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Abstract. We prove the existence of periodic solutions of some infinite-
dimensional systems by the use of the lower/upper solutions method.
Both the well-ordered and non-well-ordered cases are treated, thus gen-
eralizing to systems some well-established results for scalar equations.
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1. Introduction

The use of lower and upper solutions in boundary value problems dates back
to the pioneering papers of Peano [20] in 1885 and Picard [21] in 1893. Later,
Scorza-Dragoni [23] in 1931 and Nagumo [18] in 1937 were those who pro-
vided the main contributions toward a modern theory for scalar second-order
ordinary differential equations with separated boundary conditions. The first
results for the periodic problem were obtained by Knobloch [15] in 1963.
There is nowadays a large literature on this subject, dealing with different
types of boundary conditions for ordinary and partial differential equations
of elliptic or parabolic type (see, e.g., [5,7] and the references therein).

In this paper we consider the periodic problem

(P )

{
ẍ = f(t, x),
x(0) = x(T ), ẋ(0) = ẋ(T ).

In the scalar case when f : [0, T ]×R → R is continuous, the C2-functions α, β :
[0, T ] → R are said to be lower/upper solutions of problem (P ), respectively,
if

α̈(t) ≥ f(t, α(t)), β̈(t) ≤ f(t, β(t)).

for every t ∈ [0, T ], and

α(0) = α(T ), β(0) = β(T ), α̇(0) ≥ α̇(T ), β̇(0) ≤ β̇(T ).
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We say that (α, β) is a well-ordered pair of lower/upper solutions if α ≤ β.
It is well known that, when such a pair exists, problem (P ) has a solution x
such that α ≤ x ≤ β.

When the inequality α ≤ β does not hold, we say that the lower and
upper solutions are non-well-ordered. In this case, with the aim of obtaining
existence results, some further conditions have to be added to avoid resonance
with the positive eigenvalues of the differential operator −ẍ with T -periodic
conditions (recall that 0 is an eigenvalue, and all the other eigenvalues are
positive). Starting with the paper by Amann, Ambrosetti and Mancini [1] in
1978, there have been several improvements in the existence and localization
of the solutions by Omari [19] in 1988, Gossez and Omari [13] in 1994, Habets
and Omari [14] in 1996 and De Coster and Henrard [6] in 1998 (see also [12]
for an abstract setting of the results).

The aim of this paper is to extend those classical existence results for
scalar equations to systems, both in a finite-dimensional and in an infinite-
dimensional setting.

Bebernes and Schmitt [3] generalized the scalar well-ordered case to a
system of type (P ), with f : [0, T ] × R

N → R
N . Their result is reported

in Sect. 2 below, in a slightly more general version. We are not aware of
any results for systems in the non-well-ordered case, not even in the finite-
dimensional case.

In Sect. 3, we provide an existence result for a system in R
N when

the components of the lower/upper solutions can be both well-ordered and
non-well-ordered. To avoid resonance with the higher part of the spectrum,
for simplicity we ask the function f to be globally bounded in the non-well-
ordered components, even if such an assumption could certainly be weakened
(see the remarks in Sect. 5).

The case of a system in an infinite-dimensional Banach space E has
been analyzed by Schmitt and Thompson [22] in 1975 for boundary value
problems of Dirichlet type. However, when facing the periodic problem, they
needed to assume E to be finite dimensional, concluding their paper by say-
ing: “Whether the results of this section [. . . ] remain true in case E is infinite
dimensional is not known at this time”. We are not aware of any progress in
this direction till now. In this paper we will try to give a partial answer to
this question.

In Sect. 4, we extend our existing result of Sect. 3 to an infinite-
dimensional separable Hilbert space. The lack of compactness is recovered
by assuming the lower and upper solutions to take their values in a Hilbert
cube. Moreover, we ask the function f to be globally bounded and completely
continuous in the non-well-ordered components. These assumptions are rem-
iniscent of an infinite-dimensional version of the Poincaré–Miranda Theorem
as given in [16].

The study of periodic solutions for infinite-dimensional Hamiltonian
systems has been already faced by several authors, see, e.g., [2,4,8,9,11].
Our approach does not need a Hamiltonian structure and could be applied
also to systems with nonlinearity depending on the derivative of x, provided
some Nagumo-type condition is assumed. Such kind of systems were studied,



MJOM Periodic Solutions of Second-Order Differential Equations Page 3 of 26 223

e.g., in [22]. In Sect. 5 we will discuss on these and other extensions and
generalizations of our results, possibly also to partial differential equations of
elliptic or parabolic type.

2. Well-Ordered Lower and Upper Solutions for Systems

In this section and the next one, we consider the problem

(P )

{
ẍ = f(t, x),
x(0) = x(T ), ẋ(0) = ẋ(T ),

where f : [0, T ]×R
N → R

N is a continuous function. We are thus in a finite-
dimensional setting. Let us recall a standard procedure to reduce the search
of solutions of (P ) to a fixed point problem in Banach space. We define the
set

C2
T = {x ∈ C2([0, T ], RN ) : x(0) = x(T ), ẋ(0) = ẋ(T )},

and the linear operator

L : C2
T → C([0, T ], RN ), Lx = −ẍ + x,

which is invertible and has a bounded inverse. We consider as well the Ne-
mytskii operator

N : C([0, T ], RN ) → C([0, T ], RN ), (Nx)(t) = x(t) − f(t, x(t)).

Problem (P ) is thus equivalent to the fixed point problem in C([0, T ], RN )

x = L−1Nx.

Notice that L−1N : C([0, T ], RN ) → C([0, T ], RN ) is completely continuous.
Here, we recall and slightly generalize [3, Theorem 4.1].

Definition 1. Given two C2-functions α, β : [0, T ] → R
N , we say that (α, β)

is a well-ordered pair of lower/upper solutions of problem (P ) if, for every
j ∈ {1, . . . , N} and t ∈ [0, T ],

αj(t) ≤ βj(t),

αj(0) = αj(T ), βj(0) = βj(T ), α̇j(0) ≥ α̇j(T ), β̇j(0) ≤ β̇j(T ),

and, for every x ∈
∏N

m=1[αm(t), βm(t)],

α̈j(t) ≥ fj(t, x1, . . . , xj−1, αj(t), xj+1, . . . , xN ),

β̈j(t) ≤ fj(t, x1, . . . , xj−1, βj(t), xj+1, . . . , xN ).

Theorem 2. (Bebernes–Schmitt) If there exists a well-ordered pair of lower/
upper solutions (α, β), then problem (P ) has a solution x(t) such that

αj(t) ≤ xj(t) ≤ βj(t), for every j ∈ {1, . . . , N} and t ∈ [0, T ]. (1)
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Proof. Step 1. Define the functions γj : [0, T ] × R → R as

γj(t, s) =

⎧⎨
⎩

αj(t) if s < αj(t),
s if αj(t) ≤ s ≤ βj(t),
βj(t) if s > βj(t),

and the functions Γ, f̄ : [0, T ] × R
N → R

N as

Γ(t, x) = (γ1(t, x1), . . . , γN (t, xN )), f̄(t, x) = f(t,Γ(t, x)).

Consider the auxiliary problem

(P ′)

{
ẍ = f̄(t, x) + x − Γ(t, x),
x(0) = x(T ), ẋ(0) = ẋ(T ),

and the corresponding Nemytskii operator

Ñ : C([0, T ], RN ) → C([0, T ], RN ), (Ñx)(t) = Γ(t, x(t)) − f̄(t, x(t)).

Problem (P ′) can then be equivalently written as a fixed point problem in
C([0, T ], RN ), namely

x = L−1Ñx.

By Schauder Theorem, since L−1Ñ : C([0, T ], RN ) → C([0, T ], RN ) is com-
pletely continuous and has a bounded image, it has a fixed point, so that
(P ′) has a solution x(t).

Step 2. Let us show that (1) holds for every solution of (P ′), thus proving
the theorem. By contradiction, assume that there is a j ∈ {1, . . . , N} and a
tj ∈ [0, T ] for which xj(tj) /∈ [αj(tj), βj(tj)]. For instance, let xj(tj) < αj(tj)
(the case xj(tj) > βj(tj) being similar). Set vj(t) = αj(t) − xj(t), and let
t̂j ∈ [0, T ] be such that vj(t̂j) = max{vj(t) : t ∈ [0, T ]}. We distinguish two
cases.
Case 1 t̂j ∈ ]0, T [. In this case, surely v̈j(t̂j) ≤ 0. On the other hand,

v̈j(t̂j) = α̈j(t̂j) − ẍj(t̂j)

= α̈j(t̂j) − f̄j(t̂j , x(t̂j)) − xj(t̂j) + γj(t̂j , xj(t̂j))

> α̈j(t̂j) − fj(t̂j , γ1(t̂j , x1(t̂j)), . . . , αj(t̂j), . . . , γN (t̂j , xN (t̂j))) ≥ 0,

leading to a contradiction.
Case 2 t̂j = 0 or t̂j = T . Assume for instance that t̂j = 0 (the other situation
being similar). Then,

0 ≥ v̇j(0) = α̇j(0) − ẋj(0) ≥ α̇j(T ) − ẋj(T ) = v̇j(T ),

so that, with vj(T ) = vj(0) being the maximum value of vj(t) over [0, T ], it
has to be that v̇j(T ) = 0, and hence also v̇j(0) = 0. Now, since vj(0) > 0,
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there is a small δ > 0 such that vj(s) > 0, for every s ∈ [0, δ]. Then, if
t ∈ [0, δ], we have that xj(s) < αj(s), for every s ∈ [0, t]; hence,

v̇j(t) = v̇j(0) +
∫ t

0

v̈j(s) ds

=
∫ t

0

(
α̈j(s) − ẍj(s)

)
ds

=
∫ t

0

(
α̈j(s) − f̄j(s, x(s)) − xj(s) + γj(s, xj(s))

)
ds

>

∫ t

0

(
α̈j(s) − fj(s, γ1(s, x1(x)), . . . , αj(s), . . . , γN (s, xN (x)))

)
ds ≥ 0,

a contradiction, since 0 is a maximum point for vj(t). The proof is thus
completed. �

We now provide some illustrative examples.

Example 3. Let, for every j ∈ {1, . . . , N},

fj(t, x) = ajx
3
j + hj(t, x),

for some constants aj > 0, and assume that there is a c > 0 such that

|h(t, x)| ≤ c, for every (t, x) ∈ [0, T ] × R
N . (2)

Then, taking the constant functions αj = − 3
√

c/aj , βj = 3
√

c/aj , we see that
Theorem 2 applies, and hence (P ) has a solution.

Example 4. Let us consider, for every j ∈ {1, . . . , N},

fj(t, x) = x2
j sin xj + hj(t, x),

and assume that there is a c > 0 such that (2) holds. Then, for every � ∈ Z

with |�| sufficiently large, taking the constant functions αj = −π/2 + 2�π,
βj = π/2 + 2�π, we see that Theorem 2 applies, and we conclude that (P )
admits an infinite number of solutions.

To work with Leray–Schauder degree, we need to introduce the notions
of strict lower/upper solutions.

Definition 5. The well-ordered pair of lower/upper solutions (α, β) of prob-
lem (P ) is said to be strict if αj(t) < βj(t) for every j ∈ {1, . . . , N} and
t ∈ [0, T ], and the following property holds: if x(t) is a solution of (P ) satis-
fying (1), then

αj(t) < xj(t) < βj(t), for every j ∈ {1, . . . , N} and t ∈ [0, T ].

When we have a well-ordered pair of strict lower/upper solutions, the
previous theorem provides some additional information.

Theorem 6. If (α, β) is a strict well-ordered pair of lower/upper solutions of
problem (P ), then

d(I − L−1N ,Ω) = 1,

where
Ω :=

{
x ∈ C([0, T ],RN ) : αj(t) < xj(t) < βj(t), for every j ∈ {1, . . . , N} and t ∈ [0, T ]

}
.
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Proof. Arguing as in Step 1 of the proof of Theorem 2, we can introduce the
modified problem (P ′) and we know, by Schauder Theorem, that

d(I − L−1Ñ , BR) = 1,

where BR is an open ball in C([0, T ], RN ) centered at the origin with a suf-
ficiently large radius R > 0. In particular, we may assume that Ω ⊆ BR.
By the argument in Step 2 of the same proof and the fact that the pair of
lower/upper solutions is strict, we have that all the solutions of (P ′) belong
to Ω. In other words, there are no zeroes of I − L−1Ñ in the set BR \ Ω.
Then, by the excision property of the degree,

d(I − L−1Ñ ,Ω) = 1.

Finally, since N and Ñ coincide on the set Ω, the conclusion follows. �

3. Non-well-Ordered Lower and Upper Solutions for Systems

In this section, we still consider problem (P ) in the finite-dimensional space
R

N . We will treat the case in which we can find lower and upper solutions
which are not well-ordered. To this aim, we need to distinguish the compo-
nents which are well-ordered from the others.

We will say that the couple (J ,K) is a partition of the set of indices
{1, . . . , N} if and only if J ∩K = ∅ and J ∪K = {1, . . . , N}. Correspondingly,
we can decompose a vector

x = (x1, . . . , xN ) = (xn)n∈{1,...,N} ∈ R
N

as x = (xJ , xK), where xJ = (xj)j∈J ∈ R
#J and xK = (xk)k∈K ∈ R

#K.
Here, #J and #K denote, respectively, the cardinality of the sets J and K.

Similarly, every function F : A → R
N can be written as F(x) =(

FJ (x),FK(x)
)
, where FJ : A → R

#J and FK : A → R
#K.

Definition 7. Given two C2-functions α, β : [0, T ] → R
N , we will say that

(α, β) is a pair of lower/upper solutions of (P ) related to the partition (J ,K)
of {1, . . . , N} if the following four conditions hold:

1. for any j ∈ J , αj(t) ≤ βj(t) for every t ∈ [0, T ];
2. for any k ∈ K, there exists t0k ∈ [0, T ] such that αk(t0k) > βk(t0k);
3. for any n ∈ {1, . . . , N} we have

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . , xN ), (3)

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . , xN ), (4)

for every (t, x) ∈ E , where

E :=

⎧⎨
⎩(t, x) ∈ [0, T ] × R

N : x = (xJ , xK), xJ ∈
∏
j∈J

[αj(t), βj(t)]

⎫⎬
⎭ .
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4. for any n ∈ {1, . . . , N},

αn(0) = αn(T ), βn(0) = βn(T ),

α̇n(0) ≥ α̇n(T ), β̇n(0) ≤ β̇n(T ).

Definition 8. The pair (α, β) of lower/upper solutions of (P ) is said to be
strict with respect to the j-th component, with j ∈ J , if αj(t) < βj(t) for
every t ∈ [0, T ], and for every solution x of (P ) we have(

∀t ∈ [0, T ], αj(t) ≤ xj(t) ≤ βj(t)
)

⇒
(
∀t ∈ [0, T ], αj(t) < xj(t) < βj(t)

)
;

(5)

it is said to be strict with respect to the k-th component, with k ∈ K, if for
every solution x of (P ) we have(

∀t ∈ [0, T ], xk(t) ≥ αk(t)
)

⇒
(
∀t ∈ [0, T ], xk(t) > αk(t)

)
, (6)(

∀t ∈ [0, T ], xk(t) ≤ βk(t)
)

⇒
(
∀t ∈ [0, T ], xk(t) < βk(t)

)
. (7)

The following proposition provides a sufficient condition to guarantee
the strictness property of a pair of lower/upper solutions of (P ) with respect
to a certain component.

Proposition 9. Given a pair (α, β) of lower/upper solutions of (P),
1. if, for any n ∈ J , both (3) and (4) hold with strict inequalities, then (5)

holds for n = j;
2. if, for any n ∈ K, (3) holds with strict inequality, then (6) holds for

n = k;
3. if, for any n ∈ K, (4) holds with strict inequality, then (7) holds for

n = k.

The proof can be easily adapted from the corresponding scalar result
in [5, Proposition III-1.1] and is omitted.

We are able to prove the existence of a solution of (P ) in presence of
a pair of lower/upper solutions (α, β) provided that we ask the strictness
property when the components αk, βk are non-well-ordered.

Theorem 10. Let (α, β) be a pair of lower/upper solutions of (P ) related to
the partition (J ,K) of {1, . . . , N}, and assume that it is strict with respect
to the k-th component, for every k ∈ K. Assume moreover the existence of a
constant C > 0 such that

|fK(t, x)| ≤ C, for every (t, x) ∈ E .

Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,
(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;

(NWk) there exist t1k, t2k ∈ [0, T ] such that xk(t1k) < αk(t1k) and xk(t2k) >
βk(t2k).

In Sect. 3.2 we will provide a generalization of the above result, removing
the strictness assumption on one of the components κ ∈ K. Let us now present
two illustrative examples.
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Example 11. Assume J = ∅ and let, for every k ∈ K,

fk(t, x) = − akxk

1 + |xk| + hk(t, x),

for some ak > 0, with

‖hk‖∞ := sup
{
|hk(t, x)| : (t, x) ∈ [0, T ] × R

N
}

< ak. (8)

Then, taking the constant functions

αk =
‖hk‖∞

ak − ‖hk‖∞
+ 1, βk = − ‖hk‖∞

ak − ‖hk‖∞
− 1,

we see that Theorem 10 applies. The same would be true if J �= ∅, assuming
for j ∈ J , e.g., a situation like in Examples 3 and 4.

Example 12. Let

fn(t, x) = −an sinxn + hn(t, x),

with an > 0 and hn satisfying (8) with k = n. For every n ∈ {1, . . . , N} we
have constant lower and upper solutions

αn ∈
{π

2
+ 2mπ : m ∈ Z

}
, βn ∈

{
−π

2
+ 2mπ : m ∈ Z

}
.

Then, for each equation we have both well-ordered and non-well-ordered pairs
of lower/upper solutions. Let us fix, e.g.,

αn =
π

2
, βι

n =
π

2
+ ιπ, with ι ∈ {−1, 1}.

Choosing 
ι = (ι1, . . . , ιN ) ∈ {−1, 1}N , and defining (α, β) with βn = βιn
n , by

Theorem 10 we get the existence of at least 2N solutions x�ι of problem (P ),
whose components are such that

ιn = 1 ⇒ ∀t ∈ [0, T ], x�ι
n(t) ∈

[
π

2
,
3π

2

]
,

ιn = −1 ⇒ ∃t̄n ∈ [0, T ], x�ι
n(t̄n) ∈

[
−π

2
,
π

2

]
.

We notice that, even if the function h(t, x1, . . . , xn) is 2π-periodic in each
variable xn, the solutions we find are indeed geometrically distinct. We thus
get a generalization of a result obtained for the scalar equation in [17].

3.1. Proof of Theorem 10

Notice that the case K = ∅ reduces to Theorem 2. We thus assume K �= ∅

and, without loss of generality, we take either J = ∅, or J = {1, . . . , M}
and K = {M + 1, . . . , N} for a certain M ∈ {1, . . . , N}. Indeed, mixing the
coordinates of x = (x1, . . . , xN ), we can always reduce to such a situation.
We continue the proof in the case J �= ∅. (The case J = ∅ can be treated
essentially in the same way.)

We need to suitably modify problem (P ). For every r > 0, we consider
the problem

(Pr)

{
ẍ = gr(t, x),
x(0) = x(T ), ẋ(0) = ẋ(T ),
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where gr : [0, T ] × R
N → R

N , with

gr(t, x) =
(
gr,1(t, x), . . . , gr,M (t, x), gr,M+1(t, x), . . . , gr,N (t, x)

)
,

is defined as follows.
We first introduce the functions f̄ : [0, T ] × R

N → R
N and Γ : [0, T ] ×

R
N → R

N as

f̄(t, x) = f(t,Γ(t, x)),

Γ(t, x) =
(
γ1(t, x1), . . . , γM (t, xM ), xM+1, . . . , xN

)
,

where, for j ∈ J ,

γj(t, s) =

⎧⎪⎨
⎪⎩

αj(t), if s < αj(t),
s, if αj(t) ≤ s ≤ βj(t),
βj(t), if s > βj(t).

Now we define, for every index j ∈ J ,

gr,j(t, x) = f̄j(t, x) + xj − γj(t, xj),

and for every index k ∈ K,

gr,k(t, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̄k(t, x) if |xk| ≤ r,

(|xk| − r)C
xk

|xk| + (1 + r − |xk|)f̄k(t, x) if r < |xk| < r + 1,

C
xk

|xk| if |xk| ≥ r + 1.

Notice that, for the indices j ∈ J , the value r > 0 does not affect the
definition of the components gr,j .

Proposition 13. If x is a solution of (Pr), then αj(t) ≤ xj(t) ≤ βj(t) for
every j ∈ J and t ∈ [0, T ].

The proof follows from a classical reasoning and can be easily adapted
from Step 2 of the proof of Theorem 2.

Proposition 14. There is a constant K > 0 such that, if x is a solution of
(Pr), for any r > 0, which satisfies (NWk) for a certain index k ∈ K, then
‖xk‖C2 ≤ K.

Proof. Notice that

|gr,k(t, x)| ≤ C, for every (t, x) ∈ [0, T ] × R
N , k ∈ K and r > 0. (9)

Fix any k ∈ K. If x(t) is a solution of (Pr), multiplying the k-th equation by
x̃k and integrating, we have that

‖x̃k‖22 ≤
(

T

2π

)2

‖ẋk‖22 ≤
(

T

2π

)2

C
√

T‖x̃k‖2.

So, by a classical reasoning, there is a constant C1 > 0 such that ‖x̃k‖H1 ≤
C1, and there is a constant C0 > 0 such that ‖x̃k‖∞ ≤ C0, for every solution
x of (Pr). Define

uk(t) = min{αk(t), βk(t)}, Uk(t) = max{αk(t), βk(t)}. (10)
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Since (NWk) holds, there is a τ0 ∈ [0, T ] such that

uk(τ0) ≤ xk(τ0) ≤ Uk(τ0). (11)

Then, if x is a solution of (Pr),

|xk(t)| =
∣∣∣∣xk(τ0) +

∫ t

τ0

ẋk(s) ds

∣∣∣∣ ≤ |xk(τ0)|

+
∫ T

0

|ẋk(s)|ds ≤ |xk(τ0)| +
√

T‖ẋk‖2

≤ max{‖α‖∞, ‖β‖∞} +
√

TC1 =: K0,

hence ‖xk‖∞ ≤ K0. Moreover, by periodicity, there is a τ1 ∈ [0, T ] such that
ẋk(τ1) = 0, hence by (9)

|ẋk(t)| =
∣∣∣∣ẋk(τ1) +

∫ t

τ1

ẍk(s) ds

∣∣∣∣ =
∣∣∣∣
∫ t

τ1

gr,k(s, x(s)) ds

∣∣∣∣
≤
∫ T

0

|gr,k(s, x(s))|ds ≤ CT,

so that ‖ẋk‖∞ ≤ CT . Then,

‖xk‖C2 = ‖xk‖∞ + ‖ẋk‖∞ + ‖ẍk‖∞ ≤ K0 + CT + C =: K,

thus proving the proposition. �

From now on, we fix r > max{K, ‖α‖∞, ‖β‖∞}, where K is given by
Lemma 14. Problem (Pr) is equivalent to the fixed point problem

x = L−1Nrx, x ∈ C([0, T ], RN ),

where we have introduced the Nemytskii operator

Nr : C([0, T ], RN ) → C([0, T ], RN ), (Nrx)(t) = x(t) − gr(t, x(t)).

Since we are looking for zeros of

Trx := (I − L−1Nr)(x),

we compute the Leray–Schauder degree on a family of open sets. Let us define
the constant functions

α̂ = −r − 1, β̂ = r + 1,

as well as the functions

α̌j(t) = αj(t) − 1, and β̌j(t) = βj(t) + 1,

for every j ∈ J .
We define, for every multi-index μ = (μM+1, . . . , μN ) ∈ {1, 2, 3, 4}N−M ,

the open set

Ωμ := {x ∈ C([0, T ], RN ) : (O0
j ) and (Oμk

k ) hold for every j ∈ J and k ∈ K
}
,

(12)
where the conditions (O0

j ) and (Oμk

k ) read as

(O0
j ) α̌j(t) < xj(t) < β̌j(t), for every t ∈ [0, T ],

(O1
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ],
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(O2
k) α̂ < xk(t) < βk(t), for every t ∈ [0, T ],

(O3
k) αk(t) < xk(t) < β̂, for every t ∈ [0, T ],

(O4
k) α̂ < xk(t) < β̂, for every t ∈ [0, T ], and there are t1k, t2k ∈ [0, T ] such

that x(t1k) < αk(t1k) and x(t2k) > βk(t2k).

Proposition 15. The Leray–Schauder degree d(Tr,Ωμ) is well defined for ev-
ery μ ∈ {1, 2, 3, 4}N−M .

Proof. Assume by contradiction that there is x ∈ ∂Ωμ such that Trx = 0,
i.e., x is a solution of (Pr). All the several different situations which may arise
lead back to the following four cases.

Case A For some index j ∈ J , α̌j(t) ≤ xj(t) ≤ β̌j(t), for every t ∈ [0, T ],
and α̌j(τ) = xj(τ) for a certain τ ∈ [0, T ] (the case when xj(τ) = β̌j(τ) is
similar). We can prove that

¨̌αj(t) > gr,j(t, x1(t), . . . , xj−1(t), α̌j(t), xj+1(t), . . . , xN (t)), for every t ∈ [0, T ],

so that arguing as in Step 2 of the proof of Theorem 2 we obtain a contra-
diction.

Case B For some index k ∈ K, α̂ ≤ xk(t) ≤ β̂, for every t ∈ [0, T ], and
α̂ = xk(τ) for a certain τ ∈ [0, T ] (the case when xk(τ) = β̂ is similar). Since

gr,k(t, x1(t), . . . , xk−1(t), α̂, xk+1(t), . . . , xN (t)) = −C < 0, for every t ∈ [0, T ],

we easily get a contradiction as before.
Case C For some index k ∈ K, α̂ < xk(t) ≤ βk(t), for every t ∈ [0, T ], and
xk(τ) = βk(τ) for a certain τ ∈ [0, T ]. Such a situation cannot arise since (7)
holds by assumption.
Case D For some index k ∈ K, αk(t) ≤ xk(t) < β̂, for every t ∈ [0, T ], and
xk(τ) = αk(τ) for a certain τ ∈ [0, T ]. Such a situation cannot arise since (6)
holds by assumption. �

Proposition 16. For every multi-index μ ∈ {1, 2, 3}N−M , we have d(Tr,Ωμ)
= 1.

Proof. In this case, it can be verified by the arguments of the previous proof
that the definition of the set Ωμ provides us a well-ordered pair of strict
lower/upper solutions of problem (Pr). The conclusion is then an immediate
consequence of Theorem 6. �

For any multi-index μ̂ ∈ {1, 2, 3}N−M−1, we can consider, for every
� ∈ {1, 2, 3, 4}, the multi-index

(�, μ̂) = (�, μM+2, . . . , μN ) ∈ {1, 2, 3, 4}N−M .

We can verify that Ω(2,μ̂),Ω(3,μ̂),Ω(4,μ̂) are pairwise disjoint and all contained
in Ω(1,μ̂) so that

Ω(4,μ̂) = Ω(1,μ̂) \ Ω(2,μ̂) ∪ Ω(3,μ̂). (13)
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Proposition 17. For every multi-index μ̂ ∈ {1, 2, 3}N−M−1, we have
d(Tr,Ω(4,μ̂)) = −1.

Proof. By Proposition 16 and (13),

1 = d(Tr,Ω(1,μ̂))

= d(Tr,Ω(2,μ̂)) + d(Tr,Ω(3,μ̂)) + d(Tr,Ω(4,μ̂))

= 2 + d(Tr,Ω(4,μ̂))

and the conclusion follows. �

Arguing similarly, we can prove by induction the following result.

Proposition 18. For every K ∈ {1, . . . , N − M} and every multi-index μ ∈
{4}K × {1, 2, 3}N−M−K , we have

d(Tr,Ωμ) = (−1)K .

Proof. We proceed by induction. The validity of the statement for K = 1
follows by Proposition 17. So, we fix K ≥ 2 and assume that

d(Tr,Ωμ) = (−1)K−1, for every μ ∈ {4}K−1 × {1, 2, 3}N−M−K+1.

Consider the multi-index μ = (4, . . . , 4, μM+K , μM+K+1, . . . , μN ) ∈ {4}K−1×
{1, 2, 3}N−M−K+1 and define for every � ∈ {1, 2, 3, 4}, the multi-index

μ̄� = (4, . . . , 4, �, μM+K+1, . . . , μN ).

We then see that

(−1)K−1 = d(Tr,Ωμ̄1)

= d(Tr,Ωμ̄2) + d(Tr,Ωμ̄3) + d(Tr,Ωμ̄4)

= 2 · (−1)K−1 + d(Tr,Ωμ̄4),

yielding d(Tr,Ωμ̄4) = (−1)K . The proof is complete. �

By the previous proposition, we conclude that

d(Tr,Ω(4,...,4)) = (−1)N−M . (14)

As a consequence, there is a solution x of problem (Pr) in the set
Ω(4,...,4). Recalling the a priori bounds in Propositions 13 and 14, we see
that the solution x is indeed a solution of problem (P ) and satisfies (Wj) and
(NWk), for every j ∈ J and k ∈ K. The proof is thus completed.

3.2. An Extension of Theorem 10

The existence of a solution of (P ) can be obtained also removing from the
assumptions of Theorem 10 the strictness assumption on one of the compo-
nents.

Theorem 19. Let (α, β) be a pair of lower/upper solutions of (P ) related to
the partition (J ,K) of {1, . . . , N}. Fix κ ∈ K and assume that (α, β) is strict
with respect to the k-th component, for every k ∈ K \ {κ}. Assume moreover
the existence of a constant C > 0 such that

|fK(t, x)| ≤ C, for every (t, x) ∈ E .
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Then, (P ) has a solution x such that (Wj) and (NWk) hold for every (j, k) ∈
J × (K \ {κ}), and

(ÑWκ) there exist t1κ, t2κ ∈ [0, T ] such that xκ(t1κ) ≤ ακ(t1κ) and xκ(t2κ) ≥
βκ(t2κ).

Proof. Without loss of generality, we can choose J = {1, . . . , M}, K = {M +
1, . . . , N} and κ = N . We can follow the proof of Theorem 10 step by step in
the first part, noticing that Proposition 14 holds with the same constant when
we assume (ÑWN ). Moreover, since we do not ask the strictness assumption
with respect to the N -th component, when we introduce the sets Ωμ as in (12),
we can consider only multi-indices with the last component frozen to 1, i.e.,
μ = (μM+1, . . . , μN−1, 1) ∈ {1, 2, 3, 4}N−M−1 × {1}. Indeed, with this new
choice of the multi-indices we can still guarantee that the Leray–Schauder
degree is well defined.

Then, arguing as in Propositions 16, 17 and 18, we have

• d(Tr,Ωμ) = 1 for every μ ∈ {1, 2, 3}N−M−1 × {1},
• d(Tr,Ωμ) = −1 for every μ ∈ {4} × {1, 2, 3}N−M−2 × {1},
• for every K ∈ {1, . . . , N − M − 1}, d(Tr,Ωμ) = (−1)K for every multi-

index μ ∈ {4}K × {1, 2, 3}N−M−K−1 × {1}.

However, we cannot conclude the proof saying that the Leray–Schauder de-
gree is different from zero in Ω(4,...,4) as in (14), since we cannot ensure that
it is well defined in the sets Ω(4,...,4,�) with � = 2, 3, 4.

Anyhow, at this step of the proof, we can follow the classical reason-
ing adopted in the scalar case in presence of non-well-ordered lower/upper
solutions, cf. [5, Theorem III-3.1]. If there exists x ∈ ∂Ω(4,...,4,2) such that
Trx = 0, then we can easily see that x must be a solution of (Pr) such
that xN (t) ≤ βN (t) for every t ∈ [0, T ] and xN (τ) = βN (τ) for a cer-
tain τ ∈ [0, T ]. Since the components αN , βN are non-well-ordered, we have
αN (t0N ) > βN (t0N ) ≥ xN (t0N ) for some tN0 ∈ [0, T ]. So (ÑWN ) holds, thus
giving us that x is a solution of (Pr) satisfying all the required assumptions.

We can argue similarly if there exists x ∈ ∂Ω(4,...,4,3) such that Trx = 0.

If the previous situations do not occur, we can compute the degree both
in Ω(4,...,4,2) and Ω(4,...,4,3). As in (13), we have

Ω(4,...,4,4) = Ω(4,...,4,1) \ Ω(4,...,4,2) ∪ Ω(4,...,4,3), (15)

so that the degree is well defined also for Ω(4,...,4,4). Performing the same
computation adopted in Propositions 17 and 18, we can conclude that d(Tr,
Ω(4,...,4)) = (−1)N−M , thus finding also in this case a solution x with the
desired properties. The proof is thus completed. �
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4. Lower and Upper Solutions for Infinite-Dimensional
Systems

We now focus our attention on a system defined in a separable Hilbert space
H with scalar product 〈·, ·〉 and corresponding norm | · |. We study the prob-
lem

(P )

{
ẍ = f(t, x),
x(0) = x(T ), ẋ(0) = ẋ(T ),

where f : [0, T ]×H → H is a continuous function. In what follows, we extend
the results of Sect. 3 to an infinite-dimensional setting, trying to maintain
similar notations.

Let N+ = {1, 2, 3, . . . }. Choosing a Hilbert basis (en)n∈N+ , every vector
x ∈ H can be written as x =

∑
n∈N+

xnen, or x = (xn)n∈N+ = (x1, x2, . . . ).
Similarly, for the function f , we will write

f(t, x) = (f1(t, x), f2(t, x), . . . ).

We will sometimes identify H with �2.
As in the finite-dimensional case, we will say that the couple (J ,K) is a

partition of N+ if and only if J ∩K = ∅ and J ∪K = N+. Correspondingly, we
can decompose the Hilbert space as H = HJ ×HK, where every x ∈ H can be
written as x = (xJ , xK) with xJ = (xj)j∈J ∈ HJ and xK = (xk)k∈K ∈ HK.

Similarly, every function F : A → H can be written as F(x) =
(
FJ (x),

FK(x)
)
, where FJ : A → HJ and FK : A → HK.

We rewrite Definition 7 in this context.

Definition 20. Given two C2-functions α, β : [0, T ] → H, we say that (α, β) is
a pair of lower/upper solutions of (P ) related to the partition (J ,K) of N+ if
the four conditions of Definition 7 hold replacing {1, . . . , N} by N+ and the
inequalities (3), (4) by

α̈n(t) ≥ fn(t, x1, . . . , xn−1, αn(t), xn+1, . . . ), (16)

β̈n(t) ≤ fn(t, x1, . . . , xn−1, βn(t), xn+1, . . . ). (17)

Moreover, it is said to be strict with respect to the n-th component, with
n ∈ N+, if the conditions of Definition 8 hold.

We recall the definition of the set

E :=

⎧⎨
⎩(t, x) ∈ [0, T ] × R

N : x = (xJ , xK), xJ ∈
∏
j∈J

[αj(t), βj(t)]

⎫⎬
⎭ .

Here is our result in this infinite-dimensional setting.

Theorem 21. Let (α, β) be a pair of lower/upper solutions of (P ) related to
the partition (J ,K) of N+, and assume the following conditions:

• there exists a sequence (dn)n∈N+ ∈ �2 such that

−dn ≤ αn(t) ≤ dn and − dn ≤ βn(t) ≤ dn, for every n ∈ N+ and t ∈ [0, T ];

• (α, β) is strict with respect to the k-th component, for every k ∈ K;
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• there exists a constant C > 0 such that

|fK(t, x)| ≤ C, for every (t, x) ∈ E ;

• for every bounded set B ⊂ E, the set fK(B) is precompact.

Then, (P ) has a solution x with the following property: for any (j, k) ∈ J ×K,

(Wj) αj(t) ≤ xj(t) ≤ βj(t), for every t ∈ [0, T ] ;
(ÑW k) there exist t1k, t2k ∈ [0, T ] such that xk(t1k) ≤ αk(t1k) and xk(t2k) ≥

βk(t2k).

The proof of the theorem is carried out in Sect. 4.2.

Remark 22. As in Theorem 19, we can drop the strictness assumption for a
certain index κ ∈ K.

As an immediate consequence of Theorem 21, taking α and β constant
functions, we have the following.

Corollary 23. Let there exist two sequences (pn)n∈N+ and (qn)n∈N+ in �2,
with pn < qn for every n ∈ N+, and a partition (J ,K) of N+, such that, for
every (t, x) ∈ [0, T ] ×

∏
j∈J [pj , qj ] × HK,

j ∈ J ⇒ fj(t, x1, . . . , xj−1, pj , xj+1, . . . ) ≤ 0 ≤ fj(t, x1, . . . , xj−1, qj , xj+1, . . . ) ;

(18)
k ∈ K ⇒ fk(t, x1, . . . , xk−1, pk, xk+1, . . . ) > 0 > fk(t, x1, . . . , xk−1, qk, xk+1, . . . ).

(19)

Furthermore, let there exist a sequence (Ck)k∈K ∈ �2 such that, for every
k ∈ K,

|fk(t, x)| ≤ Ck, for every (t, x) ∈ [0, T ] ×
∏
j∈J

[pj , qj ] × HK. (20)

Then, (P ) has a solution x(t) such that, for every j ∈ J , k ∈ K,

{xj(t) : t ∈ [0, T ]} ⊆ [pj , qj ] ; (21)
{xk(t) : t ∈ [0, T ]} ∩ [pk, qk] �= ∅. (22)

We now give some examples of applications, with H = �2, where we
implicitly assume all functions to be continuous.

Example 24. Let, for every j ∈ N+,

fj(t, x) = x3
j + hj(t, x),

and assume that there is a c > 0 such that

|hj(t, x)| ≤ c

j3
, for every (t, x) ∈ [0, T ] × �2. (23)

Then, f : [0, T ]× �2 → �2 is well defined and taking qj = −pj = 3
√

c/j, we see
that both (pj)j , (qj)j belong to �2, and (18) is satisfied, so that Corollary 23
applies with K = ∅.
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Example 25. Let us consider, for every j ∈ N+,

fj(t, x) = x2
j sin xj + hj(t, x),

and assume that there is a c > 0 such that (23) holds. Then, f : [0, T ]×�2 → �2

is well defined. Since x2 sin x ≥ 1
2x3 in the interval [0, π/2], taking qj = −pj =

3
√

2c/j, we see that both (pj)j , (qj)j belong to �2, and (18) is satisfied, so that
Corollary 23 applies with K = ∅.

Furthermore, for every � ∈ Z with |�| sufficiently large, we can see that
the constants p� = −π/2+2�π, q� = π/2+2�π satisfy (18), for every j ∈ N+.
Thus, we can replace a finite number of couples (pj , qj) with some couples
(p�, q�). Such a replacement must be performed only for a finite number of
indices j ∈ N+, since we need to guarantee that the new sequences (pj)j

and (qj)j remain in �2. Recalling that the so found solution of problem (P )
must satisfy (22), then we conclude that (P ) admits an infinite number of
solutions.

Example 26. Let, for every k ∈ N+,

fk(t, x) = − xk

1 + k|xk| + hk(t, x),

and assume that there is a c ∈ ]0, 1[ such that

|hk(t, x)| ≤ c

k
, for every (t, x) ∈ [0, T ] × �2.

Then, f : [0, T ]×�2 → �2 is well defined and taking qk = −pk = c
(1−c)k , we see

that both (pk)k, (qk)k belong to �2, and (19) is verified, so that Corollary 23
applies with J = ∅.

Example 27. Let (an)n and (σn)n be sequences of positive numbers in �2 and
let, for every n ∈ N+,

fn(t, x) = −an sin
(

2πxn

σn

)
+ hn(t, x).

If hn satisfies

sup
{
|hn(t, x)| : (t, x) ∈ [0, T ] × �2

}
< an, (24)

we see that, for every n ∈ {1, . . . , N}, it is possible to find pairs of constant
lower and upper solutions

αn ∈
{σn

4
+ mσn : m ∈ Z

}
, βn ∈

{
−σn

4
+ mσn : m ∈ Z

}
.

Then, for each equation, we have both well-ordered and non-well-ordered
pairs of lower/upper solutions. Applying Corollary 23 we thus get the exis-
tence of infinitely many solutions of problem (P ). By the same argument in
Example 12, we notice that, even if the function h(t, x1, x2, . . . ) is σn-periodic
in each variable xn, the solutions we find are indeed geometrically distinct.
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Remark 28. This result should be compared with the ones in [4,11], where
one or two geometrically distinct solutions were found assuming a Hamilton-
ian structure of the problem, i.e.,

hn(t, x) =
∂V
∂xn

(t, x),

for some function V(t, x1, x2, . . . ) which is σn-periodic in each variable xn.
It was said in the final section of [11] that it remained an open problem to
know if the existence of more than two T -periodic solutions could be proved,
and in [4] that “it would be natural to conjecture the existence of infinitely
many T -periodic solutions”. It is interesting to notice that even in [4,11], to
recover some compactness, it was assumed that the sequence of the periods
(σn)n belongs to �2.

Remark 29. For any choice of a partition (J ,K) of N+, we can consider
functions f satisfying the requirements of Examples 24, 25 or 27 for every
j ∈ J and of Examples 26 or 27 for every k ∈ K. Corollary 23 applies also in
this case.

In the next section, we provide some preliminary lemmas, which will be
used in order to prove Theorem 21.

4.1. Some Compactness Lemmas

For every sequence τ = (τn)n∈N+ contained in [0, T ] and every function u ∈
C([0, T ],H), define the function Pτu : [0, T ] → H as

(Pτu)n(t) =
∫ t

τn

un(s) ds, n ∈ N+.

We will need the following extension of [11, Lemma 3.2].

Lemma 30. Let E ⊆ C([0, T ],H) be such that the set

A = {u(t) : u ∈ E, t ∈ [0, T ]}
is precompact in H. Then the set

Σ =
{
Pτu : τ ∈ [0, T ]N+ , u ∈ E

}
is precompact in C([0, T ],H). As a consequence, the set

Ξ =
{
Pτu(t) : τ ∈ [0, T ]N+ , u ∈ E, t ∈ [0, T ]

}
is precompact in H.

Proof. Fix ε > 0. Since A is precompact, there exist v1, . . . , vm in H such
that

A ⊆
m⋃

ι=1

B(vι, ε). (25)

Let V = Span(v1, . . . , vm), and denote by Q : H → V the corresponding
orthogonal projection. We first prove that the set

R =
{
Pτ (Qu) : u ∈ E, τ ∈ [0, T ]N+

}
is precompact in C([0, T ], V ).
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The set Q(A) is precompact in V and hence bounded; there exists a real
constant D such that

|Qu(t)| < D, for all u ∈ E and t ∈ [0, T ]. (26)

Moreover, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ],

|(Pτ (Qu))n(t)| =
∣∣∣∣
∫ t

τn

(Qu)n(s) ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

τn

|(Qu)n(s)|ds

∣∣∣∣ , n ∈ N+

and consequently

|Pτ (Qu)(t)|2 =
∞∑

n=1

|(Pτ (Qu))n(t)|2 ≤
∞∑

n=1

∣∣∣∣
∫ t

τn

|(Qu)n(s)|ds

∣∣∣∣
2

≤
∞∑

n=1

(∫ T

0

|(Qu)n(s)|ds

)2

;

by the Hölder Inequality and the use of the Monotone Convergence Theorem,
recalling (26),

∞∑
n=1

(∫ T

0

|(Qu)n(s)|ds

)2

≤ T

∞∑
n=1

∫ T

0

|(Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|(Qu)n(s)|2 ds

= T

∫ T

0

|Qu(s)|2 ds < T 2D2,

and then

|Pτ (Qu)(t)| ≤ TD.

Since V is finite dimensional, the set S = {w(t) : w ∈ R} ⊆ V is precompact.
On the other hand, for every u ∈ E, τ ∈ [0, T ]N+ and every t1, t2 ∈ [0, T ]
with t1 < t2, we have

|Pτ (Qu)(t1) − Pτ (Qu)(t2)|=
∣∣∣∣
∫ t2

t1

(Qu)(s) ds

∣∣∣∣≤
∫ t2

t1

|(Qu)(s)|ds ≤ D(t1 − t2),

so that R is equi-uniformly continuous as a subset of C([0, T ], V ). By the
Ascoli–Arzelà Theorem, the set R is precompact in C([0, T ], V ).

Consequently, there exist f1, . . . , f� in C([0, T ], V ) such that

R ⊆
�⋃

ι=1

B(fι, ε). (27)
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Now, for every u ∈ E, τ ∈ [0, T ]N+ and t ∈ [0, T ], by (25),

|Pτu(t) − Pτ (Qu)(t)|2 =
∞∑

n=1

|(Pτu)n(t) − (Pτ (Qu))n(t)|2

≤
∞∑

n=1

∣∣∣∣
∫ t

τn

|un(s) − (Qu)n(s)|ds

∣∣∣∣
2

≤
∞∑

n=1

T

∫ T

0

|un(s) − (Qu)n(s)|2 ds

= T

∫ T

0

∞∑
n=1

|un(s) − (Qu)n(s)|2 ds

= T

∫ T

0

|u(s) − (Qu)(s)|2 ds ≤ T 2ε2,

and so

|Pτu(t) − Pτ (Qu)(t)| ≤ Tε.

On the other hand, since Pτ (Qu) ∈ R, by (27) there exists ῑ such that

‖Pτ (Qu) − fῑ‖∞ < ε;

hence

|Pτu(t) − fῑ(t)| ≤ |Pτu(t) − Pτ (Qu)(t)| + |Pτ (Qu)(t) − fῑ(t)|
≤ εT + ε = ε(T + 1).

We have thus shown that, given ε > 0, there are f1, . . . , f� in C([0, T ],H)
such that

Σ ⊆
�⋃

ι=1

B(fι, (T + 1)ε),

hence proving that Σ is precompact.
The fact that Ξ is precompact in H now follows again from the Ascoli–

Arzelà Theorem, recalling that this theorem gives a necessary and sufficient
condition for precompactness. �

Let us denote by ΠN : H → H the projection

ΠN (x) = (x1, . . . , xN , 0, 0, . . . ). (28)

Lemma 31. Let A be a compact subset of H. Then, for every ε > 0, there is
a M ≥ 1 such that, for every a = (an)n∈N+ in A,

∞∑
n=M

|an|2 ≤ ε2.

In particular, limN→∞(ΠN − Id)x = 0 uniformly for x ∈ A.
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Proof. By contradiction, let there exist an ε > 0 such that, for every M ≥ 1,
there is aM = (aM

n )n∈N+ ∈ A such that
∑∞

n=M |aM
n |2 > ε2. By compactness,

the sequence (aM )M∈N+ has a subsequence, for which we keep the same
notation, such that aM → a∗, for some a∗ ∈ A. Let M∗ be any positive
integer. Then, taking M ≥ M∗ sufficiently large,( ∞∑

n=M∗

|a∗
n|2
)1/2

≥
( ∞∑

n=M

|a∗
n|2
)1/2

≥
( ∞∑

n=M

|aM
n |2
)1/2

−
( ∞∑

n=M

|aM
n − a∗

n|2
)1/2

≥ ε − ‖aM − a∗‖�2 ≥ ε

2
.

We thus get a contradiction with the fact that a∗ ∈ H. �
As an immediate consequence, we find the following compactness prop-

erty.

Lemma 32. Let A be a compact subset of H. Then, the set

AP :=
⋃

N∈N+

ΠNA

is precompact in H.

Proof. Let us consider a sequence (xn)n∈N+ contained in AP .
If there exists N0 ∈ N+ and a subsequence (xn�

)� such that xn�
∈ ΠN0A

for every �, then the conclusion is reached since ΠN0A is compact.
If the previous situation does not arise, then we can find a diverging

sequence (N�)� ⊂ N+ and a subsequence (xn�
)� such that xn�

∈ ΠN�
A for

every �. So, there is a sequence (yn�
)� ⊆ A such that xn�

= ΠN�
yn�

. Since A
is compact, then, up to a subsequence, we have yn�

→ ȳ ∈ A. Hence,

|xn�
− ȳ| ≤ |xn�

− yn�
| + |yn�

− ȳ| ≤ |(ΠN�
− Id)yn�

| + |yn�
− ȳ| → 0,

where Lemma 31 has been applied. �
Remark 33. The above statements have been formulated for a Hilbert space
H. We will apply them also treating the previously introduced Hilbert spaces
HK and HJ .

4.2. Proof of Theorem 21

We consider, for every N ∈ N+, the auxiliary system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 = f1(t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )
...

ẍN = fN (t, x1, . . . , xN , αN+1(t), αN+2(t), . . . )
ẍN+1 = 0
ẍN+2 = 0

...
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We recall the projections ΠN , introduced in (28), and define the function

Π̂N : C([0, T ],H) → C([0, T ],H) (29)

Π̂Nx(t) = (x1(t), . . . , xN (t), αN+1(t), αN+2(t), . . . ). (30)

The auxiliary problem can then be written as

(P̂N )

{
ẍ = ΠNf(t, Π̂Nx(t)),
x(0) = x(T ), ẋ(0) = ẋ(T ).

Notice that

(t, Π̂NxN (t)) ∈ E , for every N ∈ N+ and t ∈ [0, T ]. (31)

By Theorem 10, for every N ∈ N+, there is a solution xN (t) of (P̂N ) such
that (Wj) and (NWk) hold for every j ∈ J ∩ [1, N ] and k ∈ K ∩ [1, N ]. We
impose

xN
n (t) = 0, for everyn > N and t ∈ [0, T ]. (32)

Arguing as in the proof of Proposition 14, cf. (10) and (11), we conclude that
xN satisfies

{xN
j (t) : t ∈ [0, T ]} ⊆ [−dj , dj ],

{xN
k (t) : t ∈ [0, T ]} ∩ [−dk, dk] �= ∅,

for every k ∈ K and j ∈ J . Concerning the indices j ∈ J , we thus have

xN
J (t) ∈ DJ :=

∏
j∈J

[−dj , dj ], (33)

for every N ∈ N+ and t ∈ [0, T ].
Now, we repeat the arguments of Proposition 14 with a slight modifica-

tion. Given the solution xN of (P̂N ), we can compute

‖x̃N
K ‖22 ≤

(
T

2π

)2

‖ẋN
K ‖22 ≤

(
T

2π

)2

C
√

T‖x̃N
K ‖2,

so that ‖x̃N
K ‖H1 ≤ C1 and ‖x̃N

K ‖∞ ≤ C0 for some constants C1 and C0.
Recalling the validity of (33), we can find a sequence τN

K = (τN
k )k∈K ⊂

[0, T ] such that

|xN
k (τN

k )| ≤ dk, for every k ∈ K. (34)

Then, we can prove that the sequence (xN
K )N∈N+ is uniformly bounded. In-

deed,

|xN
K (t)|2 =

∑
k∈K

|xN
k (t)|2 =

∑
k∈K

∣∣∣∣∣xN
k (τN

k ) +
∫ t

τN
k

ẋN
k (s) ds

∣∣∣∣∣
2

≤ 2
∑
k∈K

⎛
⎝|xN

k (τN
k )|2 +

∣∣∣∣∣
∫ t

τN
k

ẋN
k (s) ds

∣∣∣∣∣
2
⎞
⎠

≤ 2
∑
k∈K

d2k + 2T‖ẋN
K ‖22 ≤ 2

∑
k∈K

d2k + 2TC2
1 =: �2,
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Then, choosing B = {(t, x) ∈ E : |xK| ≤ �} and recalling (31) and that fK
is completely continuous in E , we notice that the set A = {fK(t, Π̂NxN (t)) :
N ∈ N+, t ∈ [0, T ]} ⊆ fK(B) is precompact. Then, using Lemma 32, we de-
duce that the set {ẍN

K (t) : N ∈ N+, t ∈ [0, T ]} is precompact. By periodicity,
there exists a sequence tNK = (tNk )k∈K such that ẋN

k (tNk ) = 0 for every k ∈ K.
Writing

ẋN
k (t) = ẋN

k (tNk ) +
∫ t

tN
k

ẍN
k (s) ds =

∫ t

tN
k

ẍN
k (s) ds =

(
PtN

K
ẍN

K
)
(t),

we deduce from Lemma 30 that the set {ẋN
K (t) : N ∈ N+, t ∈ [0, T ]} is

precompact.
Finally, we prove that also the set {xN

K (t) : N ∈ N+, t ∈ [0, T ]} is
precompact. Recalling the sequence τN

K = (τN
k )k∈K in (34), we can write

using the notation of Sect. 4.1,

xN
K (t) = ξN

K +
(
PτN

K
ẋN

K
)
(t), where ξN

K := (xN
k (τN

k ))k∈K.

By construction ξN
K ∈ DK :=

∏
k∈K[−dk, dk], so that, by Lemma 30, we con-

clude that both the addenda are in a compact set. Hence there is a compact
set D̂K such that

xN
K (t) ∈ D̂K, for everyN ∈ N+ and t ∈ [0, T ]. (35)

We can now prove similar properties for the components of xN (t), and their
derivatives, with indices j ∈ J . At this step, the continuity of fJ is suf-
ficient. Indeed, from (33) and (35), the compactness of {fJ (t, Π̂NxN (t)) :
N ∈ N+, t ∈ [0, T ]} follows. Then, arguing as above, we can prove that both
{ẍN

J (t) : N ∈ N+, t ∈ [0, T ]} and {ẋN
J (t) : N ∈ N+, t ∈ [0, T ]} are precom-

pact.
Consider now the sequence (uN )N∈N+ of functions uN : [0, T ] → H ×H

defined by

uN (t) = (xN (t), ẋN (t)).

By the above arguments, the sequence (uN )N∈N+ takes its values in a compact
set, and it is equi-uniformly continuous. By the Ascoli–Arzelà Theorem there
exists a subsequence, for which we keep the same notation, which uniformly
converges to some u∗ : [0, T ] → H×H. Writing u∗(t) = (x∗(t), y∗(t)), we have
that (xN , ẋN ) uniformly converges to (x∗, y∗). In particular x∗(0) = x∗(T ),
y∗(0) = y∗(T ). Rewriting the differential equation in (P̂N ) as a planar system,
we have

(Q̂N )

{
ẋ = y,

ẏ = ΠNf(t, Π̂Nx(t)),

or equivalently

u̇ = FN (t, u),
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where FN (t, x, y) = (y,ΠNf(t, Π̂Nx(t))). The corresponding integral formu-
lation is then

u(t) = u(0) +
∫ t

0

FN (s, u(s)) ds. (36)

System (Q̂N ) has a solution uN = (xN , ẋN ) such that uN (0) = uN (T ) for
every N ∈ N+. We want to show that

FN (t, uN (t)) → F (t, u∗(t)), uniformly in t ∈ [0, T ], (37)

where F (t, x, y) = (y, f(t, x)). Fix ε > 0; for N sufficiently large, we have

|FN (t, uN (t)) − F (t, u∗(t))| ≤ |yN (t) − y∗(t)| + |ΠNf(t, Π̂NxN (t)) − f(t, x∗(t))|
≤ ε + |ΠNf(t, Π̂NxN (t)) − f(t, Π̂NxN (t))| + |f(t, Π̂NxN (t)) − f(t, x∗(t))|.

Since {Π̂NxN (t) : N ∈ N+, t ∈ [0, T ]} is precompact, cf. (33) and (35), then
by continuity {f(t, Π̂NxN (t)) : N ∈ N+, t ∈ [0, T ]} is precompact, too. So,
by Lemma 31, for N sufficiently large,

|ΠNf(t, Π̂NxN (t)) − f(t, Π̂NxN (t))| = |(ΠN − Id)f(t, Π̂NxN (t))| ≤ ε.

Moreover,

|Π̂NxN (t) − ΠNxN (t)| = |(0, . . . , 0, αN+1(t), αN+2(t), . . . )| (38)
≤
∑∞

n=N d2n → 0, as N → ∞. (39)

Then, applying Lemma 31,

|Π̂NxN (t) − x∗| ≤ |Π̂NxN (t) − ΠNxN (t)| + |ΠNxN (t) − xN (t)|
+|xN (t) − x∗(t)| → 0,

as N → ∞, so that by continuity, for N large enough,

|f(t, Π̂NxN (t)) − f(t, x∗(t))| ≤ ε.

Summing up, if N is large, then

|FN (t, uN (t)) − F (t, u∗(t))| ≤ 3ε, for every t ∈ [0, T ],

thus proving (37). Passing to the limit in (36), we get

u∗(t) = u∗(0) +
∫ t

0

F (s, u∗(s)) ds,

and so x∗(t) is a solution of (P ). The conditions (Wj) and (ÑW k) are easily
seen to be preserved in the limit process. The proof is thus completed. �

5. Final Remarks

In this final section, we briefly outline some possible extensions of the previous
results.
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1. The boundedness assumption on the function fK(t, x) could be replaced
by a nonresonance condition with respect to the higher part of the
spectrum of the differential operator −ẍ with T -periodic conditions.
For instance, denoting by λ2 the first positive eigenvalue (2π/T )2, one
could assume that

−fK(t, x) = γK(t, x)x + rK(t, x),

where γK(t, x) ≤ c < λ2 and rK(t, x) is bounded. Or, more generally,
one could assume an asymmetric behaviour of the type

−fK(t, x) = μK(t, x)x+ − νK(t, x)x− + rK(t, x),

where (μK(t, x), νK(t, x)) lie below the first curve of the Fuč́ık spectrum
(here, as usual, x+ = max{x, 0} and x− = max{−x, 0}).

2. One could deal with nonlinearities of the type f(t, x, ẋ), depending also
on the derivative of x, assuming some type of Nagumo growth condi-
tion (see [5]). Such a situation has already been studied in the infinite-
dimensional setting, e.g., in [22], in the well-ordered case.

3. In this paper we defined the lower and upper solutions as C2-functions.
However, this regularity could be weakened, and different definitions
could be adopted. We do not enter into the details, for briefness, and
we refer to the book [5] for further possible developments.

4. The results of this paper hold the same for the Neumann problem{
ẍ = f(t, x),
ẋ(0) = 0 = ẋ(T ),

with almost identical proofs. Concerning the Dirichlet problem{
ẍ = f(t, x),
x(0) = 0 = x(T ),

some modifications are needed in the non-well-ordered case. Both prob-
lems have their partial differential equations analogues. We will pro-
vide in [10] an extension of Theorem 10 in a finite-dimensional abstract
setting including the case of elliptic and parabolic type systems with
different types of boundary conditions, thus generalizing the results
in [6,7,12]. However, an infinite-dimensional extension in the PDE case
remains an open problem.
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Poincaré–Birkhoff theorem. Ann. Scuola Norm. Pisa 20, 751–770 (2020)

[5] De Coster, C., Habets, P.: Two-Point Boundary Value Problems. Lower and
Upper Solutions. Elsevier, Amsterdam (2006)

[6] De Coster, C., Henrard, M.: Existence and localization of solution for elliptic
problem in presence of lower and upper solutions without any order. J. Differ.
Equ. 145, 420–452 (1998)

[7] De Coster, C., Obersnel, F., Omari, P.: A qualitative analysis, via lower and up-
per solutions, of first order periodic evolutionary equations with lack of unique-
ness. In: Canada, A., Drabek, P., Fonda, A. (eds.) Handbook of Differential
Equations, ODE’s. Elsevier, Amsterdam (2006)
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