ϕ0‖0 ∀t gives ∀r ∈
[0, 2k]

‖e−itHN gJ(HN )ϕ‖−r ≤ Cr〈t〉−r‖gJ(HN )ϕ‖r , ∀t ∈ R , ∀ϕ ∈ Hr .
Finally we show that this estimate is not trivial, namely ∃ϕ ∈ Hk with gJ(HN )ϕ 6= 0. But since
|J ∩ σ(HN )| > 0 and σ(HN ) ∩ J = σac(HN ) ∩ J , one has that gJ(HN )H 6= {0}, and by density
so is gJ(HN )Hk.

2.3 Proof of Theorem 1.9
We are finally in position of proving Theorem 1.9. Recall that in Corollary 2.5 we have conjugated
equation (1.9) to (2.5) with a change of variables bounded Hr → Hr uniformly in time, whereas
in Proposition 2.6 we have constructed a solution of the effective equation i∂tψ = HNψ with
decaying negative Sobolev norms, therefore with growing positive Sobolev norms. The last step
is to construct a solution of the full equation (2.5) with growing Sobolev norms. To achieve this,
we exploit that the perturbation RN (t) is N -smoothing (Definition 1.3).
So to proceed we fix the parameters. First fix r > 0, then choose N, k ∈ N such that

N ≥ 2r + 2, k ≥ N − r. (2.46)

Apply Corollary 2.5 with such N , producing the operators TN , RN (t) and conjugating (1.9) to
(2.5). By Proposition 2.6, ∃ϕ0 ∈ Hk such that ϕ(t) := e−itHNϕ0 fulfills ∀r ∈ [0, k]:

‖ϕ(t)‖−r ≤ Cr,N 〈t〉−r ‖ϕ0‖r, ∀t ∈ R . (2.47)

We look for an exact solution φ(t) of (2.5) of the form φ(t) = ϕ(t) + u(t), i.e. u(t) has to satisfy

i∂tu =
(
HN +RN (t)

)
u+RN (t)ϕ(t).
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Denoting by UN (t, s) the linear propagator of HN +RN (t), we choose

u(t) := i
+∞∫
t

UN (t, s)RN (s)ϕ(s) ds.

We estimate the Hr norm of u(t). As

sup
t
‖[HN +RN (t), K0]‖L(Hm) < Cm <∞ , ∀m ∈ R,

Theorem 1.5 of [49] guarantees that the propagator UN (t, s) extends to a bounded operator
Hr → Hr fulfilling5

∀r > 0 ∃Cr > 0: ‖UN (t, s)‖L(Hr) ≤ Cr 〈t− s〉r, ∀t, s ∈ R .

This estimate, the smoothing property RN (t) : Hr−N → Hr and (2.3) with r := N − r ∈ [0, k]
give

‖u(t)‖r ≤ Cr
+∞∫
t

〈t− s〉r‖RN (s)ϕ(s)‖r ds ≤ Cr
+∞∫
t

〈t− s〉r ‖ϕ(s)‖−(N−r) ds

≤ Cr,N ‖ϕ0‖N−r

+∞∫
t

〈t− s〉r 1
〈s〉N−r

ds ≤ Cr,N ‖ϕ0‖k〈t〉−1 .

In particular the Hr norm of u(t) decreases to 0 as t→∞. Then φ(t) = ϕ(t) + u(t) fulfills

‖φ(t)‖r ≥ ‖ϕ(t)‖r − ‖u(t)‖r ≥ cr
‖ϕ0‖20
‖ϕ0‖r

〈t〉r − Cr,N‖ϕ0‖k〈t〉−1 ≥ C〈t〉r , ∀|t| ≥ T ,

where we used (2.3) with r = r and Remark 2.7.
Finally we get a solution of the original equation (1.9) putting ψ(t) = UN (t)−1φ(t), recall Propo-
sition 2.4. The operator UN (t) fulfills (2.4), thus ψ(t) has polynomially growing Sobolev norms
as (1.9), concluding the proof of Theorem 1.9.

We can also prove the existence of infinitely many solutions undergoing growth of Sobolev
norms.

Corollary 2.16. There are infinitely many distinct solutions of equation (1.9) with growing
Sobolev norms.

Proof. We fix r > 0 and choose N, k as in (2.3). From the previous proof, it follows that any
initial data of the form

ψ(0) := (Id +K0)ϕ , Ktϕ := i
∫ +∞

t

UN (t, s)RN (s)e−isHNϕds, t ≥ 0,

with ϕ ∈ Ran gJ(HN ) ∩ Hk, gives rise to a solution with growing Sobolev norms (see also
Remark 2.8). Here J is the interval of Corollary 2.14. In particular, as |J ∩ σ(HN )| > 0 and
σ(HN )∩J = σac(HN )∩J , the set Ran gJ(HN ) has infinite dimension. Let us prove that Id+K0

5apply the theorem with τ = 0 and note that in that paper we defined ‖ψ‖r ≡ ‖Kr/2
0 ψ‖0, therefore the

estimate in that paper reads explicitly ‖Kr/2
0 UN (t, s)ψ‖0 ≤ Cr 〈t− s〉r/2‖Kr/2

0 ψ‖0
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is injective. Assume there are ϕ1 6= ϕ2 ∈ Ran gJ(HN ) ∩ Hk with (Id + K0)ϕ1 = (Id + K0)ϕ2.
Put uj(t) := Ktϕj , j = 1, 2; arguing as in the previous proof one has ‖uj(t)‖r → 0 as t→∞.
Then UN (t)−1(e−itHNϕj + uj(t)), j = 1, 2, both solve (1.9) and have the same initial datum, so
they are the same solution ψ(t) of equation (1.9). Then

‖ϕ1 − ϕ2‖0 ≤ Cr‖U−1
N (t)e−itHN (ϕ1 − ϕ2)‖r ≤ Cr

(
‖u1(t)‖r + ‖u2(t)‖r

)
→ 0

as t→∞. Hence ϕ1 = ϕ2.

3 Applications
In the following section we apply Theorem 1.9 to the harmonic oscillator on R and the half-
wave equation on T. In both cases we construct transporters which are stable under small, time
periodic, pseudodifferential perturbations.

3.1 Harmonic oscillator on R
Consider the quantum harmonic oscillator

i∂tψ = 1
2(−∂2

x + x2)ψ + V (t, x,D)ψ, x ∈ R. (3.1)

Here K0 := 1
2
(
−∂2

x + x2) is the quantum Harmonic oscillator, the scale of Hilbert spaces is
defined as usual by Hr = Dom (Kr

0), and the base space (H0, 〈·, ·〉) is L2(R,C) with its standard
scalar product. The perturbation V is chosen as the Weyl quantization of a symbol belonging
to the following class:

Definition 3.1. A function f is a symbol of order ρ ∈ R if f ∈ C∞(Rx×Rξ,C) and ∀α, β ∈ N0,
there exists Cα,β > 0 such that

|∂αx ∂
β
ξ f(x, ξ)| ≤ Cα,β (1 + |x|2 + |ξ|2)ρ−

β+α
2 .

We will write f ∈ Sρhar.

We endow Sρhar with the family of seminorms

℘ρj (f) :=
∑

|α|+|β|≤j

sup
(x,ξ)∈R2

∣∣∣∂αx ∂βξ f(x, ξ)
∣∣∣

(1 + |x|2 + |ξ|2)ρ−
β+α

2
, j ∈ N ∪ {0} .

Such seminorms turn Sρhar into a Fréchet space. If a symbol f depends on additional parameters
(e.g. it is time dependent), we ask that all the seminorms are uniform w.r.t. such parameters.
To a symbol f ∈ Sρhar we associate the operator f(x,D) by standard Weyl quantization(

f(x,D)ψ
)

(x) := 1
2π

∫∫
y,ξ∈R

ei(x−y)ξ f

(
x+ y

2 , ξ

)
ψ(y) dydξ .

Definition 3.2. We say that F ∈ Aρ if it is a pseudodifferential operator with symbol of class
Sρhar, i.e., if there exists f ∈ Sρhar and S smoothing (in the sense of Definition 1.3) such that
F = f(x,Dx) + S.

Remark 3.3. With our numerology, the symbol of the harmonic oscillator K0 is of order 1,
1
2 (x2 + ξ2) ∈ S1

har, and not of order 2 as typically in the literature.
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As an application of the abstract theorems, we describe a class of operators which are trans-
porters. This class, which we call smooth Töplitz operators, is easily described in terms of their
matrix elements, which we now introduce. We denote by {en}n∈N the Hermite basis, formed by
the (orthonormal) eigenvectors of the Harmonic oscillator K0:

K0en =
(
n− 1

2

)
en, ‖en‖0 = 1, n ∈ N . (3.2)

To each operator H ∈ L(H) we associate its matrix (Hmn)m,n∈N with respect to the Hermite
basis, whose elements are given by

Hmn := 〈H en, em〉 , ∀m,n ∈ N . (3.3)

Remark 3.4. If H is selfadjoint, so is its matrix (Hmn)m,n∈N, in particular Hmn = Hnm.

Definition 3.5 (Smooth Töplitz operators). A linear operator H ∈ L(H) is said a Töplitz
operator if the entries of its matrix are constant along each diagonal, i.e.

Hm1n1 = Hm2n2 , ∀m1, n1,m2, n2 ∈ N : m1 − n1 = m2 − n2 . (3.4)

A Töplitz operator is said smooth if its matrix elements decay fast off diagonal, i.e. ∀N > 0,
∃CN > 0 such that

|Hmn| ≤
CN

〈m− n〉N
, ∀m,n ∈ N . (3.5)

Example 3.6. The shift operators S and its adjoint S∗ are defined on the Hermite functions
{en}n≥1 by

Sen = en+1 , ∀n ∈ N , S∗en =
{

0 if n = 1
en−1 if n ≥ 2

. (3.6)

The action of S (and of S∗) is extended on all H by linearity, giving Sψ =
∑
n≥1 ψnen+1, where

we defined ψn := 〈ψ, en〉 for n ≥ 1. Their matrices are given by

(Smn)m,n∈N =


0
1 0

1 0
. . . . . .

 , (S∗mn)m,n∈N =


0 1

0 1
0 1

. . .

 ,

from which it is clear that both S and S∗ are smooth Töplitz operators.
We prove in the following that any smooth Töplitz operator is actually a pseudodifferential

operator in A0, see Lemma 3.10.
As an application of the abstract theorems, we show that any smooth Töplitz operator be-

comes a transporter for the Harmonic oscillator once it is multiplied by an appropriate scalar
time periodic function.

Theorem 3.7. Let V(x,D) be a selfadjoint and smooth Töplitz operator (see Definition 3.5).
Take m,n ∈ N, m > n, such that the matrix element

Vm−n := 〈V(x,D) en, em〉 6= 0 .

Then
V (t, x,D) := cos((m− n)t) V(x,D) (3.7)

is a transporter for (3.1). More precisely, ∀r ≥ 0 there exist a solution ψ(t) ∈ Hr of (3.1) and
constants C, T > 0 such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t > T.
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The theorem follows applying Theorem 1.8. So we check that Assumptions I-III are fulfilled.
Regarding Assumption I, it is the usual Weyl calculus for symbols in Sρhar, see e.g. [58]. Con-
cerning Assumption II, one has σ(K0) = {n − 1

2}n∈N. Furthermore Egorov theorem for the
Harmonic oscillator [38] states that the map t 7→ eitK0Ae−itK0 ∈ C∞(T,Aρ) for any A ∈ Aρ (use
also the periodicity of the flow of K0). This can be seen e.g. by remarking that the symbol of
eitK0Ae−itK0 is a ◦ φthar, where a ∈ Sρhar is the symbol of A and φthar is the time t flow of the
harmonic oscillator; explicitly(

a ◦ φthar
)

(x, ξ) = a(x cos t+ ξ sin t,−x sin t+ ξ cos t) .

Verification of Assumption III. First we show that smooth Töplitz operators belong to A0.
We exploit Chodosh’s characterization [11], which we now recall. Define the discrete difference
operator 4 on a function M : N× N→ C by

(4M)(m,n) := M(m+ 1, n+ 1)−M(m,n) ,

and its powers 4γ , γ ∈ N, by 4 applied γ-times.

Definition 3.8 (Symbol matrix). A function M : N×N→ C will be said to be a symbol matrix
of order ρ if for any γ ∈ N0, N ∈ N, there exists Cγ,N > 0 such that

|(4γM)(m,n)| ≤ Cγ,N
(1 +m+ n)ρ−|γ|

〈m− n〉N
, ∀m,n ∈ N . (3.8)

The connection between pseudodifferential operators and symbol matrices is given by Cho-
dosh’s characterization:

Theorem 3.9 ([11]). An operator H belongs to Aρ if and only if its matrix M (H)(m,n) := Hmn
(as defined in (3.1)) is a symbol matrix of order ρ.

As a direct consequence we have the following result:

Lemma 3.10. Any smooth Töplitz operator is a pseudodifferential operator in A0.

Proof. We use Theorem 3.9. Let H be smooth Töplitz and put M (H)(m,n) := Hmn. Then (3.8)
holds with ρ = γ = 0 by (3.5). By (3.5) one has 4M (H) = 0; so (3.8) holds also ∀γ ≥ 1.

In particular V (t, x,D) = cos((m − n)t)V(x,D) belongs to C∞(T,A0), which is the first
required property of Assumption III.
Remark 3.11. The shift operators S, S∗, defined in (3.6), belong to A0 being smooth Töplitz.
Also their (integer) powers Sk, S∗k, given for k ∈ N by

Sken = en+k , ∀n ∈ N , S∗ken =
{

0 if n ≤ k
en−k if n ≥ k + 1

are smooth Töplitz, so in A0.
Next we compute the resonant average of V (t, x,D).

Lemma 3.12. Let V (t, x,D) as in (3.7). Its resonant average 〈V 〉 (see (1)) is

〈V 〉 = 1
2
(
Vk Sk + Vk S∗k

)
, k := m− n ∈ N , (3.9)

where S ∈ A0 is defined in (3.6) and Vk := Vm−n := 〈V en, em〉 ∈ C.
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Proof. For ` ∈ N, denote by Π`ϕ := 〈ϕ, e`〉 e` the projector on the Hermite function e`. Clearly

eisK0 Π` = Π` e
isK0 = eis(`− 1

2 ) Π`, ∀` ∈ N .

From now on we simply write V ≡ V(x,D). Using this identity and writing Id =
∑
`≥1 Π` we get

eisK0 V e−isK0 =
∑
j,`≥1

eis(j−`)Πj V Π` =
∑
j,`≥1

eis(j−`) 〈·, e`〉 〈Ve`, ej〉 ej .

Now we compute, with k := m− n ∈ N,

〈V 〉 = 1
2π

∫ 2π

0
cos(ks) eisK0 V e−isK0ds =

∑
j,`≥1
〈Ve`, ej〉 〈·, e`〉 ej

1
2π

∫ 2π

0
cos(ks) eis(j−`) ds

= 1
2
∑
`≥1
〈Ve`, e`+k〉〈·, e`〉 e`+k + 1

2
∑
`≥k+1

〈Ve`, e`−k〉〈·, e`〉 e`−k = 1
2Vk Sk + 1

2Vk S∗k

where in the last line we used V−k = 〈Ve`, e`−k〉 = 〈Ve`−k, e`〉 = Vk being V selfadjoint and
smooth Töplitz (see Remark 3.4).

Now define the selfadjoint operator

A := Vk
i (K0 + 1

2)Sk − Vk
i S∗k (K0 + 1

2)− Vk
i (K0 + 1

2)S∗k + Vk
i Sk (K0 + 1

2) , (3.10)

which belongs to A1 by symbolic calculus as K0 ∈ A1 and S, S∗ ∈ A0 (see Remark 3.11).
The next lemma verifies Assumption III.

Lemma 3.13. Assume that Vk 6= 0. The following holds true:

(i) The spectrum of the operator H0 := 〈V 〉 fulfills σ(H0) ⊇ [−|Vk|, |Vk|].

(ii) For any interval I0 ⊂ [−|Vk|, |Vk|], any gI0 ∈ C∞c (R,R≥0) with gI0 ≡ 1 over I0 and
supp gI0 ⊂ [−|Vk|, |Vk|], there exist θ > 0 and K compact operator such that

gI0(H0) i[H0, A] gI0(H0) ≥ θ gI0(H0)2 + K .

Here A is defined in (3.1).

Proof. (i) Let f(ρ) := Re(Vk e−iρk). We shall prove that f(ρ) ∈ σ(H0) ∀ρ ∈ R, from which the
claim follows. As H0 is selfadjoint, it is enough to construct a Weyl sequence for f(ρ), i.e. a
sequence (ψ(n))n≥1 with ‖ψ(n)‖0 = 1 ∀n and ‖(H0 − f(ρ))ψ(n)‖0 → 0 as n→∞. We put

ψ(n) := 1√
n

n∑
`=1

eiρ`e` .

Then ‖ψ(n)‖0 = 1 ∀n and a direct computation shows that for n > k

H0ψ
(n) = 1√

n

Vk
2 eiρk

k∑
m=1

eiρm em + 1√
n

f(ρ)
n−k∑

m=k+1
eiρm em + 1√

n

Vk
2 e−iρk

n+k∑
m=n−k+1

eiρm em .

Thus one finds a constant Ck > 0 such that

‖(H0 − f(ρ))ψ(n)‖0 ≤
Ck√
n
→ 0 as n→∞ ,
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proving that ψ(n) is a Weyl sequence; by Weyl criterium f(ρ) ∈ σ(H0).
(ii) First note that, by (3.1) and (3.6), one has ∀k ∈ N

[Sk,K0] = −kSk, [S∗k,K0] = kS∗k, [S∗k, Sk] = Π≤k (3.11)
SkS∗k = Id−Π≤k S∗kSk = Id

where Π≤k :=
∑k
`=1 Π` is the projector on the Hermite modes with index ≤ k. Using (3.1) a

direct computation gives

i[H0, A] = k
(
2|Vk|2 − V2

kS
2k − V2

kS
∗2k − |Vk|2Π≤k

)
+ 2|Vk|2(K0 + 1

2)Π≤k

= 4k
(
|Vk|2 −H2

0
)

+ 2|Vk|2(K0 + 1
2 − k)Π≤k . (3.12)

Clearly K := 2|Vk|2(K0 + 1
2 − k)Π≤k is compact, being finite rank.

Next put f̃(λ) = 4k(|Vk|2 − λ2) getting ∀ϕ ∈ H

〈gI0(H0) i[H0, A] gI0(H0)ϕ,ϕ〉 = 〈gI0(H0) f̃(H0) gI0(H0)ϕ,ϕ〉+ 〈gI0(H0) K gI0(H0)ϕ,ϕ〉 . (3.13)

Note that f̃ is strictly positive in the interior of [−|Vk|, |Vk|]; we put

θ := inf{f̃(λ) : λ ∈ supp gI0} > 0 .

With this information we apply the spectral theorem and get

〈gI0(H0) f̃(H0) gI0(H0)ϕ,ϕ〉 =
∫

λ∈σ(H0)

gI0(λ)2 f̃(λ) dmϕ(λ)

≥ θ
∫

λ∈σ(H0)

gI0(λ)2 dmϕ(λ) = θ‖gI0(H0)ϕ‖20 .

This estimate and (3.1) proves that H0 fulfills a Mourre estimate over I0.

To conclude this section, we recall that in [50] it is proved that the pseudodifferential operator

V (t, x,D) := e−itK0 (S + S∗) eitK0 (3.14)

is a universal transporter (see Definition 1.1). Using the abstract Theorem 1.9 we prove its
stability under perturbations of class C∞(T,A0):

Theorem 3.14. Consider equation (3.1) with V (t, x,D) defined in (3.1). There exist ε0, M > 0
such that ∀W ∈ C∞(T,A0) with supt ℘0

M(W (t, x,D)) ≤ ε0, the operator V (t, x,D) + εW (t, x,D)
is a transporter. More precisely ∀r > 0 there exist a solution ψ(t) ∈ Hr of i∂tψ =

(−∂2
x+x2

2 +
V (t, x,D) +W (t, x,D)

)
ψ and constants C, T > 0 such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t ≥ T .

Proof. We verify Assumption III. Clearly V (t, x,D) ∈ C∞(T,A0) and 〈V 〉 = S+S∗, so it has the
form (3.12) with k = 1 and V1 = 2. Lemma 3.13 implies that 〈V 〉 fulfills a Mourre estimate.
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Remark 3.15. Actually formula (3.1) in case 〈V 〉 = S + S∗ gives

i[〈V 〉, A] = 4(4− 〈V 〉2) , (3.15)

so 〈V 〉 fulfills a strict Mourre estimate. Moreover (3.15) implies that adpi〈V 〉(A) = 0 ∀p ≥ 2, and
using also (A.2), (B) and the arguments in Appendix A of [50] we get that

‖e−it〈V 〉ϕ‖2k ≥ ck〈eit〈V 〉A2ke−it〈V 〉ϕ,ϕ〉 = c̃kt
2k〈(i[〈V 〉, A])2k

ϕ,ϕ〉+O(t2k−1) .

Since 4−〈V 〉2 is injective6, the flow e−it〈V 〉ϕ has unbounded trajectories for any nontrivial initial
data. Hence the same holds for the solutions of i∂tu = (H0 +V (t, x,D))u and V (t, x,D) in (3.1)
is a universal transporter.

3.2 Half-wave equation on T
The half-wave equation on T is given by

i∂tψ = |D|ψ + V (t, x,D)ψ , x ∈ T . (3.16)

Here |D| is the Fourier multiplier defined by

|D|ψ :=
∑
j∈Z
|j|ψj eijx , ψj := 1

2π

∫
T
ψ(x)e−ijxdx ,

whereas V (t, x,D) is a pseudodifferential operator of order 0. In this case K0 := |D| + 1, the
scale of Hilbert spaces defined as Hr = Dom (Kr

0) coincides with standard Sobolev spaces on
the torus Hr(T), and the base space (H0, 〈·, ·〉) is L2(T,C) with its standard scalar product. In
this setting we shall use pseudodifferential operators with periodic symbols, belonging to the
following class:

Definition 3.16. A function a(x, ξ) is a periodic symbol of order ρ ∈ R if a ∈ C∞(Tx ×Rξ,C)
and for any α, β ∈ N0, there exists a constant Cαβ > 0 such that∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cαβ 〈ξ〉ρ−β , ∀x ∈ T, ∀ξ ∈ R .

We will write a ∈ Sρper. We also put S−∞per :=
⋂
ρ∈R S

ρ
per the class of smoothing symbols.

We endow Sρper with the family of seminorms

℘ρj (a) :=
∑

|α|+|β|≤j

sup
(x,ξ)∈T×R

∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣ 〈ξ〉−ρ+β , j ∈ N0 .

Such seminorms turn Sρper into a Fréchet space. If a symbol a depends on additional parameters
(e.g. it is time dependent), we ask that all the seminorms are uniform w.r.t. such parameters.
To a symbol a ∈ Sρper we associate its quantization a(x,D) acting on a 2π-periodic function
u(x) =

∑
j∈Z uje

ijx as

a(x,D)u := Op(a)[u] :=
∑
j∈Z

a(x, j)uj eijx .

6it is unitarily equivalent, via the map en 7→ sin(ny) ∀n ∈ N, to the multiplication operator by 4 sin(y)2 on
the space L2

odd(T) of L2 odd functions on T
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Remark 3.17. Given a symbol a(ξ) independent of x, then Op(a) is the Fourier multiplier operator
a(D)u =

∑
j∈Z a(j)uj eijx. If instead the symbol a(x) is independent of ξ, then Op(a) is the

multiplication operator Op(a)u = a(x)u.

Definition 3.18. We say that A ∈ Aρ if A = Op(a) with a ∈ Sρper.

Example 3.19. The operator |D| ∈ A1 with symbol given by d(ξ) := |ξ|χ(ξ) where χ is an
even, positive smooth cut-off function satisfying χ(ξ) = 0 for |ξ| ≤ 1

5 , χ(ξ) = 1 for |ξ| ≥ 2
5 and

∂ξχ(ξ) > 0 ∀ξ ∈ ( 1
5 ,

2
5 ).

Also the Fourier projectors Π± and Π0 defined by

Π+u :=
∑
j≥1

uj e
ijx, Π−u :=

∑
j≤−1

uj e
ijx, Π0u := u0 (3.17)

are pseudodifferential operators. In particular Π± = Op (π±) ∈ A0 and Π0 = Op (π0) ∈ A−∞,
where π±, π0 are a smooth partition of unity, π+(ξ) + π−(ξ) + π0(ξ) = 1 ∀ξ, fulfilling

π+(ξ) =
{

1 if ξ ≥ 4
5

0 if ξ ≤ 3
5
, π−(ξ) =

{
1 if ξ ≤ − 4

5
0 if ξ ≥ − 3

5
, π0(ξ) =

{
1 if |ξ| ≤ 3

5
0 if |ξ| ≥ 1

5
.

In this setting we prove that any multiplication operator, multiplied by an appropriate time
periodic function, becomes a transporter. Here the result.

Theorem 3.20. Let v ∈ C∞(T,R). Choose j ∈ Z \ {0} such that the Fourier coefficient vj 6= 0.
Then the selfadjoint operator

V (t, x) := cos(jt) v(x)

is a transporter. More precisely, ∀r > 0 there exist a solution ψ(t) ∈ Hr of i∂tψ =
(
|D|+V (t, x)

)
ψ

and constants C, T > 0 such that

‖ψ(t)‖r ≥ C〈t〉r, ∀t > T.

The theorem follows from Theorem 1.8. So first we put ourselves in the setting of the abstract
theorem and rewrite (3.2) as

i∂tψ = K0ψ + Ṽ (t, x)ψ, Ṽ (t, x) := cos(jt)v(x)− 1 ∈ A0 . (3.18)

Again we check Assumptions I-III. Regarding Assumption I, it is the usual pseudodifferential
calculus for periodic symbols, see e.g. [57].

Verification of Assumption II. One has σ(K0) = {n}n∈N. To prove Assumption II (ii) we
use the identity e−itK0A eitK0 = e−it|D|A eit|D| and Egorov theorem for |D|, see e.g. [61, Theorem
4.3.6]. Actually we need also the following version of Egorov theorem.

Lemma 3.21. Let a ∈ Sρper, ρ ∈ R. Then

eit|D|Op (a) e−it|D| = Op (a(x+ t, ξ)) Π+ + Op (a(x− t, ξ)) Π− +R(t) (3.19)

where Π± are defined in (3.19) and R(t) ∈ C∞(T,Aρ−1).
If Op (a) is selfadjoint, so is eit|D|Op (a) e−it|D|, ∀t.
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Proof. The classical Egorov theorem for the half-Laplacian |D| says that

eit|D|Op (a) e−it|D| = Op
(
a ◦ φtd(x, ξ)

)
+ R̃(t)

where φtd(x, ξ) is the time t flow of the classical Hamiltonian d(ξ) = |ξ|χ(ξ) (the symbol of |D|)
and R̃(t) ∈ C∞(R,Aρ−1), see e.g. [61, Theorem 4.3.6].
We compute more explicitly a ◦ φtd(x, ξ). The Hamiltonian equations of d(ξ) and its flow φtd are
given by {

ẋ = ∂ξd(ξ) = d′(ξ)
ξ̇ = −∂xd(ξ) = 0

, φtd(x, ξ) = (x+ td′(ξ), ξ) .

As d′(ξ) = 1 for ξ ≥ 2
5 and d′(ξ) = −1 for ξ ≤ − 2

5 , we write

(a ◦ φtd)(x, ξ) = a(x+ t, ξ)π+(ξ) + a(x− t, ξ)π−(ξ) + a(x+ td′(ξ), ξ)π0(ξ) .

As π0 ∈ S−∞per , the operator Op (a(x+ td′(ξ), ξ)π0(ξ)) ∈ C∞(R,A−∞). Moreover by symbolic
calculus

Op (a(x± t, ξ)π±(ξ)) = Op (a(x± t, ξ)) Π± +R±(t), R±(t) ∈ C∞(R,Aρ−1) .

Formula (3.21) follows with R(t) := R̃(t) + R+(t) + R−(t) + Op (a(x+ td′(ξ), ξ)π0(ξ)). We
claim that R(t) is periodic in time. This follows by difference since both eit|D|Op (a) e−it|D| and
Op (a(x± t, ξ)) Π± are periodic in t (recall that the symbol a(x, ξ) is periodic in x).
Finally as e±it|D| are unitary, the claim on the selfadjointness of eit|D|Op (a) e−it|D| follows.

Verification of Assumption III. First we compute 〈Ṽ 〉.

Lemma 3.22. The resonant average 〈Ṽ 〉 ∈ A0 of Ṽ (defined in (3.2)) is given by

〈Ṽ 〉 = v(x)− 1 +R, v(x) := Re(vjeijx) (3.20)

and R ∈ A−1 is selfadjoint.

Proof. First remark that, as eitK0 = eit|D|eit,

〈Ṽ 〉 = 1
2π

∫ 2π

0
eis|D| Ṽ (s) e−is|D|ds = 1

2π

∫ 2π

0
cos(js) eis|D| v(x) e−is|D| ds− 1 . (3.21)

We compute eis|D| v(x) e−is|D| with the aid of Lemma 3.21, getting

eis|D| v(x) e−is|D| = v(x+ s) Π+ + v(x− s) Π− + R̃(s), (3.22)

where R̃(s) ∈ C∞(T,A−1). Then, recalling that vj = v−j being v(x) real valued,

1
2π

∫ 2π

0
cos(js) eis|D| v(x) e−is|D| ds (3.2)=

∑
σ=±

1
2π

∫ 2π

0
cos(js) v(xσs) dsΠσ + 1

2π

∫ 2π

0
cos(js)R̃(s)ds

= Re
(
vje

ijx) (Π+ + Π−) + 1
2π

∫ 2π

0
cos(js)R̃(s)ds

= Re
(
vje

ijx)+R

where R := 1
2π
∫ 2π

0 cos(js)R̃(s)ds−Re
(
vje

ijx)Π0 ∈ A−1. Together with (3.2), this proves (3.22).
Finally R is selfadjoint by difference, since both 〈Ṽ 〉 and v(x)− 1 are selfadjoint operators.



3 APPLICATIONS 28

Define the selfadjoint operator

A := w(x) ∂xi + ∂x
i w(x) , w(x) := Im(vjeijx) (3.23)

belonging to A1. The next lemma verifies Assumption III.

Lemma 3.23. Assume that vj 6= 0. The following holds true:

(i) The operator H0 := 〈Ṽ 〉 has spectrum σ(H0) ⊇ [−|vj | − 1, |vj | − 1] =: I.

(ii) For any interval I0 ⊂ I, any gI0 ∈ C∞c (R,R≥0) with gI0 ≡ 1 over I0 and supp gI0 ⊂ I,
there exist θ > 0 and a compact operator K such that

gI0(H0) i[H0, A] gI0(H0) ≥ θ gI0(H0)2 + K .

Here A is defined in (3.2).

Proof. During the proof we shall use that any operator in A−1 is compact. Moreover we shall
simply denote any compact operator by K, which can change from line to line.
(i) By Lemma 3.22, H0 is a compact perturbation of the multiplication operator by v(x) − 1,
whose spectrum coincides with I. Then by Weyl’s theorem

σ(H0) ⊇ σess(H0) = σess(v(x)− 1) = I .

(ii) First notice that, as v(x) = Re(vjeijx) and w(x) = Im(vjeijx), one has the identities

v(x)2 + w(x)2 = |vj |2, v′(x) = −j w(x) . (3.24)

Next we compute

i[H0, A] = i[v(x)− 1 +R,A] = −2w(x) v′(x) + i[R,A]
(3.2)= 2j

(
|vj |2 − v(x)2)+ K = 2j

(
|vj |2 − (H0 + 1−R)2)+ K

= 2j
(
|vj |2 − (H0 + 1)2)+ K .

Putting f(λ) := 2j
(
|vj |2 − (λ+ 1)2), we get ∀ϕ ∈ H

〈gI0(H0) i[H0, A] gI0(H0)ϕ,ϕ〉 = 〈gI0(H0) f(H0) gI0(H0)ϕ,ϕ〉+ 〈Kϕ,ϕ〉. (3.25)

Now we notice that f(λ) is positive in the interior of I; so we put

θ := inf {f(λ) : λ ∈ supp gI0} > 0 .

With this information we apply the spectral theorem, getting, as in the previous section,

〈gI0(H0) f(H0) gI0(H0)ϕ,ϕ〉 ≥ θ
∫
λ∈I

gI0(λ)2 dmϕ(λ) = θ‖gI0(H0)ϕ‖20 .

This together with (3.2) establishes the Mourre estimate over I0.
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A Flows of pseudodifferential operators
In this appendix we collect some known results about the flow generated by pseudodifferential
operators belonging to the algebra A. The setting is the same as [5] and we refer to that paper
for the proofs. The first result describes how a Schrödinger equation is changed under a change
of variables induced by the flow of a pseudodifferential operator, see Lemma 3.1 of [5]:

Lemma A.1. Let H(t) be a time dependent selfadjoint operator, and X(t) be a selfadjoint family
of operators. Assume that ψ(t) = e−iX(t)ϕ(t) then

i∂tψ = H(t)ψ ⇐⇒ i∂tϕ = H+(t)ϕ

where

H+(t) := eiX(t)H(t) e−iX(t) −
∫ 1

0
eisX(t) (∂tX(t)) e−isX(t) ds .

The next property we shall need is the Lie expansion of eiX Ae−iX in operators of decreasing
order, see Lemma 3.2 of [5]:

Lemma A.2. Let X ∈ Aρ with ρ < 1 be a symmetric operator. Let A ∈ Am with m ∈ R. Then
eiτX Ae−iτX is selfadjoint and for any M ≥ 1 we have7

eiτX Ae−iτX =
M∑
`=0

τ `

i` `! ad`X(A) +RM (τ,X,A) , ∀τ ∈ R , (A.1)

where RM (τ,X,A) ∈ Am−(M+1)(1−ρ).
In particular ad`X(A) ∈ Am−`(1−ρ) and eiτX Ae−iτX ∈ Am, ∀τ ∈ R.

The last result concerns boundedness properties of the operator e−iτX , see Lemma 3.3 of [5]:

Lemma A.3. Assume that X(t) is a family of selfadjoint operators in A1 s.t.

sup
t∈R

℘1
j (X(t)) <∞ , ∀j ≥ 1 .

Then e−iτX(t) extends to an operator in L(Hr) ∀r ∈ R, and moreover there exist cr, Cr > 0 s.t.

cr‖ψ‖r ≤ ‖e−iτX(t)ψ‖r ≤ Cr‖ψ‖r , ∀t ∈ R , ∀τ ∈ [0, 1] .

B Functional calculus
In this section we collect some known results about functional calculus of selfadjoint operators
which are used thorough the paper. We begin recalling Helffer-Sjöstrand formula [37], following
the presentation of [16].

Definition B.1. A function f ∈ C∞(R,C) will be said to belong to the class Sρ, ρ ∈ R, if
∀m ∈ N0, ∃Cm > 0 such that ∣∣∣∣ dm

dxm f(x)
∣∣∣∣ ≤ Cm〈x〉ρ−m, ∀x ∈ R .

7in [5] we have defined adX(A) = i[X,A] rather than (2.2); so we formulate the next result with the current
notation
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As usual we set the seminorms

℘ρm(f) :=
∑

0≤j≤m
sup
x∈R

∣∣∣∣dmf(x)
dxm

∣∣∣∣ 〈x〉−ρ+m , m ∈ N0 .

Given f ∈ Sρ, we define its almost analytic extension as follows: for any N ∈ N, put

f̃N : R2 → C, f̃N (x, y) :=
(

N∑
`=0

f (`)(x) (iy)`

`!

)
τ

(
y

〈x〉

)
where τ ∈ C∞(R,R≥0) is a cut-off function fulfilling τ(s) = 1 for |s| ≤ 1 and τ(s) = 0 for |s| ≥ 2.
It is well known [16] that the choice of N and of the cut-off function τ are by no means critical,
and even other choices of f̃N are possible (see e.g. [19]). The following properties are true [16]:
let f ∈ Sρ with ρ < 0, then

f̃N |R = f, supp f̃N ⊂ {x+ iy : x ∈ supp f, |y| ≤ 2〈x〉} ,∣∣∣∣∣∂f̃N (x, y)
∂z

∣∣∣∣∣ ≤ CN 〈x〉ρ−N−1 |y|N , ∂f̃N
∂z

:=
(
∂f̃N
∂x

+ i∂f̃N
∂y

)
∫
R2

∣∣∣∣∣∂f̃N (z)
∂z

∣∣∣∣∣ |Im (z)|−p−1 dz ∧ dz ≤ CN ℘ρN+2(f), ∀p = 0, . . . , N, (B.1)

where z = x+ iy and dz ∧ dz is the Lebesgue measure on C.
Given H a selfadjoint operator and f ∈ Sρ, ρ < 0, the Helffer-Sjöstrand formula defines f(H) as

f(H) := i
2π

∫
R2

∂f̃N (z)
∂z

(z − H)−1dz ∧ dz = − 1
π

∫
R2

∂f̃N (z)
∂z

(z − H)−1dxdy . (B.2)

Theorem B.2 ([16]). Let f ∈ Sρ, g ∈ Sµ with ρ, µ < 0 and H a selfadjoint operator. Then

(i) The operator f(H) is independent of N and of the cut-off function τ .

(ii) The integral in (B) is norm convergent and ‖f(H)‖L(H) ≤ ‖f‖L∞ .

(iii) f(H) g(H) = (fg)(H).

(iv) f(H) = f(H)∗.

(v) If f ∈ C∞c has support disjoint from σ(H), then f(H) = 0.

(vi) If z /∈ R and fz(x) := (z − x)−1 for all x ∈ R, then fz ∈ S−1 and fz(H) = (z − H)−1.

Remark B.3. Given f ∈ Sρ, ρ < 0 and H selfadjoint, the operator f(H) defined via Helffer-
Sjöstrand formula coincides with the classical definition given by the spectral theorem, namely

f(H) =
∫
R
f(λ) dE(λ)

where dE(λ) is the spectral resolution of H. For a proof, see e.g. [20], Theorem 8.1.
Next we recall expansion formulas for commutators. We start from the basic identities

adnA(PQ) =
n∑
k=0

(
n

k

)
adn−kA (P) adkA(Q), [P,An] =

n∑
j=1

cn,j adjA(P) An−j . (B.3)

For the next lemma see e.g. [19, Lemma C.3.1] or [40, Appendix B].
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Lemma B.4 (Commutator expansion formula). Let k ∈ N and A,B selfadjoint operators with

‖adjA(B)‖L(H) <∞, ∀ 1 ≤ j ≤ k .

Let f ∈ Sρ with ρ < 0, then one has the right and left commutator expansions

[B, f(A)] =
k−1∑
j=1

1
j! f

(j)(A) adjA(B) +Rk(f,A,B) (B.4)

=
k−1∑
j=1

(−1)j−1

j! adjA(B) f (j)(A) + R̃k(f,A,B) (B.5)

where the operators Rk, R̃k fulfill

‖Rk(f,A,B)‖L(H), ‖R̃k(f,A,B)‖L(H) ≤ CN ℘
ρ
k+2(f) ‖adkA(B)‖L(H) . (B.6)

Lemma B.5. Let k ∈ N and A,H selfadjoint operators such that

‖adjA(H)‖L(H) <∞, ∀ 1 ≤ j ≤ k . (B.7)

Let g ∈ Sρ with ρ < 0. Then

‖adjA(g(H))‖L(H) <∞ ∀1 ≤ j ≤ k .

Proof. Take N ≥ k and use Helffer-Sjöstrand formula to write

adjA(g(H)) = i
2π

∫
R2

∂g̃N (z)
∂z

adjA
(
(z − H)−1)dz ∧ dz. (B.8)

As adA
(
(z − H)−1) = (z − H)−1 adA(H) (z − H)−1, by induction one gets for j = 1, . . . , k

adjA
(
(z−H)−1) =

j∑
`=1

∑
k1+···+k`=j
k1,...,k`≥1

c`,jk1···k` (z−H)−1 adk1
A (H) (z−H)−1adk2

A (H) · · · (z−H)−1 adk`A (H) (z−H)−1

Using (B.5) and the estimate ‖(z −H)−1‖L(H) ≤ |Im (z)|−1, ∀z ∈ C \R, one has for j = 1, . . . , k

‖adjA
(
(z − H)−1)‖L(H) ≤

j∑
`=1

C` |Im (z)|−`−1
, ∀z ∈ C \ R.

Inserting this estimate into (B) and using (B) we bound for any j = 1, . . . , k

‖adjA(gJ(H))‖L(H) .
j∑
`=1

∫
R2

∣∣∣∣∂g̃N (z)
∂z

∣∣∣∣ |Im (z)|−`−1dz ∧ dz . ℘ρN+2(g) <∞ .

Lemma B.6. Let g ∈ C∞c (R,R). Let H,B ∈ L(H) be selfadjoint. Then ∃C > 0 such that

‖g(H + B)− g(H)‖L(H) ≤ C‖B‖L(H) .

If B is compact on H, so is g(H + B)− g(H).
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Proof. Take N ≥ 1. Using Helffer-Sjöstrand formula and the resolvent identity we obtain

g(H + B)− g(H) = i
2π

∫
R2

∂g̃N (z)
∂z

(
z − (H + B)

)−1 B (z − H)−1 dz ∧ dz .

Then use ‖
(
z − (H + B)

)−1‖L(H), ‖(z − H)−1‖L(H) ≤ |Im(z)|−1 for z ∈ C \ R and (B).
If B is compact then

(
z − (H + B)

)−1 B (z − H)−1 is a compact operator for any z ∈ C \ R.

C Local energy decay estimates
In this section we prove a local energy decay estimate starting from Mourre estimate. The result
is essentially known but we could not find in the literature a statement exactly as the one we
use in the paper, so we include here a proof, which follows closely the one of Lemma 4.1 of [29].
In this part we do not require pseudodifferential properties of the operators. We shall assume
conditions (M1) and (M2) at page 12.

Theorem C.1 (Local energy decay estimate). Fix k ∈ N and assume (M1)–(M2) with N ≥ 4k+2
and K = 0. Then for any interval J ⊂ I, any function gJ ∈ C∞c (R,R≥0) with supp gJ ⊂ I, gJ = 1
on J , there exists C > 0 such that

‖〈A〉−k e−iHt gJ(H)ψ‖0 ≤ C〈t〉−k‖〈A〉k gJ(H)ψ‖0, ∀t ∈ R, (C.1)

for any ψ such that the r.h.s. is finite.

Proof. Take χ(ξ) := 1
2 (1− tanh ξ). Put η(ξ) := 1√

2 cosh ξ and note that

χ′ = −η2,
∣∣∣η(m)(ξ)

∣∣∣ ≤ Cm η(ξ), ∀ξ ∈ R, ∀m ∈ N. (C.2)

Next we set for a ∈ R, s ≥ 1 and ϑ := θ
2 (with θ of (M2) )

At,s := 1
s

(
A− a− ϑt

)
and define via functional calculus the operators χ(At,s) and η(At,s); both are bounded and
selfadjoint on H. To shorten the notation, from now on we write χt,s ≡ χ(At,s), ηt,s ≡ η(At,s),
gJ ≡ gJ(H) and ψt := e−itHψ. Note that e−iHtgJ(H)ψ = gJ(H)e−iHtψ ≡ gJψt.
The starting point of the proof is an energy estimate for the quantity ‖(χt,s)

1
2 gJψt‖0. We have

d

dt
‖(χt,s)

1
2 gJψt‖20 = d

dt
〈χt,sgJψt, gJψt〉 = ϑ

s
‖ηt,s gJ ψt‖20 + 〈i[H, χt,s] gJψt, gJψt〉. (C.3)

To evaluate the right hand side we shall use the commutator formulas in Lemma B.4, the identity

adjAt,s(H) = 1
sj

adjA(H) , ∀s ≥ 1, ∀1 ≤ j ≤ N (C.4)

and the fact that all the operators adjA(H) are bounded ∀1 ≤ j ≤ N by (M1). The goal now is to
estimate the second term in the right hand side of (C). For an arbitrary f ∈ H we write

〈i[H, χt,s]f, f〉
(B.4),(C)= −1

s
〈η2
t,si[H,A]f, f〉+

N−1∑
j=2

1
j!

1
sj
〈χ(j)
t,s i adjA(H)f, f〉+ 1

sN 〈RNf, f〉 (C.5)
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where χ(j)
t,s := χ(j)(At,s) and the remainder RN fulfills the estimate (see (B.4))

‖RN‖L(H) ≤ CN ‖adN
A(H)‖ ≤ CN. (C.6)

Note that the constant CN > 0 in the previous estimate is uniform in a ∈ R. In the following we
shall simply denote by RN any bounded operator fulfilling an estimate like (C).
Consider now the first term in the expansion (C) above. This time we use the left expansion
(B.4) and write

1
s
〈η2
t,s i[H,A]f, f〉 = 1

s
〈 i[H,A] ηt,sf, ηt,sf〉 (C.7)

+
N−1∑
j=2

(−1)j−1

(j − 1)!
1
sj
〈 i adjA(H) η(j−1)

t,s f, ηt,sf〉+ 1
sN 〈RNf, f〉

where RN is estimated as in (C). Consider now the second term in (C). From χ′ = −η2, we have
by functional calculus χ(j)(At,s) =

∑j
`=1 c`j η

(j−`)(At,s) η(`)(At,s) . Thus we get that

1
sj
〈χ(j)
t,s i adjA(H)f, f〉 (B.4)= 1

sj

j∑
`=1

c`j〈 i adjA(H) η(`)
t,sf, η

(j−`)
t,s f〉 (C.8)

+
j∑
`=1

N−j−1∑
n=1

c`jn
sj+n

〈 i adj+nA (H) η(`+n)
t,s f, η

(j−`)
t,s f〉+ 1

sN 〈RNf, f〉

By (C), (C), (C) we have found that 〈i[H, χt,s]f, f〉 is a sum of terms of the form

〈i[H, χt,s]f, f〉 = −1
s
〈 i[H,A] ηt,sf, ηt,sf〉+

N−1∑
j=2

1
sj

∑
n,`,m

〈Rn η(`)
t,sf, η

(m)
t,s f〉+ 1

sN 〈RNf, f〉

where Rn, RN are bounded operators. Furthermore, from the second of (C) and the spectral
theorem, we bound ∣∣∣〈Rn η(`)

t,sf, η
(m)
t,s f〉

∣∣∣ ≤ C ‖ηt,sf‖20 . (C.9)

We thus obtain, for any f ∈ H and s ≥ 1, the estimate

〈i[H, χt,s]f, f〉 ≤ −
1
s
〈 i[H,A] ηt,sf, ηt,sf〉+ CN

s2 ‖ηt,sf‖
2
0 + CN

sN ‖f‖
2
0 .

Now we evaluate such inequality at f = gJψt, getting

〈i[H, χt,s]gJψt, gJψt〉 ≤ −
1
s
〈 i[H,A] ηt,sgJψt, ηt,sgJψt〉+ CN

s2 ‖ηt,sgJψt‖
2
0 + CN

sN ‖gJψt‖
2
0 . (C.10)

The next step is to prove that the first term in the right hand side above has a sign, up to higher
order terms in s−j . This is the point where the Mourre estimate (M2) comes into play. To see
this, we analyze

〈 i[H,A] ηt,s gJψt, ηt,s gJψt〉 ≡ 〈 i[H,A] ηt,s gI gJψt, ηt,sgI gJψt〉 (C.11)

where we used that gJgI = gJ . Next we commute and expand in commutators ηt,sgI :

ηt,sgI = gIηt,s + [ηt,s, gI ]
(B.4)= gI ηt,s +

N−2∑
j=1

cj
sj

adjA(gI(H)) η(j)
t,s + 1

sN−1 R̃N−1 ; (C.12)
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note that Lemma B.5 assures that the operators adjA(gI(H)) are bounded ∀j = 1, . . . , N, so is the
operator R̃N−1 which fulfills

‖R̃N−1‖L(H) ≤ CN adN−1
A (gI(H)) <∞ . (C.13)

Again in the following we shall denote by R̃N−1 any operator fulfilling an estimate like (C).
Inserting the expansion (C) into (C) one gets, with w := gJψt,

(C) = 〈i[H,A] gI ηt,sw, gI ηt,sw〉+
N−2∑
j=1

cj
sj

∑
n,`,m

〈Rn η(`)
t,sw, η

(m)
t,s w〉+ 1

sN−1 〈R̃N−1w,w〉

where each term of the form 〈Rn η(`)
t,sw, η

(m)
t,s w〉 fulfills an estimate like (C).

It is finally time to use the strict Mourre estimate: by assumption (M2) we have for s ≥ 1

〈i[H,A] gI ηt,sw, gI ηt,sw〉 ≥ θ‖gI ηt,sw‖20 .

Using again the expansion (C) and estimates (C), (C) we get therefore

〈i[H,A] gI ηt,sw, gI ηt,sw〉 ≥ θ‖ ηt,sgIw‖20 −
CN

s
‖ηt,sw‖20 −

CN

sN−1 ‖w‖
2
0. (C.14)

This proves that the first term in the right hand side of (C) has a sign; we proceed from (C) and
using inequality (C) (recall w = gJψt) we get

〈i[H, χt,s]gJψt, gJψt〉 ≤ −
θ

s
‖ηt,s gJψt‖20 + CN

s2 ‖ηt,s gJψt‖
2
0 + CN

sN ‖ gJψt‖
2
0 . (C.15)

We come back to the estimate (C) of ‖(χt,s)
1
2 gJψt‖0. We finally obtain, with ϑ = θ

2 and s ≥ 1
sufficiently large,

d

dt
‖(χt,s)

1
2 gJψt‖20

(C)
≤ 1

s
(ϑ− θ) ‖ηt,s gJψt‖20 + CN

s2 ‖ηt,s gJψt‖
2
0 + CN

sN ‖ gJψt‖
2
0

≤ 1
s

(
−θ2 + CN

s

)
‖ηt,s gJψt‖20 + CN

sN ‖ gJψt‖
2
0

So, for s ≥ 1 sufficiently large, the first term in the right hand side above is negative and, using
also that e−itH is unitary and commutes with gJ ≡ gJ(H), we get

d

dt
‖(χt,s)

1
2 gJψt‖20 ≤

CN

sN ‖ gJψ0‖20 .

Integrating this inequality between 0 and t we find ∀t > 0

‖χ 1
2

(A− a− ϑt
s

)
gJψt‖20 ≤ ‖χ

1
2

(A− a
s

)
gJψ‖20 + CN t

sN ‖ gJψ‖
2
0,

uniformly for a ∈ R and s ≥ 1 sufficiently large. We evaluate this inequality at a = −ϑ2 t and
s =
√
t, obtaining for t ≥ 1 sufficiently large, the minimal velocity estimate

‖χ 1
2

(A− ϑ
2 t√
t

)
gJψt‖0 ≤ ‖χ

1
2

(A + ϑ
2 t√
t

)
gJψ‖0 + CN t

− N
4 + 1

2 ‖ gJψ‖0 . (C.16)
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To conclude, take k ∈ N and consider ‖〈A〉−k gJ ψt‖0. Clearly

‖〈A〉−k gJ ψt‖0 ≤ ‖χ
1
2

(A− ϑ
2 t√
t

)
〈A〉−k gJ ψt‖0 (C.17)

+ ‖
(

1− χ 1
2

(A− ϑ
2 t√
t

))
〈A〉−k gJ ψt‖0 (C.18)

We estimate first (C). By Theorem B.2 (ii) we have

‖
(

1− χ 1
2

(A− ϑ
2 t√
t

))
〈A〉−k‖L(H) ≤ sup

λ∈R

∣∣∣∣∣(1− χ 1
2

(λ− ϑ
2 t√
t

))
〈λ〉−k

∣∣∣∣∣ ≤ Ck〈t〉−k.
To prove the last inequality, use that for λ ≥ ϑ

4 t then 〈λ〉−k ≤ 〈t〉−k, whereas when λ < ϑ
4 t then,

being λ 7→ 1− χ 1
2 (λ) monotone increasing and exponentially decaying at −∞,

1− χ 1
2

(λ− ϑ
2 t√
t

)
≤ 1− χ 1

2

(
− ϑ

4
√
t
)
≤ C

(
e−

ϑ
4
√
t
) 1

2 ≤ Ck〈t〉−k.

Next we estimate (C) using the minimal velocity estimate. As 〈A〉−k is a bounded operator,

‖χ 1
2

(A− ϑ
2 t√
t

)
〈A〉−k gJ ψt‖0 ≤ ‖χ

1
2

(A− ϑ
2 t√
t

)
gJ ψt‖0

(C)
≤ ‖χ 1

2

(A + ϑ
2 t√
t

)
gJψ‖0 + CN t

− N
4 + 1

2 ‖ gJψ‖0

≤ ‖χ 1
2

(A + ϑ
2 t√
t

)
〈A〉−k‖L(H) ‖〈A〉k gJψ‖0 + CN t

− N
4 + 1

2 ‖ gJψ‖0

Again we have

‖χ 1
2

(A + ϑ
2 t√
t

)
〈A〉−k‖L(H) ≤ sup

λ∈R

∣∣∣∣∣χ 1
2

(λ+ ϑ
2 t√
t

)
〈λ〉−k

∣∣∣∣∣ ≤ Ck〈t〉−k,
since for λ ≤ −ϑ4 t one has 〈λ〉−k ≤ C〈t〉−k, whereas in case λ > −ϑ4 t, as λ 7→ χ

1
2 (λ) is monotone

decreasing exponentially fast at +∞, one has

χ
1
2

(λ+ ϑ
2 t√
t

)
≤ χ 1

2

(ϑ
4
√
t
)
≤ C

(
e−

ϑ
4
√
t
) 1

2 ≤ Ck〈t〉−k.

Altogether, from (C), (C) we have proved that for t ≥ 1 sufficiently large,

‖〈A〉−k gJ ψt‖0 ≤ Ck〈t〉−k‖gJψt‖0 + Ck〈t〉−k‖〈A〉kgJψ‖0 + CN t
− N

4 + 1
2 ‖ gJψ‖0

≤ Ck〈t〉−k ‖〈A〉kgJψ‖0

provided N = 4k + 2. This proves the estimate (C.1) for t ≥ 1 sufficiently large, and it is also
clearly true for t in any bounded interval.
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