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ABSTRACT

The Thesis explores the application of Matrix Product States (MPS) in the
domain of quantum many-body systems and quantum computing, show-
casing the versatility and effectiveness of MPS for addressing complex com-
putational challenges. The opening chapter introduces essential tools for
Tensor Networks, addressing the curse of dimensionality and elucidating
the main characteristics of Matrix Product States and Matrix Product Op-
erators. The discussion encompasses also important numerical techniques,
including Density Matrix Renormalization Group and Time Evolving Block
Decimation. Furthermore, the relation between MPS and quantum circuits
is discussed. The subsequent Chapters delve into specific applications of
MPS. In the second Chapter, we introduce a Tensor Network ansatz inspired
by the backflow transformation for correlated systems. This extension of
the MPS representation ensures an area law for entanglement in dimensions
one or greater. We employ an optimization scheme combining DMRG and
variational Monte Carlo algorithms for efficient ground-state search. Bench-
marking against spin models demonstrates high accuracy. The third Chapter
explores quantum annealing for optimizing complex classical spin Hamil-
tonians, as the Hopfield model and the binary perceptron. We introduce
an efficient Tensor Network representation for the adiabatic time evolution
of quantum annealing, enabling scalable classical simulations. The use of
MPS in mitigating Trotter errors and mapping to quantum circuits is also
explored. In the fourth Chapter we present a novel method for evaluating
the amount of nonstabilizerness (also known as quantum magic) contained
in an MPS. We overcome the exponentially hard evaluation of this quan-
tity by employing a simple perfect sampling technique of Pauli string. Our
innovative MPS approach enables efficient computation. Benchmarked on
magic states and the quantum Ising chain ground state, this method offers
easy access to the non-equilibrium dynamics of nonstabilizerness following
a quantum quench. The Appendices provide additional insights, including:
an introduction to variational Monte Carlo, technical details on MPS simula-
tions for the quantum annealing and a comprehensive overview on stabilizer
formalism and nonstabilizerness.
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PREFACE

Quantum mechanics is approximately one hundred years old. At the begin-
ning of the twentieth century, while the European powers were preparing for
the impending apocalyptic carnage of the first world war and a generation of
talented avant-gardists, like Stravinskij and Picasso, were revolutionizing the
arts, a series of groundbreaking works by Max Planck, Albert Einstein and
Niels Bohr remodeled physics [1]. Their pioneering efforts marked a major
departure from the classical physics and revealed for the first time a fun-
damental aspect of nature, namely that certain physical quantities, such as
energy or angular momentum, can take only a quantized set of values, at least
within the realm of atoms and elementary particles. The war could not stop
the driving force of such tremendous innovations. A new and more compre-
hensive formulation of quantum mechanics was developed in the mid 1920’s
thanks to the achievements of some young minds. Werner Heisenberg, Max
Born, Pascual Jordan were the first to come up with the idea of representing
physical observables using matrices, leading to the development of the fun-
damental matrix formalism. Concurrently, Erwin Schrödinger formulated a
wave equation describing the time evolution of any quantum mechanical par-
ticle. Max Born was the first to suggest the interpretation of the square of the
wave function amplitude as a probability density, i.e. the probability of detect-
ing a system in a specific state upon measurements [2]. Other seminal con-
tributions were made by John von Neumann, who formalized quantum me-
chanics in a rigorous mathematical framework, and Paul Dirac, who made
substantial advancements in the quantum matrix theory and wrote down the
relativistic wave equation for the electron. In this period, several enigmatic
aspects of quantum mechanics came to light, including wave-function col-
lapse and entanglement. These phenomena appeared so puzzling that even
some of the historical founders of the quantum theory started to consider it
as unphysical or incomplete [3]. Nevertheless, numerous experiments con-
ducted over the decades have consistently corroborated all the core elements
of the theory. As a result, quantum mechanics is now universally recognized
as one of the main achievement in humanity’s understanding of the natural
world [4]. In a practical perspective, it can be viewed as a very powerful tool
enabling us to make systematic predictions about the physical phenomena
with an unprecedented level of accuracy1. However, certain aspects of the
quantum mechanics have been experimentally inaccessible for long time. As
Schrödinger wrote in 1952 [5]:

[. . .] we never experiment with just one electron or atom or (small)
molecule. In thought-experiments we sometimes assume that we do;

1 As an example, calculations in the framework of the quantum theory of the electromagnetic
field yields to a prediction for the gyromagnetic ratio of the electron that has been confirmed
by experimental measurements with a precision of less that one part over 1012. To appreciate
how incredibly accurate is this result, it should be noted that is like being able to predict the
distance between the earth and the moon with an error of only a fraction of mm!
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vi preface

this invariably entails ridiculous consequences [. . .] we are not experi-
menting with single particles, any more than we can raise Ichthyosauria
in the zoo.

In general, the experimental observation and replication of any phenomenon
that relies on preserving quantum coherence proved to be almost unfeasible.
Indeed, the delicate nature of this quantum property leads to rapid dissipa-
tion when a quantum system interacts with an extensive and uncontrollable
macroscopic environment.

However, things have changed. While realizing experiments with one or
few particles was not even imaginable some decades ago, nowadays it is not
only possible but it is also a common tool to investigate the fundamental
aspects of quantum mechanics. In a nutshell, we are now able to observe
and manipulate systems consisting only of few “quanta” of matter or light 2.
A partial list of currently used quantum platforms include superconducting
qubits (quantum bits) [6, 7], arrays of Rydberg atoms [8, 9], ultra-cold atoms
in optical lattices [10], trapped ions [11], quantum dots [12] and cavity QED
setups [13]. These experiments open the doors to a renovated and more
profound exploration of the quantum world, commonly referred as second
quantum revolution [14].

In this scenario, research on quantum physics and technologies has expe-
rienced a significant growth. A prominent field of investigation is quantum
computing, namely the possible application of quantum systems to enhance
or speed up classical computations. Richard Feynman’s seminal speech at
the Conference on the Physics of Computation in 1981 can be considered as
one of the earliest conceptual advancements in this direction [15].

Now I explicitly go to the question of how we can simulate with a
computer–a universal automaton or something–the quantum-mechanical
effects. [. . .] the full description of quantum mechanics for a large sys-
tem with R particles is given by a function ψ(x1, x2, ..., xR, t) which
we call the amplitude to find the particles at x1, x2, ..., xR and therefore,
because it has too many variables, it cannot be simulated with a normal
computer with a number of elements proportional to R [. . .] Can you do
it with a new kind of computer, a quantum computer? Now it turns out,
as far as I can tell, that you can simulate this with a quantum system,
with quantum computer elements.

Feynman argued that simulating quantum mechanical systems inherently
requires an exponential computational cost. Hence, he introduced the idea
of employing quantum computers for simulating physical phenomena 3.

Nowadays, quantum computing has become a well established field of
study, built upon the theoretical principles provided by quantum informa-
tion theory. Several quantum algorithms have been developed, offering tech-
niques to enhance classical computations. One notable example is Shor’s

2 Unfortunately, we still cannot raise Ichthyosauria in the zoo...
3 A similar intuition was reached independently and apparently earlier, in 1980, by the soviet

mathematician Yuri Manin.
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Pictures from first and second quantum revolutions 1) Einstein receiving the Max
Planck medal from Planck (1929). 2) Fermi, Heisenberg, Bohr at the “Convegno di
fisica nucleare” (Rome, 1931). 3) Article headline of The New York Times regarding
the EPR paper (1935). 4) The line spectrum of hydrogen (from G.Herzberg, Annalen
der Physik, 1927). 5) A postcard from Walther Gerlach to Niels Bohr, showing first
results of the celebrated Stern–Gerlach experiment (1922). 6) Charles Townes in
front of first prototype of maser, forerunner of the laser (1953). 7) Richard Feynman
(1980s). 8) Peter Shor, father of the quantum factorization algorithm (developed in
1994). 9) Ignacio Cirac, trailblazer of quantum computing and tensor networks tech-
niques (1990s-2000s). 10) Alain Aspect, a pioneer in entangled photons experiments
(in early 1980s). 11) Rainer Blatt with an experimental apparatus utilizing an ion
trap (2000s). 12) The IBM superconducting quantum processor (2022).
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factorization algorithm [16], which provides exponential speed up over the
classical counterpart. Despite these successes, currently available quantum
platforms suffer from strong noise issues, leading to short coherence times.
As a result, achieving universal fault-tolerant quantum computation is im-
possible in the near future. We currently live in the era known as Noisy
Intermediate-Scale Quantum (NISQ) [17], characterized by devices featuring
a moderate quantity of qubits, usually ranging from tens to a few hundred.
NISQ machines and methods are promising for tasks such as simulating
quantum systems, optimization and machine learning. An example is given
by Quantum Annealing (QA), an optimization method designed to find the
minimum of a complex Hamiltonian by leveraging quantum fluctuations
and tunneling effects generated by a time-dependent external field, similar
to how simulated annealing uses thermal fluctuations. However, it remains
uncertain whether methods like this will lead to a measurable quantum ad-
vantage.

In parallel with the outlined development of quantum information and
computing, last decades have seen a substantial increase of our comprehen-
sion in quantum many-body physics. A crucial focus has revolved around
understanding and examining the entanglement properties of quantum sys-
tems, both in equilibrium and out-of-equilibrium. In particular, entangle-
ment has been used as a general and powerful tool for identifying and char-
acterizing different phases, or phase transitions. This led to the development
of new theoretical frameworks, such as the Cardy-Calabrese formula which
relates the entanglement entropy of a one-dimensional critical quantum sys-
tem to its conformal field theory description [18]. Besides, a series of works
inspired by the physics of black holes and the holographic principle intro-
duced the notion of area law for entanglement entropy [19–21]. In particular,
it was shown that in 1D quantum systems, the ground-state entanglement
entropy between a block of l spins and its complement is bounded by a
constant in noncritical (gapped) regime [21], whereas it grows as log l in
correspondence of a critical point. What makes the area law intriguing?
One of the primary reasons of interest comes from a very practical situation:
the numerical simulation of quantum many-body systems. Indeed, when a
many-body state has limited entanglement, i.e. small quantum correlations
between its constituents, the possibility of finding a suitable representation
in terms of a reduced number of parameters becomes plausible. In this
way one could circumvent the “curse of dimensionality” or “exponential
wall” [22] that restricts exact treatments of quantum many-body systems
to small system sizes. This observation is at the foundation of Tensor Net-
works methods. The origins of these techniques can be traced back to the
early works of White in the 1990s, who introduced the density matrix renor-
malization group (DMRG) method [23, 24]. DMRG was initially designed
as a numerical algorithm to determine the ground state of one-dimensional
quantum spin chains by following a sort of renormalization flow of the den-
sity matrix of a block of spins. Over time, the concept behind DMRG was
expanded and generalized, leading to the development of the Matrix Product
States (MPS) [25–27], a powerful ansatz for 1D quantum systems. The value
of the MPS many-body wave function for a particular system configuration
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is obtained as a product of matrices (vectors at the boundaries) that depend
only on a local degree of freedom, such for example a single spin. MPS today
allow for the accurate simulation of strongly correlated quantum systems in
1D, both at thermal equilibrium and out-of-equilibrium, thanks to a variety
of numerical methods and algorithms developed ad hoc. This has ensured
undisputed success for MPS in various fields, such as quantum many-body
physics, quantum computing, condensed matter physics and quantum chem-
istry [28]. The study of out-of-equilibrium dynamics is often carried out in
numerical experiments of “quantum quench”, by preparing the system in
a certain state |ψ0⟩ and letting it evolve from t = 0 with the unitary dy-
namics generated by a specific Hamiltonian Ĥ. In other words, it involves
calculating the time-evolved state |ψ(t)⟩ = e−iĤt |ψ0⟩. The simplest MPS
method developed for this type of setup is Time Evolving Block Decima-
tion, a straightforward algorithm in which the unitary dynamics is reduced
to finite and discrete time steps, and the MPS matrices are updated using
local unitary matrices. The intrinsic increase in the complexity of the time-
evolved state, witnessed by the growth of its entanglement entropy, leads to
an increase in the size of MPS matrices, which is usually exponential in time
t. MPS thus encounter a sort of entanglement barrier, which, in this context,
represents a manifestation of the exponential wall of quantum many-body
systems. If a complete description of the many-body (micro)state at long
times t is likely impossible to obtain, however, at least in principle, it should
be possible to obtain a sort of effective MPS description (macrostate) where
the values of some physically relevant local observables (for example, one
or two-point correlation functions) are accurately reproduced even if one
discard a certain irrelevant part of the information contained in |ψ(t)⟩ [29].
Another constraint of MPS methods arises from the system’s dimensional-
ity, since the area law in dimensions greater than 1 still entails the need to
encode entanglement entropy quantities that scale extensively with the lin-
ear dimensions of the system, requiring exponentially large MPS matrices.
Despite these limitations, MPS remains one of our most robust and pow-
erful computational tools in the NISQ era. They are likely going to help
us, among other things, in understanding many-body quantum dynamics,
analysing quantum circuits and protocols, exploring intrinsic resources of
the quantum states.

This work presents some results proposed during the years of my doctoral
studies that contribute to various aspects of the MPS numerical simulation
techniques. As we will discuss, these advancements concern both aspects of
quantum computing and aspects of quantum many-body systems.
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SUMMARY

In Chapter 1, we provide an extensive Introduction to Matrix Product States
and related numerical techniques.

In Chapter 2, we explore how Matrix Product States can be applied to
simulate 2D quantum systems, utilizing a generalized ansatz referred to as
Matrix Product Backflow States.

In Chapter 3, we discuss the application of Matrix Product States to the
simulation of the Quantum Annealing process for a classical optimization
problem of particular importance: the binary perceptron. To this end, we
develop an ad hoc MPS method. We also draw general conclusions about
the potential relevance and utility of MPS projection on states with bounded
entanglement entropy in order to effectively address optimization problems.

In Chapter 4, we introduce a new method to measure the nonstabilizer-
ness, also dubbed quantum magic, of a Matrix Product State. The method is
based on a new sampling Algorithm in the Pauli basis.

In Appendix A, we present a concise overview of Variational Monte-Carlo
techniques, which have been employed for optimizing the Matrix Product
Backflow States discussed in Chapter 2. In Appendix B, we provide supple-
mentary related to the study of Quantum Annealing with MPS in Chapter
3. Finally, Appendix C features an extensive introduction to the stabilizer
formalism, while also elaborating on the concept of nonstabilizerness. Ad-
ditionally, we present original results that shed light on the relationship be-
tween nonstabilizerness and entanglement.
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1 INTRODUCT ION

As soon as the systems begin to
influence each other, the
combined function ceases to be a
product [...] Thus one disposes
provisionally (until the
entanglement is resolved by an
actual observation) of only a
common description of the two
in that space of higher
dimension.

E.Schrödinger,“The Present
Situation in Quantum

Mechanics” (1935)

In this introductory Chapter, we review some of the main aspects con-
cerning Matrix Product States (MPS) and Matrix Product Operators (MPO),
two tools that we will use extensively throughout the rest of the work. We
will discuss their principles and practical applications as powerful numerical
techniques studies to address the many-body quantum problem.

1.1 the curse of dimensionality

We consider a quantum many-body system consisting of N qubits or spin-
1/2 1. Each qubit, or particle, is described by a local Hilbert space Hi ∼ C2,
which is spanned by a certain orthonormal basis {|0⟩ , |1⟩}2. The total Hilbert
space is obtained as the tensor product of the local Hilbert spaces

H =

N⊗
i=1

Hi . (1.1.1)

A generic quantum state |ψ⟩ ∈ H can be decomposed as

|ψ⟩ = cs1...sN |s1... sN⟩ , (1.1.2)

where we adopted Einstein’s convention on the repeated indices si ∈ {0, 1}.
This representation offers a full description of the wave function |ψ⟩. How-
ever, it requires to store all the components cs1...sN , that means 2N complex
numbers. Thus, the storage of a double-precision wave function requires
approximately 17GB of memory for a system of size N = 30, whereas one

1 Sometimes, we will use the symbol d to denote the local Hilbert space dimension (d = 2 for
the standard case of qubits).

2 A common choice is to identify the basis states |0⟩ and |1⟩ with the two eigenstates of the
Pauli matrix σ̂z up |↑⟩ and down |↓⟩ respectively.

1



2 introduction

needs ≈ 18PB = 18 · 106GB for N = 50! Similarly, processing |ψ⟩, for in-
stance to compute a matrix element, requires an exponentially large number
of operations. As a matter of fact, simulating quantum systems of size larger
than N ≈ 30 with exact numerical techniques is impossible 3. This curse of
dimensionality, or exponential wall [22], reflects the vastness of the many-
body Hilbert space. Notice however that, if we had a product state, i.e. a
state for which the components can be factorized as

cs1...sN = c[1](s1)... c[N](sN) , (1.1.3)

the storage would not be challenging, since it would require to memorize
only 2 complex numbers per site, i.e. 2N complex numbers in total. Hence,
the computational problem of storing and manipulating quantum many-
body states is somehow related to the intrinsic quantum correlations be-
tween the constituents (particles or spins), i.e. to the entanglement. For typi-
cal quantum many-body states, nearly all the information is encoded in the
correlations among the constituents [30]. We aim to describe strongly cor-
related states in which the simple mean-field approximation of Eq. 1.1.3 is
inadequate. This point will be discussed carefully in next Sections. In any
case, it is clear that, to investigate larger systems and aim to approach the
thermodynamic limit N → ∞, it is necessary an alternative representation
of the wave function |ψ⟩ that allows for less data-intensive approximations.

Tensor Networks (TN) provide a possible solution. The goal is to represent
the tensor cs1...,sN , which contains the coefficients of the many-body wave
function, as a generic network of tensors, where each tensor corresponds to
a local degree of freedom (such as the spin si). The entanglement between
neighboring particles is captured by connecting the tensors, i.e. contracting
them along auxiliary (unphysical) indices. This structure often impose a cut-
off on the amount of entanglement between different regions of the system.

As an introductory example, let us consider a system of only N = 2 spins
in the state |ψ⟩ =

(
|00⟩+ |11⟩

)
/
√
2. Clearly, the 4 coefficients cs1s2 of the

wave function cannot be expressed in the factorized form of Eq. 1.1.3, since
|ψ⟩ is not a product state (i.e. it is entangled). However, it should be noted
that if we define the following two basis vectors

eee(0) =

(
1

0

)
eee(1) =

(
0

1

)
(1.1.4)

we will have
cs1s2 =

1√
2

(
eee[1](s1)

)T · eee[2](s2) . (1.1.5)

It is therefore possible to rewrite c in a kind of generalization of Eq. 1.1.3 in
which the c(si) are replaced by eee(si) (i = 1, 2). In other words, we have ex-
plicitly factorized the wave function |ψ⟩ using an additional local dimension
that has transitioned from 1, in the case of scalar c(si), to 2 for the vectors
eee(si). Eq. 1.1.5 is a simple example of a TN state. The local tensors eee(s1),
eee(s2) are contracted by means of the scalar product to obtain the actual wave
function value.

3 Except for the cases in which some symmetries can be exploited to reduce the dimension of
the Hilbert space.
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In the following Sections we will review the basics of the most used class
of TN, namely the Matrix Product States. Before of that, we introduce some
important tools commonly used in such a framework: the Singular Value De-
composition, the Schmidt decomposition and the graphical representation of
tensors.

1.2 tensor networks tools

1.2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition is a crucial result in linear algebra stating that
it is possible to transform any matrix into a diagonal form by employing the
appropriate basis in the domain and in the image spaces [31]. To be more
precise, let M be a complex matrix of dimension m× n. Then M can be
always decomposed as [31, 32]

M = UΛV , (1.2.1)

where

• U is a matrix of dimension m×min(m,n) with orthonormal columns,
U†U = 1;

• Λ is a diagonal matrix of dimension min(m,n)×min(m,n) with real
positive entries that can be ordered as follows Λ1 ⩾ Λ2 ⩾ ... ⩾ Λr > 0;

• V is a matrix of dimension min(m,n) × n with orthonormal rows,
VV† = 1.

The real numbers Λ1 ⩾ Λ2 ⩾ ... ⩾ Λr are called singular values of M. In
this context, the rank r of M is defined as the number of non-zero singular
values. The SVD decomposition is unique up to multiplication by complex
phases of the columns of U (rows of V) or permutations of singular vectors
having the same singular values [33]. The computational complexity of the
numerical algorithms for SVD is o(mn2), if m ⩾ n.

The Eckart-Young-Mirsky theorem states that, fixed a matrix M ∈ Cm×n,
for any unitarily invariant matrix norm || · ||, the minimum of ||M −M ′||

between all the matrices M ′ ∈ Cm×n of rank r ′ is obtained by choosing

M ′ = UΛ ′V Λ ′ = diag
(
Λ1,Λ2, ...,Λr ′ , 0, ...0

)
, (1.2.2)

i.e. by truncating the list of singular values to the first r ′ elements [34, 35].
An unitarily invariant norm is a matrix norm || · || such that ||M|| = ||U†MV ||

for all the unitary matrices U,V . An example is the Frobenius norm ||M|| =√
Tr(MM†), which can be rewritten as ||M|| =

√
Tr(Λ2) (i.e. the Frobenius

norm square is equal to the sum of the squares of the singular values). This
result is highly relevant and widely used in various fields to achieve dimen-
sionality reduction, data approximation, etc. In Fig. 1.1, we show a possible
application of the SVD truncation (Eq. 1.2.2) to image compression.
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Figure 1.1: SVD can be used to compress images. Red, green, blue channels of the
original picture are converted to matrices and SVD is applied discard-
ing singular eigenvalues smaller than a given threshold (plots below).
Afterwards, the image is reconstructed (figure above).

Finally, let us mention that there exists a closely related matrix factoriza-
tion named QR decomposition. It states that we can factor any complex m×
n matrix M as M = QR, where Q is a matrix of dimension m×min(m,n)
with orthonormal columns, Q†Q = 1, and R is upper-triangular.

1.2.2 Schmidt decomposition and Entanglement

One fundamental application of SVD in quantum mechanics is the Schmidt
decomposition [36]. Let us consider a state |ψ⟩ ∈ HA ⊗HB, where A,B are
two subsystems forming a bipartition and HA,HB are the corresponding
Hilbert spaces. The state can be decomposed as

|ψ⟩ = cij |ai⟩ |bj⟩ , (1.2.3)

where |ai⟩ ∈ {|a1⟩ , |a2⟩ , ..., |am⟩},m = dim(HA) and |bj⟩ ∈ {|b1⟩ , |b2⟩ , ..., |bn⟩},
n = dim(HB). c is a complex matrix of dimension m× n, therefore we can
use SVD to get c = UΛV . We obtain

|ψ⟩ = UikΛkVkj |ai⟩ |bj⟩ = Λk |a ′
k⟩ |b ′

k⟩ , (1.2.4)

with k = 1, 2... min(m,n) and

|a ′
k⟩ = Uik |ai⟩ |b ′

k⟩ = Vkj |bj⟩ . (1.2.5)

These new states are orthonormal, in fact

⟨a ′
l|a

′
k⟩ = UikU∗

jl ⟨aj|ai⟩ = (U†U)lk = δlk

⟨b ′
l|b

′
k⟩ = V∗

liVkj ⟨bi|bj⟩ = (VV†)kl = δlk .
(1.2.6)

Eq. 1.2.4 is known as Schmidt decomposition. The normalization of the state
|ψ⟩ implies that

⟨ψ|ψ⟩ = Tr
[
c†c
]
= ||c||2 =

r∑
k=1

Λ2k = 1 , (1.2.7)
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where r ⩽ min(m,n) is the rank of c. Because of Eckart-Young-Mirsky
theorem, the state

|ψ ′⟩ = UikΛ ′
kVkj |ai⟩ |bj⟩ Λ ′ = diag

(
Λ1,Λ2, ...,Λr ′ , 0, ...0

)
r ′ ⩽ r

(1.2.8)
is the best approximation of |ψ⟩ between all the rank r ′ states4. The overlap
between the truncated state and the original state is

⟨ψ|ψ ′⟩ = (UikΛkVkj)
∗UilΛ

′
lVlj = (U†U)kl(VV

†)lkΛkΛ
′
l =

=

r ′∑
l=1

(Λ ′
l)
2 = 1−

r∑
k=r ′+1

(Λk)
2

(1.2.9)

and thus is determined by the sum square of all the discarded Schmidt
eigenvalues. Furthermore, if we consider an operator ÔA acting only on
HA, we have

⟨ψ|ÔA|ψ⟩ =
r∑
k=1

Λ2k ⟨a ′
k|ÔA|a

′
k⟩ ⟨ψ ′|ÔA|ψ

′⟩ =
r ′∑
k=1

Λ2k ⟨a ′
k|ÔA|a

′
k⟩

and
δ = | ⟨ψ|ÔA|ψ⟩− ⟨ψ ′|ÔA|ψ

′⟩ | =

=

r∑
k=r ′+1

Λ2k ⟨a ′
k|ÔA|a

′
k⟩ ⩽ c

r∑
k=r ′+1

Λ2k
(1.2.10)

where c is a constant representing an upper bound for the expectation value
of the (bounded) operator ÔA. Hence, the error δ in the expectation value is
on the order of the truncated weights. When these weights are sufficiently
small, we obtain a truncated state |ψ ′⟩, which is a satisfactory approximation
of |ψ⟩ even with regard to the expectation values of physical observables. 5

The Schmidt decomposition of a pure state |ψ⟩ holds significance as it also
provides immediate insight into the entanglement properties of the state. One
crucial way to evaluate entanglement is the von Neumann entanglement en-
tropy, which is defined as S = −Tr[ρ̂A log ρ̂A], where ρ̂A is the reduced
density matrix of the subsystem A [36]. Such quantity is known to be an en-
tanglement monotone, meaning that is not increasing under a large class of
quantum transformation, namely the Local Operations and Classical Com-
munication (LOCC) [36]. Given a Schimdt decomposition, one can easily
obtain ρ̂A as

ρ̂A = TrB[|ψ⟩ ⟨ψ|] = Λ2k |a ′
k⟩ ⟨ak| ,

and therefore the von Neumann entropy is the Shannon entropy associated
to the squared Schmidt eigenvalues, i.e.

S = −Tr[ρ̂A log ρ̂A] = −Λ2k log
(
Λ2k
)

. (1.2.11)

In general, the whole spectrum of the Λ2k, often called entanglement spectrum
can be used to characterize the entanglement properties of the state.

4 After the truncation, |ψ ′⟩ should be normalized to 1 again.
5 However, it is important to note that linear functions in |ψ⟩ (|ψ ′⟩) can potentially be af-

fected by these approximations. Specifically, the error on ⟨ϕ|ψ⟩ is: δ = | ⟨ϕ|ψ⟩− ⟨ϕ|ψ ′⟩ | ⩽
c
∑r
k=r′+1 |Λk|, where c represents an upper bound on ⟨ϕ|ak⟩ |bk⟩. However, the 1-norm∑r
k=r′+1 |Λk| is not bounded by the 2-norm

∑r
k=r′+1Λ

2
k, and thus δ can in principle be

significant.
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1.2.3 Tensor Network graphical representation

In the context of Tensor Network theory is particularly useful to use a graph-
ical notation [4, 37–39]. A generic tensor Ti1i2...ik with k indices is repre-
sented as a shape with k outgoing lines (legs), each representing an index
(see Fig. 1.2a)). The identity matrix 1ij = δij is depicted by a single contin-
ues line. The contraction of two tensors T,T ′ is obtained by connecting the
legs representing the indices that are summed over (Fig. 1.2a)).

Figure 1.2: a) Graphical representations of a generic tensor Ti1i2...ik , of the iden-
tity matrix and of the contraction (product) of two matrices T,T ′. b)
The SVD decomposition of a generic complex matrix M. Different line
thickness represent different dimensions of the matrices.

In such a framework, the SVD decomposition can be represented as in
Fig. 1.2b). Notice that the triangular shape of U,V specify the direction of
contraction giving rise to the identity when contracting with U†,V†.

1.3 matrix product state (mps) decomposition

In this Section, we show that any many-body state |ψ⟩ can be expressed in
a specific form known as a Matrix Product State. The procedure is based on
a series of SVDs. Let us consider the wave function tensor cs1...sN (Eq. 1.1.2)
and apply the following steps [27].

• We reshape c as a matrix ψ[1] of dimension 2 × 2N−1, by grouping
together the last N− 1 indices:

ψ
[1]
s1,(s2...sN) = cs1...sN . (1.3.1)

Next, we apply the SVD obtaining

ψ
[1]
s1,(s2...sN) = U

[1]
s1a1Λ

[1]
a1V

[1]
a1,(s2...sN) = A

[1](s1)a1 ψ
[2]
(a1s2),(s3...sN) .

(1.3.2)
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For the second equality, we introduced the row vectors A[1](s1), that
are labelled by the index s1 and have entries A[1]

a1 (s1) = U
[1]
s1a1 . We also

reshaped Λ[1]
a1V

[1]
a1,(s2...sN) into a new matrix ψ[2]

(a1s2),(s3...sN) of dimen-
sion 2r1× 2N−2, where r1 is the rank resulting from the first decompo-
sition.

• We apply again SVD to the new matrix ψ[2], getting

ψ
[2]
(a1s2),(s3...sN) = U

[2]
(a1s2),a2

Λ
[2]
a2V

[2]
a2,(s3...sN) = A

[2]
a1a2(s2)ψ

[3]
(a2s3),(s4...sN) .

(1.3.3)
The size of the new matrix ψ[3] is 2r2 × 2N−3.

• We iterate the first two steps over the next sites i = 3, ...,N. At the final
step we get

cs1...sN = A
[1]
a1 (s1)A

[2]
a1a2(s2)...A

[N]
aN−1

(sN) . (1.3.4)

The steps are represented with the graphical notation in Fig. 1.3 a), whereas
in b) we show the final result.

Figure 1.3: (a) The outlined decomposition algorithm b) The final Matrix Product
State. Dotted grey lines represent auxiliary unphysical indices, which
are fully contracted.

The shape of matrices A[1]...A[N] is

1× r1, r1 × r2, r2 × r3, ..., rN × 1 , (1.3.5)

and therefore we can write the tensor c as a product of spin dependent
matrices (vectors at the boundaries)

cs1...sN = A[1](s1)A
[2](s2)...A[N](sN) . (1.3.6)

Frequently, the indices [1], [2]... [N] are omitted, yet it is important to be aware
that the local tensors A depends on the site. By construction, the ranks rj
obey to the following inequalities

r1 ⩽ 2, r2 ⩽ 2r1 ⩽ 2
2, ...,

rN/2 ⩽ 2
N/2, rN/2+1 ⩽ 2

N/2−1, ... rN ⩽ 2 .
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The number of entries of the matrices A grows exponentially with N, since
no information has been discarded in the construction. However, as we
will discuss, in certain cases we can bound the dimension of the matrices
A without significantly compromising the accuracy of the many-body state
description.

Let us observe that, because of the unitarity of the matrices U, we have the
following relationship

δaja ′
j
= (U†)aj,(aj−1,sj)U(aj−1,sj),a ′

j
=

= A†
ajaj−1

(sj)Aaj−1a ′
j
(sj) =

(
A†(sj)A(sj)

)
aja

′
j

.
(1.3.7)

Therefore, each set of matrices A obeys to the condition

A†(sj)A(sj) = 1 . (1.3.8)

Given our result (Eq. 1.3.6), we can attempt to reconstruct a Schmidt decom-
position. We will divide the system into two parts: A, spanning from site
1 to site j, and B, spanning from site j+ 1 to site N. It is quite natural to
introduce the following states

|aaj⟩ =
∑
s1,...,sj

(
A(s1)...A(sj)

)
1aj

|s1...sj⟩

|baj⟩ =
∑

sj+1,...,sN

(
A(sj+1)...A(sN)

)
aj1

|sj+1...sN⟩
(1.3.9)

These states are labelled by the index aj (ranging from 1 to rj) and repre-
sent a set of auxiliary states of the Hilbert space of the first (last) j (N− j)
spins. We can write our original state |ψ⟩ as |ψ⟩ = ∑

aj
|aaj⟩ |baj⟩. This de-

composition looks very similar to the Schmidt’s one. By using the property
of Eq. 1.3.8, we can easily prove that the states |aaj⟩ are orthonormalized.
Indeed:

⟨aa ′
j
|aaj⟩ =

∑
s1,...,sj

(
A(s1)...A(sj)

)∗
1a ′

j

(
A(s1)...A(sj)

)
1aj

=

=
∑
s1,...,sj

((
A(s1)...A(sj)

)†)
a ′
j1

(
A(s1)...A(sj)

)
1aj

=

=
∑
s1,...,sj

(
A†(sj)...A†(s1)A(s1)...A(sj)

)
a ′
jaj

= δa ′
jaj

,

(1.3.10)

where in the last line we used Eq. 1.3.8 for sites 1, 2...j. However, the same
calculation cannot be repeated for the states |baj⟩. For this reason the ma-
trices A are called left-normalized, and the result of our decomposition is a
left-normalized Matrix Product States (MPS) [27].

Obviously, we can repeat the same steps starting from the last site of the
chain. In this case, we would obtain a similar decomposition [27]

cs1...sN = B[1](s1)B
[2](s2)...B[N](sN) , (1.3.11)
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in which each set of matrices B obey to the condition

B(sj)B
†(sj) = 1 . (1.3.12)

This is a right-normalized MPS. In Fig. 1.4, we represent the left and right
normalization conditions for MPS tensors A and B respectively.

Independently of the normalization of the local tensors, we can define an
MPS as a many-body quantum state |ψ[A]⟩ that can be expressed as

ψ[A](sss) = ⟨sss|ψ[A]⟩ = A[1](s1)A
[2](s2)...A[N](sN) , (1.3.13)

where 
A[1] is a tensor of shape (χ0,d,χ1) , χ0 = 1

A[2] is a tensor of shape (χ1,d,χ2)

...

A[N] is a tensor of shape (χN−1,d,χN) , χN = 1

(1.3.14)

and d is the dimension of local Hilbert space (d = 2 for qubits or spin-1/2).
The integers χ0,χ1... ,χN−1,χN are named bond dimensions. More in gen-
eral, one can also consider MPS with Periodic Boundary Conditions (PBC),
defined as

ψ[A](sss) = ⟨sss|ψ[A]⟩ = Tr
[
A[1](s1)A

[2](s2)...A[N](sN)
]

. (1.3.15)

Here, the boundary tensors A[1],A[N] are allowed to be matrices in the aux-
iliary space.

Figure 1.4: Left-normalization and right-normalization conditions of the MPS ten-
sors. Conjugated tensors are represented as dotted lighter shapes.

1.4 basic properties of the mps

1.4.1 Entanglement

To examine one of the main properties of MPS, let us consider a left-normalized
MPS and perform a series of SVD of the tensors A, starting from the site N
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towards the site 1. At each site i we obtain Aai−1ai(si) = Uai−1kΛkBkai(si)
and we incorporate the matrices U,Λ into the next site i − 1. Notice that
in this way one can eventually pass from the initial left-normalized MPS to
a right-normalized MPS (when i = 1) [27]. At a generic intermediate step,
we obtain an object as the one depicted in Fig. 1.5, i.e. an MPS in a mixed
form with a certain bond dimension χ. Importantly, the wave function’s left
and right sides are orthogonalized, ensuring a valid Schmidt decomposition
and enabling access to the Schmidt spectrum Λk (k = 1, 2...χ). As already
discussed, this is strictly related to the entanglement properties of the state.
For instance, one can easily evaluate the von Neumann entanglement en-
tropy S as in Eq. 1.2.11. The entanglement entropy is maximized when all
the eigenvalues takes the same value,i.e. Λ2k = 1/χ so that

S ⩽ −χ · 1
χ

log
(
1

χ

)
= logχ .

Thus, the MPS bond dimension χ gives a bound on the maximum entangle-
ment content of the state: a state exhibiting an entanglement entropy value
S for a given bipartition can be expressed as an MPS only using tensors
with auxiliary dimension χ ∼ exp(S). This observation confirm our initial
suspects: a profound link exists between entanglement and the intricacy in-
volved in encoding and storing the information of a quantum state. MPS
allow to write weakly entangled wave functions in a compressed form.

An example is provided by states that satisfy the area law of entanglement,
namely those for which the entanglement entropy between a subsystem A
and its complement B scales as S ∝ ∂A. Random quantum states typically
do not exhibit this behavior and conversely satisfy a volume law, i.e. S ∝ |A|.
Nevertheless, the ground states of one-dimensional gapped Hamiltonians
for spin systems with local interactions are known to satisfy the area law [21].
In this case, since the boundary that separates two subsystems within a one-
dimensional chain does not scale with the subsystem, the entanglement en-
tropy remains bounded by a constant. Importantly, this allows to represent
the state in an MPS form with a finite and reasonably small bond dimension
χ, even in the thermodynamic limit. At a critical point however the energy
gap typically vanishes and the entanglement entropy of a subsystem of size
n acquires a logarithmic correction taking the form [18]

S(n) =
c

6
log
(
2N

π
sin
(πn
N

))
+O(1) (1.4.1)

where c is a constant (dubbed central charge) that characterizes the under-
lying Conformal Field Theory. This equation translates into a logarithmic
scaling of the half-chain entanglement entropy

S
(
n =

N

2

)
=
c

6
logN+O(1) . (1.4.2)



1.4 basic properties of the mps 11

Figure 1.5: Converting a left-normalized MPS into a right-normalized MPS. At in-
termediate steps, a Schmidt decomposition of the state is obtained and
entanglement spectrum is accessible.

1.4.2 Gauge freedom

The MPS representation is not unique. This can be easily verified by in-
serting an identity X[i]

(
X[i]
)−1

= 1 in each auxiliary bond, i.e. replacing in
Eq. 1.3.13 the original tensors A[i] with

Ã[i] =
(
X[i−1]

)−1
A[i]X[i] (1.4.3)

(X[0] = X[N] = 1). The state is unchanged, namely

ψ[A](sss) = ψ[Ã](sss) , (1.4.4)

however our parameterization has been modified. In other words, the map
A → |ψ[A]⟩ is not one-to-one. Thus, there is a gauge freedom in representing
a quantum state with an MPS [27, 38, 40, 41]. This arbitrariness can be
used proficiently to obtain computational advantages. For instance, we can
remove part of the gauge freedom by imposing constraints, such as the left
or right orthonormality conditions of the tensors.

1.4.3 Transfer matrix and correlation functions

Let us suppose to have an MPS |ψ[A]⟩ and an operator Ô which acts locally
on the Hilbert space, i.e. Ô = Ô[1] ⊗ ...⊗ Ô[N]. The expectation value of Ô
over |ψ[A]⟩ is

⟨ψ[A]|Ô[1]...Ô[N]|ψ[A]⟩ =A∗
a1
(s ′1)...A

∗
aN−1

(s ′N)
(
O[1]

)
s ′1s1

...

...
(
O[N]

)
s ′NsN

Aa1(s1)...AaN−1
(sN)

(1.4.5)

These tensor contractions can be represented graphically as in Fig. 1.6a).
Often in this context it is useful to define the following tensor(

E
[i]
O

)
(a ′
i−1ai−1),(a ′

iai)
= A∗

a ′
i−1a

′
i
(s ′i)

(
O[i]

)
s ′isi

Aai−1ai(si) (1.4.6)

which is usually dubbed transfer matrix (see Fig. 1.6b)). The transfer matrix
acts as a super-operator in the auxiliary space, since it can map a matrix
Ma ′

i−1ai−1
to a new matrix M ′

a ′
iai

. In terms of the transfer matrix the expec-
tation value of Eq. 1.4.5 becomes

⟨ψ[A]|Ô[1]...Ô[N]|ψ[A]⟩ =
(
E
[1]
O

)
(a ′
1a1)

(
E
[2]
O

)
(a ′
1a1),(a ′

2a2)
...
(
E
[N]
O

)
(a ′
N−1aN−1)

=

= Tr
[
E
[1]
O ...E[N]

O

]
.
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From a practical point of view, one can start by contracting the network
starting from the left and creating an “environment matrix” La ′

iai
, which

is updated site by site applying the transfer matrix E[i]O . If the update of L
is performed contracting the tensors as in Fig. 1.6c), the computation cost
is O(χ3), regardless of the system size N. After N updates, one reach the
right boundary, obtaining the desired expectation value. In some cases the
evaluation can become even simpler by using the MPS gauge freedom. For
instance, the evaluation of a the expectation value of an operator O[i] acting
only on the site i becomes trivial if one has the MPS in a mixed canonical
form centered on the site i (see Fig. 1.6d)).

Let us now consider the calculation of a correlator ⟨ψ|Ô[i]Ô[j]|ψ⟩ [27]. We
can define the transfer matrices EO as in Eq. 1.4.6, and

E(a ′
i−1ai−1),(a ′

iai)
= A∗

a ′
i−1a

′
i
(si)Aai−1ai(si) . (1.4.7)

Notice that E is obtained as a particular case of EO, by replacing
(
O[i]

)
s ′isi

with the identity δs ′isi . From its definition, it is straightforward to see that
E is a completely positive map and the MPS matrices A play the role of the
Kraus operators for quantum channels [36]. If the tensors A are left normal-
ized, then the identity δa ′

i−1ai−1
is a left eigenvector of E, with eigenvalues

1. Furthermore, one can prove that in this case 1 has to be the largest eigen-
value in modulus. In general, the transfer matrix E can be written in the
basis of its left and right eigenvectors as

E =

χ2∑
k=1

λk |lk⟩ ⟨rk| , (1.4.8)

where the states |lk⟩ , ⟨rk| belong to the (doubled) auxiliary space. We can
set |l1⟩ as the leading left eigenvector, with eigenvalue 1. We have

⟨ψ|Ô[i]Ô[j]|ψ⟩ = E[1]...E[i−1]E[i]O E[i+1]...E[j−1]E
[j]
OE

[j+1]...E[N] =

= Tr
[
E[1]...E[i−1]E[i]O E

[i+1]...E[j−1]E[j]OE
[j+1]...E[N]

]
=

= Tr
[
E
[i]
O E

[i+1]...E[j−1]E[j]OE
[j+1]...E[N]E[1]...E[i−1]

]
By supposing to have a translationally invariant system in the thermody-
namic limit N → ∞, we can assume that the A (and E) matrices are essen-
tially site independents. Thus, we get

⟨ψ|Ô[i]Ô[j]|ψ⟩ = Tr
[
E
[i]
O (E)j−1−1E

[j]
O (E)N−j+i−1

]
=

=
∑
k,l

⟨ll|E[i]O |rk⟩ λj−1−1k ⟨lk|E[j]O |rl⟩ λN−j+i−1
l

where we used the decomposition in Eq. 1.4.8. Since 1 is the dominant
eigenvalue, we get

⟨ψ|Ô[i]Ô[j]|ψ⟩ −−−−→
N→∞

∑
k

⟨l1|E[i]O |rk⟩ λj−1−1k ⟨lk|E[j]O |r1⟩ = c0 +
∑
k>1

cke
−

|j−i−1|
ξk .
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Therefore, the generic form of a two-point correlator over an MPS is given
by the superposition (sum) of decaying exponentials. Since correlators over
typical states in gapped systems exhibit exponential decay over distance,
MPS are exceptionally effective in characterizing such states. Furthermore,
it turns out that a sum of exponential can provide a reasonably accurate
approximation even for power-law decay, at least at short distances. This
fact enables the use of MPS to describe critical systems with a good degree
of accuracy.

Figure 1.6: a) Evaluation of an expectation value of a tensored operator Ô =

Ô[1]...Ô[N]. over an MPS |ψ[A]⟩. b) The transfer matrix EO. c) Op-
timal contraction scheme. The environment matrix L of size χ × χ is
updated by applying the transfer matrix and indices are contracted in
the displayed order. d) Evaluation of a local expectation value over a
mixed canonical MPS.

1.4.4 MPS compression

Compressing Matrix Product States from a high bond dimension D to a
lower one χ is essential because it significantly reduces computational costs,
making complex quantum simulations more practical and efficient. MPS
compression can be achieved by the iterative algorithm reported in Ref. [27,
42]. This is designed to minimize site-by-site the Hilbert space distance
between the two states with respect to the compressed local tensor Ã[i]

ai−1,ai ,
i.e.

∂

∂(Ã
[i]
ai−1,ai)

∗

(
|| |ψ̃⟩− |ψ⟩ ||2

)
= 0 , (1.4.9)
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where |ψ⟩, |ψ̃⟩ are respectively the uncompressed and the compressed MPS.
Eq. 1.4.9 can be rewritten as

∂

∂Ãai−1ai(si)
∗

(
|| |ψ̃⟩− |ψ⟩ ||2

)
=

(
∂

∂Ãai−1ai(si)
∗ ⟨ψ̃|

)
ψ̃⟩+

−

(
∂

∂Ãai−1ai(si)
∗ ⟨ψ̃|

)
ψ⟩ = 0 .

(1.4.10)

which is linear in Ãai−1ai(si) and can be represented graphically as in Fig. 1.7a).
Interestingly, if one has the MPS in a mixed canonical form centered in i, the
equation can be simplified becoming

Ãai−1ai(si) = Lai−1αi−1 Aαi−1αi(si)Rαiai , (1.4.11)

where L and R are left and a right environment tensors of shape χ×D and
D× χ (see last line of Fig. 1.7a)). The key aspect here is that, after obtaining
a solution for Ãai−1ai(si), SVD is employed to maintain the normalization
structure. For instance, one can left normalize Ã[i] and incorporate the re-
maining SVD matrices into the next site Ã[i+1] (Fig. 1.7b)). In this way, we
obtain a mixed canonical form with respect to i+ 1. The left environment
tensor L can be updated as in Fig. 1.7c), whereas the right environment ten-
sors R must be computed and stored (starting from site N towards 1) before
the procedure begins. At the beginning the compressed MPS is initialized in
a right-canonical form. In practice, one iteratively performs a series of local
minimizations, by sweeping along all the system sites a certain number of
times Nsweeps. The computational cost of the MPS contractions involved in
this procedure is O(NsweepsND

2χ) [27].

1.5 matrix product operators (mpo)

An operator Ô acting on the Hilbert space H can always be decomposed as

Ô = c(s1,s ′1)...(sN,s ′N) |s1...sN⟩ ⟨s ′1...s ′N| . (1.5.1)

The similarity with Eq. 1.1.2 implies that we can decompose the tensor c in
a way analogous to how we decomposed the state |ψ⟩, whit the dual index
(si, s ′i) taking the role previously held by si [27]. We obtain the analogous of
Eq. 1.3.6 in the world of operators, i.e. the following Matrix Product Operator
(MPO)

c(s1,s ′1)...(sN,s ′N) =W
[1](s1, s ′1)...W

[N](sN, s ′N) , (1.5.2)

where W[i] are matrices (vectors at the boundaries) depending on the two
spin variables s, s ′. The size of auxiliary space defines the MPO bond dimen-
sion. A graphical representation of this entity is presented in Fig. 1.8a).

Importantly, the expectation value ⟨ψ|Ô|ψ⟩ of an operator Ô represented
in the form of an MPO over an MPS |ψ⟩ can be computed efficiently (see
Fig. 1.8b)) [27, 43]. In particular, one can proceed as illustrated in Fig. 1.6c),
with the only difference being that now the environment tensors have an
additional auxiliary index. If we denote the MPO bond dimension as D, the
overall cost will be O(χ3D2). Another important task is the application of an
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Figure 1.7: The iterative compression algorithm for MPS. The compressed (uncom-
pressed) MPS tensors are represented by violet (green) shapes. a) The
minimization of the states distance with respect to the uncompressed
MPS tensor (Ã[i])∗ (first line) gives a linear equation for Ã[i]. Since the
MPS tensors to the left (right) of Ã[i] are left (right) normalized, the lin-
ear system is greatly simplified (third line). b) The solution for Ã[i] is
decomposed to preserve the mixed canonical form for the next step. c)
The left environment tensor L is updated.

Figure 1.8: a) A generic Matrix Product Operator (MPO) with bond dimension D.
b) The expectation value ⟨ψ|O|ψ⟩ of an MPO over an MPS.

MPO to an MPS. This operation can also be performed efficiently and pre-
serves the MPS form, but increases its bond dimension from χ toDχ [27, 43].

In addition to their computational relevance, MPOs can be used also as an
exact analytical tool in a variety of contexts, ranging from classical statistical
mechanics to integrable systems (the Bethe ansatz can be rewritten in terms
of an algebra of commuting MPOs) [44].
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1.5.1 Examples of useful MPOs

In order to manipulate an MPO, it can be useful to define the following
matrices of operators W̃[i]

αβ = W
[i]
αβ(si, s

′
i) |si⟩ ⟨s ′i|, where α,β are indices be-

longing to the auxiliary space. We get

Ô = W̃[1]... W̃[N] . (1.5.3)

One can think at the above equation as the action of a finite state machine
operating on D different virtual states, as in Fig.1.9.

1 2 ... D

Figure 1.9: An MPO having bond dimension D can be thought as a finite state
machine acting on D virtual states.

To better understand the mapping, let us define the vectors

V [l] = W̃[l]... W̃[N] l = 1, 2...N ,

whose entries are operators. We have

V
[l−1]
α = W̃

[l−1]
αβ V

[l]
β ,

meaning that the W̃ are transition matrices for the vectors V . V represent
the internal states of the finite state machine. We will now show how the
transition matrix (the MPO) can be adjusted to obtain a represantation of
some useful operators Ô.

Let us begin with a simple example. Suppose Ô = Σ̂z is the total z−magnetization
operator

Σ̂z =

N∑
i=1

σ̂zi =

N∑
i=1

(
1̂1 ⊗ ...⊗ 1̂i−1 ⊗ σ̂zi ⊗ 1̂i−1 ⊗ ...⊗ 1̂N

)
.

Let us consider a finite state machine operating on D = 2 states and let us
represent its action as in Fig. 1.10. The corresponding transition matrix is

W̃[l] =

(
1̂ 0

σ̂zl 1̂

)
with l = 2, ...N. The vector W̃[N] set the starting state of the machine. It can
be both 1 (and in this case we have to apply the identity operator 1̂N) or
2 (and in this case we have to apply the operator σ̂zN). Hence, we set

W̃[N] =

(
1̂

σ̂zN

)
It is easy to realize that, by applying the W̃[l] matrices to W̃[N], one get

V [2] =

(
1̂2 ⊗ 1̂3 ⊗ ...⊗ 1̂N∑N

i=2 1̂2 ⊗ ...⊗ 1̂i−1 ⊗ σ̂zi ⊗ 1̂i+1 ⊗ ...⊗ 1̂N

)
.
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Now, it becomes obvious that to obtain the operator σ̂z we have to set

W̃[1] =
(
σ̂z1 1̂1

)
.

It is not difficult to recast standard 1D Hamiltonians as MPOs with such
techniques [27]. For instance, let us consider the following Ising Hamilto-
nian, with exponentially decaying couplings

Ĥ = −J

N∑
i=1

i−1∑
j=1

λi−jσ̂zi σ̂
z
j −

N∑
i=1

hhh ·σσσ , (1.5.4)

where hhh is the on-site magnetic field and σσσ ≡ (σ̂1, σ̂2, σ̂3). The finite state
machine plotted in Fig. 1.11 can realize such operator. Indeed, at each loop
on the intermediate state 2 one acquire a factor λ, obtaining λi−j before of
jumping on 3 . The corresponding transition matrix is

W̃[l] =

 1̂ 0 0

σ̂zl λ1̂ 0

−hhh ·σσσl −Jλσ̂zl 1̂

 ,

whereas the boundary vectors will be

W̃[1] =
(
−hhh ·σσσ1 −Jλσ̂z1 1̂1

)
W̃[N] =

 1̂

σ̂zN
−hhh ·σσσN

 .

Notice that if we set J = J0/λ and let λ approach 0, the Hamiltonian in
Eq. 1.5.4 simplifies to the standard short-range Ising Hamiltonian. Conse-
quently, in this scenario, we can employ the values of W̃ listed above with
λ = 0. These tricks can be used also to get the power-law long-range Ising
Hamiltonian with power-law decaying couplings, i.e.

Ĥ = −J

N∑
i ̸=j

σ̂zi σ̂
z
j

(i− j)α
−

N∑
i=1

hhh ·σσσ

with α > 0. To this purpose, one can fit the power law 1/rα as a sum
of decaying exponentials, i.e. 1/rα ≈ ∑n

k=1 cke
−r/ξk =

∑n
k=1 ckλ

r
k, with

λk = e−1/ξk . In this way, we can employ a finite state machine resembling
the one represented in Fig. 1.11 but with more intermediate states, each
corresponding to a fixed value of λk. In this case, the MPO bond dimension
equals to D = n+ 2. One can also easily design an MPO representing a 2D
Hamiltonian on a square lattice of size Nx ×Ny, as for instance

Ĥ = −J
∑
⟨i,j⟩

σ̂zi σ̂
z
j −

N∑
i=1

hhh ·σσσ .

The result is the finite state machine represented in Fig. 1.12. The price to pay
is having a bond dimensionD scaling with the system linear sizeNy (orNx).
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1 2

1̂
σ̂z

1̂

Figure 1.10: Finite state machine representation of the σ̂z operator expressed as
MPO.

1 2 3

1̂

σ̂z

λ1̂

−Jλσ̂z

−hhh ·σσσ
1̂

Figure 1.11: Finite state machine representation of the long-range Ising Hamilto-
nian expressed as MPO.

1 2

3

...

Ny + 1

Ny + 2

1̂

σ̂z

1̂

1̂

1̂

−Jσ̂z

−Jσ̂z

−hhh ·σσσ
1̂

Figure 1.12: Finite state machine representation of the 2D nearest-neighbours Ising
Hamiltonian expressed as MPO.

1.6 density matrix renormalization group (dmrg)

The ability of DMRG method to accurately describe ground-state quantum
properties, capture entanglement and correlations has made it an indispens-
able tool for investigating low-energy physics in a wide range of systems [28].
DMRG was initially proposed in 1992 by Steven White in terms of a sort of
renormalization flow for the density matrix of spins blocks [23, 24], and
afterwards reformulated in terms of MPS optimization [27, 45, 46]. Nowa-
days nearly every cutting-edge DMRG implementation employs MPSs and



1.6 density matrix renormalization group (dmrg) 19

MPOs [27, 33, 47, 48]. Here, we provide a brief overview of this approach,
specifically focusing on its simplest form, known as the one-site DMRG [27,
33].

In short, DMRG exploits MPS as a variational ansatz to approximate the
many-body wave function describing the ground state. Following the prin-
ciples of the variational method [49], one has to minimize the functional

E[A, ϵ] = ⟨ψ[A]|Ĥ|ψ[A]⟩− ε
(
⟨ψ[A]|ψ[A]⟩− 1

)
(1.6.1)

with respect to the variational parameters Aai−1ai(si) (i = 1, 2...N). No-
tice that in Eq. 1.6.1 we introduced the Lagrange multiplier ε to enforce
the normalization constraint ∂

∂εE = ⟨ψ[A]|ψ[A]⟩− 1 = 0. Taking the partial
derivative with respect to the conjugate of the tensor A, we get

∂

∂Aai−1ai(si)
∗E[A, ϵ] =

(
∂

∂Aai−1ai(si)
∗ ⟨ψ[A]|

)
Ĥ|ψ[A]⟩+

− ϵ

(
∂

∂Aai−1ai(si)
∗ ⟨ψ[A]|

)
|ψ[A]⟩ = 0 .

(1.6.2)

This equation is linear in Aai−1ai(si) and can be represented graphically as
in Fig. 1.13a) if one assume that the Hamiltonian Ĥ is expressed in as an
MPO. Interestingly, if one has the MPS in a mixed canonical form centered
in i, the equation can be simplified becoming

M(ai−1ai),(a ′
i−1a

′
i)
(si, s ′i) Aa ′

i−1a
′
i
(s ′i) = ϵAai−1ai(si) , (1.6.3)

namely a simple eigenvalue problem. Furthermore, because of the MP-
S/MPO structure, the operator M can be expressed in the following form

M(ai−1ai),(ai−1ai)(si, s
′
i) = Lai−1αi−1a ′

i−1
Wαi−1αi(si, s

′
i)Raiαia ′

i
(1.6.4)

in terms of a left and a right environment tensor L and R (see last line of
Fig. 1.13a)). Our (local) optimization problem can now be solved or by brute
force diagonalization of the operator M, or with an iterative solver, such as
the Lanczos method. As in the MPS iterative compression (Sec. 1.4.4), it is
important that, after obtaining a solution for Aai−1ai(si), SVD is employed
to maintain the normalization structure. For instance, one can left normalize
A[i] and incorporate the remaining SVD matrices into the next site A[i+1]

(Fig. 1.13b)). In this way, we obtain a mixed canonical form with respect to
i+ 1. The left environment tensor L can be updated as in Fig. 1.13c), whereas
the right environment tensors Rmust be computed and stored (starting from
site N towards 1) before the procedure begins. At the beginning the MPS is
initialized in a right-canonical form. Typically, one repeats the outlined local
optimization a number of times, each time sweeping all the sites of the chain.
The convergence of the method can be assessed by tracking the variational
energy ε or its variance δ2H = ⟨ψ[A]|Ĥ2|ψ[A]⟩− ⟨ψ[A]|Ĥ|ψ[A]⟩2 (which can
also be evaluated very easily).
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Figure 1.13: DMRG in a nutshell. a) The minimization of the energy functional
with respect to the local MPS tensor (A[i])∗ (first line) gives a linear
equation for A[i] (second line). Since the MPS tensors to the left (right)
of A[i] are left (right) normalized, the linear system is simplified to an
ordinary eigenvalue problem. b) The solution for A[i] is decomposed
to preserve the mixed canonical form for the next step. c) The left
environment tensor L is updated.

1.7 time evolving block decimation (tebd)

In addition to computing ground states, MPS enables efficient numerical
simulations of the time evolution of a closed quantum system. The goal is
to evaluate

|ψ(t)⟩ = exp
(
− iĤt

)
|ψ(0)⟩ , (1.7.1)

whereH is the many-body Hamiltonian. Usually, the dynamics is discretized
into time intervals of length δt. A direct calculation of the exponential
exp(−iHδt) is possible only for very small N. If one has a Hamiltonian
that includes exclusively nearest-neighbor interactions, i.e. Ĥ =

∑
i ĥi,i+1,

the first-order Trotter decomposition of the time evolution operator reads as
follows

Uexact
t,t+δt = exp

(
− iHδt

)
= exp

(
− iĤevenδt− iĤoddδt

)
≃

≃ exp
(
− iĤevenδt

)
exp

(
− iĤoddδt

)
exp

(
−

(δt)2

2
[Ĥeven, Ĥodd]

)
=

= exp
(
− iĤevenδt

)
exp

(
− iĤoddδt

)︸ ︷︷ ︸
UTEBD
t,t+δt

+O
(
(δt)2

)
(1.7.2)
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where Ĥeven =
∑
i∈even sites hi,i+1 and Ĥodd =

∑
i∈odd sites hi,i+1. Since all the

summands hi,i+1 in Ĥeven, Ĥodd commute with each other, we have

exp
(
− iĤevenδt

)
=

∏
i∈even sites

exp
(
− ihi,i+1δt

)
exp

(
− iĤoddδt

)
=

∏
i∈odd sites

exp
(
− ihi,i+1δt

) (1.7.3)

Now, rather than exponentiating a single large matrix H, one has to compute
exp

(
− ihi,i+1δt

)
. This can be done very easily since hi,i+1 is a 4× 4 matrix

(or a 2× 2× 2× 2× 2 tensor). The resulting object, usually dubbed ”bond
operator”, is a unitary gate acting on two sites.

To complete a full time step UTEBD
t,t+δt, the procedure involves applying the

bond operators on odd sites first, followed by those on even sites. The full
tensor network representing TEBD evolution is depicted in Fig. 1.14. One
practical approach to apply the bond operators consists in starting from site 1
and moving to site N, sequentially applying exp

(
− ihi,i+1δt

)
(i odd). Then,

similarly, one evolves the bond operators on even sites exp
(
− ihi,i+1δt

)
(i

even) by moving from site N to 1. Importantly, using this procedure, at
each step, one can apply the bond operators to an MPS in a mixed canon-
ical form. The implementation of bond operators locally disrupts the MPS
form, but this can be restored through the use of SVD (see Fig. 1.15). No-
tice that, since a mixed canonical form is used, the SVD provides access to
the Schmidt eigenvalues (entanglement spectrum) of the full system with
respect to the bipartition defined by the bond i, i + 1. The SVD increase
the local bond dimension by a factor of 2, but one can choose to truncate
the Schmidt eigenvalues/eigenvectors in such a way as to keep the bond
dimension within a fixed value χ set at the beginning. This technique can be
applied also to simulate a quantum circuit with local unitary gates (indeed
Fig. 1.14 represents a quantum circuit with a brick-wall structure).

Figure 1.14: Sketch of TEBD applied to an initial MPS.
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Figure 1.15: The bond operator exp
(
− ihi,i+1δt

)
is applied to two MPS tensors

(here in a mixed canonical form). Afterwards the MPS form is re-
stored by means of an SVD. Schmidt eigenvalues/eigenvectors can be
truncated to keep the bond dimension within a fixed value χ. Finally,
the mixed canonical form is shifted for the next step of the sweep.

1.8 mps and quantum circuits

The purpose of this Section is to explain how an MPS |ψ⟩ can be obtained
by applying a suitable unitary operator U† to the simple product state |0⟩⊗N.
This aspect is particularly relevant since it enables the implementation of
an MPS on a quantum platform. We want to satisfy the equation |ψ⟩ =

Û† |0⟩, or also Û |ψ⟩ = |0⟩. The latter shows that Û is a disentangler operator
(because when applied to the entangled state |ψ⟩ gives the disentangled state
|0⟩). Furthermore, in principle, we would like the unitary operator U to be
expressible in terms of (local) one qubit or two qubits gates, making it more
easily implementable on a quantum device. Our starting point is the MPS

ψ[A](sss) = Aa1(s1)Aa1a2(s2)...AaN−1
(sN) ,

that we assume to be in the right-normal form. Let us begin by examining
the case in which the local bond dimensions χi equal the physical dimension
d(= 2), for all the sites i = 1, 2...N. We focus on a certain site i in the bulk
(1 < i < N) and we reshape A as a rectangular matrix of shape χ× dχ by
means of the mapping Aai−1ai(si) → Aai−1,(ai,si). The right-normalization
condition is now expressed by AA† = 1χ×χ. Let us notice that A†A is not
guaranteed to be the identity. ThereforeA is an isometry matrix (not unitary!).
The idea is to embed A into a proper unitary matrix U. To do this we have
to add an extra (fake) index s̃, i.e.

Aai−1,(ai,si) → U(ai−1,s̃i+1),(ai,si) (1.8.1)

so that U will be a square matrix of shape χd× dχ. The reason why we
choose the label s̃i+1 will be clear later. Let us now set

U(ai−1,0),(ai,si) = Aai−1,(ai,si) . (1.8.2)

This condition is graphically represented in Fig. 1.16 and ensures that when
U is applied on the state |0⟩ the results is the original MPS tensor A.

This means that the first χ rows of the matrix U will be composed of the χ
vectors of length dχ contained in A. The idea is now to fill the other χd− χ
rows with other vectors in order to create an orthonormal basis of the com-
plex vector space Cχd. This can always done, for example by means of the
Gram–Schmidt process. After that, U will necessarily be a unitary matrix,
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Figure 1.16: Embedding the local MPS tensors A into a unitary matrix U.

satisfying U

Something different occurs on the boundaries. If i = 1, A has shape 1×dχ
(i.e. it is just a single vector of length dχ). Therefore, we have to add two
extra (fake) indices in order to embed A into a unitary matrix of dimension
dχ× dχ. The mapping will be

A(a1,s1) → U(s̃1,s̃2),(a1,s1) . (1.8.3)

As usual, we have to set

U(0,0),(a1,s1) = A(a1,s1) (1.8.4)

and fill the other dχ− 1 rows of the matrix with new orthonormal vectors.
On the other hand, when i = N the tensor A has shape χ× d. Since χ = d,
this is already a square unitary matrix.

After these mappings, we found that the original MPS can be formally
recast into a series of unitary operators acting, by the fake indices s̃, on N
copies of the state |0⟩ (see second line in Fig.1.17a)). Now, since χ = d, we
can think the auxiliary indices a to be themselves physical indices. We can
therefore reshape the circuit and obtain the graphical representation in the
third line in Fig. 1.17a). This is a proper staircase quantum circuit, composed
only by one qubit and two qubits gates.

Let us now consider the general case. For a generic MPS the bond dimen-
sions are

χi = 2, 4, 8... χ ... χ ... 8, 4, 2 for i = 1, 2, 3... N− 3,N− 2,N− 1 .

χ is the bond dimension in the bulk and we will assume to be a power of 2,
i.e. χ = 2n. An MPS of this kind is represented in the first line of Fig. 1.17b),
where each grey dotted line represents a binary index (in the bulk the aux-
iliary indices will have n of these). The exact mapping between the MPS
and the quantum circuit is a straightforward generalization of the previous
case, making use (in the bulk) of log2 χ+ 1 = n+ 1 qubits gates. The map-
ping is schematically sketched in Fig. 1.17b). These gates can be in principle
further decomposed into a series of sequential 2-site unitaries. As shown in
[50], the number of CNOT gates necessary for the decomposition of a single
(n + 1) qubits gate is O(3 · 4n−1) = O(χ2). Thus, the optimized MPS can



24 introduction

Figure 1.17: The MPS to quantum circuit mapping: a) for the simple case χ = d; b)
for the generic case χ > d.

be recast into a quantum circuit consisting of O(Nχ2) elementary two-qubits
gates (such a CNOTS).

Finally, let us mention that one can achieve an approximate quantum cir-
cuit U by iteratively optimizing the fidelity between the target MPS and the
quantum circuit, i.e.

F = | ⟨ψ| Û |0⟩ |2 .

F can be represented as in Fig. 1.18, where U is made of D “staircase” layers
of two qubits gates. At a generic step of the iterative optimization, we fix all
the two qubits gates except for one. We have

F = | ⟨ψ̃| Û |ϕ̃⟩ |2 ,

where |ψ̃⟩ (|ϕ̃⟩) is the states obtained by applying the fixed gates to |ψ⟩ (|0⟩)
and U is the two-qubits unitary gate we want to optimize. By defining
the environment operator E = |ϕ̃⟩ ⟨ψ̃|, we have F = |Tr

(
UE
)
|2. Let us no-

tice that if Uopt is a possible unitary optimal solution of the problem also
Uopte

iθ, for any phase θ, is a solution. Therefore we can assume Tr
(
UE
)

to be real. Now, the following inequality applies: |Tr
(
UE
)
| ⩽ ||E||1, where

||E||1 = Tr
(√
E†E

)
= Tr

(√
ṼΛŨ†ŨΛṼ†

)
= Tr(Λ) and E = ŨΛṼ† is the SVD

of E. Let us notice that if we fix U = ṼŨ† the inequality is saturated. There-
fore this is the optimal choice of the local two-qubits gate. After fixing this,
one can move to the next gate of the staircase, in an iterative fashion [51].
By performing an adequate number of iterations along all the gates of the
circuit, this procedure is expected to reach convergence.
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Figure 1.18: The fidelity maximization problem at a generic step of the iterative
method.





2 MATR IX PRODUCT STATES W ITH
BACKFLOW CORRELAT IONS

Understanding quantum many-body systems in and out of equilibrium is
one of the most exciting open challenges in physics and chemistry. In recent
years, significant progress has been made in the study of strongly correlated
quantum systems, on many fronts. For example, several experimental ap-
proaches implementing Feynmans’ quantum simulators [15] are allowing
the controlled exploration of uncharted territory [52–58]. Recent experi-
ments based on Rydberg atoms in optical tweezers allowed the simulation
of quantum computational schemes to unprecedented system sizes. This has
prompted a renewed interest in numerical techniques capable to provide ac-
curate estimations for future quantum simulations [59–63].

On the theoretical level, the development of Tensor-Networks (TN) tech-
niques has significantly expanded the scope of variational approaches to
quantum many-body systems since the introduction of the Density-Matrix
Renormalization Group (DMRG) algorithm [23]. The goal of TNs is to
represent the quantum many-body wave functions by means of a set of lo-
cal tensors, connected in a generic network via auxiliary bonds with finite
dimension χ, thus overcoming computational limitations due to the expo-
nentially large Hilbert space [64, 65]. The bond dimension χ can be adjusted
to manipulate the information content of the TN, thus going from product
states (χ= 1), reproducing mean-field approximations, to the exact but inef-
ficient wave function representation. In 1D, the Matrix Product State (MPS)
geometry has demonstrated an unprecedented degree of accuracy for both
equilibrium and out-of-equilibrium problems [27, 66]. We refer the reader
to Chapter 1 for a detailed introduction to TNs and MPS. However, TN
have some fundamental limitations, such as the intrinsic hardness of finding
efficient contraction schemes [67] and unfavorable scaling of the required re-
sources with the system size in higher dimension [64]. Most successful TN
geometries, like Projected-Entangled Pair States (PEPS) [68] and Tree Ten-
sor Networks [69], suffer from specific drawbacks: while the latter does not
satisfy the Entanglement area law (although some effort has been spent to
overcome this limitation in Ref. [61]), the former suffers from high algorith-
mic complexity, O(χ10), and lacks exact computation of expectation values.

In parallel to the progress of TN, artificial Neural Networks (NN) have
been discovered and used in a plethora of different scientific fields, prov-

27
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ing astonishing versatility in physics applications [70]. In recent years, they
have been employed as a variational ansatz for quantum many-body prob-
lems [71]. In this context, a number of possible architectures have been
tried, such as Restricted Boltzmann Machine (RBM) [71, 72], Feed-Forward
NN [73, 74] and Recurrent NN [75]. These ansatze have been proven to
have a great descriptive power [73, 76]. However, the number of parameters
entering a NN wave function may be arbitrarily large and the appropriate
network structure is usually not clear a priori. Understanding an optimal ge-
ometry encoding information from the specific dimensionality of the prob-
lem and taking advantage from both TN and NN structures could be the
ultimate solution to the quantum many-body problem.

NN are usually optimized by means of variational Monte-Carlo (VMC)
methods. Furthermore, a key tool in NN optimization is the so-called Auto-
matic Differentiation [77], which allows to efficiently compute cost-function
derivatives with machine precision. This paradigm have been recently ap-
plied also to the TNs optimization [78]. Combining such approaches with
standard TN algorithms appears as a promising way to find new optimal
strategies to solve open problems at the equilibrium and out-of-equilibrium.
Efforts in this direction were made with the introduction of the Entangled
Plaquette States (EPS) [79, 80], Monte-Carlo optimized MPS [81] and PEPS [82],
and infinite PEPS optimized with automatic differentiation [83]. The space
of possible hybrid wave functions is however still largely unexplored.

In this Chapter, we introduce a novel variational ansatz, generalizing the
usual MPS. The ansatz is inspired by the so-called backflow techinque, com-
monly employed in electronic-structure theory [84–86]. These new Matrix
Product Backflow States (MPBS) can overcome some limitations of MPS by
encoding an extensive amount of entanglement and keeping the algorith-
mic complexity under control. We further introduce a simple optimization
scheme mixing DMRG and VMC recipes which can be proficiently applied
to MPBS in order to find quantum many-body ground-states. As a bench-
mark, we employ this approach against well-known 1D and 2D spin models.
Finally, we simulate the J1 − J2 model, providing the ability to inspect some
challenging highly non-trivial models.

2.1 matrix product backflow states

A state |ψ⟩ of a quantum many-body system consisting of N spin-1/2 vari-
ables is fully specified by the complex-valued function ψ(sss) = ⟨sss|ψ⟩, sss ∈
{±1}N being the spin projections along the z direction. As discussed in Chap-
ter 1, MPS [27] are defined by the functional form

ψ[A](sss) = A[1](s1)A
[2](s2)...A[N](sN) , (2.1.1)

where local tensors A[i](si) have one physical index si and two auxiliary
indices. They can be graphically represented as three-legs shapes connected
with lines, i.e. contracted along auxiliary indices (see Fig. 2.1) [27, 37]. These
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Figure 2.1: Graphical representations of MPS and MPBS applied to 1D (a) and 2D
(b) quantum many-body systems. The F tensors encode correlations
between different lattice sites. For illustrative purposes, the pictures
represent only one of the terms in which F is involved.

indices run from 1 to a set of integers χi, called local bond dimensions, fix-
ing the maximum amount of entanglement entropy which can be encoded
by the state [27].

MPS can provide good approximations of low entangled states, as for in-
stance ground states of local gapped Hamiltonians in 1D, for which an area
law for entanglement entropy can be proven [87] (see Chapter 1). On the
contrary, MPS cannot efficiently encode a volume law, since this would re-
quire an exponentially large value of χ.

In order to overcome these limitations, we introduce a new set of tensors
F
[i,j]
a,a ′(si, sj) with two physical indices si, sj and two auxiliary indices a,a ′.

These tensors will encode correlations between different lattice sites i, j. We
propose a new class of wave functions ψ[A, F](sss) obtained by formally re-
placing the MPS local tensors A[l](sl) with new tensors Ã[l](sss) as follows

A
[l]
al−1al(sl) → Ã

[l]
al−1al(sss) = A

[l]
al−1al(sl) +

∑
il ̸=l

F
[l,il]
al−1al(sl, sil) . (2.1.2)

Notice that the matrices Ã[l] now depend explicitly on all the global set of
quantum numbers sss. The new wave function is

ψ[A, F](sss) = Ã[1](sss)Ã[2](sss)... Ã[N](sss) , (2.1.3)

where we summed over all auxiliary indices al (l = 1, 2...N− 1). This object
can be considered conceptually similar to the well-known backflow wave
function in electronic structure theory, which is commonly used to introduce
correlations in the mean-field theory by taking the single-particle orbitals
act on a configuration-dependent quasi-particle positions [84–86, 88]. In our
case, the starting point is not a mean-field wave function, but rather an MPS,
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which can be seen as a systematic and general improvement of the mean-
field approximation. We thus name this class of variational states Matrix
Product Backflow States (MPBS).

It is worth mentioning that MPBS wave functions admit a series expansion
in increasing powers of F, where each term can be formally recast as an
MPS with locally larger bond dimension, up to 2n times the original bond
dimension at the order n (see next Section). Examples of first-order (n= 1)
terms are depicted in Fig. 2.1.

MPBS with F connected as in Fig. 2.1b) will be used in the next Sections to
simulate 2D systems. The idea is that this type of connections provides a sort
of “shortcut” for entanglement since they allow for the direct correlation of
nearest-neighbor sites in the 2D geometry that are, however, placed far apart
from each other in the effective 1D mapping (leading therefore to an unde-
sired increase in the required bond dimension). Indeed, MPBS arranged
as in Fig. 2.1b) satisfy an area law for the entanglement entropy, since any
possible bipartition of the lattice cuts a number of auxiliary bonds and/or F
tensors that grows linearly with the length of the subsystem perimeter. Re-
markably, it can be easily proven that MPBS ability to encode entanglement
can be even greater, since with a particular choice of the parameters one can
encode a volume law for the entanglement entropy. Thus, MPBS can in prin-
ciple provide good approximations not only of ground-states in 2D, but also
of highly entangled quantum many-body states, as for instance time-evolved
states after quantum quenches [89].

From an operative perspective, MPBS naturally suggest the adoption of
the following two-step optimization algorithm:

1. first, the local A tensors are optimized with standard MPS techniques;

2. second, the non-local F tensors are optimized by means of VMC tech-
niques.

This alternating optimization approach offers the advantage that the initial
point for VMC stochastic optimization is not a random point in the param-
eter space, but instead it is already a reasonably good approximation of
the quantum many-body wave function. Moreover, VMC optimization can
further optimize the A tensors as well, thus providing an unrestricted varia-
tional search for our ansatz in the last optimization stage. Finally, the MPBS
network can be exactly contracted during the Monte-Carlo steps (in contrast
to other similar approaches where approximated contraction schemes are
employed [82]), leading to a purely variational scheme. In the following
Sections, we will focus on the ground-state search problem, benchmarking
the MPBS ansatz on both 1D and 2D models. The numerical results are ob-
tained by means of the two steps optimization algorithm just outlined. In
Appendix A, we provide a short introduction to the VMC method.
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2.1.1 Decomposing the MPBS as a sum of MPS

As mentioned, the MPBS wavefunction can be expanded in a series of terms
at different orders in powers of F, i.e.

ψ[A, F](sss) =
N∑
n=0

ψ(n)[A, F](sss) .

The first terms are

ψ[A, F](sss) = A[1]
a1 (s1)...A

[N]
aN (sN)︸ ︷︷ ︸

ψ(0)[A](sss)

+

+
∑
i ̸=j

(
A

[1]
a1 (s1)... F

[i,j]
ai−1ai(si, sj)...A

[N]
aN (sN)

)
︸ ︷︷ ︸

ψ(1)[A,F](sss)

+ o
(
F2
)

.

(2.1.4)

The zero-order term ψ(0) corresponds exactly to the MPS wave function,
while the first-order term ψ(1) is composed of N components. In a general
term ψ(n) in the expansion, we would encounter n F tensors, each linking
a pair of physical indices. The term ψ(N) can give rise to the well-known
Jastrow wave function as a particular case (when setting χ = 1, A = 0)

ψJastrow(sss) =
∏
i<j

F[i,j](si, sj) . (2.1.5)

Let us now focus on the linear term. We can reshape the tensor F into a
square matrix of dimension 2χ

F
[i,j]
ai−1ai(si, sj) = F(ai−1si),(aisj) .

By applying a QR-decomposition, we obtain

F(ai−1si),(aisj) = Q(ai−1si),αRα(aisj) = Qai−1,α(si)Rαai(sj) , (2.1.6)

where the index α runs from 1 to 2χ. For simplicity, let us consider the case
j = i+ 2. By combining the tensors R and A[i+1], and applying another QR
decomposition, one can obtain a new MPS with a bond dimension increased
to 2χ (see Fig. 2.2). It is clear that by means of these tricks one can re-write
ψ(1)[A, F](sss) as a sum of MPS with maximum bond dimension equal to 2χ.
By summing these N MPS, we will get an MPS with maximum bond dimen-
sion 2Nχ, which can be eventually compressed. With similar tricks, higher
order terms can be formally recast in an MPS with locally larger bond di-
mension. In particular, it is not difficult to realize that ψ(n) contains terms,
as the one represented in Fig. 2.3, that give rise to a local bond dimension
2nχ.

Finally, let us notice that our proposed method to optimize the MPBS
wave function, allows to take into account all the orders of the F tensors.
This is possible because the full MPBS wave function can be exactly con-
tracted, meaning that given a spin configuration sss one can easily compute
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the ψ[A, F](sss) as a product of matrices (explointing Eq. 2.1.3). Therefore our
numerical results can be considered as fully ”non-perturbative” and can-
not be replicated by using only some of the first terms of the expansion in
Eq. 2.1.4.

Figure 2.2: Decomposition of one term of ψ(1)[A, F] as MPS. We arbitrarily set j =
i+ 2. Double dotted lines represent auxiliary bonds/indices with local
bond dimension 2χ, whereas dotted lines have bond dimension χ. The
first passage represents Eq. 2.1.6.

Figure 2.3: A term contained in ψ(n) (n = 3) with n overlapping long-range con-
nections.

2.1.2 MPBS encoding a volume law for the entanglement

The aim of this section is to show, by means of an explicit example, that
MPBS can efficiently encode a volume law for the entanglement entropy,
thus representing an excellent generalization of MPS. In particular, we will
focus on MPBS as readjusted to be applied on 2D systems (see Fig. 2.1b)).
For this purpose, we will first consider an example of Restricted Boltzman
Machine (RBM) state given in [90], showing that it can be rewritten as MPBS.
Then, we will follow the proof given in [90] to demonstrate that this wave
function, with a particular choice of the parameters, can encode a volume
law for entanglement entropy in the two dimensional geometry. To begin,
let us write the generic expression for the RBM representation of a quantum
state ψ, i.e.

ψRBM(sss) =
∑

hhh∈{−1,+1}M
exp

[ N∑
i=1

aisi+

M∑
m=1

hmbm+
∑
i,m

Wimsihm

]
. (2.1.7)
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Here, the wave function value ψRBM(sss) =
∑
hhh exp

(
− H̃(sss,hhh)

)
for the spin

configuration sss is computed as a Boltzmann weight marginalized over a col-
lection of ’hidden’ fictitious spin variables hm ∈ −1,+1 (m = 1, 2...M). The
parameters a,b,W, generally having complex entries, serve as free parame-
ters in the ansatz. They correspond, respectively, to the external magnetic
fields and the couplings of the fictitious Ising-like Hamiltonian H̃(sss,hhh). We
will set ai = 0, ∀i. If the couplings W are short-range, it can be demon-
strated that the RBM wave function satisfies an area law for the entangle-
ment entropy, as shown in Ref. [90]. However, when the couplings W are
long-range, this is no longer true. For our purpose, let us now setN = NxNy
and M = (N−1)+Ny(Nx − 1) = 2N−Ny − 1. It is useful to split the hidden
neurons in two sets, i.e. hl (l = 1, 2...N−1) and h̃n (n = 1, 2...Ny(Nx − 1)),
and define the respective couplings as Wil = W(δi,l + δi,l+1) and W̃in =

W(δi,n + δi,n+Ny). The physical meaning under these choices is schemat-
ically represented in Fig. 2.4, where visible (hidden) variables are colored
blue (yellow) and black lines represents W connections. The idea is to use
h̃n variables to give rise to MPBS terms connecting spins on the same row
but different columns, whereas hl variables will contribute to the formation
of the “snaking path” structure within the MPBS.

Figure 2.4: Graphical representation of the RBM state considered in the state. Vis-
ible layer variables (blue dots) are arranged in a two dimensional grid
of shape Nx,Ny. Hidden variables (yellow shapes) give rise to the con-
nections.

By explicitly calculating the sum over the hidden variables in Eq. 2.1.7,
we obtain that the wave function is the product of two terms ψRBM(sss) =

ϕ1(sss)ϕ2(sss), where

ϕ1(sss) =

N−1∏
l=1

(
2 cosh

[
bl +W(sl + sl+1)

])
=

N−1∏
l=1

T1(sl, sl+1)

ϕ2(sss) =

Ny(Nx−1)∏
l=1

(
2 cosh

[
b̃l +W(sl + sl+Ny)

])
=

Ny(Nx−1)∏
l=1

T2(sl, sl+Ny) .

Let us consider the first one. We can set T1(sl, sl+1) =
(
v
(l)
)T
w

(l+1), where

(
w

(l+1)
)T

=
(

exp
[
b+Wsl+1

]
, exp

[
− b−Wlsl+1

])(
v
(l))T =

(
exp

[
Wsl

]
, exp

[
−Wsl

])
.
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Thus, we get

ϕ1(sss) =
(
v
(1)
)T
w

(2)
(
v
(2)
)T
w

(3)...
(
v
(N−1)

)T
w

(N) = A[1]A[2] ... A[N] ,

where we defined the following matrices

A[l] =


(
v
(1)
)T if l = 1

w
(l)
(
v
(l)
)T if l = 2...N− 1

w
(N) if l = N

.

Let us observe that A[l] depends only on the local physical variable sl, there-
fore ϕ1(sss) is in the form of an MPS, with bond dimension χ = 2. The MPS
follows the snaking-path, as displayed in Fig. 2.4. The wave function can
now be written as

ψRBM(sss) =A(s1)T2(s1, s1+Ny)A(s2)T2(s2, s1+Ny)... A(sN−Ny)·
· T2(sN−Ny , sN)A(sN−Ny+1)... A(sN) ,

(2.1.8)

where we used bold letters to distinguish the matrices, i.e. objects with two
virtual indices, from scalars, i.e. objects with no virtual indices. We can
reabsorb the scalars in the matrices A, obtaining

ψRBM(sss) =

(
A(s1) + F[1](s1, s1+Ny)

)
...
(

A(sN−Ny) + F[N−Ny](sN−Ny , sN)
)
·

·A(sN−Ny+1)... A(sN) ,
(2.1.9)

where we defined the F matrices as follows

F[l](sl, sl+Ny) = A(sl)
(√
T2(sl, sl+Ny) − 1

)
for l = 1, 2...N−Ny. Eq. 2.1.9 is just a particular case of our MPBS represen-
tation. Let us now set the RBM parameters as follows: bl = − iπ4 , b̃n = iπ

2

and W = iπ
4 (see Ref. [90]). It is not difficult to realize that with this par-

ticular choice, one has ϕ1(sss) = ±c∀sss, and T2(s, s ′) = ±c ′δs,s ′ , where c and
c ′ are numerical constants and the sign depends on the spins. Thus, the
RMB state takes the form |ψRBM⟩ =

∑
sssc
±C |sssc...sssc⟩, where C is a constant

and sssc is the spin configuration of the first column (i.e. sssc = (s1, s2...sNy)).
This implies that the state |ψRBM⟩ is a superposition with equal weights of
all basis states corresponding to spin configurations where the Nx columns
all have the same configuration sssc. Let us now consider a bipartition of our
2D system A and B. The subsystem density matrix ρA can be computed as

ρA = trB

[
|ψRBM(sss)⟩ ⟨ψRBM(sss)|

]
=

∑
sssc,sss ′c

C2
∑
sssB

⟨sssB|sssc...sssc⟩ ⟨sss ′c...sss ′c|sssB⟩ .

If subsystem B contains at least one whole column, then fixing sssc also fix sssB
(and sss ′c). Therefore, we get ρA ∝

∑
sssc

|sssA⟩ ⟨sssA|. Reintroducing the overall
normalization constant, we get ρA = 1/2|A|, where |A| indicates the total
number of lattice sites within the region A. This result shows that A and B
are maximally entangled and therefore the Rényi entropies associated with
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the bipartition are Sα(A|B) = |A| ln 2, for all Rényi indices α. These obser-
vations provide us a simple example of a wave function in the form of an
MPBS efficiently encoding a volume law of the entanglement entropy in the
2D geometry (the number of non-zero parameters A, F scale polinomially
with N).

2.2 numerical results

In this Section, we provide numerical results concerning the ground-state
search problem for some 1D and 2D models. In all the simulations, DMRG
was used as a first optimization step. The second stage involved the VMC
optimization (see Appendix A) and was implemented using the NetKet li-
brary [91–93]. NetKet is an open-source project delivering cutting-edge
methods for the study of many-body quantum systems with artificial NN
and machine learning techniques. It is a Python library built on JAX [94], a
package providing Automatic Differentiation routines. NetKet offers several
methods to define custom models. The MPBS model was implemented by
using the Flax Linen API framework [95]. Given a particular model, namely
a parameter dependent ansatz |ψ(θθθ)⟩, the VMC approach use a stochastic
Markov chain to generate batches of system configurations {sss(n)}Nn=1 accord-
ing to the probability distribution p(sss) = | ⟨sss|ψ(θθθ)⟩ |2/ || |ψ(θθθ)⟩ ||2 [96]. The ex-
pectation value of the energy and its gradient with respect to the variational
parameters θθθ, as well expectation values of other observables, are computed
as statistical averages over a large-enough number of sampled system config-
urations. Having estimated E and the derivatives ∂θθθ E, the VMC approach
uses some optimization algorithm to update the parameters θθθ and iterate
over a number of Monte-Carlo steps. In particular, NetKet makes use of the
Stochastic Gradient Descent, with the Stochasitc-Reconfiguration precondi-
tioner. The latter is also named Natural Gradient Descent in the machine
learning literature [97] and allows to adjust the gradient descent trajectory
by taking into account the geometry of the quantum state manifold. As sam-
pler routines to generate the system configurations, we used or the standard
local Metropolis algorithm [96] or, in the cases in which the total magnetiza-
tion was keep fixed, a variant in which new system configurations are gener-
ated by flipping couples of spins, thus preserving the total z−magnetization.
The number of samples N per Monte-Carlo step was chosen between 103

to 104, depending on the simulation. See Appendix A for a brief survey
on VMC. At the beginning of the optimization, F tensors were initialized as
follows

F[i,j](si,sj) = ϵ(1χ×χ + σζχ×χ) , (2.2.1)

where 1χ×χ is the identity matrix of dimension χ, ζχ×χ is a random matrix
with normally distributed entries and 0 < σ, ϵ ≪ 1 are (small) real num-
bers (usually we set to ϵ = 0.01 or 0.005 and σ = 0.1). After, the tensors F
were considered as parameters of the ansatz, that is θθθ ≡ F, and optimized
as sketched before. In the 2D simulations, we also included the A tensors
as variational parameters, i.e. θθθ ≡ (A, F), therefore allowing the algorithm to
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further optimize the already optimized MPS tensors.

Concerning the computational cost of our proposed method, let us first
mention that the computational cost of DMRG algorithm is proportional to
χ3, where χ is the bond-dimension. The computational cost of the VMC op-
timization is proportional to NiterationsNχ

3, where Niterations is the total num-
ber of Monte-Carlo iterations and N is the number of samples per Monte-
Carlo step. The factor χ3 comes from the (exact) evaluation of the MPBS
wave-function. Indeed, given a spin configuration sss, one can easily eval-
uate the wave-function ψ[A, F](sss) as a product of N matrices each of size
χ× χ, N being the system size. In order to have the MPBS simulation com-
petitive with the DMRG in terms of CPU time, it is therefore required to
have χMPBS ≪ χMPS. This is the case, since in 2D (or in higher dimensions),
MPS are expected to require an exponentially large amount of resources to
accurately encode physical states (χMPS ∼ o(exp(N))) which can be instead
compactly described by our ansatz. Furthermore, our simulations show that
relatively small values of χMPBS allow to obtain accurate simulations of 1D
systems.

2.2.1 Modified Haldane-Shastry model

First, we apply MPBS to a 1D quantum spin chain with Periodic Bound-
ary Conditions (PBC). In particular, we consider the following modified
Haldane-Shastry (HS) model

ĤHS =
∑
j<i

1

d̃2ij

(
− σ̂xi σ̂

x
j − σ̂

y
i σ̂
y
j + σ̂

z
i σ̂
z
j

)
, (2.2.2)

where d̃ij = N/π · sin(π/N|i−j|). This model is known to be particularly chal-
lenging for standard DMRG, as it shows power-law scaling in the ground-
state entanglement entropy [90]. To use our optimization scheme, we adapt
the MPBS ansatz in order to explicitly realize translational invariance. This
is achieved by adding an extra auxiliary index, connecting the first and the
last site, as well as by taking the A tensors independent from the site i. Also,
we set F[i,j] to be dependent only on the distance dij = min(|i− j|,N−|i−j|)

between the two connected sites. We also introduced a cut-off rc setting
the maximum distance between sites for which the F tensors are non-zero
(i.e. F[dij](si,sj) = 0 if dij > rc). Due to translational invariance and the
imposed cutoff, the number of variational parameters of the ansatz is inde-
pendent of the system size N, resulting in a reduced computational cost for
the Monte-Carlo simulation. In the first optimization stage, we write the
HS Hamiltonian as a Matrix Product Operator (MPO) and use standard two-
sites DMRG [27] to get the optimized A tensors. In the second stage, a VMC
optimization of the F tensors is realized, adopting the Stochastic Reconfigu-
ration [97] natural gradient descent approach. Since HHS commute with the
total z−magnetization Σ̂z =

∑N
i=1 σ̂

z
i and the parity operator P̂ = σ̂x1σ̂

x
2... σ̂xN,

we restrict the ground-state search to the Σ̂z = 0 sector of the Hilbert space.
In Fig. 2.5, we show some selected results, obtained with a relatively small
value of the MPBS bond dimension (χ = 5) and rc = 3. First subplot shows
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the expectation value and the variance of the energy, tracked during the
VMC optimization (red lines). Dotted lines represent DMRG energies/vari-
ances for increasing values of the bond dimension. After less than 102 VMC
optimization steps the MPBS energy reach energy values smaller than the
DMRG energy obtained with the larger value of χ (χ = 70). Let us re-
mark that number of parameters this MPS is much larger than the number
of them parameters of our ansatz, meaning that MPBS provide good ap-
proximations of the true quantum many-body ground-state. Moreover, we
also got substantially better results in terms of energy variance. Second
subplot in Fig. 2.5 shows the two-points connected correlator

(
cxx + cyy

)
c,

computed by taking average of ⟨σ̂xi σ̂xi+r⟩+ ⟨σ̂
y
i σ̂
y
i+r⟩ over i and then subtract-

ing the square of the average x and y magnetizations. Red points represent
estimations obtained at the end of the VMC optimization, whereas other
points are DMRG results. These seem to converge to VMC values, when
increasing the bond dimension χ. In the inset it is shown the correlator
cxx(N/2) + cyy(N/2) as estimated during the Monte-Carlo iterations. The
convergence appears to be fast.

Figure 2.5: MPBS tested of bond dimension χ = 5 the modified 1D HS model: en-
ergy density convergence (left) and (cxx + cyy)c connected correlator
(right). The system size is N = 70.

In Fig. 2.6, we show the two-points correlators czz(r) as estimated at the
end of the VMC optimization (red points). Since translational invariance is
explicitly realized by our ansatz, a spatial average over was taken, i.e. we
considered czz(r) = 1/N

∑
i ⟨σ̂zi σ̂zi+r⟩. Results are substantially in agreement

with the ones displayed in Ref. [90]. The other points represent DMRG
results for increasing values of the bond dimension χ. In the inset, we plot
the absolute value of the difference between the DMRG correlators and the
estimated VMC correlators. By increasing χ, the DMRG correlators goes
monotonically to the VMC values.

2.2.2 Two dimensional Ising model

To corroborate the flexibility of MPBS in describing higher dimensional sys-
tems, we now start analyzing 2D quantum many-body models living on a
square lattice of size Nx ×Ny with Open Boundary Conditions (OBC). A
simple way to adapt MPS to the description of such a system is to order the
sites of the grid following a one-dimensional “snaking path” connecting all
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Figure 2.6: The spin-spin correlator czz(r) of the 1D HS Model (N = 70). The inset
represent |cMPSzz (r) − cMBPSzz (r)|.

the sites (see Fig. 2.1 b)) [98]. Others 2D to 1D mappings have been also
studied [99], leading to increased numerical precision but not to a signifi-
cant improvement in the codification of entanglement in 2D systems. The
main issue is that, since area law in 2D implies that entanglement entropy
grows linearly with the length of the subsystem perimeter, any MPS cannot
describe efficiently typical ground-states of 2D Hamiltonians. As a possible
improvement, we propose to arrange the MPBS ansatz in order to codify
correlations between sites which are adjacent in the 2D geometry but which
are placed at distance Ny along the 1D snaking path. This can be done
by setting the F[i](si, sj) matrices different from zero in the cases in which
j= i±Ny, where we label the lattice sites with a single integer i= 1, 2, ...N.
As already mentioned, an MPBS of this kind can encode the area law for
the entanglement entropy and, at least for a particular choice of the param-
eters, the volume law. To benchmark the efficacy of MPBS in simulating 2D
systems, we consider the following Ising Hamiltonian

Ĥ = −
∑
⟨iii,jjj⟩

σ̂ziii σ̂
z
jjj + h

∑
iii

σ̂xiii , (2.2.3)

on a lattice of dimension Nx = Ny = 11. For the DMRG optimization, we
used the MPO representation of 2D Hamiltonians discussed in Sec. 1.5.1. In
Fig. 2.7, we show the results of an MPBS optimization with bond dimension
χ = 5 and transverse field h = 3.0, close to the quantum critical point of
the system hc ≃ 3.044 [100]. These results are compared with DMRG find-
ings at different bond dimensions and with the energy value obtained by
Lubasch and others by means of PEPS [101]. As in the previous case, MPBS
with extremely small bond dimension leads, after ≈ 100 VMC optimization
iterations, to results significantly better than DMRG, both in terms of energy
density and energy variance. Since the system has rotational symmetry, dur-
ing the last ≃ 150Monte-Carlo iterations we explicitly symmetrize the MPBS
with respect to the C4 group of fourfold rotations. To do this, we consider the
following modified wave function ψ ′[A, F](sss) =

∑3
k=0ψ[A, F](Rksss), where R
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is a rotation of π/2 of the spin configuration. This results in a further im-
provement of the energy and energy variance. The value of energy density
we find at the end of the optimization is ⟨Ĥ⟩ /N = −3.17208(1). In the second
subplot, we show the correlator czz(r) = 1/Nr ·

∑
rrr,|rrr|=r ⟨σ̂ziiic σ̂

z
iiic+rrr
⟩, where iiic

indicates the central site of the grid and Nr is the number of sites placed at
distance r from this. MPBS points seem to be in good agreement with the
trend of DMRG results for increasing bond dimension.

Figure 2.7: MPBS of bond dimension χ = 7 tested with the 2D Ising model on a
square lattice (Nx = 11, Ny = 11): energy density convergence (left)
and czz correlator (right).PEPS result is taken from [101].

2.2.3 Two dimensional J1 − J2 model

Finally, we consider the anti-ferromagnetic J1 − J2 model, with Hamiltonian

Ĥ = J1
∑
⟨iii,jjj⟩

σiii · σjjj + J2
∑

⟨⟨iii,jjj⟩⟩

σiii · σjjj , (2.2.4)

where the first (second) sum is on first (second) nearest neighbors couples
of sites. This is a prototypical frustrated magnetic system. Despite active re-
search in the past decades [102–105], the nature of the ground-state around
the point of maximum frustration J2/J1 = 0.5 remains unclear. We address
the problem Hamiltonian by means of MPBS arranged as in the previous
paragraph and also adding F tensors connecting second nearest neighbors
sites. As in the HS model, we reduce the simulation to the zero magnetiza-
tion sector. In Fig. 2.8, we show some selected results obtained with a system
of sizeNx=Ny=8, OBC and J1 = 1, J2 = 0.5. After≃ 350 VMC optimization
iterations, we apply C4 wave function symmetrization. We compare our re-
sults with the EPS and PEPS results reported in [79] and with Monte-Carlo
optimized PEPS results reported in [105]. The final energy density of our
simulation is ⟨Ĥ⟩ /N = −1.9273(9) and is lower than both values reported
in [79], whereas it is about ≈ 7·10−3 greater than the value reported in [105].
It should be however remarked that the value in [105] is not strictly vari-
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ational, because of the approximate contraction scheme adopted for PEPS.
Finally, we measure some relevant observables as the correlators

cver(r) =
1

Nx
·
∑
j

⟨σσσ1,j ·σσσ1+r,j⟩

chor(r) =
1

Ny
·
∑
i

⟨σσσi,1 ·σσσi,1+r⟩
(2.2.5)

which are shown in the second half of Fig. 2.8. These are respectively the av-
erage spin-spin correlators along the columns and the rows of the grid. Since
the wave function ψ ′[A, F](sss) is symmetric under rotation of π/2, we always
find values for these correlators compatible within the uncertainty bars. On
the contrary, DMRG results show that MPS are unable to encode power-law
decaying correlations along the horizontal direction. We also measure the
structure factor

S2(qqq) =
1

(N(N+ 2)

∑
iii,jjj

⟨σσσiii ·σσσjjj⟩ e−iqqq·(iii−jjj) (2.2.6)

or different pitch vectors qqq. We find S2(0,π) ≃ 3.19(5) · 10−2 and S2(π,π) ≃
0.241(3). The latter corresponds to the Néel order parameter. Both values
are compatible with similar findings in [104]. We also obtain S2(0, 0) =

1.3(2) · 10−4, which is consistent with the expectation that the J1− J2 ground
state is in a singlet under SU(2) global symmetry.

Figure 2.8: MPBS of bond dimension χ = 12 tested with the J1 − J2 model on a
square lattice (Nx = 8, Ny = 8). PEPS and EPS results are taken from
Ref.[79]. In the right plot, filled (empty) markers represent DMRG re-
sults for cver(r) (chor(r)), whereas red points are MPBS results.
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Numerous computational and physical problems can be reformulated as
non-convex optimization problems involving a specific Ising-like cost func-
tion of the form H(sss) = H(s1, . . . , sN), which depends on N binary variables
si = ±1 [106]. Finding an exact solution implies the daunting task of a
discrete search in a space with exponentially-growing dimension in the sys-
tem size N. Therefore, optimization is typically approached using heuristic
minimization algorithms. Among these, a growing interest is devoted to
quantum optimization, which aims at exploiting quantum effects, namely
quantum superposition and entanglement, to obtain a wave function with
a large overlap with classical solutions. Alongside with well-established
schemes such as Quantum Annealing (QA) [107–111] and Adiabatic Quan-
tum Computation (AQC) [112, 113], implemented in analogue dedicated
hardware [114], recent approaches encompass the design of parameterized
quantum circuits, implemented on a digital quantum device, which are
run in loop with a classical computer in Variational Quantum Algorithms
(VQA) [115].

A conceptual preliminary step in quantum optimization is to map classical
spins on quantum spin-1/2 Pauli operators σ̂zj , hence regarding the initial
cost function as a quantum Hamiltonian that is diagonal, by construction, in
the standard computational basis of quantum computation [116]:

H(s1, . . . , sN)→ Ĥz(σ̂
z
1, . . . , σ̂zN) . (3.0.1)

Next, in QA a non-commuting driving term, often a transverse field, is in-
troduced, and the quantum Hamiltonian is taken to be

Ĥ(s) = s Ĥz +
(
1− s

)
Ĥx Ĥx = −

N∑
i=1

σ̂xi , (3.0.2)

with an interpolation parameter s = s(t) ∈ [0, 1] such that s(0) = 0 and
s(τ) = 1, τ being the total annealing time. If τ is large enough, compared
to the inverse square of the minimal spectral gap of Ĥ(s), one can rely on
adiabatic theorems [113] to prove that the system will be driven into the
ground state of the target Hamiltonian Ĥz. In its digitized version [117–
119] (dQA), the QA Schrödinger dynamics is implemented step-wise, in P

41
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discrete time steps of length δt = τ/P, after Trotter splitting the two non-
commuting terms Ĥz, Ĥx. This leads to a final state of the form

|ψP⟩ = e−iβPĤxe−iγPĤz · · · e−iβ1Ĥxe−iγ1Ĥz |ψ0⟩ , (3.0.3)

where |ψ0⟩ = | →⟩⊗N is the ground state of Ĥx, with | →⟩ = 1√
2
(| ↑

⟩ + | ↓⟩). Assuming a linear annealing schedule s(t) = t/τ the parame-
ters β = (β1 · · ·βP) and γ = (γ1 · · ·γP) are given by βp = (1− p/P)δt and
γp = (p/P)δt, with p = 1 · · ·P. Alternatively, one can regard β and γ as
2P variational parameters and optimizing the expectation value of the tar-
get Hamiltonian Ĥz over the variational state in Ed. 3.0.3. This approach is
dubbed Quantum Approximate Optimization Algorithm (QAOA) [120].

Despite promising results in problem-specific settings, the actual effective-
ness and scalability of quantum optimization schemes for classical optimiza-
tion is still debated. In fact, the quest for quantum speed-ups [121, 122] and
the real effectiveness of quantum optimization algorithms should ultimately
be tested on real scalable quantum devices, beyond the reach of classical sim-
ulations by means of Exact Diagonalization (ED) techniques. To implement
this program, however, one encounters two main hurdles.

The first, concerns available experimental platforms for quantum devices:
despite major progresses the number of available physical qubits and their
connectivity are quite limited. Moreover, experimentally available qubits are
very sensible to noise, thus limiting realistic applications to shallow circuits
requiring short coherence times. These technical issues severely limit, in
practice, the feasibility of quantum simulations beyond the classical limits.

Secondly, the actual implementation of QA [114] on analogue devices, as
well as that of digitized Quantum Annealing (dQA) [117] or VQAs [115] on
a digital circuit-based quantum computer, usually requires an actual imple-
mentation of the unitary time evolution generated by the quantum Hamil-
tonian in Eq. (3.0.1). This often constitutes a formidable technical challenge:
while few problems such as Max-Cut on regular graphs [123] only involve
two-body interactions, directly implementable in an analogue/digital device,
general optimization tasks usually yield a Hamiltonian Ĥz with non-local
k−bodies interactions, hence difficult to implement.

These experimental limitations and theoretical challenges call for efficient
classical simulations of quantum optimization protocols, beyond the usual
small-scale limits imposed by ED techniques. A prominent family of clas-
sical simulation techniques allowing for large-scale simulations of quantum
systems is represented by Tensor Networks (see Chapter 1). Major results
in this framework include winning strategies for 1D quantum many-body
physics [27, 38, 40, 124–126] and, more recently, significant contributions in
Machine Learning [127–129] and hybrid quantum-classical algorithms [130].
The goal of Tensor Networks (TN) is to provide an efficient representation
of quantum many-body wave functions in the form of a generic network of
tensors, connected by means of auxiliary indices [38, 131]. These indices
are characterized by a fixed bond dimension, χ, which controls the infor-
mation content of the network, characterizing its ability to encode entangled
states. Matrix Product States (MPS) [27] are the simplest class of TN: an MPS
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Figure 3.1: The MPS manifold Mχ, embedded in the exponentially larger Hilbert
space. Different QA protocols are represented as trajectories in this
space. The exact adiabatic dynamics (full red line) for a large anneal-
ing time τ ≫ 1 is not generally constrained into the MPS manifold.
Nevertheless, it will lead from |ψ0⟩ (MPS with χ = 1) to a final state
|ψτ⟩, which also belongs to the MPS manifold. As soon as the adiabatic-
theorem conditions are met, |ψτ⟩ has a big overlap with the ground-
state eigenspace spanned by all classical solutions. However, when the
dynamical protocol is dQA with a finite time step δt ∼ O(1), the ac-
tual Trotterized dynamics (black dashed line) may largely deviate from
the adiabatic one, due to an unwanted production of extra entangle-
ment (see Figs. 3.10, 3.11 in Sec. 3.2.3 for a discussion of these aspects).
Hence, the final state |ψED(1)⟩ may lay outside the MPS manifold, and
it definitely differs from the final QA state |ψτ⟩, yielding very small
overlap with classical solutions. Remarkably, when the Trotterized dy-
namics is performed within our novel framework (gray dotted line), i.e.
constrained to Mχ, by alternating the Trotter steps with projections into
the manifold, the MPS evolved state remains closer to the exact adia-
batic dynamics, thus finally leading to a final state |ψMPS(1)⟩ which is
very close to the target state.

wave function is obtained by the multiplication of site-dependent χ× χ ma-
trices A[i](si), each depending on the spin variable si ∈ {+1,−1}. MPS can
be manipulated efficiently in classical numerical simulations by means of
well-established algorithms, as the Density Matrix Renormalization Group
(DMRG) [27]. We refer the reader to Chapter 1 for a thorough introduction
to MPS and the corresponding numerical techniques.

In this Chapter, we present a novel framework to efficiently simulate quan-
tum optimization algorithms for a large class of hard classical optimization
problems. We focus on a standard dQA approach by repeatedly applying
the unitary operators e−iγpĤz , e−iβpĤx and iteratively projecting back, at
each step, the resulting state on the MPS manifold Mχ with a fixed bond di-
mension χ. A first main result of our work is a theoretical construction that
yields an efficient MPS-based representation of dQA for a family of classical
cost-function Hamiltonians Ĥz, inspired by paradigmatic discrete neural net-
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works and encompassing models with non-local multi-spin interactions, up
to N-body terms. This results in an efficient algorithm, with computational
cost scaling polynomially with the system size N, allowing for classical sim-
ulations well-beyond typical sizes analyzed by means of ED techniques.

Our numerical results are two-fold. First, in the regime of small time step
δt≪ 1, where dQA closely approximates the continuous QA dynamics, our
approach can systematically reproduce ED simulations of dQA, with a high
degree of accuracy. Secondly, in the regime of large δt ∼ O(1), characterized
by large Trotter errors that spoil the dQA accuracy, we observe that our al-
gorithm can significantly outperform ED simulations of dQA, surprisingly
providing far better-quality solutions for the optimization problem. We pro-
vide the following interpretation of this unexpected effectiveness (see sketch
in Fig. 3.1 and Sec. 3.2.3 for a comprehensive discussion). The initial state
|ψ0⟩ is a trivial MPS of bond dimension χ = 1. Moreover, the final an-
nealed state |ψτ⟩, resulting from the exact QA time evolution with τ ≫ 1

and thus expected to yield a large overlap with classical solutions, is often a
low-entanglement state, efficiently represented by a MPS of low bond dimen-
sion χ. This fact is certainly true for low-entangled many-body ground state
preparation; nevertheless, it may also be verified in the context of classical
optimization problems, whenever the number of classical solutions (span-
ning the ground-state eigenspace) is small enough, or when the exact QA
converges to a cluster of solutions. These conditions are met for the models
we examine, as detailed in Sec. 3.2.3 and B.3. Hence, in this case, both the
initial and the final states of QA belong to the manifold Mχ, although the
intermediate states may generally lay out of the manifold.

As stated above, in the regime of small δt, results based on ED and on
MPS simulations essentially coincide; on the contrary, in the regime of large
δt, dQA faces the blowing up of the Trotter errors, leading to an ED dynam-
ics governed by an effective Hamiltonian that substantially differs from the
original one. The resulting final state may thus deviate from the classical
solutions of the target Hamiltonian. In addition, it could encode unwanted
entanglement due to the spurious terms generated by the Trotter splitting.
Our MPS approach relies instead on multiple projections of the time-evolved
state on Mχ for each time step δt: this may explain, for some class of opti-
mization problems, the enhanced effectiveness of our MPS-based algorithm,
since its final state may be closer to the optimal annealed state |ψτ⟩. These
findings provide a novel promising application of TN techniques, which
might be adapted to implement efficient classical simulations for other quan-
tum optimization algorithms.

Finally, we show that a gate-decomposition of the final annealed MPS,
yields efficient quantum circuits that effectively solve hard classical opti-
mization problems, with a number of basis gates that grows only linearly
in the system size N and quadratically with the MPS bond dimension χ.
This result not only yields a numerical proof of principle on the effective-
ness of quantum circuits in these regimes, but may also serve as a guideline
to develop new classes of parameterized quantum circuits.
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3.1 models and methods

3.1.1 Models

The classical optimization problems we analyze can be formulated as a
ground-state search for a classical Hamiltonian H(sss), which can be mapped
in a quantum setting as outlined in Eq. (3.0.1). We will focus on a broad class
of classical Hamiltonians (or cost functions) that can be cast in the following
form:

H(sss) =

Nξ∑
µ=1

h (ξξξµ · sss) , (3.1.1)

where the ξµi ∈ {−1,+1} (µ = 1, 2...Nξ, i = 1, 2...N) are the components of
Nξ possibly random spin configurations, usually called patterns. h is any
sufficiently regular function. As anticipated, our methods, detailed in the
following Section, are quite general: they apply to any Hamiltonian that can
be rewritten in this form.

As a preliminary benchmark for our strategy, we validate the results of
our MPS-based technique against ED results for simple integrable p-spin
models [132–134]:

Hp−spin(sss) = −N

(
1

N

∑
i

si

)p

, (3.1.2)

which, for p = 2, is also known as the Lipkin-Meshkov-Glick (LMG) model
(or infinite-range Ising model). Let us notice that the p-spin Hamiltonian
can be rewritten as in Eq. 3.1.1 with a single pattern ξξξ0 = (+1,+1, ...,+1) and
h(x) = −N1−pxp. These benchmark models have trivial ground states: for
even p, the classical ground-states are the two ferromagnetic states sss = ±ξξξ0
(with energy Egs = −N) whereas for odd p only sss = +ξξξ0 is a ground state
(with energy Egs = −N). Thanks to the integrability of p-spin models, we
are able to verify the agreement of MPS and ED results up to large system
sizes.

We then focus on two prototypical optimization problems coming from
the realm of machine learning and artificial Neural Networks (NNs) [135,
136]. First, we consider the Hopfield model [135–142], a simple recurrent
neural network studied in unsupervised learning

HHopfield(sss) = −
∑
i,j

Jijsisj = −

Nξ∑
µ=1

(
ξξξµ · sss√
N

)2

Jij =
1

N

Nξ∑
µ=1

ξ
µ
i ξ
µ
j .

(3.1.3)

In this context, the patterns {ξξξµ}
Nξ
µ=1 are i.i.d. random variables and the goal

is to memorize them in the classical ground states. The Hopfield Hamil-
tonian entails infinite-range two-body interactions between any spin pair.
Concerning the relation between the number of patterns Nξ and the num-
ber of variables N, it is customary to set Nξ = αN with α = O(1). Different
regimes/phases in the thermodynamic limit (N → ∞) are distinguished by
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different values of α. In particular, for the Hopfield model at zero temper-
ature, αc ≃ 0.138 represents a critical value separating a retrieval phase
in which the model works as a memory device (α < αc), from a non-
retrieval/spin-glass phase (α > αc) [141].

Secondly, we examine the binary perceptron, the prototypical example
of a single-layer binary classifier, which is a fundamental building block
of NNs routinely used in supervised learning [135, 136, 143]. In this case,
the spin variables s are identified with binary synaptic weights, classifying
correctly a given pattern ξµ into a prescribed binary label τµ = ±1 if sgn(s ·
ξµ) = τµ (see the sketch in Fig. 3.2). During the training phase, a given
labeled data-set {ξµ, τµ}Nξµ=1 is provided, and the objective consists in finding
weight configurations s that classify correctly the whole training set. This is
naturally formulated as a minimization problem of a suitable cost function,
which assigns a positive energy cost for every pattern incorrectly classified,
with the exact solutions to the classification problem being characterized as
zero-energy configurations. A common choice for the such cost function is
given by

Hperceptron(sss) =

Nξ∑
µ=1

θ
(
−ξξξµ · sss

)(−ξξξµ · sss√
N

)
, (3.1.4)

where θ(x) is the Heaviside step function 1. Let us observe that the Hamil-
tonian in Eq. 3.1.4 is again in the general form given by Eq. 3.1.1. De-
spite encouraging numerical and analytical evidence on the effectiveness of
quantum optimization for this model [144, 145] and other closely related
models [146], the perceptron Hamiltonian implies all possible interactions
among spins, up to N-body terms, hence it is not efficiently implementable
on a quantum device. Also for the perceptron model, it is customary to
study the Nξ = αN regime, with α = O(1), since the critical capacity in the
thermodynamic limit is αc ≃ 0.83 [147], separating a SAT region for α < αc,
admitting zero-energy solutions, from an UNSAT region α > αc.

Figure 3.2: Schematic representation of a binary classifier consisting of a single per-
ceptron with synaptic weights sss.

1 In the previous expression, the labels τµ are all set to 1, as it can be done without loss of
generality for learning random patterns, i.e. if patterns and labels are both drawn from an
unbiased Bernoulli distribution.
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3.1.2 Digitized Quantum Annealing (dQA)

A standard procedure to implement Quantum Annealing on digital quan-
tum simulators relies on a discretization of the continuous QA time evolu-
tion in P ≫ 1 time steps of length δt = τ/P, followed by a Trotter split-up of
the two non-commuting terms. Albeit this scheme can be easily generalized
to higher orders, here we stick to the lowest-order contributions

e−iĤ(sp)δt ≃ e−i(1−sp)Ĥx δt e−ispĤz δt +O
(
δt
)2 , (3.1.5)

where p = 1, 2, . . . ,P and sp = tp/τ = p/P. Introducing the shorthands
βp = (1 − sp)δt, and γp = spδt, we can rewrite the previous expression
more concisely as

e−iĤ(sp)δt ≃ Ûx(βp) Ûz(γp) +O
(
δt
)2

with
Ûx(βp) = e−iβpĤx , Ûz(γp) = e−iγpĤz , (3.1.6)

thus recovering Eq. (3.0.3). The dQA framework can reproduce accurately
the real QA dynamics for any value of the total annealing time τ, which is
exactly recovered by simultaneously scaling P→∞ and δt→ 0, setting their
product equal to τ. In practice, for a fixed value of P, the optimal value of
the Trotter step δt depends on a trade-off between the Trotter errors and the
annealing time τ [118]. Indeed, for small δt (small τ) the time evolution is
not adiabatic, whereas for large δt (large τ) the Trotter split-up is expected
to become a rough approximation and to introduce spurious quantum cor-
relations. As discussed in Sec. 3.2.3, the discrete-time evolution obtained
without any Trotter split-up is often unexpectedly accurate even for values
of δt ∼ O(1); however, the splitting in Eq. (3.1.5) is a necessary step to per-
form gate decomposition of the annealing dynamics on a quantum device,
as well as to perform efficient classical simulations.

3.1.3 dQA with MPS

In this Section, we introduce our novel TN framework, which allows to effi-
ciently simulate dQA for any classical Hamiltonian in the form of Eq. (3.1.1).
First, let us notice that the initial state |ψ0⟩ can be trivially represented as
an MPS of bond dimension χ = 1, since it is a product state. Next, our goal
is to rewrite the two unitaries Ûz(γp) and Ûx(βp) as Matrix Product Oper-
ators (MPO, see Sec. 1.5). Ûx admits an elementary decomposition into an
MPO of bond dimension χ = 1, since it is the exponential of an one-body
Hamiltonian:

⟨sss ′|Ûx(βp)|sss⟩ =
N∏
i=1

⟨s ′i|eiβpσ̂
x
i |si⟩ =

N∏
i=1

W[i](s ′i, si)

W[i](s ′i, si) = δs ′i,si cosβp + i (1− δs ′i,si) sinβp ,

|sss⟩ , |sss ′⟩ being generic states of the computational basis. Since here χ = 1, the
tensors reduce to simple scalarsW[i](s ′i, si). The MPO decomposition for Ûz
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is much more challenging. First, one can factorize Ûz into terms depending
on a single pattern (see Eq. (3.1.1)), resulting in the following matrix element:

⟨sss ′|Ûz(γp)|sss⟩ =
Nξ∏
µ=1

⟨sss ′|Ûµz (γp)|sss⟩ = δsss ′,sss
Nξ∏
µ=1

e−iγph(ξ
µ·s) . (3.1.7)

Let us now exploit the specific form of the Hamiltonian in Eq. (3.1.1). We
notice that, by definition, any such Hamiltonian depends on the spin config-
uration sss only via the following variables:

mµ(sss) = ξξξµ · sss = overlap between sss and ξξξµ ,

or, equivalently:

xµ(sss) =
N−ξξξµ · sss

2
= number of bits of sss that are different from ξξξµ. (3.1.8)

The latter expression is the well-known Hamming distance between sss and
ξξξµ and, accordingly, we observe that

mµ ∈ {−N,−N+ 2, ...,N− 2,N} , xµ ∈ {0, 1, ...,N} .

This is a key point, as it represents the only hypothesis which our construc-
tion relies on. In fact, since x (for any pattern µ) is an integer variable taking
values in the discrete set {0, 1, ...,N}, then any function O(x) can be rewritten
by means of the Discrete Fourier Transform (DFT) as follows

O(x) =
1√
N+ 1

N∑
k=0

Õk ei
2π
N+1kx , (3.1.9)

where the Fourier coefficients are computed as

Õk =
1√
N+ 1

N∑
x=0

e−i
2π
N+1kxO(x) . (3.1.10)

By setting h(ξµ · s) = f(xµ(s)), where xµ(s) is defined by Eq. 3.1.8, and
using the DFT expansion reported in Eqs. (3.1.9) and (3.1.10), we can further
manipulate Eq. 3.1.7 as follows:

⟨sss ′|Ûµz (γp)|sss⟩ = δsss ′,sss
1√
N+ 1

N∑
k=0

Ũk,p ei
2π
N+1kx

µ(s)

Ũk,p =
1√
N+ 1

N∑
x=0

e−i
2π
N+1kx e−iγpf(x) , (3.1.11)

where the Fourier components Ũk,p depend implicitly on the angle γp, so
they can be regarded as a matrix of dimension (N + 1) × P. Remarkably,
this Fourier decomposition allows us to find an efficient representation of
Ûz(γp) as an MPO. This is accomplished by using Eq. 3.1.8, which can be
reformulated more explicitly as

xµ(sss) =

N∑
i=1

(
1− ξµi si

2

)
.
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Indeed, by identifying the wave-numbers k = 0, 1, ...N as auxiliary indices in
the MPO formalism, we can rewrite

⟨sss ′|Ûµz (γp)|sss⟩ =
N∏
i=1

W
[i]
ki−1,ki

(s ′i, si) , (3.1.12)

where we defined the following tensors, diagonal by construction in the
physical spin indices:

W
[i]
1,k(s

′
i, si) = δσ ′

i,si

(
Ũk,p√
N+1

) 1
N

ei
π
N+1k(1−ξ

µ
i si) i = 1

W
[i]
k,k ′(s ′i, si) = δσ ′

i,si

(
Ũk,p√
N+1

) 1
N

ei
π
N+1k(1−ξ

µ
i si)δk,k ′ i = 2, · · · ,N− 1

W
[i]
k,1(s

′
i, si) = δσ ′

i,si

(
Ũk,p√
N+1

) 1
N

ei
π
N+1k(1−ξ

µ
i si) i = N

(3.1.13)
In Eq. (3.1.12) we set k0 = kN = 1, whereas tensors are implicitly summed
over repeated auxiliary indices, each of them spanning N+ 1 values. There-
fore, we found that each unitary time evolution operator Ûµz (γp) associated
to a given pattern µ can be written efficiently as an MPO of bond dimension
χ = N+ 1. We remark that the four-indices tensors W[i]

k,k ′(s ′i, si) are diagonal
also in the auxiliary indices, effectively depending only on a single auxiliary
index k as well as on a single physical one si. However, note that they also
depend on the angle γp and on the pattern index µ, both of which are not
explicitly indicated. In light of these results, the whole dQA time evolution
can be represented exactly as the 2D Tensor Network in Fig. 3.3, correspond-
ing to the application of a series of MPOs to the initial trivial MPS |ψ0⟩. This
result is the starting point for our MPS-based algorithm for the classical sim-
ulation of dQA, which is summarized in the pseudo-code 1. Importantly,
when contracting this 2D TN the MPS bond dimension would increase ex-
ponentially with the number of Trotter slices P. This calls for an effective
compression procedure, which is detailed in the next section: indeed, a cru-
cial input parameter of our algorithm is the fixed maximum bond dimension
of the MPS.

Let us notice that the MPO representation shown in Eq. 3.1.13 can also
be exploited to write the Hamiltonian itself as an MPO of bond dimension
χ = N + 1. This fact is remarkable, since it allows the exact evaluation of
the classical cost function (i.e. the expectation value of Ĥz) over any MPS: in
particular, when applying the Algorithm 1, we can keep track of the exact
value of the cost function along the time evolution. Moreover, the repre-
sentation of Ĥz as MPO makes it possible to apply the DMRG algorithm,
in order to find an approximate ground state of the system. However, as
shown in Sec. B.1 of Appendix B, this method has some issues, since the
quality of the final result is strongly dependent on the initial guess provided
to the DMRG optimization. Moreover, even if DMRG reaches convergence,
the optimized state turns out to have a sensible overlap with only one of
the degenerate ground states configurations (classical solutions). The QA
protocol, instead, always reaches delocalized quantum states, having large
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Figure 3.3: a) The four-indices MPO local tensor W[i]
kk ′(si, s ′i) of the Ûµz (γp) time

evolution operator. Dotted grey lines represent auxiliary indices of di-
mension N+ 1 (k,k ′ = 0, 1, ...,N). b) The trotterized time evolution of
dQA as a 2D Tensor Network. Blue (red) squared shapes represent the
MPO tensors for the decomposition of Ûµz (γp)

(
Ûx(βp)

)
time evolution

operators.

overlaps with many different solutions (see Sec. B.1 in Appendix B for de-
tails). This delocalization over clusters of classical solutions is an interesting
confirmation of previous results[144, 145] in a new setting, and it may repre-
sent a winning feature for some classical optimization problems. In addition,
whereas methods as DMRG are purely related to the classical simulation of
many-body quantum systems, our MPS-scheme simulates dQA, providing
a benchmark for Quantum Annealing experiments on real quantum devices,
beyond the small system sizes reachable by means of ED methods.

Finally, it is worthwhile to mention that our TN representation can be eas-
ily adapted to study imaginary time evolution and the classical equilibrium
properties of the corresponding classical models, i.e. without the transverse
term Ĥx.2

2 Indeed, in this case, the classical equilibrium partition function will assume the form of a 2D
tensor network as in Fig. 3.3, without the single-qubit layers.
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Algorithm 1 dQA with MPS

Input: the dQA parameters τ, P, δt = τ/P, the MPS maximum bond
dimension χ

1: Compute the Fourier matrix Ũk,p (Eq. 3.1.11) of dimension (N+ 1)× P
2: Define the initial state |ψ⟩ = |ψ0⟩ as an MPS of bond dimension χ = 1

3: for (p = 1, p = P, p++) do
4: for (µ = 1, µ = Nξ, µ++) do
5: apply Ûµz (γp) to the current MPS |ψ⟩ and compress to a lower

bond dimension χ
6: update |ψ⟩ setting it equal to the resulting MPS
7: end for
8: apply Ûx(βp) to the current MPS |ψ⟩
9: end for

Output: the final optimized MPS |ψ⟩

The MPS compression

A key step in our proposed algorithm is the iterative compression of the MPS
wave function, reported in line 5 of the pseudo-code 1. As anticipated, this
is necessary to avoid an exponential increase of the MPS bond dimension
with the number of Trotter steps P. In practice, the compression procedure
projects the dynamics on the manifold of MPS with fixed maximum bond
dimension χ. This projection can be achieved with the method in Section
1.4.4. In our particular case, |ψ⟩ is given by the application of a unitary time
evolution operator to the MPS at the previous step, i.e. |ψ⟩ = Û

µ
z (γp) |ϕ⟩.

In general, when an MPO is applied to an MPS, the corresponding bond
dimensions are multiplied, thus we would get a bond dimension (N+ 1)χ

and the overall cost of one compression would be O(NsweepsN
3χ3).

However, the compression efficiency can be greatly improved by exploit-
ing the particular structure of the MPO in Eq. 3.1.13. To this scope, let us
first observe that each operator Ûµz (γp) can be equivalently recast into a sum
of (N+ 1) MPOs, each of bond dimension χ = 1. This fact can be seen di-
rectly from Eq. 3.1.13, by noticing that the tensors W are diagonal in the
auxiliary indices k,k ′. More formally, if we define the tensors

Wk;[i](s ′i, si) = δs ′i,si

(
Ũk,p√
N+ 1

)1/N
ei

π
N+1k(1−ξ

µ
i si) k = 0, 1...N i = 1, 2...N ,

we have

N∑
k=0

N∏
i=1

(
Wk,[i](s ′i, si)

)
= δsss ′,sss

∑
k

Ũk,p√
N+ 1

ei
2π
N+1kx

µ(s) = ⟨sss ′|Ûµz (γ)|sss⟩ ,

(3.1.14)
namely the operator Ûµz (γ) is a sum of N+ 1 MPOs with bond dimension
χ = 1. Therefore, the uncompressed MPS |ψ⟩ = Û

µ
z (γp) |ϕ⟩ can be written
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as sum of N+ 1 MPS |ψk⟩, each with bond dimension χ, so that Eq. 1.4.9
becomes

∂

∂(Ã
[i]
αi−1,αi)

∗

(
⟨ψ̃|ψ̃⟩−

N∑
k=0

⟨ψ̃|ψk⟩
)

= 0 . (3.1.15)

Now, the second term involves N+ 1 contractions of MPS with bond dimen-
sion χ. The computational cost is therefore reduced by a factor N, i.e. to
O(NsweepsN

2χ3).

Estimate of the computational cost

The computational bottleneck of Algorithm 1 is the iterative compression of
MPS sketched in the previous section. This is repeated PNξ times, and each
repetition is expected to have a computational cost O(NsweepsN2χ3), where
χ is the maximum bond dimension. If we set Nsweeps = O(1), the overall
algorithmic cost is therefore estimated to be O(PNξN

2χ3) and, in the regime
Nξ ∼ N, we expect O(PN3χ3).

The most computationally expensive steps are 3− 9, whereas the initial
Fourier transforms can be performed at cost O(PN logN) by means of the
Fast Fourier Transform. In particular, the actual computational bottleneck
is the application of each Ûµz (γp) to the current MPS, and the subsequent
compression to the prescribed bond dimension χ.

Concerning the cost function evaluation, by exploiting the same MPO
structure of Eq. 3.1.13 (with h̃k in place of Ũk,p), once again one can rewrite
Ĥz =

∑Nξ
µ=1 ĥµ as a sum of Nξ(N+ 1) MPOs of bond dimension 1, instead

of a single MPO of bond dimension Nξ(N+ 1). This allows to reduce the
cost of the tensor contractions involved in the evaluation of ⟨ψ|Ĥz|ψ⟩, that is
O(NξN

2χ3), instead of O(N3ξN
4χ3). If the cost function is evaluated at each

step of dQA the overall cost is O(PNξN
2χ3), that is of the same order of the

algorithm itself.

Estimate of the computational cost

The ultimate result of simulating dQA through TN is an optimized MPS,
ideally exhibiting a significant overlap with the subspace of ground states
in the target Hamiltonian Ĥz. Although our simulation is conducted using
exclusively classical resources, it is possible to translate the final MPS into
a quantum circuit, enabling real-world implementations on near-term quan-
tum devices. This fact may set the stage to further manipulate the state with
quantum resources, for example with additional hybrid quantum-classical
optimizations [115]. The mapping onto a quantum circuit can be achieved
by exploiting the MPS nature of the final state. As we discussed in Sec. 1.8,
any MPS having maximum bond dimension χ = 2n can be obtained from
the trivial state |000⟩ = |0...0⟩ by applying sequentially N unitary gates, each
acting at most on log2 χ + 1 = n + 1 qubits. Although this proof of con-
cept is remarkable, in order to practically compile the optimized MPS into a
quantum circuit we focus on another method, reported in [51] and discussed
in Sec. 1.8. This employs an algorithm that iteratively optimizes two-qubits
unitaries in a fixed circuit architecture, in order to maximize the fidelity with
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the target MPS. The geometry of the circuit is given by a fixed number D of
staircase layers of two-qubits gates.

3.2 results

In this Section, we analyze and discuss our numerical results on MPS simu-
lation of dQA. Here, we focus on the benchmark p−spin model and on the
binary perceptron; the same qualitative results hold for the Hopfield model,
as reported in Sec. 3.2.4. In the MPS simulations of the following sections,
we fix a relatively small value of the bond dimension χ = 10: in Sec. B.2
of Appendix B, we perform an analysis of the convergence for increasing
values of χ. With such bond dimension, we are able to study systems up to
size N ≃ 100 (see Sec. 3.2.4), whereas ED is necessarily limited to N ≃ 20.

It is useful to introduce the energy density

ε(s) =
⟨ψ(s)|Ĥz|ψ(s)⟩− Egs

N
, (3.2.1)

where |ψ(s)⟩ is the instantaneous wave function for a certain value of the
annealing parameter s ∈ [0, 1] and Egs is the ground-state energy of Ĥz. The
residual energy density at the end of the annealing schedule, defined as ε(1),
can be regarded as a figure of merit of dQA effectiveness. The instantaneous
standard deviation of the time-dependent Hamiltonian Ĥ(s) is written as

σĤ(s) =
1

N

(
⟨ψ(s)|Ĥ2(s)|ψ(s)⟩− ⟨ψ(s)|Ĥ(s)|ψ(s)⟩2

)1/2
, (3.2.2)

with an analogous definition for σĤz(s). Notice that the residual standard
deviation of Ĥz, i.e. σĤz(1) = σĤ(1), is another possible figure of merit for
dQA, since it is expected to vanish if the exact ground-state of Ĥz is reached.
Moreover, σĤ(s) is expected to be constantly 0 in the case of a perfectly
adiabatic dynamics.

3.2.1 Benchmark (p-spin models)

As a preliminary check, we focus on the integrable p−spin model, in order
to benchmark our MPS-based simulations against ED results, up to large
system sizes. Let us remark that the Hamiltonian considered in Eq. 3.0.2
(with Ĥz given by Eq. 3.1.2) has a phase transition as a function of the an-
nealing parameter s. In the thermodynamic limit N → ∞, one encounters
a second order phase transition for p = 2, and a first order phase transi-
tion for p > 2 [134]. In particular, by means of mean field calculations, one
can show that the critical values are sc = 1/3 for p = 2 and sc ≃ 0.435 for
p = 3 [134]. These phase transitions represent a challenge for Quantum An-
nealing, since a system is expected to stay in the instantaneous ground state
of Ĥ(s) only if the total evolution time τ is (at least) inversely proportional
to the square of the minimum energy gap of Ĥ(s) [132], as stated by the
adiabatic theorem. Besides, it is also known that the energy gap decreases
exponentially as a function of the system size N at a first-order quantum
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Figure 3.4: p−spin model. Residual energy density ε(1) (left column) and residual
standard deviation of the energy σĤz(1) (right column) as a function of
the time step δt, for a) p = 2 and b) p = 3. We compare MPS (χ = 10)
and ED results. The system size is N = 50.

Figure 3.5: p−spin model. Energy density ε(s) as a function of the annealing pa-
rameter s. Data refer to P = 1000 time steps and a) δt = 0.5 (close to the
minimum) and b) δt = 0.9 (large Trotter errors regime). We consider
both p = 2 (green) and p = 3 (red), comparing MPS (χ = 10) with ED.
The system size is N = 50.

phase transition, whereas the scaling is polynomial in N for a second-order
transition [133]. Consequently, a QA implementation applied to finite-size
systems is expected to perform worse for p = 3 than for p = 2. Let us no-
tice that dQA can be easily simulated via ED up to large qubit numbers for
the p−spin model. Indeed, the interpolating Hamiltonian Ĥ(s) in Eq. 3.0.2
commutes with the total spin operator

Ŝ2 =
1

4

∑
a=x,y,z

( N∑
i=1

σ̂ai

)2
,
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for any value of p. Since the initial state |ψ0⟩ of dQA belongs to the Hilbert
space sector of maximum total magnetization, i.e.

⟨ψ0|Ŝ2|ψ0⟩ = ⟨→ · · · → |Ŝ2|→ · · · →⟩ = N

2

(
N

2
+ 1

)
,

the time evolution of the system is constrained in this sector for any step
p = 1, . . . , P. This allows to write the time evolution operators Ûz(γp) and
Ûx(βp) as matrices of dimension N+ 1×N+ 1, and to evaluate exactly the
dynamics.

In Fig. 3.4, we benchmark our MPS results, obtained by setting a maxi-
mum bond dimension χ = 10, with ED results. This is done for p = 2, 3
models, with N = 50 qubits. We plot the residual energy density ε(1) and
the residual standard deviation σĤz(1) vs the time step δt = τ/P, with a
total number of steps fixed to P = 100, 1000. In all simulations we used a
first-order Trotter approximation, as sketched in Sec. 3.1. As expected, ED
data confirm that the final annealed state |ψ(s = 1)⟩ becomes a better approx-
imation of the ground state by increasing the time step δt (at fixed P), until a
minimum is reached, and then the protocol starts to become inaccurate due
to large Trotter errors. For p = 2, the MPS results are in perfect agreement
with ED for all values of δt, proving that our tensor network techniques can
reproduce the exact (digitized) dynamics, despite fixing a finite bond dimen-
sion. For p = 3, the agreement is equally good, except for the regime of large
δt, which is dominated by large Trotter errors. In this case, MPS results devi-
ate from ED, surprisingly assuming lower values of the final energy density
ε(1).

To summarize, in the regime of sufficiently small δt and large values of P,
i.e. where dQA approximates accurately the actual QA dynamics, our MPS
techniques numerically coincide with ED simulation of dQA, thus proving
an effective tool to simulate the annealing of large-size systems (at least for
these benchmark models). In contrast, in the large δt regime, dominated
by large Trotter errors, the MPS dynamics can sometimes depart from ED
results. However, as sketched in Fig. 3.1 and in its discussion, the final MPS
may turn out to be a better approximation (in terms of residual energy) of
the ground state if compared to the final state obtained by exact dynam-
ics. We will observe the same phenomenon in the next sections, for the
other models considered. In Fig. 3.5, we also compare ED and MPS results
along the annealing dynamics, for P = 1000. In particular, we consider two
representatives values of δt = 0.5 (panel a) and δt = 0.9 (panel b), roughly
corresponding to the minima of the residual energy landscape in Fig. 3.4 and
to the regime dominated by Trotter errors, respectively. We plot the energy
density ε(s), as a function of s ∈ [0, 1]. For p = 2, we observe a perfect match
of MPS and ED values of ε(s), during the whole time evolution. For p = 3,
however, the agreement is good only for δt = 0.5 (corresponding to the min-
imum, i.e. low Trotter errors), whereas for δt = 0.9 our MPS dynamics does
not reproduce the exact digitized dynamics (at least for s > sc, where sc
corresponds to the phase transition point). Consistently with the discussion
above, the MPS simulation yields substantially lower values of the energy
density in the last part of the annealing (in particular for s approaching to
1).
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3.2.2 Binary perceptron

Figure 3.6: Binary perceptron. Residual energy density ε(1) as a function of the
time step length δt for N = 21 and P = 100, 1000. Data are averaged
over five different training sets, for both values of Nξ (or α = Nξ/N)
considered: a) Nξ = 17 (α ≃ 0.81) close to the SAT/UNSAT transition,
and b) Nξ = 8 (α ≃ 0.38) in the SAT phase. MPS results with χ = 10

(full symbols) are compared with ED results (solid lines), showing good
agreement for δt ≪ 1, and remarkably better results for δt = O(1) (see
discussion in the main text). Error bars for MPS data are given by the
standard error of the means (seldom visible). Solid lines with lower
opacity represent average ± the standard error of the mean for ED data.

Figure 3.7: Binary perceptron. Energy density ε(s) as a function of the annealing
parameter s (N = 21, Nξ = 17, P = 1000). We fixed δt = 0.1 (green) or
δt = 1.0 (red).

We now focus on the binary perceptron model, as defined by Eq. 3.1.4.
First, we consider a system of size N = 21, so that the classical solutions/-
ground states can easily be found by enumeration, and MPS findings can be
compared to ED results.

We set Nξ = 17, corresponding to α = Nξ/N ≃ 0.81, close to the critical
value αc ≃ 0.83, and we run our simulations for different training sets, la-
beled {ξξξµ}

Nξ
µ=1. In particular, we considered the same training sets used in

Ref. [144], also analyzed in Ref. [145]. These were originally selected to yield
highly non-convex minimization tasks, proving particularly challenging for
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standard Simulated Annealing techniques (i.e. Simulated Annealing suffers
from an exponential slow-down, due to the trapping in meta-stable states).
In the following, for conciseness, we show data averaged over five training
sets in that list. However, the same results and considerations hold true for
each single case in exam. In Fig. 3.6 (panel a)), we show the residual en-
ergy ε(1) obtained by the MPS simulations and by ED, spanning different
values of time step length δt = τ/P. The total number of steps is fixed to
P = 100 or P = 1000. Here and in the following, unless otherwise stated,
MPS simulations are run by setting a maximum bond dimension χ = 10. In
both cases, we observe that MPS results replicate ED data for small values
of δt (δt ≪ 1). On the other hand, for higher values of δt (i.e. δt ∼ O(1)),
ED data show an expected increase of the final energy density due to Trot-
ter errors. On the contrary, MPS simulations surprisingly yield a further
considerable decrease in the residual energy. This phenomenon supports
the heuristic sketch in Fig. 3.1, replicating more distinctly what already ob-
served in Fig. 3.4 b) for the p = 3 spin model at large values of δt. Strik-
ingly, in this noise-dominated regime, our MPS framework still successfully
performs the quantum optimization, and it yields non-trivial final quantum
states that prove more efficient than those obtained by exact dQA. A detailed
discussion of this phenomenon is given in Sec. 3.2.3. For completeness, we
investigated whether these findings hold true also in the SAT phase, further
away from the critical value αc. The answer is positive, as shown in Fig. 3.6
(panel b)) for N = 21, Nξ = 8 (i.e. α ≃ 0.38). Here, data are also averaged
over five different training sets, which are randomly generated.

The remarkable difference between the two regimes of δt ≪ 1 and δt =
O(1) is better elucidated in Fig. 3.7, where we compare ED and MPS results
for the two representative cases of δt = 0.1 and δt = 1.0, by plotting the
energy density ε(s) during the annealing. In the first case, we observe an
excellent agreement between the two methods, whereas in the second case
the instantaneous MPS deviates from the ED state, finally reaching consider-
ably lower energy values. In particular, the energy density of the MPS drops
by almost two orders of magnitude in the very final annealing steps (i.e. for
s→ 1).

Figure 3.8: Binary perceptron. Residual energy density ε(1) as a function of time
step length δt, for a single randomly-generated training set (N = 50

and P = 100, 1000). Two values of Nξ (α) are considered: a) Nξ = 40

(α = 0.8), b) Nξ = 20 (α = 0.4).
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As already discussed, our MPS framework allows for large-scale simula-
tions, beyond the reach of standard ED techniques. This may prove a useful
benchmark for the actual implementation of quantum optimization schemes
on near-term quantum devices. Here, to show the effectiveness of our meth-
ods, we address the example of a perceptron with N = 50 qubits, well be-
yond the reach of ED techniques, by studying a single randomly-generated
training set. In Fig. 3.8 we plot the residual energy ε(1) vs the time step
length δt, as obtained by MPS simulations. The total number of steps is
fixed again to P = 100 or P = 1000 and two similar values of α are consid-
ered: α = 0.8 (Nξ = 40, panel a) and α = 0.4 (Nξ = 20, panel b). Our
MPS-based simulation yields a final state with low values of residual energy
density, corresponding to a successful optimization. Furthermore, these re-
sults confirm the previously outlined scenario: the residual energy density
keeps decreasing up to δt ≃ O(1). As a matter of fact, by increasing further
the Trotter step beyond a model-dependent threshold, the algorithm enters
into an unstable regime where the method fails to provide an optimal solu-
tion, and the residual energy ε(1) suddenly jumps to very large values.

In the discussion above, we assumed the residual energy density ε(1) to be
a good figure of merit of dQA effectiveness. In the following, we verify this
explicitly for the case of N = 21 and Nξ = 17, by evaluating the overlap of
the final annealed MPS |ψ(s = 1)⟩ with the exact ground states {sss∗a}

Nsol
a=1 . The

degeneracy of the perceptron model ranges in Nsol ∈ [20, 160], depending
on the particular training set in exam: here, for simplicity, we refer to the first
training set with Nsol = 80. In Fig. 3.9 a) we plot (one minus) the total suc-
cess probability, defined as

∑Nsol
α=1 p(sss

∗
a) =

∑Nsol
α=1 | ⟨sss∗a|ψ(s = 1)⟩ |2, vs δt for

P = 100, 1000, confirming the same trend as previously shown in Fig. 3.6 (a).
Additionally, in Fig. 3.9 b), we plot an histogram of probabilities p(sss∗a) for a
fixed value of δt (i.e. δt = 1.4, approximately corresponding to the best MPS
performance) 3. Noticeably, the final output of dQA has a non-vanishing
overlap with a number of the classical solutions of the optimization prob-
lem, i.e. the final wave function is delocalized. As already mentioned, this
fact represents a remarkable difference with the DMRG algorithm, which
always converges to completely localized wave functions, overlapping with
a single classical solution (see Sec. B.1 for details on DMRG results). Finally,
let us mention that the final state has a non-vanishing overlap with the same
set of classical solutions for both values of P, and the same is observed by
comparing MPS results with ED (data not shown).

3.2.3 The MPS-projection mechanism to mitigate Trotter errors

In this section, we provide some theoretical insight to explain the numerical
results presented above. Let us first summarize a few preliminary concepts.
The set of MPS with any fixed (finite) value of bond dimension χ constitutes
a smooth manifold Mχ inside the many-body Hilbert space [40], as repre-
sented in Fig. 3.1. The dimension of Mχ is ≃ 2χ2N, since this is the number

3 We order the ground states sss∗a such that p(sss∗a) is in descending order for P = 1000, and we
only select the 40 most probable solutions.
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Figure 3.9: Binary perceptron. a) One minus the total success probability∑Nsol
a=1 p(sss

∗
a). The agreement with the corresponding plot for the resid-

ual energy density confirms that the latter is a good proxy for dQA ef-
fectiveness. b) Probabilities p(sss∗a) of measuring the final state |ψ(s = 1)⟩
in a given solution sss∗a, with δt = 1.4. In both figures, data refer to a sin-
gle instance with N = 21, Nξ = 17. The same qualitative results hold
for all the other training sets. Solutions are arbitrarily sorted such that
p(sss∗a) is in descending order for P = 1000.

of independent parameters in the MPS tensors, whereas the dimension of
the many-body Hilbert space is exponentially greater, 2N. Also, Mχ can be
equivalently characterized as the manifold of quantum states such that the
entanglement entropy between any system bipartition is upper bounded by
logχ [27].

Let us now go back to our MPS-based Algorithm, introduced in Sec. 3.1
and summarized in the pseudo code 1, by examining it from a geometrical
point of view (as depicted in Fig. 3.1). We remark that the initial state of
dQA, namely the fully polarized state |ψ0⟩ = |→⟩⊗N, is an MPS with bond
dimension 1, thus it is a point belonging to the manifold Mχ (for any χ ⩾ 1).
For every time step p = 1 · · ·P, our algorithm repeatedly projects the exact
dQA dynamics on Mχ, after the application of each MPO Û

µ
z (γp) (corre-

sponding to the patterns µ = 1, . . . ,Nξ). The projection is provided by the
compression algorithm described in Sec. 3.1.3. This procedure results into
an effective trajectory belonging to the manifold Mχ, sketched in Fig. 3.1 by
a gray dashed line, and it affects the entanglement content of the quantum
state, constrained to be ⩽ logχ.

The different qualitative results obtained in the two regimes of small
δt ≪ 1 and larger δt ∼ O(1) can be understood in terms of entanglement
entropy (see Sec. B.2 and B.3 of Appendix B for details). Indeed, in the
regime δt ≪ 1, the entanglement of the instantaneous ED state (during the
whole annealing dynamics) is relatively low, allowing for an accurate and
efficient simulation of dQA with our MPS implementation, with sufficiently
low values of the bond dimension χ. In contrast, this is not possible for
larger values of δt, since exact dQA generates large amounts of entangle-
ment, hindering an efficient encoding with MPS techniques. Indeed, in this
regime, MPS simulations largely deviate from exact dQA simulations, nev-
ertheless surprisingly outperforming them. To clarify this peculiar aspect,
we figure out that the high entanglement production and the large values of
the final energy density ε(1), observed in exact dQA for δt ∼ O(1), are both
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related to Trotter errors, which can be alleviated by a repeated projection on
Mχ.

In previous studies (notably in Ref. [118] and [148]) it has been shown that
Trotter errors largely dominate over time discretization errors in the regime
of large δt. More explicitly, a comparison can be drawn between the two
following protocols 4
|ϕP⟩ =

∏P
p=1 e−i Ĥ(sp)δt |ψ0⟩ dQA without Trotterization

|ψP⟩ =
∏P
p=1 e−i(1−sp) Ĥx δt e−isp Ĥz δt |ψ0⟩ dQA with Trotterization

(3.2.3)
where p = 1, 2, . . . ,P and sp = tp/τ = p/P (as in Eq. 3.1.5). Remarkably,
approximating the exact continuous time-ordered evolution with P discrete
time steps of length δt (dQA without Trotterization) turns out to be very ac-
curate even for large time step values (i.e. δt ∼ O(1)), as long as P is large
enough. This ”robustness to time discretization” has been confirmed by sev-
eral theoretical studies, such as Ref. [148], and we verify it numerically in
Sec. B.3. On the contrary, in the same regime δt ∼ O(1), dQA with Trotter-
ization becomes highly inaccurate, leading to a sharp increase in the final
energy density ε(1). To better elucidate this fact, we can rewrite the Trotter
split-up as

e−i(1−sp)Ĥx δt e−ispĤz δt =

= exp
(
− iδt Ĥ(sp) −

spurious Trotter terms︷ ︸︸ ︷
1

2
(δt)2 sp

(
1− sp

)
[Ĥx, Ĥz] + · · ·

)
,

(3.2.4)

where use has been made of the lowest-order Baker-Campbell-Hausdorff ex-
pansion, neglecting O(δt)3 terms. In the regime δt ∼ O(1), the large spurious
Trotter terms in Eq. 3.2.4 induce non-adiabatic quantum transitions.

This scenario is confirmed by numerical simulations. In particular, we
compare the two dQA protocols, with and without a first-order Trotter split-
up, both of them simulated by means of ED, with our MPS scheme (we set
χ = 10). 5 This is done in Fig. 3.10 for a binary perceptron of increasing
size N, with the parameter α fixed to 0.8 and Nξ = αN scaling proportion-
ally to N. Data are averaged over 10 random realizations of the patterns
{ξξξµ}

Nξ
µ=1. In panel a), we plot the final energy density ε(1), for two repre-

sentative time step values δt = 0.1 (δt = 1.0) for the small (large) time step
regime, respectively. In the first case (δt = 0.1), the agreement betweeen the
two dQA protocols and the MPS simulation is remarkable. Indeed, in this
regime, Trotterization has negligible effects, and our MPS simulation closely
resembles dQA without any Trotter split-up. In the second case (δt = 1.0),
a few observations are in order. First, we notice that dQA without Trotter-
ization performs even better than in the small time step regime, reaching

4 Notice that the authors of Ref. [118] adopt a different naming convention for these proto-
cols. Indeed, they denote dQA without Trotterization as ”linear-stepQA”, while dQA with
Trotterization as ”linear-dQA”.

5 We remark that our MPS methods allow for an efficient representation of dQA with Trotteri-
zation, as thoroughly explained in Sec. 3.1.
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Figure 3.10: Binary perceptron. a) Final energy density ε(1) and b) half-system en-
tanglement entropy SN/2(1) of the final state, for systems of increasing
sizeN. We set α = Nξ/N = 0.8 and P = 100. Data are averaged over 10
realizations of the random patterns, and the resulting standard devia-
tions are smaller than the marker size. We fix two representative values
of the time step, δt = 0.1 (blue) and δt = 1.0 (orange). We perform an
exact simulation of dQA with and without Trotterization (see Eq. 3.2.3),
and we compare these results with our MPS simulations (χ = 10). The
red line in panel b) coincides with the maximum entanglement that
can be encoded into such MPS, namely logχ. In the small time step
regime, Trotter errors are negligible, thus the two dQA protocols yield
very similar results; moreover, they can be efficiently simulated with
MPS, since the entanglement content of the final state is quite small.
The qualitative picture is drastically different in the large time step
regime: here, Trotter errors spoil the dQA effectiveness (large resid-
ual energy) and result in large entanglement values. Surprisingly, in
this regime, MPS simulations still provide reliable low-entangled final
states.

significantly lower values of ε(1). Thus, dQA would benefit, in principle, of
a larger time step. However, Trotter errors here become dominant, severely
spoiling the final result and confirming our analysis above. Interestingly, as
sketched in Fig. 3.1, our MPS simulation turns out to mitigate Trotter errors,
providing good solutions even in this regime.

In panel b), we plot the von Neumann entanglement entropy for the final
state.6 In general, along the annealing protocol, this quantity is defined by

SN/2(s) = −Trs1...sN/2

(
ρ̂(s) log ρ̂(s)

)
ρ̂(s) = TrsN/2+1...sN

(
|ψ(s)⟩ ⟨ψ(s)|

)
,

(3.2.5)

where |ψ(s)⟩ and ρ̂(s) are the whole-system state and the reduced density
matrix of half-system, respectively. Here, we set s = 1, corresponding to
the final annealed states reported in Eq. 3.2.3. For δt = 0.1, the entangle-
ment entropy of the final state grows relatively slowly with N (for both dQA
protocols), allowing for efficient MPS simulations. On the other hand, for
δt = 1.0, we observe that Trotter errors give rise to large amounts of en-
tanglement entropy in the final state. Now, since our algorithm iteratively
reduces the entanglement of the quantum state at each time step, we argue

6 We consider the so-called entanglement entropy at half chain, i.e. between two subsystems
of the same size.
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that it acts by iteratively projecting away the contributions given by the spu-
rious terms introduced by the Trotter split-up, since these, as shown, are the
main source of entanglement. Since the same terms are also responsible of
low-quality final states (large values of final energy density), our algorithm
can quite re-establish the performance of dQA without the Trotter split-up,
thus providing a significant improvement in the final result.

Figure 3.11: Binary perceptron. Fidelity between the reference state (instantaneous
state of dQA without Trotterization) and the instantaneous state of a
Trotterized dQA dynamics, either obtained with ED (circles) or with
MPS simulations (squares). We fixed P = 100 and τ = 10 (blue) or
τ = 100 (orange). The fidelity is plotted vs the rescaled annealing time
s = t/τ ∈ [0, 1]. We set N = 18, Nξ = 14 (α ≃ 0.78) and we averaged
over 10 realizations of the random patterns.

In addition, a direct evidence on the MPS effectiveness in mitigating Trot-
ter errors, and thus reproducing the actual QA dynamics, is provided in
Fig. 3.11. Here, we fix the instantaneous state of dQA without Trotteriza-
tion as a reference state, representing the true QA dynamics. 7 We plot the
fidelity, during the annealing, between this reference state and two other
states, namely the instantaneous dQA state with Trotter split-up obtained
either with ED, or approximated by means of our MPS framework. Remark-
ably, in the small time step regime (once again δt = 0.1) both fidelity values
are quite close to 1, whereas in the other regime (δt = 1.0) MPS simulations
prove more faithful than exact dQA with Trotterization, especially in the last
stages of the annealing.

Finally, let us remark that the outlined results provide some clear insight
on the correctness of our initial sketch in Fig. 3.1. Indeed, as shown in
Fig 3.10 (see also Sec. B.2), the final state from a dQA without Trotterization
is generally low-entangled and close to the continuous time-ordered QA re-
sults, whereas the Trotterization represents the main source of entanglement
in the regime of large δt. It may therefore be convenient to approximate
this Trotterized evolution as an MPS with relatively low bond dimension.
As shown numerically in Fig. 3.11, the MPS evolved state remains closer

7 Strictly speaking, this is certainly an approximation, since this state clearly does not satisfy
the ideal continuous time-ordered dynamics. However, dQA without Trotterization often
turns out to be an outstanding approximation for a wide range of time step values (even if
δt ∼ O(1)), as anticipated above (see Ref. [148]), and proven numerically in Sec. B.3.
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to the annealing dynamics, if compared to the exact Trotterized evolution,
confirming the qualitative representation sketched in Fig. 3.1.

3.2.4 The Hopfield model

Figure 3.12: Hopfield model. Residual energy density as a function of time-step
length δt. We set N = 21, Nξ = 2 in panel a) and N = 100, Nξ = 13 in
panel b). In panel a), data are averaged over five different sets of ran-
dom patterns, and MPS results (full symbols) are compared with ED
results (solid lines). The (small) MPS error bars represent the standard
error of the mean, often smaller than the marker size. Solid lines with
lower opacity represent average ± the standard error of the mean for
ED data. In panel b), we plot ε̃(1) since the exact ground state energy
is not known a priori and ED cannot be performed, due to the large
system size. However, an estimate of the actual ground state energy
is represented by a black horizontal dashed line (obtained by state-of-
the-art classical solvers, see main text).

In this Section, we summarize results for the Hopfield model, defined by
Eq. 3.1.3. As for the binary perceptron, we first focus on a relatively small
size N = 21, such that exact solutions can be easily found by enumeration,
and MPS results can be compared with ED. We set Nξ = 2, so that α =

Nξ/N ≃ 0.095 is close to the zero-temperature critical value αc ≃ 0.138,
and we run our simulations for different randomly-generated training sets
{ξξξµ}

Nξ
µ=1. In Fig. 3.12 a), we plot the final energy density ε(1) as a function

of the time step δt. As for the other models examined in the main text, we
observe a close agreement between MPS and ED for small δt (notice the log
scale on the y−axis, therefore deviations for P = 1000 are actually small, of
O(10−4)). For δt values of O(1), larger deviations are observed, with MPS
generally outperforming ED. Moreover, in Fig. 3.12 b), we consider a single
instance of size N = 100, still close to the critical point (we set Nξ = 13, so
α = 0.13). In this case, the exact ground state energy is not known a priori
and therefore we plot ε̃(1) = ⟨ψ(1)|Ĥz|ψ(1)⟩ /N. An accurate estimate of the
actual minimum energy can be obtained by means of an optimized classical
solver (we used the online solver http://spinglass.uni-bonn.de/): this value
is represented by a black dotted line. This solver employs state-of-the-art
classical optimization methods, namely a version of the branch and bound
algorithm [149]. In summary, these results show that our MPS methods are
effective in finding a good approximation of the target ground state even for
large system sizes, far beyond the reach of ED.

http://spinglass.uni-bonn.de/


64 qa for perceptron optimization: a new approach via mps simulations

3.2.5 MPS compilation to quantum circuits

The scope of this section is to discuss the representation of an MPS as a
quantum circuit, i.e. as a sequence of unitary quantum gates acting on a
blank qubit register |000⟩. We perform several simulations by employing this
iterative quantum circuit optimization described in Sec. 1.8. In our case,
the target state |ψ⟩ is the MPS obtained by contracting the Tensor Network
structure representing the whole time evolution (see Fig. 3.3), by means of
Algorithm 1. As an illustrative example, the following table includes results
obtained for the binary perceptron (N = 21, Nξ = 17, a single training
set), by setting as target state the final state of dQA with P = 500. Dif-
ferent values of δt (and hence τ = Pδt) are considered. We report the
values of fidelity F obtained after Niter = 3000 optimization iterations of
a circuit of depth D = 4. We also show the corresponding value of the
cost function ⟨Ĥz⟩ /N = ⟨000|Û†

opt ĤzÛopt|000⟩ /N and the total success probabil-

ity
∑Nsol
a=1 p(σσσ

∗
a) =

∑Nsol
a=1 | ⟨σσσ∗a|Ûopt|000⟩ |2, where Ûopt represents the optimized

quantum circuit.

δt F ⟨Ĥz⟩ /N
∑Nsol
a=1 p(σσσ

∗
a)

1.0 0.918 1.61 · 10−3 0.941
1.2 0.944 1.63 · 10−3 0.944
1.4 0.951 1.10 · 10−3 0.961
1.6 0.894 1.08 · 10−3 0.965

Data show that, even if the optimized quantum circuit does not reach
particularly high fidelity F with the target state, anyway the final energy
densities are O(10−3), and the overlap with classical solutions significantly
large. This is indeed a remarkable result, for a shallow quantum circuit
with D = 4. We mention that deeper circuits (larger values of D) are more
challenging to optimize, possibly because the algorithm gets stuck into sub-
optimal local minima, but we leave a more systematic numerical study to
future work.

Let us notice that residual energy densities of O(10−3) are comparable
with the best result attained by exact dQA with P = 1000 steps, and an
optimal choice of δt (see Fig. 3.6). Thus, we argue that by applying the Al-
gorithm 1, and then approximating the resulting MPS |ψ⟩ with a quantum
circuit, one can obtain a small set of two-qubits unitary gates with a sim-
ple architecture yielding a good quantum state, bearing large overlap with
the classical solutions. This state may represent a valuable starting point,
allowing for further circuit optimization on near-term quantum devices.

3.3 conclusions

We tackled the quantum adiabatic optimization of a large class of hard clas-
sical minimization problems, encompassing p-spin models, and the paradig-
matic binary perceptron and Hopfield models. We focused on the well-
known Quantum Annealing protocol in its digitized version, and we de-
veloped a completely new, ad hoc approach, to simulate quantum adiabatic
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time evolution for these systems. This approach relies on Tensor Network
methods and Matrix Product States, exploiting efficiently the available clas-
sical resources, allowing for classical simulations well-beyond the usual size
limits of Exact Diagonalization.

Our Tensor Network framework could be easily employed in future work
to study different non-equilibrium time evolution or the imaginary time
evolution for the same class of models. Moreover, our methods could be
generalized to simulate other quantum optimization algorithms, e.g. hy-
brid quantum-classical variational schemes such as QAOA. In this case,
the Tensor Network representing the time evolution would be parameter-
dependent, with the parameters being iteratively optimized by some classi-
cal routine.

We stress that the broad class of models that can be simulated in our
framework includes prototypical discrete Neural Networks of significant
theoretical interest in Machine Learning, which do not admit, in general,
a description in terms of few-body spin interactions. With the technological
progress and the availability of real quantum devices, it is a promising route
to assess the effectiveness of quantum optimization methods in this context.

Future perspectives concern the possibility to extend our methods to the
optimization of more challenging discrete Neural Networks (essentially, mul-
tilayered perceptrons). This exciting chance could significantly expand our
knowledge on the abilities of Quantum Computers to solve the hard opti-
mization tasks involved in classical deep learning.





4 NONSTAB I L I ZERNESS V IA
PERFECT PAUL I SAMPL ING OF
MATR IX PRODUCT STATES

Quantum advantage [30, 150] relies on harnessing the intrinsic complexity
of quantum systems to surpass classical computing limitations, potentially
enabling efficient solutions to NP problems [15, 151, 152]. Physicists agree
to identify the entanglement as a fundamental feature accounting for this
complexity, thus making necessary to exploit it proficiently in any quantum
computation. Indeed, quantifying entanglement in many-body systems is a
long-standing research focus, with various well-established measures, such
as purity, entanglement entropy, negativity and mutual information [153–
156].

Nevertheless, entanglement is not the sole resource which need to be quan-
tified in order to discriminate between easy and hard to simulate quantum
states. Indeed, it turns out that there exist several states encoding an exten-
sive amount of entanglement which can still be simulated efficiently on a
classical computer. These states are part of the stabilizer states [157], defined
as quantum states exclusively achievable using Clifford unitaries from the
computational basis state |0 . . . 0⟩ [158–163]. Clifford group CN represent a
class of unitary transformations that maps strings of Pauli operators over
N-qubits into other Pauli strings [36, 162], i.e.

CN = {U ∈ U2N×2N s.t. UPNU† = PN} ,

where
PN = {±1,±i1,±σx,±iσx,±σy,±iσy,±σz,±iσz}⊗N

is the Pauli group 1. Due to this underlying structure, stabilizer states can
be compactly represented classically. Indeed, they are completely character-
ized by a set of N independents Pauli strings, which can be conveniently
stored, allowing for a compact and efficient description. Clifford unitaries
and measurement of Pauli operators can be efficiently executed using this
representation by straightforwardly updating the stored Pauli strings [158,
159]. For a detailed introduction to the formalism of stabilizer states and
the Clifford group, we refer the reader to Appendix C. Given the aforemen-
tioned considerations, assessing the difficulty of simulating a quantum state,
irrespective of its entanglement content, necessitates the definition of a met-
ric that accounts for the number of non-Clifford operations essential for state

1 In this Chapter, we will omit the symbol ˆ for operators.

67
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preparation [164, 165]. This quantity has been dubbed nonstabilizerness or
quantum magic. It turns out that nonstabilizerness is also related to the emer-
gence of quantum chaos [166, 167].

Several measures of nonstabilizerness have been proposed so far in quan-
tum information theory [168–170], as for instance the Robustness of Magic
(see Appendix C and Ref. [169]). However, their computation is usually
challenging [171], as it frequently involves challenging optimizations. As a
matter of fact, quantifying nonstabilizerness beyond a few qubits remains a
major challenge. Recently the Stabilizer Rényi Entropies (SREs) were intro-
duced in Ref. [172] as a possible way of quantifiying the nonstabilizerness
of a quantum state (see Appendix C for a detailed discussion). Interestingly,
SREs allow the evaluation of the nonstabilizerness stored in the ground state
of the paradigmatic transverse field Ising chain [173]. However, since they
depend on expectation values of all possible Pauli strings, computing SREs
of a generic state is exponentially costly with the number of qubits. Never-
theless when the N-qubits state admits a Matrix Product State (MPS) repre-
sentation with finite bond dimension χ, the SREs can be computed as the
norm of a “2n-replica” MPS with effective bond dimension χ2n, where n
(integer) represents the Rényi index [174]. Unfortunately, such norm can be
computed at a cost O(Nχ6n), thus having an unfavorable scaling with the
bond dimension. For any practical purpose, this makes the approach unfea-
sible for n > 2 2.

To overcome such limitations, we propose a new method which exploits
the probabilistic nature of the SREs. The Algorithm relies on a novel and effi-
cient MPS sampling in the Pauli basis, reminiscent of some well-established
MPS techniques [175, 176]. The sampling is perfect since we directly obtain
samples from the target probability distribution, without Markov chains. By
sampling over N Pauli strings realizations, we are able to estimate the SREs
with a computational cost scaling as O(NNχ3). We first benchmark our
approach over a set of random realization of MPS states with large bond
dimension. We then study the nonstabilizerness in the ground-state of the
quantum Ising chain, showing a prefect agreement with the free-fermions
calculation. Finally, we use our method to compute for the first time the
non-equilibrium dynamics of the SREs after a quench. We consider the Ising
model with or without a longitudinal field and show how the confinement
of the excitations [177], hugely affecting the entanglement dynamics, may
play a role also in the time-evolution of the SREs.

4.1 preliminaries

Let us consider a quantum system consisting of N qubits. We identify the
Pauli matrices by {σα}3α=0, with σ0 = 1, and with σσσ =

∏N
j=1 σj ∈ P̃N a

2 Only for n = 2, it is possible to exploit additional symmetries, further reducing the computa-
tional cost to O(χ4).
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generic N−qubits Pauli strings where P̃N = {σ0,σ1,σ2,σ3}⊗N 3. For a pure
normalised state ρ = |ψ⟩⟨ψ|, the SREs [172] are given by

Mn(ρ) =
1

1−n
log

∑
σσσ∈P̃N

1

2N
Tr[ρσσσ]2n. (4.1.1)

To understand the relation with usual Rényi entropies, one has to observe
that the non-negative real-valued function Πρ(σσσ) = 1

2N
Tr[ρσσσ]2 sums to 1,

since ∑
σσσ∈P̃N

Πρ(σσσ) = Tr
[
ρ

∑
σσσ∈P̃N

σσσ√
2N

Tr[ρ
σσσ√
2N

]
]
= Tr

[
ρ2
]
= 1 , (4.1.2)

where we used the decomposition of ρ in terms of the orthonormal Pauli
basis { σσσ√

2N
}, and the fact that Tr[ρ2] = 1 for pure states. Thus, we can

interpret Πρ(σσσ) as a probability distribution on the set of Pauli strings. Thus

Mn(ρ) =
1

1−n
log

∑
σσσ∈P̃N

Πρ(σσσ)
n −N log 2 , (4.1.3)

apart from a constant, does coincides with the n-Rényi entropy of the distri-
bution Πρ(σσσ), and it reduces to the Shannon entropy

M1(ρ) = −
∑
σσσ∈P̃N

Πρ(σσσ) logΠρ(σσσ) −N log(2) . (4.1.4)

or n → 1. It has been shown that SREs have the following properties [172],
accordingly being a good measure of nonstabilizerness: i) Mn vanishes for
stabilizer states whereas is positive for other states; ii) are invariant under
Clifford unitaries; iii) are additive. Moreover, they grow extensively with
the system size N, thus making possible to define nonstabilizerness density
mn =Mn/N [174]. A violation of monotonicity for the SREs with 0 ⩽ n < 2
has been reported for systems undergoing measurements in the computa-
tional basis [178].

Computing the SREs in Eq. (4.1.1) requires the evaluation of the expecta-
tion value of a generic power Πρ(σσσ)n−1 (or logΠρ(σσσ) for n = 1) over the
probability distribution Πρ(σσσ) itself. This suggests a natural way to estimate
the SREs, based on a sampling from Πρ(σσσ).

4.2 conditional sampling

The task of sampling from the set of the Pauli strings σσσ, which has size
D = 4N, may appear as exponentially hard. To overcome this difficulty, we
rewrite the full probability in terms of conditional and prior (or marginal)
probabilities as

Πρ(σσσ) = πρ(σ1)πρ(σ2|σ1) · · ·πρ(σN|σ1 · · ·σN−1) (4.2.1)

3 Notice that, on the contrary, of PN, P̃N is not a group, since for instance σ1σ2 = iσ3.
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Figure 4.1: MPS evaluation of the marginal probability πρ(σ1). Dotted lighter
shapes represent conjugate tensors. Contractions over the auxiliary in-
dices can be easily carried out thanks to the property in Eq. (4.3.3), to-
gether with the right-normalization of the Ai tensors.

where πρ(σj|σ1 · · ·σj−1) = πρ(σ1···σj)
πρ(σ1···σj−1) is the probability that the Pauli ma-

trix σj occurs at position j given that the string σ1 · · ·σj−1 has already oc-
curred at positions 1 . . . j− 1, no matter the occurrences in the rest of the sys-
tem (i.e. marginalising over all possible Pauli strings for the reaming qubits
j+ 1 . . .N). Specifically, one has

πρ(σ1 · · ·σj) =
∑

σσσ∈PN−j

1

2N
Tr[ρσ1 · · ·σjσσσ]2 . (4.2.2)

In other terms, the conditional probability at the step j, i.e. πρ(σj|σ1 · · ·σj−1),
can be thought as the probability πρj−1(σj) of getting σj in the partially
projected state

ρj−1 ≡
ρ|σ1···σj−1

πρ(σ1 · · ·σj−1)1/2
(4.2.3)

where we have defined the state

ρ|σ1···σj−1 ≡ 2−N
∑

σσσ∈PN−j+1

Tr[ρσ1 · · ·σj−1σσσ]σ1 · · ·σj−1σσσ (4.2.4)

where, in the Pauli matrices decomposition of ρ, we are only keeping the
contribution with fixed σ1 · · ·σj−1. Notice that such state is not normalised,
however Tr[ρ2j−1] = 1, and the probability that the remaining string σσσ ∈
PN−j+1 occurs is exactly given by πρ(σσσ|σ1 · · ·σj−1). From the definition in
Eq. (4.2.3), we can easily get the recursive relation ρj = πρj−1(σj)

−1/2ρj−1|σj .
Thanks to that, we can generate the outcomes (and the probabilities of that
outcomes) by iterating over each single qubits, and sampling each local Pauli
matrix according to the conditional probabilities. Once a local outcome oc-
curs, the state is updated accordingly, and the iteration proceeds until all
qubits are sampled. At the end of this procedure, as a result of Eq. (4.2.1), we
generated configurations σσσ with probability Πρ(σσσ). In order for this method
to be computationally affordable, we need an efficient way of: (i) evaluating
the conditional probabilities; (ii) updating the state according to the local
outcome. In the following Section, we show that these conditions are met
whenever the state admits an MPS representation.
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Algorithm 2 Pauli sampling from MPS

Input: an MPS |ψ⟩ of size N

1: Put the MPS in right-normalized form.
2: Initialize L = (1) and Π = 1 (see Fig.4.2 a))
3: for (i = 1, i = N, i++) do
4: Compute the probabilities π(α) = πρ(σ

α|σ1 · · ·σi−1) for α ∈
{0, 1, 2, 3}, as in Fig.4.2 b).

5: Generate a random value of α according to π(α)
6: Set σi = σα, update Π→ Π · π(α)
7: Update L as in Fig.4.2 c).
8: end for

Output: a Pauli string σσσ and the probability Π(σσσ)

4.3 mps iterative algorithm

We consider a pure state |ψ⟩ represented in the MPS form [27, 38, 126]

|ψ⟩ =
∑

s1,s2,...,sN

A
s1
1 A

s2
2 · · ·A

sN
N |s1, s2, . . . , sN⟩ , (4.3.1)

with A
sj
j being χ × χ matrices, except at the left (right) boundary where

A
s1
1 (AsN

N ) is a 1× χ (χ× 1) row (column) vector. Here |sj⟩ ∈ {|0⟩, |1⟩} is a
local computational basis. The state is assumed right-normalised, namely∑
sj

A
sj
j (A

sj
j )

† = 1. We refer the reader to Chapter 1 for a thorough intro-
duction to MPS. Following the conditional sampling prescription described
in the previous section, we start from the first term of the expansion in
Eq. (4.2.1). This can be written as

πρ(σ1) =
1

2N

∑
σσσ∈PN−1

⟨ψ|σ1σσσ|ψ⟩ ⟨ψ∗|σ∗1σσσ
∗|ψ∗⟩ , (4.3.2)

where we used the fact that the Pauli matrices are hermitian. In terms of
the operators Λσi =

1
2σi ⊗ σ∗i and Λi = 1

2

∑
σi

(
σi ⊗ σ∗i

)
, each acting on the

local Hilbert space given by a spin and its replica, the previous equation
reads πρ(σ1) =

[
⟨ψ|⊗ ⟨ψ∗|

]
Λσ1Λ2 · · ·ΛN

[
|ψ⟩ ⊗ |ψ∗⟩

]
. Now, the following

property can easily be proven[
⟨s ′i|⊗ ⟨r ′i|

]
Λi
[
|si⟩ ⊗ |ri⟩

]
= δs ′i,r ′iδsi,ri , (4.3.3)

meaning that Λi is just two copies of the identity operator connecting the
spin |si⟩ and its replica (whose local computational basis is now indicated
as |ri⟩ ∈ {|0⟩, |1⟩}). Using Eq. (4.3.3) together with the right-normalization of
the MPS, the computation of Eq. (4.3.2) reduces in the following local tensor
contraction

πρ(σ1) =
1

2

∑
s1,s ′1,r1,r ′1

(A
s ′1
1 )∗A

r ′1
1 (σ1)s ′1s1(σ

∗
1)r ′1r1A

s1
1 (Ar1

1 )∗ , (4.3.4)
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Figure 4.2: The iterative sampling Algorithm 2.

which is represented in Fig. 4.1 by means of the standard Tensor Network
graphical notation [27, 38].

After evaluating πρ(σ1) for σ1 ∈ {σ0,σ1,σ2,σ3}, one can extract a sample
from this distribution, obtaining the first element of the string. The informa-
tion about the partially projected state Eq. (4.2.3) is encoded in an effective
environment matrix L = 1√

2πρ(σ1)

∑
s1,s ′1

(A
s ′1
1 )∗(σ1)s ′1s1A

s1
1 . The calcula-

tion of the next terms of Eq. (4.2.1) and the extraction of the remaining σi
proceeds following the same line. The full sampling recipe is summarized
in the Algorithm 2, and graphically supported in Fig. 4.2. Extension of the
Algorithm to mixed states is discussed in Supplementary Materials.

4.4 sampling error

We now discuss the statistical errors of the sampling algorithm, and their
scaling with the system size N. We first consider the case of estimating the
n−SRE, with n > 1. As we saw, the estimation of

qn =
∑
σσσ∈P̃N

Πρ(σσσ)
n (4.4.1)

is achieved by a statistical average over the samples {σσσµ}
N
µ=1, that means

using the estimator

q̃n =
1

N

N∑
µ=1

Πρ(σσσµ)
n−1 . (4.4.2)

Afterwards, we evaluate the density of nonstabilizerness as

m̃n =
(
N(1−n)

)−1 log q̃n − log 2 (4.4.3)

Notice that q̃n is an unbiased estimator of qn, since q̃n = qn ( indicat-
ing the average over the uncorrelated samples, each distributed according
to Πρ(σσσ)). The fluctuations of q̃n are characterized by its variance, which
can be easily evaluated as Var[q̃n] = Var[Πn−1ρ ]/N. For every n > 1, one
has Var[Πn−1ρ ] < 1 and thus we can upper bound the variance of the estima-
tor obtaining Var[q̃n] < const./N, where const. is a constant of o(1), whose
value is independent of the size D = 4N of the support of Πρ(σσσ). This means
that the statistical error on q̃n can be reduced arbitrarily by increasing the
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Figure 4.3: a) Density of nonstabilizerness of |ψ⟩ = UC |Tϕ⟩⊗N for N = 10, 60,
N = 104 and Rényi index n = 1, 2. In the lower strip we show the de-
viation from the analytical value ∆ = (mn − m̃n)/δm̃n, m̃n being our
estimation and δm̃n the propagated statistical error. b) The error δm̃n
as a function of the system size N for fixed N = 103, 105 and ϕ ≃ π/4.

number of samples, no matter the system size N. However, since the un-
certainty on m̃n propagates (at first order) as δm̃n ∝ δq̃n/q̃n and both q̃n,
δq̃n are exponentially vanishing with N for typical probability distributions,
(δm̃n)

2 ∼ 1
N

Var[Πn−1ρ ]/(Πn−1ρ )2 is generally exponentially increasing with
N 4. Nevertheless, for the physical states we have examined, the estimation
error δm̃n is always under control for reasonable values of N (see next Sec-
tion and Supplementary Materials for further details). For n = 1we evaluate
q1 =

∑
σσσ∈P̃N

Πρ(σσσ) logΠρ(σσσ) via the estimator q̃1 = 1/N ·
∑N
µ=1 logΠρ(σσσµ).

We have Var[q̃1] = Var[logΠρ]/N and thus we are interested in giving an
upper bound for Var[logΠρ]. Several works, e.g. Ref. [155], establish that
Var[logΠρ] ⩽ 1

4 log2(D) + 1. Thus, in our case, Var[q̃1] ≲ N2 log2(2)/N
meaning that in the worst scenario the number of samples has to scale as N2

to reach a given accuracy in the estimation.

4 This because Π2(n−1)ρ /(Πn−1ρ )2 ⩾ 1
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Figure 4.4: Nonstabilizerness density of the Ising ground state (g = 0) with periodic
boundary conditions, for a system of size N = 14 and Rényi index
n = 1, 2. Exact results obtained in the free fermions representation [173]
are compared with MPS sampling (N = 104).

4.5 sampling of mixed states and operators

The definition of the Stabilizer Rényi Entropies Mn can be easily extended
to arbitrary non-pure states ρ by normalizing the probability distribution Πρ
with the purity Tr[ρ2] ⩽ 1, thus redefining

Πρ(σσσ) =
1

2N
Tr[ρσσσ]2

Tr[ρ2]
. (4.5.1)

Our sampling approach can be generalized to estimate Mn(ρ) in the case in
which ρ = ρ[L+1,N] is the reduced density matrix describing the rightmost
N−L qubits embedded in a larger pure MPS state |ψ⟩ of sizeN. Exploiting a
mixed canonical form for |ψ⟩, one can obtain ρ[L+1,N] as in Fig. 4.5a). After
that, the only thing that changes in our algorithm is the initialization of the
environment matrix L. As we saw, this is set to (1) for a pure state, whereas
in the general case L = 2/

√
Tr(4) in terms of the Schmidt eigenvalues

associated to the bipartition between the first L qubits and the last N − L

qubits (see Fig. 4.5b)).

Moreover, it is straightforward to adapt the sampling technique to target
Matrix Product Operators (MPO). Indeed, any MPO can be reshaped as an
MPS whose local physical dimension is increased from 2 to 4 (see Fig. 4.6).
In this way, by applying the proposed method, one could gain access to the
SRE of an operator O written as MPO. In such scenario, the SRE serves as a
form of participation entropy characterizing the operator spreading over the
space of Pauli strings.
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Figure 4.5: a) The reduced density matrix ρ[L+1,N] of the rightmost N− L qubits
embedded in a larger pure MPS state is obtained by tracing away the
first L qubits. represent the Schmidt eigenvalue associated to the bipar-
tition. b) The new appropriate initialization of the environment matrix
L, i.e. L = 2/

√
Tr(4).

Figure 4.6: Any MPO can be reshaped as an MPS by merging the two physical
indices of each local tensor.

4.6 numerical experiments

As a first benchmark of our algorithm, we consider the T -state |Tϕ⟩ = (|0⟩+
eiϕ |1⟩)/

√
2, with ϕ ranging in [0,π/2]. A straightforward calculation yields

to

M1(|Tϕ⟩ ⟨Tϕ|) = − cos2ϕ log(| cosϕ|) − sin2ϕ log(| sinϕ|)

M2(|Tϕ⟩ ⟨Tϕ|) = − log[(1+ cos4ϕ+ sin4ϕ)/2]
(4.6.1)

Both quantities vanish for ϕ = 0,π/2, while they have a maximum for ϕ =

π/4. We firstly initialize the system in the product state |ψ0⟩ = |Tϕ⟩⊗N,
which is an MPS of bond dimension χ = 1. Afterwards, we apply a random
Clifford circuit UC of depthN. In each layer, we randomly choose a sequence
of one-qubits or two-qubits gates extracted from the generators [36]

H =
1√
2

(
1 1

1 −1

)
S =

(
1 0

0 ei
π
2

)
CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

The final MPS |ψ⟩ = UC |ψ0⟩ has a larger bond dimension χ≫ 1, whereas its
nonstabilizerness is the same of |ψ0⟩, since this quantity is invariant under
Clifford group. Thanks to the additivity of the SREs, the nonstabilizerness
density mn(|ψ⟩) = Mn(|ψ⟩)/N is equivalent to the nonstabilizerness of a
single T−state. We apply our sampling algorithm on |ψ⟩, obtaining the es-
timation m̃n. Results are shown in Fig. 4.3, for n = 1, 2 and size between
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Figure 4.7: SRE density after a quantum quench in the transverse and longitudinal
field Ising model (N = 40). The system is prepared in the ferromag-
netic state |+...+⟩ and quenched with parameters h = 0.5,g = 0.0 (solid
line), h = 0.5,g = 0.25 (dotted line). The estimation is obtained with
N = 103 samples and pale lines represent the corresponding statistical
uncertainty. Subplot: half-chain entanglement entropy.

N = 10 and N = 70. Notice that for N = 70, the bond dimension of |ψ⟩
grows up to χ = 128, depending on the particular arrangement of the Clif-
ford layers. Values of χ of this order would be extremely challenging to
target with previously known methods [174], whereas our approach takes
only ≈ O(0.1) sec/sample on a single node simulation. Notice that the sam-
pling can be easily parallelized, provided that the MPS is stored in multiple
independent copies. All data points are in agreement with theoretical pre-
dictions within three error bars (see Fig. 4.3 a)). Moreover, a scaling of the
statistical error δm̃n with N at fixed value of N suggests that the fluctuations
do not grow significantly with the system size, even though in principle we
might have expected them to increase exponentially with N for n = 2. After-
wards, we consider the quantum Ising model

H = −
∑
i

σxi σ
x
i+1 − h

∑
i

σzi − g
∑
i

σxi . (4.6.2)

For g = 0, this Hamiltonian can be mapped into a model of free fermions
[179, 180], thus allowing the evaluation of the SREs in terms of ∼ 4N de-
terminants of matrices involving fermionic correlators [173]. In Fig. 4.4, we
compare exact results for mn (n = 1, 2) obtained in the fermionic represen-
tation with MPS estimations, for a system of size N = 14. For the MPS, we
use Density Matrix Renormalization Group (DMRG) [27] (χ = 32) to find
the ground state. MPS data are in perfect agreement with the exact values,
within small error bars.

We also use our algorithm to estimate the dynamics of the nonstabilizer-
ness density during an out-of-equilibrium protocol. In particular, we pre-
pare the system in the fully polarized state |ψ(0)⟩ = |+ · · ·+⟩, where |+⟩ =
(|0⟩+ |1⟩)/

√
2 is the eigenstate of σx with eigenvalue +1, and we consider the

time-evolution generated by the Ising hamiltonian i.e. |ψ(t)⟩ = e−iHt |ψ(0)⟩.
We set the transverse and longitudinal fields respectively to h = 0.5 and
g = 0, 0.25. The latter value corresponds to a phase in which the system
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is known to exhibit a dynamical confinement of the excitations [177, 181],
whereas in the free case (g = 0) the quasiparticles give rise to a light cone
spreading of correlations [182]. We use the Time Evolving Block Decima-
tion (TEBD) to compute the time evolution of the post-quench MPS [27, 183],
with bond-dimension up to χ = 128. Results are shown in Fig. 4.7 forN = 40.
For g = 0, the nonstabilizerness density seems to saturate rapidly to a sta-
tionary value (see Ref. [184]), although the half-chain entanglement entropy
S = −Tr[ρN/2 log ρN/2], is still growing linearly with the time t as expected
(see the subplot). In the confined phase g = 0.25, nonstabilizerness exhibits
large and persistent oscillations around a slightly lower stationary value,
whereas entanglement is strongly suppressed and approaches a low satura-
tion value.

In Fig.4.8, we present the power spectra of the time-dependent order pa-
rameter ⟨σx(t)⟩ and of mn(t), which were obtained using Fourier transfor-
mation. The dominant frequencies of the two signals (i.e. peaks in the power
spectrum) match with good accuracy. It is well-known that the time de-
pendence of the order parameter in the longitudinal Ising model is strongly
affected by the value of the longitudinal field g. As soon as g > 0, the model
exhibit confinement, meaning that the longitudinal field confines a pair of
domain wall excitations into a bound state dubbed meson. This physical
phenomenon results in persistent oscillations of ⟨σx(t)⟩, whose characteris-
tic frequencies are determined by the masses of the mesons (and their differ-
ences). Our plots in Fig. 4.8 provide evidences that also the nonstabilizerness
of the time evolved state is strongly affected by the outlined physical picture.
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Figure 4.8: The power spectrum of the signals mn(t) and ⟨σx(t)⟩ computed as the
squared modulus of the Fourier transform. The latter is evaluated by
means of the Fast Fourier Transform (FFT) algorithm.

Finally, we consider the dynamics of the SRE for an operator O initially
prepared as a localized Pauli matrix and undergoing temporal evolution in
the Heisenberg picture, expressed as O(t) = eiHtO(0)e−iHt. In our case, we
set O(0) equal to the Pauli matrix σx localized in the central site of a chain
of length N = 51. The time evolution was evaluated by means of TEBD
applied to the MPO O(t) reshaped as MPS (see Fig. 4.6). The maximum
bond dimension used was χ = 256. Results are shown in Fig.4.9 for h =

0.5,g = 0.0 (left) and h = 0.5,g = 0.25 (right). Note that we shifted mn
by log 2 in order to eliminate the additive constant introduced in Eq. 4.1.3,
which is unnecessary in this case. This results in mn + log 2 = 0 at t =
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0, since the probability distribution associated to O has initially support
on only a single Pauli string. Results presented in Fig.4.9 are preliminary
and currently undergoing analysis. We are running multiple simulations to
determine if assessing the operatorial SREs can characterize the dynamics in
the Heisenberg picture. It would be very interesting if SRE behave differently
for integrable or chaotic systems.

Figure 4.9: Operatorial SRE density after a quantum quench in the transverse and
longitudinal field Ising model (N = 51). The operator O is prepared
as a σx Pauli matrix localized in the central site of the chain, i.e.
O(0) = σx0, and quenched with parameters h = 0.5,g = 0.0 (left, solid
line), h = 0.5,g = 0.25 (right, dotted line). Afterwards, we estimate the
operatorial SRE density mn − log 2 of the time evolved operator O(t).
The estimation is obtained with N = 103 samples and pale lines rep-
resent the corresponding statistical uncertainty. Lower plot: half-chain
entanglement entropy. Subplot: the truncation error of the Schmidt co-
efficients.

4.7 conclusions

We have shown that a relatively new measure of quantum nonstabilizer-
ness, the Stabilizer Rényi Entropies [172], can be estimated efficiently in
the MPS framework via a perfect sampling of Pauli strings operators. Our
estimation neither suffers from the exponential growth of the size of the
many-body Hilbert space, nor shows an unfavorable scaling with the MPS
bond dimension. As a matter of fact, we are able to consider either equilib-
rium or non-equilibrium wave-functions with MPS bond-dimension up to
values that were out of reach by any of the previously proposed methods
for evaluating the nonstabilizerness. Specifically, we applied our method
to evaluate the amount of nonstabilizerness generated after a quench in the
quantum Ising chain, and its sensitivity to the presence of confinement of
excitations. Although we mainly focused on pure MPS, our algorithm can
be easily adapted to non-pure states obtained from an MPS tracing out a
subsystem consisting of the first or last qubits.

Our approach pave the way to novel numerical studies of the nonstabi-
lizerness, possibly providing new characterizations of the quantum phases
of matter, in and out-of-equilibrium. In addition, our new Pauli sampling
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technique for the MPS can be used to address crucial problems in quantum
many-body theory, as for instance the operator scrambling.

Finally, we mention that an estimation of the SREs analogous to what we
discussed is experimentally achievable in platforms enabling the prepara-
tion of duplicate states |ψ⟩ ⊗ |ψ⟩ and joint Bell basis measurements.
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A VAR IAT IONAL MONTE CARLO

a.1 the variational principle

Let us suppose to have a family of quantum states parameterized by a set of
real parameters θθθ

|ψ⟩ = |ψ(θθθ)⟩ . (A.1.1)

The aim of Variational MonteCarlo (VMC) is to minimize the energy func-
tional

E =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩ (A.1.2)

on this manifold of states, and finding a (hopefully good) approximation of
the exact ground state of a many body Hamiltonian Ĥ. Let us assume that
{|sss⟩} is a basis of our Hilbert space. We can re-write E as follows

E =

∑
sss,sss ′ ψ

∗
sssHssssss ′ψsss ′∑
sss |ψsss|

2
=

∑
sss |ψsss|

2
∑
sss ′ Hssssss ′

ψsss ′
ψsss∑

sss |ψsss|
2

. (A.1.3)

Let us now define the so-called local energy

Eloc(sss) =
∑
sss ′

Hssssss ′
ψsss ′

ψsss
. (A.1.4)

which is a function of the system configuration sss. We get

E =
∑
sss

p(sss)Eloc(sss) = ⟨Eloc⟩ p(sss) =
|ψsss|

2∑
sss ′ |ψsss ′ |

2
. (A.1.5)

Therefore, E is nothing but the expectation value of Eloc over the distributionp(sss).
As we will show in the following, it is possible to define a stochastic algo-
rithm (i.e. a Markov chain), which generates a sequence of configurations
{sssk} distributed according to our p.d.f. p(sss). In this case we can estimate E

by means of the sample mean

Eloc =
1

N

N∑
k=1

Eloc(sssk) . (A.1.6)

Since typically H is a highly sparse matrix, the sum
∑
sss ′ in Equation A.1.4

is extended only to a tiny portion of the Hilbert space, i.e. to the states for
whichHssssss ′ ̸= 0. For a given sss, the number of sss ′ such thatHssssss ′ ̸= 0 is typically

83
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polynomial in the system size, so the computation of Eloc is straightforward
(in contrast to the computations of E and

∑
sss |ψsss|

2 which requires to sum
over an exponentially large number of terms). The same arguments can
be used for the great majority of physical observables, i.e. of the hermitian
operators O. The legitimacy of using the estimator A.1.6 is strengthened by
observing that the energy variance

δE2 =
⟨ψ|
(
Ĥ− E

)2
|ψ⟩

⟨ψ|ψ⟩ (A.1.7)

can be computed as the variance of Eloc. Indeed

δE2 =
∑
sss

p(sss)
∑
sss ′

(
(H2)ssssss ′ − 2Hssssss ′E+ E2Dssssss ′

)ψsss ′
ψsss

=

=
∑
sss

p(sss)
∑
sss ′

(∑
sss ′′

Hssssss ′′Hsss ′′sss ′ − E2Dssssss ′
)ψsss ′
ψsss

.
(A.1.8)

The first term gives∑
sss,sss ′,sss ′′

Hssssss ′′Hsss ′′sss ′ψsss ′ψ
∗
sss =

∑
sss,sss ′,sss ′′

p(sss ′′)(Hsss ′′sss)
∗Hsss ′′sss ′

ψsss ′ψ
∗
sss

ψσ ′′σ ′′σ ′′ψ∗
σ ′′σ ′′σ ′′

=

=
∑
sss ′′

p(sss ′′)|Eloc(sss
′′)|2 = ⟨|Eloc|

2⟩ .
(A.1.9)

Thus
δE2 = ⟨|Eloc|

2⟩− | ⟨Eloc⟩ |2 . (A.1.10)

Since any eigenstates of Ĥ is such that δE2 = 0, the variance of the stocastic
variable Eloc will decrease by getting closer to the ground state of H. Thus,
the approximation in equation A.1.6 will progressively become better.

a.2 sampling methods

We want to properly define a Markov chain of configurations {sssk}, k =

1, 2, 3... in order to sample our probability distribution p(sss). A Markov pro-
cess is completely specified by the transition matrix Tsss→sss ′ = Tssssss ′ . Obviously
the matrix T must obey to

1 =
∑
sss ′

Tsss→sss ′ =
∑
sss ′

Tssssss ′ . (A.2.1)

We have to require the detailed balance relation

p(sss)Tsss→sss ′ = p(sss
′)Tsss ′→sss (A.2.2)

to have p as a stationary distribution for our Markov chain. Indeed, this
equation implies ∑

sss

p(sss)Tssssss ′ = p(sss
′)
∑
sss

Tsss ′→sss = p(sss
′) (A.2.3)
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which is the stationarity condition. The idea of the Metropolis-Hastings
algorithm is to split the elements of T as a product of two terms, i.e.

Tssssss ′ = Tssssss ′Assssss ′ (A.2.4)

where T represents a local transition and A represents the acceptance. Now,
we observe that the detailed balance relation can be rewritten as

Asss ′→sss
Asss→sss ′

=
p(sss)

p(sss ′)

Tsss→sss ′

Tsss ′→sss
(A.2.5)

Interestingly, this condition is automatically fulfilled by

Asss→sss ′ = min
(
1,
p(sss ′)

p(sss)

Tsss ′→sss
Tsss→sss ′

)
. (A.2.6)

The Metropolis–Hastings algorithm then involves generating new configu-
rations sss ′ according to a certain rule for updates and accepting or rejecting
them with a probability given by Asss→sss ′ . Often, the update is performed in
a deterministic way, meaning that Tssssss ′ = 1 for a certain configuration sss ′. In
this case

Asss→sss ′ = min
(
1,
p(sss ′)

p(sss)

)
. (A.2.7)

a.3 stochastic optimization

We want to optimize the variational energy E(θθθ). The simplest method is
the Stocastic Gradient Descent (SGD), in which we update the parameters
according to

θθθn+1 = θθθn − η∂θθθE . (A.3.1)

Let us compute the gradient of E with respect to the real parameters θθθ. We
have

∂kE =
⟨ψ|Ĥ(∂k|ψ⟩) + (∂k ⟨ψ|)Ĥ|ψ⟩)

⟨ψ|ψ⟩ −
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

∂k(⟨ψ|ψ⟩)
⟨ψ|ψ⟩ ∂k =

∂

∂θk
.

(A.3.2)
Thus, by defining the log-derivative of the wave-function

Dk(sss) =
∂k(⟨sss|ψ⟩)
⟨sss|ψ⟩ (A.3.3)

we find

∂kE = ⟨ElocD
∗
k⟩+ ⟨E∗locDk⟩− ⟨Eloc⟩ ⟨D∗

k⟩− ⟨Eloc⟩ ⟨Dk⟩ =
= ⟨ 2Re

(
D∗
k

(
Eloc − ⟨Eloc⟩

))
⟩ = ⟨Gk⟩ .

(A.3.4)

As usual, we will find an approximation of ∂kE by computing a sample
mean of the gradient estimator Gk. This method add some noise to the gra-
dient descent.

One major problem of SGD method is that it totally ignores the geometry
of the states manifold. This fact can be seen from equation A.3.1, in which
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we have a sum of two objects of different types: a contro-variant coordi-
nate vector with a co-variant coordinate gradient. Clearly, adding two such
different terms leads to an object which does not transforme properly under
change of coordinates (indeed, the ordinary gradient descent is not invariant
under coordinate transformations). We can make invariant the alghoritm by
trasforming the gradient to a contro-variant object. If we have a local metric
gij, this can be done by contracting with its inverse matrix gij = (g−1)ij.
Our new method is just

θθθn+1 = θθθn − ηg−1∂θθθE , (A.3.5)

This is called Natural Gradient Descent or also Stochastic Reconfiguration.
Now, we have to establish what is a good metric for our state manifold. Let
us begin by introducing a notion of distance between the states of the Hilbert
space, for example the Fubini-Study distance which is defined as follows

d
(
|ψ⟩ , |ϕ⟩

)
= arccos

√
⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩
⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩ . (A.3.6)

It is easy to show that infinitesimal distances are given by

ds2 =

(
d
(
|ψ⟩+ |δψ⟩ , |ψ⟩

))2
≃ ⟨δψ|δψ⟩⟨ψ|ψ⟩ −

⟨ψ|δψ⟩
⟨ψ|ψ⟩

⟨δψ|ψ⟩
⟨ψ|ψ⟩ , (A.3.7)

which defines the following quadratic form

Sij = ⟨DiD∗
j ⟩− ⟨DiD∗

j ⟩ ds2 = Sijdθ
idθj . (A.3.8)

This is the local metric of our manifold. The SR method can also be viewed
as an approximate imaginary-time evolution in the tangent space of the wave
function.

S is computed in presence of statistical error, therefore it may be an ill-
conditioned matrix with very small eigenvalues, which affect the accuracy
of its inversion. This issue can be solved by regularizing the elements of S
on the diagonal, with the following regularization Sii → Sii(1+ ϵ).



B TECHN ICAL I T I ES ON MPS
S IMULAT IONS FOR QUANTUM
ANNEAL ING

In this Appendix, we present some technical results related to the MPS sim-
ulations of Quantum Annealing discussed in Chapter 3.

b.1 dmrg results

As outlined in Sec. 3.1, our MPS framework allows to represent any target
Hamiltonian Ĥz in the form of Eq. 3.1.1 as an MPO. Thus, one might con-
sider using DMRG to find an MPS representation of a ground state, which
is essentially a superposition of classical solutions. To test this method, we
consider again the perceptron model (Eq. 3.1.4) with N = 21, Nξ = 17 and
the same patterns {ξξξµ}

Nξ
µ=1 considered in the main text. We employ the stan-

dard one-site DMRG algorithm [27], with different bond dimensions and
starting from different randomly-generated MPS. For each bond dimension
value χ = 1, 10, 20 we run 5 different simulations. As an illustrative example,
we report the DMRG data for the first training set in the following table .

χ Run ⟨Ĥz⟩ χ Run ⟨Ĥz⟩ χ Run ⟨Ĥz⟩

1

1 0.21822

10

1 0.65465

20

1 −6.43 · 10−14
2 0.65465 2 −3.88 · 10−14 3 −6.43 · 10−14
3 0.21822 3 1.01 · 10−13 2 0.21822

4 −4.49 · 10−14 4 1.80 · 10−13 4 0.21822

5 −4.48 · 10−14 5 −3.60 · 10−14 5 −6.43 · 10−14

These results show that DMRG convergence strongly depends on the ini-
tial guess, in our case a random MPS. Indeed, since DMRG relies on a local
optimization of the MPS (see Sec. 1.6), we expect it to correctly converge to
a classical ground state only in some favorable cases where the initial MPS
state is already quite close to the absolute minimum, within the glassy en-
ergy landscape of Ĥz. In other cases, DMRG will converge to an excited
classical state. We also measure the standard deviation of the target Hamil-
tonian σĤz , as defined in Eq. 3.2.2, always finding σĤz ≲ 10−8, confirming
that the final MPS is very close to be an exact eigenstate of Ĥz. Furthermore,
we measured the overlap between the MPS resulting from DMRG with the
enumerated classical ground states of Ĥz. When the minimization problem
is solved properly (i.e. ⟨Ĥz⟩ ≈ 0) the resulting MPS has overlap 1 (at machine
precision) only with a single solution. This fact represents a major difference in
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comparison with the Quantum Annealing approach, where the final quan-
tum state always has a finite overlap with many different classical solutions
(delocalization).

b.2 mps convergence with bond dimension

In this section, we provide extra results and details about MPS simulations.
We restrict our numerics to an instance of the perceptron model (Eq. 3.1.4)
for N = 21 spins and Nξ = 17 patterns, but the same qualitative results are
observed in general.

Throughout the Chapter, we set the bond dimension of MPS simulations
to χ = 10, since the validity of our methods and the main results are ex-
pected to be robust by varying the bond dimension in a reasonable range.
More precisely, the bond dimension should be large enough to encode the
entanglement produced by dQA in the regime of small time-step (δt ≪ 1),
allowing our MPS simulation to closely approximate the exact digitized dy-
namics. On the contrary, the large time-step regime (δt = O(1)) is dominated
by Trotter errors leading to high entanglement production, and we showed
that MPS simulations largely deviate from ED (see Fig. 3.6 and Sec. 3.2.3 for
details). Indeed, we argued that MPS simulations closely mimic a digitized
dynamics without Trotterization, which is an excellent approximation of the
continuous time-ordered dynamics of an ideal QA. Nevertheless, even in
this regime, one would expect that by increasing the bond dimension, our
MPS approximation of the digitized QA dynamics with Trotterization would
converge to its exact version, implying a degradation of performance.

Figure B.1: Binary perceptron. Residual energy density ε(1) as a function of time
step length δt (N = 21, Nξ = 17 and P = 100). MPS results for increas-
ing values of the bond dimension χ are compared with ED results.

Here, we investigate this aspect, by performing a series of simulations for
increasing values of bond dimension χ, having fixed the total number of an-
nealing steps to P = 100. Fig. B.1 shows the final energy density ε(1), for
different values of δt, with MPS data compared with ED data (black line). In
the small δt regime, as expected, MPS data converge to ED by increasing χ,
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Figure B.2: Binary perceptron. The energy density difference |εMPS(s) − εED(s)|

between MPS and ED, as a function of the annealing parameter s. We
set N = 21, Nξ = 17, P = 100, δt = 0.1 and we explored different bond
dimensions χ.

confirming that our Algorithm 1 accurately simulates the exact Trotterized
dQA dynamics in this regime. This is also visible in Fig. B.2, where we plot
the energy density difference |εMPS(s) − εED(s)| between MPS data and ED
data, in the small time-step regime (δt = 0.1) for P = 100; by increasing χ,
this difference monotonically decreases to 0, for any value of s. On the con-
trary, in the large time-step regime δt ∼ O(1) this interpretation seemingly
breaks down, as in Fig. B.1 the values of ε(1) are relatively stable with the
increase of χ, very far from ED results. We argue that the reason for this
apparent inconsistency is that, in order to correctly encode the large entan-
glement entropy due to (unwanted) spurious Trotter terms (see Sec. 3.2.3),
one would actually need much larger values of χ. In the following, we show
this fact more quantitatively.

Figure B.3: Binary perceptron. Half system entanglement entropy SN/2 as a func-
tion of the annealing parameter s during dQA. Here, δt is fixed to 0.1
in panel a) and 1.0 in panel b). ED data are compared with MPS data
for increasing values of the bond dimension.

In Fig. B.3, we plot the entanglement entropy at half system SN/2(s), de-
fined as in Eq. 3.2.5, which can be easily evaluated in the MPS framework
[27]. Once again, we fix two reference values of δt in the two regimes:
δt = 0.1 (left) and δt = 1.0 (right). In the first case, MPS data show a
clear convergence towards ED data upon increasing the bond dimension χ.
On the opposite, in the second case, MPS and ED largely deviate. In partic-
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ular, the amount of entanglement produced by exact dQA reaches the value
SEDN/2(1) ≃ 5.62: since the entanglement encoded by MPS is bounded by
logχ, in order to encode the final steps of exact dQA in this regime, one
would need (at least) χ ∼ e

SEDN/2(1) ≃ e5.62 ≈ 276, far outside the range of
values analyzed above.

Finally, we provide extra results on the MPS compression accuracy (see
Sec. 3.1.3). Let us address the Hilbert space distance between the compressed
and uncompressed MPS at each step of the Algorithm 1, which is the same
quantity being iteratively minimized in Eq. 1.4.9. This distance is written as

d2µ(s) = || |ψµ(s)⟩− |ψ̃µ(s)⟩ ||2 µ = 1, ...Nξ ,

|ψµ(s)⟩ being the uncompressed MPS after the application of the unitary
operator Ûµz (γp) at a generic annealing step s = sp (with p = 1 · · ·P), and
|ψ̃µ(s)⟩ the MPS resulting from the compression. Thus, d2µ(s) is a measure
of the compression accuracy. In Fig. B.4, we plot d2µ(s) vs the annealing pa-
rameter s ∈ [0, 1], with a total number of annealing steps fixed to P = 1000.
Different color shades refer to different patterns µ = 1 . . . Nξ (the operators
Û
µ
z (γp) are applied sequentially, as sketched in Fig. 3.3). Two values of δt

are considered: δt = 0.1 (blue shades) and δt = 1.0 (purple shades), corre-
sponding to the two usual regimes. Notice that d2µ(s) takes lower values,
by some order of magnitudes, for the first case (with the exception of the
last part of the annealing s ≃ 1). The reason can be traced back to Fig. 3.10:
in the small time-step regime, exact dQA dynamics produces low-entangled
states, thus the projection into the MPS manifold is easily performed by the
compression algorithm (reaching high accuracy, i.e. low values of d2µ); for
large time steps, on the contrary, the dynamics produces large amounts of
entanglement, therefore the compression becomes rough (the projected state
|ψ̃µ(s)⟩ is located at larger distance from the uncompressed state |ψµ(s)⟩).

In the last stages of the annealing, however, the instantaneous state has
projection close to one on the zero-energy ground state eigenspace, thus the
unitary operators Ûµz (γp) act almost trivially (if the state is exactly in the
ground state subspace, Ûµz (γp) equals the identity). This results into a sharp
decrease in d2µ for s close to 1. In the case δt = 1.0, the final values of d2µ(s)
are smaller than for δt = 0.1, since the final state has larger overlap on the
ground state eigenspace of Ĥz, as shown in Fig. B.2.

b.3 time discretization versus trotterization

The scope of this section is to provide supplementary results on the compar-
ison between dQA with and without Trotterization (see Eq. 3.2.3 for a precise
definition). In the first place, we test numerically a rather surprising fact, i.e.
the robustness to time discretization discussed in Sec. 3.2.3: the error intro-
duced by approximating the exact continuous time-ordered evolution with
P discrete time steps of length δt is rather small, even for large δt ∼ O(1).
To show this, we simulate dQA without Trotterization (setting P = 100 and
δt = 0.1, 1.0), and we evaluate the fidelity F between the evolved state |ψ(s)⟩
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Figure B.4: Binary perceptron. Hilbert space distance d2µ(s) between the com-
pressed and uncompressed MPS at each step of Algorithm 1. We set
N = 21, Nξ = 17, P = 1000. Two different time steps are considered:
δt = 0.1 (blue shades) and δt = 1.0 (purple shades).

and a reference state, ideally representing the exact time-ordered evolution.
This reference state, which we dub |ψ ′(s)⟩, is actually obtained by running
a new approximate simulation with the same values of the total annealing
time (τ = Pδt = 10, 100), now with a time discretization that is 50 times
denser (i.e. P ′ = 50P = 5000, δt ′ = δt/50 = 0.002, 0.02). In practice, the sim-
ulation is performed with ED, for a perceptron model of size N = 18. Data
are reported in Fig. B.5, averaged over 5 different realizations of the random
patterns. Remarkably, fidelity values are very close to 1 along the whole
dynamics (1− F < 10−3), proving that time discretization injects negligible
errors in the dynamics, even for time steps as large as δt = 1.0.

Figure B.5: Binary perceptron. One minus the fidelity F(s) = | ⟨ψ(s)|ψ ′(s)⟩ |2 be-
tween the states |ψ(s)⟩ and |ψ ′(s)⟩ both obtained with dQA without
Trotterization, setting respectively P = 100, δt = 0.1, 1.0 and P ′ = 5000,
δt ′ = 0.002, 0.02. Notice that δtP = δt ′P ′ = 10, 100, meaning that
the simulations are different approximations of the same continuous
time evolution (with total annealing time τ = 10, 100). Data are av-
eraged over 5 realizations of the random patterns {ξξξ}

Nξ
µ=1. We set

Nξ = 3 (α ≃ 0.17) in panel a) and Nξ = 14 (α ≃ 0.78) in panel b).
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Figure B.6: Binary perceptron. Final energy density ε(1) (left) and half-system en-
tanglement entropy SN/2(1) of the final state (right), for N = 18 and
Nξ = 3 (α ≃ 0.17) in panel a) and Nξ = 14 (α ≃ 0.78) in panel b). We
set P = 100 and we perform dQA with and without Trotterization via
ED, compared with MPS results. Data are averaged over 5 realizations
of the random patterns, and the resulting standard deviations are plot-
ted as error bars (for dQA with Trotterization these are smaller than the
marker size).

An additional comparison of the two dQA methods with our MPS imple-
mentation is reported in Fig. B.6. Here, for the same model and data pa-
rameters specified above, we plot the final energy density ε(1) and the half-
system entanglement entropy SN/2(1) of the final state, for different values
δt. These plots are similar to those shown in Sec. 3.2, but they also include
dQA without Trotterization. Interestingly, residual energy data show that
Trotterization spoils the effectiveness of dQA at large time steps, whereas
the repeated projection on the MPS manifold can (partially) restore it. The
entanglement plots also confirm that Trotterization results in a strongly en-
hanced entanglement production, if compared to dQA without Trotterization;
the MPS simulation significantly reduces the entanglement of the final an-
nealed state, as already shown in Sec. 3.2.3.

Concerning the entanglement entropy of the final annealed state, let us
also notice a quite peculiar aspect of our results on QA. The (average) num-
ber of solutions Nsol is expected to decrease monotonically with the num-
ber of patterns Nξ, interpolating the values ∼ 2N−1 for Nξ = 1 and ∼ 0 for
Nξ = Nαc (rigorously this holds for N→∞) [185]. As a consequence, one
might expect the final entanglement entropy to be larger for a smaller value
of Nξ (i.e. smaller α, for fixed N), since the final QA wave function could
acquire a non-vanishing overlap with many of these solutions. However,
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Fig. B.6 shows that, for dQA without Trotterization1, SN/2(1) is smaller for
α = 0.17 than for α = 0.78 (for all values of δt).

Moreover, the half system entanglement entropy of a linear superposition
of Nsol classical states is upper bounded by log(Nsol). For α ≪ αc, we
expect Nsol ∼ O

(
2N−Nξ

)
, and thus log(Nsol) ∼ (N−Nξ) log 2, which finally

gives log(Nsol) ∼ 15 log 2 for panel a). This is actually larger than the
theoretical upper boundN/2 · log 2 = 9 log 2; thus SN/2(1) could saturate the
upper bound, but it is always observed to be much smaller. Consequently,
we argue that the QA dynamics, for the problem in exam, yields a final wave
function with non-vanishing overlap only with few of the many possible
classical solutions. This fact is particularly relevant for our MPS approach:
if QA resulted in highly entangled final states for small α, then MPS would
not be able to accurately follow its dynamics in this regime (i.e., looking back
at Fig. 3.1, |ψτ⟩ would not belong to the MPS manifold Mχ).

1 We assume again that dQA without Trotterization is a good approximation of the exact con-
tinuous QA. This is justified by the previous considerations.





C INTRODUCT ION TO THE
STAB I L I ZER FORMAL ISM

Remark on the notation. Unlike the rest of the work, in this Appendix we
will use the symbols {X, Y,Z} to denote the Pauli matrices. Furthermore, we
are going to use the symbol g (or h) to denote a generic Pauli string, whereas
previously we used the symbol σσσ. The reason for these choices is to adhere
to the notation more commonly used in the literature. Finally, we will omit
the symbol ˆ for operators.

c.1 pauli group and stabilizer groups

Definition 1. The Pauli group P1 is the 16−elements group consisting of the
following 2× 2 matrices

P1 = {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ} .

The Pauli group PN is the group obtained by taking the tensor product of
any N elements of P1, i.e.

PN = {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}⊗N .

Observation 1.

a) The elements of PN are hermitian or anti-hermitian

b) The elements of PN have eigenvalues ±1 (if hermitian) or ±i (if anti-
hermitian)

c) If g ∈ PN, then g2 = 1 (if g is hermitian) or g2 = −1 (if g is anti-
hermitian)

d) The elements of PN are unitary

e) If g,h ∈ PN, then or they commute [g,h] = 0 or they anti-commute
{g,h} = 0

f) With the exception of ±1, ±i1, the elements of PN are traceless

Definition 2. We define stabilizer group any subgroup of PN that does not
contain the element −1. Given a stabilizer group S, we define VS as the
set of N−qubits states |ψ⟩ such that g |ψ⟩ = |ψ⟩ , ∀g ∈ S and ∀ |ψ⟩ ∈ VS.
VS is by construction a subspace. It is called stabilizer subspace. If it is one-
dimensional, it defines a single state called stabilizer state.
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Notice that in order to have a non trivial subspace VS it is necessary to
have −1 /∈ S. Indeed otherwise we would have (−1) |ψ⟩ = |ψ⟩ ,∀ |ψ⟩ ∈ VS ⇒
VS = {0}.

Observation 2. Any stabilizer group is an abelian group! Indeed, let us sup-
pose that ∃g,h ∈ S such that [g,h] ̸= 0. Because of Observation 1 e), we have
{g,h} = 0 ⇒ gh = −hg. Now, since gh ∈ PN, it can be either (gh)2 = 1 or
(gh)2 = −1. In the second case, we can conclude since we break the initial
hyphotesis. In the first case, we have (gh)(hg) = −(gh)(gh) = −(gh)2 = −1,
and therefore we find again the absurd.

Stabilizers are abelian groups, with all elements hermitian and squaring
to identity.

Observation 3. Any stabilizer group S is generated by an independent set of
k (commuting) elements of the Pauli group g1, ...,gk ∈ PN, meaning that

S =
{ k∏
j=1

(
gj
)αj , αj ∈ {0, 1}

}
= ⟨g1, ...,gk⟩

The size of S is therefore |S| = 2k.

Definition 3. Given a stabilizer group S, we define the operator

PS =
1

|S|

∑
g∈S

g .

It can be easily proven that PS is nothing but the orthogonal projection on
VS [161]. Indeed, given g ∈ S, Pg = (1 + g)/2 is the orthogonal projector on
its eigenspace with eigenvalue +1. The projector on S is therefore

PS =
∏

g∈{g1,...,gk}

Pg =
1

2k

∑
{α}

k∏
j=1

(
gj
)αj = 1

|S|

∑
g∈S

g .

Observation 4. Let |ψ⟩ be a stabilizer state. Its density matrix operator ρ =

|ψ⟩ ⟨ψ| is the orthogonal projection on |ψ⟩. Thus

ρ = PS =
1

|S|

∑
g∈S

g . (C.1.1)

Lemma 1. The dimension of the stabilizer subspace VS of a stabilizer group
generated by k elements of PN is 2N−k. Indeed, since PS is an orthogonal
projection its eigenvalues are 0 or 1 and its trace is equal to the number of
1 eigenvalues, i.e. to the dimension of VS. We have Tr[PS] = 2−k

∑
g∈S Tr[g]

and, since Tr[g] is non zero only if g = 1, Tr[PS] = 2−k2N.

Observation 5. If S = ⟨g1, ...,gk⟩ is the stabilizer group of VS, you cannot
find any g ′ ∈

(
PN \ S

)
such that g ′ stabilizes entirely VS. Indeed, otherwise

⟨g1, ...,gk,g ′⟩ would be another possible stabilizer group for VS, but this is
impossible, since 2N−k ̸= 2N−(k+1).

Observation 6. The stabilizer group of an N−qubits stabilizer state is gener-
ated by exactly N mutually commuting Pauli operators!



c.2 the clifford group 97

Do the stabilizer states cover the entire N−qubits Hilbert space? Obvi-
ously not! Indeed, since PN has finite cardinality, the number of N mutually
commuting Pauli operators is finite. For instance, the stabilizer states for
N = 1 are just six, namely

|0⟩ , |1⟩ ,
|0⟩+ |1⟩√

2
,
|0⟩− |1⟩√

2
,
|0⟩+ i |1⟩√

2
,
|0⟩− i |1⟩√

2
.

It can be shown that the cardinality of the set of pure stabilizer states is

|Stab| = 2N
N−1∏
k=0

(
2N−k + 1) .

c.2 the clifford group

Definition 4. The Clifford group CN is the group of N−qubits unitaries that
map elements of the Pauli group into elements of the Pauli group

CN = {U ∈ U2N×2N s.t. UPNU† = PN} .

One can prove that the Hadamard gateH, the phase gate S and the CNOT1,
i.e.

H =
1√
2

(
1 1

1 −1

)
S =

(
1 0

0 ei
π
2

)
CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,

generate the entire Clifford group CN. Another gate is necessary to construct
an universal set of gates, i.e. to span all the N−qubits unitaries. This is
usually chosen to be

T =

(
1 0

0 ei
π
4

)
,

which is non Clifford, since for instance TXT† = 1√
2

(
X+ Y).

Importantly, the uniform distribution on the Clifford group is a 3−design
of random Haar unitaries, meaning that the average of any third order poly-
nomial over CN equals the average over the entire unitary group UN [186].
Consequently, Clifford group can be used for the simulation of random uni-
tary circuits, allowing the extraction of information up to the third order
moments.

The following result gives a connection between the Clifford group and
the set of stabilizer states.

1 CNOT can be replaced with controlled Z
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Lemma 2. A state |ψ⟩ is a stabilizer if and only if it is equal to C |0⟩⊗N, for
some C ∈ CN. The second implication is very easy to show. Indeed, |0⟩⊗N is
clearly a stabilizer state having as generators

g1 = Z⊗ 1⊗ ...⊗ 1

g2 = 1⊗Z⊗ ...⊗ 1

...

gN = 1⊗ 1⊗ ...⊗Z .

Since C ⟨g1,g2...gN⟩C† stabilize |ψ⟩ = C |0⟩⊗N and since ⟨g1,g2...gN⟩ has
dimension 2N, we conclude that |ψ⟩ is a stabilizer (it has a stabilizer group
of size 2N). The converse can also be shown easily.

Consider now any stabilizer subspace VS and an unitary operator U ∈ CN.
The action of U maps VS to UVS. It is not difficult to realize that UVS is
the stabilizer subspace for the group USU†. Indeed, ∀g ′ = UgU†, ∀ |ψ ′⟩ =
U |ψ⟩ ∈ UVS we have g ′ |ψ ′⟩ = g ′U |ψ⟩ = UgU†U |ψ⟩ = Ug |ψ⟩ = U |ψ⟩ =
|ψ ′⟩. This means that we can keep track of the action of any Clifford unitary
simply by applying it to the generator set of S.

c.3 the tableau representation

A simple but useful mapping exists between elements of P1 and the binary
vector space (Z2)

2. The mapping is given by the following tableau [159, 187]


r(1) =

(
0 | 0
)

r(X) =
(
1 | 0
)

r(Y) =
(
1 | 1
)

r(Z) =
(
0 | 1
)

and neglects the overall phases ±1 or ±i (thus, r(−iX) = r(X)). It is not
difficult to show that r(gh) = r(g)⊕ r(h), ⊕ denoting the sum modulo 2.
The binary representation can be easily generalized to PN. Indeed, if we
split rrr(g) as (rrr(1)(g) |rrr(2)(g)), where rrr(1) and rrr(2) are vectors of length N,
we can assign the value 1 to the jth component of rrr(1)(g) (j = 1, 2...N) iff
the jth Pauli matrix in g is X or Y, and the value 1 to the jth component of
rrr(2)(g) iff the jth Pauli matrix in g is Y or Z. Furthermore, if we define the
matrix

ΛN =

(
0N×N 1N×N
1N×N 0N×N

)
of dimension 2N× 2N, we can realize that the symplectic inner product of
two binary vectors evaluates whether the matrices commute or anticommute

(
rrr(g)

)T
ΛNrrr(h) =

{
0 if g,h commute

1 if g,h anticommute
.
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Definition 5. Given a stabilizer state, fully specified by S = ⟨g1,g2...gN⟩, its
generator matrix is the N× 2N matrix

G =


rrr(g1)

rrr(g2)

...
rrr(gN)

 .

This matrix only specifies the generators up to an overall phase.

Observation 7. Notice that the stabilizer generators must be independent,
meaning that no product of them can produce 1. Since rrr(gigj) = rrr(gi)⊕
rrr(gj), no rows of G can sum to zero and therefore G must have full rank
(over the field Z2). Furthermore, since generators must commute, then

GTΛNG = 0 .

Let us notice that the Hadamard gate H and the phase gate S act as follows
on the Pauli matrices

HXH† = Z

HYH† = −Y

HZH† = X


SXS† = Y

SYS† = −X

SZS† = Z

In other words, H interchanges X and Z, giving Y a phase, and S inter-
changes X and Y, possibly adding a phase, and leaves Z unchanged. In the
tableau representation, this means:

(
... r(1)j ...

∣∣∣∣ ... r(2)j ...
)

Hj←→
(

... r(2)j ...
∣∣∣∣ ... r(1)j ...

)
(

... r(1)j ...
∣∣∣∣ ... r(2)j ...

)
Sj←→
(

... r(1)j ...
∣∣∣∣ ...

(
r
(1)
j ⊕ r

(2)
j

)
...
)

.

Regarding the CNOT gate, we have ( CNOT = CNOT †)

CNOT (1⊗ 1) CNOT = 1⊗ 1

CNOT (1⊗X) CNOT = 1⊗X
CNOT (1⊗ Y) CNOT = Z⊗ Y
CNOT (1⊗Z) CNOT = Z⊗Z
CNOT (X⊗ 1) CNOT = X⊗X
CNOT (X⊗X) CNOT = X⊗ 1

CNOT (X⊗ Y) CNOT = Y ⊗Z
CNOT (X⊗Z) CNOT = −Y ⊗ Y



CNOT (Y ⊗ 1) CNOT = Y ⊗X
CNOT (Y ⊗X) CNOT = Y ⊗ 1

CNOT (Y ⊗ Y) CNOT = −X⊗Z
CNOT (Y ⊗Z) CNOT = X⊗ Y
CNOT (Z⊗ 1) CNOT = Z⊗ 1

CNOT (Z⊗X) CNOT = Z⊗X
CNOT (Z⊗ Y) CNOT = 1⊗ Y
CNOT (Z⊗Z) CNOT = 1⊗Z

This table can be summarized in following update rule for a CNOT where
the qubit k control the target qubit j (j,k ∈ {1, 2, ...N})

(
... r(1)j ⊕ r(1)k ... r(1)k ...

∣∣∣∣ ... r(2)j ...r(2)k ⊕ r(2)j ...
)

CNOTkj←−−−−→
(

... r(1)j ... r(1)k ...
∣∣∣∣ ... r(2)j ...r(2)k ...

)
.
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As a simple example, let us consider a system with N = 2 qubits. The initial
state is |00⟩, which has {11Z2,Z112} as stabilizer generators. The stabilizer
matrix is therefore

G =

(
0 0 1 0

0 0 0 1

)
.

If we apply the gate H on the first qubit we can update the matrix G as
follows

G ′ =

(
1 0 0 0

0 0 0 1

)
.

Then, we apply a CNOT, that gives

G ′′ =

(
1 1 0 0

0 0 1 1

)
.

Indeed, we have

CNOT12
(
H1 |00⟩

)
= CNOT12

|00⟩+ |10⟩√
2

=
|00⟩+ |11⟩√

2

and the final state has {X1X2,Z1Z2} as stabilizer generators, which are ex-
actly the operators encoded in the tableau G ′′.

Other simple rules can be found to keep track of the overall sign ±1 and
to update the generator matrix after a Pauli measurements [159]. These
observations lead to the following important Theorem.

Theorem 1 (Gottesman-Knill). Suppose we perform a quantum computation
which involves only state preparations in the computational basis, Hadamard
gates H, phase gates S, CNOT gates, Pauli gates and measurements of ob-
servables in the Pauli group, together with the possibility of classical control
conditioned on the outcome of such measurements. Such a computation
may be efficiently simulated on a classical computer, meaning that there ex-
ists an Algorithm to do this classically in a polynomial time, specifically at
cost O(N2M) operations, where N is the number of qubits and M the num-
ber of operations.

c.4 nonstabilizerness as a quantum resource

As we saw, a quantum computation involving only stabilizer states (or equiv-
alently, Clifford circuits and measurements in the computational basis) can
be simulated classically. Therefore, one has to consider nonstabilizer pro-
tocols to reach a true quantum advantage. In this sense, the ”nonstabilizer-
ness” can be considered as a key ”resource” of the quantum world, making it
more powerful of the classical one. This intuitive picture can be made math-
ematically rigorous by exploiting the meta-theory of quantum resources. In
this framework, one usually introduce a set if ”free-operations” that by con-
struction do not generate resource. In the case of entanglement these are the
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local operations and classical communication (LOCC). In the case of the non-
stabilizerness, also dubbed quantum magic, they are the following stabilizer
operations 2:

• Clifford unitaries, i.e. ρ→ UρU†, with U ∈ CN

• Composition with stabilizer states, i.e. ρ→ ρ⊗ ρS, where ρS is a stabi-
lizer state

• Measurements in the computational basis, i.e. ρ → ∑
k PkρPk, where

Pk are the projectors on the computational basis (
∑
k Pk = 1)

• Discarding some qubits, i.e. ρ→ TrA[ρ], where A is any subsystem

• The above operations conditioned on the outcomes of measurements

The goal is generally to evaluate the amount of resource stored into a state ρ
by means of a quantity M(ρ), usually named monotone, that is required to be
not increasing under any arbitrary free operations. For instance, M is a magic
monotone if it respects M

(
E(ρ)

)
⩽ M

(
ρ
)

for any combinations E of the stabi-
lizer operations listed above. If one is able to identify and calculate a mono-
tone measure M, it can utilize it to discriminate between states that can or
cannot be prepared from an initial state using free operations. The resource
needed to prepare a state can be injected in the initial state, for instance hav-
ing access to many copies of the magic T−state |T⟩ = 1√

2

(
|0⟩+ eiπ4 |1⟩

)
.

Examples of known genuine magic monotones are the following.

1. The robustness of magic, defined as

R(ρ) = min
{ |Stab|∑
n=1

|xn| s.t. ρ =
∑
n

xnρ
(n)
S

}
, (C.4.1)

where ρ(n)S = |ψ(n)⟩ ⟨ψ(n)|, n = 1, 2... |Stab|, are all the pure stabilizer
states over N qubits.

2. The min-relative entropy of magic, which for pure states reads

D(|ψ⟩) = − log
(

maxn| ⟨ψ(n)|ψ⟩ |2
)

, (C.4.2)

with the same notation as above.

However, both these quantity are very difficult to handle in practice since
their evaluation requires an optimization over exponentially large spaces. In
the next Section, we will introduce the Stabilizer Rényi Entropies, a possible
candidate for a simpler measure of quantum magic.

2 Sometimes an additional condition, known as strong monotonicity, is also imposed. It can
be expressed as

∑
k pkM(PkρPk) ⩽ M(ρ) and it ensures that M does not increase, on aver-

age, when the experimenter has the ability to post-select multiple outcomes of a quantum
measurement.
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c.5 stabilizer rényi entropies

Definition 6. The projective Pauli group is the standard Pauli group PN mod-
ulo global phases, i.e. P̃N = {1,X, Y,Z}⊗N.

Lemma 3. Given a stabilizer state |ψ⟩ and a Pauli string g ∈ P̃N, we have

⟨ψ|g|ψ⟩ =


+1 if g ∈ S

0 if g /∈ S,−g /∈ S

−1 if − g ∈ S

Indeed, the expectation value can be computed as

⟨ψ|g|ψ⟩ = 1

2N

∑
g ′∈S

Tr
[
gg ′] ,

and we can conclude using the fact that the trace of a tensor product factor-
izes and that the matrices {1,X, Y,Z} are trace-orthogonal.

Definition 7. Given a N−qubits state |ψ⟩, we define its Stabilizer α-Rényi En-
tropies (SRE) [188] as

Mα(|ψ⟩) =
1

1−α
log
( ∑
g∈P̃N

1

2N
⟨ψ|g|ψ⟩2α

)
. (C.5.1)

To understand the relation with usual Rényi entropies it is useful to intro-
duce the density matrix ρ = |ψ⟩ ⟨ψ| and the function Πρ(g) = 1

2N
(Tr[ρg])2.

Let us observe that∑
g∈P̃N

Πρ(g) =
1

2N

∑
g∈P̃N

Tr[ρg] ·Tr[ρg] = Tr
[
ρ · 1
2N

∑
g∈P̃N

Tr[ρg]g
]
= Tr

[
ρ2
]
= 1 .

We used the decomposition of the matrix ρ in terms of { g√
2N

}g∈P̃N
, which

is a complete base set for the hermitian matrices of size 2N. We also use
the fact that for pure states Tr

[
ρ2
]
= 1. Thus, we can consider Πρ(g) as a

probability distribution. We have

Mα(|ψ⟩) =
1

1−α
log
( ∑
g∈P̃N

(
Πρ(g)

)α)
−N log 2 , (C.5.2)

that shows that Mα(|ψ⟩) is the α-Rényi entropy of Πρ(g), apart from a con-
stant. Notice that, to extend the definition of Mα to arbitrary density matri-
ces ρ, we have to normalize with the purity, i.e.

Πρ(g) =
1

2N
(Tr[ρg])2

Tr[ρ2]
. (C.5.3)

Observation 8.

a) For a stabilizer state we have Mα(|ψ⟩) = 0. Indeed, by means of
Lemma 3, we have

Mα(|ψ⟩) =
1

1−α
log
(
2N · 1

2N
(±1)2α

)
= 0 . (C.5.4)
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b) In general, Mα(|ψ⟩) = 0 iff |ψ⟩ is a stabilizer and Mα(|ψ⟩) > 0 other-
wise.

c) The SRE are invariant under Clifford unitaries. Indeed, even if the
Pauli strings are reshuffled by a Clifford unitary, the probability values
Πρ(g) remain unchanged and consequently also the values of the Rényi
entropies.

d) The SRE are additive, i.e. Mα(|ψ⟩ ⊗ |ϕ⟩) = Mα(|ψ⟩) +Mα(|ϕ⟩). This
is a trivial consequence of the fact that the sum over Pauli strings on
a system can be factorized into the sum of the Pauli strings of two
subsystems.

These properties have recently attracted a lot of attention to SREs, consid-
ered as a potential simpler monotone for magic. However, it was observed
that

• for any 0 ⩽ α ⩽ 2, SRE are not genuine monotones since there exist
protocols involving measurements and operations conditioned by their
outcomes for which Mα increase;

• for any α, SRE are not strong monotones.

c.6 entanglement

c.6.1 Entanglement entropy

Let us suppose to have a pure stabilizer state

ρ = |ψ⟩ ⟨ψ| = 1

2N

∑
g∈S

g .

We aim to assess the entanglement entropy S(A|B) associated to the parti-
tioning of the system into a subsystem A consisting of NA qubits and a
complementary subsystem B containing NB = N−NA qubits. We start by
computing the reduced density matrix ρA = TrB[ρ]:

ρA =
1

2N

∑
g∈S

TrB[g] .

Only some elements g of the group S give a non vanishing contribution,
namely the Pauli strings that can be written as g = gA⊗ 1B. Notice that this
subset SA is also a stabilizer group, since (gA⊗1B)(g

′
A⊗1B) = (gAg

′
A)⊗1B.

Let us denote kA the number of independent generators of SA. Now we have

ρA =
1

2N
2NB

∑
g∈SA

g =
1

2NA
2kA

1

2kA

∑
g∈SA

g .

The last part of the expression is the projector on the stabilizer subspace of
SA, thus

ρA =
1

2NA−kA
PSA . (C.6.1)
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Now, since eigenvalues of PSA are only 1 (with degeneracy 2NA−kA) and 0
(with degeneracy 2NA − 2NA−kA), we get

S(A|B) = −2NA−kA
1

2NA−kA
log

1

2NA−kA
= (NA − kA) log 2 .

How to compute kA in practice given the generator matrix G of |ψ⟩? It is
not difficult to show that kA is simply the rank of the matrix obtained by
setting to 0 all the entries of G corresponding to the subsystem B. Indeed,
this operation corresponds to projecting the original generators on the space
of operators having the form gA ⊗ 1B.

c.6.2 Entanglement fluctuations: new results

Let us notice that the entanglement spectrum of Eq. C.6.1 is flat, meaning
that all non zero Schmidt eigenvalues take the same value. This is true for
any stabilizer state |ψ⟩ and any bipartition.

Let us now consider a possible measure of the flatness of the entanglement
spectrum. We define

FA(ρ) = Tr
[
ρ3A
]
− Tr2[ρ2A] . (C.6.2)

One can easily check that FA(ρ) = 0 iff the entanglement spectrum is flat,
whereas FA(ρ) > 0 in other cases. We have seen that being a stabilizer state
implies FA = 0, while the converse is not true since there exist product states
with a flat entanglement spectrum that have an extensive amount of magic
(for instance,

(
T |0⟩

)⊗N). Nevertheless, it is possible to make the relationship
between FA and the nonstabilizerness more precise. In fact, the following
result, obtained for the first time in Ref. [189], holds.

Theorem 2. For any pure state |ψ⟩, the flatness of the entanglement spectrum
averaged over the Clifford orbit is proportional to the linear SRE Mlin, which
is defined as

Mlin(|ψ⟩) = 1− exp
(
−M2(|ψ⟩)

)
=

= 1− 2N
∑
g∈P̃N

(
Πρ(g)

)2 (C.6.3)

Indeed
⟨FA(UC |ψ⟩)⟩CN = c(D,DA)Mlin(|ψ⟩) , (C.6.4)

where ⟨·⟩CN is the average over the Clifford group {UC}UC∈CN , D = 2N and
DA = 2NA are the Hilbert space dimensions of the system and subsystem,
and the proportionality constant is c(D,DA) ∼ (D2 −D2A)D

−3 for large D.

As a Corollary, we have that |ψ⟩ is a stabilizer state if and only if the en-
tanglement spectrum of any state in its Clifford orbit {UC |ψ⟩}UC∈CN is flat
for any bipartition.

SRE is a very expensive quantity to measure, typically demanding expo-
nential resources (although it is more efficient than full state tomography).
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Figure C.1: Ratio ⟨FA⟩/
(
c(D,DA)Mlin

)
as a function of the number of layersNLayers

of a shallow Clifford circuit. The system is initially prepared in a vol-
ume law state. The ratio approaches 1 very fast verifying Eq. C.6.4.

The Theorem paves the way for a more efficient method of measuring SRE
by averaging FA over the Clifford orbit of |ψ⟩. In principle, this might re-
quire averaging over a very large number of Clifford unitaries, which would
be impractical. However, in Ref. [189], we numerically observed that this is
not always the case.

In Fig. C.1, we show that one can accurately estimate Mlin even by shal-
low Clifford circuits provided one starts with volume law entanglement. We
consider a system of N = 14 qubits in a volume law phase by subjecting the
initial product state |ψ(θ)⟩ = 2−N/2(|0⟩+ eiθ |1⟩)⊗N to 1500 Clifford layers,
for various values of θ. We then plot the ratio ⟨FA⟩/

(
c(D,DA)Mlin

)
as a

function of the number of Clifford NLayers. The theoretical line predicted by
the theorem, corresponding to the value 1, is shown as a solid red line. No-
tably, we observe that even for circuits as short as NLayers = 7 Clifford layers,
the average flatness reaches the value predicted by the above Theorem.

In Ref. [189], we also propose a simple Algorithm to determine if a given
state |ψ⟩ is a stabilizer state or possesses some nonstabilizerness. The proce-
dure works as follows: (1) Start with |ψ⟩. (2) Draw a random Clifford gate
UC and apply it to the initial state: UC |ψ⟩. (3) Measure the entanglement
spectrum flatness FA(UC |ψ⟩). If the original state |ψ⟩ is a stabilizer state, the
output of the circuit is still a stabilizer state with zero flatness. On the con-
trary, if |ψ⟩ has some magic, we expect that even a modest exploration of the
Clifford orbit will result into a non flat entanglement spectrum. Therefore, if
after a number of Clifford unitaries we measure FA > 0we can establish that
the initial state possesses nonstabilizerness. In a real-world scenario, one has
to set both a number of iterations (which determines the maximum number
of Clifford layers applied) and a threshold ϵ for measuring the flatness. In
Fig. C.2, we present the probability of success of this Algorithm psucc for
N = 12 qubits and for a different number of Clifford layers NLayers. We fix
the threshold ϵ = 0.005 and we compute the probability as a function of the
SRE M2(|ψ⟩) of the initial state. The plot shows that increasing the number
of iterations of the Algorithm push the probability of success to 1 for any
fixed values of nonstabilizerness.
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Figure C.2: Probability of success psucc for a fixed threshold ϵ = 0.005 and for differ-
ent NLayers. After collecting 103 realizations, we compute the probabil-
ity of success psucc as a function of the initial value of non-stabilizerness
calculated using the second SRE M2(|ψ⟩).
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the Néel phase of the frustrated Heisenberg antiferromagnet by dif-
ferentiable symmetric tensor networks”. In: SciPost Phys. 10 (1 2021),
p. 12. doi: 10.21468/SciPostPhys.10.1.012. url: https://scipost.org/10.
21468/SciPostPhys.10.1.012.

[84] R. P. Feynman and Michael Cohen. “Energy Spectrum of the Excita-
tions in Liquid Helium”. In: Phys. Rev. 102 (5 June 1956), pp. 1189–
1204. doi: 10.1103/PhysRev.102.1189. url: https://link.aps.org/doi/
10.1103/PhysRev.102.1189.

[85] Luca F. Tocchio et al. “Role of backflow correlations for the nonmag-
netic phase of the t–t

′
Hubbard model”. In: Phys. Rev. B 78 (4 July

2008), p. 041101. doi: 10.1103/PhysRevB.78.041101. url: https://link.
aps.org/doi/10.1103/PhysRevB.78.041101.

[86] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural
Networks for Quantum Many-Body Wave Functions”. In: Phys. Rev.
Lett. 122 (22 June 2019), p. 226401. doi: 10 .1103/PhysRevLett .122 .
226401. url: https :// link .aps .org/doi/10 .1103/PhysRevLett .122 .
226401.

[87] M. B. Hastings. “An area law for one-dimensional quantum systems”.
In: J. Stat. Mech. P08024 (2007).

[88] K. E. Schmidt et al. “Structure of the Ground State of a Fermion
Fluid”. In: Physical Review Letters 47.11 (1981). Publisher: American
Physical Society, pp. 807–810. doi: 10.1103/PhysRevLett.47.807. url:
https://link.aps.org/doi/10.1103/PhysRevLett.47.807.

[89] Vincenzo Alba and Pasquale Calabrese. “Entanglement and thermo-
dynamics after a quantum quench in integrable systems”. In: Proceed-
ings of the National Academy of Sciences 114.30 (2017), pp. 7947–7951.
issn: 0027-8424. doi: 10.1073/pnas.1703516114. url: https://www.

pnas.org/content/114/30/7947.

[90] Xiaopeng Li Dong-Ling Deng and S. Das Sarma. “Quantum Entan-
glement in Neural Network States”. In: Phys. Rev. X 7, 021021 (2017).

[91] Giuseppe Carleo et al. “NetKet: A Machine Learning Toolkit for Many-
Body Quantum Systems”. In: SoftwareX (2019), p. 100311. doi: 10 .

1016/j.softx.2019.100311. url: http://www.sciencedirect.com/science/

article/pii/S2352711019300974.

[92] Filippo Vicentini et al. NetKet 3: Machine Learning Toolbox for Many-
Body Quantum Systems. 2021. arXiv: 2112.10526 [quant-ph].

[93] NetKet. https://github.com/netket/netket.

[94] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.2.5. 2018. url: http://github.com/google/jax.

https://doi.org/10.1103/PhysRevB.95.195154
https://link.aps.org/doi/10.1103/PhysRevB.95.195154
https://link.aps.org/doi/10.1103/PhysRevB.95.195154
https://doi.org/10.21468/SciPostPhys.10.1.012
https://scipost.org/10.21468/SciPostPhys.10.1.012
https://scipost.org/10.21468/SciPostPhys.10.1.012
https://doi.org/10.1103/PhysRev.102.1189
https://link.aps.org/doi/10.1103/PhysRev.102.1189
https://link.aps.org/doi/10.1103/PhysRev.102.1189
https://doi.org/10.1103/PhysRevB.78.041101
https://link.aps.org/doi/10.1103/PhysRevB.78.041101
https://link.aps.org/doi/10.1103/PhysRevB.78.041101
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.122.226401
https://link.aps.org/doi/10.1103/PhysRevLett.122.226401
https://link.aps.org/doi/10.1103/PhysRevLett.122.226401
https://doi.org/10.1103/PhysRevLett.47.807
https://link.aps.org/doi/10.1103/PhysRevLett.47.807
https://doi.org/10.1073/pnas.1703516114
https://www.pnas.org/content/114/30/7947
https://www.pnas.org/content/114/30/7947
https://doi.org/10.1016/j.softx.2019.100311
https://doi.org/10.1016/j.softx.2019.100311
http://www.sciencedirect.com/science/article/pii/S2352711019300974
http://www.sciencedirect.com/science/article/pii/S2352711019300974
https://arxiv.org/abs/2112.10526
https://github.com/netket/netket
http://github.com/google/jax


bibliography 117

[95] Jonathan Heek et al. Flax: A neural network library and ecosystem for
JAX. Version 0.3.0. 2020. url: http://github.com/google/flax.

[96] Federico Becca and Sandro Sorella. “Monte Carlo Sampling and Markov
Chains”. In: Quantum Monte Carlo Approaches for Correlated Systems.
Cambridge University Press, 2017. doi: 10.1017/9781316417041.004.

[97] Sandro Sorella. “Green Function Monte Carlo with Stochastic Recon-
figuration”. In: Physical Review Letters 80.20 (May 1998), pp. 4558–
4561. issn: 1079-7114. doi: 10.1103/physrevlett .80 .4558. url: http:
//dx.doi.org/10.1103/PhysRevLett.80.4558.

[98] I. Glasser et al. “Neural-Network Quantum States, String-Bond States,
and Chiral Topological States”. In: Phys. Rev. X 8, 011006 (2018).

[99] Giovanni Cataldi et al. “Hilbert curve vs Hilbert space: exploiting
fractal 2D covering to increase tensor network efficiency”. In: Quan-
tum 5 (Sept. 2021), p. 556. issn: 2521-327X. doi: 10.22331/q-2021-09-
29-556. url: http://dx.doi.org/10.22331/q-2021-09-29-556.
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frustrating Néel antiferromagnetism”. In: Phys. Rev. B 88 (6 Aug. 2013),
p. 060402. doi: 10.1103/PhysRevB.88.060402. url: https://link.aps.
org/doi/10.1103/PhysRevB.88.060402.

[103] Luca Capriotti and Sandro Sorella. “Spontaneous Plaquette Dimer-
ization in the J1 −−J2 Heisenberg Model”. In: Phys. Rev. Lett. 84 (14

Apr. 2000), pp. 3173–3176. doi: 10.1103/PhysRevLett.84.3173. url:
https://link.aps.org/doi/10.1103/PhysRevLett.84.3173.

[104] Kenny Choo, Titus Neupert, and Giuseppe Carleo. “Two-dimensional
frustrated J1-J2 model studied with neural network quantum states”.
In: Physical Review B 100.12 (2019). doi: 10.1103/physrevb.100.125124.
url: http://dx.doi.org/10.1103/PhysRevB.100.125124.

[105] Wen-Yuan Liu et al. “Gapless spin liquid ground state of the spin-
1
2 J1 − J2 Heisenberg model on square lattices”. In: Phys. Rev. B 98

(24 Dec. 2018), p. 241109. doi: 10 .1103/PhysRevB.98 .241109. url:
https://link.aps.org/doi/10.1103/PhysRevB.98.241109.

[106] Andrew Lucas. “Ising formulations of many NP problems”. In: Fron-
tiers in Physics 2 (2014), p. 5.

[107] A. B. Finnila et al. “Quantum annealing: A new method for mini-
mizing multidimensional functions”. In: Chem. Phys. Lett. 219 (1994),
p. 343.

http://github.com/google/flax
https://doi.org/10.1017/9781316417041.004
https://doi.org/10.1103/physrevlett.80.4558
http://dx.doi.org/10.1103/PhysRevLett.80.4558
http://dx.doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.22331/q-2021-09-29-556
https://doi.org/10.22331/q-2021-09-29-556
http://dx.doi.org/10.22331/q-2021-09-29-556
https://doi.org/10.1103/PhysRevE.66.066110
https://link.aps.org/doi/10.1103/PhysRevE.66.066110
https://link.aps.org/doi/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/physrevb.90.064425
http://dx.doi.org/10.1103/PhysRevB.90.064425
https://doi.org/10.1103/PhysRevB.88.060402
https://link.aps.org/doi/10.1103/PhysRevB.88.060402
https://link.aps.org/doi/10.1103/PhysRevB.88.060402
https://doi.org/10.1103/PhysRevLett.84.3173
https://link.aps.org/doi/10.1103/PhysRevLett.84.3173
https://doi.org/10.1103/physrevb.100.125124
http://dx.doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevB.98.241109
https://link.aps.org/doi/10.1103/PhysRevB.98.241109


118 bibliography

[108] Tadashi Kadowaki and Hidetoshi Nishimori. “Quantum annealing in
the transverse Ising model”. In: Phys. Rev. E 58 (5 Nov. 1998), pp. 5355–
5363. doi: 10.1103/PhysRevE.58.5355.

[109] J. Brooke et al. “Quantum Annealing of a Disordered Magnet”. In:
Science 284 (1999), p. 779.

[110] Giuseppe E. Santoro et al. “Theory of quantum annealing of an Ising
spin glass”. In: Science 295 (2002), p. 2427.

[111] Giuseppe E. Santoro and Erio Tosatti. “Optimization using Quantum
Mechanics: Quantum annealing through adiabatic evolution”. In: J.
Phys. A: Math. Gen. 39 (2006), R393–R431. doi: doi : 10 . 1088 / 0305 -

4470/39/36/R01.

[112] E. Farhi et al. “A Quantum Adiabatic Evolution Algorithm Applied
to Random Instances of an NP-Complete Problem”. In: Science 292

(2001), p. 472.

[113] Tameem Albash and Daniel A. Lidar. “Adiabatic quantum computa-
tion”. In: Rev. Mod. Phys. 90 (2018), p. 015002.

[114] M. W. Johnson et al. “Quantum annealing with manufactured spins”.
In: Nature 473 (2011), pp. 194–198.

[115] M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews
Physics 3 (2021).

[116] M. Nielsen and I. L. Chuang. Quantum Computation and Quantum In-
formation. Cambridge University Press, 2000.

[117] R. Barends et al. “Digitized adiabatic quantum computing with a su-
perconducting circuit”. In: Nature 534 (June 2016), p. 222.

[118] Glen Bigan Mbeng, Luca Arceci, and Giuseppe E. Santoro. “Optimal
working point in digitized quantum annealing”. In: Phys. Rev. B 100

(22 2019), p. 224201. doi: 10.1103/PhysRevB.100.224201.

[119] Glen Bigan Mbeng, Rosario Fazio, and Giuseppe Santoro. “Quan-
tum Annealing: a journey through Digitalization, Control, and hybrid
Quantum Variational schemes”. In: arXiv e-prints, arXiv:1906.08948

(June 2019), arXiv:1906.08948. arXiv: 1906.08948 [quant-ph].

[120] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. “A Quantum
Approximate Optimization Algorithm”. In: arXiv e-prints, arXiv:1411.4028

(2014), arXiv:1411.4028. arXiv: 1411.4028 [quant-ph].

[121] Troels F. Rønnow et al. “Defining and detecting quantum speedup”.
In: Science 345.6195 (2014), pp. 420–424. doi: 10.1126/science.1252319.

[122] G. G. Guerreschi and A. Y. Matsuura. “QAOA for Max-Cut requires
hundreds of qubits for quantum speed-up”. In: Scientific Reports 9.1
(2019). doi: 10.1038/s41598-019-43176-9.

[123] Leo Zhou et al. “Quantum Approximate Optimization Algorithm:
Performance, Mechanism, and Implementation on Near-Term Devices”.
In: Phys. Rev. X 10 (2 June 2020), p. 021067. doi: 10.1103/PhysRevX.10.
021067. url: https://link.aps.org/doi/10.1103/PhysRevX.10.021067.

https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/doi:10.1088/0305-4470/39/36/R01
https://doi.org/doi:10.1088/0305-4470/39/36/R01
https://doi.org/10.1103/PhysRevB.100.224201
https://arxiv.org/abs/1906.08948
https://arxiv.org/abs/1411.4028
https://doi.org/10.1126/science.1252319
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1103/PhysRevX.10.021067
https://link.aps.org/doi/10.1103/PhysRevX.10.021067


bibliography 119

[124] Jutho Haegeman et al. “Time-Dependent Variational Principle for
Quantum Lattices”. In: Phys. Rev. Lett. 107 (7 Aug. 2011), p. 070601.
doi: 10.1103/PhysRevLett.107.070601. url: https://link.aps.org/doi/
10.1103/PhysRevLett.107.070601.

[125] Nishan Ranabhat and Mario Collura. “Dynamics of the order param-
eter statistics in the long range Ising model”. In: SciPost Physics 12.4
(Apr. 2022). doi: 10.21468/scipostphys.12.4.126. url: https://doi.org/
10.21468%2Fscipostphys.12.4.126.
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