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Abstract

In this thesis, we define and study the properties of solutions of a gas of solitons for
the Focusing Nonlinear Schrödinger equation. A gas of solitons is an initial data with
an infinite number of solitons that is defined via a suitable limit. A N soliton solution
is characterised, via the scattering problem, by 2N spectral points, {zj , zj}Nj=1 and the

corresponding norming constants {cj}Nj=1, with zi and cj complex numbers. We formu-
late the inverse spectral problem for the focusing nonlinear Schrödinger equation via a
suitable Riemann-Hilbert problem that is amenable to the limit N → ∞. Assuming
that the spectral points {zj}Nj=1 fill uniformly some domain D in the upper half plane,
we show that in the limit N → ∞ the inverse problem of a soliton gas can be described
both by a Riemann-Hilbert problem and by a ∂-problem. For particular choices of the
domains D , we prove that there is a shielding effect and the soliton gas behaves, for
(x, t) in compact sets, as a finite multi-soliton solution. In particular when D is a disk,
the soliton gas is a one-soliton solution.

Next we study the case when D is an ellipse with foci located on the imaginary axis. We
prove that the corresponding soliton gas initial data has a step-like oscillatory behaviour
decaying exponentially at +∞ while for x → −∞ the oscillations are described by the
Jacobi elliptic function. The long-time asymptotic behaviour of such initial data depends
on the ratio of the amplitude of the foci. If such ratio is above a certain threshold then
the solution has oscillations described by genus one and three theta-functions in different
sectors of the (x, t)-plane otherwise the oscillations are described by genus one, two and
three theta functions. The asymptotic solution remains exponentially decreasing in the
right-most sector of the (x, t) plane.

Finally, inspired by the soliton gas solution we develop an extension of the Its-Izergin-
Korepin-Slavnov theory of integrable operators acting on a domain of the complex plane.
We show that the resolvent of an integrable operator K acting on a domain of the
complex plane is obtained from the solution of a ∂-problem. When the problem depends
on auxiliary parameters, the related Malgrange one form is closed and coincide with the
logarithmic derivative of the Hilbert-Carleman determinant of the operator K. If the
∂-problem is related to the inverse spectral problem of the soliton gas, then the Hilbert-
Carleman determinant is a τ -function of the Kadomtsev-Petviashvili (KP) or Nonlinear
Schrödinger hierarchies.
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Introduction

Overview

In the contemporary realm of Integrable Systems theory, Lax’s definition of integrability
plays a crucial role, and it is centred around the existence of a pair of linear operators L
and A called Lax’s pair. This definition offers a significant avenue for solving and deter-
mining constants of motion within integrable systems characterised by an infinite number
of degrees of freedom, namely integrable nonlinear evolution partial differential equations
(PDEs). Specifically, an evolution partial differential equation ut = K(u, ux, uxx, . . . ),
where K is in general a rational function of the dependent variable u = u(x, t) and its
spatial derivatives, is integrable if there exists a pair of linear operators L(u), A(u), such
that :

dL(u)

dt
= [A(u), L(u)] ⇔ ut = K(u). (0.0.1)

From the above formulation it follows that the eigenvalues of L(u) are the constants of
motions of the PDE.

This procedure was first discovered for the Korteweg de Vries (KdV) equation

ut − 6uux − uxxx = 0, x ∈ R, t ∈ R+, u(x, t) ∈ R, (0.0.2)

by Gardner, Green, Kruskal and Miura [47] (1967) that were able to ”linearize” the
KdV equation, with initial data vanishing at infinity, via the two linear operators,

L(u) = −∂2x + u,

A(u) = 4∂3x − 6u∂x − 3ux,

that now bare the name of Lax operators. Indeed in 1968 P. Lax [70] made the crucial
observation that this procedure could be applied to other equations. Subsequently,
Zakharov and Shabat [93] (1971) were able to find the Lax pair for the cubic nonlinear
Schödinger (NLS) equation and later Ablowitz, Kaup, Newell, and Segur, [2] (1974)
extended the procedure to several physically important nonlinear wave systems now
known as the AKNS class, that includes the KdV and the NLS equations.

The existence of a Lax pair permits to solve the PDEs by linearizing it in the scattering
coordinates for the linear operator L of the Lax pair. The reconstruction of the solution
is called Inverse Scattering Transform (IST).
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The logic of the procedure is as follows. Let ut = K(u, ux, . . . ) be a nonlinear evolution-
ary PDE in one space dimension that can be linearized via the Lax pair

L(u) f(z, x, t) = zf(z, x, t) (0.0.3a)

ft(z, x, t) = A(u) f(z, x, t). (0.0.3b)

Then the construction of the solution u(x, t) from the initial data u(x, 0) consists of the
following steps:

1. At time t = 0 we solve the scattering problem (0.0.3a) and we find the scattering
data Σ(z);

2. from the evolution equation (0.0.3b), we determine how the scattering data evolves
in time Σ(z, t);

3. we reconstruct the solution u(x, t) of the PDEs from the scattering data Σ(z, t)
by solving an Inverse Scattering Problem.

This method facilitated the discovery of distinctive category of solutions for these PDEs
known as solitons solutions. Solitons are localised waves travelling at constant velocity
and interacting elastically. These solutions are distinguished by an initial datum that
decays at infinity exponential fast and a pure discrete spectrum for the operator L. An-
other category of solutions comprises quasi-periodic solutions, expressed through Theta
functions.

For a review about the Inverse Scattering Theory and solitons, we refer to [3, 37,45].

Another pivotal element in integrable system is the concept of τ -function introduced in
the context of isomonodromic and isospectral deformations. It had been introduced in
the 80s by the Kyoto school, with the aim [66] to construct a generalisation of the theta
functions appearing, as particular solutions of some nonlinear integrable equations. In
the theory of isomonodromic deformations, tau functions are constructed starting from
a certain differential 1-form ω defined on the space of the deformation parameters [66].
Under the hypothesis that the parameters are of isomonodromic type, the form ω is
closed and the tau function τ is defined (locally and up to a multiplicative constant) by
the formula

δ ln τ := ω, (0.0.4)

where δ denotes the total differential with respect to the parameters.

On the side of isospectral deformations, Sato [80] defined the tau function starting from
his interpretation of the KP hierarchy in terms of the geometry of Grassmannian mani-
folds. To each solution of the KP hierarchy, one can associate a point W in an infinite
dimensional Grassmannian, and the related tau function is the formal series

τW :=
∑

Y∈Y
sYWY, (0.0.5)
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where Y is the set of partitions,
{
sY∈Y

}
are the Schur polynomials and

{
WY∈Y

}
is the

set of the Plücker coordinates of W . In [81], Segal and Wilson provided an analytic
version of Sato’s theory, where formal series are replaced by L2 functions, and rewrote
the tau function as the (analytically well-defined) Fredholm determinant of a certain
projection operator. Around the same years Hirota [60] show that the KP τ -functions
satisfies a differential equation that is now known as “Hirota bilinear relation”. To give
a precise historical account, the first example of τ -function in the context of isospectral
deformations appeared in 1976 in the work by Dyson [40] who expressed the solution of
the KdV equation as a Fredholm determinant of an operator built from the scattering
data. On the isomonodromic side, the first example of τ -function is due to Widom [90]
in 1974 in the context of Toepltiz operators.

The equivalence between the two definitions of τ functions has been understood only
recently [59], [26].

The concept of τ -function has found applications in other branches of mathematics,
including random matrix theory [5,58], combinatorics [75,76], enumerative geometry [6,
68].

This thesis comprises two distinct yet interconnected parts. In the first part, we study
the Inverse Scattering Transform for non-standard initial data. Specifically, we consider
initial data arising form the limiting case when the number N of solitons tends to
infinity, also call soliton gas solution. These solutions are of particular significance as
they enable the study of a broader class of initial data for the Integrable PDEs considered.
In the second part, taking inspiration from this class of data, we develop the theory of
integrable operators acting on domains of the complex plane and derive their τ function
as a Fredholm determinant.

In our work we study the focusing Nonlinear Schrödinger equation (NLS)

iψt +
ψxx

2
+ |ψ|ψ = 0, (0.0.6)

where ψ = ψ(x, t) is a complex function of the real variable x and the positive variable
t. The spectrum of the Lax operator for the N soliton solution is characterised by a
discrete spectrum {zj , zj}Nj=1 in the complex plane andN complex numbers {cj}N1 , called

norming constants. We consider the case where the points {zj}N1 and their complex
conjugates, as N → ∞, accumulate uniformly in a simply connected domain D and
D∗ respectively. Additionally, the norming constants scale as N−1 in the form cj :=
A
N β(zj , zj), where A is the area of D and β(z, z) is a smooth and bounded function in
D . We reformulate the inverse problem of the N soliton solution as a Riemann-Hilbert
problem (RHP) and we can define a limiting Riemann-Hilbert problem as N → ∞. This
limiting RHP can also be reformulated as a ∂-problem. The solution ψ(x, t) of the NLS
equation is obtained from the solution of the ∂-problem. We study the properties of
the solution of the soliton gas for specific choices of the domain D and the interpolating
function β.
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In the second part of the thesis our focus shifts to the study of the theory of integrable
operator acting on domains on the complex plain. Specifically, in the case of integrable
operators acting on curves Σ, the work of Its, Izergin, Korepin and Slavnon [62, 63]
established a connection between such operators and a specific Riemann-Hilbert prob-
lem. Their findings revealed that both the resolvent and the logarithmic derivative of
the Fredholm determinant of the operator are expressed in terms of the solution to
the Riemann-Hilbert problem. In particular, if the Riemann-Hilbert problem for the
resolvent operator is solvable, then the Fredholm determinant does not vanish and it
corresponds to the τ -function of the related integrable system.

We extend this theory to encompass integrable operator acting on domains. We demon-
strate that the resolvent and the Hilbert-Carleman determinant (i.e. a generalization
of the Fredholm determinant) of the operator can be expressed in terms of solutions of
a ∂-problem. Furthermore, we establish that, in some instances, the Hilbert-Carleman
determinant actually generates a solution of the KP hierarchy. As an illustrative ex-
ample, we present the ∂-problem introduced in part one. Through a straightforward
generalization, we prove that the entire NLS hierarchy can be recover form the same
∂-problem.

The structure of the thesis is the following:

In Chapter 1, we introduce the Inverse Scattering Problem for the focusing NLS equation
(0.0.6). Building upon the results of Girotti et al. [53], we derive the ∂-problem for the
soliton gas of (0.0.6). Our exploration reveals that this problem can be explicitly solved
for specific choices of D and β(z, z), resulting in a solution ψ(x, t) defined for (x, t) in
compact sets. This kind of phenomenon, called soliton shielding, is substantiated by both
analytical solutions and numerical evidence. The infinity soliton limit is reinforced by
proving the convergence of the tau-function τN , for the N soliton solution, to a Fredholm
determinant of an integrable operator K (Theorem 1.3.1). This Theorem, together
with the results achieved in Chapter 5, demonstrate the existence and uniqueness of
a solution for the ∂-problem for (1.1.1). The result of this chapter are taken from our
paper “Soliton shielding of the focusing nonlinear Schrödinger equation” Physics Review
Letter (2023) [13], made in collaboration with M. Bertola and T. Grava.

In Chapter 2, we turn our attention to the scenario where D takes the form of an elliptic
domain, and β(z, z) is analytic. We establish a connection between this problem and
an Inverse scattering problem featuring asymptotic step-like initial data. Specifically, as
x → +∞, ψ0(x) undergoes exponentially decay, while at x → −∞, it exhibits behavior
akin to a genus one wave (Theorem 2.2.5).

In Chapter 3 and 4, we explore the long-time asymptotic of ψ(x, t) for t > 0 using the
Nonlinear steepest Descent theory developed by Deift and Zhou [35]. Through this inves-
tigation, we unveil that by manipulating certain parameters, the solution ψ(x, t) exhibits
different behaviours in distinct sectors of the (x, t) plane (Theorem 3.0.1 and 4.0.1).

In Chapter 5 we extend the IIKS theory for Integrable operator K acting on a Hilbert
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space L2(D , d2w)⊗Cn. We establish a connection between the existence of the resolvent
of K and the existence of a solution to a ∂-problem (Theorem 5.1.3). Additionally, we
prove that the Hilbert-Carleman determinant, a generalization of the Fredholm deter-
minant for Hilbert-Schmidt operators, not only is a τ -function but also that it solves
the KP equation (Theorem 5.3.1). As an example, we consider the ∂-problem for the
NLS equation introduced in Chapter 1 and we extend it to the NLS hierarchy. The
result of this chapter are taken from our paper “Integrable operators, ∂-problems, KP
and NLS hierarchy”, arXiv:2307.13119v2 [12] written in collaboration with M. Bertola
and T. Grava.

We will now describe our result in more detail.

Soliton gas solution

The concept of soliton gas was initially introduced by Zakharov [92] in the context of
KdV equation. Specifically, Zakharov’s focus was on the interaction of a single trial
soliton with a background of infinitely many solitons, and widely spaced, a condition
referred to as a “rarefied” soliton gas. The soliton density at time t and position x is
ρ(k, x, t), where k is the spectral parameter and the condition of having a rarefied gas is

∫ ∞

−∞
ρ(k, x, t)dx≪ 1.

Zakharov found out that the velocity of the soliton with spectral parameter k changes
according to the following law:

v(k, x, t) = 4k2 +

∫ +∞

0
log

∣∣∣∣
k1 + k

k1 − k

∣∣∣∣ (k2 − k21)ρ(k1, x, t)dk1 (0.0.7)

where the density ρ(k, x, t) satisfies the conservation law

∂tρ(k, x, t) + ∂x(v(k, x, t)ρ(k, x, t)) = 0. (0.0.8)

Further research by El e. al [42–44] generalize the kinetic equation (0.0.7) to the case of
a dense gases for the KdV equation. The main idea was to model the KdV soliton gas
as the thermodynamic solitonic limit of a finite gap solution. In other words, for a given
N gap solution of KdV, they approached the limiting scenario by shrinking the bands
exponentially fast in N while the gap are close at a speed of order 1/N . This procedure
led to the derivation of the following kinetic equation:

v(k, x, t) = 4k2 +
1

k

∫ +∞

0
log

∣∣∣∣
k + k1
k − k1

∣∣∣∣ ρ(k1, x, t)[v(k, x, t)− v(k1, x, t)]dk1. (0.0.9)

Later on, thanks to the works of Tobvis, El, Roberti, Congy et al. [28, 29, 41, 88] it
was possible to expand this theory to encompass the focusing NLS and to explore addi-
tional scenarios, such as the “breather gas”. In recent years, research groups in England
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and France have been investigating this phenomenon numerically and experimentally.
These studies have unveil connections with other fields of mathematics and physics. We
summarize some of the most important results:

• In [4] and [50], it has been found that random waves in nonlinear conservative
media, dubbed integrable turbulence, exhibit properties of a dense bound-state
soliton gas.

• In [83] and [51], it is shown numerically that the soliton gas theory could be
instrumental for the development of the statistical description of the rogue wave
formation.

• In [19], it is established a relation between the kinetic equation of a soliton gas
and the generalize hydrodynamic (GHD) of integrable many-body systems, both
quantum and classical.

• In [77] and [87], soliton gas. is generated in a water-tank from random (and
non-random) initial data.

For a complete and comprehensive review we refer to [86].

Along this research line, Girotti et al. [53] constructed asymptotic solutions for the KdV
equation, providing a description of a particular class of soliton gas states. They started
by investigating the inverse problem for the N-soliton solution of the KdV equation and
then sendN → +∞, assuming that the spectral points {iκj}Nj=0 ∈ iR+ and their complex
conjugate are uniformly distributed in finite lines (or “bands”) (iα1, iα2)∪ (−iα2,−iα1).
For λ ∈ (α1, α2) ∪ (−α2,−α1), they derived a RHP with high oscillatory jumps on the
real “bands”

X(λ, x, t)+ = X(λ, x, t)−





[
1 0

−ir(λ)e8λt(λ2− x
4t) 1

]
for λ ∈ (α1, α2),

[
1 ir(λ)e−8λt(λ2− x

4t)

0 1

]
for λ ∈ (−α2,−α1),

(0.0.10)

with boundary conditions

X(λ, x, t) ∼
[
1 1

]
+ O(λ−1) as λ→ ∞ (0.0.11)

X(−λ, x, t) = X(λ, x, t)

[
0 1
1 0

]
. (0.0.12)

They investigated the long time asymptotic of this new RHP using the Nonlinear Steep-
est Descend technique. Their findings revealed that the solution q(x, t) has a step like
behaviour. Further for large times the solution behaves as a dispersive shock wave:

q(x, t) =




α2
2 − α2

1 − 2α2
2dn

2(α(x− 2(α2
2 + α2

1)t+ ϕ) +K(m) |m) + O(t−1) as
x

4t
< ηcrit

O(e−Ct) with C > 0, as
x

4t
> α2

2,

(0.0.13)
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where m = α2
1/α

2
2, ϕ ∈ R and the critical value ηcrit is obtained by a Whitham modula-

tion equation. In the interval ηcrit <
x
4t < α2

2 there is a modular region which connects
the two different behaviours. This new perspective on soliton gas was inspired by the
concept of the primitive potential, introduced by Dyachenko, D. Zakharov and V. Za-
kharov in [39].

A connection with the kinetic theory of soliton gases was established in [54], where the
same ideas were applied to the mKdV equation. The authors found a method to recover
the density of state (DOS) of the soliton gas and the eq (0.0.9) from quantities defined
in the Nonlinear Steepest Descend theory.

Our objective is to extend this methodology also for focusing NLS equation (0.0.6).
Since the nonlinear spectral points {zk, zk}Nk=1 can be distributed in all the complex
plane except the real line, we specifically consider the scenario where, as N → +∞,
the points zk uniformly fill a simply connected domains D in the upper half complex
plane and consequently zk fill uniformly the domain D . As demonstrated in Chapter 1,
the inverse problem of the N-soliton solution for NLS can be reformulated both as a
Riemann-Hilbert problem or a ∂-problem

∂zΓ(z) = Γ(z)

[
0 −β∗(z, z)e−2i(z2t+zx)χD

β(z, z)e2i(z
2t+zx)χD 0

]
, (0.0.14)

Γ(z) ∼ 1+ O(z−1) as z → ∞,

where β∗(z, z) = β(z, z).

The existence and uniqueness of the solution is demonstrated by combining three results:
the Theorem 1.3.1, the Theorem 5.1.3 and the Lemma 5.1.2.

For specific cases, the problem (0.0.14) can be solved exactly. Initially, we consider a
special class of domains D known as quadrature domains. We establish that in com-
pact sets of (x, t) ∈ R2 the solution ψ(x, t) of focusing NLS is an n-soliton solution,
where n corresponds to the number of points of the quadrature domain D . We call this
phenomenon “soliton shielding”.

Additionally, we explore the case where D takes the form of an ellipse. For simplicity,
we impose that the foci E1, E2 of the ellipse lie in the imaginary axis. In this specific sce-
nario, as detailed in Chapter 2, the analytic part of the solution of the ∂-problem (0.0.14)
satisfies a RHP

Γ(z)+ = Γ(z)−

[
1 −r(z)e−2i(zx+z2t)χ[E2,E1]

r(z)e2i(zx+z2t)χ[E1,E2] 1

]
(0.0.15)

Γ(z) ∼ 1+ O(z−1) as z → ∞,

with r(z) an analytic function, bounded in the segment [E1, E2]. This RHP is similar to
the one studied by de Monvel, Lennels and Shepelsky in [24, 31, 74] for the IST of NLS
with step-like initial data.
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We investigate the long time asymptotic of this RHP (0.0.15), revealing that the be-
haviour of ψ(x, t) adopts a step-like oscillatory behaviour akin the scenario observed in
the KdV equation. The main distinction arises in the middle region, where the behaviour
change, resulting in an increase of genus of the wave. In particular, there is a critical

value mc of the parameter m = Im (E1)2

Im (E2)2
, such that two distinct cases emerges:

• for m > mc, only one intermediate region exists (see Figure 1), wherein the wave
transitions from genus one to genus three before decreasing exponentially fast.
This case will be examined and proved in chapter 3 (Theorem 3.0.1);

• for m < mc, three intermediate regions emerges (see Figure 2). The first one is
still of genus one, albeit the topology of the RHP is different from the previews
one, denoted as (genus 1)s. The second region features a solution of genus 2 and
the final region exhibits a solution of genus 3. This case will be treated and proven
in chapter 4.

x

tη

Genus 1

Genus 3

O(e−ct)

Figure 1: The (x, t) plane in the case where m > mc.

x

t

η1

η2
η3

Genus 1

(Genus 1)s

Genus 2 Genus 3

O(e−ct)

Figure 2: The (x, t) plane in the case where m < mc.

τ–function and IIKS Theory

A fundamental concept in the theory of solvable integrable systems is the τ–function, (see
[59] for a comprehensive historical perspective). In many instances, these τ–functions
coincide with the Fredholm determinant of an integral operator.

A notable class of integral operators are the so called integrable operators: the theory
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of such operators has its roots in the work of Jimbo et al. [65] that ultimately led to
the construction by Its, Izergin, Korepin and Slavnov [62] of a Riemann-Hilbert problem
to express the kernel of their resolvent operators. Initially motivated by the theory of
quantum integrable models, the theory of integrable operators has found applications in
various fields of mathematics such as random matrices and integrable partial differential
equations: for example the gap probabilities in determinantal random point processes
(and more generally the generating function of occupation numbers) are expressible
as a Fredholm determinant [84], [32] and this is at the core of the celebrated Tracy-
Widom distribution for fluctuations of the largest eigenvalue of a random matrix in a
Gaussian Unitary Ensemble [89]. An integrable operator is an integral operator acting
on L2(Σ, |dw|)⊗ Cn of the form

K[v](z) =

∫

Σ
K̂(z, w)v(w)dw, z ∈ Σ,

where Σ is some oriented contour in the complex plane and the kernel K̂(z, w) ∈Mat(n×
n,C) has a special form

K̂(z, w) : =
pT (z) q(w)

z − w
, p(z), q(z) ∈Mat(r × n,C), (0.0.16)

where p and q are rectangular r × n matrices and for the time being we only assume
that p and q are smooth along the connected components of Σ. The condition for K to
be non-singular requires

pT (z) q(z) ≡ 0.

In the most relevant applications, the operators of the form (0.0.16) are trace class
operators.

An important observation in [62] is that the resolvent operator R := (Id −K)−1 − Id ,
where Id is the identity operator, is of the same class, namely

R[v](z) =

∫

Σ
R̂(z, w)v(w)dw, z ∈ Σ,

where the resolvent kernel has also the form of an integrable operator:

R̂(z, w) : =
P T (z)Q(w)

z − w
, P (z), Q(z) ∈Mat(r × n,C). (0.0.17)

Here P T (z) = (Id −K)−1pT and Q = q(Id −K)−1, where (Id −K)−1 in the first relation
is acting to the right while in the second relation its action is to the left. Another crucial
observation of [62] (see also the introduction of [61]) is that the determination of R is
equivalent to the solution of an associated RHP for a r× r matrix Γ(z) analytic in C\Σ
that satisfies the boundary value relation (sometimes referred to as “jump relation”)

Γ+(z) = Γ−(z)M(z), z ∈ Σ, M(z) = 1+ 2πip(z)qT (z)

Γ(z) → 1, as |z| → ∞.
(0.0.18)
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Here Γ±(z) denote the boundary values of the matrix Γ(z) as z approaches from the left
and right of the oriented contour Σ and 1 is the identity matrix in Mat(r × r,C). The
matrices P and Q that define the resolvent kernel (0.0.17) are related to the solution Γ
of the RHP (0.0.18) by the relation

P (z) = Γ(z)p(z), Q(z) = (Γ(z)T )−1q(z). (0.0.19)

This formulation implies that the existence of the solution of the RHP (0.0.18) is equiv-
alent to the existence of the resolvent R. This connection between the Fredholm deter-
minant and the RHP has been exploited in several contexts where the kernel depends on
large parameters and the study of the asymptotic behaviour of the Fredholm determinant
is obtained via the Deift–Zhou nonlinear steepest descent method of the corresponding
RHP [35]. This analysis has been successfully implemented for n = 1 and r = 2 in a large
class of kernels originating in random matrices, orthogonal polynomials, probability and
partial differential equations see for example (see e.g. [21, 33,35,59,63]).

An enlargement of the class of integrable operators (0.0.16) was studied by Bertola and
Cafasso [11] who considered Hankel composition operators that have been reduced to
integrable operators in Fourier space.

Recently Bothner [22] and Krajenbrink [69] enlarged the class of Hankel composition
operators that can be studied via Riemann-Hilbert problems. Applications are obtained
in [23], [25].

In chapter 5, we enlarge the class of integrable operators by considering operators K

acting on L2(D , d2w) ⊗ Cn where D is a bounded domain of the complex plane with a
matrix kernel K̂(z, z, w,w) ∈Mat(n× n,C), namely

K[v](z, z) =

∫∫

D
K̂(z, z, w,w)v(w)

dw ∧ dw

2i
, z, z ∈ D , (0.0.20)

K̂(z, z, w,w) :=
pT (z, z) q(w,w)

z − w
,

pT (z, z) q(z, z) ≡ 0 ≡ (∂z̄p(z, z))
T q(z, z), p, q ∈ C∞(D ,Mat(r × n,C)). (0.0.21)

The kernel K̂(z, z, w,w) and the corresponding integral operator K is a Hilbert–Schmidt
operator with a well–defined and continuous value on the diagonal in D × D .

Our results are the following.

• In Section 5.1 we show that the resolvent of the integral operator Id−K is obtained
through the solution of a ∂-Problem (instead of a Riemann-Hilbert problem) for a
matrix–valued function Γ:

∂z̄Γ(z, z) = Γ(z, z)M(z, z); Γ(z, z) →
z→∞

1,

M(z, z) = πp(z, z)qT (z, z)χD(z),
(0.0.22)
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where χD(z) is the characteristic function of the domain D . Note that the matrix
M(z, z) is nilpotent because of (0.0.21). Furthermore we show, in analogy with
integrable operators defined on contours, that the kernel of the resolvent is

R̂(z, z, w,w) =
P (z, z)T Q(w,w)

z − w
, P (z, z) = Γ(z, z)p(z, z), Q(z, z) = Γ−1(z, z)q(z, z)

where Γ solves the ∂-problem (0.0.22).

• In Section 5.2 we consider the regularized determinant (Hilbert-Carleman deter-
minant, equation 7.8 [55]) of the operator K. This is defined as the Fredholm
determinant of the trace class operator TK := Id − (Id −K)eK, namely

det2(Id −K) := det(Id − TK) = det((Id −K)eK). (0.0.23)

Assuming the operator K depends on some parameters ttt = (t1, . . . , tj , . . . ), we
show that the logarithmic total derivative of the Hilbert-Carleman determinant is
a one closed form:

δ log det2(Id −K) = ω, δ =
∞∑

j=1

∂tjdtj (0.0.24)

ω := −
∫∫

D
Tr
(
Γ−1(z)∂zΓ(z)δM(z)

) dz ∧ dz

2πi
. (0.0.25)

Since δω = 0, in analogy with the literature on Riemann–Hilbert problems on
contours [9, 10] we call ω the Malgrange one form of the ∂-Problem. Since ω is
closed is locally exact and therefore there is a function, called the τ function of the
∂-Problem defined by

δ log τ = ω .

Therefore we have that
τ = det2(Id −K), (0.0.26)

up to a constant. We also show (Subsection 5.2.1) that under the less restrictive
assumption that M(z, z, ttt) is traceless but not nilpotent, we can associate to the
∂-problem

∂z̄Γ(z, z, ttt) = Γ(z, z)M(z, z, ttt); Γ(z, z, ttt) →
z→∞

1, (0.0.27)

a Malgrange one-form ω as in the formula (0.0.25). This enables us to define the
τ -function of the ∂-problem by the relation

δ log τ = ω. (0.0.28)

We remark that the time deformation is completely general as long as the solution
of the the ∂-problem (0.0.27) exists.
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• Finally in Section 5.3 we use the results of the previous section by considering the
∂-problem (0.0.27) where M is a 2× 2 matrix of the form

M(z, z̄, ttt) = e
ξ(z,ttt)

2
σ3M0(z, z̄)e

− ξ(z,ttt)
2

σ3 σ3 =

[
1 0
0 −1

]
,

where ξ(z, ttt) =
∑+∞

j=1 z
jtj and M0(z, z̄) is a traceless matrix compactly supported

on D ; we show that the corresponding τ -function (0.0.28) of the ∂-problem (0.0.27)
is a Kadomtsev-Petviashvili (KP) τ -function, namely it satisfies Hirota bilinear
relations for the KP hierarchy (see e.g. [59]).

We then specialize the matrix M of the ∂-problem in (0.0.27) to the nilpotent and
traceless form

M(z, z;x, t) = πe−i(zx+z2t)σ3p(z, z)qT (z, z)ei(zx+z2t)σ3 , x ∈ R, t ≥ 0

with

p(z, z) =
1√
π

[
−
√
β∗(z, z)χD∗(z)√
β(z, z)χD(z)

]
, (0.0.29)

q(z, z) =
1√
π

[ √
β(z, z)χD(z)√
β∗(z, z)χD∗(z)

]
(0.0.30)

where β∗(z, z) = β(z, z) is a smooth function and χD , χD are respectively the
characteristic functions of a simply connected domain D ⊂ C+ and its conjugate
D . Here C+ is the upper half space. We show that the τ -function of the ∂-
problem (0.0.27) is the τ -function for the focusing Nonlinear Schrödinger (NLS)
equation and coincides with Hilbert-Carleman determinant of the operator K with

integrable kernel K̂(z, z, w,w) = pT (z,z) q(w,w)
z−w , namely

∂2x log τ(x, t) = ∂2x log det2(Id −K) = |ψ(x, t)|2,

where the complex function ψ(x, t) solves the focusing Nonlinear Schrödinger equa-
tion (NLS) (0.0.6).

xx



Chapter 1

The Soliton gas for NLS: the
∂-problem

In this chapter we introduce the problem of the soliton gas solution for the focusing
NLS equation (0.0.6). Following the ideas of Girotti et al. [53], we choose to address the
problem through Inverse Scattering Transform, introduced for NLS by Zakharov and
Shabat in [94]. The main difference with respect to the KdV and mKdV equations is
that the nonlinear discrete spectrum {zj}Nj=1 lies in all the complex upper half plane.

We consider the N soliton solutions with point spectrum {zj}Nj=1 that are sample from a
constant density function of a bounded domain D in the upper half complex plane and,
as N grows to infinity, these points will fill the domain uniformly.

This chapter is organized as follows:

• In section 1.1, we recover the theory of IST for the NLS equation by describing
the various steps and stating the most important results.

• In section 1.2, we rewrite the Inverse Scattering Problem for the N -soliton solution
as a Riemann-Hilbert problem and then we perform the limit N → +∞. Such limit
can also be interpreted as a ∂-problem (0.0.14) on the domain D .

• In section 1.4, we consider some particular choices of the domain D for which the
∂-problem (0.0.14) can be explicitly solved. In these cases the infinity soliton limit
is reduced to a solution with a finite number of solitons. We call this effect ‘soliton
shielding”.
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1.1 The Inverse Scattering Transform for the NLS equa-
tion

The Inverse scattering Transform (IST) for the Nonlinear Schrödinger equation (NLS)

iψt +
ψxx

2
± |ψ|2ψ = 0, (1.1.1)

where the sign ± separate the focusing (+) case from the defocusing (−) case, was
introduced by Zakharov and Shabat in 1980 [94]. Respect to the IST that the was
developed by Miura et al. in [72] for KdV equation, the Lax pair is given by 2 × 2
matrices

∂xw⃗ = Uw⃗ :=

[−iz ψ

∓ψ iz

]
w⃗ (1.1.2)

and

∂tw⃗ = V w⃗ :=

[
−iz2 ± i

2 |ψ|2 zψ + i
2ψx

∓zψ ± i
2ψx iz ∓ i

2 |ψ|2
]
w⃗. (1.1.3)

The compatibility conditions between equations (1.1.2) and (1.1.3), which coincide with
the zero-curvature condition of the matrices U(z, x, t) and V (z, x, t), is equivalent to the
NLS equation (1.1.1)

iψt +
ψxx

2
± |ψ|2ψ = 0 ⇔ ∂tU − ∂xV + [U, V ] ≡ 0. (1.1.4)

The steps to solve the NLS equation through IST are the following:

1. Given the initial data ψ0(x), we solve the scattering problem (1.1.2) and we find
the scattering data Σ(z);

2. From the equation (1.1.3), we determine how the scattering data evolves in time
(Σ(x, t));

3. We reconstruct the solution ψ(x, t) of NLS (1.1.1) from the scattering data Σ(x, t)
by solving a Riemann-Hilbert Problem (RHP).

From now on, we focus on the Focusing NLS equation (+ case)

iψt +
ψxx

2
+ |ψ|2ψ = 0, (1.1.5)

and we consider the case where the initial data decays rapidly at |x| → +∞.

The Scattering problem

The Scattering problem consists in solving the equation (1.1.2)

∂xw⃗ = Uw⃗ :=

[−iz ψ

−ψ iz

]
w⃗ (1.1.6)
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with a potential ψ0(x) that decays to zero as |x| → +∞, i.e. when |x| is large the
solution can be approximated by

w⃗0(z, x) = c1

[
e−izx

0

]
+ c2

[
0

eizx

]

where c1 and c2 are arbitrary constants.

We can consider the behaviour for x ∼ ±∞ separately and looking for solutions j⃗
(1)
± (z, x), j⃗

(2)
± (z, x)

such that:

j⃗
(1)
± (z, x) =

[
e−izx

0

]
+ o(1) j⃗

(2)
± (z, x) =

[
0

eizx

]
+ o(1) as x→ ±∞. (1.1.7)

These solutions are called Jost solution and we indicate it with the 2×2 matrix J±(z, x) =

[⃗j
(1)
± (z, x), j⃗

(2)
± (z, x)].

For z ∈ R the equation (1.1.6) has two linearly independent column vector solutions.
Since J±(z, x) form a basis of the space of solutions, the matrices J±(z, x) are linked by
the transformation:

J+(z, x) = J−(z, x)Λ(z) for z ∈ R, (1.1.8)

where Λ(z) is called Scattering matrix.

Theorem 1.1.1. The Jost solutions (1.1.7) exists and satisfy the following properties:

1. for z ∈ R lim
x→±∞

J±(z, x)e
izxσ3 = 1, where 1 is the identity matrix and σ3 =

[
1 0
0 −1

]
;

2. for z ∈ R they satisfy the Schwartz symmetry

J±(z, x) = σ2J±(z, x)σ2, (1.1.9)

where σ2 =

[
0 i
i 0

]
;

3. the functions j⃗
(2)
+ (z, x) and j⃗

(1)
− (z, x) are continuous for Im (z) ≥ 0 and analytic in

Im (z) > 0 and satisfy

j⃗
(2)
+ (z, x) = O(e−Im (z)x) as x→ +∞
j⃗
(1)
− (z, x) = O(eIm (z)x) as x→ −∞

for Im (z) < 0 and

lim
Im (z)→∞

e−izxj⃗
(2)
+ (z, x) =

[
0
1

]
lim

Im (z)→∞
eizxj⃗

(1)
− (z, x) =

[
1
0

]

for all x ∈ R;
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4. the functions j⃗
(2)
− (z, x) and j⃗

(1)
+ (z, x) are continuous for Im (z) ≤ 0 and analytic in

Im (z) < 0 and satisfy

j⃗
(2)
− (z, x) = O(e−Im (z)x) as x→ −∞
j⃗
(1)
+ (z, x) = O(eIm (z)x) as x→ +∞

for Im (z) < 0 and

lim
Im (z)→−∞

e−izxj⃗
(2)
− (z, x) =

[
0
1

]
lim

Im (z)→−∞
eizxj⃗

(1)
+ (z, x) =

[
1
0

]

for all x ∈ R.

The proof of this theorem is standard and can be found in any book or lecture notes
about Inverse Scattering Theory (see [3]).

From the points (1) (2) of Theorem 1.1.1 we can state the corollary:

Corollary 1.1.2. For z ∈ R, the scattering matrix Λ(z) satisfy the following properties:

1. detΛ(z) = 1;

2. Λ(z) satisfy the Schwartz symmetry

Λ(z) = σ2Λ(z)σ2. (1.1.10)

This means that Λ(z) has the form

Λ(z) =

[
a(z) b(z)
−b(z) a(z)

]

where

a(z) = det([⃗j
(1)
− (z, x), j⃗

(2)
+ (z, x)]) b(z) = det([⃗j

(1)
+ (z, x), j⃗

(1)
− (z, x)]), (1.1.11)

and they satisfy the condition

|a(z)|2 + |b(z)|2 = 1.

From the points (3) (4) of Theorem 1.1.1 and the equation (1.1.11) we can analytically
continued the function a(z) in the upper half plane, while the function b(z) is only
defined on the real line. Moreover, from the asymptotic behavior of Jost solutions we
get

lim
Im (z)→+∞

a(z) = 1.

Let us assume that a(z) has N zeroes in the upper half plane {zj}Nj=1. From the deter-

minantal form of a(z), at those points the vectors j⃗
(1)
− (z, x) and j⃗

(2)
+ (z, x) are linearly

dependent

j⃗
(1)
− (zj , x) = γ̃j j⃗

(2)
+ (z, x) ∀j = 1, . . . , N ; (1.1.12)
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with γ̃j ∈ C constant, which is called norming constant. Since j⃗
(1)
− (z, x) and j⃗

(2)
+ (z, x)

decays at zero respectively for x → ∓∞, the points {zj}Nj=1 are the eigenvalues of the
scattering problem.

The Scattering matrix Λ(z), the points {zj}Nj=1 and the constant {γ̃j}Nj=1 are called
scattering data of our problem.

Time evolution of the scattering data

To find how the scattering data evolves with respect the time parameter t we need to

find the factors c
(1)
± (z, t) and c

(2)
± (z, t) such that the Jost functions:

c
(1)
± (z, t)⃗j

(1)
± (z, x), c

(2)
± (z, t)⃗j

(2)
± (z, x)

solves both the equation (1.1.6) and

∂tw⃗ = V w⃗ :=

[
−iz2 + i

2 |ψ|2 zψ + i
2ψx

−zψ + i
2ψx iz − i

2 |ψ|2
]
w⃗. (1.1.13)

Proposition 1.1.3. For z ∈ R, the matrix functions

J±(z, x, t)e
−iz2tσ3 (1.1.14)

solves both the equations of the Lax pairs (1.1.6) (1.1.13).

By applying (1.1.14) in the equation (1.1.13) and the using the relation (1.1.8), we arrive
to a Lax-type equation for Λ(z, t)

∂tΛ(z, t) = iz2 [Λ(z, t);σ3] . (1.1.15)

From (1.1.15) we deduce the following facts:

• the function a(z, t) = a(z) in independent on t;

• the function b(z, t) satisfies b(z, t) = b(z, 0)e2iz
2t.

Since a(z, t) = a(z, 0) for z ∈ R does not change in time, also its analytic continuation
in the upper half plane does not depend in time. In particular, its zeros {zj}Nj=1 are
constants of motion. To find how the norming constant depends on time we need to
consider the equation (1.2.3)

j⃗
(1)
− (zj , x, t) = γ̃j(t) j⃗

(2)
+ (zj , x, t) ∀j = 1, . . . , N

and derive it respect to time. Then, by considering how j⃗
(1)
− (zj , x, t) and j⃗

(2)
+ (z, x, t)

depends on time, we arrive at the equation

d

dt
γ̃j = 2iz2j γ̃j ,

so γ̃j(t) = γ̃j(0)e
2iz2j t.
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The Inverse scattering: Riemann-Hilbert problem

Let us define the matrix function

Y (z, x, t) :=





[
eθ(z,x,t)

a(z)
j⃗
(1)
− (z, x, t), e−θ(z,x,t)⃗j

(2)
+ (z, x, t)], Im (z) > 0,

[ei(zx+z2t)⃗j
(2)
+ (z, x, t),

e−i(zx+z2t)

a(z)
j⃗
(2)
+ (z, x, t)], Im (z) < 0,

(1.1.16)

where
θ(z, x, t) = i(zx+ z2t). (1.1.17)

We notice that a(z) is analytic function in the lower half-plane, tends to 1 as z → ∞
and vanishes at the complex conjugate of the roots of a(z).

From the properties of the Jost solutions, Y (z, x, t) is analytic in all the complex plane
C except in the real line and at the points {z1, . . . , zn, z1, . . . , zn} and has to solve a
Riemann-Hilbert problem:

Problem 1.1.4. We are looking for a matrix Y (z, x, t) analytic in C\(R∪{z1, . . . , zn, z1, . . . , zn})
such that:

1. Jump condition: for z ∈ R, Y (z, x, t) takes continuous boundary values and
must satisfy the equation

Y (z, x, t)+ = Y (z, x, t)−V (z, x, t) (1.1.18)

where Y (z, x, t)± = lim
ε→0

Y (z ± iε, x, t) and V (z, x, t) is

V (z, x, t) :=

[
1 + |r̃(z)|2 e−2θ(z,x,t)r̃(z)

e2θ(z,x,t)r̃(z) 1

]
, r̃(z) :=

b(z)

a(z)
. (1.1.19)

2. Residues: at z = zj and z = zj, Y (z, x, t) has simple poles and satisfies

Resz=zjY (z, x, t) = lim
z→zj

Y (z, x, t)

[
0 0

cje
2θ(z,x,t) 0

]
(1.1.20)

and

Resz=zjY (z, x, t) = lim
z→zj

Y (z, x, t)

[
0 −cje−2θ(z,x,t)

0 0

]
, (1.1.21)

where cj = γ̃j/a
′(zj) and a

′(z) = ∂za(z).

3. Symmetry: Y (z, x, t) satisfies the Schwartz symmetry

Y (z, x, t) = σ2Y (z, x, t)σ2.

4. Normalization: as z → ∞, Y (z, x, t) → 1.

6



From the solution of the RHP 1.1.4 given the scattering data, one can reconstruct the
solution of the NLS equation (1.1.5) ψ(x, t):

Proposition 1.1.5. Given a matrix Y (z, x, t) which solves the Riemann-Hilbert prob-
lem 1.1.4, then the function

ψ(x, t) := 2i lim
z→∞

z(Y (z, x, t))12 (1.1.22)

solves the NLS equation (1.1.5).

1.2 The soliton gas limit: from the RHP to the ∂-problem

We consider the case where the initial datum ψ0(x) gives a purely discrete spectrum, i.e.
r̂(z) ≡ 0. Under this assumption, the RHP 1.1.4 consists just in the residue conditions at
the points {zj}Nj=1. Our aim is to understand what happen in the case where N → +∞,
so we need a way to rewrite those residue conditions.

We define γ+ a simple loop oriented anticlockwise that encircles all the poles in C+ and
let Dγ+ be the bounded domain with boundary γ+. In the lower half plane, we define
γ− := −γ+ a simple loop oriented anticlockwise that encircles all the poles in C− and
let Dγ− be the bounded domain with boundary γ−.

We apply the transformation

Ỹ (z;x, t) = Y (z;x, t)TN (z;x, t) (1.2.1)

where

TN (z;x, t) :=






1

N∑
j=1

c̄je
−2θ(z,x,t)

z−zj

0 1


 for z inside the curve γ−,




1 0

−
N∑
j=1

cje
2θ(z,x,t)

z−zj
1


 for z inside the curve γ+,

1 otherwise.

The new matrix Ỹ does not have any poles in C, but it has a jump condition for
z ∈ γ+ ∪ γ−

Ỹ+(z;x, t) = Ỹ−(z;x, t)




1
N∑
j=1

c̄je
−2θ(z,x,t)

z−zj
χγ−(z)

−
N∑
j=1

cje
2θ(z,x,t)

z−zj
χγ+(z) 1


 (1.2.2)

where χγ± are the characteristic function of the curves γ±.This new RHP (1.2.2) has the
same boundary conditions at infinity as the original RHP 1.1.4.
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We now consider the limit the limit for N → +∞. Let D (or D∗) be a simply connected
domain such that D ⊂ Dγ+ (or D∗ ⊂ Dγ−). We assume that the poles zj lies in the
upper half plane and, as N grows, they accumulate uniformly in D . Same situation
happen also for their complex conjugate zj . We assume also that the norming constants
cj scales as N−1 and are interpolated by a smooth function β(z, z), bounded on D , as
follows:

cj =
A

πN
β(zj , zj) (1.2.3)

where A is the Area of the domain D .

Proposition 1.2.1. Let cj ∈ C be defined as in (1.2.3) and the points {zj}Nj=1 ∈ D such
that, as N grows, they accumulate uniformly in D . Then, for z /∈ D the series

N∑

j=1

cj
z − zj

(1.2.4)

converges weakly for N → ∞ to the integral

∫∫

D

β(w,w)

z − w

d2w

π
, (1.2.5)

where β(z, z) is a smooth function bounded in D .

Proof We rewrite the quantities in (1.2.4) and (1.2.5) as

N∑

j=1

cj
z − zj

= A

∫∫

C

β(w,w)

z − w

dµN (w)

π
,

where µN is a discrete measure defined as

dµN (w) :=

N∑

j=1

δzj
N

d2w, δzj =

{
1 z = zj ,

0 otherwise.

and ∫∫

D

β(w,w)

z − w

d2w

π
= A

∫∫

C

β(w,w)

z − w

dµ(w)

π
,

where µ is the measure defined as

dµ(w) :=
χD(w)

A
d2w.

The points zj of the discrete measure dµN (w) are chosen in such a way that for any
C ⊂ C closed

N

∫

C
dµN (w) = NC , NC = #{zj ∈ D s.t. zj ∈ C ∩ D}.
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Then, by Portmanteau’s Theorem [15], if lim sup
N

µN (C) ≤ µ(C), with C a closed set in

C, then the measure µN converges weakly to µ. We apply this theorem to our case:

lim sup
N

µN (C ) = lim sup
N

NC ,

N
≤ C

A
= µ(C ),

where we denote with C the area of the set C ∩ D . So the measure µN converges to µ,
and also the integrals converge

A

∫∫

C

β(w,w)

z − w

dµN (w)

π

N→∞→ A

∫∫

C

β(w,w)

z − w

dµ(w)

π
=

∫∫

D

β(w,w)

z − w

d2w

π
.

■

So, in the limit N → +∞, the RHP (1.2.2) becomes

Ỹ+(z;x, t) = Ỹ−(z;x, t)J(z;x, t),

Ỹ+(z;x, t) ∼ 1+ O
(
z−1
)
, as z → ∞

(1.2.6)

with jump matrix

J(z;x, t) =




1
∫∫
D∗

e−2θ(z,x,t)β∗(w,w̄)d2w
π(z−w) χγ−(z)

−
∫∫
D

e2θ(z,x,t)β(w,w̄)d2w
π(z−w) χγ+(z) 1


 (1.2.7)

where β∗(z, z) = β(z, z).

As last step we want to cancel the jumps across the paths in γ+ and γ−. We apply the
transformation:

Γ(z;x, t) = Ỹ (z;x, t)T∞(z, z) (1.2.8)

where the matrix T∞(z, z) is a smooth complex valued matrix , defined as

T∞(z, z) =






1 −

∫∫
D∗

e−2θ(z,x,t)β∗(w,w̄)d2w
π(z−w)

0 1


 for z inside the loop γ−,




1 0∫∫
D

e2θ(z,x,t)β(w,w̄)d2w
π(z−w) 1


 for z inside the loop γ+,

1 otherwise .

,

which tends at the identity matrix as z → ∞.

The new matrix Γ has no jump through the contours γ+ and γ− but we do not have an
analytic matrix function anymore. Indeed, by applying the ∂z operator on (1.2.8) we
obtain

∂zΓ(z, z) = ∂z(Ỹ (z)T∞(z, z)) = Ỹ (z)∂zT∞(z, z) = Γ(z, z)M(z, z)
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where we define M(z, z) as

M(z, z) := T−1
∞ (z, z)∂zT∞(z, z). (1.2.9)

Since the anti-holomorphic derivative ∂z gives a non zero value only on the off-diagonal
terms [1], ∂zT∞(z, z) is given by

∂zT∞(z, z) =

[
0 −β∗(z, z)e−2θ(z,x,t)χD∗(z)

β(z, z)e2θ(z,x,t)χD(z) 0

]
, (1.2.10)

which is nil-potent. So the matrix M(z, z) (1.2.9) is simply given by

M(z, z) = T−1
∞ (z, z)∂zT∞(z, z) =

[
0 −β∗(z, z)e−2θ(z,x,t)χD∗(z)

β(z, z)e2θ(z,x,t)χD(z) 0

]
.

We have shown that from the RHP (1.2.6) with a non-standard jump matrix, we have
derived a ∂-problem

∂zΓ(z, z) = Γ(z, z)M(z, z)

Γ(z, z) = σ2Γ(z, z)σ2 Γ(z) = 1+ O(z−1) as z → ∞.
(1.2.11)

Since all the Transformations from Y (z, x, t) to Γ(z, z) tends to the identity as z → ∞,
we recover the solution of the NLS equation ψ(x, t) as follows:

ψ(x, t) = 2i lim
z→∞

z(Γ(z, x, t))12. (1.2.12)

1.2.1 The ∂-problem

We focus on the study of the ∂-problem (1.2.11). For particular choices of the function
β and of the domain D , we can reduce the ∂-problem to a standard Riemann-Hilbert
problem (Remark 1.2.2). We start by solving the ∂-problem by splitting it in the com-
ponents

Γ(z, z) = [A⃗(z, z) B⃗(z, z)]

and then the problem (1.2.11) becomes a systems of two ∂-problems:

∂zA⃗(z, z) = 0

∂zB⃗(z, z) = −β∗(z, z)e−2θ(z;x,t)A⃗
for z ∈ D∗ (1.2.13)

∂zA⃗(z, z) = β(z, z)e2θ(z;x,t)B⃗

∂zB⃗(z, z) = 0
for z ∈ D (1.2.14)
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with the boundary condition

A⃗ ∼
[
1
0

]
B⃗ ∼

[
0
1

]
as z → ∞. (1.2.15)

The equations (1.2.13) and (1.2.14) are much more easier to solve and already give us
two facts:

• A⃗(z, z) is analytic in C \ D ;

• B⃗(z, z) is analytic in C \ D∗.

So, from the Cauchy-Pompeiu formula, we can rewrite the equations (1.2.13) and (1.2.14)
as a system of two integral equations

A⃗(z, z) =

[
1
0

]
−
∫∫

D

B⃗(w)β(w, w̄)e2θ(z;x,t)

w − z

dw̄ ∧ dw

2πi
z ∈ D ,

B⃗(z, z) =

[
0
1

]
+

∫∫

D∗

A⃗(w)β∗(w, w̄)e−2θ(z;x,t)

w − z

dw̄ ∧ dw

2πi
z ∈ D∗.

(1.2.16)

In general, for z /∈ D ∪ D∗, we should have additional analytic terms but in this case,
from the smoothness of the problems, those terms are identically zeroes and the equa-
tions (1.2.16) hold also for z /∈ D ∪ D∗.

With the proper choice of the domain D and the function β(z, z), this system can be
solved exactly.

Let us assume now that β(z) is analytic in D simply connected and the boundary of D
is given by a equation

ϕ̃(z, z) = 0. (1.2.17)

We also assume that the equation (1.2.17) can be solved for z in terms of z, i.e

z = S(z).

The function S(z) is the so–called Schwarz function [30,57] of the domain D .

The Schwarz function admits an analytic extension to a maximal domain D0 ⊂ D . Here
we assume that L := D \ D0 consist of a mother-body, i.e., a collection of smooth arcs.
An example of this is the ellipse where L is the segment connecting the foci.

For z /∈ D ∪D∗, the integrands of the equations (1.2.16) are analytic, so we can use the
Stokes’ theorem and the Schwarz function of the domain to reduce the area integral to
a contour integral, namely

A⃗(z, x, t) =

[
1
0

]
−
∮

∂D

B⃗(w, x, t)S(w)β(w)e2iθ(z,x,t)

w − z

dw

2πi

B⃗(z, x, t) =

[
0
1

]
+

∮

∂D∗

A⃗(w, x, t)S∗(w)β∗(w)e−2iθ(z,x,t)

w − z

dw

2πi
, z /∈ D ∪ D∗,

(1.2.18)
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where the boundary ∂D is oriented anticlockwise. Since the integrand is analytic, we
shrink the contour integral to the mother-body L , namely

A⃗(z, x, t) =

[
1
0

]
−
∮

L

B⃗(w, x, t)∆S(w)β(w)e2iθ(z,x,t)

w − z

dw

2πi

B⃗(z, x, t) =

[
0
1

]
+

∮

L ∗

A⃗(w, x, t)∆S∗(w)β∗(w)e−2iθ(z,x,t)

w − z

dw

2πi
, z /∈ D ∪ D∗,

(1.2.19)

where ∆S(w) = S−(w) − S+(w), with S±(z) the boundary values of S on the oriented
mother-body L . The orientation of L is inherited by the orientation of ∂D . We can
express the system (1.4.1) in matrix form

Γ̃(z, x, t) = 1+

∫

L∪L ∗

(Γ̃(w, x, t))−e
−iθ(z,x,t)σ3M̃(w, x, t)eiθ(z,x,t)σ3

w − z

dw

2πi
(1.2.20)

where Γ̃(z, x, t) coincides with Γ(z, x, t) for z outside D and D∗ and where

M̃(z, x, t) =

[
0 ∆S∗(z)β∗(z)χL ∗(z)

−∆S(z)β(z)χL (z) 0

]
(1.2.21)

Using then the Sokhotski-Plemelj formula we can rewrite the above integral equation as
a Riemann-Hilbert problem for a matrix function Γ̃(z, x, t) analytic in C\{L ∪L } such
that

Γ̃+(z, x, t) = Γ̃−(z)e
−iθ(z,x,t)σ3(1+ M̃(z, x, t))eiθ(z,x,t)σ3 , z ∈ L ∪ L ,

Γ̃(z, x, t) = 1+ O(z−1), as z → ∞.
(1.2.22)

In Chapter 2, we study the above RHP when when the domain D is an ellipse and the
mother-body L is the segment connecting the foci of the ellipse. In this case, we are
able to describe the asymptotic properties of the NLS solution for t = 0 and large x and
for t→ ∞.

Remark 1.2.2. Under the same assumptions on the function β(z, z) and the domain
D , the RHP (1.2.22) can be obtained from the RHP (1.2.6) in this way:

1. we apply the Stokes’ Theorem at the off-diagonal terms of the jump matrix (1.2.7),
obtaining a contour integral over the boundary ∂D (or ∂D∗);

2. since the Schwarz function admits an analytic extension on the domain D , we can
shrink the contour integral to the mother-body L ;

3. we apply a transformation

Γ̃(z, x, t) = Ỹ (z, x, t)

[
1 −

∫
L ∗

∆S∗(w)β∗(w)e−2iθ(z,x,t)

w−z
dw
2πiχD∗(z)

∫
L ∗

∆S(w)β(w)e2iθ(z,x,t)

w−z
dw
2πiχD(z) 1

]
.

In this way, the matrix Γ̃ does not have a jump condition in z ∈ γ+∪γ− but on the
mother-body L ∪L ∗. The new jump matrix is exactly the one in the RHP (1.2.22).
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1.3 Fredholm determinant for the soliton gas

Let us take in consideration the RHP 1.1.4, with Im (zj) > 0, ∀ j = 1, . . . , N . The

solution Ỹ (z, x, t) has the form

Ỹ (z, x, t) = 1+
N∑

j=1

[
uj(x, t) 0
vj(x, t) 0

]

z − zj
+

N∑

j=1

[
0 −vj(x, t)
0 uj(x, t)

]

z − zj
.

When we apply the residue conditions, the functions uj(x, t), vj(x, t) are determined by
the algebraic systems:

[
uj(x, t)
vj(x, t)

]
= cje

θ(zj ,x,t)

([
0
1

]
+

N∑

k=1

(zj − zk)
−1

[
−vk(x, t)
uk(x, t)

])
,

and [
−vj(x, t)
uj(x, t)

]
= −cje−θ(zj ,x,t)

([
1
0

]
+

N∑

k=1

(zj − zk)
−1

[
uk(x, t)
vk(x, t)

])
.

By solving this equations and using the result (1.1.22), we obtain a formula for the
solution ψN (x, t) :

ψN (x, t) = −2i

N∑

j=1

vj(x, t). (1.3.1)

Another way to recover the N-soliton solution from the scattering data is the Kay-Moses
formula [67]

|ψN (x, t)|2 = ∂2x log(detCN (1+ON (x, t)ON (x, t))), (1.3.2)

where ON (x, t) is an N ×N matrix with elements given by the scattering data as:

(ON (x, t))jk :=

√
cjcke

θ(zj ,x,t)−θ(zk,x,t)

i(zj − zk)
, ON (x, t)T = ON (x, t). (1.3.3)

The determinant in (1.3.2) actually define a τ -function for the NLS equation:

τN (x, t) := det(1+ON (x, t)ON (x, t)). (1.3.4)

The existence of this determinant was proved by Borghese, Jenkins and Mclaughlin
in [20].

We now state the following theorem:

Theorem 1.3.1. Let {zj}Nj=1 ∈ C+ be a set of N points such that, as N grows, they ac-

cumulates uniformly on a domain D and {cj}Nj=1 ∈ C some constants defined in (1.2.3).
Then the function τN (x, t) defined in (1.3.4) converges to a Fredholm determinant

τ(x, t) = det(Id L2(D∪D∗) −K), (1.3.5)
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where K is an integrable operator in L2(D ∪ D∗) with kernel K̂ given by

K̂(z, z, w,w) =

√
β(z, z)β∗(w,w)eθ(z,x,t)−θ(w,x,t)χD(z)χD∗(w)

z − w

−
√
β∗(z, z)β(w,w)eθ(w,x,t)−θ(z,x,t)χD(w)χD∗(z)

z − w
. (1.3.6)

Proof

Since the matrix ON (x, t) is an Hermitian matrix, we can represent it as the composition

of an operator and its adjoint. We define MN : L2(x,+∞) → CN and M
†
N : CN →

L2(x,+∞) as

MN [f ]j :=

∫ +∞

x

√
cje

θ(zj ,s,t)f(s)ds, (1.3.7)

M
†
N [v⃗](x) =

N∑

k=1

√
cke

−θ(zk,x,t)vk, (1.3.8)

then is easy to check that ON (x, t)v⃗ = −(MN ◦ M
†
N )[v⃗]. In the same way, we define

MN : L2(x,+∞) → CN and M
†
N : CN → L2(x,+∞)

MN [f ]j :=

∫ +∞

x

√
cje

−θ(zj ,s,t)f(s)ds, (1.3.9)

M
†
N [v⃗](x) =

N∑

k=1

√
cke

θ(zk,x,t)vk, (1.3.10)

such that ON (x, t)v⃗ = −(MN ◦M†
N )[v⃗].

From the definition of τN (x) and the permutation symmetry of the determinant we get

τN (x, t) = det(1+ON (x, t)ON (x, t)) =

= det(1+ (MN ◦M†
N ) ◦ (MN ◦M†

N ))

= det(idL2(x,+∞) + (M
†
N ◦MN ) ◦ (M†

N ◦MN ))

= det(idL2(x,+∞) +BN ◦BN ),

with two new operators BN := (M
†
N ◦MN ) and BN := (M†

N ◦MN )) acting on L2(x,+∞)
that have the form

BN [f ] =

∫ +∞

x
B̂N (x+ s)f(s)ds, B̂N (s) =

N∑

k=1

cke
θ(zk,s,t)

BN [f ] =

∫ +∞

x
B̂N (x+ s)f(s)ds, B̂N (s) =

N∑

k=1

cke
−θ(zk,s,t)

(1.3.11)
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We now rescale the constants in the same way we saw in section 1.2 and let N → +∞.
We state the following lemma. The proof is similar to the one presented in [54].

Lemma 1.3.2. For (x, t) in compact set and N → +∞, the operators BN [u] and BN [u],
defined in (1.3.11), converge to the operators B and B acting on L2(x,+∞) and defined
as

B[f ] :=

∫ +∞

x
B̂(x+ s)f(s)ds, B̂(s) :=

∫∫

D
β(w,w)eθ(w,s,t)dw ∧ dw

2πi
. (1.3.12)

This means that the τ -function τN (x, t) given by a N × N determinant converges to a
τ -function given by the Fredholm determinant of the operator B◦B acting on L2(x,+∞):

τ(x, t) = det(Id L2(x,+∞) +B ◦B). (1.3.13)

The final part of the proof of the theorem consists in showing that the above Fredholm
determinant can be written in the form (1.3.5). The operator B can be decomposed as
the composition of two operators L : L2(D) → L2(x,+∞) and L† : L2(x,+∞) → L2(D)
defined in the following way:

L[f ] :=

∫∫

D

√
β(w,w)eθ(w,x,t)f(w)

dw ∧ dw

2πi
, (1.3.14)

L†[f ] :=

∫ +∞

x

√
β(w,w)eθ(w,s,t)f(s)ds, w ∈ D (1.3.15)

namely B = L ◦ L†. We can do the same also for B, decomposing it in two operators

L : L2(D∗) → L2(x,+∞) and L
†
: L2(x,+∞) → L2(D∗) defined as:

L[f ] :=

∫∫

D∗

√
β∗(w,w)e−θ(w,x,t)f(w)

dw ∧ dw

2πi
, (1.3.16)

L
†
[f ] :=

∫ +∞

x

√
β∗(w,w)e−θ(w,s,t)f(s)ds, w ∈ D∗. (1.3.17)

Then the τ -function (1.3.13) becomes

τ(x, t) = det(Id L2(x,+∞) +B ◦B) = det(Id L2(x,+∞) + (L ◦ L†) ◦ (L ◦ L†
)) =

= det(Id L2(D∗) + (L
† ◦ L) ◦ (L† ◦ L)) =

= det(Id L2(D∗) + P ◦ P),

where P : L2(D) → L2(D∗) and P : L2(D∗) → L2(D) are defined as

P[f ] = i

∫∫

D

√
β∗(z, z)β(w,w)

(w − z)
eθ(w,x,t)−θ(z,x,t)f(w)

dw ∧ dw

2πi
, z ∈ D∗, (1.3.18)

P[f ] = −i
∫∫

D∗

√
β(z, z)β∗(w,w)

(w − z)
eθ(z,x,t)−θ(w,x,t)f(w)

dw ∧ dw

2πi
, z ∈ D . (1.3.19)
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We now define the operator K acting on the space L2(D ∪ D∗) ∼= L2(D)
⊕
L2(D∗) as:

K[f ] := −i(P[f ]χD∗(z) + P[f ]χD(z)). (1.3.20)

From the properties of the determinant of a direct sum, we can write its Fredholm
determinant as:

det(Id L2(D∪D∗) −K) = det(Id L2(D∪D∗) + i(P[u]χD∗(z) + P[u]χD(z)))

= detL2

(
detC2

[
Id L2(D) iP

iP Id L2(D∗)

])
= det(Id L2(D∗) + P ◦ P). (1.3.21)

We finally need to show that K is an integrable operator. This is achieved by rewrit-
ing (1.3.20) K in the form

K[f ] =

∫∫

D∪D∗
K̂(z, z, w,w)f(w)

dw ∧ dw

2πi
, (1.3.22)

where K̂(z, z, w,w) is given by:

K̂(z, z, w,w) =

√
β(z, z)β∗(w,w)eθ(z,x,t)−θ(w,x,t)χD(z)χD∗(w)

z − w

−
√
β∗(z, z)β(w,w)eθ(w,x,t)−θ(z,x,t)χD(w)χD∗(z)

z − w
. (1.3.23)

Then we introduce vectors p⃗(z, z) and q⃗(w,w) defined as:

p⃗(z, z) = e−θ(z,x,t)σ3

[
−
√
β∗(z, z)χD∗(z)√
β(z, z)χD(z)

]
, (1.3.24)

q⃗(z, z) =

[ √
β(z, z)χD(z)√
β∗(z, z)χD∗(z)

]
eθ(z,x,t)σ3 (1.3.25)

which satisfies the following properties:

p⃗(z, z)T q⃗(z, z) ≡ 0 ≡ (∂z p⃗(z, z))
T q⃗(z, z) p⃗, q⃗ ∈ C∞(D ,Mat(2× 1,C)). (1.3.26)

Then the kernel K̂ can be written as

K̂(z, z, w,w) =
p⃗(z, z)T q⃗(w,w)

z − w

which coincides with the definition of an integrable operator.

■
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1.4 Exact solution for the ∂-problem: the soliton shielding
phenomenon

In the section 1.2 we presented a way to solve the ∂-problem (1.2.11) for a generic
domain D and function β(z, z). In this section we choose on D and β(z, z) such that
the system (1.2.16) can be solved exactly and then find which kind of solution of NLS
they represent. The remarkable emerging feature is that as N → ∞, for certain types of
domains and densities, we have a “soliton shielding”, namely, the gas behaves as a finite
number of solitons.

1.4.1 Soliton gas in a disk

Consider the case where our domain D is a disk Dρ(z0) with ray ρ and centred in z0.
In particular, we choose ρ such that all the disk is in the upper half plane. We assume
that the function β(z, z) is analytic in Dρ(z0).

We analyze the case when z /∈ Dρ(z0) ∪ Dρ(z0)
∗.

As we showed in section 1.2, for β(z) analytic we can apply Stokes’ Theorem and the
integral equation (1.2.16) becomes

A⃗(z, x, t) =

[
1
0

]
−
∮

∂Dρ(z0)

B⃗(w, x, t)S(w)β(w)e2iθ(z,x,t)

w − z

dw

2πi

B⃗(z, x, t) =

[
0
1

]
+

∮

∂Dρ(z0)∗

A⃗(w, x, t)S∗(w)β∗(w)e−2iθ(z,x,t)

w − z

dw

2πi
,

(1.4.1)

where now the Schwartz function is well define

S(z) =
ρ2

w − z0
+ z0. (1.4.2)

Choosing z /∈ Dρ(z0)∪Dρ(z0)
∗, those integrals in are given by the residue at z0. We get

that the problem (1.4.1) becomes an algebraic system of four equations





A⃗(z, z) =

(
1
0

)
+ ρ2

B⃗(z0)β(z0)e
2θ(z0;x,t)

z − z0

B⃗(z, z) =

(
0
1

)
− ρ2

A⃗(z0)β
∗(z0)e

−2θ(z0;x,t)

z − z0

(1.4.3)

where the vectors A⃗(z0) and B⃗(z0) are a solution of the same system when A⃗(z)|z=z0

and B⃗(z)|z=z0 . 



A⃗(z0) =

(
1
0

)
+ ρ2

B⃗(z0)β(z0)e
2θ(z0;x,t)

z0 − z0

B⃗(z0) =

(
0
1

)
− ρ2

A⃗(z0)β
∗(z0)e

−2θ(z0;x,t)

z0 − z0

(1.4.4)
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For z ∈ Dρ(z0) ∪ Dρ(z0)
∗ we integrate directly the ∂-problem (1.2.13) and (1.2.14) and

we obtain another algebraic system of the form

A⃗(z, z) =

(
1
0

)
+ ρ2

B⃗(z0)β(z0)e
2θ(z0;x,t)

z − z0
+
[
zB⃗(z)β(z)e2θ(z,x,t) + X⃗1(z)

]
χDρ(z0)

(1.4.5)

B⃗(z, z) =

(
0
1

)
− ρ2

A⃗(z0)β(z0)e
−2θ(z0;x,t)

z − z0
−
[
zβ(z)e2θ(z,x,t)A⃗(z) + X⃗2(z)

]
χDρ(z0)∗

where X⃗1(z) and X⃗2(z) are analytic functions which are determined by imposing that
the solutions of the systems (1.4.3) and (1.4.5) coincides for z ∈ ∂Dρ(z0)∪ ∂Dρ(z0)

∗. So
we have that:

X⃗1(z) = −z0B⃗(z)β(z)e2θ(z,x,t) − ρ2
B⃗(z)β(z)e2θ(z,x,t)

z − z0
,

X⃗2(z) = −z0β∗(z)e−2θ(z,x,t)A⃗(z)− ρ2
β∗(z)e−2θ(z,x,t)A⃗(z)

z − z0
.

For z ∈ Dρ(z0) or z ∈ Dρ(z0)
∗, the solution of system (1.4.5) exists if and only if the

vectors A⃗(z0), B⃗(z0) solve the system (1.4.4), which is an linear system of 4 equations in
4 variables.

The Solution ψ(x, t) for the focusing NLS

To find out which kind of soliton gas solution the matrix Γ(z, z) yields, we need only the
explicit expression of B⃗(z, z) in the region z /∈ Dρ(z0) ∪ Dρ(z0)

∗. By explicitly solving

the system (1.4.4) we find the constants A⃗(z0) and B⃗(z0)

A⃗(z0) =




(
1− |β(z0)|2ρ4 e

2θ(z0)−2θ(z0)

(z0−z0)2

)−1

ρ2β(z0)
e2θ(z0)(z0−z0)

(z0−z0)2−ρ4|β(z0)|2e2θ(z0)−2θ(z0)


 B⃗(z0) =



ρ2β∗(z0)

e−2θ(z0)(z0−z0)

(z0−z0)2−ρ4|β(z0)|2e2θ(z0)−2θ(z0)(
1− |β(z0)|2ρ4 e

2θ(z0)−2θ(z0)

(z0−z0)2

)−1


 ,

(1.4.6)
and by substituting A⃗(z0) in the system (1.4.3) we obtain the explicit expression for
B⃗(z, z)

B⃗(z, z) =

[
ρ2 β

∗(z0)e−2θ(z0)

(z−z0)

1

]
+

|β(z0)|2ρ2
z − z0


ρ

2β∗(z0)
e−2θ(z0)

(z0−z0)2−ρ4|β(z0)|2e2θ(z0)−2θ(z0)

(z0−z0)

(z0−z0)2−ρ4|β(z0)|2e2θ(z0)−2θ(z0)
.


 e2θ(z0)−2θ(z0).
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Then we apply the formula (1.2.12)

ψ(x, t) = 2i lim
z→∞

z (Γ(z, z))12 = 2i lim
z→∞

z(B⃗(z, z))1

= 2iρ2β∗(z0)e
−2θ(z0,x,t)

(
1 +

|β(z0)|2ρ4e2θ(z0)−2θ(z0)

(z0 − z0)2 − ρ4|β(z0)|2e2θ(z0)−2θ(z0)

)

= 2iρ2β∗(z0)e
−2θ(z0,x,t)

(
(z0 − z0)

2

(z0 − z0)2 − ρ4|β(z0)|2e2θ(z0)−2θ(z0)

)
. (1.4.7)

we rewrite z0 = a + ib and β∗(z0) = |β(z0)|e−2iφ, with a, b ∈ R and φ ∈ [o, π], then we
recover the one soliton solution from (1.4.7) through simply algebraic steps, namely

ψ(x, t) = 2ib


 2e−2i[(a2−b2)t+ax+φ]

2b
ρ2|β(z0)|e

2b(x+2at) + ρ2|β(z0)|
2b

e−2b(x+2at)




= 2be−2i[(a2−b2)t+ax+φ−π
4
]sech(2b[(x− x0) + 2at]), (1.4.8)

where x0 :=
1
2b log

(
ρ2|β(z0)|

2b

)
.

1.4.2 Soliton gas for quadrature domain

We now consider a new class of domains

D :=
{
z ∈ C s.t.

∣∣∣(z − d0)
m − d1

∣∣∣ < ρ
}
, m ∈ N, (1.4.9)

with d0 ∈ C+ and |d1|, ρ > 0 sufficiently small so that D ∈ C+. When m = 1 such
domain coincides with the disk Dρ(λ0) of radius ρ > 0 centred at λ0 = d0 + d1. For
m > 1 the domain D has am–fold symmetry about d0 and is simply connected if |d1| ≤ ρ,
and otherwise it has m connected components [8].The boundary of D is described by

z = S(z), S(z) = d0 +

(
d1 +

ρ2

(z − d0)m − d1

) 1
m

. (1.4.10)

We also assume that β(z, z) := n(z − d0)
nβ̂(z), with n ∈ N and β̂(z) analytic in D .

The n-soliton solution

Let us choose n = m. We then substitute w = S(w) and β(z, z) := n(z−d0)nβ̂(z) in the
contour integral (2.1.1) and use the residue theorem at the n poles given by the solution
{λ0, . . . , λn−1} of the equation (z − d0)

n = d1. Then, for z /∈ D ∪ D∗, we get that:

A⃗(z, x, t) =

[
1
0

]
+ ρ2

n−1∑

j=0

B⃗j(x, t)β̂(λj)∏
k ̸=j(λj − λk)

e2θ(λj)

z − λj

(1.4.11)

B⃗(z, x, t) =

[
0
1

]
− ρ2

n−1∑

j=0

A⃗j(x, t)β̂(λj)∏
k ̸=j(λj − λk)

e−2θ(λj)

z − λj
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where A⃗j(x, t) = A⃗(λj , x, t) and B⃗j(x, t) = B⃗(λj , x, t), that are given by solving the (1.4.11)

with A⃗(z, x, t)|z=λj
and B⃗(z, x, t)|z=λj

.

It is easy to notice that, for z /∈ D ∪D∗,the matrix Γ(z, z), given by the system (1.4.11),
is actually equal to a matrix Γn(z), analytic in C \ {λ0, . . . , λn−1, λ0, . . . , λn−1}, which
solves the residue conditions of the RHP 1.1.4 with cj = ρ2β̂(λj)/

∏
k ̸=j(λj − λk) for

j = 0, . . . , n−1. Since only the analytic part of Γ(z, z) contributes to the solution of NLS,
ψ(x, t) coincides with the n-soliton solution with spectrum {λ0, . . . , λn−1, λ̄0, , . . . , λ̄n−1, }.

The soliton solution of order n

We consider the case where m = 1, i.e. D = Dρ(z0), and β(z, z) := n(z−z0)nβ̂(z). Then
the system (1.4.1) becomes

A⃗(z, x, t) =

[
1
0

]
−
∮

∂Dρ(z0)

B⃗(w, x, t)(S(w)− z0)
n ˆβ(w)e2iθ(z,x,t)

w − z

dw

2πi

B⃗(z, x, t) =

[
0
1

]
+

∮

∂Dρ(z0)∗

A⃗(w, x, t)(S∗(w)− z0)
nβ̂∗(w)e−2iθ(z,x,t)

w − z

dw

2πi
.

(1.4.12)

Since the function (S(w) − z0)
n and its complex conjugate have poles of order n in z0

and z0 respectively, then the two integrals are given by the residue Theorem

A⃗(z, z) =

[
1
0

]
+ lim

w→z0

dn−1

dwn−1

(
B⃗(w)β̂(w)e2θ(w,x,t)

(w − z)

)

(1.4.13)

B⃗(z, z) =

[
0
1

]
− lim

w→z̄0

dn−1

dwn−1

(
A⃗(w)β̂∗(w)e−2θ(w,x,t)

(w − z)

)
.

If we evaluate (1.4.13) respectively for z0 and z0 and we calculate the derivatives:

dA⃗

dz
(z0); . . . ;

dn−1A⃗

dzn−1
(z0);

dB⃗

dz
(z0); . . . ;

dn−1B⃗

dzn−1
(z0), (1.4.14)

we obtain a linear system of 4n equations in 4n variables.

Solving this system with the software “Mathematica” and using the formula (1.2.12)
we obtain a solution of NLS which coincides with the n-degenerate soliton solution, as
shown in Figure 1.1.

This kind of solutions has been studied by Bilman and Buckingham in [16, 17]. Specifi-
cally, they shown that, for n→ +∞,its near field structure is described by the Painlevé
III equation. An analogous asymptotically study has been performed for breathers
in [18].
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Figure 1.1: On the left the 2-degenerate soliton with z0 = 1 + i. In the center the
3-degenerate soliton with z0 = i. On the right the 3-degenerate soliton with z0 = 1 + i.

1.4.3 Numerical simulations and Random Soliton gas

We present some numerical simulations about the phenomenon of “soliton shielding”.
In particular, we consider the case where the domain is the disk Dρ(z0), with ρ = 1/10,
z0 = i and β(z) = π/ρ2 ,and the points {zj}Nj=1 sampled in three different way:

1. a deterministic sample, where {zj}Nj=1 solves the “Fekete Problem” [46],

2. a random sample, where {zj}Nj=1 follow an uniform distribution,

3. a random sample, where {zj}Nj=1 are distributed according to the “Ginibre ensem-
ble” [52].

The deterministic soliton gas

In the deterministic case, we choose a set of N points described by the vector w =
(w0, . . . , wN−1) that minimizes the energy

E(w) = −2
∑

0≤j<k≤N−1

log |wj − wk|+
N

2

N−1∑

j=0

|wj |2, (1.4.15)

(suitably translated/rescaled) over all possible configurations. The points that minimize
the function E(w) are called “Fekete points” and they are the ones who best approximate
the uniform distributions on the unit disk [79]. The point {zj}Nj=1 are obtained by

translating and rescaling the points {wj}Nj=1 as follows:

zj = ρ(wj − z0) for j = 1, . . . , j.

We generate various sets of Fekete points for different values of N and then we construct
the solution ψN (x, t) by using a Dressing Method algorithm introduced by Gelash et al.
in [49]. The results are presented in Figure 1.2. Specifically, we show that the solution
ψN (x, t) is composed by a train of solitons that is pushed to x = −∞ as O(logN) and
a limiting soliton centred in x = 0.226 which is stable as N → ∞.
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Figure 1.2: On the left, the plot of the gas that approximates the area measure using
N Fekete points for N = 500, 2000, 5000, all centred in a disk of ray 1/10 and center
z0 = i (with β(z) = π/ρ2), and the emerging limiting (one-soliton) solution ψ∞(x, t)
centred at x = 0.226. On the right, a fit (with a curve of the form q + p log(N)) of the
distance between the peak of the limiting soliton solution ψ∞(x, t) and the first peak of
the remaining part of the solution that is going to infinity as N → ∞.

Random soliton gas with Ginibre and uniform statistics

Let us now introduce randomness in the system by choosing the points zj = ρ(wj−z0)χC+

with (w0, . . . , wN−1) ∈ CN distributed according to the probability density (Ginibre
ensemble)

µN =
1

ZN
e−E(w0,...,wN−1)d2w0 . . . d

2wN−1, (1.4.16)

where ZN is the normalizing constant and E(w0, . . . , wN−1) is the energy defined in
(1.4.15). In the limit N → ∞ the random points {w0, . . . , wN−1} fill uniformly the unit
disk centered at zero ( see e.g. [52]). For any smooth function h : C → C, let us consider
the random variable XN

h :=
∑N

j=1 h (wj). It is known [78] that

1

N
E[Xh] −→

N→∞

∫

|w|≤1
h(w)d2w, (1.4.17)

where E is the expectation with respect to the probability measure µN . Actually more is
true [7] [78]: the limit of the random variable Xh−E[Xh] converges to a normal random
variable N(0, σ) centred at zero and with finite variance σ2 depending on h.

From the above arguments it is expected that the jump of the RHP (1.2.7), in probability,
satisfies

P



∣∣∣∣∣∣

N−1∑

j=0

A

N

β(zj , zj)

z − zj
−
∫∫

D

β(w, w̄)

z − w
d2w

∣∣∣∣∣∣
> ϵ


 = O(N−1),
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for z /∈ D . Using small norm arguments on the RHP [34], one may argue that the
random N soliton solution ψN (x, t, z0, . . . , zN−1) converges as N → ∞ in probability
to the one-soliton solution ψ∞(x, t). Similar arguments can be used also when the
soliton spectrum is sampled according to the uniform distribution on the unit disk.
The complete mathematical proof would require a more elaborated argument, which is
postponed to a subsequent publication. From numerical simulations, the fluctuations of
ψN (x, t, z0, . . . , zN−1) around the limiting value ψ∞(x, t) are Gaussian with error that
decreases at the rate O(N−1), when the random points {z0, . . . , zN−1} are sampled from
the Ginibre ensemble while the rate is O(N−1/2) for the uniform distribution on the disk,
see Figure 1.3.
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Figure 1.3: Left: the Gaussian fitting of the fluctuations of the N = 600 soliton solution
ψN (0, 0) with respect to the limiting solution ψ∞(0, 0) ≃ 1.812 and 1000 trials. The point
spectrum is sampled in the disk D1/10(i) according to the Ginibre ensemble (top) and the
uniform distribution (bottom). On the right figure the corresponding Gaussian fitting
for N = 200, 300, 400, 500, 600. The Gaussian distribution is centred at ψ∞(0, 0) and the

error σ scales numerically as 0.178/N (Ginibre) and 0.129/N
1
2 (uniform distribution).

The scaling does not depend on the point x = 0, t = 0 chosen to make the statistics.
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Chapter 2

Soliton gas on an elliptic domain:
step-like oscillatory data

In this chapter we examine another example of the RHP for the soliton gas (1.2.6),
where the domain D ⊂ C+ has an elliptic shape and the function β(z, z) is analytic. For
simplicity, we assume that the foci {E1, E2} of the ellipse on the imaginary axis, with
Im (E2) > Im (E1) > 0.

2.1 The Riemann-Hilbert Problem

We consider the RHP (1.2.6) defined in a domain D with contour given by the equation
of the ellipse

√
Re (z)2 + (Im (z)− Im (E1))2 +

√
Re (z)2 + (Im (z)− Im (E2))2 = 2ρ,

where ρ > 0 is chosen sufficiently small such that D lies in the upper half plane. We
assume also that β(z, z) is analytic in D .

As we already saw in section 1.2, we can apply Stokes’ Theorem for z /∈ D and the
off-diagonal terms of the jump matrices (1.2.7) becomes

∫∫

D

e2θ(z,x,t)β(w)d2w

π(z − w)
=

∮

∂D

β(w)we2θ(z;x,t)

z − w

dw

2πi
(2.1.1)

and similarly for the integral over D∗. The variable w can be expressed via Schwartz
function S(w)

S(w) = 2
ρ2

c2
(w − iy0)− z + 2

ρ

c2

√
ρ2 − c2R(w), (2.1.2)

with R(w) :=
√
(w − E1)(w − E2), y0 :=

Im (E1)+Im (E2)
2 and c := Im (E2)−Im (E1)

2 .
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This Schwartz function is analytic in C away from the segment [E1, E2], with left/right
boundary values S±(w) as w ∈ [E1, E2]. Then, for z /∈ D ∪ D∗, the integral along the
boundary ∂D (or ∂D∗) can be deformed to a line integral on the segment [E1, E2] (or
[E2, E1]), namely

∮

∂D

β(w)we2θ(z;x,t)

z − w

dw

2πi
=

∮

∂D

β(w)S(w)e2θ(z;x,t)

z − w

dw

2πi

=

∫ E2

E1

β(w)∆S(w)e2θ(z;x,t)

z − w

dw

2πi

where ∆S(z) := S+(z) − S−(z). With an abuse of notation, we define the matrix Γ(z)
as

Γ(z) :=

{
Ỹ (z), z ∈ C\{Dγ+ ∪Dγ−}
Ỹ (z)T (z), z ∈ Dγ+ ∪Dγ−

(2.1.3)

where T (z) =




1

E1∫

E2

β∗(w)∆S∗(w)e−2θ(z;x,t)

w − z

dw

2πi
χDγ−

(z)

E2∫

E1

β(w)∆S(w)e2θ(z;x,t)

z − w

dw

2πi
χDγ+

(z) 1



,

where Dγ± is the closure of the sets Dγ± . The matrix Γ(z) does not have a jump on
γ+ ∪ γ−. Since T (z) has a jump in [E1, E2] ∪ [E2, E1] it follows that Γ(z) is analytic in
C \ {[E1, E2] ∪ [E2, E1]} with jump conditions

Γ+(z) = Γ−(z)T
−1
− T+ = Γ−(z)e

−θ(z;x,t)σ3V0(z)e
θ(z;x,t)σ3 , z ∈ [E1, E2] ∪ [E2, E1]

V0(z) =

[
1 χ[E2,E1]

(z)∆S∗(z)β∗(z)

−χ[E1,E2](z)∆S(z)β(z) 1

]
,

(2.1.4)

and Γ(z) = 1 + O(z−1), as z → ∞. It is possible to find a similar RHP (without the
term ∆S∗(z)) also while studying the infinite soliton limit when the spectral points are
distributed uniformly along the segments [E1, E2] ∪ [E2, E1].

The primary challenge of the RHP (2.1.4) lies in the presence of highly oscillatory ex-
ponential in the jump matrices, which could cause divergences for x → ±∞ and/or
t → ±∞. The Nonlinear Steepest Descent technique, developed by Deift and Zhou
in [35], offers a method to study the behaviour of the matrix Γ(z) and, consequently, the
solution ψ(x, t) of (1.1.5) for large values of the parameters x and/or t.
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Figure 2.1: On the left the domains D and D∗. On the right the jump contours of the
RHP (2.2.1).

2.2 Asymptotics of the initial data ψ0(x)

We consider the RHP (2.1.4) for t = 0. We define r(z) := ∆S(z)β(z), then the RHP
becomes

Γ+(z) = Γ−(z)

[
1 r∗(z)e−2izxχ[E2,E1]

(z)

−r(z)e2izxχ[E1,E2](z) 1

]
, z ∈ [E1, E2] ∪ [E2, E1]

Γ(z) = Γ(z), Γ(z) = 1+ O(z−1)

(2.2.1)

We notice that, for z ∈ [E1, E2]∪ [E2, E1] the jump matrices has two different behaviours
at x ∼ ±∞:

1. for x → +∞ the jump matrices tends to the identity 1. Consequentially, the
solution Γ(z) tends to the identity exponentially fast as x → +∞ and, by using
the relation (1.2.12), the initial datum ψ0(x) must have the same exponential
behaviour at x ∼ +∞:

ψ0(x) ∼ O(e−cx)

with c > 0.

2. for x→ −∞ the jump matrices diverges. So we have to use the Nonlinear steepest
descent method to obtain some information about the initial datum ψ0(x) as x ∼
−∞.

We now focus on the second case. The RHP and the analysis are similar to the one
studied by Girotti, Tamara, Jenkins and McLaughlin in [53] for the KdV case.

We start the nonlinear steepest descent analysis by apply the following transformation

Γ̂(1)(z) = F σ3
∞ Γ(z)eig(z)xσ3F (z)σ3 , (2.2.2)
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where g(z),F (z) are two unknown function, analytic in C \ [E2, E2], and they satisfy the
conditions:

g(z) = g(z), F (z) = (F (z))−1, (2.2.3)

g(z) ∼ O
(
z−1
)
, F (z) ∼ F∞ + O

(
z−1
)
, as z → ∞, (2.2.4)

g(z) ∼ |z − Ej |1/2or g(z) ∼ |z − Ej |1/2 at the endpoints. (2.2.5)

The matrix Γ̂(1)(z) has jump conditions not only in [E1, E2]∪[E2, E1] but also in [E1, E1]:

Γ̂
(1)
+ (z) = Γ̂

(1)
− (z)V̂ (1)(z, x, t), (2.2.6)

where

V̂ (1)(z, x) =





[
eix(g+−g−) F+

F−

−r(z)e2izx+ix(g++g−)(F+F−)χ[E1,E2](z)

r∗(z)e−2izx−ix(g++g−)(F+F−)
−1χ[E2,E1]

(z)

e−ix(g+−g−) F−
F+

]
, z ∈ [E1, E2] ∪ [E2, E1],

[
eix(g+−g−) F+

F−
0

0 e−ix(g+−g−) F−
F+

]
z ∈ [E1, E1].

(2.2.7)

We are looking for two function g(z), F (z) such that the jump matrices V̂ (1) have con-
stant off-diagonal elements in the jump matrices at z ∈ [E1, E2]∪ [E2, E1] and a constant
jump matrix in the gap z ∈ [E1, E1]. This results in the condition that g(z), F (z) solve
the scalar Riemann-Hilbert problems:

g+(z) + g−(z) = −2z for z ∈ [E1, E2] ∪ [E2, E1],

g+(z)− g−(z) = Ω for z ∈ [E1, E1],
(2.2.8)

and

F−(z)F+(z) = r−1(z) for z ∈ [E1, E2],

F−(z)F+(z) = r∗(z) for z ∈ [E2, E1],

F+(z)

F−(z)
= e∆ for z ∈ [E1, E1]

(2.2.9)

with Ω and ∆ constants, and boundary conditions given by (2.2.3), (2.2.4) and (2.2.5).

The problems (2.2.8) and (2.2.9) are solved by the functions:

g(z) = −z +
∫ z

E2

ζ2 + κ

P1(ζ)
dζ (2.2.10)
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F (z) = exp
{P1(z)

2πi

(
−
∫ E2

E1

log β̂(ζ)

P1(ζ)+(ζ − z)
dζ +

∫ E1

E2

log β̂∗(ζ)

P1(ζ)+(ζ − z)
dζ+

+

∫ E1

E1

∆

P1(ζ)(ζ − z)
dζ
)} (2.2.11)

where P1(z) :=
√

(z − E1)(z − E2)(z − E1)(z − E2) is a multivalued complex function,

analytic in C \ [E2, E1] ∪ [E1, E2], and with the constants κ, ∆ and Ω defined as

κ := Im (E2)
2

(
E(m)

K(m)
− 1

)
, Ω := −πIm (E2)

2K(m)
(2.2.12)

∆ :=
iIm (E2)

2K(m)

[∫ E2

E1

log r(ζ)

P1(ζ)+
dζ −

∫ E2

E1

log r∗(ζ)

P1(ζ)+
dζ

]
(2.2.13)

and K(m) and E(m) are complete elliptic integral of the first and second type, and

m := Im (E1)2

Im (E2)2
∈ (0, 1 ] is the elliptic moduli.

Substituting (2.2.10) and (2.2.11) in the jump matrices (2.2.7) we get

V̂ (1)(z, x) =





[
eix(g+−g−) F+

F−
χ[E2,E1]

(z)

−χ[E1,E2](z) e−ix(g+−g−) F−
F+

]
for z ∈ [E1, E2] ∪ [E2, E1],

ei(xΩ−∆)σ3 for z ∈ [E1, E1].

(2.2.14)

As next step, we factorize the jump matrices V̂ (1)(z, x) along the segments [E1, E2] and
[E1, E2]. Indeed, for z ∈ [E1, E2] we have:

V̂ (1)(z, x) =

[
1 e−2ix(g−+z)

(F−)2r(z)

0 1

] [
0 1
−1 0

][
1 e−2ix(g++z)

(F+)2r(z)

0 1

]
, (2.2.15)

while for z ∈ [E2, E1] we have

V̂ (1)(z, x) =

[
1 0

(F−)2

r∗(z) e
2ix(g−+z) 1

] [
0 1
−1 0

][
1 0

(F+)2

r∗(z) e
2ix(g++z) 1

]
. (2.2.16)

We analytically extend the first and the third matrices of the factorizations (3.1.19)
and (3.1.20) in a neighborhood outside the segments [E1, E2] and [E1, E2]. We denote
with U±([E1, E2]) the open set on the left (+) and the right (−) of the segment [E1, E2]
as it’s shown in Figure 2.2, and with U±([E1, E2]) their complex conjugate.

Then we introduce a new transformation

Γ̂(2)(z) = Γ̂(1)(z)T (2)(z, t), (2.2.17)
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E2

E1

U−U+

Figure 2.2: The lenses U+([E1, E2]) and U−([E1, E2]).

where

T (2)(z, x) =





[
1 e−2ix(g(z)+z)

(F (z))2r(z)

0 1

]
z ∈ U−([E1, E2]),

[
1 − e−2ix(g(z)+z)

(F (z))2r(z)

0 1

]
z ∈ U+([E1, E2]),

[
1 0

(F (z))2

r∗(z) e2ix(g(z)+z) 1

]
z ∈ U−([E1, E2]),

[
1 0

− (F (z))2

r∗(z) e2ix(g(z)+z) 1

]
z ∈ U+([E1, E2]),

1 otherwise.

(2.2.18)

The new matrix Γ̂(2)(z) solves the RHP

Γ̂
(2)
+ (z) = Γ̂

(2)
− (z)V̂ (2)(z, x), (2.2.19)

with the jump matrices also defined in the boundary of U±([E1, E2]) and U±([E1, E2]),
which we denote with L±([E1, E2]) and L±([E2, E2])

V̂ (2)(z, x) =





[
1 e−2ix(g(z)+z)

(F (z))2r(z)

0 1

]
z ∈ L−([E1, E2]) ∪ L+([E1, E2]),

[
1 0

(F (z))2

r∗(z) e2ix(g(z)+z) 1

]
z ∈ L−([E1, E2]) ∪ L−([E1, E2]),

(2.2.20)

while in the original jump contours we have

V̂ (2)(z, x) =





[
0 1
−1 0

]
z ∈ [E1, E2] ∪ [E1, E2]

ei(xΩ−i∆)σ3 z ∈ [E1, E1].

(2.2.21)

The orientations of the contours it’s shown in the figure 2.3.

We now analyze how the jump matrices V̂ (2)(z, x), at the boundaries of the lenses,
behaves as x ∼ −∞. Specifically, we study the sign of Im (g(z) + z).
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Im (z)

Re (z)

E2

E1

E2

E1

[
0 −1
1 0

]

ei(xΩ−i∆)σ3

[
1 e−2ix(g(z)+z)

rF 2

0 1

]

[
1 0

F 2e2ix(g(z)+z)

r∗ 1

]

Figure 2.3: Jump contours and jump matrices V̂ (2)(z, x).

Lemma 2.2.1. The function g(z), defined in (2.2.10) satisfy the following inequalities:

Im (g(z) + z) > 0 for z ∈ (U+([E1, E2]) ∪ U−([E1, E2])) \ {E1, E2}
Im (g(z) + z) < 0 for z ∈ (U+([E2, E1]) ∪ U−([E2, E1])) \ {E1, E2}

(2.2.22)

Proof The strategy is to recover the sign of the imaginary part of a function by studying
the imaginary part of it’s derivative. This means that we have to study

g′±(z) + 1 =
z2 + κ

P1(z)±
. (2.2.23)

Let us focus on the case where z ∈ [E1, E2]. We fix an orientation for P1(z). We choose
the one such that P−(0) ∈ R+

P1(z)− = |P1(z)|eiπ/2

P1(z)+ = |P1(z)|e−iπ/2
for z ∈ [E1, E2].

We write z = iλ, with λ ∈ R+, and in the right side of [E1, E2] we have

Im (g′−(z) + 1) = Im

(
z2 + κ

P1(z)−

)
= −−λ2 + κ

|P1(z)|
(2.2.24)

since κ ∈ R−, we rewrite it as

(4.27) =
λ2 + |κ|
|P1(z)|

> 0. (2.2.25)

Meanwhile, in the left side of [E1, E2]

Im (g′+(z) + 1) = Im

(
z2 + κ

P1(z)+

)
= −λ

2 + |κ|
|P1(z)|

< 0. (2.2.26)
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We integrate (2.2.23)

g(z) + z =

∫ z

E2

ζ2 + κ

P1(z)
dζ (2.2.27)

and it is trivial to see that the integral give us a pure real number for in z ∈ [E1, E2].
So, considering also (2.2.25) and (2.2.26), we have that

Im (g(z) + z) > 0 for z ∈ (U+([E1, E2]) ∪ U−([E1, E2])) \ {E1, E2} (2.2.28)

We follow the same ideas also for z ∈ [E2, E1], with the sign of Im (g′± + 1) that in this
case are swapped

Im (g′+ + 1) > 0,

Im (g′− + 1) < 0,
(2.2.29)

and so we get that Im (g(z)+ z) is negative in the lenses (U+([E2, E1])∪U−([E2, E1])) \
{E1, E2}. ■

From Lemma 2.2.1, we find out that the jump matrices V̂ (2)(z, x), for z ∈ L±([E1, E2])
and z ∈ L±([E2, E1]), tends to the identity as x→ −∞. Then the RHP (2.2.19) reduces
to a model problem

X+(z) = X−(z)VX(z, x),

X(z) = X(z), X(z) = 1+ O(z−1) as z → ∞,
(2.2.30)

where

VX(z, x) =





[
0 1
−1 0

]
z ∈ [E1, E2] ∪ [E1, E2]

ei(xΩ−i∆)σ3z ∈ [E1, E1].

(2.2.31)

2.2.1 The solution of the model problem

The model problem (2.2.30) was already studied by Bertola and Tovbis in [14], and they
solve it by using special functions living on a Riemann surface. We follow their same
procedure.

We introduce a Riemann surface P1 of genus 1 defined as:

P1 = {(w, z) ∈ C2|w2 = P1(z)
2}. (2.2.32)

We introduce the homological basis α, β on it; with the β cycle encircling the segment
[E1, E2] counter-clock wise and the α cycle going from E1 to E1 in the fist sheet and
coming back in the second sheet. Then we define the Abel map

u(z, z0) := − E2

2K(m)

∫ z

z0

dζ

P1(ζ)
, (2.2.33)
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and the Jacobi Theta Function

ϑ(z, τ) :=
∑

n∈Z
eiπn

2τ+2iπnz; (2.2.34)

with τ a modular parameter that, in our case, is given by

τ =
iK(m′)

2K(m)
, m′ =

√
1−m2.

This function possesses the following properties:

Proposition 2.2.2. For l, j ∈ Z, the Jacobi Theta Function (2.2.34) satisfy the follow-
ing conditions:

1. ϑ(z + lτ) = ϑ(z)e−2iπzl−iπl2τ ;

2. ϑ(z + j) = ϑ(z);

3. ϑ(−z) = ϑ(z).

We now have all the instruments to solve the model problem (2.2.30):

Step 1 We solve the homogeneous RHP

X
(0)
+ (z) = X

(0)
− (z)

[
0 1
−1 0

]
, for z ∈ [E1, E2] ∪ [E1, E2]

X(0)(z) = X(0)(z), X(0)(z) = 1+ O(z−1) as z → ∞.

(2.2.35)

The solution of this RHP is given by:

X(0)(z) =
1

2

[ (
ϕ1(z) + ϕ1(z)

−1
)

−i
(
ϕ1(z)− ϕ1(z)

−1
)

i
(
ϕ1(z)− ϕ1(z)

−1
) (

ϕ1(z) + ϕ1(z)
−1
)
]

(2.2.36)

where

ϕ1(z) :=

(
(z − E1)(z − E2)

(z − E2)(z − E1)

) 1
4

(2.2.37)

is analytic in C \ [E2, E1] ∪ [E1, E2], with the jump condition along the branch cuts

ϕ1(z)+ = iϕ1(z)−.

Step 2We consider the Abel map (2.2.33) with z0 = ∞ and we check the jump conditions
along the segment [E2, E2]:

u+ + u− = 0 for z ∈ [E1, E2]; (2.2.38)

u+ − u− = −τ for z ∈ [E1, E1]; (2.2.39)

u+ + u− = −1 for z ∈ [E2, E1]. (2.2.40)
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Step 3 We introduce an ansatz for the RHP (2.2.30)

X(z) =
C

2

[ (
ϕ1(z) + ϕ1(z)

−1
)
φ1(z)

i
(
ϕ1(z)− ϕ1(z)

−1
)
φ2(z)

−i
(
ϕ1(z)− ϕ1(z)

−1
)
ψ1(z)(

ϕ1(z) + ϕ1(z)
−1
)
ψ2(z)

]
,

(2.2.41)

then we need to find the functions φj(z), ψj(z); with j = 1, 2; such that they solve the
scalar RHP

(φj(z))+ = (ψj(z))− z ∈ [E1, E2] ∪ [E2, E1]

(φj(z))+ = ei(xΩ−i∆)(φj(z))− (2.2.42)

(ψj(z))+ = ei(xΩ−i∆)(ψj(z))− z ∈ [E1, E1].

Lemma 2.2.3. The functions φj(z, x), ψj(z, x); with j = 1, 2; defined as

φ1(z, x) =
ϑ(u(z1,∞1) +

xΩ−i∆
2π )

ϑ(u(z1,∞1))
ψ1(z, x) =

ϑ(u(z2,∞1) +
xΩ−i∆

2π )

ϑ(u(z2,∞1))
, (2.2.43)

φ2(z, x) =
ϑ(u(z1,∞2) +

xΩ−i∆
2π )

ϑ(u(z1,∞2))
ψ2(z, x) =

ϑ(u(z2,∞2) +
xΩ−i∆

2π )

ϑ(u(z2,∞2))
, (2.2.44)

where Ω and ∆ are defined in (2.2.12) and (2.2.13); and z1, z2 indicates the point z
respectively in the first and second sheet of the Riemann surface P1, solves the Riemann-
Hilbert problem (2.2.42).

Proof The lemma is easily proved by using the jump conditions on the Abel map (2.2.38)
and the properties of the Proposition 2.2.2. ■

The constant C is give by imposing the boundary condition X(z) ∼ 1 as z → ∞, and
we obtain

C =
ϑ(0)

ϑ(xΩ−i∆
2π )

.

2.2.2 The error parametrix around E1, E2, E1, E2

Before analyzing the error parametrix around the endpoint of the segments [E1, E2]
and [E2, E1], we should examine the behaviour of the function r(z) near those points.
Indeed, Girotti et al. in [54] studied a RHP similar to (2.2.19) for mKdV and they
proved that if the function r(z) has a local behaviour near the endpoints Ej , Ej of the
form r(z) ∼ |z−Ej |±1/2r̃(z), with r̃(z) locally bounded and non-zero , then it is possible
to modify the lens opening factorization so that local parametrix near the points E1 and
E2 are not needed. Specifically, we use the following assumption:
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Assumption 2.2.4. When r(z)|z − Ej |±1/2 is bounded and non zero on [E1, E2], we
assume that r(z) admits an analytical continuation analytically outside [E1, E2]:

r̂(z) analytic in Uh,− ∪ Uh,+, r̂(z)|z∈[E1,E2] = r(z), (2.2.45)

r̂+(z) + r̂−(z) = 0 z ∈ [E2, E2 + ih] ∪ [E1 − ih, E1] (2.2.46)

where Uh,+ is define as

Uh,+ := {z ∈ C|Re (z) ∈ (0 , h]

and Im (E1)−
√
h2 − Re (z)2 ≤ Im(z) ≤ Im (E2) +

√
h2 − Re (z)2

}
, (2.2.47)

with some 0 < h < Im (E1) and where Uh,− is defined by symmetry, Uh,− = {z| − z ∈
Uh,+}.
It seems from this assumption that, after we apply the transformation (2.2.17), we have
other jumps in the segments [E2, E2+ ih] and [E1− ih, E1], but actually is not true. For
example, for z ∈ [E2, E2 + ih] we have:

(Γ̂
(2)
− (z))−1Γ̂

(2)
+ (z) =

[
1 (r̂+

−1(z) + r̂−
−1(z)) e

−2i(g(z)+z)

(F (z))2

0 1

]
= 1, (2.2.48)

while for z ∈ [E1 − ih, E1] we have

(Γ̂
(2)
− (z))−1Γ̂

(2)
+ (z) =

[
eixΩ+∆ (r̂+

−1(z) + r̂−
−1(z)) e

−2i(g(z)+z)

(F (z))2

0 e−ixΩ−∆

]
= ei(xΩ−i∆)σ3 . (2.2.49)

So the lenses detaches from the E1 and E2 and fully enclose the the band. This means
that solution of the model problem is an exponentially accurate model uniformly in C.

E2

E1

Uh,−Uh,+

h

Im (z)

Re (z)

[
0 −1
1 0

]

ei(xΩ−i∆)σ3

[
1 e−2ix(g(z)+z)

rF 2

0 1

]

[
1 0

F 2e2ix(g+z)

r∗ 1

]

E2

E1

E2

E1

Figure 2.4: On the left the new lenses. On the right the Figure 2.3 with the new lenses.

In our case we have that r(z) = ∆S(z)β(z), with β(z) bounded in the original D
and ∆S(z) defined in the segment [E1, E2] with behaviour at the end point of the for
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∆S(z) ∼ |z − Ej |1/2. So, we are in the main hypothesis of the assumption 2.2.4 and
the model problem X(z, x) is an exponentially accurate approximation of our solution
Γ̂(2)(z), i.e.

X(z, x)(Γ̂(2)(z))−1 = 1+ O(e+cx), as x→ ∞, (2.2.50)

with c > 0.

2.2.3 Asymptotic of initial datum for x ∼ −∞
We can now enunciate the following theorem:

Theorem 2.2.5. The solution of the Riemann-Hilbert Problem (2.2.1) generates a step-
like oscillatory initial datum for the focusing NLS equation (1.1.5) ψ0(x) with the fol-
lowing behaviours at x→ ±∞

ψ0(x) =





O(e−cx) as x→ +∞

− i(Im (E2)− Im (E1))
ϑ(0)ϑ(u∞ + xΩ−i∆

2π )

ϑ(xΩ−i∆
2π )ϑ(u∞)

+ O(e+cx) as x→ −∞

(2.2.51)
with Ω and ∆ defined in (2.2.12) and (2.2.13), u∞ := u(∞2,∞1) and c > 0.

Proof If x → +∞, then the jump matrices of the RHP (2.2.1) tends to the identity in
a exponentially, i.e. Γ12(z, x) ∼ e−cx, with c > 0. From the equation (1.2.12) we have
that

ψ0(x) = O(e−cx).

As we shown in the previews sections, for x → −∞ the solution Γ̂(2)(z) is approxi-
mated by the matrix X(z, x) with an exponentially small error. So the equation (1.2.12)
becomes:

ψ0(x) = 2i lim
z→∞

zΓ12(z) = 2i lim
z→∞

z(F−σ3
∞ X(z, x)e−ig(z)xσ3F (z)−σ3)12 + O(e+cx)

= 2i lim
z→∞

zF−1
∞ X12(z, x)e

ig(z)xF (z) + O(e+cx)

As z → ∞, the behaviours of the functions F (z), g(z) are given by the conditions (2.2.4),
while the function X12(z, x) has the following expansion

X12(z, x) =
Im (E2)− Im (E1)

2z

ϑ(0)ϑ(u∞ + xΩ−i∆
2π )

ϑ(xΩ−i∆
2π )ϑ(u∞)

+ O(z−2), (2.2.52)

where u∞ := u(∞2,∞1). This implies that the initial datum ψ0(x) has the following
behaviour at x→ −∞:

ψ0(x) = −i(Im (E2)− Im (E1))
ϑ(0)ϑ(u∞ + xΩ−i∆

2π )

ϑ(xΩ−i∆
2π )ϑ(u∞)

+ O(e+cx). (2.2.53)

■
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Remark 2.2.6. The equation (2.2.53) can be rewritten in terms of “Jacobi delta ampli-
tude function” dn(z). Indeed, by using algebraic relation of the Theta function (2.2.34),
such as

ϑ(u∞, τ) = ϑ3

(
1

2
; τ

)
= ϑ4(0; τ), (2.2.54)

where ϑ3(z; τ) and ϑ4(z; τ) are defined as:

ϑ3(z; τ) := ϑ(z + u∞, τ), (2.2.55)

ϑ4(z; τ) := ϑ

(
z + u∞ +

1

2
, τ

)
. (2.2.56)

Then we have that:

ψ0(x) = −i(Im (E2)− Im (E1))
θ3(0; τ)

θ3(
1
2 ; τ)

θ3(
1
2 + Ω+∆

2π ; τ)

θ3(
Ω+∆
2π ; τ)

= −i(Im (E2)− Im (E1))
θ3(0; τ)

θ4(0; τ)

θ4(
Ω+∆
2π ; τ)

θ3(
Ω+∆
2π ; τ)

= −i(Im (E2)− Im (E1))
θ4(

Ω+∆
2π ; 2τ)2 + θ1(

Ω+∆
2π ; 2τ)2

θ4(
Ω+∆
2π ; 2τ)2 − θ1(

Ω+∆
2π ; 2τ)2

= −i(Im (E2)− Im (E1))
1 +

√
m sn2

(
K(m)

π (Ω +∆),m
)

1−√
m sn2

(
K(m)

π (Ω +∆),m
)

= −i(Im (E2)− Im (E1)) nd

(
K(m1)

π
(Ω +∆),m1

)

= −i(Im (E2)− Im (E1))
1 +

√
m

1−√
m

dn

(
K(m1)

π
(Ω +∆+ π),m1

)

= −i(Im (E2) + Im (E1)) dn

(
K(m1)

π
(Ω +∆+ π),m1

)
,

(2.2.57)

where we have used the Landen transformation to simplify the above expression

m1 =
4
√
m

(1 +
√
m)2

=
4Im (E2)Im (E1)

(Im (E2) + Im (E1))2
, (1 +

√
m)K(m) = K(m1) (2.2.58)

so that

ψ0(x) = −i(Im (E2) + Im (E1)) dn ((Im (E2) + Im (E1))(x− x0) +K(m1),m1) ,

where

x0 =
i

2

[∫ E2

E1

log r(ζ)

R+(ζ)
dζ −

∫ E2

E1

log r∗(ζ)

R+(ζ)
dζ

]

In the limit m1 → 1 or Im (E2) → Im (E1) we have x0 → − π
2Im (E1)

arg(r(iIm (E1))) and

that ψ0(x) tends to the one soliton solution.
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2.3 The zeros of the g-functions and phase transitions

We consider the scenario where the time parameter t > 0. In particular, we perform
the long-time asymptotic (t→ +∞) and long-space asymptotic analysis(x→ ±∞) with
η = x/t ∈ R fixed.

By applying the Nonlinear steepest descend analysis, we have to look at other function
g(z, η) analytic in C \ υ[E1,E2] ∪ υ[E2,E1]

∪ [E1, E1], where υ[z1,z2] is the oriented contour

from z1 to z2 on which Im (g(z, η)) = 0 , and have the following properties:

g(z, η) = g(z, η), (2.3.1)

g(z, η) ∼ 2(ηz + z2)O
(
z−1
)
,as z → ∞, (2.3.2)

g(z, η) ∼ |z − Ej |1/2or g(z, η) ∼ |z − Ej |1/2 at the endpoints. (2.3.3)

The conditions (2.3.1) and (2.3.2) imply that the level set Im (g(z, η)) = 0 has two infinite
branches: the real axis and another branch υ∞ which is asymptotic to the vertical line
Re (z) = −η/2.
For z ∈ υ[E1,E2] ∪ υ[E2,E1]

∪ [E1, E1] the g-function has those jump conditions along the
bands

g+(z) + g−(z) = 2(ηz + z2) for z ∈ υ[E1,E2] ∪ υ[E2,E1]
,

g+(z)− g−(z) = Ω for z ∈ [E1, E1],
(2.3.4)

From solving the RHP (2.3.4) we get that the g-function is still of genus 1 and has the
following form:

g(z, η) = 2

∫ z

E2

(ζ − µ(η))(ζ − d(η))(ζ − d(η))√
(ζ − E1)(ζ − E2)(ζ − E1)(ζ − E2)

dζ, (2.3.5)

with µ(η) ∈ R and d(η) ∈ C+. Fixing η and applying the conditions (2.3.1) and (2.3.2)
to the new g−function, the critical points µ(η), d(η) satisfy the system of equations





µ+ 2Re (d) = −η
2

2Re (d)µ+Re (d)2 + Im (d)2 =
Im (E1)

2 + Im (E2)
2

2

µ(Re (d)2 + Im (d)2) = −η
2
Im (E2)

2(1−Q(m))

(2.3.6)

where Q(m) := E(m)/K(m) and 0 < m ≤ 1 is the elliptic moduli. The existence of
the bands υ[E1,E2] and υ[E2,E1]

is guaranteed since they are trajectories of the quadratic

differential (g′(z, η))2dz2. Indeed, the local and global behaviour of the quadratic tra-
jectories depends on the nature of the zeros and the poles of (g′(z))2 and they obey the
following rules [64,85]:
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• at a simple pole emerges exactly one critical trajectory;

• at a zero of multiplicity k emerges k + 2 critical trajectories spacing under equal
angles 2π

(k+2) ;

• at a pole of order k > 2 there are k− 2 asymptotic directions spacing under equal
angle 2π

k−2 in a neighborhood U such that each trajectory entering U stays in U
and tends to the pole in one of the critical directions;

• at a double pole the local behaviour of the trajectories depends on the real and
imaginary part of the residue. There are three possible behaviours:

– radial;

– circular;

– log-spiral.

In our case, (g′(z))2 has four simple poles E1, E2, E1, E2 and three double zeroes µ(η),
d(η), d(η). From the properties of the g-function (2.3.2) and (2.3.3), the points that
are inside the critical trajectories Im (g(z)) = 0 are E1, E2, E1, E2 and µ(η) ∀ η ∈ R−.
Since every critical trajectory should end either on a pole or on a zero [85], then we
have four different critical trajectories: two given by the infinite branches that intersect
at µ(η), one short trajectory υ[E1,E2] which start at E1 and ends at E2 and its complex
conjugate.

Changing the parameters η and m along their domains, the points µ(η), d(η) will move
along the complex plane, changing also the trajectories in the level set Im (g) = 0.
Indeed, for some values of the η and m, the points d(η), d(η) can merge in the real
axis or touch the branch υ∞. In those specific situations, the branches of the leves
sets Im (g(z, η)) = 0 intersect into each other and cause a change in the nature of the
points µ(η), d(η), d(η). This means that the system (2.3.6), and consequentially the
g-function (2.3.5), is not well defined for some values of η and m.

According how the level set Im (g(z, η)) = 0 changes varying η and m, also the jumps of
the model problem (2.2.30) change.

This implies that the solution ψ(x, t) of the NLS eq (1.1.5), once we fix the elliptic
domain D , could have different asymptotic behaviour in different sectors of (x, t)-plane.
The aim of this section is to look for the values of η and/or m such that we have this
change of configurations, also called phase transitions.

We consider the imaginary part of d(η). From the system (2.3.6), we get that

Im (d) =
η2 − 6(Im (E1)

2 + Im (E2)
2)− (W (η,E1, E2))

2
3

4
√
3(W (η,E1, E2))

1
3

, (2.3.7)
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with

W (η,E1, E2) := η[54Im (E2)
2Q(m) + 9(Im (E1)

2 − 5Im (E2)
2)− η2]

+
(
[6(Im (E2)

2 + Im (E1)
2)− η2]3 (2.3.8)

+ η2[η2 − 9(Im (E1)
2 + Im (E2)

2(6Q(m)− 5))]2
) 1

2 .

We are looking for a configuration where we can have a double (or a triple) real zero of
the function g′(z), i.e. d(η) ∈ R and/or µ(η) = d(η). Indeed, setting Im (d) = 0 we find
the equation

W (η,E1, E2) = [η2 − 6(Im (E1)
2 + Im (E2)

2)]
3
2 . (2.3.9)

Fixing m, we find that one solution of (2.3.9) is given by ηc(m) := −Im (E2)
√
6(m+ 1)

but, as η → ηc, the function W (η,E1, E2) has two values:

W+(ηc, E1, E2) = 0 (2.3.10)

W−(ηc, E1, E2) = 6ηc(m)Im (E2)
2 (18Q(m) +m− 17) . (2.3.11)

The value of W± is determined by the sign of the function

Q(m) := 18Q(m) +m− 17. (2.3.12)

From implicit methods, we find out that Q(m) has a zero in mc ∼ 0.12274 and has signs:

Q(m) > 0 when m < mc and η = ηc

Q(m) < 0 when m > mc and η = ηc

So, for m < mc we take W+(ηc, E1, E2) = 0, while for m ≥ mc we take W−(E1, E2).

For W+ we are in the case where Im (d) = 0 ∀ m. Indeed:

lim
η→ηc

Im (d) = lim
η→ηc

(
η2 − 6(Im (E1)

2 + Im (E2)
2)

4
√
3(W+(η,E1, E2))

1
3

− 4
√
3(W+(η,E1, E2))

1
3

)

=
0

0
by using d’Hopital rule

= lim
η→ηc

2η(W+(η,E1, E2))
2
3

4
√
3W ′

+(η,E1, E2)
= 0

since W ′
+(ηc, E1, E2) ̸= 0.

From (2.3.11), we notice that W−(E1, E2) has a zero in mc. Then the point (ηc,mc) is
a critical point for the system (2.3.6), now we need to understand what configuration of
the points µ, d, d it represents.
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Let us consider Re (d) and µ:

Re (d) = −η
6
− η2 − 6(Im (E1)

2 + Im (E2)
2)

12(W (η,E1, E2))
1
3

− (W (η,E1, E2))
1
3

12
, (2.3.13)

µ = −η
6
+
η2 − 6(Im (E1)

2 + Im (E2)
2)

6(W (η,E1, E2))
1
3

+
(W (η,E1, E2))

1
3

6
. (2.3.14)

If we impose Re (d) = µ(η) we obtain an equation similar to (2.3.9):

W (η,E1, E2) = [−η2 + 6(Im (E1)
2 + Im (E2)

2)]
3
2 . (2.3.15)

Both (2.3.9) and (2.3.15) are satisfied at the point (ηc,mc). This means that g(z) has
one critical point of degree 3, i.e. d(ηc,mc) = d(ηc.mc) = µ.

Let us fix the parameter m in one of the cases m > mc or m < mc and analyze
the problem for η. For m > mc, the g-function has still three distinct critical points
µ(η), d(η), d(η) as η → ηc, but we can have a phase transition when the trajectories
in Im (g) = 0 intersect each other, i.e the points d and d touch respectively the curves
υ[E1,E2] and υ[E2,E1]

of the level set Im (g) = 0. This happen at η = η∗, with η∗ given by
the condition:

Im (g(d(η∗))) = 0. (2.3.16)

Then, for η∗ < η < 0, Im (g(d(η∗))) ̸= 0 with the point d and d who pass trough the
bands υ[E1,E2] and υ[E2,E1]

. Due to the local nature of the trajectories of (g′(z, η))2dz2

near d(η) and d(η), they split the trajectories υ[E1,E2], υ[E2,E1]
in the three different ones:

• one critical trajectory in the upper half plane, starting at E2 and following asymp-
totically the infinite branch Re z = −η/2;

• one critical trajectory in the lower half plane, starting at E2 and following asymp-
totically the infinite branch Re z = −η/2;

• one short trajectory from E1 to E1, which pass trough the point µ.

So the bands υ[E1,E2] and υ[E2,E1]
does not exist anymore and the g-function is not well

defined. We need to define a new g-function which satisfies two additional properties:

1. g′(z) has five zeroes: d1, d2, d1, d2 of degree 1/2 and µ ∈ R of degree 1;

2. Im (g(dj , η)) = 0, Im (g(dj , η)) = 0 with j = 1, 2.

In this way, the existence of a short trajectory connecting the point E1 with E2 and its
complex conjugate is guaranteed.

As m→ mc, we reach the point (ηc,mc); where µ, d, d collapse in one point. In this case,
we still have the phase transition described before but with a critical behaviour along
the characteristic x = ηc(mc)t. We study the case when m < mc.
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E2

E1

E2

E1

µ

(a) −∞ < η ≤ η∗

E2

E1

d

E2

E1

d

µ2

(b) η = η∗(m)

E2

E1

d2

d1

E2

E1

d2

d1

µ

(c) η∗ < η < 0

Figure 2.5: The level set Im (g) = 0 for m > mc.

We fix m < mc, we solve (2.3.9) for η. We define c(m) := Im (E2)
2[54Q(m) + 9(m− 1)],

then we rewrite the equation (2.3.9) as

(ηc(m)2 − η2) + η2(c(m)− η2)2 = 0. (2.3.17)

By expanding the two monomials, we obtain a fourth degree equation in η

η4(3ηc(m)2 − 2c(m))− η2(3ηc(m)4 − c(m)2) + ηc(m)3 = 0, (2.3.18)

which it is solved by η±(m)

η±(m) = −
(
3ηc(m)4 − c(m)2 ±

√
∆(m)

2(3ηc(m)2 − 2c(m))

) 1
2

, (2.3.19)

where ∆(m) is the discriminant of (2.3.18), with ∆(m) > 0 for m < mc.

Remark 2.3.1. For m = mc, c(mc) = ηc(mc)
2 and ∆(mc) = 0, so we have only one

solution of (2.3.18) which is exactly ηc(mc).

For η = η+, Im (d) = 0 and Re (d) < µ, so the g-function has two real critical points, one
simple and one double. For η+ < η < η−, the function W (η,E1, E2) defined in (2.3.8)
has values in the complex plane, which implies that the function (2.3.7) also have values
in the complex plane. This means that now the points µ, d and d are real and the
g-function (2.3.5) becomes

g(z) = 2

∫ z

E2

(ζ − µ1)(ζ − µ2)(ζ − µ3)√
(z − E1)(z − E2)(z − E1)(z − E2)

dζ, (2.3.20)

where µ1, µ2, µ3 ∈ R are solution of the system




µ1 + µ2 + µ3 = −η
2
;

(µ1 + µ2)µ3 + µ1µ2 =
Im (E1)

2 + Im (E2)
2

2
;

µ1µ2µ3 = −η
2
Im (E2)

2(1−Q(m)).

(2.3.21)
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In this case, our g-function is analytic in C \ υ[E2,E2]
∪ υ[E1,E1]

, where υ[E2,E2]
∪ υ[E1,E1]

are the oriented contours on which Im (g(z)) = 0. Their existence is guaranteed by since
they are trajectories of the quadratic differential (g′(z))2dz2.

For η = η− the bands υ[E2,E2]
and υ∞ intersect at the point µ2 = µ3 and for η > η−

the function W (η,E1, E2) ∈ R, which implies that our g-function has still three zeroes,
but only one (µ1) is real while the other two are complex (with µ2 = µ3). Due to the
local behaviour of the trajectories of (g′(z))2dz2 near the zeroes µ1, µ2 and µ3 and since
µ1 < Re (µ2), the short trajectory υ[E2,E2]

is splitted in two trajectory , one starting

at E2 and following asymptotically the line Re (z) = −η/2 and it’s complex conjugate.
This implies that both the g-functions (2.3.5) and (2.3.20) are not well define.

We need to define another g-function, still analytic in C \ υ[E2,E2]
∪ υ[E1,E1]

, such that it

satisfy the hypotesis (2.3.1),(2.3.2),(2.3.3) and the following conditions:

1. g′(z) has 4 zeroes, µ1, µ2 ∈ R of degree 1 and a pair of complex conjugate points
d1, d1 of degree 1/2.

2. Im (g(d1)) = 0 and Im (g(d1)) = 0.

In this way, the existence of the short trajectory υ[E2,E2]
is guaranteed.

Another phase transition emerges when the points µ1 and µ2 collide in one real point µ.
In this case the existence of the short trajecyory υ[E1,E1]

is not guaranteed and we need to

define a new g-function, which satisfies the conditions (2.3.1),(2.3.2),(2.3.3) and (1),(2).
We call η∗ the value of η where µ1(η∗) = µ2(η∗).

E2

E1

E2

E1

d µ

E2

E1

E2

E1

µ2µ1 µ3

E2

E1

E2

E1

µ1 µ3

E2

E1

d

E2

E1

d

µ2µ1

E2

E1

d

E2

E1

d

µ

Figure 2.6: The level set Im (g) = 0 for m < mc at η varing from η = η+(m) (left) to
η = η∗(m) (right)

In the next chapters, we will focus on the study of the long-time behaviour of the NLS
solution ψ(x, t) for the various cases we have shown before. Specifically, in chapter 3
we will study the case when m > mc, while in chapter 4 we will treat the case when
m < mc, studying the sectors of the (x, t)-plane η+ < η ≤ η− and η− < η ≤ η∗.
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Chapter 3

Elliptic domain with m > mc: the
Genus 1 and Genus 3 sectors

In this chapter, we examine the case where the elliptic parameter m is greater then mc.
As we already shown in section 2.3, the level set Im (g) = 0 has one phase transitions
for −∞ < η < 0, where the g-function increases his genus from one (for −∞ < η < η∗)
to three (for η∗ < η < 0). This implies that in this two sectors of the (x, t)-plane we
have two different RHP. Consequently, the solution ψ(x, t) has two different behaviours
in those sectors as t ∼ +∞. In the next sections we will study the long-time asymptotic
of the original RHP (2.1.4) and we will prove the following theorem:

Theorem 3.0.1. Let D ⊂ C+ be an elliptic domain with foci E1, E2. Suppose r :
[E1, E2] → C is an analytic and bounded function that vanishes at the foci as r(Ej) ∼
(z − Ej)

1/2 for j = 1, 2. Suppose also that E1, E2 ∈ iR+, with Im (E1) < Im (E2), and

the parameter m = Im (E1)2

Im (E2)2
> mc, with mc solution of the equation Q(m) = 0, where

Q(m) is define in (2.3.12). Then the large-time asymptotic of the soliton gas solution
of NLS, recovered from the solution of the RHP (2.1.4), with spectrum in the domain D
has the following form, according to the values of η. = x

t :

• for −∞ < η < η∗, with η∗ a critical parameter depending on Im (E1) and Im (E2)

ψ(x, t) = i(Im (E1) + Im (E2))×
× dn((Im (E1) + Im (E2))(x− x0(η)) +K(m1),m1) + O(e−ct); (3.0.1)

where c > 0, dn(x) is the Jacobi delta amplitude, x0 is determine by r(z) and

K(m1) :=
√
1−mK(m) m1 :=

4
√
m

(1 +
√
m)2

; (3.0.2)
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• for η∗ < η < 0

ψ(x, t) = i(Im (E2)− Im (E1) + Im (d2(η))− Im (d1(η)))×

× Θ(0)Θ(u⃗∞ − Ω⃗(η)t+∆⃗(η)
2π )

Θ( Ω⃗(η)t+∆⃗(η)
2π )Θ(u⃗∞)

+ O(t−1); (3.0.3)

where Ω⃗(η), ∆⃗(η) are 3-dimensional real vectorswith components defined in (3.2.2)
and (3.2.10), u⃗∞ is the Abel map (3.2.27) valued at z = ∞ and d1 and d2 are
points in C+.

• for η > 0 the solution decays exponentially

ψ(x, t) ∼ O(e−ct)

with c > 0.

3.1 The Genus 1 sector

From the original RHP (2.1.4), we gather the time variable t from the argument of the
exponential and we get

Γ(z)+ = Γ(z)−

[
1 −r∗(z)e−2itθ̂(z,η)χ[E2,E1]

r(z)e2itθ̂(z,η)χ[E1,E2] 1

]
(3.1.1)

where η = x
t and θ̂(z, η) := z2 + ηz.

We study the sign of Im (θ̂(z, η)) to understand in which sectors of the (x, t)-plane the
jump matrices in (3.1.1) has an exponential growing behaviour:

Im (θ̂(z, η)) = Im (z)(η + 2Re (z)) = 0 =⇒ {z ∈ C | Im (z) = 0} ∪
{
z ∈ C | Re (z) = −η

2

}
.

(3.1.2)

Then Im (θ̂) > 0 for {z ∈ C | Im (z) > 0, Re (z) > −η
2} and {z ∈ C | Im (z) <

0, Re (z) < −η
2}, while Im (θ̂) < 0 for {z ∈ C | Im (z) > 0, Re (z) < −η

2} and
{z ∈ C | Im (z) < 0, Re (z) > −η

2}. The distributions of the signs its shown in Figure 3.1.
This implies that, for η > 0, the jump matrices in (3.1.1) tends to the identity matrix
as t→ +∞, and the solution ψ(x, t) decays exponentially at t→ +∞. While for η < 0,
jump has an exponential growing behavior as t tends to infinity. To proceed with the
analysis of this scenario we need to apply the Nonlinear Steepest Descent technique.

We consider the sector −∞ < η < η∗. As we anticipated in section 2.3, we define a
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Re(z)

Im(z)

Re(z) = − η
2

Imθ̂(z, η) < 0

Imθ̂(z, η) < 0 Imθ̂(z, η) > 0

Imθ̂(z, η) > 0

Figure 3.1: The sign of Im (θ̂(z))

g-function g(z, η), analytic in C \ υ[E1,E2] ∪ υ[E2,E1]
, which satisfy the RHP

g(z, η)+ + g(z, η)− = 0 for υ[E1,E2] ∪ υ[E2,E1]
;

g(z, η)+ − g(z, η)− = 2g(E1) := Ω̂(η) for [E1, E1]; (3.1.3)

g∗(z, η) = g(z, η); g(z, η) = θ̂(z, η) + O(z−1) as z → ∞; (3.1.4)

g(z, η) ∼ |z − Ej |1/2, or g(z, η) ∼ |z − Ej |1/2 at the endpoints; (3.1.5)

where Ω̂(η) ∈ R. The solution of the RHP (3.1.3) is given by the g-function (2.3.5) and
the constant Ω̂(η) is defined as

Ω̂(η) :=
πIm (E2)

2K(m)
η. (3.1.6)

We now describe the application of the Nonlinear Steepest Descent step by step.

Step 1 we move the jump contours from the segments [E1, E2]∪ [E2, E1] to the level set
Im (g) = 0 connecting the endpoints. We denote this level sets as υ[E1,E2] and υ[E2,E1]

.

We define with Σ1 and Σ2 as the regions enclosed by the loop υ[E1,E2] ∪ [E2, E1] and its
complex conjugate respectively. Subsequently, we apply the transformation

Γ(1)(z) = Γ(z)G(1)(z, η, t) (3.1.7)
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where

G(1)(z, η, t) =





[
1 0

−r(z)e2itθ̂(z,η) 0

]
for z ∈ Σ1

[
1 r∗(z)e2itθ̂(z,η)

0 1

]
for z ∈ Σ2

1 otherwise

(3.1.8)

In this way, the new jump contours are the one showed in Figure 3.2.

E2

E1

E2

E1

µ

− +−

+ −+

E2

E1

E2

E1

Figure 3.2: On the left: the sign distribution of Im (g). On the right: jump contour of
the matrix Γ(1)(z).

Step 2 we absorb the exponent 2iθ̂(z, η) by applying the transformation

Γ(2)(z) = Γ(1)(z)eit(g(z,η)−θ̂(z,η))σ3 . (3.1.9)

where g(z, η) is the g-function (2.3.5). Then the RHP (3.1.1) becomes:

Γ(2)(z)+ = Γ(2)(z)−

[
eit(g+−g−) r∗(z)e−it(g++g−)χυ[E2,E1]

−r(z)eit(g++g−)χυ[E1,E2]
e−it(g+−g−)

]
(3.1.10)

Γ(2)(z) = 1+ O(z−1) as z → ∞.

From the jump conditions (3.1.3) of the g-function, the RHP (3.1.10) becomes:

Γ(2)(z)+ = Γ(2)(z)−V
(2)(z, η, t) (3.1.11)

Γ(2)(z) = 1+ O(z−1) as z → ∞,
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where V (2)(z, η, t) is given by

V (2)(z, η, t) =





[
eit(g+−g−) 0

−r(z) e−it(g+−g−)

]
for z ∈ υ[E1,E2],

[
eit(g+−g−) r∗(z)

0 e−it(g+−g−)

]
for z ∈ υ[E2,E1]

,

eitΩ̂σ3 for z ∈ [E1, E1].

(3.1.12)

Step 3 we absorb the function r(z) inside the matrix Γ(2)(z) trough the transformation

Γ(3)(z) = F∞(η)σ3Γ(2)(z)F (z, η)σ3 . (3.1.13)

The jump matrices of the RHP (3.1.11) transforms as

F−(z, η)
−σ3V (2)(z, η, t)F+(z, η)

σ3 =





[
eit(g+−g−) 0

−F+F−r(z) e−it(g+−g−)

]
for z ∈ υ[E1,E2],

[
eit(g+−g−) r∗(z)

F+F−

0 e−it(g+−g−)

]
for z ∈ υ[E2,E1]

,

eitΩ̂σ3

(
F+

F−

)σ3

for z ∈ [E1, E1].

We are looking for a function F (z), analytic in C \ υ[E1,E2] ∪ υ[E2,E1]
∪ [E1, E1], which

satisfy the scalar RHP

F+(z)F−(z) = (r(z))−1 for z ∈ υ[E1,E2];

F+(z)F−(z) = r∗(z) for z ∈ υ[E2,E1]
; (3.1.14)

F+(z)

F−(z)
= ei∆ for z ∈ [E1, E1];

F ∗(z) = (F (z))−1; F (z) = F∞ + O(z−1). (3.1.15)

The RHP (3.1.14) is solved by

F (z, η) = exp

{
P1(z)

2πi

[
−
∫

υ[E1,E2]

log(r(ζ))

(ζ − z)(P1(ζ))+
dζ +

∫

υ[E2,E1]

log(r∗(ζ))

(ζ − z)(P1(ζ))+
dζ

+i∆

∫ E1

E1

dζ

(ζ − z)P1(ζ)

]}
(3.1.16)

and ∆ is defined in (2.2.13).

So, the new matrix Γ(3)(z, η, t) satisfy a new RHP, with jump condition

Γ
(3)
+ (z) = Γ

(3)
− (z)V (3)(z, η, t), (3.1.17)
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where

V (3)(z, η, t) =





[
F+

F−
eit(g+−g−) 0

−1 F−
F+

e−it(g+−g−)

]
for z ∈ υ[E1,E2]

[
F+

F−
eit(g+−g−) 1

0 F−
F+

e−it(g+−g−)

]
for z ∈ υ[E2,E1]

eit(Ω̂+∆)σ3 for z ∈ [E1, E1]

(3.1.18)

and same boundary conditions at infinity of (3.1.11).

Step 4 we proceed to factorize the jump matrices V (3)(z, t, η) and open the lenses around
the jump contours. Notably,since the matrices V (3)(z, t, η) are upper or lower triangular
in υ[E1,E2] ∪ υ[E2,E1]

, we can express the factorization as:

V (3)(z, η, t) =

[
1 e−2itg−

(F−)2r(z)

0 1

] [
0 1
−1 0

][
1 e−2itg+

(F+)2r(z)

0 1

]
for z ∈ υ[E1,E2]; (3.1.19)

V (3)(z, η, t) =

[
1 0

− (F−)2

r∗(z) e
2itg− 1

] [
0 1
−1 0

][
1 0

− (F+)2

r∗(z) e
2itg+ 1

]
for z ∈ υ[E2,E1]

. (3.1.20)

From the boundness of the function F (z) and r(z) in a neighbourhood of the jump con-
tours, we analytically extend the first and the third matrices of the factorizations (3.1.19)
and (3.1.20).

We denote with U±(υ) the left (+) or the right (−) lens of υ and with L±(υ) the
boundary of U±(υ) without the curve υ , as it is displayed in the figure 3.3.

E2

E1

U−U+

Figure 3.3: The lenses U+(υ[E1,E2]) and U−(υ[E1,E2]).

Then we apply the following transformation:

Γ(4)(z) := Γ(3)(z)G(4)(z, η, t) (3.1.21)
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where

G(4)(z, η, t) :=





[
1 e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U−(υ[E1,E2]),

[
1 − e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U+(υ[E1,E2]),

[
1 0

− (F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U−(υ[E2,E1]

),

[
1 0

− (F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U+(υ[E2,E1]

)

(3.1.22)

and G(4)(z) = 1 otherwise. In this way, we enlarge the jump contours by opening lenses
around our jump contours υ[E1,E2] ∪ υ[E2,E1]

, as it si displayed in Figure 3.4, and the

RHP (3.1.17) becomes

Γ
(4)
+ (z) = Γ

(4)
+ (z)V (4)(z, η, t), (3.1.23)

with V (4)(z, η, t) define also in the curves L±(υ[E1,E2]), L±(υ[E2,E1]
):

V (4)(z, η, t) =

[
1 e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ L+(υ[E1,E2]) ∪ L−(υ[E1,E2]), (3.1.24)

V (4)(z, η, t) =

[
1 0

(F (z,η))2e2itg(z,η)

r∗(z) 1

]
for z ∈ L+(υ[E2,E1]

) ∪ L+(υ[E2,E1]
), (3.1.25)

while in the other jump contours it takes values:

V (4)(z, η, t) =

[
0 1
−1 0

]
for z ∈ υ[E1,E2] ∪ υ[E2,E1]

, (3.1.26)

V (4)(z, η, t) = ei(tΩ̂+∆)σ3 for z ∈ [E1, E1]. (3.1.27)

Looking at the distribution of the sign of Im (g) around the jump contours and at the
results (3.1.24) and (3.1.25), we have that V (4)(z, η, t) tends to the identity matrix 1 as
t→ +∞ around the lenses.

3.1.1 The Model problem for the Genus 1 case

After removing the jumps which goes to the identity as t → +∞, the RHP (3.1.23)
results in the following model problem

X+(z, η, t) = X−(z, η, t)VX(z, η, t) for z ∈ υ[E1,E2] ∪ υ[E2,E1]
∪ [E1, E1], (3.1.28)

X(z) = σ2X(z)σ2, X(z) = 1+ O(z−1) as z → ∞,
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with VX(z, η, t) which is given by

VX(z, η, t) =





[
0 1
−1 0

]
for z ∈ υ[E1,E2] ∪ υ[E2,E1]

,

ei(tΩ̂+∆)σ3 for z ∈ [E1, E1].

(3.1.29)

This model problem is equal to the one that we solved in section 2.2, with the same
homological basis; as we can see in Figure (3.5). Then the solution is the same

X(z, η, t) =




ϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z) +

1
ϕ1(z)

)
φ1(z, η, t)

iϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z)− 1

ϕ1(z)

)
φ2(z, η, t)

− iϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z)− 1

ϕ1(z)

)
ψ1(z, η, t)

ϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z) +

1
ϕ1(z)

)
ψ2(z, η, t)




(3.1.30)

where ϕ1(z), ψj(z, η, t), φj(z, η, t); with j = 1, 2; are defined in Lemma 2.2.3.

3.1.2 Error Parametrix and long-time behaviour of ψ(x, t)

For the same reason explained in section 2.2, the parametrix at the end points Ej , Ej ,
with j = 1, 2, of this problem are exponentially neat to the identity, which means that
for t→ +∞ the error function goes like

EEj (z, η, t) := X(z, η, t)(Γ(4)(z, η, t))−1 = 1+ O(e−ct)

with c > 0 and uniformly in z.

This means that the long-time asymptotic behavior of the NLS solution ψ(x, t) is the
same of the initial datum ψ0(x) (2.2.53).

3.2 The Genus 3 sector

We consider the sector η∗ < η < 0. As we shown in section 2.3, at η = η∗ the critical
points d(η∗), d(η∗) hit the bands υ[E1,E2] and υ[E2,E1]

respectively. For η > η∗ we need

to define a new g-function, still analytic in C \ υ[E1,E2] ∪ υ[E2,E1]
∪ υ[E1,E1]

, which satisfy

the conditions (3.1.4), (1) and (2), and solve the scalar RHP:

g+ + g− = 0 for z ∈ υ[d2(η);E2] ∪ υ[E2,d2(η)]
;

g+ + g− = Ω1(η) for z ∈ υ[E1,d1(η)] ∪ υ[d1(η),E1]
;

g+ − g− = Ω1(η) + Ω2(η) for z ∈ υ[d1(η),d2(η)] ∪ υ[d2(η),d1(η)];
g+ − g− = Ω1(η) + Ω2(η) + Ω3(η) for z ∈ υ

[d1(η);d1(η)]
;

(3.2.1)
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where Ω1(η),Ω2(η),Ω3(η) are defined as

Ω1(η) := g+(d1(η)) + g+(d1(η)),

Ω2(η) := 2g+(d2(η))− Ω1(η), (3.2.2)

Ω3(η) := g+(E1) + g−(E1)− Ω2(η)

The solution of the RHP (3.2.1) is the following:

g(z, η) = 2

∫ z

E2

(ζ − µ(η))

√
(ζ − d1(η))(ζ − d2(η))(ζ − d1(η))(ζ − d2(η))√
(ζ − E1)(ζ − E2)(ζ − E1)(ζ − E2)

dζ (3.2.3)

with µ(η) ∈ R.

The parameters µ(η),Re (dj(η)), Im (dj(η)), with j = 1, 2, are still given by the condi-
tions (3.1.4) (1) and (2); which they translate in the system of equations for η fix

2µ(η) = −η − 2(Re (d1) + Re (d2));

Im (d1(η))
2 + Im (d2(η))

2

+ 2Re (d1(η))Re (d2(η)) = Im (E1)
2 + Im (E2)

2;
∫ E2

E2

dg =

∫ d2

d2

dg =

∫ d1

d1

dg = 0.

(3.2.4)

We can now proceed with the Nonlinear Steepest Descend analysis. First of all, we move
the jump contours from the segments [E1, E2] and its complex conjugate to the level sets
of Im (g) = 0, which is display in Figure 3.6. We apply the transformation (3.1.7), but in
this case the sets Σ1 and Σ2 are encircled by the loop υ[E1,d1(η)]∪υ[d1(η),d2(η)]∪υ[d2(η),E2]∪
[E2, E1] and its complex conjugate respectively.

The next step is to apply the transformation (3.1.9), where now the g-function given by
the formula (3.2.3).

The matrix Γ(2)(z) must solve the RHP

Γ
(2)
+ (z) = Γ

(2)
− (z)V (2)(z, η, t), (3.2.5)

Γ(2)(z) = σ2Γ
(2)(z)σ2, Γ(2)(z) = 1+ O(z−1) as z → ∞, (3.2.6)
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where

V (2)(z, η, t) =





[
eit(g+−g−) 0

−r(z) e−it(g+−g−)

]
for z ∈ υ[d2(η),E2],

[
eit(g+−g−) r∗(z)

0 e−it(g+−g−)

]
for z ∈ υ

[E2,d2(η)]
,

[
eit(g+−g−) 0

−r(z)eitΩ1 e−it(g+−g−)

]
for z ∈ υ[E1,d1(η)],

[
eit(g+−g−) r∗(z)e−itΩ1

0 e−it(g+−g−)

]
for z ∈ υ

[d1(η),E1]
,

[
eit(Ω1+Ω2) 0

−r(z)eit(g++g−) e−it(Ω1+Ω2)

]
for z ∈ υ[d1(η),d2(η)],

[
eit(Ω1+Ω2) r∗(z)e−it(g++g−)

0 e−it(Ω1+Ω2)

]
for z ∈ υ

[d2(η),d1(η)]
,

eit(Ω1+Ω2+Ω3)σ3 for z ∈ υ
[d1(η),d1(η)]

.

(3.2.7)

We apply the transformation (3.1.13), where the function F (z, η) solve the scalar RHP

F+F− = (r(z))−1 for z ∈ υ[d2(η);E2]; F+F− =
ei∆1

r(z)
for z ∈ υ[E1;d1(η)];

F+F− = r∗(z) for z ∈ υ[E2;d2]
; F+F− = −ei∆1r∗(z) for z ∈ υ

[E1,d1(η)]
;

F+

F−
= ei(∆1+∆2) for z ∈ υ[d1(η);d2(η)] ∪ υ[d2(η),d1(η)];

F+

F−
= ei(∆1+∆2+∆3) for z ∈ υ

[d1(η),d1(η)]
; (3.2.8)

with boundary condition given by (3.1.15).

This RHP is solved by:

F (z, η) = exp

{
P3(z)

2πi

[
−
∫

υ[d2,E2]

log(r(ζ))

(ζ − z)(P3(ζ))+
dζ +

∫

υ[E2,d2]

log(r(ζ))

(ζ − z)(P3(ζ))
dζ

+

∫

υ[E1,d1]

− log(r(z)) + i∆1

(ζ − z)(P3(ζ))+
dζ +

∫

υ[d1,E1]

log(r∗(z)) + i∆1

(ζ − z)(P3(ζ))+
dζ

+

∫

υ[d1,d2]

i(∆1 +∆2)

(ζ − z)P3(ζ)
dζ +

∫

υ[d2,d1]

i(∆1 +∆2)

(ζ − z)P3(ζ)
dζ

+

∫

υ[d1,d1]

i(∆1 +∆2 +∆3)

(ζ − z)P3(ζ)
dζ

]}
(3.2.9)

where

P3(z) =

√
(ζ − E1)(ζ − E2)(ζ − E1)(ζ − E2)(ζ − d1(η))(ζ − d2(η))(ζ − d1(η))(ζ − d2(η))
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is a multivalued complex function, analytic in C\υ[d2(η);E2]∪υ[E1;d1(η)]∪υ[E1,d1(η)]
∪υ[E2;d2]

,

and ∆1,∆2,∆3 are determined by the system of equations:

−
∫

υ[d2,E2]

ζj
log(r(ζ))

(P3(ζ))
dζ +

∫

υ[E2,d2]

ζj
log(r(ζ))

(P3(ζ))
dζ

+

∫

υ[E1,d1]

ζj(− log(r(z)) + i∆1)

(P3(ζ))+
dζ +

∫

υ[d1,E1]

ζj(log(r∗(z)) + i∆1)

(P3(ζ))+
dζ

+

∫

υ[d1,d2]

iζj(∆1 +∆2)

P3(ζ)
dζ +

∫

υ[d2,d1]

iζj(∆1 +∆2)

P3(ζ)
dζ

+

∫

υ[d1,d1]

iζj(∆1 +∆2 +∆3)

P3(ζ)
dζ = 0 with j = 0, 1, 2. (3.2.10)

Then we have that Γ(3)(z) has new jump conditions

Γ
(3)
+ (z) = Γ

(3)
− (z)V (3)(z, η, t), (3.2.11)

where V 3(z, η, t) = F−σ3
− (z, η)V (2)(z, η, t)F σ3

+ (z, η). With F (z, η) given by (3.2.9), the

jump matrices V (3)(z, η, t) have the following form:

V (3)(z, η, t) =





[
F+

F−
eit(g+−g−) 0

−1 F−
F+

e−it(g+−g−)

]
for z ∈ υ[d2(η),E2],

[
F+

F−
eit(g+−g−) 1

0 F−
F+

e−it(g+−g−)

]
for z ∈ υ

[E2,d2(η)]
,

[
F+

F−
eit(g+−g−) 0

−ei(tΩ1+∆1) F−
F+

e−it(g+−g−)

]
for z ∈ υ[E1,d1(η)],

[
F+

F−
eit(g+−g−) −e−i(tΩ1+∆1)

0 F−
F+

e−it(g+−g−)

]
for z ∈ υ

[d1(η),E1]
,

[
ei[t(Ω1+Ω2)+∆1+∆2] 0

−r(z)F+F−e
it(g++g−) e−i[t(Ω1+Ω2)+∆1+∆2]

]
for z ∈ υ[d1(η),d2(η)],

[
ei[t(Ω1+Ω2)+∆1+∆2] r∗(z)(F+F−)

−1e−it(g++g−)

0 e−i[t(Ω1+Ω2)+∆1+∆2]

]
for z ∈ υ

[d2(η),d1(η)]
,

ei[t(Ω1+Ω2+Ω3)+∆1+∆2+∆3]σ3 for z ∈ υ
[d1(η),d1(η)]

.

(3.2.12)
We proceed with the factorization of the matrices V (3)(z, η, t). According to where they
are defined, they factorize in two or three matrices. Indeed, for z ∈ υ[d2(η),E2]∪υ[E2,d2(η)]

they have the same factorization of (3.1.19) and (3.1.20), while for z ∈ υ[E1,d1(η)] ∪
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υ
[d1(η),E1]

the matrices factorize as:

V (3)(z, η, t) =

[
1 1

(F−)2r(z)
e−2itg−

0 1

] [
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]
×

×
[
1 1

(F+)2r(z)
e−2itg+

0 1

]
for z ∈ υ[E1,d1(η)], (3.2.13)

V (3)(z, η, t) =

[
1 0

− (F−)2

r∗(z) e
2itg− 1

] [
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]
×

×
[

1 0

− (F+)
r∗(z)e

2itg+ 1

]
for z ∈ υ

[d1(η),E1]
. (3.2.14)

In the contours υ[d1(η),d2(η)] and υ[d2(η),d1(η)] , the matrices factorize as follows:

V (3)(z, η, t) =

[
1 0

−r(z)(F−)
2e2itg− 1

]
e+i[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[d1(η),d2(η)],

(3.2.15)

V (3)(z, η, t) =

[
1 r∗(z)

(F−)2
e−2itg−

0 1

]
e+i[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ

[d2(η),d1(η)]
. (3.2.16)

We open the lenses around the jump contour

U±(υ[d2(η),E2]),U±(υ[E1,d1(η)]),U−(υ[d1(η),d2(η)]),

and their complex conjugates. Then, defining the transformation

Γ(4)(z) = Γ(3)(z)G(4)(z, η, t), (3.2.17)

where

G(4)(z, η, t) =





[
1 e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U−(υ[d2(η),E2]) ∪ U−(υ[E1,d1(η)])

[
1 − e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U+(υ[d2(η),E2]) ∪ U+(υ[E1,d1(η)])

[
1 0

− (F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U−(υ[E2,d2(η)]

) ∪ U−(υ[d1(η),E1]
)

[
1 0

(F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U+(υ[E2,d2(η)]

) ∪ U+(υ[d1(η),E1]
)

[
1 0

−r(z)(F (z, η))2e2itg(z,η) 1

]
for z ∈ U−(υ[d1(η),d2(η)])

[
1 r∗(z)

(F (z,η))2
e−2itg(z,η)

0 1

]
for z ∈ U−(υ[d2(η),d1(η)]),

1 otherwise,

(3.2.18)
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we have that the matrix Γ(4)(z) satisfy a new RHP problem

Γ
(4)
+ (z) = Γ

(4)
− (z)V (4)(z, η, t), (3.2.19)

with the jump matrices define also in the boundary of the lenses (see Figure 3.7)

V (4)(z, η, t) =

[
1 e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ L+(υ[d2(η),E2]) ∪ L−(υ[d2(η),E2])

∪L+(υ[E1,d1(η)]) ∪ L−(υ[E1,d1(η)])

V (4)(z, η, t) =

[
1 0

− (F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ L+(υ[E2,d2(η)]

) ∪ L−(υ[E2,d2(η)]
)

∪L+(υ[d1(η),E1]
) ∪ L−(υ[d1(η),E1]

),

V (4)(z, η, t) =

[
1 0

−r(z)(F (z, η))2e2itg(z,η) 1

]
for z ∈ L−(υ[d1(η),d2(η)]),

V (4)(z, η, t) =

[
1 r∗(z)

(F (z,η))2
e−2itg(z,η)

0 1

]
for z ∈ L−(υ[d2(η),d1(η)]),

and in the other jump contours V (4)(z, η, t) have values

V (4)(z, η, t) =

[
0 1
−1 0

]
for z ∈ υ[d2(η),E2] ∪ υ[E2,d2(η)]

,

V (4)(z, η, t) =

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]
for z ∈ υ[E1,d1(η)] ∪ υ[d1(η),E1]

,

V (4)(z, η, t) = e+i[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[d1(η),d2(η)] ∪ υ[d2(η),d1(η)],
V (4)(z, η, t) = ei[t(Ω1+Ω2+Ω3)+∆1+∆2+∆3]σ3 for z ∈ υ

[d1(η),d1(η)]
.

From the distribution of signs of Im (g) around the jump contours, we get that the jump
matrices defined in the border of the lenses tends to the identity matrix 1 as t→ +∞.

3.2.1 The Model problem in the Genus 3 case

In the limit t→ +∞, the RHP (3.2.19) results in a new model problem

X+(z, η, t) = X−(z, η, t)VX(z, η, t), (3.2.20)

X(z) = σ2X(z)σ2 X(z) = 1+ O(z−1) as z → ∞,
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with VX(z, η, t) given by

VX(z, η, t) =





[
0 1
−1 0

]
for z ∈ υ[d2(η),E2] ∪ υ[E2,d2(η)]

,

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]
for z ∈ υ[E1,d1(η)] ∪ υ[d1(η),E1]

,

e+i[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[d1(η),d2(η)] ∪ υ[d2(η),d1(η)],
ei[t(Ω1+Ω2+Ω3)+∆1+∆2+∆3]σ3 for z ∈ υ

[d1(η),d1(η)]
.

(3.2.21)

This kind of RHP is solved in a similar way to the previews problems (2.2.30) and (3.1.28).

Step 1 we solve the homogeneous RHP: For z ∈ υ[d2(η),E2] ∪ υ
[E2,d2(η)]

∪ υ[E1,d1(η)] ∪
υ
[d1(η),E1]

X
(0)
+ (z, η) = X

(0)
− (z, η)

[
0 1
−1 0

]
(3.2.22)

X(0)(z) = σ2X
(0)(z)σ2, X(0)(z) = 1+ O(z−1) as z → ∞. (3.2.23)

The solution of this RHP is given by:

X(0)(z, η) =



(
ϕ3(z, η) +

1
ϕ3(z,η)

)
−i
(
ϕ3(z, η)− 1

ϕ3(z,η)

)

i
(
ϕ3(z, η)− 1

ϕ3(z,η)

) (
ϕ3(z, η) +

1
ϕ3(z,η)

)

 , (3.2.24)

with

ϕ3(z, η) :=

(
(z − E2)(z − d1(η))(z − E1)(z − d2(η))

(z − E2)(z − d1(η))(z − E1)(z − d2)

)1/4

(3.2.25)

is analytic in C \ υ[d2(η);E2] ∪ υ[E1;d1(η)] ∪ υ[E1,d1(η)]
∪ υ[E2;d2]

.

Step 2 we introduce a Riemann Surface P3 of genus 3

P3 = {(w, z) ∈ C2|w2 = P3(z)
2}, (3.2.26)

with brunch cut along the curves υ[d2,E2], υ[E1,d1], υ[d1,E1]
, υ[E2,d2]

. We also introduce a
canonical homological basis αj , βj , with j = 1, 2, 3 on it, which is shown in Figure 3.9,
and we define the Abel map u⃗(z, z0) as

u⃗(z, z0) :=

∫ z

z0

ϖ⃗; (3.2.27)

where ϖ⃗ = (ϖ1, ϖ2, ϖ3)
T is the vector of holomorphic differential on the Riemann

Surface P3 and normalized as
∮

αj

ϖk = δjk with j, k = 1, 2, 3, (3.2.28)
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and the integral of the holomorphic differentials ϖk over the beta cycles βj defines the
elements of the period matrix B

Bjk =

∮

βj

ϖk. (3.2.29)

Fixing the base point z0 = ∞, the Abel map satisfy the jump conditions:

u+ + u− = 0 z ∈ υ[d2(η),E2], u+ + u− = e⃗1 z ∈ υ
[E2,d2(η)]

u+ + u− = Be⃗1 z ∈ υ[E1,d1(η)],

u+ + u− = e⃗1 − e⃗2 + e⃗3 +Be⃗1 z ∈ υ
[d1(η),E1]

u+ − u− = e⃗3 − e⃗1 +B(e⃗1 + e⃗2) z ∈ υ[d1(η),d2(η)] (3.2.30)

u+ − u− = e⃗3 − e⃗2 +B(e⃗1 + e⃗2) z ∈ υ
[d2(η),d1(η)]

u+ − u− = e⃗3 +B(e⃗1 + e⃗2 + e⃗3) z ∈ υ
[d1(η),d1(η)]

.

where e⃗1 = (1, 0, 0)T , e⃗2 = (0, 1, 0)T , e⃗3 = (0, 0, 1)T .

Step 3 we assume that the matrix X(z, η, t) which solve the RHP (3.2.20) has the form

X(z, η, t) =




C
2

(
ϕ3(z, η) +

1
ϕ3(z,η)

)
φ1(z, η, t)

iC2

(
ϕ3(z, η)− 1

ϕ3(z,η)

)
φ2(z, η, t)

−iC2
(
ϕ3(z, η)− 1

ϕ3(z,η)

)
ψ1(z, η, t)

C
2

(
ϕ3(z, η) +

1
ϕ3(z,η)

)
ψ2(z, η, t)


 .

(3.2.31)

So we are looking for the functions φ1(z, η, t), φ2(z, η, t), ψ1(z, η, t), ψ2(z, η, t) such that
they solve the RHP:

(φj(z))+ = (ψj(z))− z ∈ υ[d2(η),E2] ∪ υ[E2,d2(η)]
;

(φj(z))+ = ei(tΩ1+∆1)(ψj(z))− z ∈ υ[E1,d1(η)] ∪ υ[d1(η),E1]
;

(φj(z))+ = ei[t(Ω1+Ω2)+∆1+∆2](φj(z))−, (3.2.32)

(ψj(z))+ = e−i[t(Ω1+Ω2)+∆1+∆2](ψj(z))− z ∈ υ[d1(η),d2(η)] ∪ υ[d2(η),d1(η)];
(φj(z))+ = ei[t(Ω1+Ω2+Ω3)+∆1+∆2+∆3](φj(z))−,

(ψj(z))+ = e−i[t(Ω1+Ω2)+∆1+∆2](ψj(z))− z ∈ υ
[d1(η),d1(η)]

;

with j = 1, 2. As we already seen in (2.2.42), this kind of RHP can be solved by using
the Jacobi theta function of genus 3.

In general, the Jacobi theta function of genus g > 1 is defined as

Θ(z,B) :=
∑

m⃗∈Zg

exp[πi(Bm⃗, m⃗) + 2πi(z, m⃗)], (3.2.33)
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with B the g × g period matrix and z ∈ Cg. This function possesses the following
properties:

Proposition 3.2.1. For M,N ∈ Zg, then the Jacobi theta function satisfy the following
conditions

1. Θ(z +BM) = Θ(z)exp[−πi(BM,M)− 2πi(z,M)],

2. Θ(z +N) = Θ(z),

3. Θ(−z) = Θ(z).

With an abuse of notation, we will refer with Θ(z) the function (3.2.33) in the case g = 3
and g = 2.

We prove the following Lemma:

Lemma 3.2.2. The functions

φ1(z) =
Θ(u⃗(z1;∞1)− Ω⃗t+∆⃗

2π )

Θ(u⃗(z1;∞1))
, ψ1(z) =

Θ(u⃗(z2;∞2)− Ω⃗t+∆⃗
2π )

Θ(u⃗(z2;∞1))
; (3.2.34)

φ2(z) =
Θ(−u⃗(z1;∞2)− Ω⃗t+∆⃗

2π )

Θ(u⃗(z1;∞2))
, ψ2(z) =

Θ(−u⃗(z2;∞2)− Ω⃗t+∆⃗
2π )

Θ(u⃗(z2;∞2))
; (3.2.35)

where Ω⃗ = (Ω1,Ω2,Ω3)
T , ∆⃗ = (∆1,∆2,∆3)

T , z1 and z2 indicates the point z in the first
or second sheet of the Riemann surface P3 respectively, satisfy the RHP (3.2.32).

Proof The lemma is easily proved by using the jump conditions on the Abel map (3.2.30)
and the properties (1), (2), and (3) of Proposition 3.2.1. ■

The normalization constants C in (3.2.31) is derived by imposing the boundary condition
X(z) ∼ 1 as z → ∞

C(η, t) =
Θ(0)

Θ( Ω⃗t+∆⃗
2π )

. (3.2.36)

3.2.2 Error Parametrix for the Genus 3 case

The solution of the model problem X(z, η, t) (3.2.20) is a good approximation of Γ(4)(z),
which solve the RHP (3.2.19), in all the complex plane except the end points of the bands,
{E1, E2, d1(η), d2(η)} and their complex conjugates. However, we need to estimates the
error function E(z) around those points, by constructing local parametrix around the
end points of the bands.

For the points E1, E2 and their complex conjugate, since the function r(z) ∼ (z−Ej)
1/2

near Ej with j = 1, 2, then the error function EEj (z) is exponentially near the identity
as t → +∞. which means that the solution of the model problem X(z, η, t), defined
in (3.2.31), is an exponentially accurate approximation of Γ(4)(z). We need to study the
local parametrix only for the points d1(η), d2(η) and their complex conjugate.
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We define Dε(z0) the disk centered in z0 and ray 0 < ε≪ 1 and with Ξ the set of jump
contours of the RHP (3.2.19).

Local parametrix around d1(η) and d2(η)

We are looking for the matrices Γd1(z, η, t) and Γd2(z, η, t) that approximate Γ(4)(z, η, t)
in Dε(d1) and Dε(d2) respectively. We consider the point d2(η) first.

We define Γ(d2,0)(z) from the transformation

Γ(d2,0)(z, η, t) = Γ(4)(z, η, t)F (z)−σ3 , z ∈ D(d2) \ Ξ. (3.2.37)

Let {Tj}51 denote the open subset of Dε(d1), as it’s show in the Figure 3.10. Let Zj :=
Tj ∩ Tj−1, j = 1, . . . , 5, T0 ≡ T5, denote the curves separating the Tj , oriented as in
Figure 3.10.

From (3.2.19) and (3.2.37), the matrix Γ(d2,0)(z, η, t) satisfy the jump conditions:

Γ
(d2,0)
+ (z;x, t) = Γ

(d2,0)
− (z;x, t)V (d2,0)(z, x, t), (3.2.38)

where

V (d2,0) =





(
0 r−1(z)

−r(z) 0

)
, z ∈ Z1

(
1 e−2itg(z,η)

r(z)

0 1

)
, z ∈ Z2 ∪ Z5

(
1 0

r(z)e2itg(z,η) 1

)
, z ∈ Z3

eit(g+(z,ξ)−g−(z,ξ))σ3 , z ∈ Z4

(3.2.39)

We define the function gd2(z, η) as

gd2(z, η) := −
∫ z

d2(η)
dg =

{
g(z, η)− g−(d2, η) z ∈ T1 ∪ T2 ∪ T3,

g(z, η)− g+(d2, η) z ∈ T4 ∪ T5,

and we apply another transformation

Γ(d2,1)(z, η, t) := Γ(d2,0)(z, η, t)A(z, η, t), (3.2.40)

where A(z, η, t) is defined as

A(z;x, t) := r(z)−
σ3
2

{
e−itg−(d2)σ3 z ∈ T1 ∪ T2 ∪ T3,

e−itg+(d2)σ3 z ∈ T4 ∪ T5.
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The new matrix function (3.2.40) satisfy a new RHP

Γ
(d2,1)
+ (z, η, t) = Γ

(d2,1)
− (z, η, t)V (d2,1)(z, η, t)

Γ(d2,1)(z) = σ2Γ
(d2,1)(z)σ2 (3.2.41)

Γ(d2,1)(z) ∼ 1+ O(z−1) as z → ∞

where V (d2,1)(z) are the jump matrices (3.2.39) under the transform (3.2.40):

V (d2,1)(z, η, t) :=





(
0 1
−1 0

)
, z ∈ Z1;

(
1 e−2itgd2 (z,ξ)

0 1

)
z ∈ Z2 ∪ Z5;

(
1 0

e2itgd2 (z,ξ) 1

)
z ∈ Z3;

1 z ∈ Z4.

(3.2.42)

We introduce a local change of coordinate

ζ(z) := e−
2
3
πi

(
3

2
itgd2(z, ξ)

) 2
3

(3.2.43)

such that the map z → ζ maps Z3 into R−, and deforming the contour Zj such
that (3.2.43) maps Zj into the rays Yj in Figure 3.11.

The RHP (3.2.41) is a well known problem in complex analysis (see Appendix B of [74])
and it is solved by the matrix ΓAi(z, η, t)

ΓAi(ζ(z)) :=M (Ai)(ζ(z))×





e−2itgd2 (z)σ3 , z ∈ T1 ∪ T4[
1 0
1 1

]
e−2itgd2 (z)σ3 , z ∈ T2

[
1 0
−1 1

]
e−2itgd2 (z)σ3 , z ∈ T3

(3.2.44)

where

M (Ai)(z) :=





(
Ai(z) ω2Ai(ω2z)
Ai′(z) −ωAi′(ω2z)

)
, z ∈ C+

(
Ai(z) −ωAi(ωz)
Ai′(z) −ω2Ai′(ωz)

)
, z ∈ C−

(3.2.45)

and Ai(z) is the Airy function.

We define the local parametrix at the point d2(η) as

Γd2(z, η, t) := BAi(z, η, t)Γ
Ai(z, η, t)A(z, η, t)−1F (z, η)−σ3 , (3.2.46)
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where
BAi(z, η, t) := X(z, η, t)F (z)σ3A(z, η, t)ΓAi

inv,0(z, η, t) (3.2.47)

and

ΓAi
inv,0(z;x, t) = i

√
π

(
−i i
1 1

)
(ζ(z))

σ3
4 .

It is important to notice that ΓAi
inv,0 has a jump condition in z ∈ Z1

ΓAi
inv,0(z;x, t)+ =

(
0 −1
1 0

)
ΓAi
inv,0(z;x, t)− (3.2.48)

Lemma 3.2.3. The matrix BAi(z, η, t) defined in (3.2.47) is an analytic and bounded
function in Dε(d2(η)) .

Proof Since X(z, η, t) doesn’t have jumps in Z2 ∪ Z3 ∪ Z5, we need to check only the
case where z ∈ Z1 ∪ Z4.

For z ∈ Z1, by using the jump condition (3.2.48) of ΓAi
inv,0(z), we get

BAi(z;x, t)+ = X(z;x, t)+F (z)
σ3
+ A(z;x, t)+Γ

Ai
inv,0(z;x, t)+

= X(z;x, t)−

(
0 1
−1 0

)
F (z)−σ3

− A(z;x, t)−1
−

(
0 −1
1 0

)
ΓAi
inv,0(z;x, t)−

= X(z;x, t)−F (z)
σ3
− A(z;x, t)−Γ

Ai
inv,0(z;x, t)−,

while for z ∈ Z4

BAi(z;x, t)+ = X(z;x, t)+F (z)
σ3
+ A(z;x, t)+Γ

Ai
inv,0(z;x, t)+ =

= X(z;x, t)−e
−i(tΩ1+∆1)F (z)σ3

− e
i∆1σ3eitΩ1σ3A(z;x, t)−Γ

Ai
inv,0(z;x, t)− =

= X(z;x, t)−F (z)
σ3
− A(z;x, t)−Γ

Ai
inv,0(z;x, t)−.

■

Then we have to prove the following proposition

Proposition 3.2.4. The function Γd2(z) defined in (3.2.46) is analytic in Dε(d2) \ Ξ,
with the same jump conditions as Γ(4)(z). Also, for t→ +∞ then

Γd2(z)(Γ
(4)(z))−1 = 1+ O(z−1) as t→ +∞, z ∈ ∂Dε(d2). (3.2.49)

Proof From the definition (3.2.46) and Lemma 3.2.3, the matrix Γd2(z) has the same
jump conditions of Γ(4)(z). We have now to check the property (3.2.49). For z ∈ ∂Dε(d2),
then Γ(4)(z) ∼ X(z) and the ΓAi(z) admits an asymptotic expansion at ζ ∼ ∞

ΓAi(z;x, t) ∼ (ζ(z))−
σ3
4

2
√
π

(
1 −i
−1 −i

)
(1+ O(ζ−

3
2 )). (3.2.50)
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Then we have that for t→ +∞
Γd2(Γ

′)−1 ∼ X(z;x, t)F (z)σ3A(z;x, t)(1+ O(ζ−
3
2 ))A(z, x, t)−1F (z)−σ3X(z;x, t)−1.

Since both A and X are bounded in t, they doesn’t contribute to the error O(ζ−
3
2 ) ∼

O(t−1), and at the end we get

Γd2(z)(Γ
(4)(z))−1 ∼ 1+ O(t−1).

■

We repeat the same strategy also for the point d1(η). Let z ∈ Dε(d1) \ Ξ, we define

Γ(d1,0)(z) := Γ(4)(z, η, t)F (z, η)−σ3 . (3.2.51)

We denote with {Sj}5j=1 the open subsets of Dε(d1), as it is show in Figure 3.12, and

with Yj := Sj−1 ∩ Sj . The matrix Γ(d1,0)(z) has jump conditions

Γ
(d1,0)
+ (z) = Γ

(d1,0)
− (z)V (d1,0)(z, η, t), (3.2.52)

with V (d1,0)(z, η, t) = F−(z, η)
σ3V (4)(z, η, t)F+(z, η)

−σ3 for z ∈ Dε(d1) ∩ Ξ.

We define the function gd1(z, η)

gd1(z, η) :=

{
g(z, η)− g−(d1, η) z ∈ S1 ∪ S2 ∪ S3,

g(z, η)− g+(d1, η) z ∈ S4 ∪ S5,
(3.2.53)

and the transformation

Γ(d1,1)(z, η, t) := Γ(d1,0)(z, η, t)Ad1(z, η, t), (3.2.54)

with Ad1(z, η, t) defined as

Ad1(z, η, t) := (−r(z))−
σ3
2

{
e−itg−(d1)σ3 z ∈ T1 ∪ T2 ∪ T3,

e−itg+(d1)σ3 z ∈ T4 ∪ T5.

Then the new matrix function (3.2.54) satisfy the RHP

Γ
(d1,1)
+ (z, η, t) = Γ

(d1,1)
− (z, η, t)V (d1,1)(z, η, t)

Γ(d1,1)(z) = σ2Γ
(d1,1)(z)σ2 (3.2.55)

Γ(d1,1)(z) ∼ 1+ O(z−1) as z → ∞
with V (d1,1)(z, η, t) give by

V (d1,1)(z, η, t) =





(
0 −1
1 0

)
, z ∈ Y4;

(
1 −e−2itgd2 (z,ξ)

0 1

)
z ∈ Y3 ∪ Y5;

(
1 0

−e2itgd2 (z,ξ) 1

)
z ∈ Y2;

1 z ∈ Y1.

(3.2.56)
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We apply the local change of variable (3.2.43) also in this case

ζd1(z) := e−
2
3
πi

(
3

2
itgd1(z, η)

) 2
3

, (3.2.57)

such that it maps Yj in straight lines as in Figure 3.13. Adjusting the orientation of
the jump contours, we find out the RHP (3.2.55) is still mapped in the RHP for Airy
function. This means that the parametrix Γd1(z) is defined as

Γd1(z, η, t) := Bd1
Ai(z, η, t)Γ

Ai(z, η, t)Ad1(z, η, t)
−1F (z, η)−σ3 , (3.2.58)

with
BAi(z, η, t) := X(z, η, t)F (z)σ3Ad1(z, η, t)Γ

Ai
inv,0(z, η, t), (3.2.59)

and that Lemma 3.2.3 and Proposition 3.2.4 are still valid also in this case.

By symmetry, we also have that the local parametrix at the points d1(η), d2(η) are still of
the Airy type, so the parametrix contributes in the same way to the local error function
Edj

(z).

3.2.3 Long-time asymptotic for the Genus 3 case

Let Γapp(z) be the matrix such that it is equal to Γdj (z) inside the disks Dε(dj), with

j = 1, 2, and can be extended by symmetry also in the other domains Dε(dj). We define
the error function

E(z, η, t) = Γ(4)(z, η, t)(Γapp(z, η, t))−1. (3.2.60)

From proposition 3.2.4 we can conclude that, as t→ +∞, the

E(z, η, t) = 1+ O(t−1)

uniformly in z. Tracking back the chain of transformation from the reminder problem
to the original RHP (2.1.4) for Γ(z), we find that

ψ(x, t) = 2i lim
z→∞

z(Γ(4)(z, η, t))12

= 2i( lim
z→∞

z(X(z, η, t))12 + lim
z→∞

z(E(z, η, t))12). (3.2.61)

The second term in (3.2.61) is of order O(t−1) while the first term is given from the
leading order of expansion at z → ∞ of

(X(z, η, t))12 = −i Θ(0)

2Θ( Ω⃗t+∆⃗
2π )

(
ϕ3(z, η)−

1

ϕ3(z, η)

)
ψ1(z, η, t) (3.2.62)

Indeed, by expanding in Taylor’ series the functions ϕ3(z, η) and (ϕ3(z))
−1 for z ∼ ∞

we get
(
ϕ3(z, η)−

1

ϕ3(z, η)

)
= − i

2z
[Im (E2)− Im (E1) + Im (d2(η))− Im (d1(η))] + O(z−2).
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So the equation (3.2.61) becomes

ψ(x, t) = −i(Im (E2)− Im (E1) + Im (d2(η))− Im (d1(η)))×

× Θ(0)Θ(u⃗∞ − Ω⃗(η)t+∆⃗(η)
2π )

Θ( Ω⃗(η)t+∆⃗(η)
2π )Θ(u⃗∞)

+ O(t−1); (3.2.63)

where u⃗∞ = u⃗(∞2,∞1).

This ends our proof of Theorem 3.0.1.
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Figure 3.4: Jump contours and jump matrices V (4)(z, η, t)
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ei(tΩ̂+∆)σ3

Figure 3.5: On the left: the homological basis of the Riemann Surface w2 = P1(z). On
the right: jump contours of the model problem (3.1.28).
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Figure 3.6: On the left: the distribution of signs of Im (g) in the genus 3 case. On the
right: jump contours of the matrix Γ(1)(z) in the genus 3 case.
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Figure 3.7: Jump contours and jump matrices of V (4)(z, η, t) for the genus 3 case
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Figure 3.8: Jump contours and jump matrices of the model problem
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Figure 3.9: Homological basis of the Riemann surface P3

69



d2(η)

Z1

Z2

Z3

Z4

Z5

T1
T2

T3T4

T5

Figure 3.10: the disk Dε(d2)
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Figure 3.11: The RHP (3.2.41) in Dε(d2) mapped in the Airy RHP by ζ(z).
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Figure 3.12: The disk Dε(d1)
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Figure 3.13: The RHP (3.2.55) in Dε(d1) mapped in the Airy RHP by ζ(z).
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Chapter 4

Elliptic domain with m < mc: the
(Genus 1)s and Genus 2 sectors

In this chapter we examine the other scenario, where m is smaller thenmc. As we shown
in section 2.3, the level set Im (g) = 0 has three phase transitions :

• For η+ < η ≤ η− the g-function is still of genus one, but with 3 real zeros (the
“(Genus 1)s” sector);

• For η− < η ≤ η∗ the g-function increases his genus from one to two (the “Genus
2” sector);

• For η∗ < η < 0 the g-function increases his genus from two to three.

We will prove the following theorem:

Theorem 4.0.1. Let D ⊂ C+ be an elliptic domain with foci E1, E2. Suppose r :
[E1, E2] → C is an analytic and bounded function that vanishes at the foci as r(Ej) ∼
(z−Ej)

1/2 for j = 1, 2. Suppose also that E1, E2 ∈ iR+, with Im (E1) < Im (E2) and the

parameter m = Im (E1)2

Im (E2)2
< mc, with mc solution of the equation Q(m) = 0, where Q(m)

is define in (2.3.12). Then the leading order of the large-time asymptotic of the soliton
gas solution of NLS, recovered from the solution of the RHP (2.1.4), with spectrum in
the domain D has the following form, according to the values of η := x

t :

• for −∞ < η < η+, with η+ defined by the formula (2.3.19)

ψ(x, t) = i(Im (E1) + Im (E2))×
× dn((Im (E1) + Im (E2))(x− x0(η)) +K(m1),m1) + O(e−ct); (4.0.1)

where c > 0, dn(x) is the Jacobi delta amplitude, x0 is determine by r(z) and

K(m1) :=
√
1−mK(m) m1 :=

4
√
m

(1 +
√
m)2

; (4.0.2)
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• for η+ < η ≤ η−, with η+ defined by the formula (2.3.19), the leading order of
ψ(x, t) is still a genus 1 wave, given by the equation (2.2.53);

• for η− < η ≤ η∗, with η∗ depending on Im (E1) and Im (E2), the leading order of
ψ(x, t) is

ψ(x, t) ∼ −i(Im (E2)− Im (E1)− Im (d))
Θ(0)Θ(u⃗∞ − tΩ⃗+∆⃗

2π )

Θ( tΩ⃗+∆⃗
2π )Θ(u⃗∞)

. (4.0.3)

where Ω⃗(η), ∆⃗(η) are 2-dimensional real vectors with components defined in (4.2.2), (4.2.3)
and (4.2.15); u⃗∞ is the Abel map (4.2.23) evaluated at z = ∞ and d ∈ C+;

• for η∗ < η < 0

ψ(x, t) = i(Im (E2)− Im (E1) + Im (d2(η))− Im (d1(η)))×

× Θ(0)Θ(u⃗∞ − Ω⃗(η)t+∆⃗(η)
2π )

Θ( Ω⃗(η)t+∆⃗(η)
2π )Θ(u⃗∞)

+ O(t−1); (4.0.4)

where Ω⃗(η), ∆⃗(η) are 3-dimensional real vectors with components defined in (3.2.2)
and (3.2.10), u⃗∞ is the Abel map (3.2.27) valued at z = ∞ and d1 and d2 are points
in C+.

• for η > 0 the solution decays exponentially

ψ(x, t) ∼ O(e−ct)

with c > 0.

Since the strategy and the results for the sectors −∞ < η < η+ and η∗ < η < 0 resemble
those described in chapter 3, we analyze only the long-time asymptotic of ψ(x, t) in the
(Genus 1)s and in the Genus 2 sectors.

4.1 The (Genus 1)s sector

As we shown in section 2.3, for η+ < η ≤ η− the g-function has three real critical points
and it’s given by the formula (2.3.20). In Figure 4.1 we show the level set Im (g) = 0.
We denote with Σ1 and Σ2 the regions encircled respectively by loops υ[E1,µ1]∪ [µ1, µ2]∪
υ[µ2,E2] ∪ [E2, E1] and its complex conjugate.

Now we study the long-time asymptotic of the RHP (2.1.4) in this particular case.

The first step is to move the jumps from the segments [E1, E2] and [E2, E1] to the border
of Σ1 and Σ2 respectively.
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E1
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µ2µ1 µ3
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+ −+

E2

E1

E2

E1

µ2µ1

Figure 4.1: On the left: the distribution of signs for Im (g) for the (Genus 1)s case. On
the right: jump contours of Γ(1)(z).

We apply the transformation Γ(1)(z) = Γ(z)G(1)(z), where

G(1)(z, x, t) =





[
1 0

−r(z)e2itθ̂(z,η) 1

]
for z ∈ Σ1

[
1 r∗(z)e−2itθ̂(z,η)

0 1

]
for z ∈ Σ2

1 otherwise

. (4.1.1)

The new matrix Γ(1)(z) not only has jumps both in the curves υ[E1,E1]
and υ[E2,E2]

, but

also in the segment [µ1, µ2]:

Γ(1)(z)+ = Γ(1)(z)−V
(1)(z, t, η) (4.1.2)

where

V (1)(z, x, t) =





[
1 r∗(z)e−2itθ̂(z,η)

0 1

]
for z ∈ υ[µ1,E1]

∪ υ[E2,µ2]

[
1 0

−r(z)e2itθ̂(z,η) 1

]
for z ∈ υ[E1,µ1] ∪ υ[µ2,E2]

[
1 r∗(z)e−2itθ̂(z,η)

0 1

][
1 0

r(z)e2itθ̂(z,η) 1

]
for z ∈ [µ1, µ2]

(4.1.3)
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The next step involves the inclusion of the phase θ̂(z, η) in the matrix Γ(1)(z). We apply
the transformation

Γ(2)(z) = Γ(2)(z)eit(g(z,η)−θ̂(z,η))σ3 . (4.1.4)

where g(z, η) is given by (2.3.20). Then the RHP (4.1.2) becomes

Γ(2)(z)+ = Γ(2)(z)−V
(2)(z, t, η) (4.1.5)

where

V (2)(z, x, t) =





[
eit(g+−g−) r∗(z)e−it(g++g−)

0 e−it(g+−g−)

]
for z ∈ υ[µ1,E1]

∪ υ[E2,µ2]

[
eit(g+−g−) 0

−r(z)eit(g++g−) e−it(g+−g−)

]
for z ∈ υ[E1,µ1] ∪ υ[µ2,E2]

[
(1 + |r(z)|2)eit(g+−g−) r∗(z)e−it(g++g−)

r(z)eit(g++g−) e−it(g+−g−)

]
for z ∈ [µ1, µ2]

(4.1.6)

with the g-function (2.3.20) that satisfy the jump conditions:

g+(z) + g−(z) = 0 for z ∈ υ[E2,E2]
(4.1.7)

g+(z) + g−(z) = 2g(E1) = Ω for z ∈ υ[E1,E1]
(4.1.8)

g+(z)− g−(z) = 0 for z ∈ [µ1, µ2] (4.1.9)

with Ω ∈ R.

We introduce another transformation to handle the function r(z)

Γ(3)(z) = F σ3
∞ (η)Γ(2)(z)F (z)σ3 , (4.1.10)

where F∞(η) := limz→∞ F (z) and F (z) satisfy the conditions:

F ∗(z) = (F (z))−1, F (z) ∼ F∞(η) + O(z−1) for z ∼ ∞. (4.1.11)

Then the jump matrices (4.1.6) transform as V (3)(z, t, η) = F−(z)
−σ3V (2)(z, t, η)F+(z)

σ3

V (3)(z, t, η) =





[
F+

F−
eit(g+−g−) r∗(z)

F+F−
χυ[E2,µ2]

−r(z)F+F−χυ[µ2,E2]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[E2,E2]

[
F+

F−
eit(g+−g−) r∗(z)

F+F−
e−itΩχυ[µ1,E1]

−r(z)F+F−e
itΩχυ[E1,µ1]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[E1,E1]

[
F+

F−
(1 + |r(z)|2) r∗(z)

F+F−
e−2itg

r(z)F+F−e
2itg F−

F+

]
for z ∈ [µ1, µ2]

(4.1.12)
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We are looking for a function F (z, η) which solves this scalar RHP

F+F− = r(z)−1 for z ∈ υ[µ2,E2], F+F− = r∗(z) for z ∈ υ[E2,µ2]
, (4.1.13)

F+F− = r(z)−1ei∆ for z ∈ υ[E1,µ1], F+F− = r∗(z)ei∆ for z ∈ υ[µ1,E1]
(4.1.14)

F+ = F−(1 + |r(z)|2)−1 for z ∈ [µ1, µ2] (4.1.15)

with boundary conditions given by (4.1.11). This problem is solved by F (z, η) = eΦ(z,η),
where Φ(z, η) has the form

Φ(z, η) =
P1(z)

2πi

[
−
(∫

υ[µ2,E2]

log(r(ζ))

P1(ζ)+(ζ − z)
dζ +

(∫

υ[µ2,E2]

log(r(ζ))

P1(ζ)+(ζ − z)
dζ

)∗)

−
(∫

υ[E1,µ1]

log(r(ζ))

P1(ζ)+(ζ − z)
dζ +

(∫

υ[E1,µ1]

log(r(ζ))

P1(ζ)+(ζ − z)
dζ

)∗)

+i∆

(∫

υ[E1,E1]

dζ

P1(ζ)+(ζ − z)

)
−
∫ µ2

µ1

log(1 + |r(ζ)|2)
P1(ζ)(ζ − z)

dζ

]
(4.1.16)

where P1(z) :=
√
(z − E1)(z − E2)(z − E1)(z − E2) is a multivalued complex function,

analytic in C \ υ[E1,E1]
∪ υ[E2,E2]

. The constant ∆ is fixed by the behaviour of F (z) for
z → ∞ and it is given by the equation

∆ =
Re
(∫

υ[µ2,E2]

log(r(ζ))
P1(ζ)+

dζ
)
+Re

(∫
υ[E1,µ1]

log(r(ζ))
P1(ζ)+

dζ
)
−
∫ µ2

µ1

log(1+|r(ζ)|2)
P1(ζ)

dζ

i
∫
υ[E1,E1]

dζ
P1(ζ)+

dζ
∈ R.

(4.1.17)

Then the jump matrices V (3)(z, η, t) become:

V (3)(z, η, t) =





[
F+

F−
eit(g+−g−) χυ[E2,µ2]

−χυ[µ2,E2]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[E2,E2]

[
F+

F−
eit(g+−g−) e−i(tΩ+∆)χυ[µ1,E1]

−ei(tΩ+∆)χυ[E1,µ1]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[E1,E1]

[
1 r∗(z)

F+F−
e−2itg

r(z)F+F−e
2itg (1 + |r(z)|2)

]
for z ∈ [µ1, µ2]

(4.1.18)

We factorize the jump matrices and open lenses around the curves.

For z ∈ [µ2, E2]

V (3)(z, η, t) =

[
1 0

(F+)2

r∗(z) e
2itg+ 1

]
. (4.1.19)
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For z ∈ [E1, µ1]

V (3)(z, η, t) =

[
1 e−2itg−

(F−)2r(z)

0 1

] [
0 e−i(tΩ+∆)

−ei(tΩ+∆) 0

][
1 e−2ig+

(F+)2r(z)

0 1

]
. (4.1.20)

For z ∈ [µ1, E1]

V (3)(z, η, t) =

[
1 0

(F−)2

r∗(z) e
2itg− 1

] [
0 e−i(tΩ+∆)

−ei(tΩ+∆) 0

][
1 0

(F+)2

r∗(z) e
2itg+ 1

]
. (4.1.21)

For z ∈ [µ1, µ2]

V (3)(z, η, t) =

[
1 0

r(z)
(1+|r(z)|2)(F−)2

e2itg− 1

][
1 r∗(z)

(1+|r(z)|2)(F+)2
e−2itg+

0 1

]
. (4.1.22)

The function (1 + r(z)r∗(z)) is bounded in a neighbour of the segment [µ1, µ2] while,
as shown in [24, 31, 74], the function (F (z))2 is bounded in all the domains Σ1 and
Σ2. This means that we can analytically extend the factorization of the jump matrices
and opening the lenses around the curves υ[E1,E1]

, υ[E2,E2]
and [µ1, µ2]. We apply a

transformation similar to (3.1.21),

Γ(4)(z) := Γ(3)(z)G(4)(z, η, t) (4.1.23)

where

G(4)(z, η, t) :=





[
1 e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U−(υ[µ2,E2]) ∪ U+(υ[E1,µ1]),

[
1 − e−2itg(z,η)

(F (z,η))2r(z)

0 1

]
for z ∈ U+(υ[µ2,E2]) ∪ U−(υ[E1,µ1]),

[
1 0

− (F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U−(υ[E2,µ2]

) ∪ U+(υ[µ1,E1]
),

[
1 0

(F (z,η))2

r∗(z) e2itg(z,η) 1

]
for z ∈ U+(υ[E2,E1]

) ∪ U−(υ[µ1,E1]
),

[
1 0

r(z)
(1+|r(z)|2)(F−)2

e2itg− 1

]
for z ∈ U−([µ1, µ2]),

[
1 − r∗(z)

(1+|r(z)|2)(F+)2
e−2itg+

0 1

]
for z ∈ U−([µ1, µ2]),

1 otherwise.

(4.1.24)
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The new matrix Γ(4)(z) satisfies a RHP

Γ(4)(z)+ = Γ(4)(z)−V
(4)(z, η, t) (4.1.25)

with jump matrices define in the boundary of the lenses, as we can see in Figure 4.2.

E2

E1

E2

E1

z2z1

[
0 1

−1 0

]

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]


1 e−2itg

R̃F2
0 1







1 0

−F2e2itg

R̃∗ 1





1 e−2itg

R̂F2
0 1







1 0

−F2e2itg

R̂∗ 1





1 R̂∗e−2itg

(1+R̂R̂∗)F2

0 1







1 0

RF2e2itg

1+R̂R̂∗ 1




E2

E1

E2

E1

[
0 1

−1 0

][
0 e−i(tΩ+∆)

−ei(tΩ+∆) 0

]

Figure 4.2: On the left: The Riemann-Hilbert problem for Γ(4)(z). On the right: The
model problem of X(z).

By studying the signs of Im (g) around the level sets Im (g) = 0, we have that the jump
matrices on the lenses tends to the identity as t → +∞ and the RHP (4.1.25) resolves
in the model problem

X(z)+ = X(z)−VX(z, η, t) (4.1.26)

where

VX(z, η, t) =





[
0 1
−1 0

]
for z ∈ υ[E2,E2]

[
0 e−i(tΩ(η)+∆(η))

−ei(tΩ(η)+∆(η)) 0

]
for z ∈ υ[E1,E1]

. (4.1.27)

This problem is solved in the same way as the model problem in the genus 1 sector,
described in chapter 3, with the only difference given by the branch cut of the Riemann
surface P1. Indeed, in this scenario the branch cut are given by the curves υ[E1,E1]

and

υ[E2,E2]
. We introduce the homological basis α, β as in Figure 4.3 and Abel map u(z, z0),

already defined in (2.2.33).

The function u(z,∞) has the following jumps along the contours υ[E1,E1]
, υ[E2,E2]

and

[µ1, µ2]:

u+ + u− = 0 for z ∈ υ[µ2,E2] u+ + u− = 1 for z ∈ υ[E2,µ2]

u+ + u− = τ for z ∈ υ[E1,µ1] u+ + u− = 1 + τ for z ∈ υ[µ1,E1]

u+ − u− = −1 for z ∈ [µ1, µ2]

(4.1.28)
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E1

E1

E2

E2

β1

α1

Figure 4.3: The new homological basis for the Riemann surface P1.

where τ :=
∮
β

dζ
cαP1(ζ)

and cα :=
∮
α

dζ
P1(ζ)

.

Subsequently, we solve the model problem (4.1.26) in the same way of the problem (3.1.28)
and the solution X(z, η, t) of (4.1.26) has form:

X(z, η, t) =




ϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z) +

1
ϕ1(z)

)
φ1(z, η, t)

iϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z)− 1

ϕ1(z)

)
φ2(z, η, t)

− iϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z)− 1

ϕ1(z)

)
ψ1(z, η, t)

ϑ(0)

2ϑ( tΩ+∆
2π

)

(
ϕ1(z) +

1
ϕ1(z)

)
ψ2(z, η, t)


 ,

(4.1.29)

with ϕ1(z) defined in (2.2.37) and

φ1(z, η, t) :=
ϑ(u(z1,∞1)− tΩ+∆

2π )

ϑ(u(z1,∞1))
ψ1(z, η, t) :=

ϑ(u(z2,∞1)− tΩ+∆
2π )

ϑ(u(z2,∞1))
(4.1.30)

φ2(z, η, t) :=
ϑ(u(z1,∞2)− tΩ+∆

2π )

ϑ(u(z1,∞1))
ψ2(z, η, t) :=

ϑ(u(z2,∞2)− tΩ+∆
2π )

ϑ(u(z1,∞2))
(4.1.31)

where z1 and z2 indicates the point z respectively in the first and in the second sheet of
the Riemann surface P1, defined in (2.2.32). Since Γ(3)(z, η, t) ∼ X(z, η, t) for t ∼ +∞,
we obtain the long time asymptotic of the NLS solution ψ(x, t) from the equation

ψ(x, t) ∼ 2i lim
z→∞

z(X(z, η, t)eit(θ̂(z,η)−g(z,η))σ3F (z)−σ3)12, (4.1.32)
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and we get that the behaviour of ψ(x, t) at t ∼ +∞ is still a genus 1 wave given by the
formula (2.2.53).

4.2 The Genus 2 sector

We study the case where η+ < η < η∗. As we shown in section 2.3, the g-function (2.3.20)
is not well defined anymore and we need to define a new g-function, analytic in C \
υ[E2,E2]

∪ υ[E1,E1]
, which satisfy some additional conditions:

1. g′(z) has 4 zeroes, µ1, µ2 ∈ R of degree 1 and a pair of complex conjugate points
d, d of degree 1/2;

2. Im (g(d)) = 0 and Im (g(d)) = 0.

Then the level set Im (g(z)) = 0 is descried by the Figure 4.4 and the bands υ[E2,E2]
∪

υ[E1,E1]
are now well defined.

In this case, the g-function has different jumps along the level set Im (g) = 0:

g(z)+ + g(z)− = 0 for z ∈ υ[E2,d]
∪ υ[d,E2], (4.2.1)

g(z)+ − g(z)− = 2g(d) =: Ω1 +Ω2 for z ∈ υ[d,d], (4.2.2)

g(z)+ + g(z)− = 2g(E1) =: Ω1 for z ∈ υ[E1,E1]
, (4.2.3)

g(z)+ − g(z)− = 0 for z ∈ [µ1, µ2]. (4.2.4)

Then the new g-function has the following form:

g(z) = 2

∫ z

E2

(ζ − µ1)(ζ − µ2)
√

(ζ − d1)(ζ − d1)√
(ζ − E1)(ζ − E2)(ζ − E1)(ζ − E2)

dζ, (4.2.5)

where µ1, µ2,Re (d1) and Im (d1) are given by the following conditions:

4µ1µ2 + 4Re (d1)(µ1 + µ2)+

2(Im (d1))
2 − 2(Im (E1)

2 + Im (E2)
2) = 0, (4.2.6)

η

2
= −µ1 − µ2 − Re (b), (4.2.7)

∫ E1

E1

dg = 0,

∫ d1

d1

dg = 0. (4.2.8)

With an abuse of notation, we denote with Σ1 and Σ2 the regions encircled respectively
by the loops υ[E1,µ1] ∪ [µ1, µ2] ∪ υ[µ2,d] ∪ υ[d,E2] ∪ [E2, E1] and its complex conjugate.

Having moved the jump contours in the level set Im (g) = 0 that encircled Σ1 and Σ2

(see Figure 4.4), we study the long time asymptotic of the RHP (4.1.2), with jumps also
in the curves υ[d,E2], υ[µ2,d] and their complex conjugate.
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d

E2

E1

d

µ2µ1

Figure 4.4: On the left: the distribution of signs for Im (g) for the Genus 2 case. On the
right: jump contours of Γ(1)(z).

We apply the transformation (4.1.4), with the g-function given by (4.2.5). So the new
RHP (4.1.5) has jump matrices

V (2)(z, η, t) =





[
eit(g+−g−) r∗(z)χυ[E2,d]

−r(z)χυ[d,E2]
e−it(g+−g−)

]
for z ∈ υ[d,E2] ∪ υ[E2,d]

[
eit(g+−g−) r(z)e−itΩ1χυ[µ1,E1]

−r(z)eitΩ1χυ[E1,µ1]
e−it(g+−g−)

]
for z ∈ υ[E1,E1]

[
eitΩ2 r∗(z)e−it(g++g−)χυ[d,µ2]

−r(z)eit(g++g−)χυ[µ2,d]
e−itΩ2

]
for z ∈ υ[d,d]

[
(1 + |r(z)|2) r∗(z)e−2itg(z)

r(z)e2itg(z) 1

]
for z ∈ [µ1, µ2]

(4.2.9)

We adapt the transformation (4.1.10) in this new scenario.
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Whit the new jump contours, the function F (z) should satisfy a new scalar RHP

F+F− = r(z)−1 for z ∈ υ[d,E2], F+F− = r∗(z) for z ∈ υ[E2,d]
, (4.2.10)

F+F− = r(z)−1ei∆1 for z ∈ υ[E1,µ1], F+F− = r∗(z)ei∆1 for z ∈ υ[µ1,E1]
(4.2.11)

F+

F−
= ei(∆2+∆1) for z ∈ υ[µ2,d],

F+

F−
= ei(∆2+∆2) for z ∈ υ[d,µ2]

(4.2.12)

F+ = F−(1 + |r(z)|2)−1 for z ∈ [µ1, µ2], (4.2.13)

with ∆1,∆2 ∈ R and has the same conditions (4.1.11) of before. The solution of this
RHP is similar to the one find in section 3.2

F (z, η) =exp

{
P2(z)

2πi

[
−
(∫

υ[d,E2]

log(r(ζ))

(P2(ζ))+(ζ − z)
dζ +

(∫

υ[d,E2]

log(r(ζ))

(P2(ζ))+(ζ − z)
dζ

)∗)

−
(∫

υ[E1,µ1]

log(r(ζ))

(P2(ζ))+(ζ − z)
dζ +

(∫

υ[E1,µ1]

log(r(ζ))

(P2(ζ))+(ζ − z)
dζ

)∗)

+ i∆1

(∫

υ[E1,E1

dζ

(P2(ζ))+(ζ − z)

)
+ i(∆2 +∆1)

(∫

υ[d,d]

dζ

(P2(ζ))+(ζ − z)

)

−
∫ µ2

µ1

log(1 + |r(ζ)|2)
P2(ζ)(ζ − z)

dζ

]}
, (4.2.14)

where P2(z) =
√

(z − E1)(z − E2)(z − E1)(z − E2)(z − d)(z − d) is a multivalued com-

plex function, analytic in C\υ[d,E2]∪υ[E2,d]
∪υE1,E1

. The constants ∆1 and ∆2 are given

by the condition F (z) ∼ F∞ + O(z−1) as z → ∞

∫

υ[d,E2]

ζj log(r(ζ))

(P2(ζ))+
dζ +

(∫

υ[d,E2]

ζj log(r(ζ))

(P2(ζ))+
dζ

)∗

+

∫

υ[E1,µ1]

ζj log(r(ζ))

(P2(ζ))+
dζ +

(∫

υ[E1,µ1]

ζj log(r(ζ))

(P2(ζ))+
dζ

)∗

− i∆1

(∫

υ[E1,E1]

ζjdζ

(P2(ζ))+

)
+ i(∆2 +∆1)

(∫

υ[d,d]

ζjdζ

(P2(ζ))+

)

+

∫ µ2

µ1

ζj log(1 + |r(ζ)|2)
P2(ζ)

dζ = 0 for j = 0, 1. (4.2.15)

By applying the transformation (4.1.10) in this case, the new RHP has the following
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jumps:

V (3)(z, η, t) =





[
F+

F−
eit(g+−g−) χυ[E2,d]

−χυ[d,E2]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[d,E2] ∪ υ[E2,d]

[
F+

F−
eit(g+−g−) e−i(tΩ1+∆1)χυ[µ1,E1]

−ei(tΩ1+∆1)χυ[E1,µ1]

F−
F+
e−it(g+−g−)

]
for z ∈ υ[E1,E1]

[
ei(tΩ2+∆2) r∗(z)

F+F−
e−it(g++g−)χυ[d,µ2]

−r(z)F+F−e
it(g++g−)χυ[µ2,d]

e−i(tΩ2+∆2)

]
for z ∈ υ[d,d]

[
1 r∗(z)

F+F−
e−2itg

r(z)F+F−e
2itg (1 + |r(z)|2)

]
for z ∈ [µ1, µ2]

(4.2.16)

The next step is the factorization matrices V (3)(z, η, t) and the introduction of the lenses
around the jump contours. This process is similar to the one we shown in section 4.1,
the only difference is given by the jumps in υ[d,d], where

V (3)(z, η, t) =





[
1 r∗(z)

(F−)2
e−2ig−(z)

0 1

]
ei[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[d,µ2]

,

[
1 0

−r(z)(F−)
2e2ig−(z) 1

]
ei[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[µ2,d].

(4.2.17)

We apply a final transformation, similar to (3.1.21)

Γ(4)(z) = Γ(3)(z)G(4)(z), (4.2.18)

where G(4)(z) is similar to the one in the (Genus 1)s case but defined in the new lenses
U±(υ). The main difference arise in the lenses U−(υ[µ2,d(η)]) and U−(υ[d(η),µ2]

), where

G(4)(z) takes values:

G(4)(z) =





[
1 0

−r(z)(F (z, η))2e2ig(z,η) 1

]
for z ∈ U−(υ[µ2,d(η)]),

[
1 r∗(z)

(F (z,η))2
e−2ig(z,η)

0 1

]
for z ∈ U−(υ[d,µ2]

).

(4.2.19)

The matrix Γ(4)(z) has jump conditions also in the boundary of the lenses, as it is shown
in Figure 4.5a.

From the distribution of the signs of Im (g), the jump matrices in the border to the
lenses L±(υ) tend to the identity as t → +∞. This implies that Γ(4)(z) has a leading
order X(z) in the long-time asymptotic which satisfy the model problem

X(z)+ = X(z)−VX(z, η, t), (4.2.20)
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E2

E1

E2

E1

d

d

z2z1 ei(t(Ω1+Ω2)+∆1+∆2)σ3

[
0 1

−1 0

]

[
0 1

−1 0

]

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]


1 e−2itg

R̃F2
0 1







1 0

−F2e2itg

R̃∗ 1





1 e−2itg

R̂F2
0 1







1 0

−F2e2itg

R̂∗ 1




[
1 0

R̃F2e2itg 1

]


1 −R̃∗e−2ith

F2
0 1





1 R̂∗e−2itg

(1+R̂R̂∗)F2

0 1







1 0

RF2e2itg

1+R̂R̂∗ 1




(a) Jump contours for V (3)(z, η, t)

E2

E1

d

E2

E1

d

ei[t(Ω1+Ω2)+∆1+∆2]σ3

[
0 1

−1 0

]

[
0 1

−1 0

]

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]

(b) Jump matrices of model problem for
Genus 2

where

VX(z, η, t) =





[
0 1
−1 0

]
for z ∈ υ[E2,d]

∪ υ[d,E2]

[
0 e−i(tΩ1+∆1)

−ei(tΩ1+∆1) 0

]
for z ∈ υ[E1,E1]

ei[t(Ω1+Ω2)+∆1+∆2]σ3 for z ∈ υ[d,d].

(4.2.21)

The procedure to solve the model problem (4.2.20) is similar to the one we follow in
Chapter 3 for the genus three sector. In this case, we introduce the Riemann surface of
genus 2 P2, defined as

P2 := {(w, z) ∈ C2| w2 = P2(z)
2}, (4.2.22)

and the 2-dimensional Abel map

u⃗(z, z0) :=

∫ z

z0

ϖ⃗, (4.2.23)

where ϖ⃗ = (ϖ1, ϖ2)
T is the 2-dimensional vector of holomorphic differentials in the

Riemann surface P2 and normalized such that
∮

αj

ϖk = δjk for j, k = 1, 2, (4.2.24)

where αj , βj is the homological basis defined as in Figure 4.6.

Let z0 = ∞, the vector u⃗(z,∞) satisfy the jump conditions:

u⃗+ + u⃗− = 0 for z ∈ υ[d,E2] u⃗+ + u⃗− = e1 for z ∈ υ[E2,d]

u⃗+ + u⃗− = Be1 for z ∈ υ[E1,µ1] u⃗+ + u⃗− = e1 − e2 +Be1 for z ∈ υ[µ1,E1]

u⃗+ − u⃗− = B(e1 + e2)− e1 for z ∈ υ[µ2,d] u⃗+ − u⃗− = B(e1 + e2)− e2 for z ∈ υ[d,µ2]

u⃗+ − u⃗− = e2 − e1 for z ∈ [µ1, µ2]

85



E2

E1

E2

E1

µ1
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β1

β2

α1

α2

Figure 4.6: The homological basis for the Riemann surface P2.

where e1 = (1, 0)T ,e2 = (0, 1)T and B is the 2× 2 periodic matrix with elements define
as

Bjk =

∮

βj

ϖk j, k = 1, 2. (4.2.25)

Following the same ideas of section 3.2.1, we find out that the matrix X(z) has form

X(z, η, t) =




Θ(0)

2Θ( tΩ⃗+∆⃗
2π

)

(
ϕ2(z, η) +

1
ϕ2(z,η)

)
φ1(z, η, t)

iΘ(0)

2Θ( tΩ⃗+∆⃗
2π

)

(
ϕ2(z, η)− 1

ϕ2(z,η)

)
φ2(z, η, t)

− iΘ(0)

2Θ( tΩ⃗+∆⃗
2π

)

(
ϕ2(z, η)− 1

ϕ2(z,η)

)
ψ1(z, η, t)

Θ(0)

2Θ( tΩ⃗+∆⃗
2π

)

(
ϕ2(z, η) +

1
ϕ2(z,η)

)
ψ2(z, η, t)


 ,

(4.2.26)

where ϕ2(z, η) is define as

ϕ2(z, η) =

(
(z − E1)(z − E2)(z − d)

(z − E1)(z − E2)(z − d)

) 1
4

, (4.2.27)

and the functions φ1, φ2, ψ1 and ψ2 are given by
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φ1(z, η, t) :=
Θ(u⃗(z1,∞1)− tΩ⃗+∆⃗

2π )

Θ(u⃗(z1,∞1))
ψ1(z, η, t) :=

Θ(u⃗(z2,∞1)− tΩ⃗+∆⃗
2π )

Θ(u⃗(z2,∞1))
(4.2.28)

φ2(z, η, t) :=
Θ(u⃗(z1,∞2)− tΩ⃗+∆⃗

2π )

Θ(u⃗(z1,∞1))
ψ2(z, η, t) :=

Θ(u⃗(z2,∞2)− tΩ⃗+∆⃗
2π )

Θ(u⃗(z2,∞2))
(4.2.29)

with Ω⃗(η) = (Ω1(η),Ω2(η))
T , ∆⃗(η) = (∆1(η),∆2(η))

T .

Since Γ(4)(z) ∼ X(z) as t→ +∞, the long-time asymptotic of the solution of NLS ψ(x, t)
is still given by the equation (4.1.32), with X(z) instead of X(z), and the behaviour is
given by a genus 2 wave

ψ(x, t) ∼ −i(Im (E2)− Im (E1)− Im (d))
Θ(0)Θ(u⃗∞ − tΩ⃗+∆⃗

2π )

Θ( tΩ⃗+∆⃗
2π )Θ(u⃗∞)

. (4.2.30)

This ends our proof of Theorem 4.0.1.
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Chapter 5

IIKS theory for the ∂-problem:
τ-function and KP hierarchy

In this last chapter we develop the Its-Izergin-Korepin-Slavnov (IIKS) theory of inte-
grable operators K acting on a domain of the complex plane with smooth boundary,
in analogy with the theory of integrable operators acting on contours of the complex
plane [62]. We show how the resolvent operator R is obtained from the solution of a
∂-problem in the complex plane and, in the case where the problem depends on other
auxiliary parameters, that we can define its Malgrange one form, in analogy with the
theory of isomonodromic problems [10,27,36,48,59,66]. We show that this for is closed
and coincides with the exterior differential of an Hilbert-Carleman determinant of the
operator K and that, for a particular of ∂-problem (in which also (1.2.11) is in), this
determinant is a τ -function of the Kadomtsev-Petviashvili type.

5.1 Integrable operators and ∂-problems

Let D ⊂ C be a compact union of domains with smooth boundary and denote by K the
integral operator acting on the space L2(D ,d2z)⊗Cn with a kernel K̂(z, w) of the form

K̂(z, z, w,w) :=
pT (z, z)q(w,w)

z − w
, p(z, z), q(z, z) ∈ Mat(r × n,C), (5.1.1)

pT (z, z) q(z, z) ≡ 0 and (∂z̄p(z, z))
T q(z, z) ≡ 0, z, z ∈ D . (5.1.2)

Here the matrix-valued functions f, g are assumed to be sufficiently smooth on D but no
analyticity is required and for this reason we indicate the dependence on both variables
z and z. The vanishing requirements along the locus z = w are sufficient to guarantee
that the kernel K̂ admits a well-defined value on the diagonal and it is continuous on
D × D

lim
w→z

K̂(z, z, w,w) = K̂(z, z, z, z) = ∂zp
T (z, z) q(z, z). (5.1.3)
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We have emphasized that the kernel and the functions are not holomorphically dependent
on the variables; that said, from now on we omit the explicit dependence on z, trusting
that the class of functions we are dealing with will be clear by the context each time.
The operator K acts as follows on functions

K[φ](z) :=

∫∫

D
K̂(z, w)φ(w)

dw ∧ dw

2i
, φ ∈ L2(D ,d2z)⊗ Cn. (5.1.4)

The kernel K̂(z, z, w,w) and the corresponding integral operator K is a Hilbert–Schmidt
operator with a well–defined and continuous value on the diagonal in D×D and therefore
its trace and Fredholm determinant are well defined (Proposition 3.11.2 and Theorem
3.11.5 [82]) as limits of finite rank operators, namely

lim
n→∞

Tr(PnKPn) =

∫∫

D
K̂(z, z, z, z, )

dz ∧ dz

2i
, (5.1.5)

where Pn is a finite rank projection such that limn→∞ Pn = Id . Furthermore the limit

lim
n→∞

det(Id − PnKPn) (5.1.6)

exists. If K is trace class, then Tr(K) and det(Id −K) coincide with the limits (5.1.5)
and (5.1.6) respectively.

We introduce the following ∂-problem for an r × r matrix-valued function Γ(z, z).

Problem 5.1.1. Find a matrix-valued function Γ(z, z) ∈ GLr(C) such that

∂z̄Γ(z) = Γ(z)M(z); Γ(z) →
z→∞

1 (5.1.7)

where 1 is the identity in GLr(C) and

M(z) :=





πp(z)qT (z), for z ∈ D ,

0 for z ∈ C\D .
(5.1.8)

We first show that

Lemma 5.1.2. If a solution of the ∂-problem 5.1.1 exists, it is unique. Furthermore
det Γ(z) ≡ 1.

Proof. If Γ is a solution of the ∂-problem 5.1.1 then

∂z̄ det Γ = Tr
(
adj(Γ)∂z̄Γ

)
= Tr

(
adj(Γ)ΓM

)
(5.1.9)

where adj(Γ) denotes the adjugate matrix (the transposed of the co-factor matrix).
Here Tr denotes the matrix trace. Now the product in the last formula yields adj(Γ)Γ =
(det Γ)1, so that

∂z̄ det Γ = det(Γ)Tr(M) = 0 (5.1.10)
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where the last identity follows from the fact that M is traceless because Tr(M) =
Tr(MT ) = 0. Thus det Γ is an entire function which tends to 1 at infinity, and hence it
is identically equal to 1 by Liouville’s theorem.

Now, if Γ1,Γ2 are two solutions, it follows easily that R(z) := Γ1Γ
−1
2 is an entire matrix-

valued function which tends to the identity matrix 1 at infinity and hence, by Liouville’s
theorem R(z) ≡ 1, thus proving the uniqueness. ■

Theorem 5.1.3. The operator Id −K with K as in (5.1.4) is invertible in L2(D ,d2z)⊗
Cn if and only if the ∂-problem 5.1.1 admits a solution. The resolvent R of K has kernel
given by:

R̂(z, w) :=
pT (z)ΓT (z)

(
ΓT (w)

)−1
q(w)

z − w
, (z, w) ∈ D × D∗ (5.1.11)

where Γ(z) is a r × r matrix that solves the ∂-problem 5.1.1.

Proof. Suppose that the ∂-problem 5.1.1 is solved by Γ(z); we now show that the
operator (Id −K) is invertible. Let us define the operator

R : L2(D ,d2z)⊗ Cn → L2(D , d2z)⊗ Cn

with kernel R̂(z, w) given by (5.1.11). To verify that R is the resolvent of the operator
K we need to check the following condition

(Id + R)◦(Id −K) = Id

⇓
R ◦K = R−K.

(5.1.12)

To this end we compute the kernel of R ◦K namely

(R̂ ◦ K̂)(z, w) :=

∫∫

D
R̂(z, ζ)K̂(ζ, w)

dζ ∧ dζ

2i

=

∫∫

D

pT (z)ΓT (z)

=− 1
π
∂ζ̄(Γ

T (ζ))−1

︷ ︸︸ ︷
(ΓT (ζ))−1q(ζ)pT (ζ) q(w)

(z − ζ)(ζ − w)

dζ ∧ dζ

2i

= −p
T (z)ΓT (z)

z − w

∫∫

D
∂ζ̄(Γ

T (ζ))−1

(
1

z − ζ
+

1

ζ − w

)
dζ ∧ dζ

2iπ
q(w).

(5.1.13)

If we consider the generalized Cauchy-Pompeiu formula for the matrix (ΓT (z))−1 we can
express it in integral form as

(ΓT (z))−1 = 1−
∫∫

D

∂ζ̄(Γ
T (ζ))−1

ζ − z

dζ ∧ dζ
2πi

, z ∈ C. (5.1.14)
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We substitute (5.1.14) into (5.1.13):

(R̂ ◦ K̂)(z, w) = −p
T (z)ΓT (z)

z − w

( (
(ΓT (z))−1 − 1

)
−
(
(ΓT (w))−1 − 1

) )
q(w)

= −p
T (z)ΓT (z)

z − w

(
(ΓT (z))−1 − (ΓT (w))−1

)
q(w)

=
pT (z)ΓT (z)(ΓT (w))−1q(w)

z − w
− pT (z)q(w)

z − w
= R̂(z, w)− K̂(z, w).

(5.1.15)

This shows that indeed R satisfies the resolvent equation (5.1.12) and hence the operator
Id −K is invertible.

Vice versa, let us now suppose that the operator Id −K is invertible and denote

R =
(
Id −K

)−1
− Id .

We now verify that R has kernel

R̂(z, w) =
P (z)T Q(w)

z − w
(5.1.16)

where the matrices P (z) and Q(z) are defined as

P (z) := (Id −KT )−1[p](z)

Q(z) := (Id −K)−1[q](z),
(5.1.17)

with the inverse applied to each entry (and the transposition T acts on the matrix
indices). Indeed we verify the condition (5.1.12) with R given by (5.1.16):

(R̂ ◦ K̂)(z, w) =

∫∫

D

P T (z)Q(ζ)pT (ζ)q(w)

(z − ζ)(ζ − w)

dζ ∧ dζ

2i
=

1

z − w

(∫∫

D

P T (z)Q(ζ)pT (ζ)q(w)

(z − ζ)

dζ ∧ dζ

2i
+

+

∫∫

D

P T (z)Q(ζ)pT (ζ)q(w)

(ζ − w)

dζ ∧ dζ

2i

)

=
1

z − w

(
R[pT ](z)q(w) + P T (z)K[Q](w)

)
.

Adding and subtracting the kernels K̂(z, w) and R̂(z, w), we obtain

(R̂ ◦ K̂)(z, w) =
1

z − w

(
(Id+R)[pT ](z)q(w)− P T (z)(Id −K)[Q](w)

)
+

+ R̂(z, w)− K̂(z, w). (5.1.18)

With the definitions (5.1.17) the contributions in the first line of (5.1.18) cancel out and
the condition (5.1.12) is satisfied. To conclude the proof we need to verify that

P (z) = Γ(z)p(z), Q(z) = Γ−1(z)q(z) (5.1.19)
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where the matrix Γ solves the ∂-problem 5.1.1. To this end, let us define the matrix
Γ̃(z)

Γ̃(z) := 1−
∫∫

D

P (ζ) qT (ζ)

ζ − z

dζ ∧ dζ

2i
, z ∈ C. (5.1.20)

From this definition it follows that

pT (z)Γ̃T (z) = pT (z)−
∫∫

D

pT (z)q(ζ)P T (ζ)

ζ − z

dζ ∧ dζ

2i

= pT (z) +K[P T ](z)

= pT (z) + P T (z)− (Id −K)[P T ](z)

= P T (z)

(5.1.21)

which implies

P (z) = Γ̃(z)p(z). (5.1.22)

We now substitute (5.1.22) in the definition (5.1.20):

Γ̃(z) = 1−
∫∫

D

Γ̃(ζ)p(ζ)qT (ζ)

ζ − z

dζ ∧ dζ

2i
. (5.1.23)

Then, following the general Cauchy formula (5.1.14), we find that the matrix Γ̃(z) sat-
isfies

∂z̄Γ̃(z) = πΓ̃(z)p(z)qT (z). (5.1.24)

Finally, since the support D of M is compact, the equation (5.1.20) implies that Γ̃ is
analytic outside of D and tends to 1 as |z| → ∞. Thus Γ̃ solves the same ∂-problem
5.1.1 and since the solution is unique, it must coincide with Γ. ■

5.2 The Hilbert-Carleman determinant

In Section 5.1 we have linked the solution of the ∂-problem 5.1.1 to the existence of the
inverse of Id −K. From the conditions (5.1.1) we conclude that K is a Hilbert-Schmidt
operator with a well-defined and continuous diagonal in D ×D : according to [82] this is
sufficient to define the Fredholm determinant for the operator Id −K, as explained in
the following remark.

Remark 5.2.1. In general, for a Hilbert-Schmidt operator A, the Fredholm determinant
is not defined but we can still define a regularization of it, called the Hilbert-Carleman
determinant

det2(Id −A) := det
(
(Id −A)eA

)
. (5.2.1)
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We observe that det
(
(Id −A)eA

)
= det (Id − TA) with TA := Id − (Id −A)eA and the

operator TA is trace class because it has the representation

TA = −
∞∑

n=2

n− 1

n!
An.

If A is of trace class we can rewrite the Hilbert-Carleman determinant as

det2(Id −A) = det(Id −A)eTr(A). (5.2.2)

Moreover, as for the Fredholm determinant, the Hilbert-Carleman determinant can be
represented by a series

det2(Id −A) = 1 +
∞∑

n=2

(−1)n

n!
Ψn(A) (5.2.3)

where Ψn(A) is given by the Plemelj-Smithies formula

Ψn(A) = det




0 n− 1 0 . . . 0 0
Tr(A2) 0 n− 2 . . . 0 0
Tr(A3) Tr(A2) 0 . . . 0 0

. . . . . .
Tr(An) Tr(An−1) Tr(An−2) . . . Tr(A2) 0



.

It is shown that if A is Hilbert-Schmidt then (5.2.3) converges ( [55], Chapter 10, The-
orem 3.1).

Let us now assume thatK depends smoothly on parameters ttt = (t1, t2, . . . , tj , . . . ) with tj ∈
C , ∀ j ≥ 1: we want to relate solutions of the ∂-problem 5.1.1 with the variational equa-
tions for the determinant.

Proposition 5.2.2. Let us suppose that the matrix M(z, z) in the ∂-Problem 5.1.1,
depends smoothly on some parameters ttt, while remaining identically nilpotent. Then
the solution Γ(z) of the ∂-problem 5.1.1 is related to the logarithmic derivative of the
Hilbert-Carleman determinant of Id −K as follows:

δ log
[
det2(Id −K)

]
= −

∫∫

D
Tr
(
Γ−1(z)∂zΓ(z)δM(z)

) dz ∧ dz

2πi
, (5.2.4)

where δ stands for the total differential in the space of parameters ttt.

Proof. Using the Jacobi variational formula

δ log [det(Id −K)] = −Tr ((Id + R) ◦ δK) , (5.2.5)

we can rewrite the LHS of (5.2.4) as

δ log
[
det2(Id −K)

]
= δ log

[
det
(
(Id −K)eK

) ]
= −Tr (R ◦ δK) , (5.2.6)
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where R◦δK is a trace class operator, since it is the composition of two Hilbert-Schmidt
operators. Here Tr denotes the trace on the Hilbert space L2(D ,d2z) ⊗ Cn. The com-
position of the two operators R ◦ δK produces the kernel

(R̂ ◦ δK̂)(z, w) =

∫∫

D

pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)δ(pT (x)q(w))

(z − ζ)(ζ − w)

dζ ∧ dζ

2i

=

∫∫

D

pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)pT (ζ)δq(w)

(z − ζ)(ζ − w)

dζ ∧ dζ

2i
+ (5.2.7)

+

∫∫

D

pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)δpT (ζ)q(w)

(z − ζ)(ζ − w)

dζ ∧ dζ

2i
(5.2.8)

where we have omitted explicit notation of the dependence on ttt of the functions f, g, F,G,Γ.

We focus on the term in (5.2.7). Using the identity 1
(z−ζ)(ζ−w) =

1
z−w

(
1

z−ζ + 1
ζ−w

)
, we

obtain

(5.2.7) =
pT (z)ΓT (z)

z − w

(∫∫

D
(ΓT (ζ))−1q(ζ)pT (ζ)

(
1

z − ζ
+

1

ζ − w

)
dζ ∧ dζ

2i

)
δq(w)

(5.2.9)

In order to compute the trace we need to compute the kernel (5.2.9) along the diago-
nal z = w and hence we consider limw→z(5.2.9). Observe that (ΓT (ζ))−1q(ζ)pT (ζ) =
− 1

π∂ζ̄(Γ
T (ζ))−1, and hence we can apply the formula (5.1.14) to eliminate the integral

and rewrite (5.2.9) as follows

(5.2.9) = −
pT (z)ΓT (z)

(
(ΓT (z))−1 − 1

)
δq(w)

z − w
+
pT (z)ΓT (z)

(
(ΓT (w))−1 − 1

)
δq(w)

z − w
(5.2.10)

=
pT (z)

(
ΓT (z)(ΓT (w))−1 − 1

)
δq(w)

z − w
. (5.2.11)

We can now easily compute the expansion of (5.2.11) along the diagonal w → z by
Taylor’s formula, keeping in mind that Γ is not a holomorphic function inside D :

(5.2.11) = pT (z)∂zΓ
T (z)(ΓT (z))−1δq(z) +

z̄ − w̄

z − w

≡ 0︷ ︸︸ ︷
pT (z)q(z) pT (z)δq(w) + O(|z − w|)

(5.2.12)

= pT (z)∂zΓ
T (z)(ΓT (z))−1δq(z) + O(|z − w|). (5.2.13)

Using the above expression we conclude that the trace in L2(D ,d2z)⊗ Cn of (5.2.7) is

Tr((5.2.7)) =

∫∫

D
Tr
(
pT (z)∂zΓ(z)

T (ΓT (z))−1δq(z)
)dz ∧ dz

2i
. (5.2.14)
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Using the cyclicality of the trace and its invariance under transposition of the arguments,
we reorder the terms (5.2.14) to the form

Tr((5.2.7)) =

∫∫

D
Tr
(
Γ−1(z)∂zΓ(z)p(z)δq

T (z)
)dz ∧ dz

2i
. (5.2.15)

We now consider the term (5.2.8). Taking its trace yields:

Tr((5.2.8)) =

= −
∫∫

D

∫∫

D

Tr
(
pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)δpT (ζ)q(z)

)

(z − ζ)2
dζ ∧ dζ

2i

dz ∧ dz

2i

= −
∫∫

D

∫∫

D

Tr
(
q(z)pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)δpT (ζ)

)

(z − ζ)2
dζ ∧ dζ

2i

dz ∧ dz

2i
(5.2.16)

We observe that the integrand is in L2
loc because the numerator vanishes to order O(|z−ζ|)

along the diagonal

Tr
(
q(z)pT (z)ΓT (z)(ΓT (ζ))−1q(ζ)δpT (ζ)

)
= Tr

(
q(ζ)

=0︷ ︸︸ ︷
pT (ζ)q(ζ) δpT (ζ)

)
+ O(|z − ζ|),

(5.2.17)

and hence the integrand is O(|z−ζ|−1) which is locally integrable with respect to the area
measure. We can now relate this integral to ∂zΓ as follows. Using the formula (5.1.14)
and the ∂-problem 5.1.1 we can rewrite ΓT (ζ) as

ΓT (ζ) = 1−
∫∫

D

∂z̄(Γ
T (z))

z − ζ

dz ∧ dz

2πi
= 1−

∫∫

D

MT (z)ΓT (z)

z − ζ

dz ∧ dz

2πi
(5.2.18)

Taking the holomorphic derivative with respect to ζ we get

∂ζΓ
T (ζ) = −

∫∫

D

q(z)pT (z)ΓT (z)

(z − ζ)2
dz ∧ dz

2i

Plugging the result into (5.2.16) we obtain

(5.2.16) =−
∫∫

D
Tr

(
(ΓT (ζ))−1q(ζ)δp(ζ)

(∫∫

D

q(z)pT (z)ΓT (z)

(z − ζ)2
dz ∧ dz

2i

))
dζ ∧ dζ

2i

=

∫∫

D
Tr
(
(ΓT (ζ))−1q(ζ)δpT (ζ)∂ζ(Γ

T (ζ))
)dζ ∧ dζ

2i

=

∫∫

D
Tr
(
q(ζ)δpT (ζ)∂ζΓ

T (ζ)(Γ−1(ζ))T
)dζ ∧ dζ

2i

=

∫∫

D
Tr
(
Γ−1(ζ)∂ζΓ(ζ)δp(ζ)q

T (ζ)
)dζ ∧ dζ

2i
,

(5.2.19)
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so that

Tr((5.2.8)) =

∫∫

D
Tr
(
Γ−1(ζ)∂ζΓ(ζ)δp(ζ)q

T (ζ)
)dζ ∧ dζ

2i
, (5.2.20)

Combining (5.2.15) and (5.2.20) we have obtained that

− Tr(R ◦ δK) = −Tr((5.2.7) + (5.2.8)) =

= −
∫∫

D
Tr(Γ−1(z)∂zΓ(z)δ(p(z)q

T (z)))
dz ∧ dz

2i
=

= −
∫∫

D
Tr(Γ−1(z)∂zΓ(z)δM(z))

dz ∧ dz

2πi
. (5.2.21)

This concludes the proof of Proposition 5.2.2. ■

5.2.1 Malgrange one form and τ-function

From Proposition 5.2.2 we define the following one form on the space of deformations,
which we call Malgrange one form following the terminology in [9]:

ω := −
∫∫

D
Tr
(
Γ−1(z)∂zΓ(z)δM(z)

)dz ∧ dz

2πi
, (5.2.22)

where Γ(z) is the solution of the ∂-problem 5.1.1 and M(z) is defined in (5.1.8). For the
operator K defined in (5.1.4), the Proposition 5.2.2 implies that

ω = δ log det2(Id −K), (5.2.23)

and hence ω is an exact (and hence closed) one form in the space of deformation param-
eters the operator K may depend upon. The form ω can be shown to be closed under
weaker assumptions on the matrix M than the ones that appears in the ∂-problem 5.1.1
as the following theorem shows.

Theorem 5.2.3. Suppose that the r×r matrix M =M(z, z; ttt) is smooth and compactly
supported in D (uniformly with respect to the parameters ttt), depends smoothly on ttt and
the matrix trace Tr(M) ≡ 0. Let Γ(z, z; ttt) be the solution of the ∂-problem 0.0.27. Then
the exterior differential of the one-form ω defined in (5.2.22) vanishes:

δω = 0. (5.2.24)

Proof. From the ∂-problem we obtain

δ(∂z̄Γ) = ΓδM + δΓM ⇒ δΓ(z) =

∫∫

D

Γ(w)δM(w)Γ−1(w)

(w − z)2
dw ∧ dw

2πi
Γ(z).(5.2.25)

Using (5.2.25) we can compute

δω = −
∫∫

D
Tr
(
δ(Γ−1∂zΓ ∧ δM)

)dz ∧ dz

2πi
=

=

∫∫

D
Tr
(
Γ−1δΓΓ−1∂zΓ ∧ δM

)dz ∧ dz

2πi
−
∫∫

D
Tr
(
Γ−1δ∂zΓ ∧ δM

)dz ∧ dz

2πi
(5.2.26)
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From (5.2.25) we deduce

δ∂zΓ(z) = −
∫∫

D

Γ(w)δM(w)Γ−1(w)

(w − z)2
dw ∧ dw

2πi
Γ(z) + δΓ(z)Γ(z)−1∂zΓ(z). (5.2.27)

Substituting (5.2.27) in the equation (5.2.26) we obtain:

δω =

∫∫

D
Tr

(
Γ−1(z)

(∫∫

D

Γ(w)δM(w)Γ−1(w)

(w − z)2
dw ∧ dw

2πi

)
Γ(z) ∧ δM(z)

)
dz ∧ dz

2πi
.

(5.2.28)
The crux of the proof is now the correct evaluation of the iterated integral:

δω =

∫∫

D

d2z

π

∫∫

D

d2w

π

F (z, w)

(z − w)2
,

F (z, w) := Tr
(
Γ(w)δM(w)Γ−1(w) ∧ Γ(z)δM(z)Γ−1(z)

)
(5.2.29)

By applying Fubini’s theorem, since the integrand is anti-symmetric in the exchange of
the variables z ↔ w, we quickly conclude that the integral is zero. However the integrand
is singular along the diagonal ∆ := {z = w} ⊂ D × D and we need to make sure that
the integrand is absolutely summable.

Recalling that F (z, w) = −F (w, z), so that F (z, z) ≡ 0, we now compute the Taylor
expansion of F (z, w) with respect to w near z;

F (z, w) = 0 + ∂wF (z, z)(w − z) + ∂w̄F (z, z)(w − z) + O(|z − w|2). (5.2.30)

Thus |F (z,w)|
|z−w|2 = O(|z−w|−1) which is integrable with respect to the area measure. Hence

application of Fubini’s theorem is justified. ■

From this theorem, we can define a τ -function associated to the the ∂-problem 0.0.27 by

τ(ttt) = exp

(∫
ω

)
. (5.2.31)

In general the above τ -function is defined only up to scalar multiplication and hence
should be rather thought of as a section of an appropriate line bundle over the space of
deformation parameters, depending on the context. However, forM in the form specified
in (5.1.8) we know from Proposition 5.2.2 that we can identify the τ -function with the
regularized Hilbert-Carleman determinant:

τ(ttt) = exp

(∫
ω

)
= det2(Id −K). (5.2.32)

In the next section, by choosing a specific dependence on the parameters ttt in the more
general setting of M as in Thm. 5.2.3 we are going to show that τ(ttt) is a KP τ -function
in the sense that it satisfies Hirota bilinear relations [60].
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5.3 τ(ttt) as a KP τ-function

In this section we consider a specific type of dependence ofM on the “times”: letM(z, ttt)
be a 2× 2 matrix that depends on ttt in the following form

M(z, ttt) = e
ξ(z,ttt)

2
σ3M0(z)e

− ξ(z,ttt)
2

σ3 , (5.3.1)

with

ξ(z, ttt) =
+∞∑

j=1

zjtj (5.3.2)

andM0(z, z̄) a traceless matrix compactly supported on D . A τ -function of the Kadomtsev-
Petviashvili hierarchy, τ(ttt), can be characterized as a function of (formally) an infinite
number of variable which satisfies the Hirota Bilinear relation

Resz=∞(τ(ttt− [z−1])τ(sss+ [z−1])eξ(z,ttt)−ξ(z,sss) = 0 (5.3.3)

where ttt± [z−1] is the Miwa Shift, defined as:

ttt± [z−1] :=

(
t1 ±

1

z
, t2 ±

1

2z2
, . . . , tj ±

1

jzj
, . . .

)
. (5.3.4)

The residue in (5.3.3) is meant in the formal sense, namely by considering the coefficient
of z−1 in the expansion at infinity and can be thought of as the limit of

∮
|z|=R as

R→ +∞. If the functions of z intervening in (5.3.3) can be written as analytic functions
in a deleted neighbourhood of ∞, then the residue is a genuine integral; this is the case
of interest below.

As described in [73], the equation (5.3.3) implies that the tau function satisfy an equation
of the Hirota type

P (D1,D2, . . . ) τ
2 = 0 (5.3.5)

where Dj is the Hirota derivative respect to tj , defined as

Dj p(ttt)q(ttt) := (∂tj − ∂t′j )(p(ttt)q(ttt
′))|ttt=ttt′ , (5.3.6)

and P (D1,D2, . . . ) is a polynomial in (D1,D2, . . . ). In particular, if we consider the first
three times t1, t2 and t3, and tk = 0 for k ≥ 3 the equation (5.3.3) is equivalent to the
KP equation in Hirota’s form

(3D2
2 − 4D1D3 +D4

1) τ
2 = 0. (5.3.7)

Putting

∂2t1 log τ(t1, t2, t3) =
1

2
u(t1, t2, t3)

one obtains the celebrated KP equation

3∂2t2u = ∂t1(4∂t3u− ∂3t1u− 6u∂t1u) (5.3.8)

The rest of this section is devoted to the verification of the Hirota bilinear relation (5.3.3)
for the KP tau function.
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5.3.1 Hirota bilinear relation for the KP hierarchy

The main result is the following.

Theorem 5.3.1. Let Γ(z, ttt) be the solution of the ∂-problem

∂z̄Γ(z, ttt) = Γ(z, ttt)e
ξ(z,ttt)

2
σ3M0(z)e

− ξ(z,ttt)
2

σ3 , Γ(z, ttt) →
z→∞

1

with the traceless matrix M0(z) compactly supported on a bounded domain D of the
complex plane and the function ξ given by the formal sum ξ(z, ttt) =

∑+∞
j=1 z

jtj. Then the
function

τ(ttt) = exp

(∫
ω

)
, (5.3.9)

with ω defined in (5.2.22) is a KP τ -function; i.e. it satisfies the Hirota Bilinear rela-
tion (5.3.3).

Remark 5.3.2. In this setting the KP τ -function is in general complex–valued. Under
appropriate additional symmetry constraints for the matrix M0 and the domain D we
can obtain a real–valued τ -function.

We prove the theorem in several steps. We first analyse the effect of the Miwa shifts on
the τ -function. For this purpose we need to determine how the Miwa shift acts on the
matrices Γ(z, z̄, t) and M(z, z̄, ttt). We consider M(z, z̄, ttt± [ζ−1]) first.

M(z, ttt± [ζ−1]) = eξ(z,ttt±[ζ−1])σ3M0(z)e
−ξ(z,ttt±[ζ−1])σ3

from the definition of ξ(z, t) (5.3.2)

ξ(z, ttt± [ζ−1]) =
+∞∑

j=1

zj
(
tj ±

1

jζj

)
=

+∞∑

j=1

zjtj ±
+∞∑

j=1

zj

jζj
= ξ(z, ttt)∓ ln

(
1− z

ζ

)

and we have that

M(z, ttt± [ζ−1]) =

(
1− z

ζ

)∓σ3
2

M(z, ttt)

(
1− z

ζ

)±σ3
2

. (5.3.10)

For the matrices Γ(z, z, ttt ± [ζ−1]) we need to consider the two case separately. Let us
start with the negative shift Γ(z, z, ttt− [ζ−1]).

∂z̄Γ(z, ttt− [ζ−1]) = Γ(z, ttt− [ζ−1])M(z, ttt− [ζ−1])

= Γ(z, ttt− [ζ−1])

(
1− z

ζ

)+
σ3
2

M(z, ttt)

(
1− z

ζ

)−σ3
2

= Γ(z, ttt− [ζ−1])D(z, ζ)M(z, ttt)D−1(z, ζ)

(5.3.11)

where

D(z, ζ) =

[
1− z

ζ 0

0 1

]
.
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From (5.3.11), we notice that the matrix Γ(z, t−[ζ−1])D(z, ζ) satisfies the ∂-problem 5.1.1,
i.e. there exists a connection matrix C(z) such that

Γ(z, ttt− [ζ−1]) = C(z)Γ(z, ttt)D(z, ζ)−1, (5.3.12)

where obviously C(z) depends also on ζ and ttt.

The matrix C(z) is determined by the conditions that both Γ(z, ttt) and Γ(z, z, ttt− [ζ−1])
must tend to 1 for z → ∞ and are regular at z = ζ

lim
z→∞

(
1− z

ζ

)−1

C(z)

[
Γ11(z, ttt)
Γ12(z, ttt)

]
=

[
1
0

]
lim
z→∞

C(z)

[
Γ21(z, ttt)
Γ22(z, ttt)

]
=

[
0
1

]

lim
z→ζ

(
1− z

ζ

)−1

C(z)

[
Γ11(z, ttt)
Γ12(z, ttt)

]
=

[
Γ11(ζ, ttt)

0

] (5.3.13)

Solving the system (5.3.13), we obtain that the matrix C(z) has the following form

C(z) =



(
1− z

ζ

)
+ ∂zΓ12(∞)Γ21(ζ)

ζΓ11(ζ)
−∂zΓ12(∞)

ζ

−Γ21(ζ)
Γ11(ζ)

1


 . (5.3.14)

Following the same ideas, we can find a similar formula for Γ(z, z, t+ [ζ−1])

Γ(z, ttt+ [ζ−1]) = C̃(z)Γ(z, ttt)D̃(z, ζ)−1 (5.3.15)

with

D̃(z, ζ) =

[
1 0
0 1− z

ζ

]
.

Also in this case, we have three conditions similar to (5.3.13) :

lim
z→∞

C̃(z)

[
Γ11(x, ttt)
Γ12(x, ttt)

]
=

[
1
0

]
lim
z→∞

(
1− z

ζ

)−1

R̃(z, ζ)

[
Γ21(x, ttt)
Γ22(x, ttt)

]
=

[
0
1

]

lim
z→x

(
1− z

ζ

)−1

C̃(z)

[
Γ21(x, ttt)
Γ22(x, ttt)

]
=

[
0

Γ22(ζ, ttt)

] (5.3.16)

and we find out that C̃(z) has the following form:

C̃(z) =


 1 −Γ12(ζ)

Γ22(ζ)

−∂zΓ21(∞)
ζ

(
1− z

ζ

)
+ ∂zΓ21(∞)Γ12(ζ)

ζΓ22(ζ)


 . (5.3.17)

We need to show how the Miwa shift acts on the Malgrange one form. We define δ[ζ]
the differential deformed including the external parameter ζ

δ[ζ] :=
+∞∑

j=1

dtj∂tj + dζ∂ζ = δ + δζ . (5.3.18)
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Lemma 5.3.3. When ζ /∈ D the Miwa shift (5.3.4) acts on the Malgrange one form (5.2.22)
in the following way:

ω(ttt± [ζ−1]) = ω(ttt) + δ[ζ] ln
(
(Γ∓1(ζ))11

)
∓ δ[ζ]γ(ζ) , (5.3.19)

where Γ(z) solves the ∂-problem 5.1.1 and γ(ζ) is a ttt independent function defined as

γ(ζ) :=

∫∫

D
log

(
ζ

ζ − z

)
(∂zM0(z))11

dz ∧ dz

2πi
, ζ ∈ C\D , (5.3.20)

that is is analytic (for ζ /∈ D) and goes to zero as ζ → ∞.

Observe that since TrM0 = 0 we may express the formula in terms of the (2, 2) entry
instead. The proof of this lemma is presented in the Appendix A. Now we can state the
following proposition:

Proposition 5.3.4. For ζ /∈ D the following relations holds:

τ(ttt− [ζ−1])

τ(ttt)
= Γ11(ζ, ttt)e

γ(ζ) τ(ttt+ [ζ−1])

τ(ttt)
= Γ−1

11 (ζ, ttt)e
−γ(ζ) , (5.3.21)

where τ(t) is defined in (5.2.31), Γ(z) solves the ∂-problem 5.1.1 and γ(ζ) is defined
in (5.3.20)

Proof. From Lemma 5.3.3 and the equation (5.2.31), we rewrite (5.3.19) as

δ[ζ] ln τ(ttt± [ζ−1]) = δ[ζ] ln τ(ttt) + δ[ζ] ln((Γ
∓1(ζ))11)∓ δ[ζ]γ(ζ) (5.3.22)

an then, from the properties of the logarithm the statement (5.3.21) is proved. ■

Remark 5.3.5. The exponential term eγ(ζ) could be absorbed by a gauge transformation
in the formalism of the infinite dimensional Grassmannian manifold of Segal-Wilson
( [59], Chapter 4). Such gauge transformations have no effect on the Hirota bilinear
relation (5.3.3).

Let us now define the matrix H(z) as

H(z) := H(z; ttt, sss) := Γ(z, ttt)e(ξ(z,ttt)−ξ(z,sss))E11Γ−1(z,sss) (5.3.23)

where E11 =

[
1 0
0 0

]
, Γ(z, z, ttt) solves the ∂-problem 5.1.1 and sss = (s1, s2, . . . , sj , . . . )

denotes another set of values for the deformation parameters.

Lemma 5.3.6. The matrix H(z) defined in (5.3.23) is analytic for all z ∈ C.

Proof. For z /∈ D the statement is trivial, so we consider the case of z ∈ D .
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We apply the operator ∂z̄ to the matrix (5.3.23)

∂z̄H(z) = ∂z̄Γ(z, ttt)e
(ξ(z,ttt)−ξ(z,sss))E11Γ−1(z,sss) + Γ(z, ttt)e(ξ(z,ttt)−ξ(z,sss))E11∂z̄Γ

−1(z,sss)

= Γ(z, ttt)M(z, ttt)e(ξ(z,ttt)−ξ(z,sss))E11Γ−1(z,sss)+

− Γ(z, ttt)e(ξ(z,ttt)−ξ(z,sss))E11M(z,sss)Γ−1(z,sss)

= Γ(z, ttt)
(
e

ξ(z,ttt)
2

σ3M0(z)e
− ξ(z,ttt)

2
σ3e(ξ(z,ttt)−ξ(z,sss))E11+

−e(ξ(z,ttt)−ξ(z,sss))E11e
ξ(z,sss)

2
σ3M0(z)e

− ξ(z,sss)
2

σ3

)
Γ−1(z,sss)

= Γ(z, ttt)
(
e

ξ(z,ttt)
2

σ3e
ξ(z,ttt)

2
IM0(z)e

−ξ(z,sss)E11+

−eξ(z,ttt)E11M0(z)e
ξ(z,sss)

2
Ie−

ξ(z,sss)
2

σ3

)
Γ−1(z,sss)

= Γ(z, ttt)
(
eξ(z,ttt)E11M0(z)e

−ξ(z,sss)E11 − eξ(z,ttt)E11M0(z)e
−ξ(z,sss)E11

)
Γ−1(z,sss)

= 0

and this proves the statement. ■

We are now ready to prove the main result of the section, namely Theorem 5.3.1.

Proof of Theorem 5.3.1. Let us compute the residue

Resz=∞(τ(ttt− [z−1])τ(sss+ [z−1])eξ(z,ttt)−ξ(z,sss))

= τ(ttt)τ(sss)Resz=∞(
τ(ttt− [z−1])

τ(ttt)

τ(sss+ [z−1])

τ(sss)
eξ(z,ttt)−ξ(z,sss))

= τ(ttt)τ(sss)Resz=∞(Γ11(z, ttt)(Γ
−1(z,sss))11e

ξ(z,ttt)−ξ(z,sss))

= τ(ttt)τ(sss) lim
R→∞

∮

|z|=R
Γ11(z, ttt)e

ξ(z,ttt)−ξ(z,sss)(Γ−1(z,sss))11
dz

2πi
(5.3.24)

Consider the first diagonal element of the matrix H(z). From the analyticity of H(z)
proved in Lemma 5.3.6 we get

0 =

(∮

|z|=R
H(z)

dz

2πi

)

11

=

∮

|z|=R
Γ11(z, ttt)e

ξ(z,ttt)−ξ(z,sss)(Γ−1(z,sss))11
dz

2πi
+

−
∮

|z|=R
Γ12(z, ttt)Γ21(z,sss)

dz

2πi
.

(5.3.25)

So, we can rewrite (5.3.24) as

(5.3.24) = τ(ttt)τ(sss) lim
R→∞

∮

|z|=R
Γ12(z, ttt)Γ21(z,sss)

dz

2πi
(5.3.26)

Since both Γ12(z, ttt) and Γ21(z,sss) are analytic for |z| sufficiently large (given that D is
compact) and

Γ(z, ttt) ∼ I+ O(z−1) for z → ∞,

103



it follows that (5.3.26) is zero because the integrand is O(z−2), and the statement is
proved. ■

5.3.2 The focusing Nonlinear Schrödinger equation

In this subsection we make a specific choice of the matrix M0 of the form

M0(z) =

[
0 β(z)χD

−β(z)χD 0

]
,

where β(z) = β(z, z) is a smooth function on D ⊂ C+ and χD (χD) is the characteristic
function of D (D). We observe that M0 satisfies the Schwarz symmetry

M0(z) = σ2M0(z)σ2, where σ2 =

[
0 −i
i 0

]
. (5.3.27)

Let us consider the ∂-problem

∂z̄Γ(z, ttt) = Γ(z, ttt)e−iξ(z,ttt)σ3M0(z)e
iξ(z,ttt)σ3 for z ∈ D ∪ D (5.3.28)

Γ(z, ttt) →
z→∞

1

with ξ(z, ttt) as in (5.3.2). Here we have re-defined tj → −2itj to respect the customary
normalization of times in the KP-hierarchy.

Theorem 5.3.7. Let Γ(z, ttt) be the solution of the ∂-problem (B.0.1) and let

ψ(ttt) := 2i lim
z→∞

z(Γ(z, ttt)− 1)12 .

Then the function ψ = ψ(ttt) satisfies the nonlinear Schrödinger hierarchy [45,71] written
in the recursive form

i∂tmψ1 = 2ψm+1, ψ1 := ψ, m ≥ 1, (5.3.29)

ψm =
i

2
∂t1ψm−1 + ψ1hm−1, ∂t1hm = 2 Im(ψ1ψm), (5.3.30)

where ψm and hm are functions of ttt and h1 := 0.

The proof of this theorem is classical and is deferred to Appendix B. In particular the
second flow gives the focusing NLS equation

i∂t2ψ +
1

2
∂2t1ψ + |ψ|2ψ = 0,

where comparing with the notation in the introduction t2 = t and t1 = x. The third
flows gives the so called complex modified KdV equation

∂t3ψ +
∂3t1ψ

4
+

3

2
|ψ|2∂t1ψ = 0.

Setting tk = 0 for k ≥ 4 one obtains that v(t1, t2, t3) := 2|ψ1(t1, t2, t3)|2 satisfies the KP
equation (5.3.8) after the rescalings v = −4u and tj → i

2 tj .
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Appendix A

Proof of Lemma 5.3.3

In this section we give the proof of Lemma 5.3.3. Since the computations of ω(ttt± [ζ−1])
are the same, we give the proof only for ω(ttt− [ζ−1]).

From (5.2.22), (5.3.10) and (5.3.12), we get

ω(ttt− [ζ−1]) = −
∫∫

D
Tr
(
Γ−1

(
z, ttt− [ζ−1]

)
∂zΓ

(
z, ttt− [ζ−1]

)
δ[ζ]M

(
z, ttt− [ζ−1]

)) dz ∧ dz

2πi

=−
∫∫

D
Tr
(
D(z)Γ−1(z)C−1(z)∂z

(
C(z)Γ(z)D−1(z)

)
δ[ζ]
(
D(z)M(z, ttt)D−1(z)

)) dz ∧ dz

2πi

=−
∫∫

D
Tr
(
D(z)Γ−1(z)∂zΓ(z)D

−1(z)δ[ζ]
(
D(z)M(z, ttt)D−1(z)

)) dz ∧ dz

2πi
+ (A.0.1)

−
∫∫

D
Tr
(
D(z)Γ−1(z)C−1(z)∂zC(z)Γ(z)D

−1(z)δ[ζ]
(
D(z)M(z, ttt)D−1(z)

)) dz ∧ dz

2πi
+

(A.0.2)

−
∫∫

D
Tr
(
D(z)∂zD

−1(z)δ[ζ]
(
D(z)M(z, ttt)D−1(z)

)) dz ∧ dz

2πi
(A.0.3)

We now consider the three parts (A.0.1), (A.0.2), (A.0.3), separately.

Computation of (A.0.1). We find:

(A.0.1) = −
∫∫

D
Tr
(
Γ−1(z)∂zΓ(z)δM(z, ttt)

) dz ∧ dz

2πi
+

−
∫∫

D
Tr

(
Γ−1(z)∂zΓ(z)

[
D−1(z)δζD(z),M(z, ttt)

])
dz ∧ dz

2πi

= ω(ttt) +

∫∫

D
Tr

(
D−1(z)δζD(z)

[
Γ−1(z)∂zΓ(z),M(z, ttt)

])
dz ∧ dz

2πi
.
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Since ζ /∈ D , the matrix D−1(z) in (5.3.11) is analytic in D and using the ∂-problem for
Γ we can rewrite the two integrals as

(A.0.1) = ω(ttt) +

∫∫

D
∂z̄Tr

(
Γ−1(z)∂zΓ(z)D

−1(z)δζD(z)

)
dz ∧ dz

2πi
+

−
∫∫

D
Tr
(
∂zM(z, ttt)D−1(z)δζD(z)

) dz ∧ dz

2πi
.

(A.0.4)

We now observe that the last integral is independent of ttt, due to the fact that D(z) is
diagonal. Moreover, using

D−1(z)δζD(z) = − z

ζ(z − ζ)
E11dζ,

where E11 =

[
1 0
0 0

]
, we find

−
∫∫

D
Tr
(
∂zM(z, ttt)D−1(z)∂ζD(z)

) dz ∧ dz

2πi
=

∫∫

D

z

ζ(z − ζ)
(∂zM0(z))11

dz ∧ dz

2πi
.

(A.0.5)
The RHS of (A.0.5) equals ∂ζγ(ζ). Now, the integrand of the remaining integral in (A.0.4)
does not have a pole in D and we can use Stokes’ Theorem

∮

∂D
Tr
(
Γ−1(z)∂zΓ(z)D

−1(z)∂ζD(z)
) dz

2πi
=

∮

−∂D

z

ζ(z − ζ)
(Γ−1(z)∂zΓ(z))11

dz

2πi

where −∂D is the border of D oriented clockwise. Since Γ(z) is analytic outside D ,
we can apply Cauchy’s residue Theorem and pick up the residues at z = ζ (there is no
residue at z = ∞ because the integrand is O(z−2)):

∮

−∂D

z

ζ(z − ζ)

(
Γ22(z)∂zΓ11(z)− ∂zΓ21(z)Γ12(z)

) dz
2πi

= Γ22(ζ)∂ζΓ11(ζ)− ∂ζΓ21(ζ)Γ12(ζ)

so that

(A.0.1) = ω(ttt) + (Γ22(ζ)∂ζΓ11(ζ)− ∂ζΓ21(ζ)Γ12(ζ)) dζ + δζγ(ζ). (A.0.6)
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Computation of (A.0.2). Let us consider (A.0.2):

(A.0.2) = −
∫∫

D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)δM(z, ttt)

) dz ∧ dz

2πi
+

−
∫∫

D
Tr
(
M(z, ttt)Γ−1(z)C−1(z)∂zC(z)Γ(z)D

−1(z)δζD(z)
) dz ∧ dz

2πi
+

+

∫∫

D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)M(z, ttt)D−1(z)δζD(z)

) dz ∧ dz

2πi

= −
∫∫

D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)δM(z, ttt)

) dz ∧ dz

2πi
+

+

∫∫

D
Tr
(
∂z̄Γ

−1(z)C−1(z)∂zC(z)Γ(z)D
−1(z)δζD(z)

) dz ∧ dz

2πi
+

+

∫∫

D
Tr
(
Γ−1(z)C−1(z)∂zC(z)∂Γ(z)D

−1(z)δζD(z)
) dz ∧ dz

2πi
. (A.0.7)

Since the only singularity is at z = ζ, which is outside the domain D , we can apply
Stokes’ Theorem to the integration and we get

(A.0.2) = −
∫∫

D
Tr
(
C−1(z)∂zC(z)Γ(z)δM(z, ttt)Γ−1(z)

) dz ∧ dz

2πi
+

+

∮

∂D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)D

−1(z)δζD(z)
) dz

2πi
. (A.0.8)

Now observe that

Γ(z, ttt)δM(z, ttt)Γ−1(z, ttt) = ∂z̄[(δΓ(z, ttt))Γ
−1(z, ttt)] (A.0.9)

Using (A.0.9) in the first integral of (A.0.8), we can rewrite it as a contour integral

−
∫∫

D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)δM(z, ttt)

) dz ∧ dz

2πi

= −
∫∫

D
∂z̄Tr

(
C−1(z)∂zC(z)δΓ(z)Γ

−1(z)
) dz ∧ dz

2πi

=

∮

−∂D
Tr
(
C−1(z)∂zC(z)δΓ(z)Γ

−1(z)
) dz

2πi
.

From the explicit expression of C in (5.3.14) we obtain

C−1(z) =
1

detC(z)
adj(C(z)) =

1(
1− z

ζ

)
[

1 −∂zΓ12(∞)
ζ

Γ21(ζ)
Γ11(ζ)

(
1− z

ζ

)
− ∂zΓ12(∞)Γ12(ζ)

ζΓ11(ζ)

]

∂zC(z) = −1

ζ
E11

107



and

Tr
(
C−1(z)∂zC(z)δΓ(z)Γ

−1(z)
)
=

1

(z − ζ)

(
(δΓ(z)Γ−1(z))11 +

Γ21(ζ)

Γ11(ζ)
(δΓ(z)Γ−1(z))12

)

=
δΓ11(z)Γ22(z)− δΓ12(z)Γ21(z)

(z − ζ)
+

Γ21(ζ)

Γ11(ζ)

(
δΓ12(z)Γ11(z)− δΓ11(z)Γ12(z)

(z − ζ)

)
.

We thus conclude that the first integral in (A.0.8) is given by

∮

−∂D
Tr
(
C−1(z)∂zC(z)δΓ(z)Γ

−1(z)
) dz
2πi

= δΓ11(ζ)Γ22(ζ)−
δΓ11(ζ)

Γ11(ζ)
Γ12(ζ)Γ21(ζ)

=
δΓ11(ζ)

Γ11(ζ)
= δ ln Γ11(ζ). (A.0.10)

To compute the second integral in (A.0.8) we expand the trace and obtain

Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)D

−1(z)∂ζD(z)
)
= − z

ζ(z − ζ)2
Γ11(z)

(
Γ22(z)−

Γ12(z)Γ21(ζ)

Γ11(ζ)

)
.

So we are left with a contour integral with a double pole at z = ζ and a simple pole at
z = ∞. Using the explicit expression (5.3.14) for the matrix C we obtain:

∮

∂D
Tr
(
Γ−1(z)C−1(z)∂zC(z)Γ(z)D

−1(z)∂ζD(z)
) dz

2πi

=

∮

−∂D

z

ζ(z − ζ)2
Γ11(z)

(
Γ22(z)−

Γ12(z)Γ21(ζ)

Γ11(ζ)

)
dz

2πi

= −1

ζ
+

det Γ(ζ)

ζ
+ ∂ζ(Γ11(ζ)Γ22(ζ))−

∂ζ
(
Γ11(ζ)Γ12(ζ)

)
Γ21(ζ)

Γ11(ζ)

= ∂ζ ln Γ11(ζ) + Γ11(ζ)∂ζΓ22(ζ)− ∂ζΓ12(ζ)Γ21(ζ). (A.0.11)

Combining (A.0.10) with (A.0.11) we have

(A.0.2) = δ[ζ](ln(Γ11(ζ))) + (Γ11(ζ)∂ζΓ22(ζ)− Γ21(ζ)∂ζΓ12(ζ)) dζ. (A.0.12)

Computation of (A.0.3). This term turns out to vanish; indeed

(A.0.3) =

∫∫

D
Tr
(
D−1(z)∂zD(z)δM(z, ttt)

) dz ∧ dz

2πi
+

−
∫∫

D
Tr
(
D−1(z)∂zD(z)

[
M(z, ttt), D−1(z)δζD(z)

]) dz ∧ dz

2πi

= −
∫∫

D
Tr
(
δξ(z, t)D−1(z)∂zD(z) [M(z, ttt), σ3]

) dz ∧ dz

2πi
+

−
∫∫

D
Tr
(
D−1(z)∂zD(z)

[
M(z, ttt), D−1(z)δζD(z)

]) dz ∧ dz

2πi
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and the integrand vanishes identically because of the cyclicity of the trace and the fact
that D is a diagonal matrix. In conclusion, adding the equations (A.0.6) and (A.0.12),
we obtain

ω(ttt− [ζ−1]) = ω(ttt) + δ[ζ] ln(Γ11(ζ)) + δ[ζ]γ(ζ). (A.0.13)

Substituting C(z) and D(z) with C̃(z) and D̃(z) respectively and using the nonsingular
condition for K (5.1.1), we find ω(ttt + [ζ−1]) with similar calculations and we get the
following result

ω(ttt+ [ζ−1]) = ω(ttt) + δ[ζ] ln(Γ
−1
11 (ζ))− δ[ζ]γ(ζ). (A.0.14)

and this proves the Lemma 5.3.3. ■
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Appendix B

The Focusing NLS hierarchy

We now consider a particular example of ∂-problem 5.1.1, with s = 2 and a M(z, ttt)
similar to (5.3.1)

∂z̄Γ(z) = Γ(z)e−iξ(z,ttt)σ3M0(z)e
iξ(z,ttt)σ3 for z ∈ D ∪ D (B.0.1)

Γ(z, z) →
z→∞

1

with D the complex conjugate of D and M0(z) that satisfy the Schwarz symmetry

M0(z, z) = σ2M0(z, z)σ2, where σ2 =

[
0 −i
i 0

]
(B.0.2)

Theorem B.0.1. The solution Γ(z) of the ∂-problem (B.0.1) generates the Focusing
Nonlinear Schrödinger hierarchy [56]

i∂tmψ1 = 2ψm+1 (B.0.3)

ψm =
i

2
∂t1ψm−1 + ψ1hm−1 ∂t1hm = −2Im (ψ1ψm) (B.0.4)

where ψm and hm are functions of ttt.

Proof

We define the matrix Ψ(z) as

Ψ(z) = Γ(z)e−iξ(z,ttt)σ3 (B.0.5)

and if Γ(z) solves the problem (B.0.1) then Ψ(z, z) solves

∂z̄Ψ(z) = Ψ(z)M0(z) for z ∈ D ∪ D , (B.0.6)

Ψ(z, z) →
z→∞

(1+ O(z−1))e−iξ(z,ttt)σ3 .
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Since the derivative ∂z̄ and ∂tj commutes ∀ j, both Ψ and ∂tjΨ satisfy the problem (B.0.6),
and for Lemma 5.1.2 Ψ and ∂tjΨ are linked by an entire matrix, called Bj

∂tjΨ(z) = BjΨ(z, z) (B.0.7)

Consider the first parameter t1 = x. We want look for the matrix B1 from the equation
∂xΨ(Ψ)−1.

∂xΨ(Ψ)−1 = ∂x(Γ(z)e
−iξ(z,ttt)σ3)eiξ(z,ttt)σ3(Γ(z))−1 =

= −izΓ(z)σ3(Γ(z))−1 + ∂x(Γ(z))(Γ(z))
−1 ∼

∼ −iz
(
1+

∞∑

k=1

Γk(ttt)

zk

)
σ3

(
1+

∞∑

k=1

Γ̃k(ttt)

zk

)
+

( ∞∑

k=1

∂xΓk(ttt)

zk

)(
1+

∞∑

k=1

Γ̃k(ttt)

zk

)

(B.0.8)

where Γk(ttt) is a 2× 2 matrix with the following form

Γk(ttt) =

[
ak(ttt) bk(ttt)

−bk(ttt) ak(ttt)

]
(B.0.9)

and Γ̃k(ttt) is still a 2× 2 matrix given by the recursive formula

Γ̃k = −Γk −
k−1∑

j=1

ΓjΓ̃k−j . (B.0.10)

Remark B.0.2. We can rewrite (B.0.10) as an algebraic equation in Cn ⊗Mat(2,C),
with n > k, and we can find an explicit form for the Γ̃k:

Γ̃k(ttt) = −Γk(ttt) +

k−1∑

m=1

Γk−mΓm+

+
k−1∑

m=1

p=k−m∑

l=2

(−1)l+1



p+1−l∑

k1=1

· · ·
p−1−κ∑

kl−1=1

Γp−κ−kl−1
Γkl−1

. . .Γk1


Γm, (B.0.11)

with κ =
∑l−2

j=1 kj.

Expanding (B.0.8) we find the laurent series for B1:

B1 ∼ −izσ3 − i[Γ1(ttt), σ3]+

+

∞∑

k=2

z−(k−1)


∂xΓk−1 +

k−2∑

l=1

∂xΓlΓ̃k−l−1 − i


[Γk, σ3] +

k−1∑

j=1

[Γj , σ3]Γ̃k−j




 (B.0.12)

and since B1 must be an entire function then all the terms z−(k−1) must be zero ∀ k.
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Lemma B.0.3. B1 is entire iff the matricies Γk(ttt) satisfy the equation

i∂xΓk−1 + [Γk, σ3]− [Γ1, σ3]Γk−1 = 0 ∀ k (B.0.13)

Proof of the lemma It’s a proof by induction.

From the equation (B.0.12), we can see that for k = 2 we get the equation (B.0.13). We
now check for k = 3:

k = 3 ∂xΓ2 + ∂xΓ1Γ̃1 − i
[
[Γ3, σ3] + [Γ1, σ3]Γ̃2 + [Γ2, σ3]Γ̃1

]
=

from the equation (B.0.11) we get that Γ̃1 = −Γ1 and Γ̃2 = −Γ2 + (Γ1)
2, so we have that

∂xΓ2 − i([Γ3, σ3]− [Γ1, σ3]Γ2)− (∂xΓ1 − i[Γ2, σ3] + i[Γ1, σ3]Γ1) =

= ∂xΓ2 − i([Γ3, σ3]− [Γ1, σ3]Γ2) (B.0.14)

and this is the equation (B.0.13) for k = 3. We can do the same also for k = 4:

k = 4 ∂xΓ3 − i([Γ4, σ3]− [Γ1, σ3]Γ3) + (∂xΓ1 − i[Γ2, σ3] + i[Γ1, σ3]Γ1)((Γ1)
2 − Γ2)+

− (∂xΓ2 − i([Γ3, σ3]− [Γ1, σ3]Γ2))Γ1 =

= ∂xΓ3 − i([Γ4, σ3]− [Γ1, σ3]Γ3) (B.0.15)

and this is the equation (B.0.13) for k = 3.

We suppose, by induction, that (B.0.13) is valid for k = m and we want to show that it
still valid also for k = m+1. Consider the k = m+1 term of the laurent series (B.0.12):

k = m+ 1 ∂xΓm +

m−1∑

l=1

∂xΓlΓ̃m−l − i


[Γm+1, σ3] +

m∑

j=1

[Γj , σ3]Γ̃m+1−j


 =

= ∂xΓm +

m−1∑

l=1

∂xΓlΓ̃m−l − i[Γm+1, σ3]− i[Γ1, σ3]Γ̃m − i

m∑

j=2

[Γj , σ3]Γ̃m+1−j =

= ∂xΓm − i[Γm+1, σ3] + i[Γ1, σ3]Γm +
m−1∑

l=1

∂xΓlΓ̃m−l + i
m−1∑

j=1

[Γ1, σ3]ΓjΓ̃m−j+

− i

m−1∑

j=1

[Γj+1, σ3]Γ̃m−j =

= ∂xΓm − i[Γm+1, σ3] + i[Γ1, σ3]Γm +
m−1∑

l=1

[
(∂xΓl + i[Γ1, σ3]Γl − i[Γl+1, σ3])Γ̃m−l

]

= ∂xΓm − i[Γm+1, σ3] + i[Γ1, σ3]Γm = 0

and this ends our proof. ■
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Since also the other matricies Bm must be entire, the following equation holds ∀m, k ∈ N:

∂tmΓk +
k−1∑

l=1

∂tmΓlΓ̃k−l − i[Γk+m, σ3]−
k+m−1∑

j=1

i[Γj , σ3]Γ̃k+m−j = 0. (B.0.16)

The equation (B.0.13) gives us a relation between the coefficients ak(ttt), bk(ttt):

∂xak = −2ib1bk (B.0.17)

bk =
i

2
∂xbk−1 + b1ak−1 (B.0.18)

So the matrix B1 is given by

B1 = −izσ3 − i[Γ1(ttt), σ3] = −izσ3 +B0
1 =

[ −iz 2ib1(ttt)

2ib1(ttt) iz

]
. (B.0.19)

We now consider the m-component of ttt. The matrix Bm is given from

∂tmΨ(Ψ)−1 = −izm

σ3 + z−1[Γ1, σ3] +

m∑

l=2

z−m([Γk, σ3] +
l−2∑

j=1

[Γj , σ3]Γ̃l−j)


 =

= −izm

σ3 + z−1[Γ1, σ3] +

m∑

l=2

z−m(∂xΓl−1 +
l−2∑

j=1

∂xΓlΓ̃l−j−1)


 =

= zm−1B1 −
m−1∑

l=2

zm−l(∂xΓl−1 +
l−2∑

j=1

∂xΓlΓ̃l−j−1)− (∂xΓm−1

m−2∑

j=1

∂xΓjΓ̃m−j−1) =

= zBm−1 +B0
m = Bm (B.0.20)

this give us a recursive formula to find the Lax matricies Bm for m = 2, . . . , n with

B0
m := −(∂xΓm−1 +

m−2∑

j=1

∂xΓjΓ̃m−j−1). (B.0.21)

Now we need to prove that B0
m satisfy the recursive equations:

(B0
m)12 =

i

2
∂x(B

0
m−1)12 − 2(B0

m−1)11b1; (B.0.22)

∂x(B
0
m)11 = 2i[(B0

m)21b1 − (B0
m)12b1]. (B.0.23)
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Indeed, consider the case for m = 2 and m = 3:

m = 2 B0
2 = −∂xΓ1

from equations (B.0.17) and (B.0.19), we get that

(B0
2)12 = −∂xb1 =

i

2
(B0

1)12 − 2(B0
1)11b1 ∂x(B

0
2)11 = −∂2xa1 = 2i∂x|b1|2

m = 3 B0
3 = −∂xΓ2 + ∂xΓ1Γ1

from (B.0.17) and (B.0.18) we get that

(B0
3)12 = −∂xb2 + ∂xa1b1 + a1∂xb1 = − i

2
∂2xb1 − 4i|b1|2b1 =

i

2
(B0

2)12 − 2(B0
2)11b1

∂x(B
0
3)11 = 2i∂x[b1b2 + b1b2 − |b1|2(a1 + a1)] =

2i[∂xb2b1 + ∂xb2b1 − a1∂xb1b1 − a1∂xb1b1] =

= 2i[(B0
3)21b1 − (B0

3)12b1], (B.0.24)

If we move one step further with m = 4 we notice that not only the equations (B.0.22)
and (B.0.23) holds, but also that we can rewrite (B.0.21) in a recursive way:

B0
m = −∂xΓn−1 −

m−2∑

j=1

Bm−jΓj . (B.0.25)

It is easy to check that, from Schwarz symmetry, the following conditions holds:

(B0
m)11 = −(B0

m)22 (B0
m)12 = −(B0

m)21. (B.0.26)

Let us suppose, by induction, that (B.0.22) and (B.0.23) holds for m, now we want check
that they are true for m+ 1:

m+ 1 (B0
m+1)12 = −∂xbm −

m−1∑

j=1

[(B0
m+1−j)11bj + (B0

m+1−j)12aj ] =

= −∂x
(
i

2
∂xbm−1 + b1am−1

)
−

m−1∑

j=1

(B0
m+1−j)11bj−

m−1∑

j=1

[
i

2
∂x(B

0
m−j)12 − 2(B0

m−j)11b1]aj =
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= −∂2xbm−1 − 4i|b1|2bm−1 −
m−2∑

j=1

i

2
∂x(B

0
m−j)12aj + 2

m−2∑

j=1

(Bm−j)11b1aj −
m−2∑

j=1

(B0
m+1−j)11bj =

=
i

2


∂2xbm−1 +

m−2∑

j=1

∂x
(
(B0

m−j)12aj
)
+

m−2∑

j=1

∂x
(
(B0

m−j)11bj
)

+

−
m−2∑

j=1

(B0
m−j)12b1bj−1 −

m−2∑

j=1

[(B0
m−j)21b1 − (B0

m−j)12b1]bj

+

m−2∑

j=1

(B0
m−j)11bj+1 −

m−2∑

j=1

(B0
m−j)11b1aj+

−
m−1∑

j=1

(B0
m+1−j)11bj + 2

m−2∑

j=1

(Bm−j)11b1aj − 2i|b1|bm−1 =

=
i

2
∂x(B

0
m)12 − (B0

m)11b1 −


∂xam−1 +

m−2∑

j=1

((B0
m−j)21bj − (B0

m−j)11)aj


 =

then, from the conditions (B.0.26)

=
i

2
∂x(B

0
m)12 − 2(B0

m)11b1

we need to check the other condition:

∂x(B
0
m+1)11 = 2i∂x(b1bm)−

m−1∑

j=1

∂x[(B
0
m+1−j)11aj − (B0

m+1−j)12bj ] =

= 2i[∂xb1bm + b1∂xbm]−
m−1∑

j=1

[∂x(B
0
m+1−j)11aj − 2i(B0

m+1−j)11b1bj ]+

+
m−1∑

j=1

[∂x(B
0
m+1−j)12bj + (B0

m+1−j)12∂xbj ] =

= 2i[∂xb1bm + b1∂xbm]− 2i
m−1∑

j=1

[(B0
m+1−j)21b1 − (B0

m+1−j)12b1]aj+

+ 2i

m−1∑

j=1

(B0
m+1−j)11b1bj + ∂x(B

0
m)12b1 +

m−1∑

j=2

∂x(B
0
m+1−j)12bj +

m−1∑

j=1

(B0
m+1−j)12∂xbj =

= 2i[∂xb1bm + b1∂xbm]− 2i
m−1∑

j=1

[(B0
m+1−j)21b1 − (B0

m+1−j)12b1]aj+

(B.0.27)
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+ 2i

m−1∑

j=1

(B0
m+1−j)11b1bj − 2i((B0

m+1)21 + 2(B0
m)11b1)b1+

+
m−2∑

j=1

∂x(B
0
m−j)12bj+1 + 2i

m−1∑

j=1

(B0
m+1−j)12(bj+1 − b1aj) =

= 2i[∂xbm −
m−1∑

j=1

(B0
m+1−j)21aj +

m−1∑

j=1

(B0
m+1−j)11bj ]b1+

− 2i(B0
m+1)12b1 − 4i(B0

m)12|b1|2 − 4i
m−2∑

j=1

(B0
m−j)11bj+1b1 =

= 2i[∂xbm −
m−1∑

j=1

(B0
m+1−j)21aj +

m−1∑

j=1

(B0
m+1−j)22bj ]b1 − 2i(B0

m+1)12b1 =

= 2i[(B0
m+1)21b1 − (Bm+1)12b1] = −4Im ((B0

m+1)12b1).

Then, by defining the functions:

ψ1(ttt) := 2ib1(ttt), ψm(ttt) := (B0
m)12(ttt) hm(ttt) = i(B0

m)11(ttt) (B.0.28)

we get that equations (B.0.22) and (B.0.23) are exactly the equations (B.0.4).

Let us consider the equation (B.0.16) for k = 1:

∂tmΓ1 − i[Γm+1, σ3]−
m∑

j=1

i[Γj , σ3]Γ̃m−j+1 = 0. (B.0.29)

From equation (B.0.13) and (B.0.21), we can rewrite it as

∂tmΓ1 +B0
m+1 − i[Γ1, σ3](Γm + Γ̃m +

m−1∑

j=1

ΓjΓ̃m−j) = 0, (B.0.30)

then, from (B.0.10), the last term is identically zero and at the end we get:

∂tmΓ1 = −B0
m+1. (B.0.31)

By taking the element 12 of (B.0.31) and the definitions (B.0.28), we get the equa-
tion (B.0.3).

This ends the proof of the theorem. ■

Remark B.0.4. If the matrix M0(z) has a symmetry of this kind:

M0(z, z) = σ1M0(z)σ1, with σ1 =

[
0 1
1 0

]
(B.0.32)

then, by substituting bk with − bk in the proof of theorem, we can show that the solution
Γ(z, z) generates the Defocusing Nonlinear Schrödinger hierarchy.
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Remark B.0.5. Exist a generalization for n× n matricies of the NLS hierarchy, called
the gANKS hierarchy [38, 91]. The extension of Theorem B.0.1 for this hierarchy, and
also the result 5.3.1 about the τ -function be treated in future works.
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