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EXISTENCE AND BLOW-UP FOR NON-AUTONOMOUS SCALAR
CONSERVATION LAWS WITH VISCOSITY

STEFANO BIANCHINI AND GIACOMO MARIA LECCESE

ABSTRACT. We consider a question posed in [1], namely the blow-up of the PDE
ut + (b(t, z)ul+k)z = Ugpz

when b is uniformly bounded, Lipschitz and k& = 2. We give a complete answer to the behavior of
solutions when b belongs to the Lorentz spaces b € LP>*°, p € (2, 00|, or by € LP*°, p € (1, 00].

1. INTRODUCTION
In this paper, we study the global in time existence and long time behavior for the initial value problem

{ut + (b(t, z)uF )y = uge, = €R,tE(0,00),

u(0,z) = ug(x) € L*(R) N L=(R), (L.1)

where b(t, z) is a non-autonomous drift and wg is the initial datum. This question was raised in [1], where
the subcritical case was analyzed. It is not restrictive to assume that

u(t,x) >0,

because the PDE (1.1) is monotone w.r.t. the initial data. Moreover by scaling u(a?t, ax) we can assume
that ||up|l1 = ||u(t)||1 = 1, where we have used that the PDE is in divergence form.

In this work we consider drifts b which are in weak-L? or with derivative in weak-LP. More precisely,
we make the following assumptions on the initial data ug and exponent k:

(1) bis only integrable:

k>0
b€ Liz.((0,00), L"*(R)) with p € (2,00], ’ 1.2
loc(( OO) ( )) with p ( OO] {UO c Ll(R) ﬁLOO(R), ( )
(2) b has a weak derivative in x:
b€ Li%,((0,00) X R) k>3,
€ L2 ((0,00) x R),
oc Ll R)N L>®°(R 13
{bx € L2 ((0,00), LP™(R)) with p € (1,00], | € L'(R) (R), (1.3)

E(ug) := [ 2*|uo(z)|dz < +o0.

The space LP'*° is the standard Lorentz space, see Subsection 2.1 for the precise definition: we just recall
here that LP>*° is also referred to as the weak-LP space.

The case k = 0 corresponds to a linear PDE, which can be studied by means of the Duhamel formula:
hence in this paper we restrict ourselves to k > 0. The assumption k > 1 in (1.3) is due to the fact that
the drift b may be unbounded. If b is uniformly bounded that one can remove this assumption. It has
actually no influence in the blow-up behaviour, which is a local property.

The aim is to investigate the relation between the exponents k and p so that the solution exists
globally in L> and to study the behaviour of w(t) for ¢ — co. In the time interval [0,7) where u(t) €
L2 ([0,T), L>*(R)), classical contraction principles show that the solution is unique in the class

u € L2 ([0,7), L=(R)) N C°([0,T), LP (R)) under assumptions (1.2),
u € L2 ([0,T), L>(R)) N C°([0,T), L*(R)) under assumptions (1.3).
(See Section 3 for details).

(1.4)
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2 STEFANO BIANCHINI AND GIACOMO MARIA LECCESE

The results of this paper about the existence of a bounded solution can be summarized in the following
theorem.

Theorem 1.1. Assume that the drift b and the initial condition ug satisfy (1.2) with k <1 —% or satisfy
(1.3) with k <2 — 1. Then solution u(t) of (1.1) is globally defined [0, c).

P
Conversely, assume that b,ug satisfy (1.2) with k > 1 — Il] or satisfy (1.3) with k > 2 — %. Then there
are bounded initial data such that the corresponding solutions of (1.1) blow up in L in finite time.

In particular, under the conditions of the first part of the previous statement, the solution is unique
in the regularity class (1.4).

The first part of the above statement is contained in Theorem 4.5, Section 4.4. The second part instead
in given in Theorems 5.2 and 5.4, Section 5.

The analysis of the subcritical case k < 2 and b bounded, Lipschitz has been done in [1]. The above
theorem extends their results to other classes of drift b. The blow-up results follow the analysis in [1],
where a specific drift is considered in the multidimensional case with k& = 2.

Concerning the long time behavior, we assume uniform bounds on b, i.e. we strengthen the conditions
on b as follows:

(1) under the assumptions (1.2), we also require

be L>((0,00), L (R)), p € (2,00]; (1.5)
(2) under the assumptions (1.3), we also require
be L=((0,00) X R), by € L=((0,00), L"*(R)), p € (1,00]. (1.6)

We obtained the following results (Theorem 6.1, Section 6):

Theorem 1.2. Assume that the solution is bounded for allt > 0 and the conditions (1.2), (1.5), k > 1—%
hold, or (1.3), (1.6), k > 2 — % hold. Then |[u(t)]/oe <t 2 ast — co.

Viceversa, assume (1.2), (1.5) with k < 1 — % or (1.3), (1.5) with k < 2 — %. Then there are drifts b
and initial data ug such that the corresponding solutions of (1.1) do not decay to 0 as t — oo.

In particular, in the case b, € L2 ((0,00), L>(R)) we answer to a question raised in [1], precisely
Question 3:
“Is it possible to guarantee global existence for solutions of the problem (1) when k > 2, p = 00?”
(1.7)

The problem (1) referred above in (1.7) and considered there is the PDE

{ut + (b(z, )ur ), = p(t)uge,

1.8
U()ELl(R>ﬂLOO, ug >0 ( )

with p strictly positive continuous function and b uniformly bounded and Lipschitz. The PDE (1.8) and
(1.1) are equivalent because of the following time transformation:

u(t,z) =v(r(t),x), 7(t)=pu(t), 7(0)=0,
which leads to the equation (1.1), namely
- - b(t, x)
v 4+ (b(1, )" ), = vg,  b(T(t),2) = ———=.
(4 (B, 2y ) (r(0).2) =

The results of the above theorem can be summarized in the following table: setting

" 1—1/p beLP™,
critic(p) = {2 —1/p byeLP™®
x bl

we have

| k < critic(p) k = critic(p) | k > critic(p)

be LP>* 2<p<o0 global existence global existence blow-up in finite time,
or by € LP*°,1 < p < oo | no decay in general and decay as t3 if bounded then decay as t=3



EXISTENCE AND BLOW-UP FOR NON-AUTONOMOUS SCALAR CONSERVATION LAWS WITH VISCOSITY 3

1.1. Structure of the paper. This article is organized as follows.

In Section 2 we introduce some definitions, notations, and well known results on Lorentz spaces (Sec-
tion 2.1): comparisons, embeddings, interpolations, Holder’s inequalities and convolutions estimates.
Since we are using multiplication/convolutions operators and embedding, the Lorentz space setting more
or less gives the same estimates as for LP. We also recall a special case of Gagliardo-Niremberg inequality
and prove a useful estimate on the heat kernel.

In Section 3 we recall the local existence and uniqueness of the solutions via Duhamel’s principle.
The assumption k > % and that E(up) < oo enters only in this section, and are needed if we let b to
be unbounded. The results in this section are standard, and independent on the main theorems of the
paper.

The main idea of the paper is contained in Section 4, where we deal with the global existence of
the solutions. Differently from the approach of [1], we use a standard rescaling the solutions about the
blow-up point at time 7', Section 4.1. By means of energy estimates for the truncated solution (Lemma
4.1) and Gagliardo-Niremberg inequality (Lemma 4.2), we show that in the new variables (7,y) € RT xR
that the rescaled solution decays the L?-norm as the Heat kernel T (Lemma 4.3). This fact will lead
to a uniform estimate on the L2?-norm of the original solution u (Corollary 4.4), and by adapting the
estimate [1, Theorem 3.8] to our case we deduce that ||u|| is bounded, Theorem 4.5 of Section 4.4. This
concludes the proof of the first part of Theorem 1.1.

In Section 4.5 we study the critical cases, and show that the fact that the norm of b remains constant
under rescaling leads to a uniform decay rate, Theorem 4.7.

In Section 5 we provide examples of solutions blowing up in finite time for k£ above the critical value.
The ideas are taken from [1] and adapted to our situation. Theorem 5.2 corresponds to the second part
of Theorem 1.1 for k > 1 — % and b(t) € LP*°, while the other case k > 2 — % and b, (t) € LP* is in the
statement of Theorem 5.4. As observed already in [1], we notice in Remark 5.5 that the L!-norm of the
initial data cannot be too small, otherwise blow-up is not possible.

In Section 6 we discuss the long behavior of solutions, proving Theorem 1.2. The proof of the main
result of this section, Theorem 6.1, gives examples of bounded solutions in the subcritical case, and by
adapting the analysis of the decay for the critical case we obtain that the solution decay in the critical
or supercritical case, if we assume that u € Lg7,.

Acknowledgment. This research has been partially supported by the project PRIN 2020 ”Nonlinear
evolution PDEs, fluid dynamics and transport equations: theoretical foundations and applications”.

2. PRELIMINARIES

1

Given a function f € L,

(R), and a > 0 we define the a-moment of f as

Ma(f) = [ lal?f] o
In particular we will use the notation
m(f) = My(f), as the mass of f, E(f) = Mx(f), as the energy of f.
We will write

(f Ag)(@) i= min{f(z),9(x)},  (fVg)(x) :=max{f(z),g(x)}.

The letter C' will be a constant that could change line by line, also we use the symbol a < b as
shorthand for a < Cb for some constant C. We will write a ~ b if both a < b and b < a hold.
The symbol * will denote the convolution operation:

q*mmw:/f@mm—ywy

2.1. Lorentz spaces. We briefly recall the definition and some results about Lorentz space, see [3].
Let f*:(0,00) — R be the symmetric decreasing rearrangement defined by

f(x) = inf{a >0: L' ({|f| > a})| < :c},



4 STEFANO BIANCHINI AND GIACOMO MARIA LECCESE

and let f**(x) be the function defined by

e / 7 (

Define
> 1 dx %
[xpf**(x)]q) q €[1,00),p € (1,00)
||f||p,q = </0 1 x (2.1)
sup z 7 f**(z) q=00,p € [1,00].
x>0
Note that

1 llee =170 =17l 1Flloo.00 = Tim S (@) = [ /lloc-

By Hardy’s inequality [3, Lemma 2.3

oo T q 1/q oo 1/q
/p— dx / /p qdx 1 l_
[/0 (:cl 1/0 f(t)ldt) J <p[/0 ("1 f()]) m} oty =lpe(loo)

and some fairly easy computations, one can verify that for 1 < p < oo the above definition is equivalent

to
(/OOO [acrllf*(:r)]qaz:)é g €[1,00),p € [1,00),

sup x» f*(x) q=o00,p € [1,00].
x>0

1 f1llp.q = (2.2)

For p = ¢ = oo the equivalence is elementary. For p = 1, ¢ = oo the quantity in (2.2) is the weak-L! norm,
while (2.1) corresponds to the L'-space: the L'-norm in the above definition is realized for p = ¢ = 1. It
is elementary to deduce that for p € (1, 00)

k k k k
1 pa < PN pg = P Wip kg < 21 ip g (2.3)
It is immediate to check that
k k
¥ loc00 = 11" loe = 1F 15 = I1£11% o

Definition 2.1 (Lorentz space). The Lorentz space LP>? is the space of (equivalence classes of ) measurable
functions f such that || f||,q < co. It is a Banach space with the norm || -

|P7‘Z‘

We will use the following results.
Proposition 2.2 ([3, Lemma 2.2]). Let 1 < p < oo, then
) 11
I llp < 1 Fllpp < Pl FlLp, - where 242 = 1.

Proposition 2.3 ([3, Lemma 2.5]). Suppose 1 <p < oo and 1< q<r < oo, then

1
T

1l < (]‘ﬁ) Wl

Another elementary estimate we use is the following.

Lemma 2.4. For p; <p <p2 and q,q1,q2 > 1 it holds

_ L L 1

1 _1
Pl p P
Py

1 1
1 1 p p2 1 P
1 1 q P 9y L _ L P a1 T T
”f”W < (q q + 9 <I> <> v () e ||pr1a‘I1p2 ||f||p2,qz
P p2 p1 P « 42

Proof. The fundamental estimate is that, being f** decreasing, then

=l =

2 (7 (2)7 < / b @] < g, (2.4)
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Hence we can write for ¢ < oo

1£115,q =

Caytormm] < [ BT+ [T
0

1 p _9_a 1 p _4a_4a
= 9 _ 9 () Hf”pz,(ﬁxp b2 + 9 _ g <q1> ||pr17q1mp PL.

p s \42 p1 P

One can directly check that the same estimate holds for ¢ = co as

E EN
p q2 11 p q1
[ fllp,00 < () [ fllps.gaT? P2 + ()
q2 q1

and similarly for ¢g; = oo and/or g2 = cc.
Optimizing w.r.t. to Z,

1_ 1
|fH:01,lZ1‘Tp )

one obtains the statement.

O

Theorem 2.5 (Holder’s inequality in Lorentz spaces, [3, Theorem 3.4, Theorem 3.5]). If1 < p,p1,p2 < o0

and 1 < q,q1,q2 < 00 satisfy

1 1 1 1 1 1
-—=—+—, —-<—+—,
p pl D2 q q1 q2
then
1f9llpa<p ||f|‘p1,q1||g||pz,qz
where 1/p+1/p' = 1.
If
1 1 1 1
l=—+4—, 1<—+—,
P1 P2 q1 q2
then

1 £gllr < 1 f1lpr,aill9llpz,g2-
Corollary 2.6. If f, € LP>°, p > 1, then
[f(z) = f(@)] < Pl| fllp,oolz —2"|7.

Proof. For p = co the estimate is just the Lipschitz regularity of f.
We have by the last formula of Theorem 2.5

|—‘/fx Owdm

< ”fr”p,OOH][(O.J:)Hp',l = Hfr

ol o
p,00P ||

Theorem 2.7 ([3, Theorem 2.6]). If 1 < p,p1,p2 < 00 and 1 < q1,q2,q < 00 satisfy

then
I|.f * 9||p,q < 3P||f||p1,ql||g||p2-,q2~
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We recall also Young’s theorem on convolution on LP-spaces:

1 1 1
1f*gllp < (1 llp:l9llp. +1*—+—
D1 b2

which holds also in the case p = 1 (with the constant 3p replaced by 1). The case p = oo gives also [3,
Theorem 3.6]

1f*gllee < ”pr,quHp/,q’ﬂ (2.5)

with 1/p+1/p' =1, 1/qg+1/¢' > 1. We will also use the following variant of the above inequality when
ge L=,
1S * gllp.q < [1fllp.qllglloo-

2.2. Gagliardo-Nirenberg inequality. We recall the Gagliardo—Nirenberg interpolation inequality in
1-dimension.

Proposition 2.8 (Gagliardo-Nirenberg interpolation inequality,[2]). Let 1 < ¢ < p, then
0 -0
£y S 1F2 151 fllg

1 6 1-46

with

p 2 q
2.3. Heat kernel. Recall that the heat kernel G : RT x R — R is

Gt ) = 71 /),
T

In the following we will use the estimate below.
Proposition 2.9. For 1 < p < +oc it holds ||Gyl||,1 < Cp/'t'/?P~1,
Proof. We estimate

C
|G (t, z)| < 71[7\/27,\/%(95) + gy (= vz, var (0)|Ga (E, ),

thus o
. x
therefore
2V/2t
d
e A R T
0 X
o {x”” LJoe(e3)|] %
2V2t 2
~ p't%_l. 0

3. LOCAL EXISTENCE AND UNIQUENESS

For the sake of completeness, in this section we prove some classical results of local existence and
uniqueness for L> N Li-solutions of (1.1). Define the integral operator ®[u] by Duhamel formula

¢
s Bu]() = G(t) % uo + / Gt — ) % (b(s)uk (s)) ds.
0
Notice that ||u(t)||1 = ||uoll1, as required being the PDE in conservation form.
Proposition 3.1. Let b € LPLE>® p € (2,0], k>0, ug € LN LY (R) and %+ i =1. Then u — Plu)
is a contraction in the set
5= {ue L2(10.8 x B) N C(0.1], L7 (B) ¢ ulls < 7. u(0) = o}

with t sufficiently small and v > 2||uo||oo- In particular, there is a unique bounded solution for (1.1), and
it belongs to the space L=((0,1) x R) N C([0,1], L* (R)).
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We first prove that ¢ — ®[u](¢) is continuous in L* when u € S and ¢ > 0: this will be useful later
on, and shows also the continuity of ¢ — ®[u](t) in every integral norm || - |4, ¢ € [1, o0] for ¢ > 0.

Lemma 3.2. For every u € L5, ((0,1) x R) the function t — ®[u](t) is continuous in L>(R) for t > 0.

Proof. Compute

t+6
Jult +) = o)l = |G+ 0) = GO ot [ Gl 6 5) < blsyu A s

0
_ /t Go(t — s) % b(s)ul T (s)ds
0

o

t+6
[Theorem 2.7 < [|G(t+8) — G(®)[l1[luolle + C/ G (t+ 0 = 5)llpr 1 [1b(s)u" ™ (5) [ o ds
t
t
" C/ Gt +6 = 5) = Gult — 5) |l 1 16(s)u"(5)lp,oods
0
[Proposition 2.9] < [|G(t+6) — G(¢t) |1 ]|uoll

1 t
pocllull i (6 + / 1Gat+6 —8) — Galt - s>|pf,1ds)-
0

The last terms converge to 0 as § — 0 uniformly in every interval of the form [to,t1], to > 0. O

+ C||b]

Proof of Proposition 3.1. We start by deducing the uniform continuity in L' as t — 0: this will give the
continuity in time for | - |4, ¢ € [1,00). From Theorem 2.7 in the first inequality we obtain

l[u(t) = uolly < G(#) * uo = uolly +/O IGa(t = s)ll1b(s)u' ()]l ds

t
[Theorem 2.5] < [|G(t) * uo — uo|x +/O 1G(t = $)l1116(5) .o llu'** () 17 1ds

1
t—s

¢
[Lemma 2.4] < [|G(t) * uo — uol|1 + C”b”pmrkﬂ/p/ ds,
0

which converges to 0 uniformly once ug is fixed. Hence, by Lemma 3.2 above, ¢ — ®[u](t) is uniformly
continuous in L.
We next prove that ®(S) C S: indeed using again Theorem 2.5 in the first inequality, it holds

1®[u] (@)oo < [luolloo +/0 1Ga(t = $)llpr.1[1b(s)u™ (5)llp.cc ds

t
< luolloo +/O G (t = 8)llpr,1[15(8)llp,oc [u(s) |5 ds
[P .y ) % k+1
roposition 2.9] < [luglles + Ct2 ess-sup ||u(s)]|5]
s€[0,t]

2lluolloe < 7] < g + CF L

where in the first line we have used (2.5). Taking ¢ < 1 it holds that ®(S) C S.
Finally the same computations show that ®[u] is a contraction in C([0,#], L?"*(R)):

t
[@[u](t) — [](t)[|pr1 < C/O G (t = )l 1 16(5) .00 llu*(5) = ' *(5) || 1ds
< CHpr,ootzT’,Tk”u - U”QLQ"“

so that for ¢ < 1 the statement follows. The case p = oo follows by Holder’s inequality because ||b||oo,00 =
||b]|s, and gives a contraction in C;L}. O

For the second case, i.e. Conditions (1.3), we start by proving that the second moment M (u(t)) is
bounded if the solution u of (1.1) belongs to L.
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Lemma 3.3. Let b € L™, b, € LLE>, p € (1,00], k > %, up € L>® N L' (R), E(ug) < oo and
% + ﬁ =1. If [lullrg, <7, then

/(1 + 22)|u(t)|dr < (/(1 + x2)|uo|dx> Ot
Proof. Using the estimates by Corollary 2.6

b(@)] < [lbollp.cox™? + [B(0)] < OV1 422 < C(1+ |2]),
by (1.1) it holds

i/(l b 2?)udy = /(1 + %) (1, — bub ) de

dt
= 72/xuzdx+/2:17buk+ldx
< 2/udx+2/|scb|uk+1 dx
< 2|lully + C/(l + 2?)ut 1 de
<O+ ullk) [+ o fulde
Since ||ul|co < r, one integrates the differential inequality to obtain the statement. O

Corollary 3.4. Let b € L™, b, € LPLP>™, p € (1,00], k > 1, ugp € L= N L*'(R), E(ug) < oo and

% + i =1. Ifu(t) € L*>® and Ms(ug) < oo, then t — @[u|(t) is uniformly continuous in the interval
te [to,tl] with tog > 0,

Proof. Following the same line as in Lemma 3.2 above,
[[u(t +6) — u(t)]|oo

&
<G +0) = GO)lalluolloo +/ 1G=(8 = s)ll2llb(t + s)u' (¢ + 5)]|2ds
0

+ / 1Ga(t+ 6 — 8) — Galt — )l [b(s)u* (s)|ods
0

1 ERR AN
< 1G(t+8) = GOl luollow + C (¥l + sup B(u(t)? ull &™) s

[to,t1]

1 t
(It o+ sup B@(O)} [l E) [ 160+ 5 5) = Galt = 5)ads,
0

[to,t1]

where we recall that E(u) is the second moment of u. As in the previous case, the r.h.s. converges to 0
uniformly for ¢ > ¢. O

We remind that by Corollary 2.6, if b, (t) € LP->°, then b(t) is Z%—Holder and in particular it is defined
at every point.

Proposition 3.5. Assume that b(t,x = 0) is uniformly bounded, b, € LLE>*, k > 0 and ug €
L N LY(R) with bounded second order moment E(ug). Then u v+ ®[u] is a contraction in the set

S = {u e L=([0,7] x R) N C([0,7], L2(R)), ||u]| oo < 7, u(0) = uo},

with t sufficiently small and r > 2||ug||co- In particular, there is only one bounded solution for (1.1), and
it belongs to the space C([0,%], L*(R)).
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Proof. Following the same line of the proof of Proposition 3.1 we study first the continuity for ¢\, 0:
t
[u(t) —uollx < [|G(t) * uo — uollx +/ G (t = s)[1][b(s)u'**(s)]1ds
0

<G () * uo — uollx + C/O 1G(t = 81 [(11b(s, 0) o + 1) [ (8) oo + [[u* () o E(u(s))] ds
< ||G(t) * uo — uoll1 + Cr¥[([|b(z = 0)[|oe + 1) + ?SIEE(U(t))] vV,

which converges to 0 as ¢ — 0. Hence, together with Corollary 3.4 we obtain the uniform continuity in
every LP-space.

Next,
00l < ol + [ 16— b1+ s
<l + (e =0 +1-+sup B) )l [ 16— s
0

IN

Uollos + C/(1 + eCTAT)/2) kb5 g5
[[uol| (
< §+C(1—|—eCt(1+T )2yt 3EE

Taking t < 1 it holds that ®(S) C S.
Finally, for positive solutions,

[+ ) (@ll.0) = 0l(E.0) < [ G lalb(s)(wH(5) = 0 () s
(Ol + Dl + oll55) ) e = vllo, 2
+ (B ully

so that for ¢ < 1 ® is a contraction. O

+ B(v)2]o]l;; 7)||u — v, 2%,

Remark 3.6. The condition F(ug) < 400 that we used in Proposition 3.5 will not play a role in the
rest of the paper, in the sense that the estimates obtained are independent on E(ug). The same can be
said for the condition k£ > % Clearly for the blow-up it is more interesting to study the PDE for large k.

4. GLOBAL EXISTENCE IN THE SUBCRITICAL AND CRITICAL CASE

In order to prove the global existence we consider a standard rescaling about a possible blow-up at
point (T, &), where w.l.0.g. we assume that & = 0. We will show that the rescaled solutions decrease to 0
with the appropriate speed in L?-norm at time T in the critical and subcritical case, so that the original
unscaled solution is bounded by using the estimates contained in [1].

4.1. Rescaled variables. Set
t=T(1—e"7),
and define
v(r,y) = \/Te_T/Zu(T(l —e 7)), vTe—Ty),
b(r,y) = (Te*T)%b<T(l e, \/Te*Ty).

The rescaled equation for v : RT x R — [0, 00) is then

vr + %(yv)y + (BUHk)y =vyy, v(r=0)= ﬁuo(ﬁy)

We observe that
1— k 1-k—1/p ||

15(7)lp,00 = (Te™7) BT —e ),
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hence in particular in the critical and subcritical case it holds

~ 1-1/p—k 1-1/p—k 1 1
sup ||b(7)||poo < T 2 sup |[b(t)|lpo0 < CT 2, when £<1-—--=—. (4.1)
7>0 te(0,T) p D

In the same way, for b, € LP*°(R)

2—k—1/p

1B, (P)llpe = (T~ =52 0@ (1 = )] . (4.2)
and then
sup 1By (1) lp.ce < T2 sup [|ba(®)llpoo < CT =2, for k<2—1/p. (4.3)
>0 t€(0,T)
Moreover we observe that
lo(n)3 = VTe ¥ [lu(T(1 — e 7))3: (4.4)

4.2. Entropy dissipation. If : R — R is a smooth C'!-function, then

%/77(”) = /77/07 = /n’(v)vyy +/77'<— ;yv—i)vk"’l)y. (4.5)

Here we consider the entropy 7, given by

v?/2 0<wv<a,
Na(v) =
a(v—a/2) a<v< oo,

and denote
Vg =V AN a.
The parameter a will be chosen later on to be sufficiently small.

Lemma 4.1. Assume the exponent are critical or subcritical, i.e. Conditions (1.2) with k < 1 — % or

Conditions (1.3) and k <2 — %. Then for every time T there exists a constant a = a(p, k, %) such that

it holds

%/na(v(ﬂ y))dy < —””“’yy)nz - ””“(87)”2 (4.6)

forr>7. Ifk=1-— % in (1.2) ork=2— % in (1.3) then a = a(p, k) is independent on 7,T.

Proof. By integration by parts, Equation (4.5) becomes

d 1 ~
2= [ ey = ~loay = vl + [ vaybelt. (47)
Assume first Conditions (1.2), and let
1
-+ ===, 2<p<oo.
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Fixed p > 2, choose 2 < ' < p’ such that (1+ k)p’
compute

‘ /va,ybvéfJrl

Proposition 2.2
[ ]
[Theorem 2.5]

[(2.3) and (4.1)]

[Proposition 2.3 and Lemma 2.4, p’ > ' > 2]

[Proposition 2.2]

1_ . 1 +
ol < okl 13T o 15057

1 2
Falloo < lvallf va i3]

Substituting (4.8) into (4.7) we get (4.6).
The case p = o0, i.e.

> 2 (so the constants below do not depend on ') and

< [lbog ™ ll2l|va,yll2

< 1605 lz2llva 12

< C||b||p,00||vs+1Hp’,QHUa,y”?

1-1 g
- k
<C(p)(Te™) ||’Ua||(;j+11)p/ (k412 llVayll2
1-L1_p
_ P (k+1)(1— /)
<CE)(Te™™) = vl
+ ) /
Moall i) sy Ivaslz
R (k- (k+1)2;
<C(p)(Te ™) [[v]lo ||va||(k+1,§ [Va,yll2
1-1_g
_ P (k+1)(1— )
<Clp,k)(Te )= [lvfle
ER-E4 ()T
Nvaylly © 7 [vall = 777
1-1 & p’ 1
_ D (k+1)(****)**’+1
< Clp,k)(Te™™) [Va,yll2 !
(E+ 12
vally *
17%—k
2_1p y, 1
[vayl13 + C(p, k) (Te™™) =G sy
-1 (2 -3 B4 L,
Nvally R
1—%—k
1 2_1p/y, 1
< §Hva,y||§+0(p,k)(T6 TG E
L 24 ”—,>
@G o, 3
1 1
< §Hva,y||§ + gllvallg-
(4.8)

b € L, can be treated in a much simpler way, because [0]/00.00 = IIblloc: by
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following the same lines as above

< [lBllso]lv

’ / vy bl

1=k k
< C(Te ) ||va||(,:j12|\vay||2

3~ SR PRy —r\izE 1+4 1+4
[lvallage+1y < CR)lvagll; " o 15 T < CR)(Te™) 7 vaylly " [lvally?
1 Lo 2 1 1= 21+%
0 < 5o #2718 5 = 2| Syl 4 COYTe)
1 9 1— i Qkk 5
<3 +Cp, k)(Te™™) "% a’ % [lvall3

2+ Slval3

Assume instead (1.3) and k£ <2 — %: using here 1% + ﬁ =1,1<p<oo, and a fixed 1 < p’ < p’ such
that (2 + k)p’ > 2, we have

‘/Ua ybv’“'H

[Theorem 2. 5]

b k+2
k+2‘/ fa

< C(k)|lby k“llp

[(4.2),(2.3)] < C(p,k)(Te™™)

|p,oollv 1

1

o1 _
p

||”a||(k+2)p/ k42

2-4 -k E42)(1— P/ k42)E
[Proposition 2.3 and Lemma 2.4, 1 <’ <p'| < C(p,k)(Te™ ") 3 lv H<(>o . )|| a||Ek+2;p
5+ _e 2 () (-5
(el < OB wg 27 fually 7] < Ol KT )5
(2-1)2 (424 1)
lvall > 7
1 2 U (k+2)(3-42)—
lvalloo < vallf [vay 5] < Ck)Te) 5 fvay ls S
ER2+hHE
wally
2—-1_p
aff < 1oﬂ 1 97T BT vy = 2 <1 24 C(p, k)(Te ™) (’““)(%p’%%”ﬁ
= 9 - 5/ = 5 ’
2 (k+2)(2-L12)- 1L 2
MEE L
.”va”;f(kw)(a 12+,
2—%—k
10]13 < llvllsollvlli] < 24 C(p, k) (Tem ™) HH2E a0t
E£201 7)o
@? A o,
27%77c
1 €7\ k224 By 2 1 2 1 2
< — — )T < = - )
<o (F) < Slagl + 5l
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so that (4.6) follows as in the other cases.

Again the case p = 0o, k > 0 can be obtained by applying Hoélder’s inequality:

‘ /vaﬂ,bka

+
[lvallee < COlvaylls = lloalls 7]

1 1 ~
o < o+ 271571y =

This concludes the proof.

Set now

e =T, d—a(p,k,

13
b k+2
sl [0
C (k) |[by [l oo 05211
< C(k)(Te*T)THvangig
< Ck)(Te )5 2t
k
Lo
< S llvayl3 + C(k) (T )% (vl
1 )
< 5lvayl3 + CUR)(Te ) 07 v, 2
< 5 llvayl3 + glval3.
O
il =a(p,k,1) (4.10)
T - pv 9 ] *

where a(7, k, p) is given by the previous lemma: notice that it is independent on T'.

Lemma 4.2. Assume (1.2) and 0 < k <1-— 1% or

1.3) and 0 <k <2— .

Then it holds

/T°° (va(;)lio

Proof. We consider the case b(t) € LP'>°, the other case being completely similar. By Lemma 4.1 and
Gagliardo-Nirenberg inequality we have for 7 > 7 that

[valloe < llvayllz

Integrating and observing that

[va(T) Il < ()l = lu(T(1 —e”

—_

[ oy <

we obtain

i/ <
dr Na =~

2/3 1/3
3 vall”?]

_ 3_
S va(MIE +alo(r)lr < Salluolh =

[ (e,

which is the statement.

[|va(7)l|3 3a
< —.
8 r = 5

lvall3
||va||3 _ Jlvall3
= 2valn 8

Nl = lluollr =1,
3a
2 )

2
||v§||2>d7 < /na(v(%,y))dy < ga,

O

4.3. Bounds on the L?-norm. With the results of the above section, we can estimate the L?-norms of
the solution. The quantities a and 7 are defined in (4.10).

Lemma 4.3. If b satisfies Conditions (1.2
holds

Yand k<1—1
P

or Conditions (1.

[o(m)[13 < C(k,p)ae™"=".
Proof. We consider only the case b(t) € LP*> and p < oo, since the other cases (b(t) € L™ or b, (t) € L")

can be obtained with similar computations.

)andk<2—f then it
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Taking p’ > p' > 2, (1 + k)p’ > 2, with the same computations as in (4.8) we obtain

’

k41
== +

'6\"’&

1—-1_g
p

d 1 k+1)(2-5 2+ L,
lIvl3 < =S llvy 2 + Cp, k) (Te )1 SR (] P

R

=D (3 —g B+

, M
_ 1 (k+1)(
[Te” =1,7>7 = (—+C(p,k)||v||2

W\l\}

Gﬁ\»—t

<3

et

e

~~_
=
oo

The differential inequality

d 1
- <—+C(p,k)za>z, a >0,

dr = 2
has a solution bounded solution if for some 7
Clp.K)=()" < 7.
and in this case it holds
2(1) < L < Qiz(i’)tf?%.

T (20(p k) +e3 0D (A —20(p, k)Y T

Using Lemma 4.2, we estimate the first time 7 such that
[o(7)]lee <@

as follows: if ||v(7)||ec > a for 7 € (7,7), then [|v,|lcc = a and then
: T 3a 3
(7 —7)a® = / llvall,dr < ?a’ so that 7 — —
T

il
IN

Also, notice that by (4.8) and the choice of a

Cp. B)llv(7)3* < Clp, k)a” <

| =

so that we can take 7 = 7. Hence

A _ _T=7 _ 3
[o(T)|l5 < C(p, k)ae™ =, TET g

-G (3 -3 B+
. ~ [ES RN A 3
Hence the constant in the statement can be bounded by C(k,p) < 2 3 ez’ g

Corollary 4.4. Assume Conditions (1.2) and k < 1 — %, or Conditions (1.3) and k < 2 — %: then it
holds

lut)|3 < Clp,k)a,  Vte[l-1,T). (4.11)
Proof. Recalling that by (4.4)

e7'/2

\/T HU(T)||27

lu(T(1 =) =

Lemma 4.3 and (4.10) give for
t=T(1l—e")>T(1l—e)=T-1
that

lu(T(1 —e )3 < Clp, k)a

This proves (4.11). O
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4.4. Bound on the L>®-norm. Having proved a uniform bound on the L2-norm, now we are ready to
bound the L>°-norm. This proves the first part of Theorem 1.1

Theorem 4.5. Assume Conditions (1.2) with k < 1 — % or Conditions (1.3) with k < 2 — %. Then u
does not blow up at time T.

Proof. We do the proof in the first case, the second being completely similar.
We notice first that the same computations leading to [1, Theorem 3.8] gives
11

(Tl < CmaX{I\u(T)Ilm, sup [[u(t)ll, "
(7.1

Sl

5 } (4.12)

The statement of the theorem is now a consequence of Corollary 4.4 with 7' =T — 1.
For completeness, we rewrite the proof of [1] for the case b € L LP>° since in that paper it is only
considered the case by (t) € L.

Step 1 . Write for some 2 < p < p (if p = oo then p = p)

d 22n —1
— [ w*dx = _2@n=1) /(ug)gdx —2n(2n — 1)/u2"72uxbu1+kdm
dt n
22n —1
= _2@n-1) /(ug)2dx -2(2n-1) /quu”+kdx
n
202n —1
< 220D iz 4 220 - Dlfuallba™
n (4.13)
2n—1

IN

2 —2
P:+p] <
p p

2n—1, . n21H2)
[23)] < ==——luZll3 + Cp)n(2n — Db} o0l II(1+ £) 22 (14 £)2

luz 13 + (2n = 1)nflbu"+*||3

1
w23 + Cn(2n = DIBIG oo™ 1Pz

For 2 < p < p < o0, use now Lemma 2.4 with exponents

k K\ 2 k K\ 27
p=(1+-)2<p=(1+2)-L <cp=(1+2 14~ =P
n n)p—2 n p—2

k k 2
Q1p1(1+)2, q=q, QQP2(1+>~p,
n n/p—2

so that
“un‘|(1+%)%7(1+%)2 < C(pa k7n>”un”(1+ )2,(1+%)2|‘un“(1+ ) 7(lJer;);fﬁQa
with

9="L"c0,1),

P’ G+ p 525 (L5 G
n A+ )52 —2 n
2(p —p) p—2 -

p—2
By Proposition 2.2 we conclude that

i} \'@z

||U’n||(1+%)%,(1+ )2 <C(p7k n)HunH(1+ )2||u7l||(1+ )27:527

for another constant C(p, k,n) which is uniformly bounded w.r.t. n once p,p, k are fixed. We can thus
continue (4.13)

-

For p = 0o one obtains the same formula above with p’ =2 and 6 = 1.

n21+)19 n21+ )9
3+ Cn2n = DIl I e I3

Step 2. Hence ||ul|2, is increasing only if

(1+£)(1-0) (1+%£)0
letlla < Onll gy, Il i
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Then using the embeddings by Gagliardo-Niremberg with exponents
1 p—2 a l-—a 2 p—2
Ey~r ~p = o5t ) a(l b )7
L+ 20+3) 20 1 S\ 2
for the function w = u™ we obtain

[wzlls < Cnlflu™|

1+ E)(1-0) a (1% )9
GrDs ™" (gl =)'

Using similarly Gagliardo-Niremberg with

1 b 2 1
= 41-b, b=2(1-— ),
1+52 2 3( 1+ ii>2>

we can write
1+£)a-0 " ()0
||wa2<CTL(||wx” || ||1 b)( =) )(”waQHw‘H a)( )
_ K1 b)(1— B
= Cnl| QL,||(“r =)0 9)+a9]”wH§1+n)[<1 b)(1-0)+(1-a)0)]

p —2 —2
—Cn”w ||(1+%)§(1_(1:W)Hw (I+E)(3+ i(ljw)
= z|l2 1 .
This can be rewritten as ) . , -
2(1—_1_k 211, k
ol 77 < Calfuof {7,
Using again Gagliardo-Niremberg we get
1 2 1% % 1+1_2LL7_£
w2 < Cllwg||#lwl|f <Cn*" 2" flw]l, 7 7,
which rewritten for u becomes
1 %L E 1+ iin—ﬁ
lullzn < Cun™ 27w flulln 7 ™. (4.14)

Step 3. The above estimate implies that

1 % 1+ 1_1_k
e (0 < s { utto)ans ™ F 5 s
ettt telto,t]

because the solution u is decreasing when (4.14) is not satisfied.

Iterating the procedure for n = 2™, k =1,..., M, one obtains

max. u(t) o < max{nu(tonw,
tE(to,t]

CoMI QI [y 1) 744,
C2M)9B(2,M) oo Hu”v(lM) .
tE€to,t] 2

The constants a(M’, M), B(M', M), v(M’, M) are computed by iterating the exponent of (4.14):

M 1 k 1 k

) —p o _l-p-aw
v M) = ] T el m e (M, M) =1

n=M'4+1"~ p 2" 1 T p 2™

Z 27"y(n+1,M) < &

n=M'
, M-1 n2—n—1 _
B(M', M) = T —y(n+1,M) < .
n=M'"  p 2"

By applying repeatedly Hoélder’s inequality

(M',M y(M',M) M'+1,M M'—1,M
M < ) — [lulto) [T M (o) [T,

||u(t0)||21\/1’ (||u(t0)||2M/+1||u(t0)H21W’ 1
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we get
£)]|on < C¥2° to)[l2, JEML
s 0z < 027w { (o) o, o ]
Letting M — oo one recovers (4.12). O

We conclude with the following corollary, which follows by using (4.12) in [0, t] because the bound of
Corollary 4.4 is uniform in .

Corollary 4.6. Assume that ||b(t)||p,c0 under Conditions (1.5) with k < 1 — % (or ||bz(t)]|p,c0 under
conditions (1.6) with k < 2 — %) is uniformly bounded for t € (0,00). Then ||u(t)|lc is uniformly
bounded.

4.5. The critical case k =1 — % or k=2- %. In this section we study the case (1.5) when ||b(t)]|p,00
is uniform bounded in time and the exponent is critical, i.e. k=1 — %, p > 2, or Conditions (1.6) with
162 (t)||p,co uniformly bounded in time and k = 2 — %, p > 1. We consider only the first case, being the
analysis completely similar.

It follows form Lemma 4.2 that instead of (4.10) we can just choose 7 = 0 and a = a(p, k) and then
Lemma 4.3 gives

lo(7)13 < C(k,p)ae”%.

Using the definition of v we obtain for 7 > 0

C
w(T(1l—e " < —. 4.15
(T =l < o= (1.15)
Letting 7 — 0o we obtain the decay of the L?-norm as for the heat kernel.
Again Chebyshev’s inequality applied to Lemma 4.2 gives that there exists 7 € %[1,2] such that
lv(F)|leo < @, and then

lu(T(1 =€)l =

1

Using again the estimate (4.12) and noticing that for the critical case k = 1 — >

Sl SES
|
B
Il
N

1—
using (4.15) we get for T =T(1 —e ") > T(1 — e_%)

U(T)||so < C'max w(T o0, SUp ||w %
Ju(T)loo < € max {[lu(T)] sup ®13}

C

\}%}S\/T'

1
< Cmax{ —,
B { VT

We thus have proved the following
Theorem 4.7. Ifb € LLE>®, p € (1,00], and k =1— 1, or b, € L°L>, p € (1,00] and k =2 — %,
then for a constant C' independent on ug it holds

C
[u()]loo < i

5. BLOW-UP IN FINITE TIME

In this section we show that above the critical exponent £ > 1 — % for the case (1.2) or k > 2 — %
for the case (1.3), the solutions blow up in general: we will prove this statement for time independent
b € LP(R) in the first case and b, € LP(R) in the second case. A similar result has already been proved
in [4], we repeat it here for completeness.
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5.1. Case (1.2). Let 0 < @ < 1, # > o and k > 1 — a. Consider an integrable function b € LP(R)

satisfying
2|7 > —b(z) > |27 Lg <o + |21 Lg)5s
with ap < 1, 8p > 1, and the constant Z given by

(Bt k—1\7=
1<z<|———

Proposition 5.1. Fiz a positive measurable function f: R — [0, 00).

(1) 11 k 1
2% T 3R FITa T BEFita
(k e a)) (/ fk+1|xb|> Ew e < 7,
then . )
2%k BEHiTa T o
m < 2 (/ﬂ—(l—a)) </ fk+lxb> Egqui}).
(2) If 1 k
T 3kF1I-B 2k T 3E+I+B k1
Faml?) da;) () Es+1-7 > 7,
(/ =3 F—1-5)
then

2
(1+2 SiE m) <k (21k - >3k+1+ﬂ (/fk+1|xb|dz> SRTITR iy

Proof. Case 1. We compute

m = /fdz—/ fdx+/zl>dex

1
/flﬂf\’“+1 ==t || fda

2
R* Jiz1>r

_k_

R %ﬂ R 1 PT"‘ T+l
< / fk+1|x|1fadx / <> +—F
-R -R |J"|
ey

1 k
k+T 2k k+1 C(l-a
[fR<z] < (/R f’”llfcbI) <;€_(1_05)> R 4 B

k 1
Qk T 3ktlta T 3ktlta
R— (k - a)) (/ fk+1xb|) Evis < 7,

Choosing

we obtain

=gy Eym N
m<o 2k ) /f“lbe\ T pheRR
E—(1-a)

which is estimate (5.4).
Case 2. Similarly to the previous case, we compute

m—/fdw—/w<Mfdx+/lz>Mfdm

1 1
< flab| THF —do+ 55 B
/I:v<M |2 bl M?

Za =
ifz<M] < (/f’“+1|xb|dx ( der/ (|1|>
|x\<z z<|z|<M \|T

(62)] < (/fk+1|zb|dx> ( )+(2M)kéilﬂ> +#E

(5.1)

(5.2)
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k 1
2k T3RFITR / o >3k+1+ﬁ k1
M=— f Hzp E5RF1F3
(=t=m) ([
we conclude that

2k 2
k—(1-p) 2k 3kF1ER BRFIHF  k—(1-p)
e @2 (2 ) (] o)™ e,

which is (5.6). O

Choosing

Theorem 5.2. Assume (1.2) and k > 1 — %. If E(ug) is sufficiently small and b satisfying (5.1) and
(5.2), then the solution of (1.1) blows up in finite time.

Proof. The choice of the constant T covers at least one of the two cases (5.3) or (5.5) : indeed

k k
j/,3k:+l+[3 QA’ < —3k+1+« Qk
kE—(1-75) k'f(lfa) ’

if and only if (5.2) holds. Then by Proposition 5.1 and computing < o E 1y (1.1), one obtains

dE
— < 2m — 2/xbuk+1d;v

dt
3k+1+a 3k+148
. m- 2 m- 2
<2m — len{ e }
FE Pl

The exponents
Ek—(1-a) k=(1-0)
2 ’ 2
by the choice of «, 5, which gives the blow-up in finite time because of the ODE

>0

b
y:a_yi,yv ’Y>0

has a solution converging to 0 in finite time like
y(t) = (T = 1)
if the initial data is < (b/a)'/7. This last condition reads as

E(t =0) S min {mk =) m’iktﬂ ﬂz)}

The final observation is that since m(u) is constant, then

' 2Tl )3
E(u) = / zudx Z/ 22 ||u| sodz = m

e
- = 12[|ul|Z,

and thus the fact that F(u) — 0 forces u to blow up in L as the Holder inequality implies. g

5.2. Case (1.3). Let a € (0,1], £ > 1 + a and consider a smooth odd bounded function b with b, € L?
such that for x > 0

min{z?, (2)*} < —b(z) < min{z®, (22)*}, z>1, (5.7)

and (1 —a)p < 1.

Proposition 5.3. For every measurable positive function f: R — [0,00) the following holds.

(1) 1If
3k+1— T 3k¥l-ea 1
(=) (Jorma) T e o

2
2k+1 @ 3k+1l1—a a+1
m <2 2k /fk+1|:17b|dx SR
k—(a+1)

then
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(2) 1If

then

2

2k
_ 3k+1 3k+1 _

1
Proof. Case 1. Define

___k 1
R = <k (QOIj+ 1)) e (/ fk+1xbd$) e E3k’r§%a7

and compute by Holder inequality

m:/fda::/ fdac—I—/ fdx
lz| <R/ ||>R
ﬁ E+1
< </ fk+1:c|a+1dx) / 71“& dz + %E
o <R’ |@] 7% R

(o = (f o)™ () T

2k 2
2 Bk+l—a Bktl—a _(a
[(5.10)] =2 <k:(ak+1)> (/ fk'bedx) Bt

which is the first estimate.
— 35T
(/ fk+1|;vb|dsc> jokiz=

Case 2. Define .
2k T 3k+1
M ==
()

m:/fdx:/ fdx—i—/ fdx
|z| <M’ lx|>M'
k%*—l 1 k+1 1
< FEHL b dx) / —dx +-——F
(/ [zl le|<M’ |xb|® (M')?

5.7), (5 k41 e T M o
[( 1), ( 9)] < (/f |xb|dx> <2/0 |x|1ta dx—|—2/£ ;g(x)aid"T)

o21) < ([ reae) " ()T @y g

[(5.11] =<1+2”3+1>(,f_’€1) (/ kaxb) pas

This is the second estimate in the statement.

and compute

Theorem 5.4. Assume (1.3) and k > 2 — %. If E(up) < 1 and b satisfying (5.1) with

> ()

then the solution of (1.1) blows up in finite time.

(5.9)

(5.10)

(5.11)

(5.12)

Proof. The choice of the constant ¢ covers at least one of the cases (5.8) or (5.9): indeed, as in the proof

of Theorem 5.2, the condition (5.12) implies that

k k
=3k+1—a 2k =3k—+1 2k
T <z .
E—(1+a) k-1
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Then by Proposition 5.3 and (1.1), one obtains

3k+1l—o 3k+4+1

dE m- 2 m=z
E<2m Cmm{Ek(;H), 5t }7

which leads to E(t) — 0 if

E(t—O)<mln{m’C (=) mkk s

As in the previous case, E(t) Y\, in finite time implies ||u(t)|loo blows up. O
Remark 5.5. Observe that if v is bounded then
luli g
[[ullZ
so that
2k—(1—a)
m- 2 _k
o om0,
E
3]924»1
m k—
= 2 ullss .

Hence if m < 1, the blow up may not be possible.
This is also easily verified directly by the estimate (obtained as in (4.8))
d
%HU||§ < —Jlugll3 + ClIbllp,co luzll2llullfel 5

_ 1
B

/\

IN

a3 + Cllull? e el

Thus |Jul|3 is bounded if

3
w1 _ Juld g
S O
July 7

where we have used Gagliando-Niremberg inequality. Hence using again the bound (4.12) we have that
this bound can be prolonged up to +oo if |Julj; < 1.
A completely similar estimate can be done for the case b, € L>®LP*° p € (1, 0.

6. LONG BEHAVIOR OF SOLUTIONS
In this last section, we discuss the long behavior of the solutions when there are uniform bounds on
the drift b:
(1) be L>=((0,00), LP>*(R)) for the case (1.2),
(2) by € L>((0,00), LP*>*(R)), b € LS, ((0,00) x R) for the case (1.3).
We prove the following theorem.
Theorem 6.1. The following holds.
(1) If k <1— %, then there are drifts b = b(x) € LP>° admitting a stationary solution; similarly, if
k<2-— %, there are drift by(x) € L2 admitting a stationary solution.
(2) If k > 1— %, be LXLY>® ork > 2 — %, by € LELP>, every uniformly bounded solution wu(t)

decays to 0 as t=% in the L°-norm.

Proof. Point (1). Define the function
1

1— 1/p7

(1+ x2)
which is a stationary solution to (1.1) in L' if k < 1 — ; and the drift b is given by

u(z) =

1-1
b(x) = — P x

Foo(14a2)
Being |b(z)| ~ |z| /P for |z| > 1, we have that b € LP*°(R).

+/p'



22 STEFANO BIANCHINI AND GIACOMO MARIA LECCESE

For the case b, € LP**°, one can similarly show that

1
u(r) = P
(1+22) ="
which gives the drift
21 e

b(w) = — k;p e

Point (2). We have only to consider the supercritical case, being k =1 — % studied in Section 4.5.
For the case b € L°LP->°, we observe that

Qa1 11 o~ oq_
bulJrkz(bulc 1er)ul » = byl

=

)

with X .
~ —141
[1bllp,00 < llulloe 7 [1b]]p,00-
Hence the analysis of the critical case can be applied here, deducing that ||u(t)|eo < %
For the case b, € LP*°, we follow the computations of (4.9):
7ok ik
J bt < g [ Bk
< CHby||p,OO||U§+2HP’,1
~ k—241 2-1.9
< Clbyllp,collvallos = " lva Iy
a1 3 2—1_p 3 k—2+1 2401
Hlo(Mllse S (Te™™)z] <C@e™) 5 (Te) "= |lvally 1)),
',
: 1 2 L, o
[as in (49)] < Sllvaullz + gllvallz:
Hence one can repeat the same analysis as in the critical case k = 2 — %, replacing ||bz/p,c0 With
k—241
(1621 00 [124]] 00 TP In particular one obtains the decay [|u(t)||o < 2. O

Remark 6.2. By slightly changing the exponents in the subcritical case, it is possible to show that
actually the vector field can be taken in LP (or b, € LP) in Point (1) of the above theorem.
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