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Abstract

Wavefront sensing is a powerful technique to assess and quantify the aberrations
present in optical systems. Turning this idea around and assuming an ideal opti-
cal system, it can also be used to accurately measure the three-dimensional shape
of transparent or reflecting objects placed inside the optical setup. Subsequent
processing of the obtained images often involves the separation of low and high
frequency spatial modes, which for the case of circular objects or pupils are con-
ventionally taken to be Zernike polynomials. In this work we develop fast and
highly parallel algorithms to accurately compute the Zernike mode coefficients of
a given wavefront image. We then extend this method to improve the performance
in the more complicated and realistic cases when the pupil or the object are not
perfectly circular.
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Chapter 1

Introduction

Wavefront sensing
In physics, the wavefront of a time-varying wave field such as visible light denotes
the locus of all points having the same phase.

Figure 1.1: Wavefronts in wave physics. Image from Byju’s [1].

In the case of geometric optics, where the propagation of light is approximately
described by rays instead of waves, the wavefronts are the surfaces perpendicular to
all light rays. The shape of the wavefront indicates how the rays are propagating:
if all rays propagate in the same direction, parallel to each other, the wavefronts
will be planar. Instead, if the rays are diverging or converging as an effect of a
lens for example, the wavefronts will be spherical or of more complicated shapes.
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Figure 1.2: Wavefronts in geometric optics. Image from Toppr [2]

The shape of the wavefronts can therefore be used to describe the propaga-
tion of light rays. In particular, it can be used to describe the deviation of the
light rays from the ideal, desired path in an optical system. Figure 1.3 shows the
deviations of the wavefronts in real optical systems from the ideal, desired wave-
front. In the first case, incoming parallel light rays are focused by an imperfect
lens which does not produce a perfectly spherical wavefront, resulting in a defo-
cused image since the light rays do not converge all to the same point. In the
second case, light rays emanating from a point source form a spherical wavefront,
which is then collimated by a lens. The resulting wavefront is not perfectly planar,
meaning that the emerging rays do not propagate exactly parallel to each other.
Measuring the resulting wavefronts therefore gives insights into the imperfections
of an optical system. There are many ways of measuring wavefronts, one of the
simplest and most classical ones is the Shack-Hartmann sensor [4, 5]. This setup
uses a two-dimensional array of lenses (called lenslets) of the same focal length.
If the incoming wavefronts are perfectly planar, each lenslet focuses the incoming
light and produces a regular pattern of illuminated spots. If however the incoming
wavefronts are not planar, the resulting spot pattern is irregular and contains in-
formation about the shape of the wavefronts. This is easier explained by an image,
and is illustrated in figure 1.4.
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Figure 1.3: Wavefront aberrations. Image from Ortholibrary [3]
.

Figure 1.4: Shack-Hartmann sensor. Image from IEEE [6].
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The main disadvantage of the Shack-Hartmann sensor is that the array of
lenslets drastically reduces the resolution of the image, resulting in a resolution of
as many pixels as there are lenslets. A more advanced setup for wavefront imaging
which overcomes this problem is used and developed by Wooptix to measure the
shape of transparent or reflecting objects. For the case of a reflecting object, this
setup shines collimated light (planar wavefronts) onto a reflecting object. If this
object were perfectly flat, the reflected light would have again planar wavefronts.
But if its surface is curved, the light will be reflected in different directions de-
pending on the point of the surface. These reflected rays are then measured in two
different planes, as illustrated in figure 1.5.

Figure 1.5: Wavefront sensor with two measurement planes. Image by Wooptix.

In the case depicted in the figure, since the rays are converging, the image
produced in the second plane will be smaller but brighter than in the first plane,
since the area covered by the rays is smaller, but the number of rays is the same.
From the difference in size and intensity of the two images, the path of the light
rays and therefore the incoming wavefront can be calculated, using for example
the transport of intensity equation [7]. This in turn gives precise information on
the shape of the reflecting surface. A similar setup can be applied to transparent
instead of reflecting objects. This technology has many applications, ranging from
the measurement of imperfections on silicon wafers used in the microchip industry
to diagnosing aberrations in the human eye.
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Zernike polynomials
In many applications it is of interest to encode the complicated wavefront infor-
mation in a concise way, and to be able to separate large-scale deformations from
small-scale structures. In the case of (nearly) circular objects or optical pupils,
this is conventionally and conveniently done by expanding the resulting wavefront
image in Zernike polynomials. These polynomials, named after optical physicist
Frits Zernike [8], form a complete and orthogonal set of functions on the unit
disk. Therefore any well-behaved function on the disk can be expanded in Zernike
polynomials, analogously to how any periodic function can be expanded in sine
and cosine waves using a Fourier series. This permits to encode the wavefront
information in a comparatively small set of Zernike coefficients, truncating the
series expansion at a given order of interest. Furthermore it separates the large-
scale deformations which are encoded in the low Zernike polynomials from the
small-scale details captured by the higher polynomials. Figure 1.6 shows the first
21 Zernike polynomials, ordered vertically by radial degree and horizontally by
azimuthal degree.

Figure 1.6: The first 21 Zernike polynomials. Image from Wikipedia [9].
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Mathematically, the Zernike polynomials are defined as follows. There are even
and odd polynomials, with the even polynomials defined as

Zm
n (ρ, ϕ) = Rm

n (ρ) cos(mϕ) , (1.1)

including the case m = 0, and the odd ones defined as

Z−m
n (ρ, ϕ) = Rm

n (ρ) sin(mϕ) . (1.2)

Here m and n are non-negative integers bounded by n ≥ m ≥ 0 with the condition
n−m an even number. For n−m odd, the Zernike polynomials vanish. ρ is the
radial coordinate on the unit disk, i.e. 0 ≤ ρ ≤ 1 and ϕ is the azimuthal angle.
The radial polynomials Rm

n (ρ) are defined as

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!
(
n+m
2

− k
)
!
(
n−m
2

− k
)
!
ρn−2k . (1.3)

As mentioned above, this is only defined for n−m an even number, and vanishes
otherwise. In applications it is often useful to use a single index j instead of the two
indices n and m. In the following we will use the so-called OSA/ANSI standard
indices. First, we define an azimuthal index l which covers both the even and odd
cases by m = |l|, i.e. n ≥ l ≥ −n. Then the single-index j is given by

j =
n(n+ 2) + l

2
, j ≥ 0 . (1.4)

The importance of the Zernike polynomials comes from their orthogonality and
completeness. Orthogonality is expressed by the integral of two polynomials over
the unit disk: ∫

disk

dAZ l
n(ρ, ϕ)Z

l′

n′(ρ, ϕ) =
πϵl

2n+ 2
δnn′δll′ , (1.5)

where ϵl is the so-called Neumann factor, taking the value 2 if l = 0 and 1 otherwise.
Completeness means that any sufficiently smooth real-valued function f over the
unit disk can be expressed in terms of its Zernike coefficients, in the same way as
periodic functions can be expanded in Fourier series. Mathematically, in terms of
the above single-index j we can write

f(ρ, ϕ) =
∞∑
j=0

cj Zj(ρ, ϕ) . (1.6)

Using the orthogonality relations (1.5), the coefficients can be calculated as inner
products, i.e. integrals over the disk:

cj(n,l) =
2n+ 2

πϵl

∫
disk

dA f(ρ, ϕ)Z l
n(ρ, ϕ) . (1.7)

The normalization factor is expressed in terms of the radial and azimuthal indices
n, l, so one has to express the single-index j in terms of those.
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This work
The problems that are treated in this thesis can be divided into three parts. In the
first part, we develop an algorithm to compute the Zernike coefficients cj given a
circular wavefront image. Previous algorithms developed by the group at Woop-
tix use a least-squares approach to fit the coefficients. This works well when the
number of mode coefficients that are computed is close to the number of modes
that are actually present in the image. However, if the image contains many high
modes, and we are interested in extracting the lower coefficients, the least-squares
computation of the low modes tries to fit also the high modes. This overfitting
considerably worsens the performance. Instead, we opt for a direct approach and
compute the coefficients using equation (1.7). We first develop a prototype in
python, and then port it to C++. To further improve the performance, we par-
allelize the computations and perform them on a GPU. In chapter 2 we develop
such an algorithm in CUDA and implement a python binding to be able to call
the GPU functions in a simple way from a python program.

In the second part we start treating more realistic cases. In the application to
measurements of silicon wafers, the images taken are not perfectly circular. In-
stead, the silicon wafer is held by three clips, which don’t reflect light and produce
dark indentations in the circle. This deviation from a perfect circle considerably
lowers the accuracy of the developed algorithms which assume a circular image.
Since the indentations are comparatively small, in chapter 3 we solve this problem
by implementing a functionality that fills in the missing parts via barycentric in-
terpolation. We evaluate its performance and find great improvement.

In the third and final part we consider a different application. Modern wave-
front sensing technology allows to measure aberrations in the human eye with
great precision, which is of interest in ophthalmological applications. The problem
here is similar to the one before: human pupils are never perfectly circular. The
difference lies in that we no longer have a circle with a few small indentations, but
real deformations. In many cases these deformations are so pronounced that it
no longer makes sense to consider the Zernike basis. The mathematically correct
thing to do is to develop a new basis for each non-circular pupil. We do this in
chapter 4 by developing a map between an arbitrary pupil (with some reasonable
restrictions) and the disk, inspired by the algorithm described in [10]. We then
simply take the usual Zernike basis functions on the disk and map it to the given
pupil shape to obtain a new, adapted basis.
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Chapter 2

Basic Zernike Fitter

In this chapter we describe the development of a simple Zernike fitter, which given
a perfectly circular image extracts a given number of Zernike coefficients.

Python
We first develop a prototype in python. By putting the problem on a grid and
therefore discretizing the integrals in (1.5) and (1.7), it reduces to a problem in
linear algebra, which can easily be implemented using numpy.sum to compute the
integrals. The main source of errors comes from the fact that when one leaves
the continuum, the orthogonality relation (1.5) no longer holds exactly. However,
this is not a problem for the applications that we have in mind since we will work
with images with very high resolution. In this prototype code we also implement a
least-squares fitter using the function numpy.linalg.lstsq apart from the direct fitter
which uses (1.7) in order to compare both methods. We do not further describe
the python code since it is straightforward and not particularly interesting.

C++
The C++ version is more interesting and provides a considerable speedup with
respect to the python version. It is still fully serial and will be further improved
upon by the CUDA version in the next section but it is useful in order to lay
the foundation for the parallel version and can be used on machines that do not
support CUDA. The basic object is a structure which we call zernikeFitter, with
the following member variables and functions:

1 struct zernikeFitter{
2 int res; // resolution of the grid
3 int nmax; // maximum n index

11



4 int lmax; // maximum l index
5 int nmodes; // number of modes
6 double* coefs; // coefficients
7 double* wf; // wavefront (phase)
8 double* rptable; // table of r^p
9 double* phitable; // table of phi

10 double* factorial; // factorial lookup table
11 zernikeFitter(int res , int nmodes); // constructor
12 ~zernikeFitter (); // destructor
13 double* getCoeffs(double* wf); // get the coefficients
14 double* getPhase(double* coefs); // get the wavefront
15 void makePolartable(int res , int nmax , double* rptable , double*

phitable); // make polar coordinates lookup table
16 };

Each instance of the zernikeFitter structure works on a square grid with a given
resolution and an inscribed circle. In the constructor we also specify the maximum
number of Zernike modes that we are interested in (corresponding to the single-
index j defined in 1.4). The maximum radial and azimuthal indices n and l are
then automatically calculated. We also allocate memory for the wavefront (the
image) and the Zernike coefficients. More interestingly, we have three lookup ta-
bles: since we are interested in extracting many coefficients, of the order of j ≳ 66
we need to compute all of the corresponding polynomials, see (1.2, 1.3). Since
their evaluation repeatedly involves computing factorials, powers of the radius
and trigonometric functions of the angle, we compute them once and store their
values in lookup tables. This considerably speeds up the computations when one
deals with many modes. It is straightforward but worth mentioning that to make
these lookup tables, we first need compute the maximum factorial and maximum
power of the radius that we need, given nmodes.
The two main member functions are getCoeffs, which returns the Zernike coeffi-
cients (up to nmodes) of a given image wf, and getPhase which returns a wavefront
(image) given some coefficients.
To compute the coefficients we simply loop over all modes and over each point of
the grid. For a given mode and point we then compute the value of the Zernike
polynomial using the corresponding lookup tables, multiply it by the value of the
wavefront and the appropriate normalization factor:

1 double* zernikeFitter :: getCoeffs(double* wf){
2 // loop over all modes
3 for (int n = 0; n <= nmax; n++){
4 for (int l = -n; l <= n; l+=2){
5 if (n == nmax && l > lmax) break; // break when all modes

are done
6 double N = 4.0*(2*n+2)/(M_PI*(res -1)*(res -1)); //

normalization factor
7 if (l == 0) N /= 2.0; // Neumann factor
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8 size_t idx = ZernIFromNL(n, l); // OSA index
9 coefs[idx] = 0.0; // initialize coefficient

10

11 // loop over mesh and perform integration
12 for (int i = 0; i < res*res; i++){
13 // get polar coordinates
14 double r = rptable[i+res*res];
15 double phi = phitable[i];
16 double zvalue = 0.0;
17

18 // set value to zero if outside unit circle
19 if (r > 1.0) continue;
20

21 // calculate value of Zernike polynomial at this point
22 int m = abs(l);
23 int sign = -1;
24

25 for ( int s = 0; s <= (n-m)/2 ; s++ ){
26 sign *= -1;
27 zvalue += sign * factorial[n-s] / ( factorial[s] *

factorial [(n+m)/2-s] * factorial [(n-m)/2-s] ) * rptable[i+(n-2*
s)*res*res];

28 }
29

30 if (l < 0) zvalue *= sin(m*phi);
31 else zvalue *= cos(m*phi);
32

33 // add to coefficient
34 coefs[idx] += N*zvalue*wf[i];
35 }
36 }
37 }
38 return coefs;
39 };

Similarly for getPhase. We also implement python bindings for these two member
functions using pybind11 [11] and its array_t template. In this way we can compile
the C++ code as a library, import it as a python module and use these two
functions in a simple way inside a python code.

CUDA
Next, we turn to the CUDA version of the Zernike fitter. Since we work with images
and most computations are pixel-wise, this problem lends itself to parallelization
on a GPU. The general idea is the same as before, just that now many functions
are implemented as CUDA kernels. To compute the coefficients for example, we
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still loop serially over all modes. For each mode, the pixel-wise operations of
computing the Zernike polynomial at a given point and multiplying it by the
wavefront are done by CUDA kernels. Also the final reduction, i.e. the sum over
all grid points corresponding to the discretization of the integral in (1.7) is done
by a kernel function. The fact that we loop serially over the modes, instead of
performing the computation of all modes in parallel is due to memory bounds. As
a rough estimate, the computation of a single mode for an image with a resolution
of 6000 × 6000 pixels involves at least the memory needed to store the values of
the polynomials at all grid points, which at double precision amounts to 288 MB.
Computing all modes in parallel would exceed the 5928 MB memory capacity of
the NVIDIA GeForce GTX 1660 SUPER GPU that I am using for as little as 21
modes, even without taking into account the memory needed for the lookup tables.
Furthermore, since the number of CUDA cores of this GPU is 1408, the threads
would be scheduled to run sequentially anyways.
The first step is to allocate the necessary memory for the coefficients, the wavefront,
the Zernike polynomials and the lookup tables on the GPU. Then, in the case
of computing the coefficients, we need to copy the wavefront image from host to
device. To optimize the code, this memory copy is overlapped with the independent
computation of the lookup tables for the angle and the powers of the radius by
using two different CUDA streams. Finally, the computation of the coefficients
looks as follows:

1 // loop over all Zernike modes
2 for (int n = 0; n <= nmax; n++){
3 for (int l = -n; l <= n; l += 2){
4 if (n == nmax && l > lmax) break; // break when all modes

are done
5 double N = 4.0*(2*n+2)/(M_PI*(res -1)*(res -1)); //

normalization factor
6 if (l == 0) N /= 2.0; // Neumann factor
7 size_t idx = ZernIFromNL(n, l); // OSA index
8

9 // make zernike polynomial
10 makeZernike <<<nb,nth >>>(n, l, res , fact_gpu , rptable ,

phitable , zernike);
11

12 // multiply zernike with wavefront on GPU (result is stored
in zernike again)

13 zxwf <<<nb,nth >>>(res , N, zernike , wf_gpu);
14

15 // reduce result on GPU (sum over all pixels) and copy to
host

16 int nblocks_red = nb/2;
17 int idx_red = 0;
18 int size = res*res;
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19 reduce <<<nblocks_red ,nth ,nth*sizeof(double)>>>(zernike ,
tmp_gpu[idx_red], size);

20 while (nblocks_red > 2){ // reduce until only two blocks are
left (several kernel calls are necessary for block

synchronization)
21 size = nblocks_red;
22 nblocks_red = (nblocks_red +2*nth -1) /(2* nth);
23 reduce <<<nblocks_red ,nth ,nth*sizeof(double)>>>(tmp_gpu[

idx_red], tmp_gpu [( idx_red +1)%2], size);
24 idx_red = (idx_red +1) %2;
25 }
26 size = nblocks_red;
27 nblocks_red = (nblocks_red +2*nth -1) /(2* nth);
28 reduce <<<nblocks_red ,nth ,nth*sizeof(double)>>>(tmp_gpu[

idx_red], &coefs_gpu[idx], size);
29 }
30 }

The kernels are called with the maximum number of threads available per block,
in our case nth = 1024 and the minimum number of blocks such that nb ∗ nth ≥
res ∗ res in order to fit all pixels. The kernel makeZernike computes the Zernike
polynomial at each point and stores it in the device array zernike. The kernel zxwf
then multiplies the Zernike with the wavefront. The non-trivial part is hidden in
the reduce kernel: we need to sum the result of the multiplication for all pixels
and therefore need to communicate between threads. Since thread synchronization
works most efficiently on the block-level, we first reduce all pixels inside each block
and then repeat the procedure on the result until we are left with just a single
block which completes the reduction. The specifics of the parallel reduction kernel
are taken from an NVIDIA webinar on parallel reductions [12] and look like the
following:

1 __global__ void reduce(double *g_idata , double *g_odata , int size ,
int stride =1) {

2 extern __shared__ double sdata [];
3 // each thread loads one element from global to shared mem
4 unsigned int tid = threadIdx.x;
5 unsigned int i = blockIdx.x*( blockDim.x*2) + threadIdx.x;
6 // check if index is in bounds
7 if (i >= size){
8 sdata[tid] = 0.0;
9 return;

10 }
11 sdata[tid] = g_idata[i*stride ];
12 if (i + blockDim.x < size) sdata[tid] += g_idata [(i+blockDim.x)*

stride ];
13 __syncthreads ();
14 // do reduction in shared mem
15 for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
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16 if (tid < s) sdata[tid] += sdata[tid + s];
17 __syncthreads ();
18 }
19 if (tid < 32) warpReduce(sdata , tid); // unroll last warp
20 // write result for this block to global mem
21 if (tid == 0) g_odata[blockIdx.x] = sdata [0];
22 };

Let us elaborate on this code snippet. Since the threads in the reduction repeatedly
access the memory, we use a shared memory array sdata, whose size is specified
when calling the kernel, and is equal to the number of threads in each block (times
sizeof(double)). In order to avoid divergent branches and shared memory bank
conflicts as discussed on pages 9-12 in [12], we use a sequential addressing scheme
for the threads instead of interleaved addressing (see figure 2.1).

Figure 2.1: Sequential addressing scheme. Image from NVIDIA [12].

The kernel can perform reductions with strided memory accesses which will
be needed later. Considering for now the default case of stride=1 for simplicity,
each thread then loads the corresponding input data value into its shared memory
slot and (if in bounds) directly adds the next value in our indexing scheme. This
prevents half of the threads being idle in the first iteration as in figure 2.1: in
step 1 the second half of the threads performs no operations after loading the
values into the shared memory. We then synchronize the threads and repeat the
procedure, reducing the offset for the addition by powers of two until we reach
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32. At this point, we are left with a single warp and can further optimize the
reduction: since instructions are SIMD synchronous within a warp, we don’t need
to __syncthreads() and we don’t need the if (tid<s) branch, since it would not
save any work. We can simply unroll the last six steps of the loop and write

1 __device__ void warpReduce(volatile double* sdata , int tid) {
2 sdata[tid] += sdata[tid + 32];
3 sdata[tid] += sdata[tid + 16];
4 sdata[tid] += sdata[tid + 8];
5 sdata[tid] += sdata[tid + 4];
6 sdata[tid] += sdata[tid + 2];
7 sdata[tid] += sdata[tid + 1];
8 }

The volatile keyword prevents the compiler from keeping sdata[tid] in register,
which would break the implicit SIMD memory synchronization. Finally, after
the warp reduction, the last step is to have thread 0 write its result into the
corresponding output memory location. Since this reduction kernel just reduces
all values inside each block, we need to keep calling the kernel on the result until
we are left with a single block and have completed the reduction of the full grid.
The getPhase function works in a similar way, but in this case we do not need to
perform any reduction. As before, we also implement a python binding for these
functions using pybind11 [11].

Results and benchmarks
Let us show an example of the results of the Zernike fitter developed above. We
generate a synthetic wavefront from 91 known, randomly sampled Zernike coef-
ficients and use the Zernike fitter to compute the first 66 coefficients from the
resulting image. These two numbers are triangular numbers, meaning that for
the given radial order of the Zernike polynomials we take all the possible angular
modes. In figure 2.2 we plot the original wavefront generated from 91 coefficients,
the wavefront generated from the lowest 61 modes whose coefficients were extracted
by the Zernike fitter, the difference of the two images, which is non-zero because
we did not fit the high modes, and the difference between the fitted wavefront and
the wavefront generated from only the first 66 original coefficients.
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Figure 2.2: Top left: synthetic wavefront generated from 91 coefficients. Top
right: wavefront generated by 66 coefficients, computed from the first. Bottom
left: difference between the two images. Bottom right: difference between the top
right image and the equivalent of the top left, using only the first 66 coefficients.

In figure 2.3 we plot the values of the original coefficients, the computed coef-
ficients and their difference, for all modes and for only the modes that have been
computed.
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Figure 2.3: Original Zernike coefficients used to generate the wavefront in figure
2.2, Zernike coefficients computed by the Zernike fitter, and their differences.

We see that at least qualitatively, the Zernike fitter developed in the previous
section does a good job at extracting the correct coefficients. We now assess its
performance more quantitatively, considering four different versions:

1. Python (least squares)

2. Python (direct)

3. C++ (direct)
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4. CUDA (direct)

The first computes the Zernike coefficients using the least squares approach, while
the others use the direct approach, assuming the discretized Zernike polynomials
form an orthogonal basis. We analyze the time to fit and the normalized RMS
error. The original Zernike coefficients (cj) used to generate the wavefront are
sampled randomly and uniformly from the interval [−1, 1]. If we denote the fitted
coefficients by c′j, we define the normalized RMS error as

NRMS =

∑
j(c

′
j − cj)

2∑
j c

2
j

. (2.1)

Fixed resolution, varying number of modes

First we consider a fixed resolution of 1024×1024 pixels which is about the highest
resolution for which the python codes run in a reasonable time. We generate a
synthetic wavefront with 66 modes with randomly sampled coefficients and then
use our Zernike fitter to extract a varying number of coefficients, from 3 to 36,
and compare their values with the original known coefficients. For each number
of extracted modes, we generate 50 different wavefronts. In figures 2.4 and 2.5 we
plot the NRMS error and the logarithm of the time that it takes to compute the
coefficients versus the number of modes that are fitted.
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Figure 2.4: NRMS error vs number of fitted modes. Points represent the mean
value over 50 runs and the error bars the standard deviation.

We see that all four versions have similar NRMS errors. For a low number of
modes, the least-squares approach is the worst, but it gets better as we approach
the number of original modes contained in the wavefront. The standard deviation
indicated by the error bars is quite large since for each data point we consider 50
different wavefronts.
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Figure 2.5: Logarithm of time needed to extract coefficients vs number of fitted
modes. Points represent the mean value over 50 runs and the error bars the
standard deviation.

This plot nicely showcases the speedups between the different versions: the
least-squares approach is computationally more expensive since it involves com-
puting the pseudo-inverse of a matrix. The direct approach in python is therefore
slightly faster, while also being more accurate for a low number of modes as repre-
sented in 2.4. The C++ version is about an order of magnitude faster, while the
CUDA versions speeds up the process by about another two orders of magnitude.

Varying resolution, fixed number of modes

Next we consider a fixed number of modes and vary the resolution from 128 to
4096 for the C++ and CUDA versions, while for the python version we stop at
2048 since for higher resolutions the computation time becomes unfeasible. For
each value of the resolution, we again generate 50 different wavefronts from 66
known, randomly sampled coefficients. We then extract the 36 lowest coefficients
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and compare them with the original ones, plotting the logarithm of the NRMS
error and the logarithm of the computation time.

Figure 2.6: Log NRMS error vs resolution of image. Points represent the mean
value over 50 runs and the error bars the standard deviation.

Note that this plot is logarithmic in the y-axis. We appreciate that the NRMS
error drops sharply with increasing resolution, as expected: the main source of
error is the coupling between Zernike modes (i.e. the loss of orthogonality) due
to the discretization of the grid. This error quickly decreases as we increase the
resolution and approach the continuum.
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Figure 2.7: Logarithm of time needed to extract coefficients vs resolution of image.
Points represent the mean value over 50 runs and the error bars the standard
deviation.

This plot of the computation time again highlights the speedups gained by
passing from the least-squares to the direct approach in python and then to C++
and CUDA.

Memory usage

We now consider the memory usage of our codes as a function of the resolution
and of the number of modes to be fitted. For the "fast" direct version, i.e. where
we keep a lookup table for the powers of the radius in memory as described in the
previous section, the memory usage is plotted below in figure 2.8. This approach
is quite economical in terms of memory usage since we just need to store a few
lookup tables and one Zernike polynomial at a time.
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Figure 2.8: Memory usage of the "fast" direct Zernike fitter as a function of the
resolution and the number of modes to be fitted. The color bar indicates memory
usage in bytes.

The red line indicates the 5928 MB memory limit of the NVIDIA GeForce
GTX 1660 SUPER GPU that I am using and the stepped structure comes from
the fact that the number of powers of the radius that we need to store in memory
scales with the radial index n and is independent of l and therefore jumps at each
triangular number. We see that at the typical resolution of the images that we are
interested in for applications, which is about 6000, we can extract more than 100
modes.
For completeness we also consider the memory usage of the least-squares fitter.
Since in this case we need to store all relevant Zernike polynomials in memory in
order to compute the pseudo-inverse matrix needed for the least-squares fit, the
memory usage quickly increases with resolution and number of modes as plotted
below in figure 2.9.
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Figure 2.9: Memory usage of the least-squares Zernike fitter as a function of the
resolution and the number of modes to be fitted. The color bar indicates memory
usage in bytes.

Again, the red line indicates the 5928 MB memory limit of the NVIDIA GeForce
GTX 1660 SUPER GPU that I am using. We see that for a moderate resolution
and number of modes, the least-squares approach quickly becomes unfeasible due
to the elevated memory usage, apart from the fact that it is slower than the direct
approach.

Conclusion

All in all, we conclude that the direct approach is more suited for the applications
we have in mind. First of all, because the typical images encountered in applica-
tions have many small-scale details and therefore a least-squares approach would
produce a considerable overfitting when extracting only a limited number of low
modes. Even if we would extract many modes, in which case the least-squares
approach outperforms the direct approach, it is considerably slower due to an
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elevated computational cost and uses much more memory, making it quickly prac-
tically unfeasible. On top of that, the computational error of the direct approach
quickly drops as we increase the resolution. Between the three direct approaches,
the CUDA version is the fastest, running in about 10−1 seconds for a resolution of
4096 and fitting 36 modes. This is more than sufficient for applications.
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Chapter 3

Wafer indentations

Generalities
In this chapter we deal with the more realistic case of a concrete application. As
mentioned in the introduction, one of the applications of the wavefront imaging
technology is to silicon wafers. This is a thin, circular slice of crystalline silicon
which is widely used in the semiconductor industry as a substrate for microelec-
tronic devices and circuits which are etched or printed on top of the wafer. These
processes require the wafers to be as flat and polished as possible. The advanced
wavefront imaging technology of Wooptix permits capturing millions of data points
in a few milliseconds with sub-nanometer height accuracy and 100 micrometer
lateral resolution [13]. The resulting images contain information about both the
global bow and deformation of the wafer and nanoscale polishing imperfections.
An example is shown in figure 3.1, where the top right image shows the global bow
of the wafer and the top center image highlights the polishing imperfections.
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Figure 3.1: Wavefront image showing deformations of a silicon wafer, highlighting
the global bow and polishing imperfections. Image by Wooptix.

To accurately separate the global, large-scale bow of the wafer from the nanoscale
polishing imperfections, a mode decomposition is used. The Zernike fitter devel-
oped in the previous chapter is a first step towards this goal. However, its perfor-
mance is significantly impacted by the fact that to capture the wavefront image
of the wafer, it needs to be held in place by three small grips. These are non-
reflecting and therefore produce dark indentations along the border of the wafer.
An example is shown below.
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Figure 3.2: Wafer with indentations. Image by Wooptix.

The indentations can be appreciated at about 12, 4 and 8 o’ clock. Albeit small,
these indentations cover part of the wafer and produce spurious data points of zero
elevation which misguide the Zernike fitter algorithm developed in the previous
section, significantly altering the extracted mode coefficients. To overcome this
problem, the straightforward solution is to try to recover the missing, covered
parts of the image. We do so by barycentric interpolation, described in the next
section.

Barycentric interpolation
Barycentric interpolation is a way to perform fast interpolation on arbitrary grids,
see for example [14]. It extends linear interpolation to arbitrary dimensions, in
particular to our two-dimensional case. To understand and perform the interpola-
tion we first need to introduce the barycentric coordinates (see for example [15]).
These coordinates can be used to specify the location of a point in the plane with
respect to the three vertices of a triangle. Given a triangle with vertices located at
r⃗i, i = 1, 2, 3, the position r⃗ of any point in the plane of the triangle can be given
as

r⃗ =
∑

i=1,2,3

λir⃗i , with
∑

i=1,2,3

λi = 1 . (3.1)

The three numbers λi are referred to as the barycentric coordinates with respect
to the triangle r⃗i. All three coordinates are positive if and only if the point lies
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inside the triangle, while they can be negative if it lies outside of it. Two examples
are shown in figure 3.3 below.

Figure 3.3: Barycentric coordinates on an equilateral triangle and on a right tri-
angle. Image by Rubybrian [16].

Given a point r⃗ in the triangle’s plane with Cartesian coordinates (x, y) one can
obtain the barycentric coordinates λi from it and vice versa. The first part of (3.1)
gives two constraints and the second part a third constraint on the three unknowns.
Writing (3.1) in terms of the cartesian coordinates (xi, yi) of the triangles vertices
r⃗i, we have

x =
∑

i=1,2,3

λixi

y =
∑

i=1,2,3

λiyi .
(3.2)

The solution to this linear system of equations is written succinctly in terms of a
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matrix T defined as
T =

(
x1 − x3 x2 − x3

y1 − y3 y2 − y3

)
. (3.3)

This matrix is invertible as long as r⃗1, r⃗2 and r⃗3 are not collinear, in which case
they would not form a triangle. The barycentric coordinates can then be computed
as (

λ1

λ2

)
= T−1 · (r⃗ − r⃗3) , λ3 = 1− λ1 − λ2 . (3.4)

Now that we have defined the barycentric coordinates, we can interpolate (or
extrapolate) the value of a function at any point in terms of its values at the three
nearest points forming a triangle by using the barycentric coordinates as weights
in the interpolation:

f(r⃗) ≈
∑

i=1,2,3

λif(r⃗i) . (3.5)

For a linear function, this interpolation is exact, so it makes sense to use it to
approximate functions which are roughly piecewise linear in the region of interest.
We assume this to be the case in our example of wafer indentations, since the
indentations are small compared to the whole image and so we don’t expect large
fluctuations in those parts.

The algorithm
The algorithm is a straightforward implementation of the above definition of
barycentric interpolation. The first step is to implement a kernel which crops
the image such that the wafer is perfectly inscribed in a square and makes a mask
which delimits the ideal, circular wafer. We then implement a kernel which spawns
a thread for each pixel in the image. Each thread checks if its assigned pixel lies in-
side the mask delimiting the boundary of the ideal circular wafer and if so, whether
or not it is equal to zero in which case it is classified as a dark indentation. If a
pixel belongs to an indentation, the corresponding thread starts searching for the
three nearest neighbors in order to perform the barycentric interpolation.
It starts looking for points with a non-zero value in annuli of a single-pixel width
and increasing radius, centered around the starting pixel. The search continues
until three non-zero points are found and their locations are stored. We then check
if the three points are collinear by computing the determinant of the matrix T de-
fined in 3.3. If so, we search for another point until we find three of them that
form a triangle and we complete the barycentric interpolation by computing the
interpolated value using 3.4 and assigning it to the starting pixel.

1 int r = 1;
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2 int dis [3];
3 int djs [3];
4 int count = 0;
5

6 // find closest three neighbors
7 while (count < 3){
8 for (int di=-r; di <=r; di++){
9 for (int dj=-r; dj <=r; dj++){

10 if (count == 3) break;
11 // skip exterior circle
12 if ( (di*di + dj*dj) > r*r ) continue;
13 // skip interior circle
14 if ( (di*di + dj*dj) <= (r-1)*(r-1) ) continue;
15

16 // check if neighbor is in bounds
17 if ( (i+di < 0) || (i+di >= res) || (j+dj < 0) || (j+dj >= res

) ) continue;
18 // check if neighbor is not an indentation
19 if ( wf_gpu [(i+di)*res + (j+dj)] != 0.0 ) {
20 dis[count] = di;
21 djs[count] = dj;
22 count ++;
23 }
24 // check if points are collinear
25 if (count == 3) {
26 double detT = (double)((djs[1]-djs [2])*(dis[0]-dis [2]) - (

djs[0]-djs [2])*(dis[1]-dis [2]));
27 if (detT == 0) count = 2;
28 }
29 }
30 }
31 r++;
32 }

Results and benchmarks
We test the performance of the barycentric interpolation algorithm described above
by taking eight real wafer measurements with dark indentations and creating masks
representing their non-circular shapes. We then generate synthetic wavefront im-
ages from known, randomly sampled Zernike coefficients with the shape of these
masks and try to extract these coefficients from the image by

1. using the Zernike fitter on this non-circular image and

2. filling in the indentations by barycentric interpolation and then using the
Zernike fitter on the resulting interpolated, circular image.
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Below we show an example of such a synthetic wavefront. We plot the original
circular image, the masked image with the shape of a real wafer measurement,
the interpolated result, and the difference between the interpolated image and the
original one, magnified 100× to highlight the difference. For the same synthetic
wavefront we also plot the errors in the coefficients extracted from the original
synthetic circular image, in the coefficients extracted from the indented wavefront
and in the ones computed from the interpolated image.

Figure 3.4: Synthetic wavefront with interpolated indentations.
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Figure 3.5: Zernike coefficients extracted from the original, indented and interpo-
lated images. The error represents the absolute value of the difference between the
computed coefficients and the original coefficients used to generate the synthetic
wavefront.

From this typical example we can already appreciate that the interpolation
greatly improves the computation of the coefficients. Below we plot the statistics of
the error in recovering the coefficients for 10 different random, synthetic wavefronts
for each of the 8 masks obtained from real wafer measurements.
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Figure 3.6: Statistics of errors in coefficients extracted from the original, indented
and interpolated images. The dots represent the mean error error as the absolute
value of the difference between the computed coefficients and the original coeffi-
cients used to generate the synthetic wavefront, while the error bars indicate the
standard deviation.

In terms of the NRMS errors in extracting the coefficients, we have in fitting
the

• original, circular wavefront: NRMS = 0.0002924± 0.0001013

• indented wavefront: NRMS = 0.0604414± 0.0269938

• interpolated wavefront: NRMS = 0.0008062± 0.0004229.

These statistics again highlight the improvement of the Zernike fitter that the in-
terpolation permits. Finally, a comment on the time of computation is in order.
The masks used above have a resolution of about 4500 × 4500 pixels and from
the resulting synthetic wavefront we extract 66 mode coefficients. This takes the
CUDA Zernike fitter approximately 0.94 seconds while the barycentric interpola-
tion takes about 0.12 seconds so it does not considerably slow down the fitting
process, while it greatly improves its results.
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Chapter 4

Adaptable Zernike basis

Generalities
We have seen in the previous chapter that for non-circular objects the compu-
tation of the Zernike coefficients becomes significantly worse. In the case of the
wafer indentations, we have solved this problem by filling in the missing pieces via
barycentric interpolation. When considering other applications however, this prob-
lem becomes more pronounced and interpolation is no longer the best option. In
this chapter we deal with the application of wavefront sensing to Ophthalmology.
This technology permits to accurately and objectively measure optical aberrations
in the human eye. Here we are presented with a similar problem as before, but of
intrinsically different nature: the pupils of the human eye are not perfectly circu-
lar, rather they are of some complicated, vaguely circular shape. The difference
with respect to the case of the wafers treated in the previous chapter is that there
is no fundamental, circular object which is obscured by something else like the
grips. Rather the object itself is fundamentally non-circular, which makes interpo-
lation meaningless since we are interpolating non-existing data. The better choice
in this case is to use a new basis, adapted to the given non-circular pupil. This is
what we will do in the present chapter. The basic idea is simple: find a mapping
between the disk and the pupil and use it to map the Zernike basis from the disk
to the given pupil shape. Conversely, we can also map the wavefront image from
the pupil to the disk.

The algorithm
The core of the problem lies in finding a mapping between the pupil shape and the
disk. For simple, non-circular shapes such as ellipses this can be done analytically,
but for more complicated shapes this quickly becomes intractable. Furthermore,
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we have to deal with the pixelated nature of the problem: ideally, we would want
a 1:1 mapping between pixels, in order not to lose any information. The solution
presented in the present chapter is inspired by [10] and is essentially a simplified
version of the algorithm described in that paper, which considers more complicated
cases than we need to deal with. The fundamental idea is the following: peel
the pupil and the disk into one-pixel wide layers, and map layer by layer. This
peeling is easily done by what is called an erosion, with a 3 × 3 square kernel:
the erosion function scans the kernel over the image, computes the minimal pixel
value overlapped by the kernel and replaces the central pixel with that minimal
value. In our case this has the effect of setting the pixels on the border of the disk
or pupil to zero. Subtracting the image before and after the erosion gives us the
outermost layer. By repeating this procedure we peel the images until we reach
the center and store the coordinates of the pixels in each layer in a corresponding
array. The effect of this layering procedure can be seen in figure 4.1.

Figure 4.1: "Onions" corresponding to a non-circular pupil and a disk. Here we
show them with very low resolution for visualization purposes.

In order to have the best possible mapping, given a pupil shape we generate
a disk with a resolution such that it has the same number of layers as the pupil.
Now the only part that is left to do is to compute a mapping between the pixels in
the corresponding layers. For each layer, we take all the pixels in that layer, order
them by their angle with respect to the central pixel (the pixel in the innermost
layer) and index them in that order. Note that this procedure produces the desired
result of a continuous line of pixels only if the shape is approximately circular and
does not have any "S-like" shapes. More general cases are treated in [10] but are
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not needed for our application. Since in general the number of pixels in a given
layer of the pupil and the disk will be different, we need to interpolate the values.
Consider mapping the disk to the pupil: to do so, we first "stretch" the indices of
the disk layer to fit the number of pixels in the corresponding pupil layer as shown
in figure 4.2 below.

Figure 4.2: Indices corresponding to an 11 pixel long layer in the pupil, a 7 pixel
long layer in the disk, and its corresponding "stretch".

This stretching gives us the weights for the interpolation by computing the
distance of the fractional index from the previous and next integers. Denoting the
array of stretched disk indices by SId and the values of the corresponding pupil
and disk pixels by Vp and Vd, we have for a given pupil pixel with index i:

w1[i] = ⌈SId[i]⌉ − SId[i] , w2[i] = SId[i]− ⌊SId[i]⌋
Vp[i] = w1[i] · Vd [⌊SId[i]⌋] + w2[i] · Vd [⌈SId[i]⌉] .

(4.1)

Here ⌈x⌉ and ⌊x⌋ denote the ceiling and floor functions, respectively and w1, w2

are the weights in the interpolation. The above formula becomes much clearer
by considering an example. Take for example the pupil pixel with index i = 4 in
figure 4.2: its corresponding stretched disk index is SId = 2.4. Formula (4.1) then
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becomes:
w1[4] = ⌈2.4⌉ − 2.4 = 0.6 , w2[4] = 2.4− ⌊2.4⌋ = 0.4

Vp[4] = 0.6 · Vd [2] + 0.4 · Vd [3] .
(4.2)

The mapping repeats this procedure for each layer, appropriately stretching the
indices and returning an array of weights and coordinates of the next and previous
pixels used for the interpolation. The same reasoning applies to the inverse map-
ping from the pupil to the disk, or if the indices need to be squeezed. Applying
these maps we can map the Zernike polynomials defined on the disk to an arbitrary
pupil shape, or map the pupil image to the disk.

Results and benchmarks
Below we show the result of mapping the first 15 Zernike polynomials from the
disk to an example pupil shape.

Figure 4.3: First 15 Zernike polynomials on the disk.
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Figure 4.4: First 15 Zernike polynomials, mapped to a non-circular pupil

These adapted Zernike polynomials form a good basis for functions on the given
pupil shape. For the example above, we can compute the Gram matrix of the basis
functions, defined as

Gij =

√
2ni + 2

πϵli

√
2nj + 2

πϵlj

∫
disk

dAZi(ρ, ϕ)Zj(ρ, ϕ) , (4.3)

where as always i, j are the single-indices, from which the radial and azimuthal
indices ni, li, nj, lj can be computed. Ideally, for an orthonormal basis this Gram
matrix would be a diagonal matrix with all ones along the diagonal. For our
discrete case, the integral becomes a sum over pixels and introduces some error.
The deviation of this real Gram matrix from the ideal one characterises the quality
of our basis. Below we plot the Gram matrix of the first 66 Zernike polynomials
on the disk, and of the same polynomials mapped to the pupil shown above.
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Figure 4.5: Gram matrices for the first 66 Zernike polynomials on the disk (left)
and on the pupil shown in 4.4 (right).

We see that the mapping introduces a small source of error but still produces a
high-quality basis. In terms of numbers, we are working with a disk of resolution
457 × 457 which has the same number of layers as the pupil. At this resolution,
the deviations of the 66× 66 Gram matrix from the ideal one are the following:

• On the disk:

Average value on the diagonal: 0.997435

Maximum deviation from 1 on the diagonal: 0.007654

Average value on the off-diagonal: 0.000279

Maximum deviation from 0 on the off-diagonal: 0.005915

• On the pupil:

Average value on the diagonal: 0.931825

Maximum deviation from 1 on the diagonal: 0.101562

Average value on the off-diagonal: 0.002996

Maximum deviation from 0 on the off-diagonal: 0.101651 .

Up to now we have considered mapping the Zernike polynomials from the disk
to the pupil shape, in order to get a new basis adapted to the pupil. This provides
a nice visualization of the aberration modes on a given pupil. On the other hand,
given an application where we want to extract a number of mode coefficients from
a given non-circular image, it makes more sense to map the image itself to the disk
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and use the usual Zernike basis. In this way we transform only one image, instead
of many Zernike polynomials. An example of this inverse mapping is shown in
figure 4.6.

Figure 4.6: Mapping of a wavefront image with a non-circular pupil to the disk.
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Conclusions

In this thesis we introduced the basics of modern wavefront sensing and the mathe-
matics of Zernike polynomials, commonly used to analyze the measured wavefronts.
In chapter 2 we developed a Zernike fitter, which given a wavefront extracts the
coefficients of a given number of Zernike polynomials or inversely, given some co-
efficients reconstructs the wavefront. It was implemented in python, C++ and
CUDA, where the latter uses the full power of a GPU to efficiently perform the
image processing. We assessed the performance of the python, C++ and CUDA
versions by producing synthetic images with known Zernike coefficients and com-
paring them with the coefficients extracted by the different programs. We looked at
the RMS error and the time of computation, finding similar RMS errors through-
out all versions, and a considerable speedup when passing from python to C++
and to CUDA, as expected. We also looked at memory usage to inspect the via-
bility of a least-squares approach in the case of images with not too many modes.
In chapter 3 we extended this basic Zernike fitter to be applicable to the analysis
of silicon wafers. The presence of indentations in these wafers make them non-
circular which results in a dramatic loss of accuracy of the previously developed
Zernike fitter. To solve this problem, we implemented a functionality which fills
the indentations using barycentric interpolation. Testing this solution we found a
significant improvement and were able to recover the Zernike coefficients with an
accuracy close to the ideal, circular case.
Finally, in chapter 4 we considered an even more complicated wavefronts, where
the non-circularity is inherent and interpolation does not make sense. We devel-
oped a method to extend the Zernike basis to non-circular shapes by explicitly
constructing a mapping from the wavefront shape to the disk. We then analyzed
the orthonormality of the resulting new basis, finding satisfactory results.
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