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Abstract In this manuscript, we combine non-intrusive reduced-order models (ROMs) with space-dependent
aggregation techniques to build amixed-ROM, able to accurately capture the flowdynamics in different physical
settings. The flow prediction obtained using the mixed formulation is derived from a convex combination of
the predictions of several previously trained reduced-order models (ROMs), with each model assigned a space-
dependent weight. The ROMs incorporated in the mixed model utilize different reduction methods, such as
proper orthogonal decomposition and autoencoders, and various approximation techniques, including radial
basis function interpolation (RBF), Gaussian process regression, and feed-forward artificial neural networks.
Each model’s contribution is given higher weights in regions where it performs best and lower weights where
its accuracy is lower compared to the other models. Additionally, a random forest regression technique is
used to determine the weights for previously unseen conditions. The performance of the aggregated model is
assessed through two test cases: the 2D flow past a NACA 4412 airfoil at a 5-degree angle of attack, with the
Reynolds number ranging between 1×105 and 1×106, and a transonic flow over a NACA0012 airfoil, with the
angle of attack as the varying parameter. In both scenarios, the mixed-ROM demonstrated improved accuracy
compared to each individual ROM technique, while providing an estimate for the predictive uncertainty.

Abbreviations

AE-ANN ROM using AE as reduction and ANN as approximation
AE-GPR ROM using AE as reduction and GPR as approximation
AE-RBF ROM using AE as reduction and RBF as approximation
AE AutoEncoder
ANN Artificial neural network
CFD Computational fluid dynamics
DNS Direct numerical simulation
FOM Full order model
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GPR Gaussian process regression
LES Large eddy simulation
Mixed-ROM Aggregation of different ROMs
PCA Principal component analysis
POD-ANN ROM using POD as reduction and ANN as approximation
POD-GPR ROM using POD as reduction and GPR as approximation
POD-RBF ROM using POD as reduction and RBF as approximation
PODAE-ANN ROM using PODAE as reduction and ANN as approximation
PODAE-GPR ROM using PODAE as reduction and GPR as approximation
PODAE-RBF ROM using PODAE as reduction and RBF as approximation
PODAE Mixed reduction with proper orthogonal decomposition and AutoEncoder
POD Proper orthogonal decomposition
RANS Reynolds–averaged Navier–Stokes
RBF Radial basis function interpolation
RF Random forest regressor
ROM Reduced order model
XMA Space-dependent aggregation model

List of symbols

(·)eval Variable in the evaluation database
(·)test Variable in the test database
(·)train Variable in the train database
α Angle of attack
η Set of independent features on which the aggregation prediction depends
μ Parameters considered in the specific test case
∇ Gradient operator
∇· Divergence operator
∇× Curl operator
φi i−th POD spatial mode
a(μ) Parametrized reduced representation of a generic field
Ei j (i j)th component of the averaged strain rate tensor
s(μ) Generic parametric field
u Velocity field
x Spatial coordinates
� Laplacian operator
ŝ Random variable notation (used for uncertainty analysis)
‖·‖l2 norm in vectorial space l2

A Approximation mapping in ROMs
D Decoder part in the AutoEncoder
E Encoder part in the AutoEncoder
I Domain of research of hyperparameter σp
M Set of non-intrusive ROMs considered in aggregation
R Reduction mapping in ROMs
RAE Reduction mapping produced with the AE in PODAE strategy
RPOD Reduction mapping produced with the POD in PODAE strategy
Ri j (i j)th component of the Reynolds stress tensor
K Covariance function in the normal distribution of GPR
m Mean function in the normal distribution of GPR
ωi Weights associated with the i−th individual ROM in the aggregation model
σp Hyperparameter of aggregation model
s̃(mix) Prediction of the aggregation model
s̃(i) Prediction of the i−th individual ROM (used in aggregation)
E[ŝ] Expected value or variable ŝ
gi Numerator of weights associated with the i−th individual ROM in the aggregation model
nM Number of ROM models considered in the aggregation and composing set M
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Re Reynolds number
Var [ŝ] Variance associated to variable ŝ
κ Turbulent kinetic energy
νt Eddy viscosity
ν Kinematic viscosity
� Bounded domain
∂� Boundaries of domain �
C f Skin friction coefficient coefficient
Cp Pressure coefficient coefficient
P Number of parameters (dimension of vector μ)
p Pressure field
rmed Medium dimension (or reduced POD dimension) in mixed reduction PODAE
ndof Number of spatial degrees of freedom in high-fidelity simulations
Neval Number of snapshots used to build the aggregation model (evaluation database)
Ntrain Number of snapshots used to train the ROMs (train database)
Ntest Number of snapshots used to test the aggregation model (test database)
r Reduced (or latent) dimension used in non-intrusive ROMs

1 Introduction

Thanks to the constantly increasing computational resources provided by modern hardware architectures,
computational fluid dynamics (CFD) has become a fundamental tool for the design processes of the aeronautical
industry [43].

In the last few years, great improvements have been made in using scale-resolving simulations such as
large-eddy simulations (LES) for real-world aeronautical applications of CFD [13,14]. However, for full-scale
problems such as full wings or fuselage of operating airplanes, their computational cost is still prohibitive in
terms of CPU time even with the intensive use of powerful supercomputers. Consequently, with the additional
cost of a reduced accuracy in the smallest details of the flow field, the use of Reynolds-averaged Navier–Stokes
(RANS) equations still represents the most common technique to deal with turbulent flows in the aerospace
industry. Even if RANS are much less expensive from a computational point of view with respect to LES,
they may still require a high computational effort for design processes, which require repeated queries of the
CFD model for computing the performance of new geometries and configurations. This is even more true if
such computations are performed within an optimization algorithm to find optimal designs. In such case, the
use of reduced-order modeling (ROM) can significantly improve the computational efficiency of the overall
algorithm with a small loss in terms of accuracy. In other words, LES, RANS and ROMs for RANS are in this
way ordered for decreasing computational cost. Depending on the different tasks required by the industrial
needs, one or the other can be used in order to simulate the aerodynamics of aeronautical vehicles.

The general paradigm ofmodel order reduction is the offline-online procedure. The offline stage is typically
expensive and time-consuming. It is usually performed on supercomputers and it allows to collect the flow
solutions, named snapshots, from a large number of high-fidelity simulations, named full-order model (FOM).
The online stage is instead considerably faster than the first one and it consists in performing a linear or
nonlinear projection of the solutions’ manifold into a space of reduced dimensionality.

We focus here on the use of ROMs for RANS, which are particularly suitable for applications where many
queries in the parametric space are required, or for scenarios where real-time response is needed. Whereas
using ROMs on LES or DNS data is still quite limited due to the large amount of degrees of freedom involved
and the strongly multi-scale character of the flow, predicting unseen configurations via ROMs for RANS is
much more doable and common in the reduced-order modeling community [17,18,56–58]. More in detail,
ROMs can be divided into two distinct classes: non-intrusive ROMs, which are only built upon data, and
intrusive ROMs, which consist in the resolution of a reduced and simplified version of the physical model of
interest.

In this project, we restrict our analysis to non-intrusive (i.e., purely data-driven) ROMs. This approach
typically employs a reduction step to reduce the snapshots, and an approximation technique, to predict the
reduced solution for an unseen configuration. These methods have been applied in the past decade in a large
variety of different CFD applications showing promising results in approximating the flow dynamics only
starting from data. Some examples of applications of ROMs for RANS are: industrial problems with a design
optimization goal [7,22,47,48], incompressible [17,18] and compressible turbulent flows [37,53,54,56–58].
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Thus, we focus hereafter on the use of ROMs for RANS over two different airfoil configurations, namely, a
NACA4412 in subsonic conditions and a transonicNACA0012 test case. Both cases representwell-documented
benchmarks often used in the literature to validate RANSmodels [12,19,33,49]. Specifically, we consider here
a set of alternative non-intrusive reduced-order models corresponding to different reduction methodologies
and approximations in the latent space. It will be shown that such models perform differently in approximating
the reference RANS solution in different regions of the computational domain, and it is often difficult to select
a-priori a single best-performing ROM for all configurations. Such uncertainty in the ROM choice may be
critical in view of their use for further design processes, and should be quantified and, if possible, reduced.

For that purpose, we propose here a novel approach to further improve reduced-order modeling accuracy
while quantifying uncertainty, by constructing a spatially dependent convex linear combination of different
ROMs depending on their agreement with the reference full-order model. In many problems of interest, it
might be difficult to know a-priori which combination of reduction and approximation techniques might be
the best in the whole spatial and parametric domain. The typical approach involves testing different models,
different architectures, and tuning different hyperparameters until a sufficiently satisfying model is obtained.
Such a task is however rather arbitrary and time consuming. The methodology proposed in the following is not
only able to identify automatically the optimal model combination, but it can also further improve the overall
accuracy by using the information obtained from all the alternative models. For example, nonlinear reduction
techniques might be a reasonable choice for advection-dominated problems. However, such techniques might
be so finely trained in capturing sharp features such as shock waves and boundary layers that they end up
lacking accuracy in smoother regions of the flow where, instead, linear techniques might be more suitable. In
practice, complex flows contain various physical processes leading to competing requirements for the ROM
to be used.

An efficient framework for combining a set of alternative models based on their merit is the model aggrega-
tion framework [8,10,44], which aims at combiningmultiple predictions stemming from variousmodels—also
termed experts or forecasters—to provide a global, enhanced, solution. A solution that provides a spatially
constant weighting of competing model predictions being not optimal, is not optimal itself because the accu-
racy of the models varies according to the local flow physics. Therefore, it becomes interesting to combine
the model aggregation approach with so-called mixture-of-local-experts techniques [23], also referred-to as
mixture-of-experts [55] or mixture models. In such approaches, the input feature space (covariate space) is
softly split into partitions where the locally best-performing models are assigned higher weights. The soft
partitioning is accomplished through parametric gate functions, or a network of hierarchical gate functions
[25] that rank the model outputs with probabilities. However, mixture-of-experts tend to promote a single best
model in every soft partition, thus accounting for the spatial variation of the best model but neglecting the
uncertainty in model choice. A methodology combining the model aggregation and the mixture-of-experts
ideas has been recently introduced by De Zordo Banliat et al. [59], who applied it to optimally combine a set
of competing RANS models depending on some local flow features. The approach, named space-dependent
model aggregation (XMA), was specifically designed to improve the prediction over individual component
models. In this work, we build on the XMA framework, and we propose a space-dependent aggregation model
for combining ROMs.

The new methodology is tested on the two above-mentioned airfoil configurations. A variety of differ-
ent analyses such as varying the dimensions of the latent space, and the influence of the chosen reduc-
tion/approximation techniques are presented in order to assess the robustness and suitability of the proposed
approach for the prediction of external turbulent aerodynamics problems.

2 Numerical methods

The use of RANS is extremely widespread in the aeronautical industry. Here we simply considered well-
establishedmodels and set-ups as full-ordermodels. Consequently, we focus this sectionmore on non-intrusive
ROMs and the aggregation algorithm to combine them. Non-intrusive ROMs, described in Sect. 2.1, are
employed to predict an approximated version of the full-order fields for unseen operating conditions with
a considerably reduced computational cost. The predictions of different ROMs are then combined together
with a model mixture technique, deeply explained in Sect. 2.2.
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2.1 Non-intrusive reduced-order models

This part of the manuscript is dedicated to the presentation of the theory behind the non-intrusive model order
reduction technique. This approach is fully data-based, namely it only exploits the information provided by
high-fidelity simulations without any a-priori knowledge on the equations or numerical scheme used for the
high-fidelity simulations. Therefore, in this framework, the governing equations are only used at the full-order
level to perform the offline simulations.

The original full-order solutions, named snapshots, correspond to the fields of interest of our problem and
each snapshot is related to a specific set of parameters, i.e., a specific simulation setup. For instance, in both
test cases we will consider the pressure and wall shear stress fields acting on the airfoil, and the velocity and
pressure fields evaluated in the 2D space around the airfoil.

We consider a generic field s and a number of parameters P . We call si = s(μi ) the i-th snapshot, having
as μi ∈ R

P the corresponding set of parameters. We can then assemble the following snapshots’ matrix:

S =
⎡
⎣

| | |
s1(x) s2(x) . . . sNtrain(x)

| | |

⎤
⎦ ∈ R

ndof×Ntrain

where ndof is the number of degrees of freedom (equal for each snapshot), and Ntrain is the number of snapshots.
In particular, ndof is the number of cells on the airfoil 1D surface (when considering as snapshots the pressure
and wall shear stress acting on it), and the number of cells in the 2D external mesh (when considering the
pressure and velocity fields around the airfoil).

The question which is addressed by ROMs is the following.

Question 1: “How can we find the approximation s̃(μ∗) � s(μ∗) where μ∗ represents an unseen configura-
tion?"

The procedure to address the above-mentioned task is composed of two steps: a reduction step, performing
a compression onto a space with reduced dimensionality, and an approximation step, where interpolation or
regression techniques are used to predict the reduced representation for unseen parameters. Finally, the reduced
representation is backmapped into the full-order space to find the approximated full-dimensional solution.

2.1.1 Reduction techniques

This first step consists in a linear or nonlinear mapping of the original matrix of snapshots onto a matrix with
reduced dimensions. In the following part we will refer to the reduction step with the mapping R. So, the
problem here addressed is the following.

Question 2: “How can we find a reduced representation a(μi ) of each s(μi )?"
We consider here two different reduction techniques: a linear one, the proper orthogonal decomposition

(POD), and a nonlinear one, the autoencoder (AE).

Reduction through Proper Orthogonal Decomposition The POD [1,5,27] consists in the projection of the
snapshots’ matrix onto a space spanned by a limited number of the so-called modes, which can be computed
either via the correlation matrix or through a singular value decomposition (SVD) technique [28,51] in the
offline stage. Themain hypothesis of the POD is that each snapshot can be approximated as a linear combination
of the modes:

si �
r∑

j=1

a j (μi )φ j ,

where {φ j }rj=1 are the modes and r � Ntrain. The parameter r is established a-priori based on energy criteria
and/or the singular values decay. The terms {a j (μi )}rj=1 are the reduced coefficients associatedwith themodes.

When the SVD factorization is employed, we will have S = U�VT , where the columns of U are the POD
modes and the operation UT si = a(μi ) provides the reduced representation.
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s(µ) Encoder
E a(µ) Decoder

D s̃(µ)

Fig. 1 General structure of an autoencoder

Reduction through Autoencoder Autoencoders are a family of neural networks that have become popular as
dimensionality reduction technique [11,15,21,26,29,40] thanks to their peculiar architecture. Indeed, AEs are
composed of two networks, as shown in Fig. 1: an encoder E : Rndof → R

r, which maps the high-dimensional
input into a latent space (the reduced space), and a decoder D : Rr → R

ndof , which back-maps the latent
representation onto the original full dimensionality.

Autoencoders can be composed by either convolutional or dense layers, but in this work we focus on dense
feed-forward neural networks for both the encoder and the decoder.

For instance, we consider a single-layer structure for both the decoder and the encoder, we call W and b
the weights’ matrix and bias for network E , and W′ and b′ the weights’ matrix and bias for network D. Then,
considering the activation functions σ and σ ′ for E and D, respectively, we obtain the following formulation:

E(s(μ)) = σ(Ws(μ) + b) = a(μ),

D(a(μ)) = σ ′(W′a(μ) + b′) = s̃(μ) � s(μ).

The general structure with more hidden layers can be easily derived from the above formulation.
In the training of the AE, the loss function which is minimized is the following:

1

Ntrain

Ntrain∑
i=1

(‖s(μi ) − s̃(μi )‖2l2
) = 1

Ntrain

Ntrain∑
i=1

(‖s(μi ) − σ ′(W′(σ (Ws(μ) + b)) + b′)‖2l2
)
, (1)

where s̃(·) is the approximated high-fidelity field and s(·) is the ground truth.

Reduction through PODAE The mixed approach PODAE consists in a two-step reduction, where the total
mapping R : Rndof → R

r is expressed as R = RAE ◦ RPOD.
The first reductionRPOD : Rndof → R

rmed is, in general, the most expensive from a computational point of
view. In our case, it coincides with the POD retaining all the modes, namely rmed ≡ Ntrain. On the other hand,
the second reduction RAE : Rrmed → R

r is operated by an autoencoder.
The reason for employing such a reduction technique is the considerable gain in the computational time

with respect to a purely nonlinear AE. The computational effort needed to train an autoencoder is, in fact,
much higher than in the case of a mixed nonlinear approach. However, since the PODAE includes a nonlinear
mapping, it allows to capture complex behaviors that the POD alone would not describe properly. In Sect. 3,
we will employ this technique when ndof is of the order of magnitude of 106.

It is important to highlight that in all the numerical tests we considered the same latent dimension for both
the POD, the AE and the PODAE techniques.

2.1.2 Approximation techniques

Once we have all the reduced representations of the snapshots, we can address the final task.

Question 3: “How canwe find the reduced representation a(μ∗), starting from the knowledge of {a(μi )}Ntrain
i=1 ?"

which can be also written as: “Which is the mapping A : Rp → R
r such that a(μi ) = A(μi )?"
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We here consider different types of mapping A: a radial basis function (RBF) interpolation technique, a
Gaussian process regression (GPR) technique, and a feed-forward artificial neural network (ANN).We provide
in the following part a summary of the above-mentioned techniques, without going through all the details.

Radial Basis Function Interpolation Following the RBF [36] technique, the unknown coefficients are com-
puted as follows:

A(μ∗) = a(μ∗) =
Ntrain∑
i=1

ωiϕ(‖μ∗ − μi‖), (2)

where ϕ(‖μ∗ − μi‖) are the radial basis functions having center μi and weight ωi . The weights are found
considering known conditions, namely Eq. (2) with μ∗ = μ j , j = 1, . . . ,Ntrain. More details about the kernel
are provided in the supplementary section.

Gaussian Process Regression The GPR [52] is a supervised learning technique that exploits a stochastic
model to build the regression functionA. In particular, the GPRmodel assumes that the regression function that
relates the inputs μ to the outputs a is drawn from a Gaussian process with mean function m and covariance
function K:

A(μ) ∼ N (m(μ),K(μ)), (3)

where Ki j (μ) = K(μi , μ j ). The shape of the covariance matrix, also called kernel, is chosen depending on the
particular problem of interest. The details of the kernel chosen for this work are provided in the supplementary
results’ section.

Artificial Neural Network The last approximation technique considered in this work is a regression through
a feed-forward neural network, which have been subject of a lot of research works in recent years in several
fields, and in particular in reduced-order modeling [2,16,21,41,42].

The architecture that we consider is a fully connected neural network, defined as the concatenation of an
input layer, multiple hidden layers, and a final output layer. If we isolate just an hidden layer, we can express
the i-th output of the h-th layer as follows:

ohi = σ

(nh−1∑
k=1

Wh
iko

h−1
k + bhi

)
, (4)

where σ is the activation function representing the nonlinearity of the model, Wh and bh are the weights’
matrix and the bias of the h-th layer. All weights and bias are tuned during the training procedure in order to
fit the input data, and the function can be here expressed as:Aθ (μ), where θ is the set of all the weights of the
ANN. The architecture of the ANN is reported in the supplementary results’ part.

2.2 Space-dependent aggregation methods and ROM mixture

The present subsection of the article is dedicated to the explanation of the logic of the space-dependent model
aggregation (XMA) [6,59]. The main principle is to mix models into an “hypermodel” (the model mixture)
with improved predictive capabilities with respect to the mixture components themselves.

We call the set of all the models taken into account for the mixtureM = {M1, M2, . . . , MnM }, where nM
is the number of models we are considering.

In our case, eachMi correspond to a non-intrusive reduced-ordermodel, characterized by specific reduction
technique R and approximation technique A, i.e., Mi = M(R,A).

Moreover, we can write the prediction of each model Mi as follows:

s̃(i)(η) = s̃(η, Mi ), i = 1, . . . , nM ,

where η is the set of independent features on which the prediction depends, in our case the space coordinates
and the ROM parameters: η = [x, μ].
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The model mixture is based on the assumption that the aggregated prediction can be written as a convex
combination of the given models, namely:

s̃(mix)(η) =
nM∑
i=1

ωi (η)s̃(i)(η), (5)

where {ωi (η)}nMi=1 are the weights’ distribution associated with each model.
In particular, the weights have to satisfy the following conditions:

ωi (η) ∈ [0, 1],
nM∑
i=1

ωi (η) = 1 ∀η .

At this point, it is important to specify that we split the original dataset of parameters and snapshots
{(μi , si )}Ntot

i=1 into the following three parts:

• a training set, used to train all the reduced-order models in M, composed of Ntrain components;
• an evaluation set, used to compute the optimal weights {ωi (η)}nMi=1, composed of Neval components;
• a test set, composed of Ntest components and used to compare the results among the single models and the
mixture. In this set, the weights are computed with a regression technique.

For the sake of clarity, in the following part, we will indicate the parameters and snapshots in the evaluation
set as ηeval and seval, respectively, omitting the dependency on the parameters in the snapshots’ notation. The
same is done for elements in the test set, where we indicate parameters and snapshots as ηtest and stest.

The key question that we have to address now is:

Question 4: “How can we compute the weights in the evaluation set in an optimal way?"
We consider the following expression for the weights [59]:

ωi (ηeval) = gi (ηeval)∑nM
j=1 g j (ηeval)

, where g j (ηeval) = exp

(
−1

2

(s̃( j)eval − seval)2

σ 2
p

)
. (6)

In the above formulation, we consider ηeval = [x, μeval], where (μeval, seval) is the evaluation set. Instead, s̃
( j)
eval

is the result predicted by the j-th model. The parameter σp is evaluated in each regression with an optimization
algorithm, as in [9], in the following way:

σopt = argmin
σp∈I

Neval∑
k=1

(
(seval)k −

n∑
l=1

ωl((ηeval)k; σp)(s̃eval)k

)2

, (7)

where I is the range within which the optimal value of σp is sought. As investigated in detail in [9,59], the
algorithm (7) can be used to establish the optimal order of magnitude of σp, since it slightly influences the
results if the order of magnitude is the optimal one.

Finally, one can train a regression technique for each model considering (ηeval, ω j (ηeval)) for each j =
1, . . . , nM as data and then let the regression algorithm predict ω j (ηtest) for each j = 1, . . . , nM . Being
inspired from previous works such as [6,59], a random forest regression has been used here. However, any
regression technique may be used to address this task, such as a GPR, or a neural network for example.

Random Forest regression The random forest (RF) regression [4,30,39] is a machine learning algorithm used
for supervised regression, which relies on different hyperparameters, namely the number of trees, the criterion
for node splitting, and the minimum number of samples in a leaf. In our case, the number of trees is set to 100,
the criterion for splitting is the mean squared error, and the minimum number of samples in a leaf is set to 2.

In general, at this point there are two operative choices:

• train nM −1 regressions, having as output {ωi (η
�)}nM−1

i=1 and compute the remaining weights asωnM (η�) =
1 − ∑nM−1

i=1 ωi (η
�), for a fixed η�;

• train separately nM regressions, having as outputs the Gaussians {g j (η
∗)}nMj=1 and then normalize the

Gaussians as in (6).



Enhancing non-intrusive reduced-order models

Fig. 2 Flow chart which summarizes the procedure adopted in this article to build a space-dependent aggregation model, as a
model-of-mixture of ROMs

In this work, we adopt the second strategy. It is also important to highlight that in some cases it may happen
that the sum

∑nM
j=1 g j (ηeval) is considerably small, leading the division in Eq. (6) to be ill-conditioned. To

avoid this numerical issue, we setup a minimum value for the range I in Eq. (7) to search the optimal value of
σp. In particular, we set I = [10−3, 1].

It is also important to remark that we decided to use a random forest algorithm for the regression task,
since it has already proven to be efficient in aggregation models [6,59]. Moreover, with respect to other deep
learning strategies (artificial neural networks, for instance), it is characterized by shorter training times and
better performances in data scarcity conditions.

2.2.1 On uncertainty quantification

Thepredictions s̃(i) given by the reduced-ordermodels involved in themodel-mixture can be seen asnM possible
outcomes of a random variable ŝ, where the weights ω(i) are interpreted as the corresponding probability mass
functions [59]. We can then consider the expression in (5) as the expected value of the variable taken into
account:

E[ŝ(η)] = s̃(mix)(η) =
nM∑
i=1

ωi (η)s̃(i)(η). (8)

The random variable is also characterized by a variance written in the following form:

Var [ŝ(η)] =
nM∑
i=1

ωi (η)
(
s̃(i)(η) − E[ŝ(η)]

)2
. (9)

The variance has the meaning of indicator of agreement among the models used in the model-mixture. Indeed,
it will be larger in the space regions where the models provide considerably different outcomes and smaller
where the models predict similar results.

Now that each step of the proposed strategy has been properly introduced, the whole pipeline followed to
build the space-dependent aggregation model can be summarized as shown in the flow chart of Fig. 2.

In the numerical results’ Sect. 3, the uncertainty analysis is included both through the confidence interval
(for one-dimensional fields), and the graphical variance (for two-dimensional fields). In particular, the confi-
dence interval is evaluated considering the range [E[ŝ(η)] − 2

√
Var [ŝ(η)], E[ŝ(η)] + 2

√
Var [ŝ(η)]], which

corresponds to the 95% of confidence.
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3 Numerical results

In the present section, we present the numerical results obtained by aggregating different combinations of
ROMs for two different test cases:

(i) steady and 2D flow past a NACA 4412 airfoil, having as parameter the inlet velocity, namely the Reynolds
number. In particular, the Reynolds number is in the range [1 × 105, 1 × 106];

(ii) transonic and 2D flow past the symmetric NACA 0012 airfoil, having as parameter the angle of attack,
which varies within the range [0◦, 10◦] at fixed Reynolds number Re = 1 × 107.

The results’ section is divided into the following parts:

• description of the RANS models herein considered for both test cases, and validation of them with respect
to the high-fidelity and/or experimental counterparts (Sect. 3.1);

• analysis of the POD eigenvalues’ decay for both cases, and, brief study of the ROMs’ results (Sect. 3.2);
• presentation of the results of the aggregated models for test case 1 (Sect. 3.3.1) and 2 (Sect. 3.3.2), and
finally a brief discussion of the results, including a comparison between the performances in the two test
cases.

3.1 Full-order model description and validation

This subsection is dedicated to the presentation of the full-ordermodels considered to obtain the datasets for the
ROMs in the two test cases. The software used to perform the simulations for both cases is OpenFOAM [24],
a CFD open-source software, based on a finite-volume space discretization. The following parts, namely 3.1.1
and 3.1.2, are dedicated to the description of the single FOMs for test case 1 and 2, respectively.

3.1.1 Test case 1

The first test case is the 2D steady flow past a NACA 4412 airfoil at fixed angle of attack α = 5◦. This case is
simulated employing the Reynolds-averaged Navier–Stokes (RANS) formulation.

Themain hypothesis that characterizes the RANS approach is theReynolds decomposition [38]. This theory
is based on the assumption that each flow field can be expressed as the sum of its mean and fluctuating parts.
Such mean has different definitions depending on the case of application. Classical choices are, for example,
time averaging, averaging along homogeneous directions or ensemble averaging.

We briefly recall here the standard RANS formulation for the incompressible Navier–Stokes equations:

⎧⎪⎪⎨
⎪⎪⎩

∂ui
∂xi

= 0,

u j
∂ui
∂x j

= − ∂ p

∂xi
+ ∂(2νEi j − Ri j )

∂x j
.

(10)

In system (10), the Einstein notation has been adopted.Moreover,Ri j = u′
i u

′
j is the Reynolds stress tensor,

and Ei j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
is the averaged strain rate tensor.

The RANS formulation in (10) needs to be coupled with a turbulence model to close system (10). In
particular, we adopt the κ − ω shear stress transport (SST) model [32].

This model belongs to the class of eddy viscosity models, which are based on the Boussinesq hypothesis,
i.e., the turbulent stresses are related to the mean velocity gradients as follows:

−Ri j = 2νtEi j − 2

3
κδi j ,

where κ = 1
2u

′
i u

′
i is the turbulent kinetic energy and νt is the eddy viscosity. For the complete model, we refer

the reader to the original paper [32].
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(a) Domain and notation (b) Mesh representation

(c) Zoomed mesh around the airfoil

Fig. 3 Domain (a) and mesh (b) representation for test case 2, with a zoomed representation for the zone around the airfoil (c)

The domain and the mesh considered for this simulation are represented in Fig. 3. The domain boundaries
∂�freestream are at a distance 100 times the airfoil chord length, and so essentially in a freestream condition.
Hence, the boundary conditions are the following:

{
u = ufreestream,

p = pfreestream,
on ∂�freestream,

{
u = 0,

p = 0,
on ∂�airfoil, (11)

where the freestream condition corresponds to a mixed condition, where the mode of operation switches
between fixed value and Neumann, based on the sign of the flux. The fixed velocity value is evaluated starting
from the Reynolds number, the dataset parameter, whereas the fixed pressure value is p = 0.

The pressure–velocity coupling is treated considering the semi-implicit method for pressure-linked equa-
tions (SIMPLE) algorithm. For more details, we refer the reader to [34,35].

In order to analyze the flow behavior, in Fig. 4 we report a zoomed detail around the airfoil of the pressure
and velocity magnitude snapshots, for two values of the Reynolds number. From the snapshots’ representation
in Fig. 4, we can notice that the solutions represented by the snapshots are all characterized by a similar
behavior. Moreover, also the trend of the pressure coefficient in this test case is similar for all the parameters
taken into account, as represented in Fig. 5.

For the above-mentioned reasons, non-intrusive ROMs are particularly suitable to approximate this kind
of dataset, as we will see in Sect. 3.2.

The FOM dataset in this first test case is inspired by the AirfRANS database presented in [3], where the
reader can find more details about the FOM and the turbulence setting. The above-mentioned FOM has also
been validated with the NASA DNS and RANS high-fidelity simulations.

Indeed, in Fig. 6 we report the pressure and skin friction coefficients for the NACA 4412 airfoil at Re = 4e5
and angle of attack α = 5◦. In addition to the FOM data, we reported the DNS data [50] and the RANS
simulation data provided in [45]. Similar validation studies have been performed in other works such as [49]
and [46], where the tripping point was also taken into account in the simulation setup. We can observe a quite
good agreement between the performed RANS and the simulated data. The main difficulty for this specific test
case is the considerably high Reynolds number. Due to the predominance of advection effects in this specific
set-up, we can expect a particularly challenging test case in terms of model order reduction.

3.1.2 Test case 2

The second test case is the compressible flowpast aNACA0012 airfoil, with fixed inlet velocity at Re = 1×107

having as a parameter the angle of attack.
The domain, with the corresponding notation and mesh, is represented in Fig. 7. It is important to remark

here that the mesh is fixed for all snapshots. Within the different FOM simulations, what changes is the
orientation of the inlet velocity, depending on the angle of attack.
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Fig. 4 Examples of pressure and velocity magnitude high-fidelity snapshots for the first test case, for Re ≈ 118,000 and Re ≈
518,000
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Fig. 5 Pressure coefficient for all the elements of the database considered for the first test case, for both suction and pressure
sides of the airfoil. The orange arrows represent the direction of growing parameter Re. The legend refers only to the smallest,
medium and largest Re numbers, but all the parameters in the database are here considered
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Fig. 6 Validation of pressure (a) and upper skin friction (b) coefficients for the first type of full-order simulation. The FOM
validation is for NACA 4412 at Re = 4e5 and angle of attack α = 5◦. The reference simulations are taken from [50] (DNS) and
[45] (RANS)
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(a) Domain and notation (b) Mesh representation

(c) Zoomed mesh around the air-
foil

Fig. 7 Domain (a) and mesh (b) representation for test case 2, with a zoomed representation for the zone around the airfoil (c)

In this case, the boundary conditions read as follows:

{
u = ufreestream,

p = pfreestream,
on ∂�inlet,

⎧⎨
⎩
u = ufreestream,

∂(
∫
∂�outlet

w · pdx)
∂t

= 0,
on ∂�outlet,

{
u = 0,

∇ p · n = 0,
on ∂�airfoil,

(12)

where the pressure condition at the outlet corresponds to the wave transmission boundary condition and w is
the wave speed. The freestream conditions are mixed conditions, as in the first test case, but here the pressure
fixed value is 1 × 105 whereas the velocity inlet value has a fixed magnitude ‖ufreestream‖ ≈ 277m s−1.

The solver for the pressure–velocity coupling used in OpenFOAM is rhoPimpleFoam, which coincides
with a version of the PIMPLE algorithm for compressible flows. The PIMPLE algorithm is a combination
of the SIMPLE and PISO (pressure implicit with splitting of operator) algorithms, and it is used also for
steady-state simulations to obtain more robust convergence toward the solution with respect to the SIMPLE
counterpart.

Figure8 displays two different velocity and pressure snapshots, one for α = 0.3◦ and one for α = 4.7◦.
Among the solutions retained in the snapshots matrix, considerable differences can be observed. Such

differences can be quantified by looking at the shock location, which is clearly visible from the representation
of the pressure coefficient with respect to the variation of the angle of attack α (Fig. 9). In the comparison
between test case 1 (Fig. 5) and 2 (Fig. 9), the data variability appears significantly wider in test case 2. Indeed,
we face here an additional challenge due to the presence of shock waves which are well-known complex
features to be captured using reduced-order modeling. For this particular application, furthermore, the shock
location varies significantly within the range of angles of attack herein considered. In particular, we considered
an angle of attack varying between 0◦ to 10◦. Such a range offers many different behaviors both in terms of
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Fig. 8 Examples of FOM snapshots for the second test case, for two values of the angle of attack, α = 0.3 and α = 4.7
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Fig. 9 Pressure coefficient for the elements of the database considered for the second test case, for both suction and pressure
sides of the airfoil. The orange arrows represent the direction of growing parameter α. The legend refers only to the smallest,
medium and largest α numbers, but all the parameters in the database are here considered

boundary layer separation and shock location. Because of all the above considerations, we expect this test case
to be considerably more challenging than the first one in terms of dimensionality reduction.

A validation analysis has also been conducted for the second test case. Figure10 represents the pressure
coefficient in two different operating conditions, namely at α = 1◦ and α = 2◦. Here, the results obtained
by OpenFOAM are compared with the experimental data presented in [31] and a wall-resolved reference
simulation [20], which used the same turbulence model. The agreement is quite good, especially with respect
to the simulation taken as reference. The deviations from the experimental data are intrinsically related to
the RANS models employed. This set-up has been used precisely because different models can provide quite
different outcomes. In this scenario, it would be useful to apply the same type of RANS aggregation proposed
by de Zordo-Banliat et al. [59]. However, such improvements in terms of RANS modeling is out of the scope
of the present work and future research will be focused on improving the RANS modelization and combine it
with the reduced-order modeling strategies herein proposed.

3.1.3 Computational time

In the first test case, the CPU time required for running each full-order simulation is in the range
[2 h 30 min , 7 h], depending on the value of the Reynolds number considered. In the second test case, the CPU
time is in the interval [1 h 45 min , 3 h], depending on the angle of attack considered. The FOM simulations
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Fig. 10 Validation of pressure coefficient of the full-order model for two angles of attack: α = 1◦ (a) and α = 2◦ (b). The
FOM validation is for NACA 0012 at Mach Ma = 0.8, and the reference results are presented in [31] (experimental) and [20]
(wall-resolved reference simulation)

are all performed using 4 processor cores on SISSA HPC cluster Ulysses (200 TFLOPS, 2TB RAM, 7000
cores).

3.2 Individual ROM analysis

This part of the paper is dedicated to the analysis of the individual ROMs considered for the model mixture.
The fields considered for the model reduction can be divided into two types: (i) one-dimensional (1D) wall

variables on the airfoil (pressure and wall shear stress); (ii) two-dimensional (2D) fields in the internal mesh
(pressure and velocity magnitude).

In both the test cases taken into account, we collect the predictions of the following non-intrusive models:

• POD-RBF;
• POD-GPR;
• POD-ANN;
• AE-RBF and PODAE-RBF, for the 1D airfoil fields and the 2D mesh fields, respectively;
• AE-GPR and PODAE-GPR, for the 1D airfoil fields and the 2D mesh fields, respectively;
• AE-ANN and PODAE-ANN, for the 1D airfoil fields and the 2D mesh fields, respectively.

As above-mentioned, the nonlinear reduction approach considered for the 2D fields is the mixed technique
PODAE, instead of the pure AE. The reason is that the PODAE allows for a valuable reduction in the compu-
tational effort in the offline part, and especially in the training of the autoencoder.

Following the notation introduced in Sect. 2.2, the training dataset considered for all the data-based ROMs
is composed of Ntrain = 70 snapshots, the evaluation set of Neval = 20 elements, and the test set of Ntest = 10
elements.

Figures 11 and 12 represent the POD eigenvalues’ decays for all the variables considered and for the two
test cases, respectively.

It can be seen that the eigenvalues’ decays for all variables in the second test case is considerably slower than
in the corresponding variables in the first test case. This fact is reflected on the accuracy of the ROMs and of the
model mixture, that are presented in Sects. 3.3.1 and 3.3.2 for the first and second test cases, respectively. The
problems herein considered are consequently presented for increasing complexity in terms of dimensionality
reduction.

At this point, we address the accuracy of the individual ROMs on the ROM test set, namely the union of
the evaluation and test datasets. The two test cases are separately considered in 3.2.1 and 3.2.2.
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Fig. 11 Decay of POD eigenvalues for the 1D fields on the airfoil and for 2D fields on the computational mesh around the airfoil
for test case 1
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Fig. 12 Decay of POD eigenvalues for the 1D fields on the airfoil and for 2D fields on the computational mesh around the airfoil
for test case 2

3.2.1 Test case 1

In Figs. 13 and 14, we represent the relative errors on the ROM test set with respect to the FOM counterpart,
on the 1D wall shear stress field and on the 2D velocity magnitude field, respectively.

From both the figures, the following considerations can be drawn:

• all the individual ROMs in both the latent dimensions considered are characterized by better performances
for high values of the Reynolds parameter;

• the AE-based ROMs have similar accuracy for the two latent dimensions;
• the AE outperforms the results of the POD as a reduction approach almost everywhere in the parametric
domain when the latent dimension is small. Indeed, in this case we are in the so-called under-resolved
modal regime, namely the POD modes are not able to fully characterized the dynamics of the system.

As a comparison between the two fields (1D wall shear and 2D velocity), the results are less accurate for
the wall shear stress field, as can be seen from the order of magnitude of the errors. Indeed, it is usually a
complex field to characterize in the flow past an airfoil.

3.2.2 Test case 2

In this second test case, we represent the relative test errors for the 1D wall shear stress and the 2D pressure
fields, in Figs. 15 and 16, respectively.
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Fig. 13 Relative test errors of individual ROMs for the 1D wall shear stress magnitude field, for two different latent dimensions,
namely 3 and 10. The results are for test case 1. The shading represents the accessible area of all the reduced models’ predictions
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(b) Latent dimension= 10

Fig. 14 Relative test errors of individual ROMs for the 2D velocity magnitude field, for two different latent dimensions, namely
3 and 10. The results are for test case 1. The shading represents the accessible area of all the reduced models’ predictions

As expected, the performances of the individual ROMs are remarkably different from the first test case.
We can, hence, notice that:

• the performances of the single ROMs are more differentiated than in the first test case, and, therefore, the
accessible region by all the ROMs is bigger;

• there is not a clear trend of the errors as the parameter (the angle of attack in this case) increases;
• the AE (or PODAE)-RBF model outperforms all the other techniques in most of the parameter’s values;
• while in the first test case, the choice of the reduction is the most relevant in the ROM performance, in this
test case also the type of approximation plays an important role.

The complexity of this problem can be quantified by observing the decay of the singular values of the
snapshots’ matrix for the pressure coefficient and the wall shear stress already depicted in Fig. 12. In order to
achieve an error of 1%, in fact, at least 20 modes are needed.

In order to have a large variability between the different reduced-order models herein considered, we
decided to consider a relatively small number of latent variables (namely 3 and 10). The motivation for this
choice is twofold: first, we obviously want the latent space to be small so that we can achieve a significant
speed-up by means of ROMs. Secondly, we want to position ourselves in a case where the different ROMs
provide significantly different results. Only in this scenario, the aggregation can be beneficial.

Section 3.3 will thoroughly discuss how the different decays of the two cases will affect both the individual
ROMs and their aggregation on the overall accuracy of the proposed approach.
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Fig. 15 Relative test errors of individual ROMs for the 1D wall shear stress field, for two different latent dimensions, namely 3
and 10. The results are for test case 2. The shading represents the accessible area of all the reduced models’ predictions
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Fig. 16 Relative test errors of individual ROMs for the 2D velocity magnitude field, for two different latent dimensions, namely
3 and 10. The results are for test case 2. The shading represents the accessible area of all the reduced models’ predictions

3.2.3 Computational time

All the ROMs evaluations are performed on an Intel(R) Core(TM) i5-4570 CPU @ 3.20GHz 16GB RAM
on only one processor core. Tables 1 and 2 report the execution times of non-intrusive ROMs for offline and
online stages, respectively. It is worth remarking that the offline times do not include the FOM times, which
are reported in Sects. 3.1.1 and 3.1.2, for the two test cases, respectively. The online execution time is here the
time required by the ROM prediction in the test set. The difference in the execution times between 1D airfoil
and 2D internal fields for the reduction techniques is caused by the different initial dimension. Indeed, the
compression of the 2D fields’ snapshots’ matrix takes more time than in the 1D fields’ case.

Wealso specify that the initial dimensionof the snapshots is ndof = 965 for the 1Dairfoil fields, ndof ∼ 2.5e5
for 2D fields, in the first test case. In the second test case we have ndof = 448 for 1D fields, and ndof ∼ 2.5e5
for 2D fields. The results in terms of computational times are similar for the two test cases, so we report in the
tables the execution time only for test case 1.

3.3 Aggregation results

This section is dedicated to the results of the aggregated ROM models for the first and second test cases,
addressed in 3.3.1 and 3.3.2, respectively. The following results will also be supported by an uncertainty
analysis based on the concepts introduced in Sect. 2.2.1.
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Table 1 ROM execution times in offline stage, for all the reduction and approximation techniques for r = 3

Model Field Offline time—Test case 1 [s]

POD Airfoil ∼ 4 × 10−3

Internal ∼ 2.18
AE Airfoil ∼ 40 − 50
PODAE Internal ∼ 25 − 35
RBF (All cases) ∼ 3.2 × 10−2

GPR (All cases) ∼ 3.5 × 10−2

ANN Airfoil ∼ 7 − 10
Internal ∼ 80 − 100

Table 2 ROM execution times in online stage, for all the reduction and approximation techniques for r = 3

Model Field Online time—test case 1 (s)

POD-RBF Airfoil ∼ 1 × 10−4

Internal ∼ 3.3 × 10−2

AE-RBF Airfoil ∼ 5 × 10−3

PODAE-RBF Internal ∼ 4.3 × 10−2

POD-GPR Airfoil ∼ 2 × 10−4

Internal ∼ 4.5 × 10−2

AE-GPR Airfoil ∼ 6 × 10−3

PODAE-GPR Internal ∼ 7.6 × 10−2

POD-ANN Airfoil ∼ 2 × 10−4

Internal ∼ 2 × 10−3

AE-ANN Airfoil ∼ 4 × 10−4

PODAE-ANN Internal ∼ 4.3 × 10−2

3.3.1 Test case 1

As a first quantitative analysis, we include Figs. 17 and 18, showing a comparison in the relative errors among
the individual ROM models and the aggregated models (or mixed-ROMs). In particular, in both the test cases
we built two different aggregation models, considering:

• POD-RBF and AE(or PODAE)-RBF, namely two methods with different reduction techniques but with
the same approximation method;

• the two “best" ROMs, based on the relative errors of the individual ROMs in the training set.

Based on Figs. 17 and 18, we can make different considerations. First of all, as already noticed in the
preliminary analysis in 3.2.1, the performance of POD-based methods improves in general as the number of
modes increases, whereas AE-based methods are not affected as much by the latent dimension. Secondly,
the aggregated models always outperform the individual ROMs in the evaluation set. That is obvious by
mathematical law, since the weights are calculated to minimize the discrepancy with the full-order counterpart
in that specific set. However, this may not happen in the test set, where the weights are computed through
regression law, namely a random forest regression. In fact, the performance of the aggregation in the test
set highly depends on the database used to fit and test the regression. In particular, we have in all cases an
improvement of the results in the test set for the airfoil pressure field and for the internal fields, but not for the
wall shear field. In that case, we have comparable results with respect to the individual non-intrusive ROMs.
Moreover, the errors for the wall shear stress field are about one order of magnitude higher than for the other
fields. This may lead to an increased complexity when combining the individual models.

As an example of how the aggregation performs along the chord of the airfoil, we include here Fig. 19,
displaying the skin friction coefficient C f for a test parameter. In particular, the figure shows the predictions
of the mixed-ROM, the FOM ground truth, and the regions accessible by the ROMs considered for the model
mixtures. In addition, the light orange/green region represents the accessible area for the aggregated ROMs in
the two types of aggregation here considered. It essentially quantifies the envelope of all the possible linear
combinations of the individual ROMs aggregated.

Themixed-ROM provides a prediction that is the closest as possible to the FOM snapshot, while remaining
inside the accessible ROMs region, as can be seen in the zoomed region in Fig. 19. The figure also includes an
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Fig. 17 Relative errors on evaluation and test set for 1D fields on the airfoil for all ROMs and for aggregated models in test case 1
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Fig. 18 Relative errors on evaluation and test set for 2D internal fields for all ROMs and for aggregated models in test case 1
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Fig. 19 Representation of the skin friction coefficient C f on the suction side for mixture models and FOM for a test parameter
Re � 518,000. We consider 3 as reduced dimension. The accessible region, namely the region accessed by the ROMs predictions
considered in the aggregation, is also here represented. The Mixed-ROMs correspond to the expected values of the aggregations
E[C f ], while the error bars correspond to interval [E[C f ] − 2
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Fig. 20 Representation of the skin friction coefficient C f on the suction side for two ROMs (POD-RBF and AE-RBF) and of the
corresponding weights for the aggregation with only RBF models. We consider as test parameter Re � 518,000 and as reduced
dimension 3

uncertainty quantification analysis via the evaluation of the confidence intervals. Indeed, as stated in Sect. 2.2.1,
we considered the aggregation prediction as the expected value of a random variable and computed the corre-
sponding variance using expression (9). The error bars reveal that the variance is significantly small in most
of the spatial domain, except for the region with the largest accessible area. The meaning of the variance can
be indeed linked to the consensus among the models and to the concept of the accessible area itself. It can be
also seen as a measure of the risk of having a completely wrong prediction if only one single model was used.

Moreover, Fig. 20 provides the spatial distributions of the weights for the mixture of RBF-based models.
The figure shows that the AE-RBF has weights close to 1.0 for x/c ∈ [0.15, 0.3], where it provides the most
accurate approximation. In the region x/c ∈ [0.6, 1], since the two ROMs have similar predictions, the weights
are close to 0.5, i.e., the aggregated model retains the two individual ROMs in the same percentage. On the
other hand, the fact that the weights are oscillating in space in the region x/c ∈ [0, 0.15] indicates more
uncertainty of the aggregation model and it is reflected also in the oscillatory width of the confidence interval
in the zoomed region of Fig. 19. Indeed, it may happen that in some spatial regions the weights are not well
informed due to an inaccurate prediction of the random forest regressor in the test set. However, as already
mentioned above, the error bars are overall very small, indicating that the algorithm is well-performing and
the best-performing model is preferred.
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Fig. 21 Velocity magnitude predictions for two ROMs and for the aggregationmodel (first row), and corresponding relative errors
with respect to FOM (second row). The test parameter considered is Re ≈ 118,000, and the reduced dimension is 10

Fig. 22 Weights for RBFmodels for the velocitymagnitude field when considering the test parameter Re ≈ 118,000. The reduced
dimension is 10

If we consider a velocity internal field (Figs. 21 and 22), we can notice that the two ROMs have a similar
performance and are really close to the FOM reference.

However, the AE-RBF model is closer to the FOM prediction in the wake, as can be seen from the spatial
relative error in Fig. 21, and, hence, the corresponding weights are close to 1 in that specific zone of the domain
(Fig. 22).

3.3.2 Test case 2

Based on the results obtained in the previous section, we wanted to consider a test case that could be considered
more challenging in terms of reduction. Consequently, we moved toward a transonic airfoil where the angle
of attack has been chosen as the parameter of interest. In this scenario, due to the significant movement of the
shock wave for different parametric samples, the reduction is expected to be more demanding.

In Figs. 23 and 24, we show the relative errors of each individual ROM (varying the type of reduction and
approximation in the parametric space) and with the different types of mixing combinations.

As a general observation, we can notice that the relative error of the aggregated models is always signifi-
cantly small.

The same type of analysis is carried out also on the variables on the internal mesh with respect to the
airfoil. The relative errors are thereby shown in Fig. 24. Also in this case we can observe that the aggregated
model can significantly improve the best possible combination of individual ROMs, or, at least, identify the
best possible model for each configuration.

In Fig. 25, we show the results for a specific solution of the test set. In particular, we depict the pressure
coefficient at the wall given by the full-order model and the two aggregated ROMs. On the left, we show
the results obtained with a latent space of dimension 3 and on the right with a latent space of dimension 10.
Clearly, the accessible area may be significantly larger when the dimension of the latent space is small: in this
scenario, we can expect much different results from each individual ROMs. As the dimension of the latent
space increases, all of the different ROMs will tend to converge to the exact solution, limiting the variability
among them. We can notice that within this region, the aggregated model correctly predicts a mixed solution
that is as close as possible to the reference (Fig. 26).

It is important to stress that having a significantly large accessible region is fundamental in the success of
the proposed strategy. Such a feature, in fact, indicates that the large differences between the models can be
exploited in order to obtain a better aggregated solution. It can be noticed, in fact, that considering a latent
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Fig. 23 Relative errors on evaluation and test set for the 1D fields on the airfoil for all ROMs and for aggregated models

3 modes 10 modes

10−2

6 × 10−3

2 × 10−2

R
el

at
iv

e
er

ro
rs

Errors for internal pressure (evaluation set)

3 modes 10 modes

10−2

6 × 10−3

2 × 10−2

Errors for internal pressure (test set)

POD-RBF
POD-GPR

POD-ANN
PODAE-RBF

PODAE-GPR
PODAE-ANN

Mixed-ROM (2 best models)
Mixed-ROM (models with RBF)

(a)

3 modes 10 modes

10−2R
el

at
iv

e
er

ro
rs

Errors for internal velocity magnitude (evaluation set)

3 modes 10 modes

10−2

Errors for internal velocity magnitude (test set)

POD-RBF
POD-GPR

POD-ANN
PODAE-RBF

PODAE-GPR
PODAE-ANN

Mixed-ROM (2 best models)
Mixed-ROM (models with RBF)

(b)

Fig. 24 Relative errors on evaluation and test set for the 2D fields in the internal mesh for all ROMs and for aggregated models
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Fig. 25 Representation of the pressure coefficient Cp for mixture models and FOMs for a test parameter α = 4.7◦. We consider
two different reduced dimensions, 3 (on the left) and 10 (on the right). The accessible region, namely the region accessed by the
ROMs predictions considered in the aggregation, is also here represented. The mixed-ROMs correspond to the expected values
of the aggregations E[Cp], while the error bars correspond to interval [E[Cp] − 2
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Fig. 26 Representation of the pressure coefficient Cp for mixture models and FOMs for a test parameter α = 0.3◦. We consider
as reduced dimension r = 10. The accessible region, namely the region accessed by the ROMs predictions considered in the
aggregation, is also here represented

space of dimension 10, the prediction of the aggregated model is better when using the two models based
on RBF interpolation rather than the two best models. In this latter case, in fact, the differences would be so
small between the two best models, that there would be practically no benefit in their aggregation. Moreover,
as done in Fig. 19, also in this case we included the error bars, quantifying the model uncertainty along the
airfoil’s chord for the test parameter considered. In general, the confidence intervals are very small and show
that the aggregation algorithm prefers the best-performing model in almost all the space coordinates. The
oscillation for x/c � 0.37 in Fig. 25 (left, namely 3 modes) may be due to a not accurate weights’ prediction,
also reflected in the oscillating weights’ behavior in Fig. 27a in the region near x/c = 0.37. The reason for the
slightly oscillatory behavior of the error bars in the case of 10 modes (the right plot in Fig. 25) may be due to
the consistently different behavior of the ROMs, as shown also in Fig. 27.

To better understand the interplay between the different models and how they work together, in Fig. 27
we show also the values of the weights of the individual ROMs. We can observe that, as one might expect,
the intrinsic nonlinearity of the autoencoder helps in predicting correctly the sharp feature represented by the
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Fig. 27 Representation of the pressure coefficient Cp for two ROMs (POD-RBF and AE-RBF) and of the corresponding weights
for the aggregation with only RBF models. We consider as test parameter α = 4.7◦ and two different reduced dimensions, 3 and
10

shock wave. This automatically implies a full activation of the AE at this location, whereas in other regions,
such as in proximity of the leading edge, the POD is more active. This is more evident when the number of
modes is small. In fact, in this scenario, the POD prediction does not provide a lot of information to properly
reconstruct the manifold in the parametric space. By increasing the number of modes (right figure), we can
still observe similar trends, although the POD is reasonably good in proximity of the shock and the activation
of the AE is less evident.

The velocity magnitude on the surroundings of the airfoil is shown in Fig. 28. In this figure, the POD and
POD-AE reductions are compared and aggregated together.

Both models provide a reasonably good approximation of the unseen parametric solution. However, if we
observe more closely the weights of the two models (shown in Fig. 29), we can clearly observe that regions
which are particularly challenging in terms of reduction are correctly detected in the spatial domain and the
nonlinear technique based on PODAE is much more active with respect to the linear POD.

Figure30 depicts the variance corresponding to the normalized velocitymagnitude field for a test parameter.
It is interesting to notice that the variance can be directly linked to the weights’ space distribution. Indeed, the
variance is larger in the regions where there is considerable discrepancy in the weights, namely where there is
less consensus among the models. These zones also coincide with the wake and the region nearby the shock
position, where the nonlinear phenomena are dominant.

If we increase the dimension of the latent space, it is even more interesting to notice that the wake behind
the airfoil is not a challenging feature anymore and both models are correctly predicting its behavior. However,
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Fig. 28 Velocity magnitude predictions for two ROMs and for the aggregation model (first row), and corresponding absolute
errors with respect to FOM (second row). The test parameter considered is α = 4.7◦, and the reduced dimension is 3
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Fig. 29 Weights representation for the aggregation model when considering the POD-RBF and PODAE-RBF models. The test
parameter considered is α = 4.7◦, and the reduced dimension is 3

Fig. 30 Variance representation (Var [v]) for the normalized velocity magnitude field (u/ufreestream) for the test parameter
α = 4.7◦. The figure shows the results for both 3 (left) and 10 modes (right)

at the shock, the PODAE is muchmore active than the POD. This observation is a further indication that even if
turbulent boundary layers can be challenging in terms of reduction, sharp features moving significantly in the
parametric space (such as shock-waves) are still the dominant bottleneck in terms of reduced-order modeling.
This aspect reiterates how the second test case is more complex to reduce and represents a more challenging
scenario for the aggregation of ROMs.

3.3.3 Computational time

For what concerns the computational time needed for the random forest regression, most of the execution time
is due to the fitting process to the evaluation data. In particular, the execution time for fitting the regression is
∼ 1 s for the 1D airfoil fields, and ∼ 40−45 s for 2D fields, because of the larger space dimensionality.

The execution times for prediction are much smaller and comparable with the prediction times for the
individual ROMs, i.e., ∼ 1 × 10−2 s for the airfoil fields and ∼ 11 × 10−1 s for the internal fields.

In order to summarize the efficiency of the proposed methodology in terms of computational times, we
report in Table 3 the average speed-up of both the individual ROMs used in the aggregation, and of the
aggregation itself. The speed-up values reported refer to the first test case, but the results are similar also for
the second test case.

For the individual ROMs, the speed-up is evaluated starting from the sum of the training and online times,
which is divided by the medium execution time of a single FOM simulation.
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Table 3 Average speed-ups in terms of execution time of individual ROMs (POD-RBF and AE-RBF), with respect to one single
FOM simulation

Field type ROM speed-up Mixed-ROM speed-up
POD-RBF AE(or PODAE)-RBF

1D ∼ 1 × 107 ∼ 8.5 × 103 ∼ 8 × 103

2D ∼ 2 × 105 ∼ 1.4 × 104 ∼ 1.3 × 104

Both the offline training and the online evaluation are considered for computing the speed-ups. The data reported refer to test
case 1, for both 1D fields acting on the airfoil, and 2D fields around the airfoil

For the aggregation, the speed-up is evaluated considering the sum of the training and online times of both
ROMs and of the aggregation.

As can be seen from Table 3, the acceleration is considerably high both for the individual ROMs and for
the mixed-ROM. However, it can be immediately noted that the aggregation model has a speed-up very close
to the one of the most expensive individual ROMs, namely the AE-based approach. Hence, the aggregation
strategy allows to retain the best prediction among the available ones, without increasing the computational
effort. Even if one individual ROM outperforms the other in each region of the space, the mixture-of-model
automatically detects the best model without any a-priori knowledge of the physical problem.

4 Conclusions and perspectives

In this manuscript, we proposed a strategy to enhance the performance of individual data-driven ROMs, which
are previously trained in the so-called training set. The ROMmethodology is extensively discussed in Sect. 2.

In particular, each individual ROM is mainly characterized by two parts, a reduction stage and an approx-
imation step, which have been discussed in Sect. 2.1.

The space-dependent aggregation approach, described in Sect. 2.2, builds a convex combination of a set of
alternative ROMs, with space-dependent weights evaluated on an a-priori-selected evaluation set. A machine
learning technique (random forest regression) is then trained with the given weights’ data, and used to predict
the weights in a test set.

Themodel mixture, referred to as themixed-ROM, is evaluated on two distinct test cases, both involving the
flow past an airfoil but differing in the full-order models (FOMs) and parameters used: the Reynolds number
in the first test case and the angle of attack in the second.

As detailed in Sect. 3, the proposedmethodology significantly enhances the accuracy of individual reduced-
order models (ROMs) in both test cases. It effectively identifies the ROMwith the optimal performance across
various regions of the spatial and parameter domains. Notably, in the more challenging second test case, the
aggregation approach successfully and automatically detects the nonlinear reduction techniques in the vicinity
of the shock position, demonstrating its robustness and efficacy.

Therefore, we can definitely say that it provides an automatic detection of the need between linear and
nonlinear reduction without any a-priori knowledge of the problem of interest.

Moreover, the computational time needed for computing the aggregation is small if compared to the FOM
simulation time. In particular, most of the execution time in the aggregation is employed for fitting the RF
regression, but it takes only a few seconds, as pointed out in Sect. 3.3.3.

It is important to remark that the performance of the technique in the test set strongly depends on the type
of regression used to predict the weights’ space distributions and future work will be focused on testing the
method with more advanced machine learning techniques for the weights’ regression.

A possible extension is to change the features space in order to allow for different space coordinates, and
hence, different geometries.

Another extension that the authors will address in the future is related to more complex test cases. This
project is the first stage to show that themixture-of-models is able to improve the individual ROMs’ predictions.
We included here the results on two 2D test cases, but with substantial differences in the physical setting
(incompressible and transonic regimes). We plan to extend this investigation on more challenging and also 3D
test cases in future research.

Moreover, a possible extension of this work is to enrich the methodology by building a mixed-ROM on
the top of FOMs characterized by different turbulence models. In this case, a further layer of variability at the
ROM level would be introduced by the different performances of the turbulence models at the FOM level.
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A Supplementary material

In this supplementary Section, we report the specifications of the hyperparameters of the techniques exploited
in non-intrusive ROMs.

In particular, in the RBF interpolation, we consider a thin plate spline kernel, which reads ϕ(r) = r2log(r),
and the degree of the added polynomial is 0.

In the GPR approximation, we consider a squared exponential form:

K(μi , μ j ) = σ 2 exp

(
−‖μi − μ j‖2

2l

)
. (13)

Once the hyperparameters σ and l of the covariance kernel are computed in order to fit our data, we can
exploit the distribution (3) to evaluate M(μ∗) in (3) and predict the new modal coefficients. The hyperpa-
rameters are automatically fitted by the algorithm itself. For what concerns the neural networks’ setting, both
as reduction technique (AE or PODAE) and as approximation technique (ANN), the hyperparameters are
reported in Table 4.

Table 4 Neural networks setting in ROMs

Network Hidden layers Nonlinearity Learning rate Stop criteria Weight decay

Epochs Final loss

ANN [20, 20, 20] Softplus 5 × 10−3 100,000 1 × 10−4 1 × 10−7

AE [50, 20, r, r, 20, 50] Softplus 5 × 10−4 20,000 5 × 10−6 0
AE (PODAE) [rmed, 50, 20, r, r, 20, 50, rmed] Softplus 5 × 10−4 20,000 5 × 10−6 0
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