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Abstract. We propose an adaptive finite element algorithm to approximate solutions of elliptic
problems whose forcing data is locally defined and is approximated by regularization (or mollifica-
tion). We show that the energy error decay is quasi-optimal in two-dimensional space and suboptimal
in three-dimensional space. Numerical simulations are provided to confirm our findings.
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1. Introduction. Let us consider the numerical approximation of the following
elliptic problem with rough data: given a bounded domain \Omega \subset \BbbR d with d = 2 or 3,
we seek a distribution u satisfying

(1.1)
 - \nabla \cdot (A(x)\nabla u) + c(x)u= F in \Omega ,

u= 0 on \partial \Omega .

Here A(x) is a d\times d symmetric positive definite matrix with all entries in C1(\Omega ). We
further assume that there exist positive constants a0 and a1 satisfying

(1.2) a0| \nu | 2 \leq \nu 
\intercal 

A(x)\nu \leq a1| \nu | 2 for all \nu \in \BbbR d and x\in \Omega .

The lower order coefficient c(x) is set to be nonnegative and Lipschitz in \Omega . We
consider rough forcing data F that can be written as

F (x) :=

\int 
B

\delta (x - y)f(y)dy with B \subset \Omega ,

where \delta denotes the d-dimensional Dirac distribution and B \subset \BbbR d is an immersed
domain. If the co-dimension of B is zero, F (x) = \chi B(x)f(x) with \chi B denoting the
indicator function of B. If the co-dimension of B is one, F can be written as a
distribution. That is,

(1.3) \langle F,\phi \rangle :=
\int 
B

f(y)\phi (y)dy for all \phi \in C\infty 
c (\Omega ).
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432 LUCA HELTAI AND WENYU LEI

In the rest of the paper, our discussion on the numerical approximation of (1.1) will
be restricted to the co-dimension one case.

The above elliptic problem is a prototype of governing differential equations for
interface problems, phase transitions, and fluid-structure interactions problems using
the immersed boundary method [39, 11, 40, 44]. Many works exist that concentrate
on the study of (adaptive) finite element methods with point Dirac sources [7, 29, 1].
The relevant literature for more complex distributions of singularities is more limited
[33, 32]. The motivation for such methods lies in the possibly complex geometry of
the immersed domain, such as thin vascular structures in tissues [22, 23, 15] or fibers
in isotropic materials [2], for which it is difficult to obtain a bulk mesh of \Omega matching
the embedded domain.

On the the other hand, when considering a nonmatching bulk mesh to approxi-
mate problem (1.1), it is necessary to evaluate F on the quadrature points of \Omega or to
compute (1.3) when \phi is a test function in a finite dimensional space. The implementa-
tion of the former strategy was introduced by Peskin in the early seventies (see [39] for
a review) in the context of finite differences and later adopted to finite volume and fi-
nite element approaches [35]. The latter approximation strategy, usually referred to as
the ``variational formulation,"" was introduced in [10] and later works, for example, [24].

When computing
\int 
B
f\phi in the variational formulation, one has a choice to make:

(i) either evaluate f and \phi on the quadrature points derived from a fixed subdivision
of B which is independent on the subdivision of \Omega (using a single quadrature scheme
on B), or (ii) evaluate f and \phi on the nonzero intersections of cells K \subset B and T \subset \Omega 
(using a custom quadrature formula for the generally polygonal intersection).

The first approach is cheaper to compute, but it introduces some errors due to
integration of nonsmooth functions using quadrature rules. It is a two-step process
that requires first the exact identification of the cells that contain quadrature points
of B, and then the computation of the inverse of the mapping from the reference cell\widehat T to the cell T in the subdivision of \Omega that contains the quadrature points. Such
inverse mapping is nonlinear in unstructured quad- or hex-meshes, or when using
higher order mappings.

The second approach requires a much more expensive computation, and its effi-
cient implementation is the subject of active research (see, e.g., [30, 9]). If one wants
to perform such integration exactly, it would require first the computation of the in-
tersection between cells K \subset B and T \subset \Omega , then the definition of a quadrature scheme
on the (possibly polygonal or curved) intersection, in addition to the computation of
the inverse of the mapping from the reference cells to the intersection part.

To avoid the complexity related to the evaluation of inverse mappings and possibly
the computation of nonmatching grid intersections, here we consider an alternative
approach by approximating F with its regularization (or mollification) [28, 45]. That
is, we replace \delta with a family of Dirac delta approximations \delta r, where r denotes
the regularization parameter so that the regularized data, denoted by F r, satisfies a
certain smoothness property.

In the proposed finite element algorithm, we compute a regularized right-hand-
side

\int 
B
f\phi r dx for a fixed parameter r. This computation requires the evaluation of

the double integral \int 
\Omega 

\int 
B

f(x)\delta r(x - y)\phi (y)dxdy.

When applying quadrature schemes both on the support of \phi and on B, we only eval-
uate f and \phi on (independent sets of) quadrature points of B and of \Omega , respectively,
weighted by the regularized Dirac distribution. This computation need be performed
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 433

only when the integration cells are at a distance smaller than r, and it does not require
any special implementation.

The error between the exact solution u and its regularized counterpart ur is
analyzed in [25] in both the H1 and the L2 sense. The finite element approximation
of (1.1) using quasi-uniform subdivisions is also discussed in [25], where we also show
(see [25, Figure 7]) that the computational cost and the accuracy of the regularization
approach are comparable to the corresponding nonregularized approach, at least in
the first case described above. The regularization in this case has the advantage of
being trivial to implement, a fact that contributed significantly to the success of the
immersed boundary method in the literature, which remains one of the most used
methods in the finite difference and finite volume community for the computation of
nonmatching couplings.

In this paper, we consider the finite element approximation of (1.1) with the
regularized data F r under adaptive subdivisions. We show that the regularization
approach not only is trivial to implement but also lends itself quite well to adaptive
finite element methods (AFEMs) and to a posteriori errror analysis. AFEMs have
been widely used for decades; see [38] for a survey of AFEMs for elliptic problems.
In terms of the singular data F \in H - 1(\Omega ), we refer to [42, 41] for piecewise constant
approximation of F and [17] using surrogate data indicators. We also refer to [37, 31]
on AFEM for more complex singularities.

The approximation error based on regularized data consists of two parts: the
regularization error for u and the finite element approximation error for ur. The
analysis of adaptive algorithms applied to the regularized problem is complicated by
the facts that optimal choices of the regularization parameter r depend on the local
mesh size h (see [25]) and that the error estimates depend both on the local mesh size
and on the regularization parameter r.

We present our algorithm in section 3. We control each error in a separate routine:
the routine INTERFACE controls the first error using the perturbation theory built in
[25] (see also Proposition 2.6) and returns the optimal regularization parameter r to
use in the routine SOLVE, which controls the error of the regularized problem using
classic AFEM results based on [17].

Given a target tolerance, the INTERFACE routine refines a priori the cells around
the immersed domain so that the regularization error can be properly controlled. This
procedure ensures that the regularization parameter r is suitable for the local mesh
size around the immersed domain. Given the regularization parameter r, the SOLVE

routine will then approximate the regularized problem using AFEM based on [17] so
that the finite element error can also be reduced below the desired tolerance. Our
complete algorithm is based on the iteration of the two routines above with a decaying
target tolerance.

The performance of our adaptive algorithm is studied adapting the theories from
[17, 12] to our regularized problem. The major point to take into account is that all
the estimates one obtains are generally dependent on the regularization parameter r,
which in turn is generally chosen according to the local mesh size h. More precisely
speaking, the following two issues must be analyzed carefully:

\bullet For any r > 0, the regularized solutions ur are in some approximation class \scrA s

for some s \in (0, 1d ] (see section 4.2 for the definition) and the corresponding
quasi-seminorms are uniformly bounded.

\bullet Since regularized data F r is in L2(\Omega ), we can guarantee that there exists
an adaptive method to approximate F r with a quasi-optimal rate (cf. [17,
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434 LUCA HELTAI AND WENYU LEI

Assumption \widetilde A(s)]). That is, starting from a subdivision \scrT and applying the
bulk chasing strategy to obtain a refinement \scrT \ast of \scrT , the data indicator
(defined in section 3.2) is less than the tolerance \tau and

\#(\scrT \ast ) - \#(\scrT )\leq C\tau  - d;

see [17, Theorem 7.3]. However, the constant C above depends on the reg-
ularization parameter r, i.e., on the local mesh size h, and may lead to a
deterioration of the convergence rates.

To resolve the first issue, we follow the arguments from [12]. Thanks to the a priori
refinements from the INTERFACE part of the algorithm, Lemma 3.2 of [12] allows us to
measure the complexity of the SOLVE stage independently of r. To remedy the second
issue, in Lemma 4.7, we revisit [17, Theorem 7.3] and provide a finer estimate for the
constant C above which can be shown to be C \sim r1 - d/2 by exploiting the fact that
F r is supported in the neighborhood of the immersed domain. It turns out that we
can still obtain optimal convergence rates in the two-dimensional case, while we get
suboptimal rates in the three-dimensional case. We show this in Theorem 4.18 and
Remark 4.19.

The rest of this article is organized as follows. In section 2 we provide some essen-
tial notation to define our model problem in the variational sense, and we introduce
the data regularization (or data mollification) as well as a regularized version of the
model problem. In section 3 we review the AFEM for elliptic problems with L2(\Omega )
forcing data. Following this approach, we then propose our adaptive algorithm for
the model problem. The analysis of the adaptive algorithm is presented in section 4.
In section 5 we provide some numerical experiments to illustrate the performance of
our proposed algorithm. We conclude with some remarks in section 6.

Notation and Sobolev spaces. Let \Omega \subset \BbbR d be a bounded Lipschitz domain.
We write A\lesssim B if A\leq cB for some constant c independent of A, B as well as other
discretization parameters. We say A\sim B if A\lesssim B and B \lesssim A.

Given a Hilbert space X, we denote with (\cdot , \cdot )X its inner product and with X \prime its
dual space with the induced norm

\| F\| 
X

\prime = sup
\| v\| X=1

\langle F,v\rangle 
X

\prime 
,X
,

where \langle \cdot , \cdot \rangle 
X

\prime 
,X

denotes the duality pairing.

We indicate with L2(\Omega ), H1(\Omega ), and H2(\Omega ) the usual Sobolev spaces and use
(\cdot , \cdot )\Omega to indicate the L2(\Omega )-inner product. For s \in (0,1), we denote the fractional
Sobolev spaces Hs(\Omega ) using the Sobolev--Slobodeckij norm

\| v\| Hs(\Omega ) :=

\biggl( 
\| v\| 2L2(\Omega ) +

\int 
\Omega 

\int 
\Omega 

(v(x) - v(y))2

| x - y| d+2s
dxdy

\biggr) 1/2

.

For s\in (1,2),

\| v\| Hs(\Omega ) =
\Bigl( 
\| v\| 2L2(\Omega ) + \| \nabla v\| 2Hs - 1(\Omega )

\Bigr) 1/2
.

For s \in ( 12 ,1], we set Hs
0(\Omega ) to be the collection of functions in H1(\Omega ) vanishing

on \partial \Omega . It is well known that Hs
0(\Omega ) is the closure of C\infty 

c (\Omega ) (the space of infinitely
differentiable functions with compact support in \Omega ) with respect to the norm ofHs(\Omega )
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 435

(cf. [21]). Also, Hs
0(\Omega ) is an interpolation space between L2(\Omega ) and H1

0 (\Omega ) using the
real method. Finally for s\in ( 12 ,1], we set H - s(\Omega ) =Hs

0(\Omega )
\prime .

2. Model problem and its regularization. In this section, we will introduce
the variational formulation of our model problem as well as a formulation when the
forcing data F is approximated by regularization.

2.1. The forcing data. Let \omega \subset \Omega be a bounded domain and let \gamma := \partial \omega be its
boundary, which we take to be Lipschitz. In what follows, we only consider the case
when \gamma is away from \partial \Omega , i.e., there exists a positive constant c\gamma such that

(2.1) dist(\gamma ,\partial \Omega )> c\gamma .

We assume that the data function f \in L\infty (\gamma ). For a technicality (cf. Lemma 4.12),
we further assume that there exists a finite collection of nonoverlapping nonempty
open sets \{ \gamma j \subset \gamma \} M\gamma 

j=1 such that
\sum M\gamma 

j=1 | \gamma j | = | \gamma | and f does not change its sign on
each \gamma j . We define I to be the set where f changes sign, i.e.,

(2.2) I :=

M\gamma \bigcup 
i=1

\partial \gamma i.

The above limitation on the sign change is used only in Lemma 4.12 and allows us
to simplify its proof, without sacrificing too much on the generality of the admissible
data. In particular, a sufficient condition for the above statement to be true is that the
co-dimension two measure of I is bounded, i.e., I consists of a finite number of points
for one-dimensional curves embedded in two dimensions, or a collection of curves with
finite length for two-dimensional surfaces embedded in three dimensions.

We then consider a forcing data that can be formally written as

(2.3) F =\scrM f :=

\int 
\gamma 

\delta (x - y)f(y)d\sigma y.

The variational definition of F (see, i.e., [25]) implies that F \in H - s(\Omega ) \subset H - 1(\Omega )
with any fixed s\in ( 12 ,1]. In fact, for any v \in H1

0 (\Omega ), there holds

\langle F,v\rangle H - 1(\Omega ),H1
0 (\Omega ) =

\int 
\gamma 

fv d\sigma 

\leq \| f\| L2(\gamma )\| v\| L2(\gamma )

\lesssim \| f\| L2(\gamma )\| v\| Hs(\omega ) \lesssim \| f\| L2(\gamma )\| v\| Hs(\Omega ),(2.4)

where for the first inequality above we applied the Schwarz inequality and for the
second inequality we used the trace inequality.

2.2. Weak formulation. The variational formulation of (1.1) reads, Given a
function f \in L2(\gamma ), we seek u\in H1

0 (\Omega ) such that

(2.5) A(u, v) = \langle F,v\rangle H - 1(\Omega ),H1
0 (\Omega ) for all v \in H1

0 (\Omega ),

where

A(v,w) =

\int 
\Omega 

\nabla v
\intercal 

A(x)\nabla w+ c(x)vwdx for all v,w \in H1
0 (\Omega ).
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436 LUCA HELTAI AND WENYU LEI

Assumption (1.2) and the nonnegativity of c(x) guarantee that the bilinear form
A(\cdot , \cdot ) is bounded and coercive, i.e., there exist positive constants m,M so that for
v,w \in H1

0 (\Omega ),

(2.6) A(v,w)\leq M\| v\| H1(\Omega )\| w\| H1(\Omega ) and A(v, v)\geq m\| v\| 2H1(\Omega ),

and (2.5) admits a unique solution by the Lax--Milgram lemma. Bound (2.6) also
implies that the energy norm | | | v| | | :=

\sqrt{} 
A(v, v) \sim \| v\| H1(\Omega ). In what follows, we use

the energy norm | | | .| | | instead of \| .\| H1(\Omega ) in our adaptive algorithm as well as in the
performance analysis.

2.3. Regularization. The regularization of F is based on the approximation
of the Dirac delta distribution. To this end, we first define a class of functions \psi 
satisfying the following assumptions.

Assumption 2.1. Given k \in \BbbN , let \psi (x) in L\infty (\BbbR d) such that the following hold:
1. Nonnegativity: \psi (x)\geq 0.
2. Compact support: \psi (x) is compactly supported, with support supp(\psi ) con-

tained in Br0(0) (the ball centered in zero with radius r0) for some r0 > 0.
3. Moments condition: Given k \in \BbbN , we say \psi satisfies the kth order moment

condition if

(2.7)

\int 
\BbbR d

y\alpha i \psi (x - y)dy= x\alpha i , i= 1 . . . d, 0\leq \alpha \leq k, for all x\in \BbbR d;

4. Monotonicity: \psi (x/r2)\leq \psi (x/r1) if r2 < r1.

We refer to [25] for some examples of \psi and [28, section 3] for a general discussion.
Here we only consider even, nonnegative functions \psi 1d that are supported in [ - 1,1],
are nonincreasing in [0,1], and satisfy

\int 
\BbbR \psi 1d = 1. Then we generate \psi in \BbbR d by the

radially symmetric extension \psi 1d(| x| ) or the tensor product extension
\prod d

i=1\psi 1d(xi).
A function \psi defined in this way satisfies Assumption 2.1 with k= 1. Using the above
\psi , for r > 0, we define the Dirac approximation \delta r by

(2.8) \delta r(x) :=
1

rd
\psi 
\Bigl( x
r

\Bigr) 
.

Thus,

lim
r\rightarrow 0

\delta r(x) = lim
r\rightarrow 0

1

rd
\psi 
\Bigl( x
r

\Bigr) 
= \delta (x),

where the limit should be understood in the space of Schwarz distributions.

Remark 2.2 (nonnegativity of \psi ). We will use the nonnegativity of \psi to analyze
the performance of our adaptive algorithm. However, this is not required in the error
analysis for finite element discretization of (1.1) using quasi-uniform subdivisions of
\Omega ; see [25] for more details.

Definition 2.3 (regularization). For a function v \in L1(\Omega ) we define its regular-
ization vr(x) in the domain \Omega through the mollifier \psi by

(2.9) vr(x) :=

\int 
\Omega 

\delta r(x - y)v(y)dy for all x\in \Omega ,

where \delta r is given by (2.8) and where \psi satisfies Assumption 2.1 for some k\geq 0.
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 437

For functionals F in negative Sobolev spaces, say, F \in H - s(\Omega ), with s \in ( 12 ,1],
we define their regularization F r by the action of F on vr with v \in Hs

0(\Omega ), i.e.,

(2.10) \langle F r, v\rangle H - s(\Omega ),Hs
0 (\Omega ) := \langle F,vr\rangle H - s(\Omega ),Hs

0 (\Omega ).

We note that the definition of F r is well defined with F given by (2.3). In fact,
by [25, Corollary 1], there holds

\| v - vr\| Hs(\omega ) \lesssim \| v\| Hs(\Omega ).

Therefore, according to the argument in (2.4), we have

\langle F r, v\rangle H - s(\Omega ),Hs
0 (\Omega ) \lesssim \| f\| L2(\gamma )\| vr\| Hs(\omega ) \lesssim \| f\| L2(\gamma )\| v\| Hs(\Omega ).

Remark 2.4. For F defined by (2.3), applying Fubini's theorem to the right-hand
side of (2.10) yields

F r(x) =

\int 
\gamma 

f(y)\delta r(y - x)dy \in L2(\Omega ).

If \psi is chosen to be symmetric, the definition of F r can be interpreted by replacing \delta 
in (2.3) with the Dirac approximation \delta r.

Remark 2.5 (error estimate of the regularization). Lemma 10 of [25] implies that
under Assumption 2.1, together with (2.1), the following regularization error estimate
holds when r < 1:

(2.11) \| F  - F r\| H - 1(\Omega ) \leq Cregr
1/2\| f\| L2(\gamma ),

where the constant Creg depends on \psi in Assumption 2.1 and on \omega .

2.4. Regularized problem. A regularized version of problem (2.5) reads, Find
ur \in H1

0 (\Omega ) satisfying

(2.12) A(ur, v) = \langle F r, v\rangle H - 1(\Omega ),H1
0 (\Omega ) for all v \in H1

0 (\Omega ).

Notice that ur exists and is unique. Moreover, (2.6) and Remark 2.5 imply that
ur converges to u in the energy norm with the rate O(r1/2). That is, we have the
following proposition:

Proposition 2.6 (see also Theorem 14 of [25]). When Assumption 2.1 holds, let
u and ur be the solution to (2.5) and (2.12), respectively. Then there holds

(2.13) | | | u - ur| | | \leq m - 1/2C\bfitr \bfite \bfitg r
1/2\| f\| L2(\gamma ).

3. Numerical algorithm. We approximate the solution to the weak formula-
tion (2.5) by solving the regularized problem (2.12) using AFEMs along with a choice
of the regularization parameter r. As the number of degrees of freedom increases, r
will tend to zero with a rate linked to the target tolerance. Recalling from Remark 2.4,
the regularized data F r is an L2(\Omega ) function so that we can use classical residual error
estimators for adaptivity. In this section, we first review AFEMs for elliptic prob-
lems with L2(\Omega ) forcing data based on [17, 42, 38]. Then we introduce our adaptive
algorithm for (2.5).
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438 LUCA HELTAI AND WENYU LEI

3.1. Finite element approximation. We additionally assume that \Omega is a poly-
tope. Given a data function g \in L2(\Omega ), we consider a finite element approximation of
wg \in H1

0 (\Omega ) which uniquely solves

(3.1) A(wg, v) = (g, v) for all v \in H1
0 (\Omega ).

Set \scrT to be a subdivision of \Omega made by simplices. We assume that \scrT is conforming
(no hanging nodes) and shape-regular in a sense of [20, 16], i.e., there exists a positive
constant csr so that for each cell T \in \scrT ,

diam(T )\leq csr\rho T

with diam(T ) and \rho T denoting the size of T and the diameter of the largest ball
inscribed in T , respectively. We also set hT = | T | 1/d, with | T | denoting the volume
of T . So hT \sim diam(T ), with the hiding constants depending on csr. Denote \BbbV (\scrT )\subset 
H1

0 (\Omega ) the space of continuous piecewise linear functions subordinate to \scrT . So the
finite element discretization for (3.1) reads as follows.

Algorithm 3.1 Wg = GAL(\scrT , g)
Solve A(Wg, V ) = (g,V ) for all V \in \BbbV (\scrT );
return Wg;

3.2. A posteriori error estimates with \bfitL 2(\Omega ) data. AFEMs rely on the
so-called computable error estimators to evaluate the quality of the finite element
approximation on each cell T in the underlying subdivision \scrT . Here we consider the
following local jump residual and data indicators: given a conforming subdivision \scrT ,
a finite element function V \in \BbbV (\scrT ), and a data function g \in L2(\Omega ), we denote \scrF T the
collection of all faces of T \in \scrT and define

(3.2) j(V,T,\scrT ) :=

\Biggl( \sum 
F\in \scrF T

hF \| [A \cdot \nabla V ]\| 2L2(F )

\Biggr) 1/2

and d(g,T,\scrT ) := hT \| g\| L2(T ),

where hF is the size of F and [.] denotes the normal jump across the face F . Their
global counterparts are given by

\scrJ (V,\scrT ) :=

\Biggl( \sum 
T\in \scrT 

j(V,T,\scrT )2

\Biggr) 1/2

and \scrD (g,\scrT ) :=

\biggl( \sum 
T\in \scrT 

d(g,T,\scrT )2
\biggr) 1/2

.

Letting Wg = GAL(\scrT , g), we define the local error indicator,

e(Wg, T,\scrT ) =
\bigl( 
j(Wg, T,\scrT )2 + d(g,T,\scrT )2

\bigr) 1/2
as well as the global indicator,

\scrE (Wg,\scrT ) =

\Biggl( \sum 
T\in \scrT 

e(Wg, T,\scrT )2

\Biggr) 1/2

.

The computation of such indicators is usually performed in the stage ESTIMATE of
AFEM algorithms, as summarized in Algorithm 3.2.
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Algorithm 3.2 \{ j(T ), d(T ), e(T )\} T\in \scrT = ESTIMATE(\scrT ,Wg, g)
Given the approximate solution Wg on \scrT ;
for T \in \scrT do

Compute j(T ) = j(W,T,\scrT );
Compute d(T ) = d(g,T,\scrT );
Compute e(T ) = e(Wg, T,\scrT );

end for
return \{ j(T ), d(T ), e(T )\} T\in \scrT ;

3.3. Marking of cells based on error indicators. The estimated error per
cell obtained in the ESTIMATE algorithm are used to perform refinement based on the
bulk chasing strategy [18] (or the D\"orfler marking strategy), summarized in Algorithm
3.3. Here we set ind(T ) to be a local indicator and the corresponding global indicator
is denoted by IND.

Algorithm 3.3 \scrM = MARK(\{ ind(T )\} T\in \scrT ,\scrT , \theta )
Given a cell indicator \{ ind(T )\} T\in \scrT and a bulk parameter \theta \in (0,1);
Find a smallest subset \scrM of \scrT satisfying\Biggl( \sum 

T\in \scrM 
ind(T )2

\Biggr) 1/2

\geq \theta IND.
(3.3)

return \scrM ;

3.4. Refinements of subdivisions. Conforming refinement strategies, such as
newest vertex bisection [8, 34, 43], can be used to construct a sequence of conforming
simplicial subdivisions \{ \scrT k\} \infty k=0 by adaptively bisecting a set of cells \scrR k \subset \scrT k. How-
ever, our results hold also for more general nonconforming mesh refinement strategies
satisfying conditions 3 (successive subdivisions), 4 (complexity of refinement), and 7
(admissible subdivision) in [13]. For instance, in our numerical illustration in sec-
tion 5, we use refinements on quad- and hex-meshes where conformity is enforced via
hanging node constraints. Irrespective of the strategy used to refine the grid (either
conforming or nonconforming with hanging node constraints), we obtain a sequence
of uniformly shape-regular subdivisions \{ \scrT k\} k\geq 0 satisfying

(3.4) \#(\scrT k) - \#(\scrT 0)\leq Ccom

k - 1\sum 
j=0

\#(\scrR j),

for some universal constant Ccom \geq 1. We write the above refinement process from \scrT k
to \scrT k+1 as \scrT k+1 = REFINE(\scrT k,\scrR k), summarized in Algorithm 3.4.

3.4.1. Overlay of two subdivisions. Provided that both \scrT 1 and \scrT 2 are refine-
ments of \scrT 0, we say that \scrT is the overlay of \scrT 1 and \scrT 2 when \scrT consists of the union
of all cells of \scrT 1 that do not contain smaller cells of \scrT 2 and vice versa. Clearly, there
holds

(3.5) \#(\scrT )\leq \#(\scrT 1) +\#(\scrT 2) - \#(\scrT 0).
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440 LUCA HELTAI AND WENYU LEI

Algorithm 3.4 \scrT k+1 = REFINE(\scrT k,\scrR k)
(i) (for triangular or tetrahedral meshes) Bisect the marked cells \scrR k \subset \scrT k once;
Add all extra bisections to produce a conforming subdivision \scrT k+1;
(ii) (for quadrilateral or hexahedral meshes) Split the marked cells into four

children in two dimensions or eight children in three dimensions;
Refine all extra cells to produce a nonconforming subdivision \scrT k+1 with at most
one hanging node per face, and enforce conformity via hanging node constraints;
return \scrT k+1;

3.5. AFEM with control on \bfitL 2 data. It is well known (see, e.g., [5, 19, 17])
that one can obtain a global upper and lower bound of the approximation error by
the error indicator, i.e., there exist positive constants Crel and Ceff so that

(3.6) | | | wg  - Wg| | | \leq Crel\scrE (Wg,\scrT ) and \scrE (Wg,\scrT )\leq CeffE(wg,\scrT )

with

(3.7) E(wg,\scrT ) :=
\bigl( 
| | | wg  - Wg| | | 2 +\scrD (g,\scrT )2

\bigr) 1/2
.

Remark 3.1 (local lower bound with oscillation). The data indicator \scrD (g,\scrT ) in
the lower bound can be replaced by the data oscillation provided that the refinement
strategy satisfies the interior node property [12, 17, 38, 36]:

osc(g,\scrT ) =

\Biggl( \sum 
T\in \scrT 

h2T \| g - aT (g)\| 2L2(T )

\Biggr) 1/2

,

where aT (.) denotes the average on T . Note that osc(g,\scrT )\leq \scrD (g,\scrT ), and the decay
of the data oscillation could be faster if g is more regular. However, in our case, we
set g = F r to be as in Definition 2.3, and the smoothness of g depends on the choice
of \psi in Assumption 2.1 as well as the regularization parameter r. In order to simplify
our analysis, we will treat F r as an L2(\Omega ) function and the decay rate of oscillation
is then the same as the data indicator \scrD (g,\scrT ).

The DATA routine guarantees that the global data indicator \scrD is below a user
defined tolerance. This allows us to control the total error indicator \scrE .

Algorithm 3.5 \scrT \ast = DATA(\scrT , g, \tau , \widetilde \theta )
\scrT \ast = \scrT ;
while \scrD (g,\scrT \ast )> \tau do

\scrM = MARK(\{ d(g,T,\scrT \ast )\} T\in \scrT ,\scrT \ast , \widetilde \theta );
\scrT \ast = REFINE(\scrT \ast ,\scrM );

end while
return \scrT \ast ;

3.6. AFEM algorithm for \bfitL 2 data. To summarize the above steps in a com-
plete AFEM algorithm, we follow [17] to solve problem (3.1) by iteratively generating
refined subdivisions and the corresponding finite element approximations. For conve-
nience, we denote Wk \in \BbbV k := \BbbV (\scrT k) the finite element approximation of wg on \scrT k.
Similarly, we denote the local indicators jk(T ) := j(Wk, T,\scrT k), dk(T ) := d(g,T,\scrT k),
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Algorithm 3.6 \{ W \ast ,\scrT \ast \} = SOLVE(\scrT 0, g, \tau , \theta , \widetilde \theta ,\lambda )
W0 = GAL(\scrT 0, g);
\{ j0(T ), d0(T ), e0(T )\} T\in \scrT 0

= ESTIMATE(\scrT 0,W0, g);
k= 0;
while \scrE k > \tau do

if \scrD k >\sigma k := \lambda \theta \scrE k then

\scrT k+1 = DATA(\scrT k, g, \sigma k

2 ,
\widetilde \theta );

else
\scrM k = MARK(\{ ek(T )\} T\in \scrT k

,\scrT k, \theta );
\scrT k+1 = REFINE(\scrT k,\scrM k);

end if
k= k+ 1;
Wk = GAL(\scrT k, g);
\{ jk(T ), dk(g,T ), ek(T )\} T\in \scrT k

= ESTIMATE(\scrT k,Wk, g);
end while
return \{ Wk,\scrT k\} ;

ek(T ) := e(Wk, T,\scrT k) and global indicators \scrJ k := \scrT (Wk,\scrT k), \scrD k := \scrD (g,\scrT k), \scrE k :=
\scrE (Wk,\scrT k).

Starting from a conforming subdivision \scrT 0 and given a tolerance \tau > 0, we choose
\theta , \widetilde \theta ,\lambda \in (0,1) and construct the approximation Uk by the routine SOLVE, defined in
Algorithm 3.6.

According to [17], the routine SOLVE guarantees the decay of the error indicator
\scrE k with some decay factor \alpha \in (0,1) (see also Theorem 4.4) and hence, when this
routine terminates, we obtain that

(3.8) | | | wg  - Wg| | | \leq Creg\tau .

Here we applied the upper bound in (3.6).

Remark 3.2 (an alternative AFEM algorithm). In section 4, we will adapt the
approximation theory developed in [17] to investigate the performance of SOLVE for the
regularized problem (2.12). On the other hand, we could instead apply the classical
AFEM cycle:

GAL\rightarrow ESTIMATE\rightarrow MARK\rightarrow REFINE.

We note that the same performance in terms of tolerances can be obtained by following
the arguments from [38, 12, 14] together with approximation properties developed in
section 4 (cf. Corollaries 4.3 and 4.11). However, the classical AFEM cycle would
suffer from a higher computational cost related to the higher number of GAL steps
that are computed in classical AFEM, and therefore we proceed as in Algorithm 3.6,
following the steps of [17].

3.7. AFEM algorithm for regularized \bfitH  - 1 data. Let us first provide an
assumption on the initial subdivision \scrT 0 related to the interface \gamma . We denote with

\scrG := \scrG (\gamma ,\scrT ) := \{ T \in \scrT : T \cap \gamma \not = \emptyset \} and diam(\scrG ) =max
T\in \scrG 

hT ,

and we assume that the initial subdivision is sufficiently refined to capture the char-
acteristics of \gamma , that is, \scrG (\gamma ,\scrT 0) is quasi-uniform and for any uniform refinement \scrT i
of level i of \scrT 0, we have that
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442 LUCA HELTAI AND WENYU LEI

(3.9)
\sum 

T\in \scrG (\gamma ,\scrT i)

| T | \sim q - i/d
\sum 

T\in \scrG (\gamma ,\scrT 0)

| T | \sim q - i/d| \gamma | ,

where q > 1 is the volume ratio between a cell and its children. In two-dimensional
space, for instance, q = 2 for the newest vertex bisection and q = 4 for the quad-
refinement. The above assumption shows that there exists a positive constant c de-
pending on csr such that the tubular neighborhood of \gamma with width cq - i/d covers
\scrG (\gamma ,\scrT i).

Remark 3.3. Condition 3.9 is a way to ask that the initial subdivision \scrT 0 prop-
erly resolves \gamma . This is possible for Lipschitz curves and surfaces and requires that
the initial subdivision \scrT is sufficiently refined around \gamma , with a local grid size that
generally depends on the Lipschitz constant of \gamma .

Given a target tolerance \tau > 0, we shall determine the regularization parameter
r and approximate problem (3.1) with g = F r via SOLVE so that the output approxi-
mation U satisfies

| | | u - U | | | \leq | | | u - ur| | | + | | | ur  - U | | | \leq Creg\tau .

To control | | | u - ur| | | , in view of Proposition 2.6, we can set

m - 1/2Cregr
1/2\| f\| L2(\gamma ) \leq 

Crel\tau 

2
.

Hence we choose the regularization parameter

(3.10) r=: r(\tau ) :=m

\Biggl( 
Crel\tau 

2Creg\| f\| L2(\gamma )

\Biggr) 2

.

Remark 3.4 (values of the constants in (3.10)). Since it is nontrivial to compute
the constants that appear in (3.10), in the simulations presented in section 5 we select
r= \tau 2.

From the computational point of view, if r\ll hT for T \in \scrG (\gamma ,\scrT ) and if V \in \BbbV (\scrT )
is nonzero in T , it is possible that \delta r(q1  - q2) = 0 when q1 is a quadrature point on
\gamma and q2 is a quadrature point in T . In such a case, we would approximate

\int 
T
F rV

by zero using the quadrature scheme, resulting in a ``transparent"" \gamma , implying a total
loss of accuracy. In order to avoid such a situation, we also refine the subdivision
before controlling the error | | | ur - U | | | from SOLVE. Our goal is to find a refinement \scrT \ast 

of \scrT so that

2 diam(\scrG (\gamma ,\scrT \ast ))\leq r.

To this end, we introduce the routine INTERFACE in Algorithm 3.7.

Algorithm 3.7 \scrT \ast = INTERFACE(\scrT , r)
\scrT \ast = \scrT ;
while diam(\scrG )> r

2 do
Find the set \scrM := \{ T \in \scrG (\gamma ,\scrT ) s.t. hT >

r
2\} ;

\scrT \ast = REFINE(\scrT \ast ,\scrM );
end while
return \scrT \ast ;
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Algorithm 3.8 \{ U,\scrT \} = REGSOLVE(g,\scrT 0, jmax, \tau 0, \beta , \theta , \widetilde \theta ,\lambda , \widetilde \mu )
for j = 0 : jmax do
rj = r(\tau j);\widetilde \scrT j = INTERFACE(\scrT j , rj);
\{ Uj+1,\scrT j+1\} = SOLVE(\widetilde \scrT j , F rj , \widetilde \mu \tau j , \theta , \widetilde \theta ,\lambda );
\tau j+1 = \beta \tau j ;
j = j + 1;

end for
return \{ Uj\mathrm{m}\mathrm{a}\mathrm{x}

,\scrT j\mathrm{m}\mathrm{a}\mathrm{x}
\} ;

Given an initial conforming subdivision \scrT 0 satisfying assumption (3.9), an initial
tolerance \tau 0, and \beta , \theta , \widetilde \theta ,\lambda , \widetilde \mu \in (0,1), the solver routine REGSOLVE for (2.5) reads as in
Algorithm 3.8.

Here \widetilde \mu is a constant whose choice will be explained later in Lemma 4.16. Note
that the subroutine SOLVE in REGSOLVE guarantees that the energy error between U
and ur is bounded by \widetilde \mu \tau j . Therefore we have the following proposition:

Proposition 3.5. Let u and Uj be defined as in (2.5) and REGSOLVE, respectively.
Then for each nonnegative integer j,

| | | u - Uj+1| | | \leq | | | u - urj | | | + | | | urj  - Uj+1| | | 
\lesssim | | | u - urj | | | + \scrE (urj ,\scrT j+1)\lesssim \tau j .

Remark 3.6 (another algorithm). Since INTERFACE is an a priori process, we can
also solve (2.5) with only one iteration in REGSOLVE. That is,

\{ U,\scrT \} = REGSOLVE(g,\scrT 0,1, \tau , \cdot , \theta , \widetilde \theta ,\lambda , \widetilde \mu )
with \tau = \tau 0\beta 

j\mathrm{m}\mathrm{a}\mathrm{x} .

4. Measuring the performance. In this section we measure the performance
of REGSOLVE, i.e., we analyze the subroutines INTERFACE and SOLVE, respectively. We
use the notation :: to connect a routine and its subroutine. For instance, the routine
SOLVE in REGSOLVE is denoted by REGSOLVE::SOLVE.

4.1. Performance of INTERFACE. The following proposition provides the per-
formance of INTERFACE.

Proposition 4.1 (performance of INTERFACE). Under assumption (3.9) for the
initial subdivision \scrT 0, given a refinement \scrT of \scrT 0, let \widetilde \scrT = INTERFACE(\scrT , r) with
r < 2 diam(\scrG (\gamma ,\scrT 0)). Then there exists a positive constant \widetilde I0 := \widetilde I0(c\bfits \bfitr , \gamma ,C\bfitc \bfito \bfitm ) so
that

(4.1) \#(\widetilde \scrT ) - \#(\scrT )\leq \widetilde I0r1 - d.

The proof is based on counting the number of bisections of T \in \scrG (\gamma ,\scrT 0). Here we skip
the proof and refer to the appendix of [26] for more details.

Remark 4.2. The above estimate holds provided that the initial refinement \scrT 0
is capable of capturing the shape of \gamma , i.e., that the assumption provided in (3.9) is
valid.
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444 LUCA HELTAI AND WENYU LEI

A direct application of Proposition 4.1 is to bound the cardinality of refined cells
from INTERFACE in REGSOLVE.

Corollary 4.3 (performance of REGSOLVE::INTERFACE). Let \{ \widetilde \scrT j\} be the se-
quence of subdivisions generated by INTERFACE in REGSOLVE. Then at the jth iterate,
there exists a positive constant I0 := \widetilde I0(c\bfits \bfitr , \gamma , f,C\bfitc \bfito \bfitm ,C\bfitr \bfite \bfitl ,m) satisfying

(4.2) \#(\widetilde \scrT j) - \#(\scrT j)\leq I0\tau 
 - 2(d - 1)
j .

Proof. The target estimate directly follows from (4.1) as well as r\sim \tau 2 according
to (3.10).

4.2. Performance of SOLVE. Let us review some estimates for the complexity
of SOLVE following the analysis from [17].

Contraction property. One instrumental tool to evaluate the performance of
SOLVE is the following contraction property (cf. [17, Theorem 4.3]).

Theorem 4.4 (contraction of SOLVE). There exist two constants \alpha \in (0,1) and\widetilde \alpha > 0 depending on c\bfits \bfitr , m, M and on the bulk parameter \theta in SOLVE such that for
all k\geq 0,

| | | wg  - Wk+1| | | 2 + \widetilde \alpha \scrE (Wk+1,\scrT k+1)
2 \leq \alpha 2

\Bigl( 
| | | wg  - Wk| | | 2 + \widetilde \alpha \scrE (Wk,\scrT k)2

\Bigr) 
.

Approximation classes. We denote Tn the set of all conforming subdivisions
generated from \scrT 0 satisfying \#(\scrT )\leq n. Define the best error obtained in Tn,

\sigma n(u)H1
0 (\Omega ) := inf

\scrT \in Tn

| | | u - U\scrT | | | ,

with U\scrT \in \BbbV (\scrT ) denoting the Galerkin projection of u, i.e.,

A(U\scrT , V ) = \langle F,V \rangle H - 1(\Omega ),H1
0 (\Omega ) for all V \in \BbbV (\scrT ),

and it also satisfies that

| | | u - U\scrT | | | = inf
V \in \BbbV (\scrT )

| | | u - V | | | .

Define the approximation class \scrA s with s \in (0, 1d ] to be the set of all v \in H1
0 (\Omega ) such

that the quasi-seminorm

| v| \scrA s := sup
n\geq 1

\Bigl( 
ns\sigma n(v)H1

0 (\Omega )

\Bigr) 
is finite. Due to the nonzero jump of the normal derivative of u on \gamma and according
to the discussion from section 10 of [6], the best possible convergence rate is given by
s= 1

2(d - 1) .

Performance of DATA. The approximation class \scrA s provides the rate of conver-
gence for the energy error | | | u - U\scrT | | | . Recalling that given g \in L2(\Omega ), the total error
E(wg,\scrT ) defined in (3.7) consists of both the energy error and the data indicator.
So we are also concerned with the rate of convergence for the data indicator \scrD (g,\scrT ).
Here we assume as follows.
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Assumption 4.5. For \tau > 0 and a fixed bulk parameter \widetilde \theta \in (0,1), set \scrT \ast =
DATA(\scrT , g, \tau , \widetilde \theta ). Then for s\in (0, 1d ], there exists a positive constant Gs (depending on

g and \widetilde \theta ) satisfying
\#(\scrT \ast ) - \#(\scrT )\leq Gs\tau 

 - 1/s.

Cardinality of refined cells in SOLVE. In the routine SOLVE, we need to esti-
mate the cardinalities of \scrM k as well as the cells refined from DATA. The latter comes
from Assumption 4.5. The estimate of the former requires the following bulk property
(cf. [17, Lemma 5.2]).

Lemma 4.6. Assume that the bulk parameter \theta \in (0, \theta \ast ) with

(4.3) \theta \ast =
1

C\bfite \bfitf \bfitf 

\sqrt{} 
1 +C2

L

.

Let \scrT \ast be a refinement of \scrT and denote \scrR \scrT \rightarrow \scrT \ast the set all refined cells from \scrT to
\scrT \ast . If E(wg,\scrT \ast )\leq \xi E(wg,\scrT ) with

(4.4) \xi :=

\sqrt{} 
1 - \theta 2

\theta 2\ast 
,

there holds \scrE (Wg,\scrR \scrT \rightarrow \scrT \ast )\geq \theta \scrE (Wg,\scrT ).

Using Assumption 4.5 and the above lemma, Lemma 5.3 of [17] implies that for
each iterate k in SOLVE, we have

(4.5) \#(\scrM k)\lesssim (| wg| \scrA s +Gs)
1/sE(wg,\scrT k) - 1/s.

4.3. Performance of REGSOLVE. In this section, we shall adapt the results in
the previous subsection to REGSOLVE.

4.3.1. Performance of DATA using \bfitF \bfitr . To show that Assumption 4.5 holds
for g \in L2(\Omega ) with s= 1

d , starting from a conforming initial subdivision \scrT 0 and using
a greedy algorithm (see Algorithm 4.1), we can find a refinement \scrT of \scrT 0 so that the
data indicator \scrD (g,\scrT ) is smaller than a target tolerance \tau .

Algorithm 4.1 \scrT = GREEDY(\scrT 0, g, \tau )
\scrT = \scrT 0
while \scrD (g,\scrT )> \tau do
T = argmax\{ d(g,T,\scrT )\} ;
\scrT = REFINE(\scrT ,\{ T\} );

end while
return \scrT ;

According to [17, Theorem 7.3], there exists a positive constant K depending only
on the shape regularity constant csr such that

\#(\scrT ) - \#(\scrT 0)\leq K\| g\| 2L2(\Omega )\tau 
 - d.

The above result can be extended by replacing \scrT 0 with its refinement \scrT , i.e., \scrT \ast =
GREEDY(\scrT , g, \tau ), and there holds

(4.6) \#(\scrT \ast ) - \#(\scrT )\leq K\| g\| 2L2(\Omega )\tau 
 - d.
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446 LUCA HELTAI AND WENYU LEI

This is because the marked cells in GREEDY(\scrT , g, \tau ) are contained in those generated
by GREEDY(\scrT 0, g, \tau ); see [12, Proposition 2] for a detailed discussion. Hence, any
L2(\Omega ) function g satisfies Assumption 4.5 with s = 1

d and \| g\| 2L2(\Omega ) \sim G1/d. When
g = F r as defined in Remark 2.4, the constant G1/d may still depend on r in an
arbitrary refinement of \scrT 0. However, the refinement process in DATA is based on the
subdivisions generated by INTERFACE. So cells marked in GREEDY should be located
in a neighborhood of a tubular extension of \gamma , whose width can be controlled by the
regularization parameter r. In order to see the dependence of (4.6) on r, we modify
the argument of Lemma 7.3 of [17].

Lemma 4.7 (approximation class for F r). Assume that f \in L\infty (\gamma ) and F r is
defined as in Remark 2.4 for any r > 0. Letting the initial subdivision \scrT 0 satisfy (3.9),
we define \widetilde \scrT = INTERFACE(\scrT 0, r) with r < c\gamma . For any \tau > 0, the cardinality of refined

cells in \scrT \ast = GREEDY(\widetilde \scrT , F r, \tau ) can be bounded by

\#(\scrT \ast ) - \#(\widetilde \scrT )\leq K0r
1 - d/2\| f\| dL\infty (\gamma )\tau 

 - d,

where the constant K0 is independent of r and \tau . This implies that Assumption 4.5
holds for F r with s= 1

2 and G1/2 \sim r1 - d/2\| f\| dL\infty (\gamma ) when \scrT = \widetilde \scrT .

Proof. Here we sketch the proof and refer to the appendix of [26] for a complete
version. Suppose that there are totally N iterations executed in the while loop when
GREEDY(\widetilde \scrT , F r, \tau ) terminates. We denote with \{ T i\} Ni=0 the marked cells in the sequence
and set \scrT i = REFINE(\scrT i - 1,\{ T i - 1\} ) for i= 1, . . . ,N and \scrT 0 = \widetilde \scrT . Let

\delta := d(F r, TN - 1,\scrT N - 1) = argmax\{ d(F r, T,\scrT N - 1) : T \in \scrT N - 1\} .

Clearly, by the above setting there hold for 0\leq i\leq N  - 1

(4.7) d(F r, T i,\scrT i)\geq \delta and \tau \leq \scrD (F r,\scrT N - 1)\leq \delta 
\sqrt{} 
\#(TN - 1).

Since F r is supported in Ur, T
i \subset Ucr for some constant c\geq 1 depending on csr. Let

\scrB j \subset \{ T i\} be the set satisfying

(4.8) 2 - (j+1)| Ucr| < | T i| \leq 2 - j | Ucr| , j \geq 0.

Since \{ T i\} are distinct from each other, the left inequality above implies that \#(\scrB j)<
2j+1, while the right inequality as well as (4.7) imply that

\delta \leq d(F r, T i,\scrT i) = | T i| 1/d\| F r\| L2(T i) \leq 2 - j/d| Ucr| 1/d\| F r\| L2(T i).

By summing up for all T i \in \scrB j , there holds

\delta 2\#(\scrB j)\leq 2 - 2j/d| Ucr| 2/d\| F r\| 2L2(Ucr)
,

whence

(4.9) N =
\sum 
j\geq 0

\#(\scrB j)\leq 
\sum 
j<j0

2j+1 + \delta  - 2| Ucr| 2/d\| F r\| 2L2(Ucr)

\sum 
j\geq j0

2 - 2j/d,

where j0 is the smallest integer such that 2j0+1 > 2 - 2j0/d\delta  - 2| Ucr| 2/d\| F r\| 2L2(Ucr)
.

Using the definition of j0 together with | Ucr| \sim r and \| F r\| L2(Ucr) \lesssim r1/2\| f\| L\infty (\gamma ), if
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 447

j0 > 0, we can estimate 2j0 (with respect to \delta , r, and F r) to bound the right-hand
side of (4.9) with

(4.10) N \lesssim \delta  - 2d/(2+d)r(2 - d)/(2+d)\| f\| 2d/(2+d)
L\infty (\gamma ) .

A similar estimate can be obtained when j0 = 0. Now we invoke (4.7), (3.4), and
(4.10) to conclude that

\tau \lesssim 

\sqrt{} 
\#(\scrT 0) +CcomN

N (2+d)/(2d)
r1/d - 1/2\| f\| L\infty (\gamma ) \lesssim N - 1/dr1/d - 1/2\| f\| L\infty (\gamma ),

and the proof is complete.

Remark 4.8. Following the proof of [12, Proposition 2], we can extend the results
in Lemma 4.7 by replacing \widetilde \scrT with any of its refinements. More precisely speaking,
let \scrT + be any refinement of \widetilde \scrT , and \scrT \ast = GREEDY(F r,\scrT +, \tau ). Then,

\#(\scrT \ast ) - \#(\scrT +)\lesssim r1 - d/2\| f\| dL\infty (\gamma )\tau 
 - d.

Remark 4.9. An estimate similar to the one in Lemma 4.7 could also be obtained
when the local data indicator in GREEDY is replaced by the surrogate Lp(\Omega ) data
indicator defined by (7.1) of [17]. Here p= 2d

d+2 so that Lp(\Omega ) is on the same nonlinear

Sobolev scale of H - 1(\Omega ). Note that \| F r\| Lp(\Omega ) \lesssim \| f\| L\infty (\gamma )r
1/p - 1 = \| f\| L\infty (\gamma )r

1/d - 1/2.
Applying [17, Lemma 7.3] directly we get

\#(\scrT \ast ) - \#(\widetilde \scrT )\lesssim \| F r\| dLp(\Omega )\tau 
 - d \lesssim r1 - d/2\| f\| dL\infty (\gamma )\tau 

 - d.

Remark 4.10. We note that by treating F r as an L2(\Omega ) data, Lemma 4.7 also
reveals the dependency of r for for the decay of the oscillation osc(F r,\scrT ).

Now we are in a position to verify Assumption 4.5 when g = F r. The proof
follows [17, Theorem 7.5] using a contraction property of \scrD (F r,\scrT ), a bulk property,
and Lemma 4.7. Here we again omit the proof.

Corollary 4.11 (performance of DATA). Under the settings in Lemma 4.7, As-
sumption 4.5 holds with s = 1

d and g = F r starting from \widetilde \scrT = INTERFACE

(\scrT 0, r). Precisely speaking, given a refinement \scrT of \widetilde \scrT , let \scrT \ast be the output of
DATA(\scrT , F r, \tau , \widetilde \theta ) with a fixed \widetilde \theta \in (0,1). Then, there exists a constant K0 > 0 not
depending on r or \tau (but depending on \widetilde \theta ) satisfying

\#(\scrT \ast ) - \#(\scrT )\leq K0r
1 - d/2\tau  - d.

4.3.2. Quasi-monotoniciy of the data indicator. The following lemma pro-
vides a quasi-monotonicity of \scrD (F r,\scrT ) with respect to r. We note that this property
relies on some additional hypothesis on the forcing data f and on the nonnegativity
of \delta r.

Lemma 4.12. Given r2 < r1, let \scrT be a refinement of INTERFACE(\scrT 0, r2). Then
there holds that

\scrD (F r2 ,\scrT )\lesssim \widetilde \beta d\scrD (F r1 ,\scrT ) + r2,

where \widetilde \beta = r2
r1
< 1.
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448 LUCA HELTAI AND WENYU LEI

Proof. We investigate the local data indicator for F r2 when (i) T is away from the
tubular neighborhood of \gamma with radius r2, (ii) T intersects the tubular neighborhood
and f changes sign in T , and (iii) T intersects with the tubular neighborhood and f
is nonnegative/nonpositive. Clearly, d(F r2 , T,\scrT ) = 0 when dist(T,\gamma ) > r2. We shall
focus on the other cases.

We recall from the configuration of f in section 2 that the set I defined in (2.2)
separates the sign of f in \gamma . Define

\scrB := \{ T \in \scrT : T \cap Br2(x0) \not = \emptyset for some x0 \in I\} .

Since hT \lesssim r2 for T \in \scrB , there holds

(4.11)
\sum 
T\in \scrB 

| T | \lesssim r22.

Here the hidden constant above depends on the measure of I in co-dimension 2. Now
we bound d(F r2 , T,\scrT ). If T /\in \scrB , since \delta r is nonnegative, and thanks to Assumption
2.1, item 4, we have \delta r2 \leq \widetilde \beta d\delta r1 . Hence,

d(F r2 , T,\scrT )\leq \widetilde \beta dd(F r1 , T,\scrT ).

If T \in \scrB , there holds

d(F r2 , T,\scrT )2 \lesssim 
h2T
r2d2

\int 
T

| Br2(x)\cap \gamma | 2 dx\lesssim 
h2T
r2d2

r
2(d - 1)
2 | T | \lesssim | T | .

By summing up all contributions above and invoking (4.11), we arrive at

\scrD (F r2 ,\scrT )2 =
\sum 
T\in \scrB 

d(F r2 , T,\scrT )2 +
\sum 
T /\in \scrB 

d(F r2 , T,\scrT )2

\lesssim 
\sum 
T\in \scrB 

| T | +
\sum 
T /\in \scrB 

\widetilde \beta 2dd(F r1 , T,\scrT )2 \lesssim r22 +
\widetilde \beta 2d\scrD (F r1 ,\scrT ),

which concludes the proof.

Remark 4.13. If f is nonnegative or nonpositive along \gamma , according to the proof
of Lemma 4.12, we immediately get \scrD (F r2 ,\scrT )\leq \widetilde \beta d\scrD (F r1 ,\scrT ).

4.3.3. Performace of each subroutine in REGSOLVE. In terms of the approx-
imation class for ur, Lemma 3.2 of [12] enlightens us to exploit the fact that ur is an
approximation of u and then to characterize approximation properties of ur with the
approximation class of u, i.e., using the quasi-seminorm | u| \scrA s for some s\in (0, 1d ).

Lemma 4.14 (Lemma 3.2 of [12]). If | | | u - ur| | | < \varepsilon for some \varepsilon > 0, then ur is a
2\varepsilon -approximation to u of order s: for all \delta > 2\varepsilon , there exists a positive integer n such
that

\sigma n(u
r)H1

0 (\Omega ) \leq \delta and n\lesssim | u| 1/s\scrA s \delta 
 - 1/s.

Lemma 4.15 (a priori asymptotic decay of the total error; see Lemma 5.1 of
[17]). Under the settings in Lemma 4.7, we set r = r(\tau ) according to (3.10) so that
| | | u - ur| | | \leq C\bfitr \bfite \bfitl \tau /2 for some \tau > 0. Then for any 1 > \delta \geq 

\surd 
2C\bfitr \bfite \bfitl \tau , there is a

refinement \scrT of \widetilde \scrT = INTERFACE(\scrT 0, r) such that

E(ur,\scrT )\leq \delta and \#(\scrT ) - \#(\widetilde \scrT )\lesssim (K0r
1 - d/2 + | u| 1/s\scrA s )\delta 

 - 1/s.
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 449

Proof. A desired refinement \scrT of \widetilde \scrT is the overlay of \scrT r
f = DATA(\widetilde \scrT , F r, \delta /

\surd 
2) and

\scrT ur from Lemma 4.14 by replacing \delta with \delta \surd 
2
.

The next lemma provides the estimate of marked cells in SOLVE. The proof follows
from [17, Lemma 5.3], together with Lemma 4.15, as well as the minimal assumption
of MARK.

Lemma 4.16 (cardinality of REGSOLVE::SOLVE::MARK). Under the settings given
by Lemma 4.7, let the bulk parameter \theta defined in SOLVE satisfy the condition \theta <
\theta \ast , with \theta \ast provided by (4.3). For a fixed \tau > 0, set r = r(\tau ) in (3.10) and \widetilde \scrT =
INTERFACE(\scrT 0, r). We also let \{ \scrT k\} be defined in SOLVE(\widetilde \scrT , F r, \widetilde \mu \tau ) with \widetilde \mu \geq 

\surd 
2C\bfitr \bfite \bfitl /

(\xi C\bfite \bfitf \bfitf ) and \{ \scrM k\} be the set of marked cells generated from SOLVE::MARK at \scrT k. Then
there holds

\#(\scrM k)\lesssim (K0r
1 - d/2 +Us)E(ur,\scrT k) - 1/s,

where Us := | u| 1/s\scrA s .

Lemma 4.17 (performance of REGSOLVE::SOLVE; cf. Theorem 4.1 of [12]). Denote
\{ (\scrT j ,Uj)\} j\mathrm{m}\mathrm{a}\mathrm{x}

j=0 to be the sequence of subdivisions and approximations of u generated

by REGSOLVE, respectively. Set \widetilde \scrT j = INTERFACE(\scrT j , rj) with rj = r(\tau j). Under the
assumptions provided by Lemmas 4.7 and 4.16, there holds that for j \geq 1,

\#(\scrT j+1) - \#(\widetilde \scrT j)\lesssim (K0r
1 - d/2 +Us)\tau 

 - 1/s
j .

Proof. For each j \geq 1, we let kmax be the number of iterations executed in SOLVE.
Let us first show that kmax is uniform bound with respect to j. Let \widehat \tau j be the error

indicator for \widetilde Uj = GAL(\widetilde \scrT j , F rj ) with rj = r(\tau j) in REGSOLVE. In view of (3.6) and
Lemma 4.12, we have

\widehat \tau j \lesssim E(urj , \widetilde \scrT j)\lesssim \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| urj  - \widetilde Uj

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| +\scrD (F rj , \widetilde \scrT j)\lesssim | | | urj  - Uj | | | +\scrD (F rj - 1 , \widetilde \scrT j) + rj

\lesssim | | | u - urj | | | + | | | u - Uj | | | + \scrE (urj - 1 ,\scrT j) + rj .

Now we invoke Propositions 3.5 and 2.6 to deduce

(4.12) \widehat \tau j \lesssim r
1/2
j + \tau j - 1 + rj \lesssim \tau j + \tau j - 1 \lesssim \tau j .

In the above estimates we also used the relations rj \lesssim \tau 2j+1 and \tau j = \beta \tau j - 1. The
contraction property (4.4) together with (4.12) yields the uniform boundedness of
kmax.

At each iteration k= 0,1, . . . , kmax in SOLVE, Lemma 4.16 controls the number of
marked cells in REFINE. For the cardinality of the marked cells in DATA, we set \scrT +

k to
be the corresponding output and apply Corollary 4.11 to get

\#(\scrT +
k ) - \#(\scrT k)\lesssim K0r

1 - d/2(\lambda \theta \scrE k) - 1/s \lesssim K0r
1 - d/2E(ur,\scrT k) - 1/s.

Combining the above estimate together with Lemma 4.16, we obtain that

\#(\scrT j+1) - \#( \widetilde \scrT j)\lesssim k\mathrm{m}\mathrm{a}\mathrm{x}\sum 
k=0

\bigl( 
\#(\scrM k) +\#(\scrT +

k ) - \#(\scrT k)
\bigr) 

\lesssim (K0r
1 - d/2 +Us)E(ur,\scrT k\mathrm{m}\mathrm{a}\mathrm{x})

 - 1/s
k\mathrm{m}\mathrm{a}\mathrm{x}\sum 
k=0

\alpha (k\mathrm{m}\mathrm{a}\mathrm{x} - k)/s

\lesssim (K0r
1 - d/2 +Us)\tau 

 - 1/s,(4.13)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

5/
23

 to
 1

09
.1

71
.1

45
.2

3 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



450 LUCA HELTAI AND WENYU LEI

where for the last two inequalities above we applied Theorem 4.4, \tau \lesssim E(ur,\scrT k\mathrm{m}\mathrm{a}\mathrm{x}),
and

\sum k\mathrm{m}\mathrm{a}\mathrm{x}

k=0 \alpha 
(k\mathrm{m}\mathrm{a}\mathrm{x} - k)/s \leq 

\sum \infty 
k=0\alpha 

k/s \lesssim 1. The proof is complete.

4.3.4. Performace of REGSOLVE. We are now in a position to show our main
result.

Theorem 4.18 (performance of REGSOLVE). Denote \{ (\scrT j ,Uj)\} j\mathrm{m}\mathrm{a}\mathrm{x}

j=0 to be the se-
quence of subdivisions and approximations of u generated by REGSOLVE, respectively.
Under the assumptions provided by Lemmas 4.7 and 4.16, there holds that

\#(\scrT j\mathrm{m}\mathrm{a}\mathrm{x}
) - \#(\scrT 0)\lesssim (K0 + I0 +Us)\tau 

2 - d - 1/s
j\mathrm{m}\mathrm{a}\mathrm{x}

.

Proof. Denote \scrM j the collections of cells marked for refinement in the jth itera-
tion of solve. Invoking Corollary 4.3 and Lemma 4.17, we have

\#(\scrM j) = (\#(\widetilde \scrT j) - \#(\scrT j)) + (\#(\scrT j+1) - \#(\widetilde \scrT j))
\lesssim (I0\tau 

2 - d
j +K0\tau 

2 - d
j +Us)\tau 

 - 1/s
j \lesssim (I0 +K0 +Us)\tau 

2 - d - 1/s
j ,

where we used the setting r\sim \tau 2j according to (3.10). Summing up the above estimate
for j = 0, . . . , jmax  - 1 together with the relation \tau j\mathrm{m}\mathrm{a}\mathrm{x} = \beta j\mathrm{m}\mathrm{a}\mathrm{x} - j\tau j implies the target
estimate.

Remark 4.19 (convergence rates). As mentioned in section 4.2, the best possible
rate is s= 1

2(d - 1) . So Theorem 4.18 implies that

| | | u - Uj | | | \lesssim \tau j \lesssim (\#(\scrT j) - \#(\scrT 0)) - 1/(3d - 4).

Hence, in two-dimensional space, we guarantee that the adaptive method is quasi-
optimal. However, in three-dimensional space, we have

| | | u - Uj | | | \lesssim (\#(\scrT j) - \#(\scrT 0)) - 1/5,

which turns out to be suboptimal compared with the optimal rate 1
4 .

5. Numerical illustration. In this section, we test our numerical algorithm
proposed in section 3 for the following interface problem: letting \gamma be defined as in
(2.1), we want to find u satisfying

 - \Delta u= 0 in \Omega \setminus \gamma ,
[u] = 0 on \gamma ,

[\nabla u \cdot \nu \gamma ] = f on \gamma ,

u= g on \partial \Omega ,(5.1)

where [.] denotes the jump of the function across the interface \gamma and \nu \gamma is the outward
normal direction along \gamma . So u satisfies the weak formulation (2.5) with the forcing
data F defined by (2.3) and a nonhomogeneous boundary condition.

As we mentioned in section 3.4, our numerical implementation relies on the
deal.II finite element library [3, 4] and we use quadrilateral subdivisions in two
dimensions and hexahedral subdivisions in three dimensions. For the computation
of the right-hand side of the discrete system, we refer to Remark 22 of [25] for more
details. In the following numerical simulations, we use a radially symmetric C1 ap-
proximation of the Dirac delta approximation, i.e., \psi (x) = cd(1+cos(| \pi x| ))\chi (x), where
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 451

\chi (x) is the characteristic function on the unit ball and cd is a normalization constant
so that

\int 
\BbbR d \psi = 1.

In REGSOLVE, we fix \widetilde \mu = 1
2 . The parameters \scrT 0 (initial subdivision), \tau 0 (initial

tolerance), \beta (tolerance reduction), jmax (number of iterations), the bulk parameters
\theta and \widetilde \theta , and \lambda (ratio between \scrE and \theta \scrD ) will be provided for each numerical test.
For the regularization parameter, we simply set r(\tau j) = \tau 2j in REGSOLVE::INTERFACE
to avoid the estimate of the constants Creg, Crel and \| f\| L2(\gamma ) in (3.10). Furthermore,
after the last iteration of REGSOLVE, we perform the following extra steps:

rj+1 = r(\tau j\mathrm{m}\mathrm{a}\mathrm{x}+1);\widetilde \scrT j\mathrm{m}\mathrm{a}\mathrm{x}+1 = INTERFACE(\scrT j\mathrm{m}\mathrm{a}\mathrm{x}+1, rj+1);

GAL(\widetilde \scrT j\mathrm{m}\mathrm{a}\mathrm{x}+1, F
rj+1).

5.1. Convergence tests on an L-shaped domain. Following test cases sim-
ilar to those presented in [27], we set \Omega = ( - 1,1)2\setminus [0,1]2, \gamma = \partial BR(c) with R = 0.2
and c= (0.5, - 0.5)T, f = 1

R , and g= ln(| x - c| ). The analytic solution is given by

u(x) = r(x)2/3 sin( 23 (\theta (x) - 
\pi 
2 )) +

\biggl\{ 
 - ln(| x - c| ) if | x - c| >R,
 - ln(R) if | x - c| \leq R,

with (r, \theta ) denoting the polar coordinates. We start with an initial uniform grid \scrT 0
with the mesh size

\surd 
2/4. Note that we also approximate the interface \gamma with a

uniform subdivision whose vertices lie on \gamma . The corresponding mesh size is fixed
as 2\pi R/214 so that the geometric error will not dominate the total error. For the
parameters showing the numerical algorithm, we set jmax = 6, \tau 0 = 0.6, \beta = 0.8,
\lambda = 1

3 , and \theta = \widetilde \theta = 0.7 in SOLVE and DATA, respectively. The left plot in Figure 1
reports the H1(\Omega )-error versus the number of degrees of freedom (\#DoFs) when GAL

is executed. We note that the error goes down almost vertically when we update the
regularization radius after INTERFACE. In order to verify Theorem 4.18 (or Remark
4.19), we extract the sampling points only for Uj (i.e., the last Galerkin approximation
in each iteration of REGSOLVE) in red. Based on the observation we confirm the
first order rate of convergence. We also present our approximated solution U3 and
its underlying subdivision in Figure 2 using the tensor product extension of the C1

function.
We test the algorithm in Remark 3.6 (i.e., we make one single iteration, and set the

initial target tolerance to \tau 0\beta 
j\mathrm{m}\mathrm{a}\mathrm{x}), and report the energy error for the final approxi-

mation against \#DoFs in the right plot of Figure 1. Here we use the same parameters
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1
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u− GAL(u)
u− Uj
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Fig. 1. Test on an L-shaped domain: (left) H1(\Omega )-error decay between the solution u and every
Galerkin approximation (GAL(u)) in REGSOLVE and between u and Uj defined in REGSOLVE; (right)
H1(\Omega )-error decay between u and Uj\mathrm{m}\mathrm{a}\mathrm{x} defined from Remark 3.6. We set j\mathrm{m}\mathrm{a}\mathrm{x} = 6, and \tau 0 = .6.
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Fig. 2. Test on an L-shaped domain: (left) the subdivisions of U3 in REGSOLVE and (right) the
corresponding Galerkin approximation using tensor product C1.
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Tensor product C∞ (−0.198)

Tensor product L∞ (−0.236)

Fig. 3. Tests in the unit cube: H1(\Omega )-error decay between the solution u and Uj for j = 1, . . . ,7
and for different choices of \delta r(x). In terms of each plot, the slope of the linear regression of the last
five sampling points is reported in the legend.

except that jmax = 14, in order to reach a similar true error. Comparing with the left
plot of Figure 1, we note that although both algorithms guarantee the quasi-optimal
convergence rate, the energy error | | | Uj\mathrm{m}\mathrm{a}\mathrm{x}

 - u| | | using the algorithm in Remark 3.6 is
much larger than that computed from REGSOLVE with multiple iterations.

5.2. Convergence tests in the unit cube. We test our numerical algorithm
in three dimensions by setting \Omega = ( - 1,1)3 and \gamma = \partial BR(c) with R = 0.2 and
c = (0.3,0.3,0.3)T. We also set the data function f = 1

R2 on \gamma and g = 1/| x - c| so
that the analytic solution is given by

u(x) =

\biggl\{ 
1/| x - c| if | x - c| >R,
1/R if | x - c| \leq R.

We start with an initial uniform grid \scrT 0 with the mesh size
\surd 
3/16. To approximate

the interface \gamma , we start with initial quasi-uniform coarse mesh and refine it globally
7 times so that the geometric error is small enough. For the other approximation
parameters, we set jmax = 5, \tau 0 = 1.5, \beta = 0.8, \lambda = 1, \theta = 0.5 in SOLVE and \widetilde \theta = 0.8 in
DATA. In Figure 3, we report the H1(\Omega )-error against \#DoFs for the following three
different types of \delta r: the radially symmetric C1 type, the tensor product C\infty type
generated by \psi 1d(x) = exp(1 - 1/(1 - x2))\chi ( - 1,1)(x), and the tensor product L\infty type
generated by \psi 1d(x) =

1
2\chi ( - 1,1)(x). For each error plot, we also report the slope of

the linear regression of the last five sampling points. For the choice of tensor product
C\infty , the performance is suboptimal and close to the predicted rate 1

5 . When using
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Fig. 4. Tests in the unit cube: the crinkle clip (x1 \leq 0.3) of the approximation U7 (3741904
DoFs) (left) as well as the subdivisions for U5 (mid) and U7 (right) using radially symmetric C1.
The interface \gamma is marked in red.

radially symmetric C1, the observed convergence rate is better than the best possible
rate 1

4 . As for tensor product L\infty , the performance is between 1
4 and 1

5 . We also
report the coarse grid and the grids for U5, U7 as well as the approximation U7 using
radially symmetric C1 in Figure 4.

5.3. Performance tests in the unit square. Consider \Omega = (0,1)2, \gamma = \partial BR(c)
with R = 0.2 and c = (0.3,0.3)

\intercal 
, f = 1

R , and g = ln(| x - c| ). Similar to the previous
section, we can obtain the following exact solution:

u(x) =

\biggl\{ 
 - ln(| x - c| ) if | x - c| >R,
 - ln(R) if | x - c| \leq R.

We shall compare the performance of our numerical algorithms both in Algorithm
3.8 and Remark 3.6 with the algorithm without regularization; see the numerical
algorithm from section 7.2 of [17]. To be more precise, the algorithm without using
the regularization is based on SOLVE by replacing the data indicator \scrD with the
following surrogate data indicator:

\widetilde \scrD (f,T,\scrT ) := h
1/2
T \| f\| L2(T\cap \gamma ).

Using the exact solution u, after the jth iterate of REGSOLVE in Algorithm 3.8 using
tensor product L\infty , we compute the H1(\Omega )-error between u and Uj , denoted by ej .

For the parameters we set \tau 0 = 0.3, \beta = 0.7, \lambda = 1
3 , \theta =

\widetilde \theta = 0.55. Then we run the
nonregularized program with the same parameters and terminate it when the energy
error is smaller than ej , denoting \widetilde ej the energy error for the corresponding output
approximation, for j = 8,9, . . . ,12. We also compute ej using the algorithm provided
by Remark 3.6 with j = 11, . . . ,15. Now we report those errors and the CPU times
for each program against \#DoFs in Figure 6. We observe that all algorithms are
quasi-optimal but the algorithm from Remark 3.6 requires more DoFs.

In terms of the computation time, it turns out that Algorithm 3.8 needs more time
when the discrete system is small (less than 107) and becomes more efficient when
the size of the system is increasing. Since the computational cost associated to the
regularized version is comparable to the one required by the nonregularized version
when computed on the same grid (see [25, Figure 7]), a fair comparison between the
different AFEM algorithms should take into account the computational cost in terms
of the attained accuracy.

The regularized case reaches lower errors, for the same number of degrees of
freedom, but it is more expensive (due to a larger number of refined elements around
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Fig. 5. Tests on a square: (left) the unstructured coarse mesh \scrT 0, (center) the subdivision for
U5, and (right) the corresponding subdivision using the nonregularized algorithm.
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Fig. 6. Tests on a square: (left) \| Uj  - u\| H1(\Omega ) using REGSOLVE with tensor product L\infty 

for j = 8, . . . and the corresponding H1(\Omega )-error decay without using the regularization; (right)
computational time against \#nDoFs for two adaptive algorithms. We note that the sampling points
for the nonregularized algorithm at j = 10 and 11 are so close that they overlap with each other.

the interface \gamma required by our algorithms). The computational cost is compensated
for by the higher accuracy in the largest scale computations, where the computational
cost per degree of freedom is comparable, making the regularized approach roughly
comparable to the nonregularized one also in the AFEM context. In Figure 5, we
finally report the grid for U5 using Algorithm 3.8 and corresponding grid for the
nonregularized algorithm.

6. Conclusion and outlook. We have proposed an adaptive finite element
algorithm to approximate the solutions of elliptic problems with rough data approx-
imated by regularization. Such problems are relevant in many applications ranging
from fluid-structure interaction to the modeling of biomedical applications with com-
plex embedded domains or networks.

Our approach builds on classical results for adaptive finite element theory for
H - 1 data, and for L2 data. In particular, we analyze the regularization of line Dirac
delta distributions via convolutions with compactly supported approximated Dirac
delta functions, with radius r. What characterizes the regularization process is that
even if the resulting forcing term is as regular as desired---at fixed r---its regularity
does not hold uniformly with respect to r.

This observation suggests that one could exploit the knowledge of the asymptotic
behavior of the data regularity with respect to r to construct an algorithm that a
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AFEM FOR REGULARIZED ELLIPTIC PROBLEMS 455

priori refines around the rough part of the forcing term, in a way that guarantees
quasi optimal convergence, at least in the two-dimensional case.

The resulting approximation error is split into a regularization error for u and
the finite element approximation error for the regularized ur. In this work we show
how to control the dependencies between these two errors and provide an algorithm
in which the error decay in the energy norm is quasi-optimal in two-dimensional space
and suboptimal in three-dimensional space.

Our findings are specific for the co-dimension one case but could be easily extended
to the co-dimension zero case, where the dependency of the regularity on r disappears
naturally, due to the intrinsic L2 nature of the resulting forcing term.

Acknowledgment. The author would like to thank the anonymous reviewers
who provided valuable comments and remarks on the earlier version of the manuscript.
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