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Abstract
We continue our study of the Noether–Lefschetz loci in toric varieties and investigate
deformation of pairs (V , X) where V is a complete intersection subvariety and X a
quasi-smooth hypersurface in a simplicial projective toric variety P2k+1

� , with V ⊂ X .
The hypersurface X is supposed to be of Macaulay type, which means that its toric
Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of Gorenstein
ideal in the standard polynomial ring. Under some assumptions, we prove that the
class λV ∈ Hk,k(X) deforms to an algebraic class if and only if it remains of type
(k, k). Actually we prove that locally the Noether–Lefschetz locus is an irreducible
component of a suitable Hilbert scheme. This generalizes Theorem 4.2 in our previous
work (Bruzzo and Montoya 15(2):682–694, 2021) and the main theorem proved by
Dan (in: Analytic and Algebraic Geometry. Hindustan Book Agency, New Delhi, pp
107–115, 2017).
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1 Introduction

In this short note we continue our study of the Noether–Lefschetz loci in toric varieties
and investigate the deformation of pairs (V , X) where V is a k-dimensional complete
intersection subvariety and X a quasi-smooth ample hypersurface in a simplicial pro-
jective toric variety P

2k+1
� of odd dimension 2k + 1 � 3, with V ⊂ X . We make two

assumptions:

• The hypersurface X is supposed to be of Macaulay type, which means that its
toric Jacobian ideal is Cox–Gorenstein, a property that generalizes the notion of
Gorenstein ideal in a standard polynomial ring. This will be discussed in Sect. 3.
Cox–Gorenstein ideals are studied in some detail in [2].

• The local Noether–Lefschetz locus NLk,β
λV ,U , also called “Hodge locus” in the

literature when P
2k+1
� is a projective space, as defined in Sect. 5, is not empty (a

condition for this to happen is for instance given in [3, Lemma 3.7]). Here λV

is the cohomology class of V , and β is the class of X in Pic(P2k+1
� ). Then the

full Noether–Lefschetz locus NLβ , defined as the locus in the linear system |β| of
the points corresponding to quasi-smooth hypersurfaceswhose (k, k)-cohomology
does not come entirely from the ambient variety P

2k+1
� , is locally analytically a

finite union of Hodge loci [5].

Moreover, under the further assumption that β satisfies β = qη +β ′, n ∈ N, where
q ∈ Q>0, η is a primitive ample class in P2k+1

� , and β ′ is a nef Cartier class, if X coin-
tains a k-dimensional complete intersection subvariety with degη V < qmk+1, where

mk+1 is a rational number only depending on P
2k+1
� and the choice of a polarization,

we will show that its associated cohomology class λV deforms to an algebraic class if
and only it remains of type (k, k).

This extends the work of Dan in [10] and the last result of [4, Theorem 4.2] for
toric varieties with higher Picard rank (there the Picard number was assumed to be
one, and moreover, the result is asymptotic).

2 Infinitesimal variation of the Hodge structure

According to Batyrev and Cox in [1], the cohomology of hypersurfaces in projective
simplicial toric varieties has a pure Hodge structure. In this section, we introduce
its infinitesimal variation following the notions due to Carlson, Green, Griffiths and
Harris in [7].

Definition 2.1 A polarized Hodge structure of weight n, denoted by {HZ, H p,q, Q},
is a Hodge structure together with a bilinear form Q : HZ×HZ → Z satisfying
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Q(ψ, φ) = (−1)nQ(φ,ψ),

Q(ψ, φ) = 0, ψ ∈ H p,q , φ ∈ H p′, q ′
and p �= q ′,

i p−q Q(ψ,ψ) > 0, 0 �= ψ ∈ H p,q .

Definition 2.2 An infinitesimal variation of Hodge structure {HZ, H p,q, Q, T , δ} is
given by a polarized Hodge structure together with a vector space T and linear map

δ : T →
⊕

1�p�n

Hom
(
H p,q, H p−1,q+1)

that satisfies the following two conditions:

δ(ξ1)δ(ξ2) = δ(ξ2)δ(ξ1), ξ1, ξ2 ∈ T ,

Q(δ(ξ)φ,ψ) + Q(φ, δ(ξ)ψ) = 0 for ξ ∈ T and φ ∈ F p, ψ ∈ Fn−p+1.

Here F• is the filtration of Hn given by

F p =
p⊕

i=0

Hn−i,i .

If X
i−→ P

d
� is a quasi-smooth hypersurface in a simplicial projective toric variety

P
d
� of dimension d, its primitive cohomology of degree d − 1 is defined by the exact

sequence [1]

0 → i∗Hd−1(Pd
�,C) → Hd−1(X ,C) → Hd−1

prim (X ,C) → 0.

The pullback i∗ is compatible with the Hodge structures so that the primitive coho-
mology has a pure Hodge structure as well.

For a quasi-smooth hypersurface X in a simplicial projective toric variety, δ is the
morphism associated via tensor-hom adjuction to γ = ∑

p γp, where

γp : TXMβ ⊗H p,d−1−p
prim (X) → H p,d−1−p

prim (X)

is the natural multiplication map; for more details see [3, Section 3.3]. Given an
infinitesimal variation of Hodge structure of weight 2k, there is an invariant associated
to γ ∈ Hk,k

Z
.

Definition 2.3 The third invariant associated to γ ∈ Hk,k
Z

is

Hk,k(−γ ) := {
ψ ∈ Hk,k | 〈δ0(ξ)ψ, γ 〉 = 0 for all ξ ∈ T

}
.

123



  108 Page 4 of 10 U. Bruzzo, W.D. Montoya

Let us assume γ is the primitive part of the class of k-codimensional algebraic cycle
V = ∑

i ni Vi in X with support σ(V ). Let Iσ(V ) be the ideal associated to σ(V ) and
denote by Hk(�k

X (−V )) the image of the composed map

Hk(X ,�k
X ⊗ Iσ(V )

) → Hk(X ,�k
X ) → Hk

prim(�k
X ).

One has the following fact [11, Observation 4.a.4].

Lemma 2.4 Hk(�k
X (−V )) ⊆ Hk,k(−γ ).

This is the result we shall need later on.

3 Macaulay-type hypersurfaces

In this section we characterize a class of hypersurfaces in toric varieties that satisfy
a generalization of the Macaulay theorem which holds for projective spaces. As we
shall see, these are hypersurfaces whose toric Jacobian ideal (whose definition will be
recalled later in this section) has a property which generalizes the notion of Gorenstein
ideal in a polynomial ring.

The Cox ring S of a complete simplicial toric variety Pd
� is graded over the effective

classes in the class group Cl(Pd
�)

S =
∑

α∈Cl(Pd
�)

Sα, Sα = H0(
P
d
�,O

P
d
�
(α)

)

(see e.g. [8]). Following [2], we give a definition of Cox–Gorenstein ideal of the Cox
rings which generalizes to toric varieties the definition given by Otwinowska in [12]
for projective spaces.

Definition 3.1 A graded ideal I of S is said to be a Cox–Gorentstein ideal of socle
degree N ∈ Cl(Pd

�) if

• the quotient R = S/I is Artinian;
• dimC RN = 1;
• for every homogeneous class α ∈ Cl(Pd

�), either the natural bilinear morphism
(called “Poincaré duality”)

Rα× RN−α → RN � C

is nondegenerate, or Rα = RN−α = 0.

Example 3.2 We give here some examples of Cox–Gorenstein ideals. In all cases the
proof that the relevant ideal is Cox–Gorenstein is done by direct computation.
1. P1×P

1 with homogeneous coordinates (x, y, u, v), and

I = (
x2u − y2v, xv, yu, x3, y3, u2, v2, xy

)
.
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I is Cox–Gorenstein of socle degree (2, 1).

2.P1×P
2 with homogeneous coordinates (x, y, u, v, w); the annihilator of f = xu2+

uvw in the ring of polynomial operators C[∂x , ∂y, ∂u, ∂v, ∂w] is a Cox–Gorenstein
ideal of socle degree (2, 1).

3. A singular example is provided by the fake weighted projective space associated
with the fan generated by v1 = (−3,−2), v2 = (1, 2), v3 = (1, 0) inR3. The resulting
variety has class groupZ⊕Z2 and is a quotientP[1, 1, 2]/Z2. The divisors D1, D2, D3
associated with the rays have bidegree (1, 1), (1, 0) and (2, 1), respectively. Write the
Cox ring as S = C[x, y, z] and consider the ideal I = (x, y2, z3); its socle degree
is N = (5, 0). Indeed R5,0 is generated by the class of the monomial yz2. The other
nonzero graded pieces of R are

R0,0 = C, R1,0 = C[y], R2,1 = C[z], R3,1 = C[yz], R4,0 = C[z2]

which clearly satisfy the Poincaré duality.

Examples of Cox–Gorenstein ideals may be given in terms of toric Jacobian ideals.
For every rayρ ∈ �(1) denote by vρ its rational generator, and by xρ the corresponding
variable in the Cox ring. Recall that d is the dimension of the toric variety P

d
� , while

we denote by r = #�(1) the number of rays. Given f ∈ Sβ, one defines its toric
Jacobian ideal as

J0( f ) =
(
xρ1

∂ f

∂xρ1

, . . . , xρr

∂ f

∂xρr

)
.

Werecall from [1] the definition of nondegenerate hypersurface and someproperties
(Definition 4.13 and Proposition 4.15).

Definition 3.3 Let f ∈ Sβ, with β an ample Cartier class. The associated hypersurface
X f ⊂ P

d
� is nondegenerate if for all σ ∈ � the affine hypersurface X f ∩ O(σ ) is a

smooth codimension one subvariety of the orbit O(σ ) of the action of the torus Td.

Proposition 3.4 (1) Every nondegenerate hypersurface is quasi-smooth.
(2) If f is generic then X f is nondegenerate.

Wecollect here, with some changes in the terminology, some results that are already
contained in [9, Proposition 5.3].

Proposition 3.5 Let f ∈ Sβ, and let {ρ1, . . . , ρd} ⊂ �(1) be such that vρ1, . . . , vρd

are linearly independent.

(1) The toric Jacobian ideal of f coincides with the ideal

(
f , xρ1

∂ f

∂xρ1

, . . . , xρd

∂ f

∂xρd

)
.

(2) The following conditions are equivalent:
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(a) f is nondegenerate;
(b) the polynomials xρi

∂ f
∂xρi

, i = 1, . . . , r , do not vanish simultaneously on X f ;

(c) the polynomials f and xρi
∂ f
∂xρi

, i = 1, . . . , d, do not vanish simultaneously

on X f .

Now we define the notion of hypersurface of Macaulay type.

Definition 3.6 Let f ∈ Sβ be nondegenerate, with β an ample Cartier class. f is said
to be of theMacaulay type if its toric Jacobian ideal J0( f ) is a Cox–Gorenstein ideal
of socle degree N = (d + 1)β − β0, where β0 is the anticanonical class of Pd

� .

Example 3.7 1. According to this definition, any generic smooth hypersurface in P
d

is of Macaulay type.

2. Macaulay-type hypersurfaces in singular toric varieties do exist; a simple example
is the curve x + y2 + z2 = 0 in P[1, 1, 2], where deg x = 2 and deg y = deg z = 1.

3. Another singular example, this time with class group different from Z, is provided
by the fake weighted projective space of Example 3.2.3 by letting f = x4 + y2 + z2.
The toric Jacobian ideal is I = (x4, y4, z2) and the socle degree is N = (8, 0).

Actually a result in [2] shows that every nondegenerate ample Cartier hypersurface
in a simplicial projective toric variety with Picard number 1 is of Macaulay type.

4 The tangent space to the Noether–Lefschetz locus

From now on we assume d = 2k + 1. Let f ∈ Sβ define a nondegenerate quasi-
smooth hypersurface X in P

2k+1
� and suppose β is ample. Moreover, we assume that

the hypersurface X is of Macaulay type. Let N = (k + 1)β − β0 and let J0( f ) be the
toric Jacobian ideal associated to f , which is Cox–Gorenstein of socle degree 2N+β0.
Then there is a perfect pairing Rα

0 × R2N+β0−α
0 → R2N+β0

0 for α � 2N + β0. Let
us denote by T ′

0 the subspace of RN
0 which is the kernel of the multiplication map

· x1, . . . , xr P : RN
0 → R2N+β0

0 and by T0 its inverse image in SN, where P is a
preimage of γ under the natural map

SN SN/J N ∼
Hk,k
prim(X)

P P γ.

Definition 4.1 Let T ⊂ S be the Cl(�)-graded module such that T α is the largest
subspace where T α⊗ SN−α is contained in T0 for α � N , T N = T0 and EN+α =
T0⊗ Sα for α � 0.

Remark 4.2 Note that T is a Cox–Gorentein ideal with socle degree N .

Actually T β is the tangent space of the local Noether–Lefschetz locus at f .1

1 For ease of notation we write f but we mean its class modulo a nonzero constant factor.
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Lemma 4.3 Tf NLλ,β
∼= T β, where λ is a primitive class in Hk,k(X f ,Q).

Proof An overbar will denote the class in R = S/J of an element in S. Now, H ∈ T β

if and only if H ⊗ RN−β is contained in T ′
0, which is equivalent to

x0 . . . xr PH ⊗ RN−β = 0 in RN+β0;

using Poincaré duality that means x0 . . . xr PH = 0 in RN+β+β0 and equivalently
PH = 0 in RN+β if and only if H ∈ Tf NLλ,β (see [6, Theorem 6.2]). ��

Let us suppose that V is the zero locus of 〈A1, . . . , Ak+1〉 and since V ⊂ X f there
exist polynomials K1, . . . , Kk+1 of degree β − deg(Ai ) such that f = A1K1 + · · · +
Ak+1Kk+1. Let I = 〈A1, . . . , Ak+1, K1, . . . , Kk+1〉.
Proposition 4.4 T α = I α for α � N.

Proof Let W1 be the zero locus of 〈K1, A2, . . . , Ak+1〉. Since V ∪ W1 is equal to
X f ∩ {A2 = · · · = Ak+1 = 0}, λV is equal to −λW1 in the primitive cohomology.
Now, let us denote by W2 the zero locus of K1, . . . , Kk+1 then, as before, [λV ]prim =
[aλW2 ]prim, a ∈ Z. By Lemma 2.4 we have 〈A1, . . . , Ak+1, K1, . . . , Kk+1〉 ⊂ T .
Since X is quasi-smooth, the ideal 〈A1, . . . , Ak+1, K1, . . . , Kk+1〉 is Cox–Gorenstein
with socle degree N , the socle degree of T , so that I and T coincide in degree
α � N . ��

5 Main theorem

In this section we prove our main result. We start by recalling the construction of the
local Noether–Lefschetz locus [6]. Given an ample class β in Pic(P2k+1

� ), let

Uβ ⊂ P
(
H0(P2k+1

� ),O
P
2k+1
�

(β)
)

be the open subset parameterizing quasi-smooth hypersurfaces and let π : χβ → Uβ

be the tautological family. One considers the local systemH2k = R2kπ�C⊗OUβ
over

Uβ .
If f ∈ Uβ , let λ f ∈ Hk,k(X f ,Q)/i∗(Hk,k(P2k+1

� ,Q)) be a nonzero class, and
let U ⊂ Uβ be a contractible open subset around f . Finally, let λ ∈ H2k(U ) be the
section defined by λ f and let λ be its image in (H2k/FkH2k)(U ), where

FkH2k = H2k,0⊕H2k−1,1⊕ · · · ⊕Hk,k .

Definition 5.1 (Local Noether–Lefschetz Locus) NLk,β
λ,U = {G ∈ U | λG = 0}.

Let η be a polarization for P2k+1
� , that we assume to be primitive in the Picard

group. Given the Hilbert polynomial P of a subscheme V , computed with respect to
η, we denote by HilbP the Hilbert scheme of closed subschemes of P2k+1

� with Hilbert
polynomial P . We denote by Q the Hilbert polynomial of quasi-smooth hypersurface
in P

2k+1
� whose class in the Picard group is β. The flag Hilbert scheme HilbP,Q
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parametrizes all pairs (V , X)where V ∈ HilbP and X is a quasi-smooth hypersurface
in P

2k+1
� of class β containing V . Let pr1 be the projection to the first component

and pr2 : HilbP,Q → Uβ the natural projection to the open set which parametrizes
quasi-smooth hypersurfaces in P

2k+1
� . Note that pr1(HilbP,Q) is irreducible, so that

there exists a unique component in HilbP,Q such that pr1(HilbP,Q) coincides with the
parameter space for complete intersection subschemes in P

2k+1
� .

For Z a d-dimensional closed subvariety of P
2k+1
� we define its degree as

degη Z = [Z ] ·ηd.
Lemma 5.2 There is a positive rational number mk+1 such that degη W � mk+1 for

all (k + 1)-dimensional closed subvarieties W of P2k+1
� .

Proof Let a be the smallest integer such that aη is very ample. Then aη defines a
closed embedding j : P2k+1

� → P
N for some N . Denoting by H the hyperplane class

in PN, one has

degη W = 1

ak
j∗Hk · [W ] = 1

ak
Hk · j∗[W ] � 1

ak

and one sets mk+1 = 1/ak . ��
The next lemma is a version of the Bézout theorem in the present context.

Lemma 5.3 If X is an ample Cartier hypersurface in P
2k+1
� whose class in

Pic(P2k+1
� ) satisfies β = qη + β ′, where q ∈ N>0 and β ′ is a nef Cartier class,

and V = X ∩W is a k-dimensional subvariety contained in X, where W is a (k + 1)-
dimensional closed subvariety W ⊂ P

2k+1
� , then degη V � qmk+1.

Proof We shall denote by (Z) the class in Ad(P
2k+1
� ) of a d-dimensional closed sub-

variety Z of Pic(P2k+1
� ), and by [Z ] its class in A2k+1−d(P2k+1

� ). Thus we have

degη V = 〈ηk, (W ) ∩ [X ]〉 = 〈ηk ∪ [X ], (W )〉 = 〈ηk ∪ (qη + β ′), (W )〉
= q degη W + 〈ηk ∪ β ′, [W ]〉 � qmk+1 + 〈ηk ∪ β ′, [W ]〉.

Since β ′ is nef we have 〈ηk ∪ β ′, [W ]〉 � 0, hence the claim follows. ��
Now we state and prove the main result of this paper.

Theorem 5.4 Assume that β is as in Lemma 5.3. Let V be a quasi-smooth complete
intersection in P2k+1

� of codimension k + 1 and let X be a quasi-smooth hypersurface
of class β containing V such that degη V < qmk+1. Assume also that X is of the
Macaulay type. Then,

λV deforms to a (k, k) class if and only if λ[V ] deforms to an algebraic cycle.

In particular, for a suitable open subset U, NLk,β
λV ,U is isomorphic to an irreducible

component of U ∩ pr2(HilbP,Q), where P and Q are the Hilbert polynomials of V
and X, respectively.
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Proof By the assumption on the degree of V , one has pr2(HilbP,Q) ⊂ NLk,β
λV ,U . Then,

codimU pr2(HilbP,Q) � codimU NLk,β
λV ,U � codimTXU TXNL

k,β
λV ,U .

On the other hand, keeping in mind that T β = I β ⊂ I β
V , we have a natural map φ

from Tβ to HilbP,Q , which sends a homogeneous polynomial of degree β to its zero
locus. One has Im(φ) ⊂ pr2(HilbP,Q) and since the zero locus is invariant under the
torus action, dim T β > dim Im(φ). Hence,

codim pr2(HilbP,Q) � codim Im(φ) � codim T β = codim TXNL
k,β
λV ,U .

So pr2(HilbP,Q) and NLk,β
λV ,U have the same dimension, which implies the claim. ��

Note that the Noether-Lefschetz locus NLλV β is nonempty as V is primitive due to
Lemma 5.3.
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