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The interplay of dynamical correlations and electronic ordering is pivotal in shaping phase diagrams of
correlated quantum materials. In magic-angle twisted bilayer graphene, transport, thermodynamic, and
spectroscopic experiments pinpoint a competition between distinct low-energy states with and without
electronic order, as well as between localized and delocalized charge carriers. In this study, we utilize
dynamical mean-field theory on the topological heavy fermion model of twisted bilayer graphene to
investigate the emergence of electronic correlations and long-range order in the absence of strain. We
contrast moment formation, Kondo screening, and ordering on a temperature basis and explain the nature of
emergent correlated states based on three central phenomena: (i) the formation of local spin and valley
isospin moments around 100 K, (ii) the ordering of the local isospin moments around 10 K preempting
Kondo screening, and (iii) a cascadic redistribution of charge between localized and delocalized electronic
states upon doping. At integer fillings, we find that low-energy spectral weight is depleted in the symmetric
phase, while we find insulating states with gaps enhanced by exchange coupling in the zero-strain ordered
phases. Doping away from integer filling results in distinct metallic states: a “bad metal” above the ordering
temperature, where scattering off the disordered local moments suppresses electronic coherence, and a
“good metal” in the ordered states with coherence of quasiparticles facilitated by isospin order. This finding
reveals coherence from order as the microscopic mechanism behind the Pomeranchuk effect observed
experimentally by Rozen et al. [Nature (London) 592, 214 (2021)] and by Saito et al. [Nature (London)
592, 220 (2021)]. Upon doping, there is a periodic charge reshuffling between localized and delocalized
electronic orbitals leading to cascades of doping-induced Lifshitz transitions, local spectral weight
redistributions, and periodic variations of the electronic compressibility ranging from nearly incompress-
ible to negative. Our findings highlight the essential role of charge transfer, hybridization, and ordering in
shaping the electronic excitations and thermodynamic properties in twisted bilayer graphene and provide a
unified understanding of the most puzzling aspects of scanning tunneling spectroscopy, transport, and
compressibility experiments.
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I. INTRODUCTION

When two layers of graphene are stacked on top of each
other with a relative twist angle of 1.1 deg (the magic
angle), the emergent long-wavelength moiré pattern gives
rise to a band structure with extremely flat bands at the
charge neutrality point (CNP) [1–4]. Electronic interaction
effects are enhanced in the flat bands, leading to a rich low-
temperature phase diagram where superconducting [5–8],
insulating [9], correlated metallic [10,11], and exotic
magnetic phases [6,12–16] have been observed in experi-
ment by manipulating the charge carrier density. There has
been a large theoretical effort toward understanding the
insulating [17–78] and superconducting [18–23,79–109]
phases, ferromagnetism [49,72–75,110,111], the topologi-
cal properties [106,112–121], and on constructing suitable
models [17,116,118,122–149]. Simultaneously, there has
been extensive experimental work [150–180]. For integer
fillings, static mean-field approaches such as Hartree-Fock
[17,38,39,58,60,61,64] revealed a number of candidate
ordered states related by the approximate symmetries of
the system that are very close in energy. Depending on
filling and the strain and relaxation properties of the
sample, these include the time-reversal symmetry breaking
Kramer’s intervalley coherent (KIVC) state, valley-
polarized (VP) states [17], and incommensurate Kekulé
spiral (IKS) states [28,61,64] accompaniedby a time-reversal
symmetry preserving intervalley coherent (TIVC) order. The
near degeneracy of the ordered states suggests that the true
state is sample dependent owing to perturbations such as
substrate effects, defects, and most importantly strain, in line
with recent experiments [71,181].
While the static mean-field approach is suitable for

studying the integer-filled case deep in the ordered regime,
understanding the temperature-dependent phase diagram,
fractional dopings, and the competition of fluctuating local
moments and Kondo screening in the symmetric state with
isospin polarization in the ordered state requires a dynamic
treatment of local correlations. A suitable many-body
method for this is dynamical mean-field theory (DMFT)
[182–184]. Previous applications of DMFT have success-
fully investigated the symmetric phase using the Wannier-
construction-based multiorbital projector models [185–
187] and the topological heavy fermion (THF) model
[188], shedding light on Kondo physics and Fermi-surface
resetting cascade transitions [156]. Concurrently with the
present work, Zhou et al. [189] have used DMFT to study
an effective single-valley model which imposes one valley
to be fully occupied and frozen at all temperatures and all
fillings, while the other valley is occupied upon doping
without any additional symmetry breaking. These studies
focused on fully [185,186,188] (or partially [189]) sym-
metric states. Therefore, the interplay between dynamic
correlations and spontaneous symmetry breaking remains
an outstanding question that needs to be addressed.

In this paper, we apply DMFT on a set of symmetry-
broken states of unstrained magic-angle twisted bilayer
graphene (TBLG)—treating static and dynamic effects on
the same footing—and compare the resulting spectral and
thermodynamic observables with calculations in the sym-
metric state. In the symmetric (or interchangeably disor-
dered) state we explicitly suppress long-range order. Our
calculations provide a unified understanding of scanning
tunneling spectroscopy [156] and compressibility experi-
ments [163,164,190,191], and some puzzling aspects of
transport [151,164,192] experiments based on three effects:
(i) the formation of local isospin moments around 100 K,
(ii) a cascadic charge reshuffling between localized and
delocalized electronic states, and (iii) the ordering of local
isospin moments around 10 K. With our novel charge self-
consistent Hartree-Fock+DMFT approach (described in
Sec. III), we are able to contrast the temperature scales of
moment formation, ordering, and Kondo screening, give
quantitative estimates of the ordering temperature on a
DMFT level, and provide a microscopic theoretical under-
standing of the temperature- and doping-dependent elec-
tronic phase diagram ofTBLG.Our approach gives us access
to the interacting spectral functions and Fermi surfaces,
which link directly to scanning tunneling [7,12,156,181] and
quantum twist angle microscopies [193] and lay the basis for
an understanding of (magneto)transport experiments and
superconductivity in magic-angle twisted bilayer graphene.
In Sec. IV, we apply our findings to a range of

observations in the extensive experimental literature on
the nonsuperconducting state of TBLG: We provide a
microscopic understanding of transport in and around
the correlated insulating states, and identify coherence
from order as the microscopic mechanism behind the
isospin Pomeranchuk effect. We link cascades in the local
density in scanning tunneling spectroscopy and compress-
ibility experiments with Lifshitz transitions, and we provide
a proper mathematical treatment of the negative compress-
ibility regions observed in this system. Our main results are
summarized below.
At integer fillings in the symmetric state, there is

depletion of spectral weight at the Fermi level. In the
zero-strain ordered state, there is a hard gap, and the
spectral functions are comparable to Hartree-Fock calcu-
lations [17]. We find ordering temperatures of ∼15 K at
ν ¼ 0;−1, and ∼10 K at ν ¼ −2 (where ν measures the
number of charge carriers per moiré unit cell with respect to
the charge neutrality point). These ordering temperatures
are about an order of magnitude lower than the Hartree-
Fock prediction, indicating strong suppression of long-
range order by local dynamic fluctuations. Upon raising
the temperature from ∼10 K to ∼100–200 K, our DMFT
calculations reveal that charge fluctuations are progres-
sively restored—in other words, charge fluctuations are
frozen out around the Hartree-Fock ordering temperatures.
Above ∼3 K we find that the local spin susceptibility is
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approximately inversely proportional to the temperature.
Taken together, the freezing of charge fluctuations and the
spin susceptibility point toward a local moment regime
spanning the temperature range between the DMFT order-
ing temperatures (∼10 K) and Hartree-Fock ordering
temperatures (∼100 K).
We further extend our symmetry-broken calculations to

fractional fillings. At small doping away from the insulator,
we find a doping-induced insulator-to-metal transition
involving the population of coherent light charge carriers.
We characterize the Fermi surface across a range of fillings,
and find that the topology, the orbital character, and the
coherence of the Fermi surface depend on the filling and
the absence or presence of long-range order. We identify the
changes in the Fermi surface with a sequence of Lifshitz
transitions associatedwith a redistribution of charge between
localized and delocalized orbitals. These Lifshitz transitions
manifest themselves as the filling-induced cascade transi-
tions seen in compressibility [163,164,191,194] and spectro-
scopic measurements [156].
Entropy and transport measurements have observed the

isospin Pomeranchuk effect in TBLG [151,163,164,192],
in a phenomenological analogy to helium-3 [195]. The
Pomeranchuk effect has previously been discussed in the
solid-state context in the Hubbard model [196,197] and in
cold atoms [198,199]. At certain filling fractions, raising
the temperature induces a transition from a metallic state
(resistivity ≈10−1 kΩ) to a near-insulating state (resistivity
≈101 kΩ) at around 5–10 K [164,192]. Our approach
allows us to distinguish between two distinct metallic
states in TBLG—an order-induced coherent good metal
below the DMFT ordering temperature and an incoherent
bad metal. Our results therefore point to a microscopic
mechanism underlying the observations of “Pomeranchuk
physics” in transport and thermodynamics experiments,
with good agreement of the temperature scale.
The doping dependencies of the electronic spectra and

the existence of disordered moments at temperatures above
∼10 K is closely linked to the dependence of the chemical
potential μ on doping ν in the symmetric phase. Our
calculations unveil a balancing mechanism between the
filling of the correlated and uncorrelated subspaces, by
which the former is progressively occupied with increasing
total filling, and the latter is cyclically filled and depleted.
We discuss the correlated nature of the system at integer
and fractional fillings, showing how, coherently with what
is known about the physics of the periodic Anderson model
(PAM), Mott-like behavior emerges at integer values of the
total filling. We compare our DMFT results with the exact
solution of the topological heavy Fermion model [17] (see
also Sec. II) in the zero-hybridization limit [200] and
explain the observed features in the experimentally meas-
urable charge compressibility. This is found to exhibit a
sawtooth behavior and negative values in extended ranges
of dopings, once the geometrical capacitance contribution

is subtracted out analogously to experiments [201–203].
We find that the sawtooth features in the compressibility
wash out and the nearly incompressible states fade away at
∼100 K, which is related to the onset of charge fluctua-
tions. Our observation is consistent with temperature-
dependent experimental data [164] and underlines the role
of fluctuating local moments in the cascade transitions.

II. MODEL

We use the topological heavy fermion model from
Ref. [17] to describe the electronic structure of TBLG.
This model, derived from the microscopic interacting
Bistritzer-MacDonald model [3], connects a set of com-
pletely localized f orbitals to highly dispersive c orbitals
that carry the topology. Per spin and valley (σ ∈ f↑;↓g,
η∈ fþ;−g, respectively), there are two f orbitals
(α∈ f1; 2g) and four c orbitals [two of each forming the
Γ3 (a∈ f1; 2g) and Γ1 ⊕ Γ2 (a∈ f3; 4g) representations].
The f orbitals make up most of the flat bands; the exception
is at the Γ point in the moiré Brillouin zone, where the flat
band character changes to that of the Γ1 ⊕ Γ2 c orbitals
through f-c hybridization. The THF Hamiltonian can be
written as

ĤTHF ¼ Ĥc þ Ĥcf|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ĥ0

þ ĤU þ ĤW þ ĤV þ ĤJ: ð1Þ

The terms comprising the noninteracting Hamiltonian Ĥ0

are Ĥc, which contains the dispersion of the c orbitals,
and Ĥcf, which contains the hybridization between the two
subspaces. Ĥ0 defines two important energy scales: the
splitting of the Γ1 ⊕ Γ2 c subspace, M ¼ 3.7 meV, which
sets the bandwidth of the flat bands, and the f-c hybridi-
zation term at Γ, γ ¼ −24.8 meV, which sets the gap
between the flat bands and the high-energy bands. The four
terms in the interacting part of the Hamiltonian are ĤU

(ĤV), the density-density interaction in the f (c) subspace,
ĤW , the density-density interaction between c and f states,
and ĤJ, the exchange interaction between the f and c
subspaces. They are calculated by performing double-gated
Coulomb integrals (see Supplemental Material [204] or
Ref. [17] for the definition of each term). Following typical
experimental setups, we use a gate distance of 10 nm for the
main results of this paper. We have checked that the results
are robust within a range of reasonable gate distances
and, consequently, a reasonable range of interactions (see
Supplemental Material [204]).
In our calculation, we treat ĤU with DMFT, taking its

local many-body effects into account, and the remaining
interaction terms via static mean-field decoupling. We
perform two sets of calculations: (a) allowing for sym-
metry-broken states where symmetry breaking in the first
iteration is guided by Hartree-Fock results from [17]; (b) in
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a fully symmetric state. For later convenience, we define
nf, nc, and n ¼ nf þ nc to be the number of f, c, and total
electrons per moiré unit cell in the system. The correspond-
ing fillings with respect to the charge neutrality point are
given by νf ¼ nf − 4, νc ¼ nc − 8, and ν ¼ n − 12.
Because of the exact particle-hole symmetry of the THF
model (which may be broken by additional terms not
included in this study), the physics at positive and negative
ν is related by a particle-hole transformation, and we will
limit our discussions to ν ≤ 0. In this paper, isospin refers
to a generalized spin consisting of electron spin, valley,
and orbital degrees of freedom. The corresponding local
moments are referred to interchangeably as isospin
moments, local moments, and local isospin moments.

III. METHODS

We split the total Hamiltonian into a static and a
dynamic part:

Ĥstat ¼ Ĥc þ Ĥfc þ ĤMF
W þ ĤMF

V þ ĤMF
J

− 3.5U
X
αησ

f†αησfαησ; ð2Þ

Ĥdyn ¼
U
2

X
ðαησÞ≠ðα0η0σ0Þ

f†αησfαησf
†
α0η0σ0fα0η0σ0 : ð3Þ

The superscript MF represents a static mean-field
decoupled interaction term (Hartreeþ Fock for ĤMF

W and
ĤMF

J and Hartree for ĤMF
V ).

Ĥstat plays the role of the lattice Hamiltonian in the
DMFT calculation. It must be self-consistently determined
as the mean-field decoupled interaction terms depend on
the system’s density matrix ρ. Ĥdyn acts on the f subspace
only and induces a frequency-dependent self-energy in the
f subspace. We solve the impurity problem with two
continuous-time quantum Monte Carlo (CTQMC) hybridi-
zation expansion solvers (TRIQS-cthyb [205–207] and
W2DYNAMICS [208,209]). We converge two self-consistency
loops at once: the DMFT self-consistency condition for the
self-energy Σ of the f subspace, and the Hartree-Fock mean-
field condition for the total density matrix ρ. Details of the
calculations, including the CTQMC parameters and a com-
parison of TRIQS and W2DYNAMICS results, are given in the
Supplemental Material [204] (see also Refs. [210–212]
therein). The simulation code [213] and all figure data
[214] are publicly available.
The results shown in this paper are obtained for the

lowest energy ordered phases predicted by a Hartree-Fock
analysis [17] of the THF model in the absence of strain. At
the charge neutrality point (ν ¼ 0), both spin sectors are
half filled with KIVC order. Upon hole doping once
ðν ¼ −1Þ, one spin sector is KIVC ordered, while the
other spin sector is valley polarized, and at half filling
ðν ¼ −2Þ, one spin sector has KIVC order, while the other

has no long-range order. We emphasize that these states
and their flat- and chiral-U(4) related counterparts valley-
polarized (VP) and intervalley-coherent (TIVC) states are
very close in energy. The true ordered state is therefore
sensitive to defects, substrate effects, strain, and other
sample-dependent perturbations. These effects can be
incorporated with DMFTon the THF model with additional
terms, and will be the subject of a future publication. Our
goal is to make universal statements about the interplay of
correlations and ordering in this system, which likely does
not depend on which of the several competing low-temper-
ature ordered phases the system is in.
For the symmetry-broken calculations at integer fillings,

we bias the system toward the chosen symmetry-broken
solution by applying a weak polarizing field for the first few
DMFT iterations, and then turning it off for the remainder
until self-consistency is reached. (See Supplemental
Material [204] for the definition of the polarizing field.)
In the ordered phase, we approach fractional fillings around
each integer filling by gradually doping the integer-filling
self-consistent solution in small increments.

IV. RESULTS

A. (Nearly) insulating states at integer filling

Figure 1 shows the DMFT spectral functions in the
symmetric and the symmetry-broken phases at integer
fillings ν ¼ 0;−1;−2. In all cases, the local Hubbard term
in Ĥdyn shifts the flat band spectral weight of the f
subspace away from the Fermi level to form lower and
upper Hubbard bands. The remaining low-energy excita-
tions have residual f- and Γ1 ⊕ Γ2 c-orbital character,
while the Γ3 c-spectral weight remains pushed away to
higher energies (∼γ ¼ 24 meV) by the f-c hybridization
term. We point out two generic differences between the
spectral functions in the symmetric [Figs. 1(a)–1(c) and
symmetry-broken [Figs. 1(d)–1(f)] phases. First, the
Hubbard bands are relatively sharp in the symmetry-broken
phase compared to those in the symmetric phase, indicating
that dynamic correlations are weaker in the symmetry-
broken phases [215]. Second, while low-energy spectral
weight is depleted also in the symmetric state, symmetry
breaking supports a robust insulating gap in the absence
of strain. This is best seen comparing the momentum-
integrated spectral functions in the right-hand panels of
Figs. 1(a) and 1(d). In the symmetric case, spectral weight
is reduced at the Fermi level but does not vanish. In the
ordered case, the spectral weight vanishes and there is a
robust gap. This can be understood in the language of the
THF model. At the Γ point, the bare (with f-c hybridization
turned off) dispersion of the THF model has two contri-
butions at zero energy: Per spin and valley, there is a pair of
f orbitals with completely flat bands at zero, and a pair of
Γ3 c orbitals that contribute a pair of particle-hole related
parabolic bands touching at zero. f-c hybridization moves
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both of these contributions away from zero to the high-
energy bands at the Γ point. Precisely at the Γ point, the flat
bands are entirely of Γ1 ⊕ Γ2 c character. Generically, the
c-electron spectral weight is affected by interactions in the
f sector directly by the f-c exchange interaction (HJ),
and indirectly through hybridization effects. The former
directly gaps out the c-electron spectral weight near the
Fermi level. This is evident in the energy difference
between the bright spots in the spectral functions at the
Γ point at the CNP in Figs. 1(a) and 1(d). In the symmetric
phase [Fig. 1(a)], the Γ1 ⊕ Γ2 c orbitals retain the 2M
splitting of the noninteracting Hamiltonian. In the sym-
metry-broken case [Fig. 1(d)], the splitting gains an addi-
tional contribution from the f-c exchange term ĤJ and is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MÞ2 þ ðOJ=2Þ2

p
, where O is the off-diagonal

intervalley term in the f-subspace density matrix. Note that
we treat ĤJ with Hartree-Fock, which neglects any
dynamical renormalization effects. Deep in the ordered
state, these renormalization effects are expected to be weak.
In the symmetric state, it has been shown by poor man’s
scaling [216] that the renormalized J is always reduced at
low temperatures. Fortuitously, the Hartree-Fock decoupled
ĤJ is negligible in the symmetric state—the Fock term
vanishes due to its dependence on off-diagonal terms in the
density matrix, and the Hartree term is a small (∼ ν

8
J)

effective c − f double-counting term.
What is the nature of the (nearly) insulating states at

integer fillings? Given the close relation between the THF
and the periodic Anderson model, we attempt a classifi-
cation of insulating states of the THF model in terms of the

phenomenology of the periodic Anderson model. In PAM-
like models, different types of insulators including band
insulators, Kondo insulators, Mott insulators, and charge-
transfer (CT) insulators have been established [217,218].
At integer νf, the limit of U → ∞ corresponds to remov-

ing all f states from the THFHamiltonian. However, without
c-f coupling (and thus also without f states at all) the THF
model ismetallic [17] andnot gapped.Clearly, the absence of
a gap at U → ∞ in the symmetric state rules out TBLG at
integer filling being a genuine Mott insulator, in agreement
with the interpretations of Refs. [185,186]. At the exper-
imentally relevant temperatures of a few kelvin, a Kondo
insulator at integer fillings is unlikely, since the f-electron
moments are not yet fully screened down to ∼1 K [188].
The absence of a hard Mott gap can be traced back to a

finite tfc in our THF model, similarly to what has been
discussed in Ref. [219]: Even at strong interaction strengths,
as long as the f electrons can hop into a noninteracting band
crossing the Fermi level, a Mott insulator with a clean gap is
prevented. The heavy Fermi liquid that replaces it has
typically a very low coherence temperature. In accordance
with these general expectations (and despite the differences
between our model and those of Ref. [219]), we find (see
Sec. IVG) that the quasiparticle weight never vanishes in the
symmetric state, even close to integer fillings where it is
heavily suppressed, displaying the commensurability effects
characteristic of incipient Mott phases. Still, in order to see a
clean gap, long-range ordering is needed, as we find in our
calculations for broken-symmetry states.
The presence of f- and c-spectral weight near the Fermi

level is reminiscent of “p metals” [218] or charge-transfer

FIG. 1. The momentum-resolved Aðk;ωÞ and momentum-integrated AðωÞ spectral functions at integer filling in the symmetric
(a)–(c) and symmetry-broken phases (d)–(f) at the fillings ν ¼ 0;−1;−2 (from left to right). In the color plot for Atotðk; wÞ, the hue
represents the orbital character (blue for f versus red for c) of the spectral weight. The different lines in the AðωÞ plot denote total
(X ¼ tot) or orbital-projected [X ¼ f; cð…Þ] spectral functions. The data are at 7.7 K.
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insulators [217]. In typical transition metal oxide-based CT
insulators like NiO or cuprates [217], the electronic gap is
bounded by transition metal 3d and oxygen 2p-spectral
weight from above and below, respectively. The insulating
states at ν ¼ −2 with dominantly c-spectral weight below
the Fermi level and f-spectral weight above [cf. Figs. 1(c)
and 1(f)] resemble this CT scenario. Also, the insulating
states ν ¼ 0 and ν ¼ −1 are similar to CT insulators, yet
with one decisive difference to the usual CT and p-metal
case: In TBLG at ν ¼ 0 and ν ¼ −1 we have delocalized c
bands dispersing in between the f-type Hubbard bands
from above and below. Also differently from the transition
metal oxide CT cases, the spectral depletion regions near
the Fermi level of TBLG in the symmetric state rely on
hybridization between delocalized (c) and localized (f)
states. In the ordered states of TBLG, it is the exchange
interaction between c and f orbitals leading to mass
terms [200] which markedly enhances the gaps in the c
sector and thus also the total gaps.

B. Fluctuations and the stability of the ordered solution

Next, we study how doping or raising the temperature
affects the ordered states at integer fillings. Figure 2(a)
shows the order parameter of the self-consistent solution in
a doping-temperature plane generated by gradually doping
a particular ordered state at an integer filling. We define the
order parameter in the symmetry-broken phase at arbitrary
filling by the matrix inner product with the traceless part
of the corresponding parent state density matrix (see
Supplemental Material [204] and Refs. [220,221] therein).
At high enough temperatures, the system flows to the
disordered phase under the self-consistency loop. We find
the threshold temperature to be ∼15 K at ν ¼ 0;−1, and
∼10 K at ν ¼ −2. The ordering temperature predicted by
Hartree-Fock is an order of magnitude higher [∼100–150 K;
see upper panel of Fig. 2(a)]. Our DMFT simulations show
that long-range order is suppressed by local dynamic
fluctuations down to about 10 K. Spatial fluctuations,
which are neglected in single-site DMFT, are expected to
reduce the ordering temperature further. Just below the
DMFTordering temperature, doping away from an integer
solution also leads to a disordered solution, resulting in
dome-shaped ordered regions as seen in the lower panel
of Fig. 2(a). At low enough temperatures, the ordered
solution continued from either neighboring integer filling
may coexist at a given fractional filling.
The Hartree-Fock ordering temperature encodes the

onset of thermally activated charge fluctuations. Above
this temperature thermal smearing results in the Hartree-
Fock equations converging to the symmetric unpolarized
solution. Below this temperature near integer fillings, one
charge sector predominantly contributes to the many-body
configurations, allowing the formation of local moments
(see Supplemental Material [204] for the numerical analy-
sis of the sector statistics). Since Hartree-Fock neglects

dynamic fluctuations, moments order immediately upon
formation. Therefore, the temperature range between the
Hartree-Fock andDMFTordering temperatures is the regime
of fluctuating local moments. Correspondingly, in this
temperature range, the local spin susceptibility follows
the Curie-Weiss law (see Ref. [188] and Supplemental
Material [204]). Note that near half-integer filling an
intermediate valence regime with quantum charge

FIG. 2. (a) The magnitude of the symmetry breaking order
parameter at various fillings and temperatures. In the bottom
panel, white circles represent numerical data points from DMFT
simulations at and around the ν ¼ −2 (KIVC), ν ¼ −1
(KIVC þ VP), and ν ¼ 0 (KIVC) parent states in the left-hand,
middle, and right-hand panels, respectively. The space between
circles is filled by linear interpolation. The top panel shows the
same quantity from a Hartree-Fock simulation (note the different
vertical scale). In the dark blue regions, the self-consistency loop
flows to the symmetric state, indicating that the symmetry-broken
solution does not exist. (b) A schematic filling-temperature phase
diagram. Thermally activated charge fluctuations are frozen
below the Hartree-Fock ordering temperature (Tmoments), allowing
local moments to progressively form in the orange region. These
local moments order below the DMFT ordering temperature
(Torder) in the blue region. The DMFT ordering temperature
marks the boundary between a bad metal and an order-facilitated
good metal at fractional fillings as discussed in Secs. IV E
and IVG. The correlated insulators at integer fillings emerging
below Torder (dark red) fade into the bad metal above Torder
forming regions with most strongly suppressed quasiparticle
weights, cf. Fig. 5(b).
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fluctuations between two (but not more) neighboring
sectors is realized below the Hartree-Fock ordering tem-
perature preventing the identification of well-defined local
moments [188], while also additional charge sectors get
activated above this temperature scale.
Anticipating the results of Secs. IV C and IV E, where

we discuss the metallic states below and above the
ordering temperature, we construct a schematic phase
diagram in Fig. 2(b). Below the ordering temperature of
∼10 K, we find an insulator at integer fillings, and a good
metal at fractional fillings. The state above the ordering
temperature is discussed in Sec. IV E, where we will show
that the spectral weight at the Fermi level is generically
incoherent, indicating a bad metal. Our results point to a
coherence from order at low temperatures, which we
expand on in Sec. IV F.

C. Doping-induced insulator-to-metal transition

Away from integer filling, the normal state of TBLG is
metallic. The nature of the metallic state depends on the
filling and temperature. In fact, we find distinct behaviors
upon doping with electron or holes away from the
insulators at ν ¼ 0 or ν ¼ −1, on one hand, and ν ¼ −2,
on the other hand. In Fig. 3(a), we show how the spectral
function changes as we slightly dope the system away from
ν ¼ −1 at T ¼ 5.8 K in the ordered state with electrons or
holes. In this case, we find that the Fermi level moves into
the dispersive part of the low-energy bands around the Γ
point: The active bands are coherent with delocalized c
character. Here, we expect Fermi-liquid-like behavior.
Metallic behavior derived from c orbitals on both sides
of the insulator points back to the peculiar property of the
charge-transfer insulator at ν ¼ −1 with c bands dispersing
both above and below. In contrast, the behavior at ν ¼ −2 is
asymmetric with respect to doping. Consider the spectral

function in Fig. 1(f). The c part of the upper band is
flattened. While hole doping at ν ¼ −2 would lead to
metallic behavior just like at ν ¼ −1, electron doping
would start to immediately occupy the f orbitals. This is
much more reminiscent of a conventional charge-transfer
insulator, with localized carriers on one side and delocal-
ized carriers on the other side of the gap.
Upon further doping away from ν ¼ −1 toward ν ¼ 0,

the Fermi level eventually also hits the localized f part of
the flat bands. This occurs generically once between every
two successive integer fillings, and is shown in Fig. 3(b) for
ν ¼ −0.6. The Supplemental Material [204] includes a
movie showing the evolution of the spectral function as the
filling is varied. The ordered phase (in the left-hand panel)
has a splitting in the f subspace that is absent in the
symmetric phase (in the right-hand panel). This is a
consequence of a feedback of the ferromagnetic exchange
interaction ĤJ, which is active only in the ordered phase.
Because of the isospin order in the f sector, ĤJ behaves
like a polarizing field in the c sector, inducing analogous
isospin order in the c sector. The induced isospin order in
the c sector in turn causes a small polarizing field in the f
sector, resulting in the splitting seen in the left-hand panel
of Fig. 3(b).
In both the symmetric and ordered state, hitting the

localized f part of the spectrum induces a charge reshuf-
fling between the localized and delocalized subspaces,
resulting in the sawtooth pattern of orbital-resolved filling
seen in Refs. [188,200,222]. This is precisely the region of
fillings where experiments see negative compressibilities
[164,194]. We discuss the orbital-resolved fillings along
with the compressibility further in Sec. IV H. These filling
regions are also associated with a sequence of Lifshitz
transitions. We identify these Lifshitz transitions with the
experimentally observed cascade transitions [156,194] in
Sec. IV E.

FIG. 3. Spectral functions at 5.8 K (a) at and close to ν ¼ −1 in the ordered phase (b) at ν ¼ −0.6 in the ordered and symmetric phases.
In (a), the electron and hole doped panels are shifted such that the Hubbard bands match up with the middle panel. Lightly doping away
from an integer-filled insulator moves the Fermi level into the coherent c-spectral weight around the Γ point leading to a coherent metal.
Upon further doping as in (b), the Fermi level hits the f part of the flat bands, leading to coherent and incoherent spectral weight at the
Fermi level.
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D. Cascade transitions and signatures of order

In Fig. 4(a), we show the momentum-integrated spectral
function as a function of filling in the symmetric and
symmetry-broken phases. In both cases, there is a
reconstruction of the low-energy spectral features upon
changing the doping by an integer value. These are the
cascade transitions that have been seen experimentally
with scanning tunnel spectroscopy (STS) [12,156] and
which have been similarly found in the DMFT study of
Datta et al. [186] for the symmetric state. In the symmetric
state, at integer fillings, the spectral function has a two-peak
structure, with a lower and an upper peak that are similarly
far away from zero, but with their relative spectral weight
depending on which integer filling the system is tuned to
(for instance, compare ν ¼ −2 and ν ¼ −1 in Fig. 4). Upon
hole doping away from an integer filling, the two-peak
structure shifts to higher energies, the lower peak merges
with a zero-energy resonance, and the upper peak fades
away. Upon further hole doping, as the system approaches
the next integer filling, the zero-energy resonance shifts to
higher energies becoming the new upper peak, and a new
lower peak emerges.
The symmetry-broken state behaves the same way

except that there is fine low-energy structure, owing to
isospin order. The details of the fine structure will depend
on the particular ordered state. In particular, the zero-
energy peak at fractional fillings, made up primarily of
f-spectral weight, is split by a feedback effect from the
exchange interaction ĤJ. This splitting is present as long as
there is isospin order. See Fig. 2 for the sets of filling and
temperature values where this fine structure may be present.
Note that our calculation does not include spatial fluctua-
tions, which might further suppress ordering temperatures.

E. Fermiology and Lifshitz transitions

We perform a quasiparticle analysis at the Fermi level to
better understand the Fermi surface reconstruction and the
Lifshitz transitions underlying the cascades. The exact shape
of the Fermi surface will depend on perturbations such as
strain, but some general features such as the existence and
loose integer-periodic nature of the Lifshitz transitions will
remain. We numerically find the zeros, ĤqpðkÞjψ iðkÞi ¼ 0,
of the quasiparticle Hamiltonian,

ĤqpðkÞ ¼ −Ẑ1=2Re½G−1ðωþ iϵ; kÞ�ω→0Ẑ
1=2; ð4Þ

where Ẑ ¼ ð1 − ∂iωImΣ̂totðiωÞjiω→0Þ−1 is the matrix quasi-
particle weight. Σ̂tot is the f-subspace self-energy promoted
to the full f ⊕ c space by padding with zeros in the c sector
(the c sector is treated on a mean-field level and the static
contribution to the self-energy is included in the mean-field
terms in Ĥstat), and the superscript i on jψ iðkÞi labels the
zeros in case there is degeneracy at any k point. The zeros
of Ĥqp point at potential quasiparticles at the Fermi level.

In particular, the quasiparticleweight Ẑ evaluated at the zeros
gives information on the coherence of spectral weight at the
Fermi level in the formof ak-dependent quasiparticleweight,

1

ZiðkÞ ¼ hψ iðkÞjẐ−1jψ iðkÞi; ð5Þ

along a potential Fermi contour. For an uncorrelated Fermi
liquid, ZiðkÞ ¼ 1, and jψ iðkÞi would give the quasiparticle
eigenstates at theFermi surface. Technical details on the root-
finding algorithm used to find jψ iðkÞi and the rest of the
quasiparticle analysis are provided in the Supplemental
Material [204].
The blue lines in Figs. 4(b)–4(f), which we henceforth

refer to as zero-energy lines (ZELs), mark the location of
the zeros jψ iðkÞi in k space overlaid on the spectral
function at the Fermi level in the first moiré Brillouin
zone at select fillings. For clarity, the symmetric phase data
in Figs. 4(b)–4(d) are projected to the K-valley only. The
K0-valley contribution is related by a C2 rotation. We find
that the topology of the ZEL changes with doping. In our
zero-strain calculation, between the CNP and ν ¼ −1, we
see three regimes. Upon lightly doping away from CNP
[Fig. 4(b)], the K-projected ZEL consists of two concentric
contours. The three lobes of the outer contour jutting away
from the Γ point have low quasiparticle weight, and
correspondingly smeared out spectral weight. The inner
ring and the inner sections of the outer ring are primarily of
c character and more coherent, and form a Fermi contour.
Halfway to ν ¼ −1 [Fig. 4(c)], the Fermi level hits the flat f
part of the flat band [see also Fig. 3(b)]. This coincides with
the concentric ZEL connecting to form a trefoil knot. This
ZEL has three points where it intersects itself correspond-
ing to potential Van Hove singularities at the Fermi level.
As in the previous case, however, the outer lobes of the
ZEL have low quasiparticle weight and are primarily f
character. Finally, approaching ν ¼ −1, the ZEL consists of
a single closed contour, as seen in Fig. 4(d). We reiterate
that the other valley contributes additional 60 deg rotated
copies of these Fermi surfaces restoring C6 symmetry.
In the ordered case, Figs. 4(e)–4(g), the zeros are not

valley decoupled as the charge carriers occupy intervalley
coherent orbitals. The color map therefore shows the full
spectral weight with both valleys included. Generically,
away from integer fillings, the zeros are coherent with high
quasiparticle weight. The symmetry and topology of the
Fermi surface depends on the properties of the active orbital
at the chosen filling. Doping with holes away from CNP,
the Fermi surface consists of KIVC orbitals getting
depleted, resulting in a Fermi surface that is sixfold
symmetric. Near ν ¼ −1, there are two occupied KIVC
orbitals in one spin sector and an occupied valley-polarized
orbital in the other spin sector. Electron (hole) doping
corresponds to occupying (depleting) the unoccupied
(occupied) valley-polarized orbital, resulting in a Fermi
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surface that is threefold symmetric. We emphasize that
perturbations such as strain will change the details of the
ordered state and the shape and symmetries of the Fermi
surface. However, there will still be Lifshitz transitions
between integer fillings when the Fermi level hits the
incoherent f band.

F. Pomeranchuk physics and coherence from order

An important takeaway from Fig. 4 is the different nature
of the metallic state in the symmetric and ordered phases.
Generically, the spectral weight at the Fermi level in the
ordered state originates from much more coherent excita-
tions than in the disordered state. This can be seen from

FIG. 4. (a) The momentum-integrated spectral function AtotðωÞ 5.8 K in the symmetric phase (left) and in the ordered phase (right) as a
function of hole doping. The electron doped side (with respect to CNP) is related to the hole doped side by a partice-hole transformation.
(b)–(d) The K-valley-projected zero-energy spectral function in the first moiré Brillouin zone in the symmetric phase at select fillings.
(e)–(g) The full zero-energy spectral function in the first moiré Brillouin zone in the ordered state at select fillings. The light blue lines
mark the zeros of the effective Hamiltonian as identified by a quasiparticle analysis (see main text). (h) A comparison of the f-orbital
quasiparticle weight Zf in the symmetric and ordered states at the same temperature T ¼ 5.8 K. In the ordered case, only the spin-up
KIVC occupied and unoccupied orbitals are shown for clarity. (i),(j) The quasiparticle weight projected onto the quasiparticle basis
along the zeros of the quasiparticle Hamiltonian. All data are at T ¼ 5.8 K.
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Fig. 4(h), where we show the quasiparticle weight in the
orbital basis over a range of fillings, and from Figs. 4(i)
and 4(j), where we show the quasiparticle weight in the
quasiparticle basis ZðkÞ from Eq. (5) at chosen fillings in
both the ordered and symmetric phase at the same temper-
ature. The quasiparticle weight is clearly higher in the
ordered phase than in the symmetric phase, indicating that
quasiparticles are more coherent in the ordered state than in
the symmetric state at the same temperature. Accordingly,
the transport and quasiparticle scattering rates (see
Supplemental Material [204]) are lower in the ordered phase
for most fillings, indicating that there is less scattering than
in the symmetric phase, with higher quasiparticle lifetime.
Thus, generically at fractional fillings, we expect a good
metal in the ordered state and a bad metal in the disordered
state. A quantitative analysis of transport is the subject of
an ongoing work. With an ordering temperature of about
10–15 K, this interpretation is consistent with transport
experiments [151,163,164,192], which observe a sharp drop
in resistivity at temperatures below 5–10 K for a range of
fillings around the correlated insulating phases. Note that
single-site DMFT neglects all spatial fluctuations, which
would reduce the ordering temperatures further. With this
analysis,we are able to provide amicroscopic explanation for
the isospin Pomeranchuk effect inTBLG[151,163,164,192].
The bad metal at high temperatures is the result of an
incoherent metal stabilized by the isospin entropy of pre-
formed local moments, in analogy to solid helium-3 in the
original Pomeranchuk effect [195]. The low-temperature
Fermi liquid is a coherent metal induced by spontaneous
symmetry breaking. The spectral function in the ordered
phase is composed of bands of coherent quasiparticles,which
become occupied upon doping away from the insulating
states in the close vicinity of integer filling. In this regard, in

contrast to the original Pomeranchuk effect, it is coherence
facilitated by order that is responsible for the resistivity drop.
Taken together, our DMFT study reveals the following

similarities and differences between the Pomeranchuk
physics in He-3 and TBLG. In both systems, disordered
fluctuating (iso)spin moments give rise to a high-entropy
high-temperature phase. Both in He-3 and TBLG, the (iso)
spin entropy is suppressed in the low-temperature state. Both
the low-temperature state of TBLG (at noninteger filling) and
He-3 can have T-linear Fermi liquid derived contributions to
the entropy. Yet, there is a decisive difference between the
low-temperature states of TBLG and He-3: In TBLG, the
entropy suppression is due to ordering of the (iso)spin
moments, while He-3 realizes a Fermi liquid without
long-range spin order. In other words, there are no local
moments in He-3 at low T, while the isospin moments still
exist in TBLG albeit ordered. Hence, the Pomeranchuk
physics of TBLG is similar to the coherence from order
physics of metallic ferromagnets like SrRuO3 [223] or
relatives of Fe-based superconductors [224].

G. Importance of integer total fillings

Figure 5 reports the filling of the f and c orbitals, as a
function of the total filling ν. It is instructive to compare the
DMFT solution of the full model with hybridized f and c
orbitals to the solution of the zero-hybridization model
from Ref. [200]. This is illustrated in Fig. 5(a) where the
solid lines refer to the solution with finite hybridization
solved with DMFT and the light circles to the zero-
hybridization case. It is clear that the model with hybridi-
zation obeys a similar energetic balance to the one without
hybridization. The c orbitals are periodically filled up and
emptied, upon increasing ν. In DMFT, this yields the
characteristic, albeit smoothened out, sawtooth behavior.

FIG. 5. (a) Partial filling of the f and c orbitals as a function of the total filling ν in the symmetric phase. The dark solid lines show the
DMFT results of the full model with hybridization. The light dotted curves are results from the zero-hybridization model solved exactly
in Ref. [200]. (b) Quasiparticle weight for the f orbitals, calculated at 11.6 K and the local f-spectral weight at the Fermi level.
(c) Charge fluctuations of the f orbitals hn2fi − hnfi2 as a function of the total filling ν. Both quantities in (b) and (c) are indicators of the
importance in DMFT of the integer values of ν, in contrast to the zero-hybridization solution.
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These overall trends displayed by νf and νc are a conse-
quence of the strong correlations due to the f-f Coulomb
terms together with f-c and c-c interactions terms that are
present both in the zero-hybridization solution of Ref. [200]
and in our DMFT calculation.
There is a further, more fundamental difference between

finite and zero hybridization, namely the special role played
in the former—and not in the latter—by the integer values
of the total filling ν. In the zero-hybridization model,
ν ¼ −3, ν ¼ −2, ν ¼ −1, and so on have no special
meaning apart from trivially imposing νc ¼ 0. On the
contrary, the DMFT solution with finite hybridization bears
a clear witness of the integer values of the total ν, as evident
from Figs. 5(b) and 5(c). The quasiparticle weight of the f
orbitals and the local f-spectral weight at the Fermi level,
calculated from QMC via the low-T estimator

P
kAfðk;

ω¼ 0Þ¼ ðβ=πÞGQMC
f ðτ¼ β=2Þ, display particularly strong

variations approaching integer values of ν. At the same
time, the fluctuations of the f occupation hn2fi − hnfi2 are
suppressed near integer values of ν, in contrast to the zero-
hybridization case, for which this quantity is flat and
vanishes. In the Supplemental Material [204], we show
that scattering rate has an analogous strongly filling-
dependent behavior. Everywhere apart from the precise
fillings at which the cusps in these two quantities occur, the
behavior evidenced by these two indicators of the many-
body nature of the f electrons reveals a crucial property
of the THF model with its full heavy-light fermion
hybridization.
Periodic Anderson models ubiquitously show Mott-like

behaviors at integer values of the total filling, rather than at
integer fillings of the correlated subspace [218,225]. This is
independent of whether or not Mott insulating phases are
fully realized and is to some extent counterintuitive. One
may indeed naively think that the strongest propensity to
Mottness is present at integer values of νf, not of ν. This
“commensurability” physics as a function of total filling is
obviously possible only when the hybridization puts the
correlated and itinerant subspaces in communication and is
captured by DMFT. Indeed, there are two main features that
render DMFT especially suited to the task at hand. First,
being by construction in the thermodynamic limit it is able
to treat integer and fractional fillings on an equal footing.
Second, DMFT has been proven to be able to solve models
possessing degrees of freedom with different correlation
strength in the low-energy subspace (as are f and c orbitals
in our case) taking the charge fluctuations occurring
between the two fully into account.

H. Compressibility

In Fig. 6 we show the total, f and c fillings as a function
of the intrinsic chemical potential μ. A discussion on the
precise definition of the intrinsic chemical potential and on
how the mean-field interaction terms are operationally

accounted for in our charge self-consistent DMFT calcu-
lation can be found in the Supplemental Material [204] (see
also Refs. [226–228] therein); in short, this amounts to
separating intrinsic from geometric contributions to the
thermodynamic potential [229,230] and to the chemical
potential. What follows uses the intrinsic chemical potential
μ unless otherwise stated.
The blue solid lines in Fig. 6 report the total and orbital-

resolved fillings as a function of μ. These are to be
compared with the black dots, which report the same for
the zero-hybridization model. In both cases, the overall
behavior of the filling is a consequence of an energetic
balance between the orbital species. The f-c hybridization

FIG. 6. Filling with respect to CNP as a function of the
chemical potential. (a) Total filling, (b) f-electron filling, and
(c) c-electron filling at T ¼ 11.6 K. The solid blue curves refer to
DMFT simulations tuning the chemical potential to obtain a
target (total) filling. The black dots show results for the zero-
hybridization model solved in Ref. [200].
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constitutes the additional feature captured by our DMFT
study with respect to the zero-hybridization case described
in Ref. [200], and causes a breakdown of the rigid-band
picture. The role of the f-c hybridization is to provide a
“smoothing” effect on the crosstalk between the two
subspaces. Note that, differently from the standard periodic
Anderson models considered in literature, the THF model
[17] features a specific momentum, and hence real-space,
dependence of the hybridization term HfcðkÞ.
The capricious ups and downs of νc shown in Fig. 6(c)

have to be contrasted to the progressive filling of the
uncoupled reservoir of itinerant electrons in the zero-
hybridization case: In both cases, when an additional flat
f-electron band passes through the Fermi level, it provides
a large, rapid increase in occupation, which is compensated
by emptying the dispersive c bands. This behavior is
discontinuous in the decoupled case, with νc traveling
multiple times from ≈ − 0.85 to ≈þ 0.85 along the same
path marked by the black dots in Fig. 6(c). By contrast, the
presence of f-c hybridization and broadening in the DMFT
solution forces both νf and νc to vary continuously. This
results in the behaviors highlighted by the blue curves in
Figs. 6(b) and 6(c), respectively: The f-electron occupation
monotonically increases with respect to the total ν [see also
Fig. 5(a)]; when pictured upon varying μ, it shows a series
of continuously connected plateaus. These occur trivially at
integer values in the zero-hybridization model, while the
DMFT solution with hybridization displays plateaus that
are not pinned to integer νf, except obviously for νf ¼ 0

because of particle-hole symmetry. Because of the pre-
viously mentioned occupation balancing mechanism, νc
has instead to necessarily decrease in some intervals upon

increasing the total ν, resulting in the peculiar “loops” of
Fig. 6(c). A movie showing the evolution of the momen-
tum-resolved spectral function across the filling range is
included in the Supplemental Material [204]. It clearly
shows the mutual transfer of low-energy spectral weight
between f and c.
For comparison to experiments, we extract the electronic

compressibility of the model and plot its inverse in Fig. 7(a).
One can see how the full resets of μ in the zero-hybridization
case result in extremely pronounced negative spikes. In
DMFT, these negative regions are much less prominent and
their intensity varies with doping with respect to the charge
neutrality point. However, the minima of the DMFT data
coincide with the negative spikes of the zero-hybridization
model, and the positive spikes at integer fillings are con-
sistent between the two methods. While the maxima in the
compressibilities foundhere and by theDMFT study ofDatta
et al. [186] are in qualitative agreement, there are no negative
compressibilities reported in Ref. [186]. We assign this
discrepancy to geometric capacitance terms, which may
not have been fully subtracted in Ref. [186].
The comparison of our DMFT results to experiments,

shown in Figs. 7(a) and 7(b), reveals an overall reasonable
agreement between DMFT and experiments from
Refs. [164,191,194]. Yet, even if DMFT suppresses the
negative compressibilities with respect to zero hybridiza-
tion, it still overestimates the regions of negative compress-
ibility compared to what is experimentally observed
[compare the dark blue curve to the others in Fig. 7(a)].
Among the different experimental curves, showing some
discrepancies between one another, it is interesting to notice
how the position of the DMFT positive peaks at integer
fillings match rather well those of Ref. [191], while the

FIG. 7. (a) Inverse compressibility obtained from the fixed-occupation DMFT simulations for T ¼ 11.6 K, compared with the
experimental data from Zondiner et al. [194] (Bjj ¼ 0, T ¼ 4 K, and θ ¼ 1.13°), Pierce et al. [191] (Bjj ¼ 0, θ ¼ 1.06°), and Saito et al.
[164] (Bjj ¼ 0, T ¼ 12 K, and θ ¼ 1.06°), and the zero-hybridization model from Ref. [200]. (b) The chemical potential corresponding
to the inverse compressibilities in (a). (c) Inverse compressibility and (d) chemical potential as a function of doping for three different
temperatures.
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negative peaks and the overall behavior of the chemical
potential are more similar to that of Ref. [194]. Since the
THFmodel is by design particle-hole symmetric, it does not
account for the asymmetries experimentally measured for
electron and hole doping. Our results are a better match for
positive doping than negative doping. A calculation includ-
ing strain and additional particle-hole symmetry breaking
terms will be the subject of a future study.
In Figs. 7(c) and 7(d), we show the temperature

dependence of the inverse compressibility and the chemical
potential. The peaks in the inverse compressibility (step
features in the chemical potential) get progressively ther-
mally broadened and are almost completely washed out at
∼100 K. This compares nicely with experimental reports
on the temperature dependence of the inverse compress-
ibility [164], where the features also wash out at ∼100 K.
This is the temperature scale at which thermally activated
charge fluctuations become appreciable and the Hartree-
Fock solution is no longer isospin polarized. In the
Supplemental Material [204], we confirm by calculating
the temperature-dependent sector statistics (the weight of
the different charge sectors in the many-body configura-
tions) that this is also the temperature scale where there is
no longer one predominant charge sector. In other words,
the experimentally observed structures of the inverse
compressibility and its temperature dependence pinpoint
the thermal activation of charge fluctuations and the
dissolution of local moment physics around ∼100 K.

I. Significance and origin of the negative
compressibilities

All chemical potential terms discussed so far referred
to the intrinsic chemical potential, while only the total
thermodynamic potential determines instabilities of the
system. The total thermodynamic potential has to include
also the geometric contributions, which are present in both,
the theoretical model [17], and all experimental realizations
of TBLG [156,163,164,194]: The charge required to dope
TBLG away from charge neutrality is taken from gate
electrodes. The geometric contribution to the total thermo-
dynamic potential is the classical electrostatic energy that
builds up upon charge transfer from the gate to TBLG. The
intrinsic chemical potential does not involve the contribu-
tion from electrostatic potential associated with the charge
transfer between gate and TBLG and thus, in turn, a
negative compressibility referring only to a derivative
involving the intrinsic chemical potential dn=dμ does
neither imply necessarily an instability of the system nor
a tendency to phase separate.
In the THF model of Ref. [17], the TBLG system is

supposed to sit in the middle of two gate electrodes,
providing an electric potential dependent on the gate
separation. As detailed in the Supplemental Material [204],
this entails a large geometric capacitance term, which has to
be taken into account when determining the total TBLG

compressibility. In the Supplemental Material [204], we
show the same data of Figs. 6 and 7, plotted without the
subtraction of the geometrical capacitance contribution,
i.e., referring to the full TBLG system, which necessarily
includes the gates where the doping charges are taken from.
There, most of the negative compressibility regions are gone,
though a small region survives close to ν� 0.6. As detailed
in theSupplementalMaterial [204], this effect is related to the
form of the double-gate screened Coulomb integrals con-
sidered in the original THF model, which sets an intergate
distance ξ ¼ 10 nm [17]. The geometric contribution
depends linearly on the distance between the capacitor
plates,which suggests that an interaction term corresponding
to a larger separation would have removed even the remain-
ing ν� 0.6 negative compressibility region. Similar geo-
metric effects are also ubiquitously present in experimental
realizations [156,163,164,194], where TBLG is typically
placed in single or multigate structures in order to achieve
gate controlled charge doping. In the experimentally realized
setups, assuming the electrodes or backgate to be ideal
metals,which donot feature quantumcapacitance effects, the
only contribution to the negative compressibility comes from
exchange-correlation contributions on theTBLG layer [231],
which are accounted for in DMFT locally to all orders.

V. CONCLUSIONS

Our study provides a unified understanding of dynamic
correlations and spontaneous symmetry breaking in TBLG,
allowing us to reconcile a set of complementary experi-
ments spanning a wide range of temperatures. Strong
electronic interactions give rise to the emergence of local
isospin moments at temperatures on the order of ∼100 K,
which order around ∼10 K. This result suggests that
ordering precedes full Kondo screening which manifests
at lower temperatures [188]. Furthermore, our comparison
between DMFT and Hartree-Fock ordering temperatures
reveals a noteworthy difference of one order of magnitude,
indicating the significant influence of local quantum
fluctuations on the temperature-dependent phase diagram
of TBLG. Note that the true ordering temperatures will be
lower than what is predicted by single-site DMFT, as it
neglects spatial fluctuations.
Once the local moments have formed, regardless of

whether they order or not, exchange-correlation effects in
the localized f states lead to “integerperiodic” variations in
the compressibility ranging from nearly incompressible to
negative values as found in capacitance experiments
[164,191,194]. Concomitantly, there is a periodic redis-
tribution of charge between the f and the c states upon
doping. This charge reshuffling is responsible for the
doping-induced cascade transitions seen in scanning tun-
neling spectroscopy [156] and explains why the cascades
first appear at a temperature of ∼100 K [164].
Our study focuses on finite temperatures T ≳ 5 K and

highlights the special role of total integer fillings and the
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appearance of (nearly) incompressible insulating states
there. While there is a depletion of low-energy spectral
weight already in the symmetric phase, exchange inter-
actions generically support a hard gap at integer fillings in
the ordered phase in the absence of strain.
Regarding the nature of the metallic states in TBLG, we

find disordered local moments which cause scattering
and predominantly incoherent low-energy electronic spectral
weight in the temperature range of approximately
10 < T < 100 K. Ordering of the isospin moments leads
to coherence and the appearance of well-defined quasipar-
ticles for T ≲ 10 K. This order-induced coherence stands
behind the isospin Pomeranchuk effect observed in transport
experiments. Above the ordering temperature but below the
temperature of moment formation, the isospin entropy of the
local moments stabilizes an incoherent “bad metal” phase,
which manifests in incoherent spectral weight at the Fermi
level. Below the ordering temperature, the Fermi surface is
composed of delocalized coherent quasiparticle excitations
implying Fermi-liquid-like behavior. This change from inco-
herent to coherent spectral weight at the Fermi level can
explain the generic resistivity drop seen in many experiments
below∼10 K [6,151,161,163,164]. In contrast to the original
Pomeranchuk effect in He-3, the suppression of entropy and
coherence in TBLG at low temperatures come from the
ordering of local moments and not from their disappearance.
The coherence from order physics demonstrated here for
TLBG reveals similarities between TBLG andmaterials such
as metallic ferromagnets like SrRuO3 [223] and compounds
related to Fe-based superconductors [224].
We note that the single-site DMFT neglects nonlocal

fluctuations and any dynamical renormalization effects on
ĤJ. Both of these approximations will lead to an overesti-
mate of the ordering temperature, so the true ordering
temperature is likely to be a bit lower. The renormalization
of ĤJ is expected to be weak except possibly far away from
integer fillings, which is also where the filling-dependent
Kondo temperature is expected to find its local maxima (see
Ref. [189] and Supplemental Material [204]). These effects,
however, are likely secondary to strain and particle-hole
symmetry breaking lattice effects [232], which have been
shown to have a huge effect on the low-temperature ordered
states [61,64,108,109]. The inclusion of these effects is a
natural extension of our work.
Our results show that ordering affects electronic spectra

and even Fermi surface topologies in metallic states. Thus,
we expect that further symmetry breaking, i.e., particularly
superconductivity at lower temperatures T ∼ 1 K, will be
impacted by this order-facilitated coherence.
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twisted bilayer graphene, Phys. Rev. Res. 3, 013153
(2021).

[170] N. C. H. Hesp, I. Torre, D. Rodan-Legrain, P. Novelli, Y.
Cao, S. Carr, S. Fang, P. Stepanov, D. Barcons-Ruiz, H.
Herzig Sheinfux, K. Watanabe, T. Taniguchi, D. K. Efetov,
E. Kaxiras, P. Jarillo-Herrero, M. Polini, and F. H. L.
Koppens, Observation of interband collective excitations
in twisted bilayer graphene, Nat. Phys. 17, 1162 (2021).

[171] S. Hubmann, P. Soul, G. Di Battista, M. Hild, K.
Watanabe, T. Taniguchi, D. K. Efetov, and S. D.
Ganichev, Nonlinear intensity dependence of photogal-
vanics and photoconductance induced by terahertz laser
radiation in twisted bilayer graphene close to magic angle,
Phys. Rev. Mater. 6, 024003 (2022).

[172] S. Grover, M. Bocarsly, A. Uri, P. Stepanov, G. Di Battista,
I. Roy, J. Xiao, A. Y. Meltzer, Y. Myasoedov, K. Pareek, K.
Watanabe, T. Taniguchi, B. Yan, A. Stern, E. Berg, D. K.
Efetov, and E. Zeldov, Chern mosaic and Berry-curvature
magnetism in magic-angle graphene, Nat. Phys. 18, 885
(2022).

[173] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von
Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge,
Electronic correlations in twisted bilayer graphene near
the magic angle, Nat. Phys. 15, 1174 (2019).

[174] C. L. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia,
J. Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. E. Huber,
and A. F. Young, Imaging orbital ferromagnetism in a
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