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Chapter 1

Introduction

1.1 Background and results.

A realization problem in dynamical systems is asking whether there is always a
system (with a given regularity and structure) which satisfies some ergodic properties,
for example: does every manifold admit an ergodic diffeomorphism? The goal of this
thesis is to study some smooth realization problems for uniformly expanding maps
on the circle with a given regularity. Uniformly expanding maps lie within a broader
class of dynamical systems which exhibit geometric properties which give rise to
chaotic behaviour. The study of the statistical properties of such systems in there
modern context traces back to Henri Poincaré with the qualitative study of ordinary
differential equations which uses probabilistic approach to understand the behaviour
of a typical orbit of the system rather than having a full description of orbits point
wise.

Many results are already established in this direction and in particular it is known
that regular enough uniformly expanding maps (say of class C1+α, α > 0) preserve a
unique absolutely continuous (with respect to Lebesgue) probability measure which
is also exponentially mixing. The tools involved in the proofs of these properties limit
however the results for maps with lower regularity and in fact results known about
such maps are more in the negative direction rather than the positive direction.

In this thesis we will prove three results which already have been published or
accepted for publication, where we study some properties of uniformly expanding
circle maps with low regularity.

In Chapter one the main goal is to see whether the techniques used in the study
of the maps of higher regularities are somewhat intrinsic to the ergodic properties
rather than the map itself, that is, whether in the class of uniformly expanding maps
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6 CHAPTER 1. INTRODUCTION

proving for example ergodicity and invariance of an acip is equivalent to proving that
the classical techniques hold. It turns out that answering this question boils down
to study the relationship between the property of bounded distortion and ergodicity
as the other parts of the argument used for proving existence and ergodicity of an
acip are known to hold for all uniformly expanding maps regardless of regularity,
Our result in this direction proves that bounded distortion is not necessary, in fact
it is generically not the case in the C1 class. This result has been published in [12]:
H. Ounesli. C1 genericity of unbounded distortion for Lebesgue preserving uniformly
expanding circle maps. Indag. Math, volume 35(3), pages:523-530

In Chapter two we study the properties of the space of Lebesgue-preserving C1

uniformly expanding circle maps. Our main goal is to prove that this space is lo-
cally path-connected with respect to the C1 topology and moreover the connected
components are determined by the degree of the maps considered. We also establish
the homotopy type of the space and prove that its fundamental group is infinite-
cyclic. This is curious from dynamics point of view as it suggests that even though
C1 uniformly expanding maps preserving Lebesgue can be deformed to each other,
these deformations are not necessarily equivalent. This result has been published in
[8]: H. Boukhecham and H. Ounesli. Topology of the space of measure-preserving
transformations of the circle. Rend. Mat. Univ. Trieste, Volume 55, 2023

Finally, in Chapter three we study the existence of an acip for arbitrarily low
regular C1 uniformly expanding maps We mean here by low regularity, a map whose
derivative has a canonical modulus of continuity which is not Dini-integrable. We
prove that for any given modulus of continuity there exists a C1 uniformly expanding
map on the circle where the derivative has a modulus of continuity equivalent to the
given modulus and yet admits an acip. we also prove that in that case we can both
construct a map which preserves an acip with density as regular as the derivative and
one that preserves exactly the Lebesgue measure. This result has been accepted for
publications [13]: H. Ounesli. On the existence of absolutely continuous invariant
probability measures for C1 expanding maps. Journal of Dynamical and Control
Systems (to appear, 2024).
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Chapter 2

Genericity of unbounded
distortion.

This result has been published in [12]: H. Ounesli. C1 generecity of unbounded
distortion for Lebesgue presving uniformly expanding circle maps. Indag. Math,
volume 35(3), pages:523-530.

2.1 Introduction and statement of results.

Let E1(S1) be the space of C1 orientation-preserving uniformly expanding maps on
the circle, i.e. C1 maps f : S1 → S1 for which there exists some uniform constant
σ > 1 such that f ′(x) ≥ σ. We let λ denotes Lebesgue measure on S1 and recall that
a map f : S1 → S1 is said to preserve Lebesgue measure if λ(f−1(A)) = λ(A) for any
measurable set A ⊆ S1. We let

Γλ(S1) := {f ∈ E1(S1) : f preserves Lebesgue measure}.

The simplest and well known examples of maps in Γλ(S1) are the maps of the form
f(x) = κx mod 1, for κ ∈ N, κ ≥ 2. These maps are locally affine and are therefore
easily seen to preserve Lebesgue measure λ. Although it is not immediately intuitive,
it turns out there are many other maps in E1(S1) which also preserve Lebesgue
measure without being piecewise affine, for instance, in our previous work [13] and
[8] we have proved that the space of Lebesgue preserving uniformly expanding maps
is a locally connected space, and if we consider only degree 2 maps then we showed
that this space is homeomorphic to an infinite dimensional Lie group, later on in the
paper we will prove a general result which makes explicit the remarkable flexibility
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10 CHAPTER 2. GENERICITY OF UNBOUNDED DISTORTION.

in their construction. On the other hand, a more challenging property to prove for
a given map in E1(S1) is ergodicity of Lebesgue measure, recall that λ is ergodic if
and only if any measurable set A ⊂ S1 which is invariant by f has either 0 measure
or full measure (A set A is invariant if f−1A = A). Remarkably, there are uniformly
expanding maps for which Lebesgue measure is invariant but not ergodic [16] and
therefore

Γλ,er(S1) = {f ∈ Γλ(S1) : λ is ergodic} is strictly contained in Γλ(S1).

but we know that such examples are rare since by [14] the space Γλ,er(S1) is residual
in Γλ(S1). On the positive side, it has been shown that these maps must have consid-
erable low regularity, for example, a well known result dating back to the 1950s states
that any C1+α uniformly expanding map has a unique absolutely continuous invari-
ant measure equivalent to Lebesgue and hence is ergodic with respect to Lebesgue.
The main technique used in the prove of ergodicity in such settings is the property
of having bounded distortion. There are many refernces that provides a prove of the
result, look for instance at [1]. We recall that every f ∈ E1(S1) admits a family of
partitions Pn := {ωn,i} which are injectivity domains of fn.

Definition 2.1. We say that f has bounded distortion if

D := sup
n≥1

sup
ωn,i∈Pn

sup
x,y∈ωn,i

log
|(fn)′(x)|
|(fn)′(y)|

< ∞.

In a sense bounded distortion is a way of saying how much a map is close to a
locally affine one, interestingly enough, although there are maps for which Lebesgue
measure is invariant and ergodic and at the same time of arbitrarily low regularity,
the prove is quite non constructive and one can not check if the bounded distortion
property is satisfied for most cases where the regularity is lower than C1+α which
leads us to ask the following question: Is bounded distortion necessary for Lebesgue
measure to be ergodic?. We will give a negative answer to this question, in fact, we
have:

Theorem 1. The set of maps for which Lebesgue measure is invariant and ergodic
with unbounded distortion is a residual subset in Γλ,er(S1) with respect to the C1-
topology.

This results suggest that other techniques, which do not rely on bounded distor-
tion, need to be developed to prove the ergodicity of Lebesgue measure in specific
classes of maps.
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2.2 Overview of the proof

We first introduce some notation. For any n ≥ 2, let {Ii}1≤i≤n be a partition of
the unit interval into non-trivial adjacent closed subintervals Ii = [x−

i , x
+
i ] which

intersect only at the endpoints, so that x−
0 = 0 and x+

n = 1. Let 1 ≤ i0 ≤ n and
suppose that for each i ̸= i0 there is given a C1 expanding diffeomorphism fi : Ii →
[0, 1]. We are interested in whether we can construct a C1 expanding diffeomorphism
fi0 : Ii0 → [0, 1] which defines a piecewise C1 full branch map preserving Lebesgue
measure, and further more whether this can actually be constructed in such a way as
to represent a a C1 uniformly expanding circle map. The following result give some
natural and explicitly verifiable necessary and sufficient conditions for this to be the
case.

Proposition 2 (Missing Branch Extension Proposition). There exists a (unique)
extension to a Lebesgue-preserving uniformly expanding full branch map if and only
if for all x ∈ [0, 1] we have: ∑

1≤i≤n
i ̸=i0

1

f ′
i ◦ f−1

i (x)
< 1 (2.1)

Moreover, this extension represents a C1 uniformly expanding circle map of degree n
if and only if

f ′
i−1(x

+
i−1) = f ′

i(x
−
i ) and f ′

i+1(x
−
i+1) = f ′

i(x
+
i ) (2.2)

for all i ̸= i0 (if i = 0 we replace i − 1 by n in the first equality, and if i = n we
replace i+ 1 by 1 in the second inequality), and

f ′
i0−1(x

+
i0−1) =

1

1−
∑

i ̸=i0
f ′
i(x

−
i )

(2.3)

and

f ′
i0+1(x

−
i0+1) =

1

1−
∑

i ̸=i0
f ′
i(x

+
i )

(2.4)

(where also, if i0 = 1 we replace i0 − 1 by n in the left hand side of (2.3) and if
i0 = n we replace i0 + 1 by 1 in the left hand side of (2.4)).

Remark 2.2.1. We remark that (2.3) is a very mild and very “open” condition that
allows a huge amount of flexibility in the choice of the given branches, thus indicat-
ing that the space of such Lebesgue preserving maps is very large. Condition (2.2)
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gives essentially trivial matching conditions on the derivatives at the left and right
endpoints of the domains of each branch which ensure that the map is C1 when con-
sidered as a circle map. Conditions (2.3) and (2.4) are less intuitively immediate but
essentially ensure that the unique extension given in the first part of the proposition
also satisfies such matching conditions.

In Section 2.3 we prove the Missing Branch Extension Proposition 2 which is
the key ingredient in the proof of the following result. Consider the set Γλ(S1) of
uniformly expanding C1 circle maps which preserve Lebesgue measure but for which
Lebesgue measure is not necessarily ergodic. Letting

B = {f ∈ Γλ(S1) : f has bounded distortion} and Bc := Γλ(S1) \ B

we will prove the following in Section 2.4.

Proposition 3. Bc is C1 dense in Γλ(S1).

Then, in Section 2.5 we will prove the following.

Proposition 4. The space Γλ(S1) is C1 residual in its completion Γ⋆
λ(S1).

Now we will give a proof of the Theorem assuming the previous propositions.

Proof of Theorem 1. Let us denote by dk the map:

dk : Γλ(S1) → R+ (2.5)

defined by

dk(f) = sup
x,y∈ωk

i

1≤i≤deg(f)k

| log fk(x)

fk(y)
|.

For every k ∈ N, dk is continuous in the C1 topology, to see that, first notice that
for ϵ > 0 small enough and f, g ∈ Γλ(S1) such that d(f, g) ≤ ϵ, where d denotes the
C1-distance, then deg(f) = deg(g). On the other hand k being fixed, d(fk, gk) ≤ Ckϵ
where Ck is a positive constant depending only on k. This two remarks are enough
to conclude the continuity of dk. Now notice that B is equal to the following set:⋃

n∈N

⋃
m∈N

⋂
k≥m

Dn,k (2.6)

where Dn,k is the set of elements of Γλ(S1) whose distortion at level k is less or equal
to n, in more precise terms Dn,k = d−1

k ([0, n]). This sets are closed in the C1-topology



2.3. PROOF OF PROPOSITION 2 13

since for every k ∈ N the map dk is continuous and so we conclude also that the sets
is

⋂
k≥m

Dn,k are closed, hence B is an Fσ set and so Bc is a Gδ set, by proposition 3

we conclude it is residual. Now by [14] we know that Γλ,er(S1) is residual in Γλ(S1)
and by proposition 4 we conclude that the intersection Bc ∩ Γλ,er(S1) is residual in
Γλ,er(S1). This finishes the proof of the theorem.

2.3 Proof of Proposition 2

Proof. We will start by recalling one of the classical tools to show that a measure
is invariant. Let f ∈ E1(S1) and, for all h ∈ L1

λ(S
1) and µh := h · λ, we define the

transfer operator associated to f and acting on L1
λ(S

1) as

Ph =
d
(
f∗µh

)
dλ

. (2.7)

This operator can be interpreted as the density of the push-forward of measures in
respect to Lebesgue. It is well known that the fixed points of P corresponds to the
densities of f -invariant measures and that the transfer operator for maps of degree
n has an explicit formula given by

Ph(x) =
∑

y∈f−1(x)

h(y)

f ′(y)
. (2.8)

Let us now consider f to be an expanding circle map of degree n, represented as a
full branch map of the unit interval with n branches {fi}1≤i≤n defined on adjacent
intervals {Ii = [x−

i , x
+
i ]}1≤i≤n. Let h : [0, 1] → R+ be an L1

λ function. h is the density
of an f -invariant measure if and only if the relation 2.8 is satisfied, which can be
written as:

h(x) =
∑

y∈f−1(x)

h(y)

f ′(y)
=

∑
1≤yi≤n

h(yi)

f ′(yi)
. (2.9)

where each yi represents the pre-image of x by the i-th branch of f . Now take h
to be identically equal to 1 i,e the density of Lebesgue measure, and suppose that
n−1 branches are known, we want to show we can construct the missing n-th branch
such that the resulting map is a circle expanding map preserving Lebesgue measure.
Equation 2.9 is equivalent to
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1

f ′(yi0)
= 1−

∑
1≤i≤n
i ̸=i0

1

f ′(yi)
, (2.10)

where i0 is the index of the missing branch. Notice that xi = f−1
i (x), equation 2.10

then becomes:

1

f ′(f−1
i0

(x))
= 1−

∑
1≤i≤n
i ̸=i0

1

f ′(f−1
i (x))

, (2.11)

If condition 2.1 holds then we obtain the following first order ODE:

f ′
i0
(x) =

1

1−
∑

1≤i≤n
i ̸=i0

1

f ′(f−1
i (fi0(x)))

, (2.12)

this is a continuous first order ODE defined on a compact rectangular domain, by
Peano’s existence theorem, there must exists a maximal solution defined on Ii0 with
the initial condition that fi0(x

−
i0
) = 0.

We will show that this solution is an expanding diffeomorphism of Ii0 onto the
interval [0, 1] and that along the other fixed branches it defines a circle map, we will
also show the solution is unique using the dynamics since Peano’s existence theorem
fails to ensure existence under only a continuity assumption.

First, notice that by (2.1) we get f ′
i0
> 1, hence it remains only to prove its sur-

jective, which means fi0(x
+
i0
) = 1, indeed, by contradiction, suppose that fi0(x

+
i0
) < 1

and let I⋆ = [0, fi0(x
+
i0
)]. Notice that on I⋆ equation (12) becomes:∑

y∈f−1(x)

1

f ′(y)
= 1 (2.13)

this yields:

λ(f−1(I⋆)) =

∫
I⋆

∑
y∈f−1(x)

1

f ′(y)
dx = λ(I⋆), (2.14)

On the other hand, since f−1
i0

(I⋆) = ∅ we obtain that

λ(f−1([0, 1] \ I⋆) < λ(f−1([0, 1] \ I⋆), (2.15)

which leads to the following contradiction
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λ(f−1([0, 1])) = λ(f−1(I⋆)) + λ(f−1([0, 1] \ I⋆) < 1

We finally obtain that f defines a full branch map of the interval, since also we
have that (13) is satisfied on all the unit interval then Lebesgue measure is preserved.

It remains to show that f represents a circle map, indeed we need to check that
f ′(x−

i ) = f ′(x+
i ) as well as f ′(0) = f ′(1). This follows directly my the assumption

on the derivative of the branches at the end points of the partition elements.

2.4 Proof of Proposition 3

We will prove that there exists a dense set of Lebesgue reserving maps of the circle
with unbounded distortion in Γλ(S1). Our idea is to take an element of Γλ(S1) with
bounded distortion and prove it can be approximated arbitrarily by ones whitch have
unbounded distortion. We recall the following useful definitions.

Definition 2.2. We say that a map ω : R+ → R+ is a modulus of continuity if
ω(0) = 0, is continuous and concave.

Definition 2.3. We say that a modulus of continuity ω is Dini-integrable if the
following condition holds: ∫ 1

0

ω(t)

t
dt < ∞.

Proof. Let f ∈ Γλ(S1)\B and Let ϵ > 0, on a small enough neighborhood V0 of the
unique fixed point of f which we are assuming to be 0 let f̃ ′|V0 = f ′ + ϵω where ω is
a non Dini-integrable modulus of continuity. Let us extend the frst branch in a way
that d1(f1, f̃1) ≤ ϵ while keeping the remaining n− 2 unchanged, this is possible by
normality of the circle.

Lemma 5. The (n−1)-branches of f obtained after perturbing the first branch extend
to a Lebesgue preserving map f̃ of degree n which is ϵ-close to f .

Proof. The extension to a Lebesgue preserving map of degree n follows by proposition
2. To see that it is ϵ-close to f let us consider fn and f̃n to be the last branches of
both maps, since they preserve Lebesgue measure we have that for a every interval
I ⊂ [0, 1]:

λ(I) =
∑

1≤i≤n

λ(f−1
i (I)) =

∑
1≤i≤n

λ(f̃−1
i (I))
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By construction this is equivalent to

λ(f−1
1 (I))− λ(f̃−1

1 (I)) = λ(f−1
n (I))− λ(f̃−1

n (I)) (2.16)

since |λ(f−1
1 (I)) − λ(f̃−1

1 (I))| ≤ ϵ, by Lebesgue density theorem we obtain that
d1(fn, f̃n) ≤ ϵ. This finishes the proof.

To finish the proof, it remain to show that these perturbations yield element
which have unbounded distortion.

Lemma 6. For every ϵ > 0 and f ∈ Γλ(S1)\B, the perturbed map f̃ has unbounded
distortion.

Proof. By the formula given in the introduction of the definition of bunded distortion
we have

| log (f̃k)′(x)

(f̃k)′(y)
| = |

∑
0≤i≤k−1

(log(f̃ ′(f̃ i(x))− log f̃ ′(f̃ i(y))|

Using mean value theorem, for every 0 ≤ i ≤ k − 1 there exists

λ = min
x∈S1

≤ zi ≤ σ = max
x∈S1

|f̃ ′(x)| > 1

such that∑
0≤i≤k−1

log f̃ ′(f̃ i(x))− log f̃ ′(f̃ i(y)) =
∑

0≤i≤k−1

1

zi
(f̃ ′(f̃ i(x))− f̃ ′(f̃ i(y))).

Now for every k ∈ N, let us take the first partition element of order k, i.e. ωk
1 = [0, rk]

where σ−k ≤ rk ≤ λ−k. Let us take y = 0 and xk ∈ ωk
1 such that f̃k(xk) ∈ V0\{0},

this possible by taking the pre-image of a point in V0\{0} by the first branch f̃k
1 ,

that is, we consider xk = f−k
1 (x0) We get∣∣∣∣∣log (f̃k)′(xk)

(f̃k)′(0)

∣∣∣∣∣ ≥ 1

σ
|

∑
0≤i≤k−1

(f̃ ′(f̃ i(xk))− f̃ ′(0))|

but since f̃ ′(f̃ i(xk) = f ′(f̃ i(xk) + ω(f̃ i(xk) we obtain

∣∣∣∣∣log (f̃k)′(xk)

(f̃k)′(0)

∣∣∣∣∣ ≥ 1

σ
|

∑
0≤i≤k−1

(f ′(f̃ i(xk))− f ′(0)) +
∑

0≤i≤k−1

ω(f̃ i(xk))| (2.17)
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by choice of xk we obtain that∣∣∣∣∣log (f̃k)′(xk)

(f̃k)′(0)

∣∣∣∣∣ ≥ |
∑

0≤i≤k−1

(f ′(Cσi−k)− f ′(0)) +
∑

0≤i≤k−1

ω(Cσi−k)|,

Where C > 0 is a constant. Since f has bounded distortion the first term is bounded,
and since ω is not Dini-integrable by [5] we deduce that the second sum diverges hence
we obtain unbounded distortion.

This finishes the proof of the proposition.

2.5 Proof of Proposition 4

We recall the definition of a residual set.

Definition 2.4. A subset R ⊂ X of a metric space is said to be residual if it is a
dense Gδ set, we say that elements of R are generic in X.

Proof. We want to prove that the space Γλ(S1) is residual in its completion. Its clear
that the completion is the following space:

Γ⋆
λ(S1) = {f : S1 → S1 such that f ′(x) ≥ 1 for all x ∈ [0, 1]}

Now consider a countable basis of the topology of S1 by closed intervals {In} and
define the set:

SIn = {f ∈ Γ⋆
λ(S1) such that f ′|In > 1}.

Clearly we have:

Γλ(S1) =
⋂
n∈N

SIn

and that SIn are open sets in the C1 topology and hence Γλ(S1) is a Gδ set, on
the other hand, every element in Γ⋆

λ(S1) is clearly arbitrarily close to an element of
Γλ(S1) and hence Γλ(S1) is a residual set of its completion.





Chapter 3

Topological properties of the space
of conservative expanding maps.

This result has been published in [8]: H. Boukhecham and H. Ounesli. Topology
of the space of measure-preserving transformations of the circle Rend. Mat. Univ.
Trieste, Volume 55, 2023

3.1 Introduction and statement of results.

One of the classical problems in topology, dynamics, and geometry is studying prop-
erties of the group of diffeomorphisms of a closed manifold M , preserving a given
smooth volume form ω. Questions about the topology of this space, dynamics-rigidity
phenomenons, and algebraic properties can be addressed. There has been extensive
work in this direction, as in [10, 18]. In particular, in [11] J.Moser has shown that
these groups are locally arc-connected. In this paper, we generalize Moser’s result
on arc-conectedness to a space of non-invertible volume preserving maps in dimen-
sion 1. More precisely, we consider our manifold to be the circle, and we study the
space of C1 orientation preserving uniformly expanding maps of degree 2, preserving
the natural volume form on the circle i.e Lebesgue measure. We denote this space
by ΛLeb. Our results suggest that the facts known for volume preserving diffeomor-
phism groups can be extended to spaces of non-invertible volume preserving maps.
The only topological information we know about ΛLeb is that it is of first category
in the space C1(S1, S1) of all C1 maps of the circle, this was shown in [9].
Our result shows that ΛLeb is indeed arc-connected, with fundamental group π1(ΛLeb) =
Z. Moreover, we show that this space is homeomorphic to a natural infinite dimen-
sional Lie group.
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Remark: We always denote by D+(S
1) the group of circle diffeomorphisms which

preserves the orientation and D+(I, J) for the space of orientation preserving interval
diffeomorphisms and D+,exp(I, J) for the expanding ones (i.e f

′ ≥ γ > 1). T 2 denotes
the torus S1 × S1 .

Theorem 7. The space ΛLeb endowed with the C1-topology is homeomorphic to T 2 \
diag(T 2)×D+(S

1, 0 is fixed), in particular, ΛLeb is arc-connected, and π1(ΛLeb) = Z.

This theorem, as mentioned before, is an extension of Moser result on local arc-
connectedness of the group of volume preserving diffeomorphisms. However, our
result extends it only in dimension one. Intuitively the result says that for any two
Lebesgue preserving uniformly expanding circle maps f, g there exists a deformation
between each other γ(t) : [0, 1] → ΛLeb which preserves Lebesgue along the defor-
mation. The fact that the fundamental group is isomorphic to Z signifies that any
deformation is generated by a fixed deformation in ΛLeb. On the other hand, we show
that the space ΛLeb is huge in a sense albeit being meagre in C1(S1, S1), as we have
partially proven in [13]. We conjecture that our result can be extended to arbitrary
dimensions.

Conjecture. Let (M, g) be a closed Riemannian manifold and ω its volume form.
The space Λr

ω(M) of C1 expanding r-folds of M , preserving the volume form, is
locally arc-connected.

3.2 Proof of the Theorem.

3.2.1 Uniformly expanding circle maps

Denote by E1(S1) the space of uniformly expanding maps of the circle, and by ΛLeb

the sub-space of maps f of degree 2 and preserving the Lebesgue measure λ (i.e
f∗λ = λ) and the orientation. We endow this space with the C1-topology. The circle
is seen as the natural quotient space [0, 1]/(0 ∼ 1). Circle maps of degree 2 which are
orientation preserving, up to conjugacy with a rotation, can be regarded as interval
maps with two full branches (see figure 3.1).
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Figure 3.1: A representation of a circle map of degree 2 on the unit interval.

We recall that uniformly expanding circle maps of degree 2 have two main character-
istics: a unique fixed point p ∈ S1 and two branch-arcs determined by two distinct
points x1 ̸= x2 ∈ S1.

3.2.2 The transfer operator.

Let f ∈ E1(S1). We define the transfer operator P associated to f , and acting on
L1
λ(S

1) as: if h ∈ L1
λ(S

1) then:

Ph =
d
(
f∗µh

)
dλ

. (3.1)

where µh = h · λ. The transfer operator provides the density of the push-forward
of a given absolutely continuous measure with respect to Lebesgue. The transfer
operator for maps of degree 2 has an explicit formula:

Ph(x) =
∑

y∈f−1(x)

h(y)

f ′(y)
. (3.2)

The main property of this operator is the following Folklore proposition:

Proposition 8. The set of absolutely continuous invariant measures of f correspond
to the non-negative fixed points of the operator P .
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3.2.3 Proof of Theorem 1.

The proof of the theorem will be based on the following proposition, which we con-
sider to be of independent interest:

Proposition 9. Let a ∈ (0, 1) and f1 : [0, a] → [0, 1] be an expanding C1-diffeomorphism,
then there exists a unique extension of f1 to a Lebesgue-preserving full branch ex-
panding transformation of the unit interval.

Proof. Consider the differential equation

f ′
2(x) =

f ′
1

(
f−1
1

(
f2(x)

))
f ′
1

(
f−1
1

(
f2(x)

))
− 1

, x ∈ [a, 1], (3.3)

Since f1 is C1, by Peano’s existence theorem the Cauchy problem with the initial
condition f2(a) = 0 admits a maximal solution f2 defined on the interval [a, 1].
Let’s show that f2 maps diffeomorphically onto [0, 1]. Notice that f ′

2(x) > 1 for all
x ∈ [a, 1], therefore it only remains to show that f2(1) = 1. Assume that f2(1) < 1
and consider I = [0, b] where b = f2(1). We notice that for every y ∈ I we get:

1

f ′
1

(
f−1
1 (y)

) +
1

f ′
2

(
f−1
2 (y)

) = 1, (3.4)

This implies in particular:

f⋆λ([0, b]) = λ(f−1
1 ([0, b])) + λ(f−1

2 ([0, b]))

−
∫
[0,b]

1

f ′
1

(
f−1
1 (y)

) +
1

f ′
2

(
f−1
2 (y)

)dλ = λ([0, b])

On the other hand, we know that f⋆λ([b, 1]) = λ(f−1
1 ([b, 1])) < λ([b, 1]) which implies

that λ(f⋆([0, 1])) < λ([0, 1]), resulting in a contradiction. The case b > 1 results in
the same contradiction, hence b = 1, this implies in particular that (4.10) is satisfied
for every x ∈ [0, 1] and hence the Lebesgue measure is preserved. Since b = 1, we
also get that (5) is satisfied on all the interval and hence f preserves λ.
Uniqueness cannot be deduced directly from the equation (4.9), because Peano’s
existence theorem provides only existence, we will deduce it using the fact that the
solution preserves λ. Let f, g : [0, 1] → [0, 1] be two full branch interval maps which
preserve Lebesgue measure, assume they have the same first branches (i,e f1 = g1)
on an interval [0, a], then for every y ∈ [0, 1] we have
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λ([0, y]) = λ(f−1([0, y])) = λ(g−1([0, y])),

which implies by assumption that

λ([a, f−1
2 (y)]) = λ([a, g−1

2 (y)]),

this implies that f−1
2 (y) = g−1

2 (y), thus f = g.

Lemma 10. The extension of an expanding diffeomorphism f1 : [0, a] → [0, 1] to a
full branch interval map preserving Lebesgue is a C1 circle map, if and only if the
following holds:

f ′
1(0) =

f ′
1(a)

f ′
1(a)− 1

(3.5)

Proof. This is because for a full branch map to lift to a circle map, the derivatives
at the end points must coincide, as well as the left and right derivatives at the point
a, and so by equation (4), we need (4.2) to hold.

We will use the previous results to show that ΛLeb is arc connected.

Corollary 11. ΛLeb is arc connected.

Proof. Let f be the doubling map of the circle, and g ∈ ΛLeb. Up to composing g with
a rotation, we can assume that g and f have the same fixed point 0. Denote by xg the
point in S1 such that

∫ xg

0
g′(t) dt = 1, we will construct a homotopy between g and g̃

in ΛLeb, such that xg̃ =
1
2
. Without loss of generality, let us assume that xg >

1
2
. For

xg > ϵ > 1
2
, translate horizontally the graph of g|(ϵ,xg) to (1

2
− xg + ϵ, 1

2
) by a linear

homotopy T (t, ·). Now let z close enough to 0, more precisely, chose z < 1
2
− xg + ϵ.

Construct a homotopy H(t, x) as follows: for every t define H(t, ·)|[0,z] = g and
H(t, ·)|[ϵ−t,xg−t] = T (t, ·), and for every t extend it in a C1 and expanding way to the
whole interval [0, xg − t], as represented on the figure below. This yields a homotopy
between g and g̃ in ΛLeb, because condition (4.2) is satisfied for every t, also g̃ satisfies
xg̃ =

1
2
.
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Figure 3.2: A representation of the homotopies H and T .

The second step is to construct an appropriate homotopy between g̃ and f . This
is straight forward by considering a continuous family of expanding C1 maps (hc :
[0, 1

2
] → [0, 1])c∈[2,g′(0)]or[g′(0),2] with h′

c(0) = c and h′
c(

1
2
) = c

c−1
. Notice in this case that

g̃|[0, 1
2
] is homotopic to hg′(0) by simply taking H(t, x) = tg̃|[0, 1

2
](x)+(1−t)hg′(0)(x) and

same for f |[0, 1
2
] and h2 by G(t, x) = tf |[0, 1

2
](x) + (1− t)h2(x), this homotopies satisfy

(4.2), and so they extend to a homotopy in ΛLeb between g̃ and f by concatenating
the extension of the homotopy H with the extenstion of the family (hc)c and the
extension of G in ΛLeb, this finishes the proof of arc-connectedness.

Proposition 12. The space ΛLeb is homeomorphic to the infinite dimensional Lie
group T2 \ diag(T2)×D(S1, 0).

Proof. Let Γ be the space:

Γ =
⋃

0≤x−y<1

{f ∈ D1
+,exp([x, y], [0, 1]) such that f ′(x) =

f ′(y)

f ′(y)− 1
}.

Proposition 2.2 results naturally in a map F :

F : Γ → ΛLeb,

defined by sending an element f ∈ Γ to a Lebesgue preserving circle map, by exten-
sion after translating [x, y] to [0, x− y], and translating the solution back.

Proposition 13. The map F is a homeomorphism (in the C1-topology).
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Proof. By proposition 2.2 and lemma 2.3, the map is well defined and for every
f ∈ Γ, there exists a unique extension of f to a circle expanding map preserving
Lebesgue measure. Continuity follows from the fact that the unique solutions to a
continuous family of Cauchy problems (ODEt)t∈I , with a continuous family of initial
conditions form a continuous family (ft)t∈I in the C1-topology and this shows that
F is a continuous injection.
The image of the operator F covers all Lebesgue preserving circle maps f , whose
fixed point pf is inside the branch interval [x, y] of the specific element, hence it is
surjective, the inverse is clearly continuous and hence is a homeomorphism.

to finish the proof, notice that Γ is homeomorphic to

T2 \ diag(T2)× {f ∈ D+([0,
1

2
], [0, 1]) such that f(0) =

f(1
2
)

f(1
2
)− 1

}

and that:

{f ∈ D+([0,
1

2
], [0, 1]) such that f ′(0) =

f ′(1
2
)

f ′(1
2
)− 1

}

≃ D+([0, 1], [0, 1] such that f ′(0) = f ′(1)) ≃ D+(S
1, 0 is fixed).

Now remark that T2 \ diag(T2) inherits the Lie group structure of C \ {0} and
D+(S

1, 0 is fixed) is an infinite dimensional Lie group.

Corollary 14. π1(ΛLeb) = Z.

Proof. First, notice that π1(T2 \ diag(T2)) = π1(C \ {0}) = Z, on the other hand, by
results of [3], we know that the injection of SO(2) in D+(S

1) induces a splitting of
the fundamental group π1(D+(S

1)) = π1(SO(2)) ⊕ π1(D+([0, 1], ∂[0, 1])), and since
we know that π1(SO(2)) = Z, and that D+([0, 1], ∂[0, 1]) is contractible, we deduce
that π1(D+(S

1)) = Z and that D+(S
1, 0 is fixed) is simply connected. So we have

π1(ΛLeb) = Z.

Remark. Arc-connectedness can be deduced again by the fact that our space is home-
omorphisc to an infinite dimensional Lie group. However, we consider our prove
of arc-cnnectedness to be of independent interest since we believe the idea can be
generalized to higher dimensions as we conjectured in the statement of results.





Chapter 4

Existence of conservative
expanding maps of any given
regularity.

This result has been accepted for publications [13]: H. Ounesli. On the existence of
absolutely continuous invariant probability measures for C1 expanding maps. Journal
of Dynamical and Control Systems (to appear, 2024).

4.1 Introduction and statement of results

Let E1(S1) be the space of C1 uniformly expanding maps on the circle. It is essentially
a Folklore Theorem dating back to the 1950s that if f ∈ E1(S1) is C1+α, i.e if the
derivative is Hölder continuous, then f admits a unique ergodic invariant probability
measure equivalent to Lebesgue. This result, together with the techniques involved in
the proof, have led to a huge area of research and many generalizations to uniformly
and non-uniformly expanding maps on manifolds of arbitrary dimension as well as
to more general hyperbolic and non-uniformly hyperbolic systems.

However, even in this simplest setting of uniformly expanding circle maps there
are still open problems for maps with lower degrees of regularity. Indeed Góra and
Schmitt [7] constructed an example of a map f ∈ E1(S1) which does not admit any
invariant probability measure absolutely continuous with respect to Lebesgue (acip).
Quas [15] then showed that this is not an isolated example by proving that generically
in the C1-topology, maps in E1(S1) have no acip and, more recently Avila and Bochi
[2] even showed that generically in the C1-topology, maps in E1(S1) do not even have
an absolutely continuous invariant σ-finite measure.
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On the more “positive” side, it is possible to relax the condition on the Hölder
continuity of the derivative to some extent. Recall that the modulus of continuity
of a continuous map ρ : X → Y between two metric spaces is a continuous map
ω : R+ → R+ vanishing at 0 and satisfying

dY (ρ(x), ρ(y)) ≤ ω(dX(x, y)) (4.1)

for every x, y ∈ X. We say that ω is Dini-integrable if∫ 1

0

ω(t)

t
dt < ∞.

Notice that saying that ρ is Hölder continuous is exactly equivalent to saying that ρ
has a modulus of continuity of the form ω(t) = Ctα for some α ∈ (0, 1) and that this
implies in particular that ω is Dini-integrable. Fan and Jiang [4] showed that if the
derivative of f ∈ E1(S1) has a modulus of continuity which is Dini-integrable then f
admits a unique ergodic invariant probability measure equivalent to Lebesgue, thus
extending the Folklore Theorem to a lower degree of regularity of the map.

All the counterexamples mentioned above must therefore have modulus of conti-
nuity for the derivative which is not Dini-integrable and a natural question is whether
Dini-integrability defines a precise cut-off between C1 uniformly expanding maps
which admit and which do not admit an acip. In this paper we explore this “un-
derground” world of maps in E1(S1) with very low regularity, in particular whose
derivative have modulus of continuity which is not Dini-integrable. We show that
for any given modulus of continuity ω there are (uncountably many) maps in E1(S1)
whose derivative has a modulus of continuity equivalent to ω but nevertheless still
admit an acip. In particular there is no specific cut-off based on the regularity of the
derivative, which means that other characteristics of the map somehow come into
play.

Existence of acip

To state our results we define the canonical modulus of continuity of ρ by

ωρ(t) := sup{|ρ(x)− ρ(y)| : d(x, y) < t}.

Notice that ωρ always exists if X is compact since every continuous function is
uniformly continuous. It is also easy to check that ωρ is increasing, concave, and
satisfies (4.1). We define the space of all potential moduli of continuity by

K := {ω ∈ C0(R+,R+) : continuous, increasing, concave, ω(0) = 0},
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and define an equivalence relation onK by letting ω ≃ ω̃ if the ratio ω/ω̃ is uniformly
bounded above and below. Then, following [7], we say that ω ∈ K is an optimal
modulus of continuity for ρ if it is equivalent to ωρ.

Remark 4.1.1. Despite its name, the optimal modulus of continuity is not unique
but rather defines a class of functions of which ωρ is, in some sense, a canonical
representative and such that all the moduli in this class have essentially the same
behaviour near 0. For example if ρ is Hölder continuous and its canonical modulus
is ωρ(t) = Ctα, for some C, α > 0, then any optimal modulus of continuity for ρ will
have the form ω(t) = ν(t)tα where ν : R+ → R+ is bounded away of 0.

The equivalence relation on K defined above induces an equivalence relation on
the space E1(S1) by letting f ∼ g whenever ωf ′ ≃ ωg′ , i.e. whenever the correspond-
ing canonical moduli of the derivatives f ′, g′ are equivalent. The equivalence classes
associated to this equivalence relation are of the form

E1
ω(S1) := {f ∈ E1(S1) : ωf ′ ≃ ω}

for ω ∈ K. Indeed, notice that for ω, ω̃ ∈ K we have that E1
ω(S1) = E1

ω̃(S1) if ω ≃ ω̃
and E1

ω(S1) ∩ E1
ω̃(S1) = ∅ otherwise. Notice that E1

ω(S1) contains a large number of
maps, as specifying only the modulus of continuity of f ′ leaves a lot of freedom in
the definition of f . We are interested in the sets

Γ1
ω(S1) := {f ∈ E1

ω(S1) : f admits an acip equivalent to Lebesgue}.

By [4], as mentioned above, if ω is Dini-integrable, and therefore in particular if ω
is Hölder continuous, every f ∈ E1

ω(S1) admits an acip equivalent to Lebesgue and
therefore Γ1

ω(S1) = E1
ω(S1). On the other hand, if ω is not Dini-integrable then by [7]

there exist examples of ω ∈ K such that E1
ω(S1) ̸= Γ1

ω(S1), and [15, 2] even seem to
suggest that there may be examples of ω ∈ K for which Γ1

ω(S1) = ∅. Our main result
shows that this is not the case and that, on the contrary, Γ1

ω(S1) ̸= ∅ for every ω ∈ K.
Moreover, our arguments are quite constructive and yield additional information
about the possible regularities of the densities of the acip, and in particular show that
their regularity may be as low as that of f itself, i.e. have ω as an optimal modulus
of continuity, or very smooth, including cases in which Lebesgue measure itself is
invariant. For every ω ∈ K and f ∈ Γ1

ω(S1), we let µf denote the acip equivalent to
Lebesgue, let ρf = dµf/dm denote its (continuous) density with respect to Lebesgue,
and let ωρf denote the canonical modulus of continuity of ρf .

Theorem 15. For every ω ∈ K there exists an uncountable set in Γ1
ω(S1) for which

ωρf ≃ ω and which can be given in a relatively explicit way, see (4.3).
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The main point of Theorem 15 is the fact that Γ1
ω(S1) ̸= ∅, which means that even

maps in E1(S1) with arbitrarily low regularity can admit an acip and also implies that
distinct maps with equivalent moduli of continuity can have quite different ergodic
properties. Indeed it implies that Γ1

ω(S1) ̸= ∅ in particular for the specific modulus of
continuity ω of the counterexample constructed in [7] which however does not admit
an acip. The additional statements about the densities of the acip highlight the fact
that Γ1

ω(S1) is in fact quite a large set and that there is a remarkable flexibility in the
construction of examples with various kinds of densities. The fact that f ∈ Γ1

ω(S1)
can preserve a density whose modulus of continuity is equivalent to the modulus of f ′

seems quite natural but turns out to be somewhat coincidental as we show that there
exists also maps f ∈ Γ1

ω(S1) which preserve densities which are much more regular
than that of f ′, even Lebesgue measure itself.

Theorem 16. Let a ∈ (0, 1) and let f1 : [0, a] → [0, 1] be an expanding C1-
diffeomorphism. Then there exists a unique extension of f1 to a Lebesgue-preserving
full branch expanding transformation of the unit interval. This extension represents
a C1 map on the circle if and only if the following holds:

f ′
1(0) =

f ′
1(a)

f ′
1(a)− 1

(4.2)

In particular, for every ω ∈ K there exists an uncountable set in Γ1
ω(S1) for which

µf is Lebesgue.

For for future reference, for every ω ∈ K we let

Γω,λ(S1) := {f ∈ Γ1
ω(S1) : Lebesgue measure is invariant}

Bounded and unbounded distortion

One of the main techniques for proving the existence of an acip is through a bounded
distortion property. For f ∈ E1(S1) we let {ω(n)

i } denote the injectivity domains of
fn and say that f has bounded distortion if

D := sup
n≥1

sup
ω
(n)
i

sup
x,y∈ω(n)

i

log
(fn)′(x)

(fn)′(y)
< ∞.

It is possible to show that if ω is Dini-integrable then every f ∈ E1
ω(S1) has bounded

distortion and therefore, since by classical arguments bounded distortion implies the
existence of an acip equivalent to Lebesgue, this implies that Γ1

ω(S1) = E1
ω(S1), as
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mentioned above. If ω is not Dini-integrable then bounded distortion cannot be
guaranteed and indeed our construction of the acip for maps for maps f ∈ E1

ω(S1) in
this setting does not explicitly use any distortion estimates. An interesting question
therefore is whether Dini-integrability is a necessary as well as a sufficient condition
for uniformly bounded distortion and, if not, whether there is actually is any under-
lying bounded distortion property which is implicitly responsible for the existence of
an acip in the cases given by Theorem 15.

Conjecture. ∀ ω ∈ K non Dini-integrable, unbounded distortion is C1-generic in
Γ1
ω(S1)

While we cannot give a full answer to the conjecture we can show that many
maps have an acip despite not having bounded distortion. For ω ∈ K we consider a
subset of the family Γω,λ(S1) defined above for which the derivative has an explicit
form near 0.

Fω := {f ∈ Γω,λ(S1) : f ′
1(x) = 2 + 2ω(x) on a small enough interval [0, tω]}

It is clear by the statement in Theorem 16 that Fω is an uncountable set.

Theorem 17. Every map in Fω has bounded distortion if and only if the optimal
modulus of continuity ωf ′ of f ′ is Dini-integrable.

Finally, also in the direction of the Conjecture above, we show that unbounded
distortion is generic in a somewhat different sense. More precisely, we define on
E1(S1) the C1+mod-topology induced by the metric

d1+mod(f, g) = d1(f, g) + d0(ωf ′ , ωg′),

where d1 is the C
1 distance, and d0 is the C

0-distance. In the distance d1+mod, maps
are close if they are C1-close, and their moduli of continuity ωf ′ and ωg′ of their
derivatives are close in the C0-topology. Notice that this is a natural metric on the
space of C1 maps and stronger than the usual C1 metric.

Theorem 18. There exists a subset Γ ⊂ E1(S1) which contains exactly one element
from each equivalence class E1

ω(S
1) which preserves Lebesgue measure for ω ∈ K,

such that C1+mod generic maps f ∈ Γ have unbounded distortion.

Remark 4.1.2. This theorem implies, in particular, that most maps in Γ have un-
bounded distortion and still preserve a continuous probability measure equivalent to
Lebesgue. Such examples are rare to find in the literature. The only example we
know of is the Quas example in [17] where he constructed an expanding map of the
circle preserving Lebesgue but not ergodic and hence has unbounded distortion.
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Proof of part 1 of Theorem 1

Let ω ∈ K, we will construct uncountably many maps in Γ1
ω(S1) for which the

density they preserve has ω as an optimal modulus of continuity. We will construct
these as maps f : S1 → S1 of degree 2, orientation-preserving which we represent as
full branch map of the unit interval [0, 1] with two C1 branches f1 and f2 defined
respectively on [0, 1

2
] and [1

2
, 1] satisfying f ′

1(0) = f ′
2(1) and f ′

l,1(
1
2
) = f ′

r,2(
1
2
) where l

and r denote the left and right derivatives at x = 1
2
.

We will first give an overview of the proof and reduce it to a number of technical
propositions which we will prove in the subsequent sections.

Overview of the proof

Our idea is to fix a continuous density satisfying certain conditions and prove that
under those conditions we can construct a uniformly expanding map of the circle
preserving the measure defined by that density and for which the regularity of the
derivative is the same as that of the density.

Lemma 19. For every ω ∈ K there exists ρ : [0, 1] → R continuous, having ω as an
optimal modulus of continuity, strictly greater than 1/2, satisfying:∫ 1

2

0

ρ(t)dt =

∫ 1

1
2

ρ(t)dt =
1

2
, (P1)

max
[0,1]

ρ−min
[0,1]

ρ <
1

2
, (P2)

and
ρ(0) = ρ(1) = 1. (P3)

Now, assuming the conditions of the previous lemma, for x ∈ [0, 1] let:

g(x) =

∫ x

0

ρ(t)dt

and define fρ : [0, 1] → [0, 1] by

fρ(x) =

{
2g if x ∈ [0, 1

2
]

(g − 1
2
I)−1 ◦ (g − 1

2
) if x ∈ [1

2
, 1]

(4.3)

We will show that the map fρ is a well defined C1 expanding circle map which
preserves the density ρ and whose derivative f ′

ρ has ω as an optimal modulus of
continuity, thus proving part 1 of Theorem 1.
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We split the proof into the following propositions. First of all let ρ : [0, 1] → R be
a continuous map such that ρ > 1/2 and consider the following system of ordinary
differential equations:f ′

1 = 2ρ on [0, 1
2
] with f1(0) = 0,

f ′
2 =

2ρ

2ρ ◦ f2 − 1
on [1

2
, 1]with f2(

1
2
) = 0.

(S)

Proposition 20. If ρ satisfies (P1) then the system (S) has a solution that defines
a full branch map f of the unit interval [0, 1] which preserves the measure µ defined
by the density ρ.

Proposition 21. If ρ satisfies (P1) − (P3) then the map previously constructed
coincides with fρ and represents a C1 uniformly expanding map of the circle.

Proposition 22. Let ω ∈ K and ρ be the function given by Lemma 19. Then f ′
ρ has

ω as an optimal modulus of continuity, and in particular fρ ∈ Γ1
ω(S1).

Proof of Proposition 20

We will split the proof of the proposition to 3 lemmas.

Lemma 23. If ρ > 1/2 and satisfies (P1) then fρ is a well defined full branch map
of the interval.

Proof. First, notice that by definition g(0) = 0 and by (P1) we have g(1
2
) = 1/2, so

we obtain that fρ maps diffeomorphically [0, 1
2
] to [0, 1]. Now notice that g− 1

2
maps

[1
2
, 1] to [0, 1

2
] and since g′ = ρ > 1

2
then (g − 1

2
I) is a diffeomorphism which maps

[0, 1] to [0, 1
2
] and hence fρ maps diffeomorphically [1

2
, 1] to [0, 1]. We conclude that

our map is well defined and full branch on the interval [0, 1].

Lemma 24. Under the previous conditions, fρ is a solution to the system (S)

Proof. Let us recall that g is the map defined on [0, 1] by:

g(x) =

∫ x

0

ρ(t)dt.

Clearly, f ′
ρ,1(x) = 2ρ(x), now we have:

to show the other equality, notice that

f ′
2 =

2ρ

2ρ ◦ f2 − 1
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is equivalent to:

2f ′
2ρ ◦ f2 − f ′

2 = 2ρ ⇐⇒ 2(g ◦ f2 −
1

2
f2)

′ = 2g′

after integrating over

[
1

2
, x

]
we obtain:(
g − 1

2
I

)
◦ f2(x) = g(x)− 1

2
.

where I denotes the identity map, notice that (g − 1

2
I)′ > 0 and hence g − 1

2
I is

invertible, we obtain finally:

f2 = fρ,2 = (g − 1

2
I)−1 ◦ (g − 1

2
).

and so we conclude that the system (S) admits fρ as a solution.

Lemma 25. If a solution of (S) is full branch then it preserves the measure µ defined
by the density ρ.

Proof. We start by recalling the following sublemma:

Sublemma 26. If f⋆µ([0, y]) = µ([0, y]) for every y ∈ [0, 1] then µ is f -ivariant.

Proof. The σ-algebra of Lebesgue measurable sets is generated by intervals of the
form [0, y] and all subsets of Borel sets of zero measure, since f is a C1 local diffeo-
morphism then it already preserves sets of measure zero, and so if the assumption of
the lemma is satisfied then µ if f -invariant.

Now let y ∈ [0, 1] and consider f to be a full branch map solution to (S) on the
unit interval [0, 1], since the derivative is everywhere positive, the branches are in-
jective and so every pre-image contains exactly two points, therefore, we have that
f−1({y}) = {f−1

1 (y), f−1
2 (y)} such that f−1

1 (y) ∈ [0, 1
2
] and f−1

2 (y) ∈ [1
2
, 1], of course,

we are assuming for simplicity here that the middle point of the interval is the end
point of the first branch, we obtain:

f⋆µ([0, y]) = µ(f−1([0, y])) = µ([0, f−1
1 (y)]) + µ([

1

2
, f−1

2 (y)]). (4.4)

ϕ1(x) =
1

2
x and ϕ2(x) =

∫ x

0

(ρ(t)− 1

2
)dt.
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Clearly µ([0, y]) = ϕ1(y) + ϕ2(y) and ϕ1 maps [0, 1] to [0, 1
2
] and ϕ2 maps [0, 1] to

[0, 1
2
] because ϕ2(2) is increasing since ρ > 1

2
, by definition also ϕ2(0) = 0 and by

(P1)

ϕ2(1) =

∫ 1

0

ρ(t)− 1

2
dt =

∫ 1

0

ρ(t)dt− 1

2
= 1− 1

2
=

1

2
.

Now we want to solve the following equations:

µ([0, f−1
1 (y)]) = ϕ1(y) and µ([

1

2
, f−1

2 (y)]) = ϕ2(y) (4.5)

Which is equivalent to:∫ f−1
1 (y)

0

ρ(t)dt = ϕ1(y) and

∫ f−1
2 (y)

1
2

ρ(t)dt = ϕ2(y).

by differentiating both sides of the previous equations and using the formula:

d

dy

∫ u(y)

α

v(x)dx = u′(y)v(u(y)). (4.6)

we obtain the following two equations:

(f−1
1 )′ρ ◦ f−1

1 =
1

2
and (f−1

2 )′ρ ◦ f−1
2 = ρ− 1

2
.

using that (f−1)′ = 1/f ′ ◦ f−1 we obtain:

ρ

f ′
1

◦ f−1
1 =

1

2
and

ρ

f ′
2

◦ f−1
2 = ρ− 1

2
.

compositing the first equation of the previous equation by f1 and the second equation
by f2 we obtain exactly the system (S) but without particular initial conditions due
to the differentiation step prior to obtaining (4) and so we are not sure the solution
corresponds exactly to equation (4.5), we will show that the initial conditions of
system (S) are sufficient to obtain (4.5) and hence complete the proof. Notice that

d

dy

∫ f−1
1 (y)

0

ρ(t)dt = ϕ′
1(y) and

d

dy

∫ f−1
2 (y)

1
2

ρ(t)dt = ϕ′
2(y).

Let us integrate the left and right hand side on [0, z], precisely:∫ z

0

(
d

dy

∫ f−1
1 (y)

0

ρ(t)dt)dy =

∫ z

0

ϕ′
1(y)dy,
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and ∫ z

0

(
d

dy

∫ f−1
2 (y)

1
2

ρ(t)dt)dy =

∫ z

0

ϕ′
2(y)dy.

this is equivalent to:∫ f−1
1 (z)

0

ρ(t)dt−
∫ f−1

1 (0)

0

ρ(t)dt = ϕ1(z)− ϕ1(0) = ϕ1(z).

and ∫ f−1
2 (z)

1
2

ρ(t)dt−
∫ f−1

2 (0)

1
2

ρ(t)dt = ϕ2(z)− ϕ2(0) = ϕ2(z).

since the initial conditions are f−1
1 (0) = 0 and f−1

2 (0) = 1
2
we obtain finally the

following:

µ([0, f−1
1 (z)]) = ϕ1(z)

and

µ([
1

2
, f−1

2 (z)]) = ϕ2(z)

. This shows that (3) is satisfied and hence finishes the proof.

By the previous lemmas we proved, the map fρ is a full branch map which
preserves the measure µ defined by ρ, hence finishing the proof of proposition 6.

Proof of Proposition 21

Proof. Since ρ > 1
2
we have that f ′(x) = 2ρ(x) > 1 for every x ∈ [0, 1

2
], now by (P2)

we also have that:

2min
[0,1]

ρ

2max
[0,1]

ρ− 1
>

2min
[0,1]

ρ

2(min
[0,1]

ρ+ 1
2
)− 1

= 1

and hence we obtain for every x ∈ [1
2
, 1] that f ′

2(x) > 1 and so f is uniformly
expanding, it remains to prove that f represents a C1 map of the circle as explained
at the beginning of the proof of the theorem, namely, we have that f ′

l,1(
1
2
) = f ′

r,2(
1
2
)

because by (P3):

f ′
r,2(

1

2
) =

2ρ(1
2
)

2ρ(0)− 1
= 2ρ(

1

2
) = f ′

l,1(
1

2
).
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Finally, we have f ′(0) = 2ρ(0) = 2 and f ′(1) =
2ρ(1)

2ρ(1)− 1
= 2. This shows indeed

that the solution f defines a C1 uniformly expanding map on the circle and preserves
µ.

4.1.1 Proof of Proposition 22

Proof. Lets start by proving that ω is a modulus of continuity for f ′
2 (not necessarily

optimal).

ωf ′
2
(t) = sup

0≤|x−y|<t

|f ′
2(x)− f ′

2(y)|

= sup
1

(2ρ ◦ f2(x)− 1)(2ρ ◦ f2(y)− 1)
|4ρ(x)ρ ◦ f2(y)− 4ρ(y)ρ ◦ f(x)+ 2ρ(y)− 2ρ(x)|

since ρ > 1/2 we obtain that
1

(2ρ ◦ f2(x)− 1)(2ρ ◦ f2(y)− 1)
is uniformly bounded

above by a constant C > 0 and therefore:

ωf ′
2
(t) ≤ 4C|ρ(x)ρ ◦ f2(y)− ρ(y)ρ ◦ f2(x)|+ 2C|ρ(y)− ρ(x)|

taking M = max ρ and by adding and substituting ρ(x)ρ ◦ f2(x) on the first term we
get

ωf ′
2
(t) ≤ 4CM |ρ ◦ f2(x)− ρ ◦ f2(y)|+ (4CM + 2C)|ρ(y)− ρ(x)|

since f2 is C1 and hence Lipschitz (with a constant L) we obtain:

ωf ′
2
(t) ≤ 4CMω(Lt) + (4CM + 2C + 1)ω(t)

by sub-additivity of ω we obtain finally that there is α > 0 such that

ωf ′
2
(t) ≤ αω(t).

Now, since on [0, 1
2
] f ′

1 = 2ρ then ωf ′
1
= ω, this finishes the proof.

4.1.2 Proof of Lemma 19

To finish the proof of the theorem, it clearly only remains to prove Lemma 19.
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Proof. The existence of ρ is guaranteed because on a small enough interval [0, tω] on
which ω(t) << 3

2
we can chose ρ(t) to be equal to 1 + ω(t) for every t ∈ [0, tρ], since

the translation of an element in K admits itself as an optimal modulus of continuity,
it is enough to extend it to the rest of the interval in a C1 way while satisfying
the other properties which do not depend on how we define ρ on a small enough
neighborhood of 0 as far as on that neighborhood (P2) and (P3) are satisfied there.
We will in fact consider in the rest of the paper ρ being defined on some neighborhood
[0, tω] as 1 + ω(t).

Proof of Theorem 16

We split the proof into two parts. We first prove the first statement concerning the
extension of an arbitrary diffeomorphism to a Lebesgue measure preserving circle
map, and then show that this map has optimal modulus of continuity ω

The philosophy of the proof will be similar to the proof of Theorem 15 but we
will introduce a new ordinary differential equation that arises naturally from the
transfer operator. Let f ∈ E1(S1) and, for all Lebesgue-integrable h ∈ L1

λ(S
1) and

µh := h · λ, we define the transfer operator associated to f and acting on L1
λ(S

1) as

Ph =
d
(
f∗µh

)
dλ

. (4.7)

This operator takes the density of an absolutely continuous measure to the density
of its push-forward by f in respect to Lebesgue. It is well known that the fixed
points of P correspond to the densities of f -invariant measures and that the transfer
operator for maps of degree 2 has an explicit formula given by

Ph(x) =
∑

y∈f−1(x)

h(y)

f ′(y)
. (4.8)

Consider the differential equation

f ′
2(x) =

f ′
1

(
f−1
1

(
f2(x)

))
f ′
1

(
f−1
1

(
f2(x)

))
− 1

, x ∈ [a, 1], (4.9)

Since f1 is C1, by Peano’s existence theorem the Cauchy problem with the initial
condition f2(a) = 0 admits a maximal solution f2 defined on the interval [a, 1].
Let’s show that f2 maps diffeomorphically onto [0, 1]. Notice that f ′

2(x) > 1 for all
x ∈ [a, 1], therefore it only remains to show that f2(1) = 1. Assume that f2(1) < 1
and consider I = [0, b] where b = f2(1). Equation 9 implies that



4.1. INTRODUCTION AND STATEMENT OF RESULTS 39

1

f ′
1

(
f−1
1 (y)

) +
1

f ′
2

(
f−1
2 (y)

) = 1, (4.10)

This implies in particular:

f⋆λ([0, b]) = λ(f−1
1 ([0, b])) + λ(f−1

2 ([0, b])) =∫
[0,b]

1

f ′
1

(
f−1
1 (y)

) +
1

f ′
2

(
f−1
2 (y)

)dλ = λ([0, b])

On the other hand, we know that f⋆λ([b, 1]) = λ(f−1
1 ([b, 1])) < λ([b, 1]) which implies

that λ(f⋆([0, 1])) < λ([0, 1]), resulting in a contradiction. The case b > 1 results in
the same contradiction, hence b = 1, this implies in particular that (4.10) is satisfied
for every x ∈ [0, 1] and hence the Lebesgue measure is preserved (taking h = 1 on
[0,1])
Uniqueness cannot be deduced directly from the equation (4.9), because Peano’s
existence theorem provides only existence, we will deduce it using the fact that the
solution preserves λ. Let f, g : [0, 1] → [0, 1] be two full branch interval maps which
preserve Lebesgue measure, assume they have the same first branches (i,e f1 = g1)
on an interval [0, a], then for every y ∈ [0, 1] we have

λ([0, y]) = λ(f−1([0, y])) = λ(g−1([0, y])),

which implies by assumption that

λ([a, f−1
2 (y)]) = λ([a, g−1

2 (y)]),

this implies that f−1
2 (y) = g−1

2 (y), thus uniqueness of solutions.
For the second part of the proposition, we want to show that the full branch map
obtained represents a circle map if and only if (4.2) holds. This is because for a full
branch map to lift to a circle map we need that the derivatives at the end points to
coincide, as well as the left and right derivatives at the point a and so by equation
(9) we need (4.2) to hold.

It just remains to show that f has ω as an optimal modulus of continuity. Take
a ∈ (0, 1) and consider a C1 expanding diffeomorphism f1 : [0, a] → [0, 1] admitting
ω ∈ K as an optimal modulus of continuity and satisfying condition 4.2. By the
previous section, this extends to a Lebesgue preserving circle expanding map f , the
regularity of the derivative on the first branch is by choice ω-continuous, for the
second branch f2 we know that:
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f ′
2(x) =

f ′
1

(
f−1
1

(
f2(x)

))
f ′
1

(
f−1
1

(
f2(x)

))
− 1

.

Consider the map φ = f−1
1 ◦ f2. For x, y ∈ [a, 1] we have:

|f ′
2(x)− f ′

2(y)| = | f ′
1(φ(x))

f ′
1(φ(x))− 1

− f ′
1(φ(y))

f ′
1(φ(y))− 1

| = | f ′
1(φ(x))− f ′

1(φ(y))

(f ′
1(φ(x))− 1)(f ′

1(φ(y))− 1)
|.

Since (f ′
1(φ(x))− 1)(f ′

1(φ(y))− 1) is bounded away from 0 because f ′ > 1 and since
φ is Lipschitz (since it is C1 on a compact interval) we obtain:

sup
|x−y|≤t

|f ′
2(x)− f ′

2(y)| ≃ sup
|x−y|≤t

|f ′
1(φ(x))− f ′

1(φ(y))| ≃ ω(t).

We conclude that f ∈ Γ1
ω(S1). Notice that in our construction, the choices we made

to construct an example allow to construct uncountably many such element. This
finishes the proof of the theorem.

Proof of Theorem 17

Proof. Let ω ∈ K and f ∈ Fω. For k ∈ N and by the chain rule we have that:

| log (fk)′(x)

(fk)′(y)
| = |

∑
0≤i≤k−1

(log(f ′(f i(x))− log f ′(f i(y))|

Using mean value theorem, for every 0 ≤ i ≤ k − 1 there exists

λ = min
x∈S1

|f ′(x)| ≤ zi ≤ σ = max
x∈S1

|f ′(x)| > 1

such that∑
0≤i≤k−1

log f ′(f i(x))− log f ′(f i(y)) =
∑

0≤i≤k−1

1

zi
(f ′(f i(x))− f ′(f i(y))).

Now for every k ∈ N, let us take the first partition element of order k, i.e. ωk
1 = [0, rk]

where σ−k ≤ rk ≤ λ−k. Let us take y = 0 and xk ∈ ωk
1 such that fk(xk) ≤ tω, for

instance we can take xk = f−k
1 (tω) for k large enough, where fk

1 denotes the first
branch of the k-th iterate of f . From this we obtain∣∣∣∣log (fk)′(xk)

(fk)′(0)

∣∣∣∣ ≥ 1

σ

∑
0≤i≤k−1

(f ′(f i(xk))− f ′(0))
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and we have that f ′(f i(xk)) = 2ρ(f i(xk)) = 2 + 2ωf ′(f i(xk)) and f ′(0) = 2 and so
we obtain ∣∣∣∣log (fk)′(xk)

(fk)′(0)

∣∣∣∣ ≥ 2

σ

∑
0≤i≤k−1

ωf ′(f i(xk)).

We have that f i(xk) = f i−k(tω) and so we obtain

f i(xk) ≥ Cσi−k

and hence we get ∣∣∣∣log (fk)′(xk)

(fk)′(0)

∣∣∣∣ ≥ 2

σ

∑
0≤i≤k−1

ωf ′(Cσi−k). (4.11)

We can now apply a Lemma from [6].

Lemma 27 ([6]). ω ∈ K is not Dini-integrable if and only if for every σ > 1 we
have

lim
k→∞

∑
1≤i≤k

ω(σ−i) = ∞.

Applying Lemma 27 to the inequality in (4.11) we get that if if ω is not Dini-
integrable we get

| log (fk)′(xk)

(fk)′(0)
| → ∞

and so f has unbounded distortion. Conversely, if ω is Dini-integrable then f has
bounded distortion by [4] and so this finishes the proof.

Proof of Theorem 18

To prove Theorem 18 we first prove that the set of moduli which are not Dini-
integrable are generic. First of all, for every r ∈ N let Kr ⊂ K be the space of
moduli of continuity satisfying ∫ 1

0

ω(t)

t
dt ≤ r

and let
K∞ :=

⋃
r∈N

Kr and K∗ := K \K∞

be the set of Dini integrable and non-Dini-integrable moduli of continuity respec-
tively.
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Proposition 28. K∗ is a residual (dense Gδ) set in the C0-topology.

Before proving the proposition we prove two lemmas.

Lemma 29. The spaces Kr are closed subspaces of K in the C0 topology.

Proof. Let (ωn)n∈N be a sequence in Kr which converges uniformly to a map ω ∈ K.
For every ϵ > 0 the sequence ωn(t)/t converges uniformly to ω(t)/t on [ϵ, 1] and
therefore ∫ 1

ϵ

ω(t)

t
dt = lim

∫ 1

ϵ

ωn(t)

t
dt ≤ r. (4.12)

Since (4.12) holds for every ϵ > 0 we deduce that ω ∈ Kr and hence Kr is closed.

Lemma 30. The spaces Kr have empty interior in K.

Proof. We will show that K∗ is dense in K, which clearly implies the statement. Let
ω ∈ K∞ and ω0 ∈ K∗ such that |ω0|∞ = 1. For every ϵ we have that ωϵ = ω+ϵω0 ∈ K∗
and |ωϵ − ω|∞ = ϵ. This implies that K∗ intersects every open set in K and hence is
dense.

Proof of Proposition 28. Since K is complete in the uniform topology and K∞ is a
countable union of closed sets with empty interior we conclude by Baire’s category
theorem that K∗ is a dense Gδ set.

Proof of Theorem 18. By Theorem 17 for every ω ∈ K there exists an uncountable
family Fω whose elements have unbounded distortion if and only if ω ∈ K∗. In
particular, for every ω ∈ K we have that

Fω ∩ Γ1
ω,λ(S1) ̸= ∅. (4.13)

Proposition 31. There exists a continuous map φ : K → E1(S1) such that ∀ω ∈ K :
φ(ω) ∈ Fω ∩ Γ1

ω,λ(S1)

Proof. Consider the map ϵ : K → R+ defined by ϵ(ω) = ω−1(1
2
), the map ϵ is C1+mod

continuous. Consider now for every ω ∈ K a neighbourhood Vω = (0, 1
4
ϵ(ω)). On

each Vω define φ′(ω)|Vω = 2+2ω then, extend it to [0, 1
2
] in a way that the collection

of maps φ|[0, 1
2
](ω) forms a continuous family of C1 function in the C1+mod topology

and satisfying conditions of Theorem 2, this is possible by the flexibility we have
on the complement of Vω in [0, 1

2
] and since the maps are already continuous on

the family of intervals {Vω}. By Theorem 2 these extend to Lebesgue preserving
uniformly expanding maps on the circle, whose modulus of continuity is ω and it is
also straightforward to check that the map φ(ω) depend continuously on ω in the
C1+mod topology.
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We chose Γ = φ(K). Let M : Γ → K denote the map which assigns to each
f ∈ Γ the modulus ωf ′ ∈ K, clearly M is continuous and so M−1(K⋆) is a Gδ set,
it remains to show that this set is dense, let U ⊂ Γ be a non empty open set, since
φ is continuous we have φ−1(U) is open in K and hence by density of K⋆ in K we
obtain that M−1(K⋆) ∩ U ̸= ∅ which proves that M−1(K⋆) is a residual set which
finishes the proof.
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