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An optimisation–based domain–decomposition
reduced order model for parameter-dependent

non–stationary fluid dynamics problems

Ivan Prusak∗a, Davide Torlo†a, Monica Nonino‡b, and
Gianluigi Rozza§a

aMathematics Area, mathLab, SISSA, 34136 Trieste, Italy
bFakultät für Mathematik, Universität Wien, 1090 Wien, Austria

Abstract

In this work, we address parametric non–stationary fluid dynamics problems
within a model order reduction setting based on domain decomposition. Starting
from the optimisation–based domain decomposition approach, we derive an optimal
control problem, for which we present a convergence analysis in the case of non–
stationary incompressible Navier–Stokes equations. We discretize the problem
with the finite element method and we compare different model order reduction
techniques: POD–Galerkin and a non–intrusive neural network procedures. We
show that the classical POD–Galerkin is more robust and accurate also in transient
areas, while the neural network can obtain simulations very quickly though being
less precise in the presence of discontinuities in time or parameter domain. We
test the proposed methodologies on two fluid dynamics benchmarks with physical
parameters and time dependency: the non–stationary backward–facing step and
lid–driven cavity flow.

1 Introduction
With the increase in the potential of high–performance computing in the last years,
there is a significant demand for numerical methods and approximation techniques
that can perform real–time simulations of Partial Differential Equation (PDEs). The
applications vary from naval, aeronautical and biomedical engineering. There exist
many techniques to achieve such a goal, including reduced–order modelling [28] and
domain–decomposition (DD) methods [46].
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The DD methodology is a highly efficient tool in the framework of PDEs. Any DD
algorithm is constructed by an effective splitting of the domain of interest into different
subdomains (overlapping or not), and the original problem is then restricted to each of
these subdomains with some coupling conditions on the intersections of the subdomains.
The coupling conditions may be very different, they depend on the physical meaning
of the problem at hand, and they are required to provide a certain degree of continuity
among these subdomains (see, for example, [45, 46]). These methods are extremely
important for multi–physics problems when efficient subcomponent numerical codes
are already available, or when we do not have direct access to the numerical algorithms
for some parts of the systems; see, for instance, [18, 22, 30, 32, 33, 34].

Model–order reduction methods are another set of methods that are extremely
useful when dealing with real–time simulations or multi–query tasks. These methods
are successfully employed in the settings of non–stationary and/or parameter–dependent
PDEs. Reduced–order models (ROMs) are extremely effective due to the splitting of
the computational effort into two stages: the offline stage, which contains the most
expensive part of the computations, and the online stage, which allows performing fast
computational queries using structures that are pre–computed in the offline stage; for
more details, see [28]. ROMs have been successfully applied in different fields such
as fluid dynamics [4, 14, 15, 17, 35, 49, 52, 53, 55, 57, 59, 61], structural mechanics
[9, 10, 26, 50, 60, 62] and fluid–structure interaction problems [6, 9, 39, 38]. Lately,
there have also been great advances in reduced–order modelling for optimal–control
problems, [42, 54, 56].

The novelty of this paper lies in the study of an optimization-based approach
for a domain-decomposition model addressing unsteady parametric fluid dynamics
problems. We employ both intrusive and non-intrusive model-order reduction (MOR)
techniques to achieve this, providing a comprehensive comparison between the two
methodologies. Utilizing domain-decomposition methods, particularly an optimization
approach ensuring coupling of interface conditions between subdomains as presented in
[25, 23, 43], we develop various reduced-order models (ROMs). These include classical
POD-Galerkin projection-based intrusive methods [28, 53] and neural network (NN)
based non-intrusive ROMs [29, 48, 40, 41, 51]. Moreover, we perform a convergence
analysis for the nonstationary fluid dynamics problems based on the a priori estimates
by extending the results presented in [25] for the stationary case.

This work is structured as follows. In Section 2, we introduce the monolithic fluid
dynamics problem and its time–discretisation scheme with the further derivation of the
optimisation–based domain–decomposition formulation at each time step. In Section 3,
we derive a priori estimates for the solutions to Navier–Stokes equations which are then
used to prove the existence and uniqueness of the minimiser to the optimal–control
problem derived in the previous section. Furthermore, in Section 3.5 we provide a
closed–form expression for the gradient of the objective functional which allows for
the use of gradient–based optimisation algorithms to decouple the subdomain solves.
Section 4 contains the Finite Element discretisation of the problem of interest and the
corresponding finite–dimensional high–fidelity optimisation problem. Section 5 deals
with two ROM techniques: an intrusive Galerkin projection and a neural network (NN)
algorithm, both based on a Proper Orthogonal Decomposition (POD) methodology. In
Section 6, we show some numerical results for two toy problems: the backward–facing
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step and the lid–driven cavity flow. Conclusions will follow in Section 7.

2 Problem formulation
In this section, starting with a monolithic formulation of the time–dependent incom-
pressible Navier–Stokes equations, we first introduce a time discretisation on the contin-
uous level employing the implicit Euler time–stepping scheme. Then, we will describe
a two–domain optimisation-based domain–decomposition formulation at each time step
in variational form in the end. Here and in the next few sections, the analysis is valid
for any value of the physical parameter, so for the sake of simplicity, we postpone
mentioning the parameter dependence of the problem until Section 5.

2.1 Monolithic formulation
Let Ω be a physical domain of interest: we assume Ω to be an open subset of R2 and
Γ to be the boundary of Ω. We also consider a finite time interval [0, 𝑇] with 𝑇 > 0.
Let 𝑓 : Ω × [0, 𝑇] → R2 be the forcing term, 𝜈 the kinematic viscosity, 𝑢𝐷 a given
Dirichlet datum and 𝑢0 a given initial condition. The problem reads as follows: find
the velocity field 𝑢 : Ω × [0, 𝑇] → R2 and the pressure 𝑝 : Ω × [0, 𝑇] → R s.t.

𝜕𝑢

𝜕𝑡
− 𝜈Δ𝑢 + (𝑢 · ∇) 𝑢 + ∇𝑝 = 𝑓 in Ω × (0, 𝑇], (1a)

−div𝑢 = 0 in Ω × (0, 𝑇], (1b)
𝑢 = 𝑢𝐷 on Γ𝐷 × [0, 𝑇], (1c)

𝜈
𝜕𝑢

𝜕n
− 𝑝n = 0 on Γ𝑁 × [0, 𝑇], (1d)

𝑢(𝑡 = 0) = 𝑢0 in Ω, (1e)

where Γ𝐷 and Γ𝑁 are disjoint subsets of Γ (as it is shown in Figure 1a) and n is an
outward unit normal vector to Γ𝑁 .

2.2 Time discretisation
We will start with time discretisation of problem (1). Let Δ𝑡 > 0, we assume the
following time interval partition: 0 = 𝑡0 < 𝑡1 < .... < 𝑡𝑀 = 𝑇 , where 𝑡𝑛 = 𝑛Δ𝑡 for
𝑛 = 0, ..., 𝑀 . We employ the implicit Euler scheme for the incompressible Navier–
Stokes equation which reads as follows: for 𝑛 ≥ 1 find 𝑢𝑛 : Ω → R2, 𝑝𝑛 : Ω → R s.t.

𝑢𝑛 − 𝑢𝑛−1

Δ𝑡
− 𝜈Δ𝑢𝑛 + (𝑢𝑛 · ∇) 𝑢𝑛 + ∇𝑝𝑛 = 𝑓 𝑛 in Ω, (2a)

−div𝑢𝑛 = 0 in Ω, (2b)
𝑢𝑛 = 𝑢𝑛𝐷 on Γ𝐷 , (2c)

𝜈
𝜕𝑢𝑛

𝜕n
− 𝑝𝑛n = 0 on Γ𝑁 , (2d)
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ΩΓ𝐷 Γ𝑁

(a) Physical domain

Γ0

Ω1

Ω2

Γ𝐷,1

Γ𝑁,2

Γ𝑁,1

Γ𝐷,2

(b) Domain Decomposition

Figure 1: Domain and boundaries

and for 𝑛 = 0
𝑢0 = 𝑢0 in Ω. (2e)

Here we adopted the following notations: 𝑓 𝑛 (·) = 𝑓 (·, 𝑡𝑛) and 𝑢𝑛
𝐷
(·) = 𝑢𝐷 (·, 𝑡𝑛).

2.3 Domain Decomposition (DD) formulation
As mentioned in the introduction, we resort to the optimisation–based DD framework
in [43]. Let Ω𝑖 , 𝑖 = 1, 2, be open subsets of Ω, such that Ω = Ω1 ∪Ω2, Ω1 ∩ Ω2 = ∅.
Denote Γ𝑖 := 𝜕Ω𝑖 ∩ Γ, 𝑖 = 1, 2, and Γ0 := Ω1 ∩ Ω2. In the same way, we define the
corresponding boundary subsets Γ𝑖,𝐷 and Γ𝑖,𝑁 , 𝑖 = 1, 2, see Figure 1b. Having at hand
the time discretisation (2), we can cast the DD problem in the optimal control setting
with the weak formulation of the DD state equations. For this purpose, we define the
following variational spaces

• 𝑉𝑖 :=
{
𝑢 ∈ 𝐻1 (Ω𝑖;R2)

}
,

• 𝑉𝑖,0 :=
{
𝑢 ∈ 𝐻1 (Ω𝑖;R2) : 𝑢 |Γ𝑖,𝐷 = 0

}
,

• 𝑄𝑖 :=
{
𝑝 ∈ 𝐿2 (Ω𝑖;R)

}
,

together with the following bilinear and trilinear forms

• 𝑚𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑚𝑖 (𝑢𝑖 , 𝑣𝑖) := (𝑢𝑖 , 𝑣𝑖)Ω𝑖
,

• 𝑎𝑖 : 𝑉𝑖 ×𝑉𝑖,0 → R, 𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) := 𝜈(∇𝑢𝑖 ,∇𝑣𝑖)Ω𝑖
,

• 𝑏𝑖 : 𝑉𝑖 ×𝑄𝑖 → R, 𝑏𝑖 (𝑣𝑖 , 𝑞𝑖) := −(div𝑣𝑖 , 𝑞𝑖)Ω𝑖
,

• 𝑐𝑖 : 𝑉𝑖 ×𝑉𝑖 ×𝑉𝑖,0 → R, 𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) := ((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖
,

for 𝑖 = 1, 2. In the definitions above, (·, ·)𝜔 indicates the 𝐿2 (𝜔) inner product. The
spaces 𝑉𝑖 are endowed with the 𝐻1 (Ω𝑖)–norm for 𝑖 = 1, 2, the spaces 𝑉𝑖,0 with the
𝐻1

0 (Ω𝑖)–norm and the spaces 𝑄𝑖 with the 𝐿2 (Ω𝑖)–norm for 𝑖 = 1, 2.
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The DD formulation then reads as follows. For 𝑛 ≥ 1 solve the following optimal
control problem:

minimise over 𝑔 ∈ 𝐿2 (Γ0) the functional

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) :=

1
2

∫
Γ0

��𝑢𝑛1 − 𝑢𝑛2
��2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔 |2 𝑑Γ, (3)

subject to the variational problem:
1
Δ𝑡
𝑚𝑖

(
𝑢𝑛
𝑖
− 𝑢𝑛−1

𝑖
, 𝑣𝑖

)
+ 𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )

= ( 𝑓 𝑛
𝑖
, 𝑣𝑖)Ω𝑖

+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 ,
𝑢𝑛
𝑖
= 𝑢𝑛

𝑖,𝐷
on Γ𝑖,𝐷 .

(4)

The presence of the regularisation term 𝛾

2

∫
Γ0
|𝑔 |2 𝑑Γ with 𝛾 > 0 in the definition of

the objective functional (3) is essential for the well–posedness analysis of the optimal
control problem (3)– (4) carried out in the next section. Nevertheless, our goal is to
find a DD solution which is as close as possible to the monolithic one; for this reason
we will provide the analysis when the regularisation parameter 𝛾 → 0.

3 Analysis of the optimal control problem
In this section, we will give an overview of the existence of local minima of the optimal–
control problem described above. It will rely on the a priori estimates for the solutions to
the Navier–Stokes equations. As is evidenced, for instance, in [47], due to the presence
of the Neumann boundary condition, the analysis of the state problem is not possible in
the general case, so we will modify the problem in the framework where the problem
is well posed and give some indication about the original problem later in the section.
Finally, in the end of the section, we will list the objective functional gradient of the
original DD optimal control problem.

3.1 A modified Navier–Stokes problem
First, without loss of generality, we assume that the Dirichlet data 𝑢𝑖,𝐷 is homogeneous.
Otherwise, it is possible to recast the inhomogeneous problem into a homogeneous
one with various techniques, e.g., lifting functions as described in Appendix A. As
mentioned in the preface to this section, it is hard to prove the well–posedness of the
solution to the Navier–Stokes equation in the form (4). The main problem arises from
the nonlinear term 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) =

(
(𝑢𝑛
𝑖
· ∇)𝑢𝑛

𝑖
, 𝑣𝑖

)
Ω𝑛
𝑖

. Indeed, by integration by parts
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and the incompressibility conditions in (4), we can see

𝑐𝑖 (𝑢𝑛𝑖 , 𝑤𝑖 , 𝑣𝑖) =

∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑤𝑖 · 𝑣𝑖𝑑Ω =

∫
𝜕Ω𝑖

(𝑤𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n𝑖)𝑑Γ

−
∫
Ω𝑖

(𝑤𝑖 · 𝑣𝑖) div 𝑢𝑛𝑖 𝑑Ω −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑤𝑖𝑑Ω

=

∫
𝜕Ω𝑖

(𝑤𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n𝑖)𝑑Γ −
∫
Ω𝑖

(𝑢𝑛𝑖 · ∇)𝑣𝑖 · 𝑤𝑖𝑑Ω

=

∫
Γ𝑖,𝑁∪Γ0

(𝑤𝑖 · 𝑣𝑖) (𝑢𝑛𝑖 · n𝑖)𝑑Γ − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑣𝑖 , 𝑤𝑖),

which leads to the following expression

𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) =
1
2

∫
Γ𝑖,𝑁∪Γ0

|𝑢𝑛𝑖 |2 (𝑢𝑛𝑖 · n𝑖)𝑑Γ. (5)

The issue here is that this boundary term is of third order and has an unknown sign
since the solution on the interface Γ0 is undetermined. This complicates the analysis,
which relies on the a priori bounds of the weak solutions. On the other hand, it gives us
an idea of how to redefine the problem at hand in order to obtain well–posedness (see,
e.g. [12, 47]). Indeed, the trilinear forms 𝑐𝑖 (·, ·, ·), 𝑖 = 1, 2 can be rewritten as

𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) =
1
2
𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) +

1
2
𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖)

=
1
2
𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) −

1
2
𝑐𝑖 (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) +

1
2

∫
Γ𝑖,𝑁∪Γ0

(𝑤𝑖 · 𝑣𝑖) (𝑢𝑖 · n𝑖)𝑑Γ

= 𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) +
1
2

∫
Γ𝑖,𝑁∪Γ0

(𝑤𝑖 · 𝑣𝑖) (𝑢𝑖 · n𝑖)𝑑Γ,

where the trilinear form 𝑐(·, ·, ·) is defined as

𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) =
1
2
((𝑢𝑖 · ∇)𝑤𝑖 , 𝑣𝑖)Ω𝑖

− 1
2
((𝑢𝑖 · ∇)𝑣𝑖 , 𝑤𝑖)Ω𝑖

(6)

and it has the following remarkable property

𝑐𝑖 (𝑢𝑖 , 𝑣𝑖 , 𝑣𝑖) = 0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0. (7)

We thus consider a new variational formulation of the state equations (4): for 𝑛 ≥ 1
and 𝑖 = 1, 2, find 𝑢𝑛

𝑖
∈ 𝑉𝑖,0 and 𝑝𝑛

𝑖
∈ 𝑄𝑖 s.t.

1
Δ𝑡
𝑚𝑖

(
𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖 , 𝑣𝑖

)
+𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) + 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) + 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )

= ( 𝑓 𝑛𝑖 , 𝑣𝑖)Ω𝑖
+
(
(−1)𝑖+1𝑔, 𝑣𝑖

)
Γ0

∀𝑣𝑖 ∈ 𝑉𝑖,0,
(8a)

𝑏𝑖 (𝑢𝑛𝑖 , 𝑞𝑖) = 0 ∀𝑞𝑖 ∈ 𝑄𝑖 , (8b)

6



which corresponds to imposing the following modified Neumann outlet condition

𝜈
𝜕𝑢𝑛

𝑖

𝜕n𝑖
− 𝑝𝑛𝑖 n𝑖 −

1
2
(𝑢𝑛𝑖 · n𝑖)𝑢𝑛𝑖 = 0 on Γ𝑖,𝑁 . (9)

The boundary condition (9) no longer arises from the original physical problem (1),
but, on the other hand, the condition (7) allows us to derive the a priori estimates in
the next section. It is also worth mentioning that in the case of DD optimal control
problem (3)–(8) the optimum 𝑔 is the approximation of the modified normal stress on
the interface, i.e., 𝜈 𝜕𝑢

𝑛
𝑖

𝜕n𝑖
− 𝑝𝑛

𝑖
n𝑖 − 1

2 (𝑢
𝑛
𝑖
· n𝑖)𝑢𝑛𝑖 , 𝑖 = 1, 2, whereas in the case of the

original problem (3)–(4) the optimum 𝑔 is the approximation of the physical normal
stress 𝜈 𝜕𝑢

𝑛
𝑖

𝜕n𝑖
− 𝑝𝑛

𝑖
n𝑖 , 𝑖 = 1, 2.

3.2 A priori estimates
The key element for the analysis of the optimal control problem is the derivation of the
a priori estimates of the solutions to the state equations (8). We will follow the idea
introduced in [25] for the stationary Navier–Stokes equations and extend the results to
the non–stationary case. We first introduce the various well–known properties of the
different terms in the weak formulation (8), see, for instance, [25, 47].

• The forms 𝑚𝑖 (·, ·), 𝑎𝑖 (·, ·) and 𝑐𝑖 (·, ·, ·) are continuous: there exist positive
constants 𝐶𝑚, 𝐶𝑎 and 𝐶𝑐 such that

|𝑚𝑖 (𝑢𝑖 , 𝑣𝑖) | ≤ 𝐶𝑚 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (10)
|𝑎𝑖 (𝑢𝑖 , 𝑣𝑖) | ≤ 𝐶𝑎 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (11)
|𝑐𝑖 (𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖) | ≤ 𝐶𝑐 | |𝑢𝑖 | |𝑉𝑖,0 | |𝑤𝑖 | |𝑉𝑖,0 | |𝑣𝑖 | |𝑉𝑖,0 ∀𝑢𝑖 , 𝑤𝑖 , 𝑣𝑖 ∈ 𝑉𝑖,0, (12)

• the bilinear form 𝑎𝑖 (·, ·) is coercive: there exists a positive constant 𝛼 > 0 such
that

𝑎𝑖 (𝑣𝑖 , 𝑣𝑖) ≥ 𝛼 | |𝑣𝑖 | |2𝑉𝑖,0 ∀𝑣𝑖 ∈ 𝑉𝑖,0, (13)

• the bilinear form 𝑏𝑖 (·, ·) satisfies inf–sup condition: there exists a positive con-
stant 𝛽 > 0 such that

sup
𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖 , 𝑞𝑖)
| |𝑣𝑖 | |𝑉𝑖,0

≥ 𝛽 | |𝑞𝑖 | |𝑄𝑖
∀𝑞𝑖 ∈ 𝑄𝑖 , (14)

• the bilinear form 𝑚𝑖 (·, ·) is non–negative definite, i.e.

𝑚𝑖 (𝑣𝑖 , 𝑣𝑖) = | |𝑣𝑖 | |2𝐿2 (Ω𝑖 ) ≥ 0 ∀𝑣𝑖 ∈ 𝑉𝑖,0. (15)

By using the properties (10), (13), (7), (15), the trace theorem and equations (8),
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we are able to write the following estimate for the solution 𝑢𝑛
𝑖

and 𝑝𝑛
𝑖

to (8)

| |𝑢𝑛𝑖 | |2𝑉𝑖,0 ≤ 1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) ≤

1
𝛼
𝑎𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) +

1
𝛼Δ𝑡

𝑚𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 )

=
1
𝛼

(
1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖 , 𝑢𝑛𝑖 ) − 𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑢𝑛𝑖 ) − 𝑏𝑖 (𝑢𝑛𝑖 , 𝑝𝑛𝑖 )

+ ( 𝑓 𝑛𝑖 , 𝑢𝑛𝑖 )Ω𝑖
+ (−1)𝑖+1 (𝑔, 𝑢𝑛𝑖 )Γ0

)
≤ 1

𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0 .

This leads to the following estimate

| |𝑢𝑛𝑖 | |𝑉𝑖,0 ≤ 1
𝛼

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
. (16)

Similarly, by using (14), (10), (11), (12) and equations (8), we obtain

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽
sup

𝑣𝑖∈𝑉𝑖,0\{0}

𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 )
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

1
Δ𝑡
|𝑚𝑖 (𝑢𝑛𝑖 − 𝑢𝑛−1

𝑖
, 𝑣𝑖) |

| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

|𝑎𝑖 (𝑢𝑛𝑖 , 𝑣𝑖) | + |𝑐𝑖 (𝑢𝑛𝑖 , 𝑢𝑛𝑖 , 𝑣𝑖) | + |( 𝑓 𝑛
𝑖
, 𝑣𝑖)Ω𝑖

|
| |𝑣𝑖 | |𝑉𝑖,0

+ 1
𝛽

sup
𝑣𝑖∈𝑉𝑖,0\{0}

| (𝑔, 𝑣𝑖)Γ0 |
| |𝑣𝑖 | |𝑉𝑖,0

≤ 1
𝛽

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎 + 𝐶𝑐 | |𝑢𝑛𝑖 | |𝑉𝑖,0

)
| |𝑢𝑛𝑖 | |𝑉𝑖,0

+ 1
𝛽

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)
,

which together with the estimate (16) leads to

| |𝑝𝑛𝑖 | |𝑄𝑖
≤ 1

𝛽

[(
1 + 1

𝛼

(
𝐶𝑚

Δ𝑡
+ 𝐶𝑎

)) (
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) (17)

+ ||𝑔 | |𝐿2 (Γ0 )

)
+ 𝐶𝑐
𝛼2

(
𝐶𝑚

Δ𝑡
| |𝑢𝑛−1
𝑖 | |𝑉𝑖,0 + || 𝑓 𝑛𝑖 | |𝐿2 (Ω𝑖 ) + ||𝑔 | |𝐿2 (Γ0 )

)2
]
.

3.3 Existence of optimal solutions
In this subsection, we prove the existence of optimal solutions for the regularised
functional (3). The proof follows the methodology presented by Gunzburger et al. [24].
Firstly, we define the admissibility set as follows:

U𝑎𝑑 =
{
(𝑢𝑛1 , 𝑝

𝑛
1 , 𝑢

𝑛
2 , 𝑝

𝑛
2 , 𝑔) ∈ 𝑉1,0 ×𝑄1 ×𝑉2,0 ×𝑄2 × 𝐿2 (Γ0) such that

equations (8) are satisfied and J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) < ∞

}
.

The admissibility set is clearly non–empty, since, as it was pointed out above, the
restrictions to subdomains of the monolithic solution (2) and its corresponding flux on
the interface belong to the set.
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Let
{(
𝑢
𝑛, ( 𝑗 )
1 , 𝑝

𝑛, ( 𝑗 )
1 , 𝑢

𝑛, ( 𝑗 )
2 , 𝑝

𝑛, ( 𝑗 )
2 , 𝑔 ( 𝑗 )

)}
be a minimizing sequence in U𝑎𝑑 , i.e.,

lim
𝑗→∞

J𝛾
(
𝑢
𝑛, ( 𝑗 )
1 , 𝑢

𝑛, ( 𝑗 )
2 , 𝑔 ( 𝑗 )

)
= inf

(𝑢𝑛1 , 𝑝
𝑛
1 ,𝑢

𝑛
2 , 𝑝

𝑛
2 ,𝑔) ∈U𝑎𝑑

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 , 𝑔).

From the definition of the admissible set U𝑎𝑑 and the functional J𝛾 , it is evident
that the set

{
𝑔 ( 𝑗 )

}
is uniformly bounded in 𝐿2 (Γ0), which in turn, due to the a priori

estimates (16) and (17), implies that the sets
{(
𝑢
𝑛, ( 𝑗 )
𝑖

)}
are uniformly bounded in 𝑉𝑖,0

and the sets
{(
𝑝
𝑛, ( 𝑗 )
𝑖

)}
are uniformly bounded in𝑄𝑖 for 𝑖 = 1, 2. Thus there exists a point(

�̂�𝑛1 , 𝑝
𝑛
1 , �̂�

𝑛
2 , 𝑝

𝑛
2 , �̂�

)
∈ U𝑎𝑑 and a subsequence

{(
𝑢
𝑛, ( 𝑗𝑘 )
1 , 𝑝

𝑛, ( 𝑗𝑘 )
1 , 𝑢

𝑛, ( 𝑗𝑘 )
2 , 𝑝

𝑛, ( 𝑗𝑘 )
2 , 𝑔 ( 𝑗𝑘 )

)}
of the minimising sequence such that for 𝑖 = 1, 2

𝑢
𝑛, ( 𝑗𝑘 )
𝑖

⇀ �̂�𝑛𝑖 in 𝑉𝑖,0, (18)

𝑝
𝑛, ( 𝑗𝑘 )
𝑖

⇀ 𝑝𝑛𝑖 in 𝑄𝑖 , (19)

𝑔 ( 𝑗𝑘 ) ⇀ �̂� in 𝐿2 (Γ0), (20)
𝑢
𝑛, ( 𝑗𝑘 )
𝑖

→ �̂�𝑛𝑖 in 𝐿2 (Ω𝑖), (21)

𝑢
𝑛, ( 𝑗𝑘 )
𝑖

|Γ0 → �̂�𝑛𝑖 |Γ0 in 𝐿2 (Γ0). (22)

The last two results are obtained by the trace theorem and compact embedding results
in Sobolev spaces, see for example [19, 36].
Since the forms 𝑚𝑖 (·, ·), 𝑎𝑖 (·, ·) and 𝑏𝑖 (·, ·) are bilinear and continuous by (18), (19)
and (20) we obtain the following convergence results:

𝑚𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑣𝑖) → 𝑚𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑎𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑣𝑖) → 𝑎𝑖 (�̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

𝑏𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑞𝑖) → 𝑏𝑖 (�̂�𝑛𝑖 , 𝑞𝑖) ∀𝑞𝑖 ∈ 𝑄𝑖 ,

𝑏𝑖 (𝑣𝑖 , 𝑝𝑛, ( 𝑗𝑘 )𝑖
) → 𝑏𝑖 (𝑣𝑖 , 𝑝𝑛𝑖 ) ∀𝑣𝑖 ∈ 𝑉𝑖,0,

(𝑔 ( 𝑗𝑘 ) , 𝑣𝑖)Γ0 → (�̂�, 𝑣𝑖)Γ0 ∀𝑣𝑖 ∈ 𝑉𝑖,0.

Concerning the trilinear form 𝑐𝑖 (·, ·, ·), we exploit integration by part twice, divergence–
free conditions for 𝑢𝑛, ( 𝑗𝑘 )

𝑖
and �̂�𝑛

𝑖
, and the strong convergence results (21)–(22). We

obtain ∀𝑣𝑖 ∈ 𝑉𝑖,0

lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛, ( 𝑗𝑘 )𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣 · �̂�𝑛𝑖 𝑑Ω,

lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑢𝑛, ( 𝑗𝑘 )
𝑖

· 𝑣𝑖𝑑Ω = lim
𝑘→∞

1
2

∫
Γ0

(
𝑢
𝑛, ( 𝑗𝑘 )
𝑖

· 𝑣𝑖
) (
𝑢
𝑛, ( 𝑗𝑘 )
𝑖

· n𝑖
)
𝑑Γ

− lim
𝑘→∞

1
2

∫
Ω𝑖

(𝑢𝑛, ( 𝑗𝑘 )
𝑖

· ∇)𝑣𝑖 · 𝑢𝑛, ( 𝑗𝑘 )𝑖
𝑑Ω =

1
2

∫
Γ0

(
�̂�𝑛𝑖 · 𝑣𝑖

) (
�̂�𝑛𝑖 · n𝑖

)
𝑑Γ

−1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)𝑣𝑖 · �̂�
𝑛,
𝑖
𝑑Ω =

1
2

∫
Ω𝑖

(�̂�𝑛𝑖 · ∇)�̂�𝑛𝑖 · 𝑣𝑖𝑑Ω,
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which leads to

lim
𝑘→∞

𝑐𝑖 (𝑢𝑛, ( 𝑗𝑘 )𝑖
, 𝑢
𝑛, ( 𝑗𝑘 )
𝑖

, 𝑣𝑖) = 𝑐𝑖 (�̂�𝑛𝑖 , �̂�𝑛𝑖 , 𝑣𝑖) ∀𝑣𝑖 ∈ 𝑉𝑖,0.

These convergence results mean that the functions �̂�𝑛1 , 𝑝
𝑛
1 , �̂�

𝑛
2 , 𝑝

𝑛
2 , �̂� satisfy the state

equations (8). We also note that the functional J𝛾 is lower–semicontinuous, i.e

lim inf
𝑗→∞

J𝛾 (𝑢𝑛, ( 𝑗𝑘 )1 , 𝑢
𝑛, ( 𝑗𝑘 )
2 , 𝑔 ( 𝑗𝑘 ) ) ≥ J𝛾 (�̂�𝑛1 , �̂�

𝑛
2 , �̂�),

which implies that

inf
(𝑢𝑛1 , 𝑝

𝑛
1 ,𝑢

𝑛
2 , 𝑝

𝑛
2 ,𝑔) ∈U𝑎𝑑

J𝛾 (𝑢𝑛1 , 𝑢
𝑛
2 , 𝑔) = J𝛾 (�̂�𝑛1 , �̂�

𝑛
2 , �̂�).

Hence, we have proved the existence of optimal solutions.

3.4 Convergence with vanishing penalty parameter
In the previous section, we have proved the existence of optimal solutions of the
regularised function J𝛾 for any 𝛾 > 0, where the parameter 𝛾 indicates the relative
importance of the two terms entering the definition of the functional. This poses an
issue in our domain–decomposition setting since the optimal solution does not satisfy
the coupling condition 𝑢𝑛1 |Γ0 = 𝑢𝑛2 |Γ0 . In this section, we prove the existence of an
optimal solution to the unregularised functional J with corresponds to the functional
J𝛾 with 𝛾 = 0.

Let (𝑢𝑛,𝑚𝑜𝑛, 𝑝𝑛,𝑚𝑜𝑛) be a weak solution to the monolithic equations (2), and for
each 𝛾 > 0 we denote by (𝑢𝑛,𝛾1 , 𝑝

𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) an optimum of J𝛾 under the
constraints (8). We define the following functions for 𝑖 = 1, 2:

𝑢
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑢𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑝
𝑛,𝑚𝑜𝑛
𝑖

:= 𝑝𝑛,𝑚𝑜𝑛 |Ω𝑖
,

𝑔𝑚𝑜𝑛 := 𝜈
𝜕𝑢

𝑛,𝑚𝑜𝑛

1
𝜕n1

− 𝑝𝑛,𝑚𝑜𝑛1 n1 −
1
2
(𝑢𝑛,𝑚𝑜𝑛1 · n1)𝑢𝑛,𝑚𝑜𝑛1 on Γ0.

Due to optimality of the point (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾), we obtain that ∀𝛾 > 0

J𝛾 (𝑢𝑛,𝛾1 , 𝑝
𝑛,𝛾

1 , 𝑢
𝑛,𝛾

2 , 𝑝
𝑛,𝛾

2 , 𝑔𝛾) ≤ J𝛾 (𝑢𝑛,𝑚𝑜𝑛1 , 𝑝
𝑛,𝑚𝑜𝑛

1 , 𝑢
𝑛,𝑚𝑜𝑛

2 , 𝑝
𝑛,𝑚𝑜𝑛

2 , 𝑔𝑚𝑜𝑛),

which due to the definition of 𝑢𝑛,𝑚𝑜𝑛1 and 𝑢𝑛,𝑚𝑜𝑛2 gives us the following bound:

1
2

∫
Γ0

��𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2

��2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔𝛾 |2 𝑑Γ ≤ 𝛾

2

∫
Γ0

|𝑔𝑚𝑜𝑛 |2 𝑑Γ ∀𝛾 > 0.

The last inequality tells us that the sequence {𝑔𝛾 : 𝛾 > 0} is bounded in 𝐿2 (Γ0).
Following the exact same lines of arguments as in the previous section, we are able
to deduce that there is a subsequence of the original sequence (we will keep the
same notation for the sake of simplicity) that converges to (𝑢𝑛,∗1 , 𝑝

𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗) ∈
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𝑉1,0×𝑄1×𝑉2,0×𝑄2×𝐿2 (Γ0) in the sense of (18) – (22). In addition to this, the inequality
above tells us that | |𝑢𝑛,𝛾1 − 𝑢𝑛,𝛾2 | |𝐿2 (Γ0 ) → 0 as 𝛾 → 0, which in turn yields 𝑢1,∗

1 = 𝑢
1,∗
2

a.e. on Γ0. The non–negativity of J leads to the fact that (𝑢𝑛,∗1 , 𝑝
𝑛,∗
1 , 𝑢

𝑛,∗
2 , 𝑝

𝑛,∗
2 , 𝑔∗)

is a global minimum of J . Also, it is easy to see that the following functions 𝑢𝑛,∗ ∈
𝐻1

0,Γ𝐷 (Ω), 𝑝𝑛,∗ ∈ 𝐿2 (Ω), defined as

𝑢𝑛,∗ :=

{
𝑢
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑢
𝑛,∗
2 , in Ω2 ∪ Γ0,

𝑝𝑛,∗ :=

{
𝑝
𝑛,∗
1 , in Ω1 ∪ Γ0,

𝑝
𝑛,∗
2 , in Ω2 ∪ Γ0,

satisfy the monolithic equations (2) in the weak sense.
Remark (Uniqueness of optimal solutions). It is well–known that the solution to the
non–stationary incompressible Navier–Stokes equation in 2D is unique [47], and it can
be proved that uniqueness transfers to the implicit–Euler time–discretisation scheme
with a good choice of a time–step parameter (see, for instance, [27]). This, together
with the convexity of the objective functional, leads to the uniqueness of the optimal
solution discussed above.
Remark (Weak formulation with “non–symmetric” trilinear form). The condition (7)
was crucial for analyzing the optimal-control problem. Regarding the problem formu-
lated in the weak form (4), numerical experiments yield similar convergence results
when employing the trilinear form (6). We believe that this similarity arises because
we have tested scenarios where the monolithic solution (𝑢𝑛, 𝑝𝑛) is well-posed, either
satisfying the condition

∫
Γ𝑁

|𝑢𝑛 |2 𝑢𝑛 · n 𝑑Γ ≥ 0 or considering only Dirichlet boundary
conditions (with the pressure variational space comprising solely zero-mean functions
to ensure uniqueness).

3.5 DD optimal control problem gradient
Resorting to the Lagrangian functional and the sensitivity approaches described in [43],
it is easy to show that the gradient of the original DD optimal control problem (3)– (4)
at a point 𝑔 ∈ 𝐿2 (Γ0) is given by

𝑑J𝛾
𝑑𝑔

(𝑢𝑛1 , 𝑢
𝑛
2 ; 𝑔) = 𝛾𝑔 + 𝜉1 |Γ0 − 𝜉2 |Γ0 , (23)

where 𝜉1 and 𝜉2 are the solutions to the following adjoint problems for 𝑖 = 1, 2: given
𝑢𝑛1 ∈ 𝑉1 and 𝑢𝑛2 ∈ 𝑉2 solutions to the state problem (4), find 𝜉 ∈ 𝑉𝑖,0 and 𝜆𝑖 ∈ 𝑄𝑖 solving

1
Δ𝑡
𝑚𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑎𝑖 (𝜂𝑖 , 𝜉𝑖) + 𝑐𝑖

(
𝜂𝑖 , 𝑢

𝑛
𝑖 , 𝜉𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖 , 𝜂𝑖 , 𝜉𝑖

)
+ 𝑏𝑖 (𝜂𝑖 , 𝜆𝑖) = ((−1)𝑖+1𝜂𝑖 , 𝑢

𝑛
1 − 𝑢𝑛2 )Γ0 ,

∀𝜂𝑖 ∈ 𝑉𝑖,0, (24a)

𝑏𝑖 (𝜉𝑖 , 𝜇𝑖) = 0, ∀𝜇𝑖 ∈ 𝑄𝑖 . (24b)

The closed–form formula for the gradient of the objective functional J𝛾 is an essential
element to tackle the optimal control problem utilizing gradient–based optimisation
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algorithms as the one presented in [43] or more effective algorithms such as Broyden–
Fletcher–Goldfarb–Shanno (BFGS) [16, 64] and Newton Conjugate Gradient (CG) [37,
5] algorithms. This approach leads to an iterative procedure in which both the state
and the adjoint subcomponents of the DD system can be solved independently at each
optimisation iteration on each subdomain and then updated through the gradient. In
particular, in the numerical tests we will perform, we will use the limited–memory
Broyden–Fletcher–Goldfarb–Shanno (L–BFGS–B) optimisation algorithm [13], which
shows faster convergence and higher efficiency with respect to other gradient–based
algorithms.

4 Finite Element Discretisation
In this section, we present the Finite Element spatial discretisation for the optimal control
problem previously introduced. We assume to have at hand two well–defined triangu-
lations T1 and T2 over the domains Ω1 and Ω2, respectively, and a one–dimensional
discretisation T0 of the interface Γ0. We can then define usual Lagrangian FE spaces
𝑉𝑖,ℎ ⊂ 𝑉𝑖 , 𝑉𝑖,0,ℎ ⊂ 𝑉𝑖,0, 𝑄𝑖,ℎ ⊂ 𝑄𝑖 , for 𝑖 = 1, 2, and 𝑋ℎ ⊂ 𝐿2 (Γ0) endowed with
𝐿2 (Γ0)–norm. Since the problems at hand have a saddle–point structure, to guarantee
the well–posedness of the discretised problem, we require the FE spaces to satisfy the
following inf–sup conditions: there exist 𝑐1, 𝑐2, 𝑐3, 𝑐4 ∈ R+ s.t.

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖 , 𝑖 = 1, 2, (25)

inf
𝑞𝑖,ℎ∈𝑄𝑖,ℎ\{0}

sup
𝑣𝑖,ℎ∈𝑉𝑖,0,ℎ\{0}

𝑏𝑖 (𝑣𝑖,ℎ, 𝑞𝑖,ℎ)
| |𝑣𝑖,ℎ | |𝑉𝑖,0,ℎ | |𝑞𝑖,ℎ | |𝑄𝑖,ℎ

≥ 𝑐𝑖+2, 𝑖 = 1, 2. (26)

A very common choice in this framework is to use the so–called Taylor–Hood finite
element spaces, namely the Lagrange polynomial approximation of the second–order for
velocity and of the first–order for pressure. We point out that the order of the polynomial
space 𝑋ℎ will not lead to big computational efforts as it is defined on the 1–dimensional
curve Γ0 by the restriction of the second–order Lagrangian polynomial approximations
defined by the velocity spaces. For this reason, we have chosen conformal spaces that
share the degrees of freedom on Γ0.

Using the Galerkin projection, we can derive the following discretised optimisation
problem. Minimise over 𝑔ℎ ∈ 𝑋ℎ the functional

J𝛾,ℎ (𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) :=

1
2

∫
Γ0

���𝑢𝑛1,ℎ − 𝑢𝑛2,ℎ���2 𝑑Γ + 𝛾
2

∫
Γ0

|𝑔ℎ |2 𝑑Γ (27)

under the constraints that 𝑢𝑛
𝑖,ℎ

∈ 𝑉𝑖,ℎ, 𝑝𝑛
𝑖,ℎ

∈ 𝑄𝑖,ℎ satisfy the following variational
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equations for 𝑖 = 1, 2

𝑚𝑖 (𝑢𝑛𝑖,ℎ − 𝑢
𝑛−1
𝑖,ℎ

, 𝑣𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 (𝑢𝑛𝑖,ℎ, 𝑣𝑖,ℎ) + 𝑐𝑖 (𝑢
𝑛
𝑖,ℎ, 𝑢

𝑛
𝑖,ℎ, 𝑣𝑖)

+𝑏𝑖 (𝑣𝑖,ℎ, 𝑝𝑛𝑖,ℎ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,ℎ)Ω𝑖
+
(
(−1)𝑖+1𝑔ℎ, 𝑣𝑖,ℎ

)
Γ0
,

∀𝑣𝑖 ∈ 𝑉𝑖,0,ℎ, (28a)

𝑏𝑖 (𝑢𝑛𝑖,ℎ, 𝑞𝑖,ℎ) = 0, ∀𝑞𝑖,ℎ ∈ 𝑄𝑖,ℎ, (28b)
𝑢𝑛𝑖 = 𝑢𝑛𝑖,𝐷,ℎ, on Γ𝑖,𝐷 , (28c)

where 𝑢𝑛
𝑖,𝐷,ℎ

is the Galerkin projection of 𝑢𝑖,𝐷 onto the trace–space 𝑉𝑖,ℎ |Γ𝑖,𝐷 . Notice
that the structure of the equations (28) and of the functional (27) is the same as the
one of the continuous case. This allows us to provide the following expression of the
gradient of the discretised functional (27):

𝑑J𝛾,ℎ
𝑑𝑔ℎ

(𝑢𝑛1,ℎ, 𝑢
𝑛
2,ℎ; 𝑔ℎ) = 𝛾𝑔ℎ + 𝜉1,ℎ |Γ0 − 𝜉2,ℎ |Γ0 , (29)

where 𝜉1,ℎ and 𝜉2,ℎ are the solutions to the discretised adjoint problem: for 𝑖 = 1, 2 find
𝜉𝑖,ℎ ∈ 𝑉𝑖,0,ℎ and 𝜆𝑖,ℎ ∈ 𝑄𝑖,ℎ that satisfy

𝑚𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ)
Δ𝑡

+ 𝑎𝑖 (𝜂𝑖,ℎ, 𝜉𝑖,ℎ) + 𝑐𝑖 (𝜂𝑖,ℎ, 𝑢𝑛𝑖,ℎ, 𝜉𝑖) + 𝑐𝑖 (𝑢
𝑛
𝑖,ℎ, 𝜂𝑖,ℎ, 𝜉𝑖,ℎ)

+ 𝑏𝑖 (𝜂𝑖,ℎ, 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,ℎ, 𝑢
𝑛
1,ℎ − 𝑢

𝑛
2,ℎ)Γ0 ,

∀𝜂𝑖,ℎ ∈ 𝑉𝑖,0,ℎ,

(30a)
𝑏𝑖 (𝜉𝑖,ℎ, 𝜇𝑖,ℎ) = 0,∀𝜇𝑖,ℎ ∈ 𝑄𝑖,ℎ . (30b)

In (29), the restriction ·|Γ0 is meant as an 𝐿2 (Γ0)–projection onto space 𝑋ℎ. We would
also like to stress that at the algebraic level, the discretised minimisation problem acts
only on the finite–dimensional space R𝑝 of the variable 𝑔ℎ, where 𝑝 is the number of
Finite Element degrees of freedom that belong to the interface Γ0.
Remark (The choice of discrete space 𝑋ℎ). The choice for space 𝑋ℎ might have an
important impact on the convergence properties of the iterative optimisation algorithms.
For the numerical tests in this work, since the objective functional and its gradient are
defined by the state or adjoint solutions, our choice is to use the FE space 𝑋ℎ defined
by the degrees of freedom shared by the FE spaces 𝑉1,ℎ and 𝑉2,ℎ. Nevertheless, it is of
much interest to conduct the convergence analysis of the FE DD control problem which
will be the subject of future work.

5 Reduced–Order Model
As highlighted in Section 1, reduced–order methods are efficient tools for significant
reduction of the computational time for parameter–dependent PDEs. This section
deals with the ROM for the problem obtained in the previous section, where the state
equations, namely Navier–Stokes equations, are assumed to be dependent on a set of
physical parameters. We rely on the classical Proper Orthogonal Decomposition (POD)
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technique for generating reduced spaces for each subcomponent of the problem locally.
In this section, we describe two online phases based on a Galerkin projection onto the
reduced spaces and on a multilayer perceptron neural network.

5.1 POD–Galerkin
We assume to have at hand local reduced spaces constructed by the classical POD
compression technique [28, 43, 11, 26] coupled with the velocity supremiser technique
as described in Appendix A to ensure the inf–sup stability of the reduced velocity–
pressure spaces. For the interested reader, we describe the POD algorithm adopted in
our case in Appendix B. We can then define the reduced functions expansions

(𝑢𝑛1,0,𝑁 , 𝑝
𝑛
1,𝑁 , 𝑢

𝑛
2,0,𝑁 , 𝑝

𝑛
2,𝑁 , 𝑔𝑁 ) ∈ 𝑉

𝑢1
𝑟𝑏

×𝑉 𝑝1
𝑟𝑏

×𝑉𝑢2
𝑟𝑏

×𝑉 𝑝2
𝑟𝑏

×𝑉𝑔
𝑟𝑏

as

𝑢𝑛𝑖,0,𝑁 :=
𝑁𝑢𝑖∑︁
𝑘=1

𝑢𝑛
𝑖,0,𝑘Φ

𝑢𝑖
𝑘
, 𝑝𝑖,𝑁 :=

𝑁𝑝𝑖∑︁
𝑘=1

𝑝𝑛
𝑖,𝑘
Φ
𝑝𝑖
𝑘
, 𝑖 = 1, 2, 𝑔𝑁 :=

𝑁𝑔∑︁
𝑘=1

𝑔
𝑘
Φ
𝑔

𝑘
.

In the previous equations, the underlined variables denote the coefficients of the
basis expansion of the reduced solution. Then, the online reduced problem reads as
follows: minimise over 𝑔𝑁 ∈ 𝑉𝑔

𝑟𝑏
the functional

J𝛾,𝑁 (𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) :=

1
2

∫
Γ0

���𝑢𝑛1,𝑁 − 𝑢𝑛2,𝑁
���2 𝑑Γ + 𝛾

2

∫
Γ0

|𝑔𝑁 |2 𝑑Γ (31)

where 𝑢𝑛1,𝑁 = 𝑢𝑛1,0,𝑁 +𝑙𝑛1,𝑁 , 𝑢2,𝑁 = 𝑢𝑛2,0,𝑁 +𝑙𝑛2,𝑁 and (𝑢1,0,𝑁 , 𝑝1,𝑁 , 𝑢2,0,𝑁 , 𝑝2,𝑁 ) satisfy
the following reduced equations:

1
Δ𝑡
𝑚𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑎𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑢

𝑛
𝑖,0,𝑁 , 𝑢

𝑛
𝑖,0,𝑁 , 𝑣𝑖,𝑁 )

+ 𝑐𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑙
𝑛
𝑖,𝑁 , 𝑣𝑖,𝑁 ) + 𝑐𝑖 (𝑙𝑛𝑖,𝑁 , 𝑢𝑛𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) (32a)

+ 𝑏𝑖 (𝑣𝑖,𝑁 , 𝑝𝑛𝑖,𝑁 ) = ( 𝑓 𝑛𝑖 , 𝑣𝑖,𝑁 )Ω𝑖
+ ((−1)𝑖+1𝑔𝑁 , 𝑣𝑖,𝑁 )Γ0

+ 1
Δ𝑡
𝑚𝑖 (𝑢𝑛−1

𝑖,0,𝑁 , 𝑣𝑖,𝑁 ) −
1
Δ𝑡
𝑚𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣𝑖,𝑁 )

− 𝑎𝑖 (𝑙𝑛𝑖,𝑁 , 𝑣𝑛𝑖,𝑁 ) − 𝑐𝑖 (𝑙𝑖,𝑁 , 𝑙𝑖,𝑁 , 𝑣𝑖,𝑁 ), ∀𝑣𝑖,𝑁 ∈ 𝑉𝑢𝑖
𝑟𝑏
,

𝑏𝑖 (𝑢𝑛𝑖,0,𝑁 , 𝑞𝑖,𝑁 ) = −𝑏𝑖 (𝑙𝑛𝑖,𝑁 , 𝑞𝑖,𝑁 ), ∀𝑞𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑟𝑏
, (32b)

where 𝑙𝑛
𝑖,𝑁

is the Galerkin projection of the lifting function 𝑙𝑛
𝑖,ℎ

(see Appendix A) for
more details) to the finite dimensional vector space 𝑉𝑢𝑖

𝑟𝑏
and 𝑖 = 1, 2.

Similarly to the offline phase, we notice that the structure of the equations (32) and
the functional (31) are the same as the ones of the continuous case, so this enables us
to provide the following expression of the gradient of the reduced functional (31)

𝑑J𝛾,𝑁
𝑑𝑔𝑁

(𝑢𝑛1,𝑁 , 𝑢
𝑛
2,𝑁 ; 𝑔𝑁 ) = 𝛾𝑔𝑁 + 𝜉1,𝑁 |Γ0 − 𝜉2,𝑁 |Γ0 , (33)
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where (𝜉1,𝑁 , 𝜉2,𝑁 ) are the solutions to the reduced adjoint problem: find (𝜉1,𝑁 , 𝜆1,𝑁 ,
𝜉2,𝑁 , 𝜆2,𝑁 ) ∈ 𝑉𝑢1

𝑟𝑏
×𝑉 𝑝1

𝑟𝑏
×𝑉𝑢2

𝑟𝑏
×𝑉 𝑝2

𝑟𝑏
such that it satisfies, for 𝑖 = 1, 2,

1
Δ𝑡
𝑚𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑎𝑖 (𝜂𝑖,𝑁 , 𝜉𝑖,𝑁 ) + 𝑐𝑖

(
𝜂𝑖,𝑁 , 𝑢

𝑛
𝑖,𝑁 , 𝜉𝑖

)
+ 𝑐𝑖

(
𝑢𝑛𝑖,𝑁 , 𝜂𝑖,𝑁 , 𝜉𝑖,𝑁

)
(34a)

+ 𝑏𝑖 (𝜂𝑖,𝑁 , 𝜆𝑖,ℎ) = ((−1)𝑖+1𝜂𝑖,𝑁 , 𝑢
𝑛
1,𝑁 − 𝑢𝑛2,𝑁 )Γ0 , ∀𝜂𝑖,𝑁 ∈ 𝑉𝑢𝑖

𝑖,𝑁
,

𝑏𝑖 (𝜉𝑖,𝑁 , 𝜇𝑖,𝑁 ) = 0, ∀𝜇𝑖,𝑁 ∈ 𝑉 𝑝𝑖
𝑖,𝑁
. (34b)

Above, the restriction ·|Γ0 is meant as an 𝐿2 (Γ0)–projection onto space 𝑉𝑔
𝑟𝑏

. At the
algebraic level, the reduced minimisation problem can be recast in the setting of the
finite–dimensional space R𝑝 , where 𝑝 is the number of reduced basis functions used
for the control variable 𝑔𝑁 in the online phase, that is 𝑝 = 𝑁𝑔. We would like also to
highlight the difference in the spaces we use to approximate the adjoint equations (34)
with respect to the stationary case described in [43]. Here, instead of creating separate
spaces for adjoint velocities, we used the same reduced spaces as for the state equa-
tions (32) and this renders the offline stage less computationally expensive, it requires
less storage and, in addition, the numerical simulations proved to be more stable.

Here, we would like to also highlight the possibility of treating the different sub-
domains and control variables in the FOM or the ROM independently [44], obtaining
various combinations of ROM/FOM models.

5.2 POD–NN
In this section, we would like to give a quick overview of the POD–NN method [29].
After the construction of the POD reduced spaces as described in Section B, the
POD–NN tries to learn the map that, given the physical parameters and time, returns
the reduced coefficients of the POD projection. To learn this map, we consider a
training set of parameters Ξ := {(𝜇𝑧 , 𝑡𝑧)}𝐾𝑀𝑧=1 defined by a tensor product of 𝐾 physical
parameters and 𝑀 time steps. We compute the FOM solutions for these parameters,
𝑈𝑧 = (𝑢1,ℎ (𝜇𝑧 , 𝑡𝑧), 𝑢2,ℎ (𝜇𝑧 , 𝑡𝑧), 𝑝1,ℎ (𝜇𝑧 , 𝑡𝑧), 𝑝2,ℎ (𝜇𝑧 , 𝑡𝑧)) for 𝑧 = 1, . . . , 𝐾𝑀 and we
project the snapshots onto each reduced space to obtain the reduced coefficients, for
𝑖 = 1, 2

𝑢
𝑖,0 (𝜇𝑧 , 𝑡𝑧) := Π𝑟𝑏,𝑢𝑖 (𝑢𝑖,ℎ (𝜇𝑧 , 𝑡𝑧)), 𝑝

𝑖
(𝜇𝑧 , 𝑡𝑧) := Π𝑟𝑏,𝑝𝑖 (𝑝𝑖,ℎ (𝜇𝑧 , 𝑡𝑧)).

Now, for each component we consider as input the parameters (𝜇, 𝑡) and as output the
reduced coefficients 𝑢

𝑖,0 or 𝑝
𝑖

for 𝑖 = 1, 2: we therefore define𝑈𝑢𝑖 ,output = {𝑢
𝑖,0 (𝜇𝑧 , 𝑡𝑧)}

and𝑈𝑝𝑖 ,output = {𝑝
𝑖
(𝜇𝑧 , 𝑡𝑧)}.

Once defined the input and output training sets, we build an artificial neural network
(ANN) for each component ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2} that approximates Ξ → 𝑈∗,output. Then,
the POD–NN reduced solutions are defined by recovering the predicted values by these
ANN in the corresponding FEM space. Notice that this approach does not require
any optimisation algorithm in the online phase, just the evaluation of the ANN at the
required parameter value and time step.

The ANN used in this algorithm is a simple dense multilayer perceptron that con-
sists of repeated compositions of affine operations and nonlinear activation functions
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Figure 2: Physical domain and domain decomposition for the backward–facing step
problem

[21]. The chosen architecture contains 3 hidden layers with 40, 60 and 100 neurons,
respectively. This means that there are 4 affine mappings between the input, hidden
and output layers, and at each layer, we use the hyperbolic tangent as an activation
function. The learning of the weights and biases of the NN is optimised using the
Adam algorithm [31], a variation of the stochastic gradient descent. In both test cases
of the numerical result section, we used 5000 as the maximum number of optimisation
iterations (epochs) and 10−5 as target for the loss functional.

The hyperparameters are the result of a quick optimization process. We observed
that a lower number of layers/neurons were less accurate in representing the map of
interest, while more layers were too expensive to be trained in terms of necessary epochs
without resulting in more accurate networks.

6 Numerical Results
We now present some numerical results obtained by applying the two–domain decom-
position optimisation algorithm to the backward–facing step and the lid–driven cavity
flow benchmarks.

All the numerical simulations for the offline phase were obtained using the software
FEniCS [1], whereas the online phase simulations were carried out using RBniCS [2]
and EZyRB [3].

6.1 Backward–facing step test case
We start with the backward–facing step flow test case. Figure 2 represents the physical
domain of interest, the dimensional lengths and the boundary conditions. The splitting
into two domains is performed by dissecting the domain by a vertical segment at the
distance 9 cm from the left end of the channel, as shown in Figure 2.

We consider zero initial velocity condition, homogeneous Dirichlet boundary con-
ditions on walls Γ𝑤𝑎𝑙𝑙 for the fluid velocity, and homogeneous Neumann conditions on
the outlet Γ𝑜𝑢𝑡 , meaning that we assume free outflow on this portion of the boundary.

We impose a parabolic profile 𝑢𝑖𝑛 on the inlet boundary Γ𝑖𝑛, where 𝑢𝑖𝑛 (𝑥, 𝑦) =

(𝑤(𝑦), 0)𝑇 with 𝑤(𝑦) = �̄� · 4
9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5]; the range of �̄� is reported
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Physical parameters FE parameters
Range 𝜈 [0.4, 2] Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 4.5] Total dofs 27,890
Final time 𝑇 1 Dofs at interface 130

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 100
itmax 1000 Parameters training set size 𝐾 62
tolopt 10−9 Maximum retained modes 𝑁max 100

Table 1: Backward–facing step: computational details of the offline stage.

0 10 20 30 40 50
n

10 15

10 12

10 9

10 6

10 3

100

n/
m

ax

u1
sp1

p1
u2
sp2

p2
g

(a) The singular values as a function of the num-
ber of POD modes (log scale in 𝑦–direction)
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Figure 3: Backward–facing step: POD singular eigenvalue decay of the first 50 POD
modes (a) and the monolithic solution for a parameter (�̄�, 𝜈) = (4.5, 0.4) at the final
time step (b)

in Table 1. Two physical parameters are considered: the viscosity 𝜈 and the maximal
magnitude �̄� of the inlet velocity profile 𝑢𝑖𝑛. Details of the offline stage and the finite–
element discretisation are summarised in Table 1. High–fidelity solutions are obtained
by carrying out the minimisation in the space of dimension equal to the number of
degrees of freedom at the interface, which is 130 for our test case. The best performance
has been achieved by using the limited–memory Broyden–Fletcher–Goldfarb–Shanno
(L–BFGS–B) optimisation algorithm [13], where the following stopping criteria were
applied: either the maximal number of iteration itmax is reached or the gradient norm
of the target functional is less than the given tolerance tolopt or the relative reduction of
the functional value is less than the tolerance that is automatically chosen by the scipy
library [63].

Snapshots are sampled from a training set of 𝐾 parameters randomly sampled from
the 2–dimensional parameter space for each time–step 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 , and the first 𝑁max
POD modes have been retained for each component. Figure 3a shows the POD singular
values for all the state and the control variables; we can see an evident exponential decay
of the singular values. Figure 3b shows an example of a monolithic (whole–domain)
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(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 4: Backward–facing step: high–fidelity solution for the velocities 𝑢1 and 𝑢2 at 4
different time instances

(a) 𝑡 = 0.01 (b) 𝑡 = 0.25

(c) 𝑡 = 0.5 (d) 𝑡 = 1

Figure 5: Backward–facing step: high–fidelity solution for the pressures 𝑝1 and 𝑝2 at
4 different time instances

solution that will be the benchmark solution for the numerical and error analysis of the
DD–FOM and the ROM.

In Table 2, we list the values of the parameters for which we conduct a numerical
test of the ROM and the number of POD modes for each component of the problem.
The number of reduced bases is chosen so that the discarded energy for each of the
components is less than 10−6. Reduced–order solutions are obtained by carrying out
the minimisation in the space of dimension equal to the number of POD modes for
the control 𝑔, which is 5 for our test case. Clearly, the minimisation in this space of
dimension 5 is much simpler than in the FOM one. The optimisation algorithm used in
this test case is the same as in the FOM case described above.

Figures 4–5 represent the high–fidelity solutions for a value of the parameters
(�̄�, 𝜈) = (4.5, 0.4) at 4 different time instances. Visually, we can see a great degree of
continuity on the interface, which will be highlighted below. Figure 6 shows the spatial
distribution of the error with respect to the monolithic solution at the final time step
for both the FOM and ROM solutions. As expected, the error of the FOM solution is
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Parameter POD modes
𝜈 0.4 velocity 𝑢1 30 pressure 𝑝1 5 supremiser 𝑠1 5
�̄� 4.5 velocity 𝑢2 12 pressure 𝑝2 5 supremiser 𝑠2 5

control 𝑔 5

Table 2: Backward–facing step: computational details of the online stage.

(a) FOM velocity (magnitude) (b) FOM pressure

(c) ROM velocity (magnitude) (d) ROM pressure

Figure 6: Backward–facing step: absolute errors of DD–FOM and ROM solutions w.r.t.
the monolithic solution at the final time step

mostly concentrated at the interface, while the ROM solutions show some extra noise
due to the POD reduction.

Figure 7 shows the number of iterations for both FOM and ROM optimisation
processes for value of the parameters (�̄�, 𝜈) = (4.5, 0.4). We plot this quantity for one
parameter, instead of a statistic over the parameter space, to better grasp the variability of
the quantity in time, while its averages is a good representative for all other parameters.
Each iteration of the optimisation algorithm requires at least one computation of the
state and the adjoint solvers. Therefore, we can see that we have managed to obtain a
significant reduction in terms of computational efforts: the average number of iterations
over all time steps in the case of the FOM solver is 170, while it is 24 in the case of the
ROM solver. Additionally, each solver at the reduced level is of much smaller dimension
(see Table 2), and with good use of hyper–reduction techniques (see, for instance, [28]),
it will allow to obtain very efficient solvers in terms of computational time.

We would like also to provide a comparison of the full–order and the reduced–order
models with non–intrusive POD–NN model. Due to the discontinuity given by the
initial and the boundary conditions, the first time step was excluded from the training
set in order to achieve better performance. In practice, the first few simulations can be
computed with a Galerkin projection or some FOM steps. Figure 8 shows the relative
errors with respect to the monolithic solution for the FOM, ROMs and POD–NN model
for value of the parameters (�̄�, 𝜈) = (4.5, 0.4), again, to show the variability in time.
As we can see, both FOM and ROM give us very good convergence results, i.e., the
relative error does not exceed 1% in either case. Regarding the POD–NN, in terms
of computational time, it is very effective, but the approximation can be very poor,
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Figure 7: Backward–facing step at 𝜈 = 0.4 and �̄� = 4.5: number of optimisation
iterations of FOM and ROM solvers
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Figure 8: Backward–facing step at 𝜈 = 0.4 and �̄� = 4.5: relative errors of FOM, ROM
and POD–NN solutions w.r.t. the monolithic solution
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Figure 9: Lid–driven cavity flow geometry and domain decomposition

especially in the initial and final time steps. Just to give an idea of the differences in
the computational times, one time step of the FOM takes between 30 and 60 minutes,
one time step of the ROM (without hyper–reduction) takes around 5 minutes, while a
POD–NN prediction needs around 0.003 seconds. One of the possible scenarios could
be a combination of the ROM and the POD–NN model based on the a posteriori error
estimates, so that the time steps in which the much more computationally effective ANN
model fails to produce a sufficiently accurate approximation, the Galerkin projection
ROM is applied. Similar ideas can be found inter alia in [7]. This will be the subject
of future works.

6.2 Lid–driven cavity flow test case
In this section, we provide the numerical simulation for the lid–driven cavity flow test
case. Figure 9a represents the physical domain of interest – the unit square. The division
into two subdomains is performed by dissecting the domain by a median horizontal line,
as shown in Figure 9b.

We consider zero initial velocity condition, homogeneous Dirichlet boundary con-
ditions on the boundary Γ𝑤𝑎𝑙𝑙 for the fluid velocity and the nonzero horizontal constant
velocity on the lid boundary Γ𝑙𝑖𝑑: 𝑢𝑙𝑖𝑑 =

(
�̄�, 0

)
; the values of �̄� are reported in Ta-

ble 3. We consider one physical parameter – the magnitude �̄� of the lid velocity profile
𝑢𝑖𝑛. Details of the offline stage and the FE discretisation are summarised in Table 3.
High–fidelity solutions are obtained by carrying out the minimisation in the space of
dimension equal to the number of degrees of freedom at the interface, which is 294
for our test case. Snapshots are derived from a training set of 𝐾 values uniformly
sampled from the 1–dimensional parameter space for each time–step 𝑡𝑖 , 𝑖 = 1, ..., 𝑀 ,
and the first 𝑁𝑚𝑎𝑥 POD modes have been retained for each component. In Figure 10a,
we see that the POD singular values decay even faster than in the previous test for all
the state and the control variables. As before, we show in Figure 10b the monolithic
(whole–domain) solution related to the parameter (�̄� = 3) on which we will test the
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Physical parameters FE parameters
Range 𝜈 [1, 1] Velocity–pressure space in a cell P2 × P1

Range �̄� [0.5, 5] Total dofs 58,056
Final time 𝑇 0.4 Dofs at interface 294

Time step Δ𝑡 0.01
Optimization Snapshots training set parameters

Algorithm L–BFGS–B Timestep number 𝑀 40
itmax 300 Parameters training set size 𝐾 10
tolopt 10−7 Maximum retained modes 𝑁max 100

Table 3: Lid–driven cavity flow: computational details of the offline stage.
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Figure 10: Lid–driven cavity flow: POD singular eigenvalue decay of POD modes (a)
and the monolithic solution for a parameter �̄� = 3 at the final time step (b)

(a) 𝑡 = 0.01 (b) 𝑡 = 0.05 (c) 𝑡 = 0.4

Figure 11: Lid–driven cavity flow: FOM velocity solution at 3 different time instances
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Parameter POD modes
𝜈 1 velocity 𝑢1 15 pressure 𝑝1 10 supremiser 𝑠1 10
�̄� 3 velocity 𝑢2 10 pressure 𝑝2 10 supremiser 𝑠2 10

control 𝑔 5

Table 4: Lid–driven cavity flow: Computational details of the online stage.
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Figure 12: Lid–driven cavity flow at 𝜈 = 1 and �̄� = 3: number of optimisation iterations
of FOM and ROM solvers

DD–FOM and the ROM. In Table 4, we report the number of POD modes we use to
obtain the ROM. The number of reduced bases is chosen so that the discarded energy
for each of the components is less than 10−6. As before, the ROM optimization is the
same used in the FOM, but on a smaller space with dimension 5 instead of 294. As
optimisation algorithm, we still use the L–FBGS–B, but, in this case, we use a smaller
value for tolopt of 10−6. Figures 11 represent the DD–FOM solutions for �̄� = 3 at
3 different time instances, where we see a qualitative agreement with the monolithic
solution in Figure 10b.

Again, in Figure 12 we observe that the number of optimization iterations for FOM
is between 10 and 100 times larger than the ROM ones for the parameter (�̄�, 𝜈) = (3, 1).
Recalling that each iteration requires at least one computation of the state and the adjoint
solvers, we obtain a great computational advantage. For the test with �̄� = 3, the average
number of the iteration over all time steps in the case of the FOM solver is 170 while
it is 24 in the case of the ROM solver. Additionally, each solver at the reduced level
is of a much smaller dimension (see Table 4). As in the previous test case, we would
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Figure 13: Lid–driven cavity flow at 𝜈 = 1 and �̄� = 3: relative errors of FOM, ROM
and POD–NN solutions w.r.t. the monolithic solution
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like to provide a comparison of the full–order and the reduced–order models with
non–intrusive POD–NN model. The architecture is still the one reported in Section 5.2
Again, the initial condition leads to a discontinuity in time at the starting timestep, hence,
we exclude it from the training set in order to achieve better performance. Figure 13
shows the relative errors with respect to the monolithic solution for the FOM, ROMs
and POD–NN model for the parameter (�̄�, 𝜈) = (3, 1). As we can see, both FOM and
ROM give us very good convergence results, i.e., the relative error does not exceed 1%
in either case; but, in this case, also POD–NN gives quite good results, indeed, for each
variable the relative error does not exceed 3%. Computational times for each method,
FOM, ROM and POD–NN, are comparable with those of the backward–facing step
flow, that is, one time step of the FOM takes between 15 and 45 minutes, one time step
of the ROM (without hyper–reduction) takes on average 5 minutes, while a POD–NN
prediction needs around 0.003 seconds.
Remark (Sensitivity to the domain splitting). Similarly to the stationary case analyzed
in [43], we encounter the issue of choosing the optimal domain splitting. Also in the
non–stationary lid–driven cavity flow case, we observe a significantly slower conver-
gence when the domain is split by a vertical segment instead of a horizontal one.

6.3 Validation of the POD–NN method
As we have seen in the numerical experiments above, unlike the POD–Galerkin, the
POD–NN ROM seems to be very sensitive to the presence of discontinuities in time.
In this section, we would like to investigate under which circumstances the POD–NN
technique is able to produce a good approximation by considering various scenarios and
performing a statistical analysis in terms of physical parameters. The first necessary
step in all the approaches below is to provide a larger set of snapshots for generating
RB spaces and for the training artificial neural network, as is described in Section 5.2.

Regarding the backward–facing step test case presented in Section 6.1, we have seen
that the constructed NN–ROM provides very poor approximations, most probably due
to the presence of a discontinuity between the inlet boundary and the initial conditions.
We restrict the analysis by considering only one physical parameter, �̄� to generate new
POD–based reduced spaces and to train the ANN. In this case, we draw 101 parameters
uniformly sampled from the parameter space reported in Table 1, we randomly shuffle
the parameter set and divide it into a training set Ptrain, containing 75 parameters, and a
testing set Ptest, composed of remaining 26 parameters.

We consider two scenarios: in the first one we construct the parameter space
for POD compression and the ANN training by using the training parameter set and
over all the time steps, i.e, the set Pfull

train =
{
(�̄�, 𝑡𝑛) : �̄� ∈ Ptrain, 𝑛 ∈ {1, ..., 100}

}
whereas in the other one we discard the first 20 time steps and consider only the
training parameter set and the time steps 𝑡𝑛 for 𝑛 ≥ 21, i.e., the set Prestricted

train ={
(�̄�, 𝑡𝑛) : �̄� ∈ Ptrain, 𝑛 ∈ {21, ..., 100}

}
. We perform the POD compression using the

snapshots corresponding to parameter values in P∗
train for ∗ ∈ {full, restricted} to gen-

erate the RB spaces in each case by retaining 50, 30, 35 and 15 bases functions for
components 𝑢1, 𝑝1, 𝑢2 and 𝑝2, respectively. Then, in both cases, the ANN with 5
hidden layers with 16, 64, 128, 128 and 128 neurons, respectively, is constructed for
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Figure 14: Mean over the parameter testing set of POD–NN relative errors for the
discontinuous in time backward–facing step test case with respect to �̄� over the entire
(a) and restricted (b) time intervals

each state subcomponent, using the hyperbolic tangent as an activation function. We
use the same sets of snapshots used for the RB spaces construction to train the ANN
and then validate the performance of the POD–NN method on the testing set of 26
physical parameters as described above. Figures 14a and 14b show the relative errors
of the POD–NN method in time, averaged over the training set of physical parameters,
for each state subcomponent of the problem over the full and restricted time intervals,
respectively. It can be easily seen that in both cases the POD–NN is able to provide
very good approximation for the velocity fields 𝑢1 an 𝑢2. On the other hand, the time
discontinuity at the initial time step pervades in time and compromises the POD–NN
approximation for the pressure fields 𝑝1 and 𝑝2, which does not happen if we restrict
the analysis over the time interval where the discontinuity vanishes.

Given that the POD–NN approach seems to be sensitive to the time discontinuity,
as evidenced above, we perform another test case on the same domain where we have
a smooth transition from the zero initial condition by considering the inlet boundary
condition 𝑢𝑖𝑛 (𝑥, 𝑦) = (𝑤(𝑦, 𝑡), 0)𝑇 on Γ𝑖𝑛, where the function 𝑤 is given by

𝑤(𝑦, 𝑡) =
{
�̄� · 1

2

(
1 − cos

(
2𝜋𝑡
0.4

))
4
9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5], 𝑡 ≤ 0.4,

�̄� · 4
9 (𝑦 − 2) (5 − 𝑦), 𝑦 ∈ [2, 5], 𝑡 > 0.4.

As in the previous test case, we consider one physical parameter �̄� to generate new
POD–based reduced spaces and we train the ANN. Again, we consider 101 parameters,
75 in the training set and 26 in the test set, selected uniformly in the parameter space,
see Table 1. The dimensions of the RB spaces and the architecture of the ANN are the
same as in the discontinuous test case above. We again consider two scenarios by using
use the sets Pfull

train and Prestricted
train to perform POD compression and to train the ANN.

Here, we discover another complication in the POD–NN approach: the sensitivity to
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Figure 15: Mean over the parameter testing set of POD–NN relative errors for the
continuous in time backward–facing step test case with respect to �̄� over the entire (a)
and restricted (b) time intervals

small data, i.e., the ANN struggles to predict the data at the initial time steps as the
norm is very close to zero. In Figures 15a and 15b, we show the relative errors of
the POD–NN method in time, averaged over the training set of physical parameters,
for each state subcomponent of the problem over the full and restricted time intervals,
respectively. The picture here is very similar to the one in the discontinuous case, i.e.
the velocity fields 𝑢1 and 𝑢2 show very good approximation properties (except for the
first few time steps where the relative errors are expected to be bigger since the solution
norm is very close to zero) while the POD–NN method struggles to learn the pressure
field over the whole time intervals while the situation is improved by restricting the
analysis to the time interval where the velocity fields norms are big enough.

From the analysis carried out before, we can see that POD–NN approach provides
excellent results as soon as we are far away enough from the “problematic” regions:
either the regions that contain discontinuities or where the solution has a small norm.
The error analysis reported in Figures 14 and 15 shows that the relative error does not
exceed the 1%–threshold if we exclude from the POD–NN model set–up the mentioned
“problematic” regions, where the solution can be computed by FOM or POD–Galerkin
methods with more reliability.

Concerning the lid–driven cavity flow test case presented in 6.2, we were able to
achieve a good approximation by NN–ROM method even in the presence of disconti-
nuities, by merely extending the training set. As in the previous test cases, we draw
101 uniformly sampled parameters from the parameter space reported in Table 3, 75
for the training set and 26 for the testing set. We perform the POD compression using
the training set to generate RB spaces by retaining 25, 15, 25 and 15 bases functions
for components 𝑢1, 𝑝1, 𝑢2 and 𝑝2, respectively. Then, the ANN with 5 hidden layers
with 16, 64, 128, 128 and 128 neurons, respectively, is constructed for each state sub-
component, using the hyperbolic tangent as an activation function. We use the same 75
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discontinuous lid–driven cavity test case with respect to �̄� over the time interval [0,0.4]

snapshots used for the RB spaces construction to train the ANN and then validate the
performance of the POD–NN method on the testing set of 26 parameters as described
above. In this case, the statistical analysis of the relative errors shows good behaviour
on the entire time interval, as is evidenced in Figure 16.

The tests carried out in this section suggest the necessity to set up a proper sensitivity
analysis with respect to model parameters and the problem geometry which will be the
subject of future work.

7 Conclusions
In this work, we described and conducted the convergence analysis of an optimisation–
based domain decomposition algorithm for nonstationary Navier–Stokes equations.

The original problem cast into the optimisation–based domain–decomposition
framework leads to the optimal control problem aimed at minimising the coupling
error at the interface; the problem, then, has been tackled using an iterative gradient–
based optimisation algorithm, which allowed us to obtain a complete separation of the
solvers on different subdomains.

At the reduced–order level, we provided two techniques: a POD–Galerkin projection
and a data–driven POD–NN, both of them on separate domains. In the Galerkin
projection, the optimal–control problem was solved much faster, not only because of
the reduced dimensions but also because of the smaller number of iterations. In the
POD–NN results are less accurate, but the computational time is way cheaper with
respect to the other methods. Additional statistical analysis has been carried out to
investigate the approximation properties of POD–NN methodology which confirms the
sensitivity of the method to discontinuities in time and small data. In future works, we
want to perform a sensitivity analysis of the method to the model parameters and the
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problem geometry.
As has been mentioned in the paper, the aforementioned techniques could be promis-

ing for various areas of computational physics. First of all, these algorithms can be used
when complex time–dependent problems arise and domain decomposition becomes
necessary due to the number of degrees of freedom. We plan to extend this algorithm
also to several subdomains for more complex engineering problems as similarly done in
[58]. Moreover, in the context of multi–physics or fluid–structure interaction, the cou-
pling of pre–existing solvers on each subcomponent can be exploited in this framework,
with the additional benefit of the reduction for parametric problems, which guarantees
high adherence with respect to the full order solutions. Finally, in case the codes are not
directly accessible, the presented non–intrusive approach can be used to highly speed
up the simulations while still obtaining meaningful results.
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A Lifting Function and Velocity Supremiser Enrich-
ment

The use of lifting functions is quite common in the reduced basis method (RBM)
framework; see, for example, [8, 28]. It is motivated by the fact that, in the chosen
model, we tackle a problem with non–homogeneous Dirichlet boundary conditions on
the parts of the boundaries Γ𝑖,𝐷 , 𝑖 = 1, 2. From the implementation point of view,
this does not present any problem when dealing with the high–fidelity model, since
there are several well–known techniques for non–homogeneous essential conditions,
in particular at the algebraic level. However, these boundary conditions create some
problems when dealing with the reduced basis methods. Indeed, we seek to generate a
linear vector space that is obtained by the compression of the set of snapshots, and this
clearly cannot be achieved by using snapshots that satisfy different Dirichlet conditions,
as the resulting space would not be linear. This problem is solved by introducing a
lifting function 𝑙𝑛

𝑖,ℎ
∈ 𝑉𝑖,ℎ, for 𝑖 = 1, 2, during the offline stage, such that 𝑙𝑛

𝑖,ℎ
= 𝑢𝑛

𝑖,𝐷,ℎ

on Γ𝑖,𝐷 . We define two new variables 𝑢𝑛
𝑖,0,ℎ := 𝑢𝑛

𝑖,ℎ
− 𝑙𝑛

𝑖,ℎ
∈ 𝑉𝑖,0,ℎ, for 𝑖 = 1, 2, which

satisfy the homogeneous condition 𝑢𝑛
𝑖,0,ℎ = 0 on Γ𝑖,𝐷 . So, they can be used to generate

the reduced basis linear space. We remark that the lifting function is needed only in the
domain where the Dirichlet boundary is non–empty, i.e., where Γ𝑖,𝐷 ≠ ∅ for 𝑖 = 1, 2.
It is important to point out that the choice of lifting functions is not unique; in our
work, we chose to use the solution of the incompressible Stokes problem in one of the
domains Ω, Ω1 or Ω2 (depending on the particular model we are investigating) with the
velocity equal to 𝑢𝐷 on the corresponding parts of the boundaries and the homogeneous
Neumann conditions analogous to the original problem setting.

Velocity supremiser enrichment is a very important technique to ensure that the
reduced spaces are inf–sup stable in the context of saddle–point problems. We recall
that each velocity snapshot, which is a solution to the incompressible Navier–Stokes
equation, is divergence–free. Hence, the term 𝑏𝑖 (·, ·) for 𝑖 = 1, 2 applied to any pair of
functions in the span of the snapshots will be zero. This does not allow us to fulfil the
inf–sup condition of the type (26). For this reason, there is a need to enrich the reduced
velocity spaces with extra functions, which are called supremisers, that will make the
pairs of velocity–pressure reduced spaces inf–sup stable. The supremiser variables 𝑠𝑛

𝑖,ℎ
,

for 𝑖 = 1, 2, are defined as the solution to the following problem: find 𝑠𝑛
𝑖,ℎ

∈ 𝑉𝑖,0,ℎ such
that (

∇𝑣𝑖,ℎ,∇𝑠𝑛𝑖,ℎ
)
= 𝑏𝑖,ℎ

(
𝑣𝑖,ℎ, 𝑝

𝑛
𝑖,ℎ

)
∀𝑣𝑖,ℎ ∈ 𝑉𝑖,0,ℎ, (35)

where 𝑝𝑛
𝑖,ℎ
, for 𝑖 = 1, 2, are the finite–element pressure solutions of the Navier–Stokes

problem and the left–hand side is the scalar product that defines the norm with which
the variational spaces 𝑉𝑖,0,ℎ are endowed. For more details, we refer to [8, 20].

B Reduced Basis Generation
Once we obtain the homogenised snapshots 𝑢𝑖,0,ℎ as described in Appendix A and the
velocity supremisers 𝑠𝑖,ℎ for 𝑖 = 1, 2, we are ready to construct a set of reduced basis
functions. A very common choice when dealing with Navier–Stokes equations is to use
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the POD technique; see, for instance, [28]. In order to implement this technique, we will
need two main ingredients: the matrices of the inner products and the snapshot matrices,
obtained by a full–order model (FOM) discretization as the one presented in the previous
sections. First, we define the basis functions for the FE element spaces used in the weak
formulation (27), (28) and (30): 𝑉𝑖,0,ℎ = span{𝜙𝑢𝑖

𝑗
}N

𝑢𝑖
ℎ

𝑗=1 , 𝑄𝑖,ℎ = span{𝜙𝑝𝑖
𝑗
}N

𝑝𝑖
ℎ

𝑗=1 and

𝑋ℎ = span{𝜙𝑔
𝑗
}N

𝑔

ℎ

𝑗=1, where N∗
ℎ
, for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔}, denotes the dimension of the

corresponding FE space.
We proceed by building the snapshot matrices. First, we sample the parameter

space and draw a discrete set of 𝐾 parameter values. Then, the snapshots, i.e., the
high–fidelity FE solutions at each parameter value in the sampling set and at each time–
step 𝑡1, ..., 𝑡𝑀 , are collected into snapshot matrices S𝑢𝑖 ∈ RN𝑢𝑖

ℎ
×𝑀𝐾 , S𝑠𝑖 ∈ RN𝑢𝑖

ℎ
×𝑀𝐾 ,

S𝑝𝑖 ∈ RN𝑝𝑖
ℎ

×𝑀𝐾 , for 𝑖 = 1, 2 and S𝑔 ∈ RN𝑔

ℎ
×𝑀𝐾 for the corresponding values.

The next step is to define the inner–product matrices 𝑋𝑢𝑖 , 𝑋𝑝𝑖 , for 𝑖 = 1, 2, and 𝑋𝑔:

(𝑋𝑠𝑖 ) 𝑗𝑘 = (𝑋𝑢𝑖 ) 𝑗𝑘 =
(
∇𝜙𝑢𝑖

𝑘
,∇𝜙𝑢𝑖

𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N𝑢𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑝𝑖 ) 𝑗𝑘 =
(
𝜙
𝑝𝑖
𝑘
, 𝜙

𝑝𝑖
𝑗

)
Ω𝑖

, for 𝑗 , 𝑘 = 1, ...,N 𝑝𝑖
ℎ
, 𝑖 = 1, 2,

(𝑋𝑔) 𝑗𝑘 =
(
𝜙
𝑔

𝑘
, 𝜙
𝑔

𝑗

)
Γ0
, for 𝑗 , 𝑘 = 1, ...,N𝑔

ℎ
.

We are now ready to introduce the correlation matrices C𝑢𝑖 , C𝑠𝑖 , C𝑝𝑖 for 𝑖 = 1, 2 and
C𝑔, all of dimension 𝑀𝐾 × 𝑀𝐾 , as:

C∗ := S𝑇∗ 𝑋∗𝑆∗

for every ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}.
Once we have built the correlation matrices, we are able to carry out a POD

compression on the sets of snapshots. This can be achieved by solving the following
eigenvalue problems:

C∗Q∗ = Q∗Λ∗ (36)

where ∗ ∈ {𝑢1, 𝑠1, 𝑝1, 𝑢2, 𝑠2, 𝑝2, 𝑔}, Q∗ is the eigenvectors matrix andΛ∗ is the diagonal
eigenvalues matrix with eigenvalues ordered by decreasing order of their magnitude.
The 𝑘–th reduced basis function for the component ∗ is then obtained by applying the
matrix S∗ to 𝑣∗

𝑘
, the 𝑘–th column vector of the matrix Q∗:

Φ∗
𝑘 :=

1√︁
𝜆∗
𝑘

S∗𝑣
∗
𝑘
,

where 𝜆∗
𝑘

is the 𝑘–th eigenvalue from (36). Therefore, we are able to form the set of
reduced basis as

A∗ :=
{
Φ∗

1, ...,Φ
∗
𝑁∗

}
,

where the integer numbers 𝑁∗ indicate the number of the basis functions used for each
component for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑠1, 𝑠2, 𝑔}. Now, it is time to include the supremiser
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enrichment of the velocities spaces discussed at the beginning of this section. We
provide the following renumbering of the functions for further simplicity:

Φ
𝑢𝑖
𝑁𝑢𝑖

+𝑘 := Φ
𝑠𝑖
𝑘
, for 𝑘 = 1, ..., 𝑁𝑠𝑖 , 𝑖 = 1, 2,

and we redefine 𝑁𝑢𝑖 := 𝑁𝑢𝑖 + 𝑁𝑠𝑖 , and new basis functions sets

A𝑢𝑖 :=
{
Φ
𝑢𝑖
1 , ...,Φ

𝑢𝑖
𝑁𝑢𝑖

}
,

for 𝑖 = 1, 2 and these new sets are now including extra basis functions obtained from the
corresponding supremiser. Finally, we introduce three separate reduced basis spaces –
for the state and the control variables, respectively:

𝑉∗
𝑟𝑏 = span(A∗), dim(𝑉∗

𝑟𝑏) = 𝑁∗,

for ∗ ∈ {𝑢1, 𝑝1, 𝑢2, 𝑝2, 𝑔}. Now, due to the supremiser enrichment the spaces 𝑉𝑢𝑖
𝑟𝑏

and
𝑉
𝑝𝑖
𝑟𝑏

are inf–sup stable in the sense (26) for 𝑖 = 1, 2; the proof can be found in [8].
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