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Abstract

We prove the existence of small amplitude time quasi-periodic solutions
of the pure gravity water waves equations with constant vorticity, for a
bidimensional fluid over a flat bottom delimited by a space periodic
free interface. Using a Nash-Moser implicit function iterative scheme
we construct traveling nonlinear waves which pass through each other
slightly deforming and retaining forever a quasiperiodic structure. These
solutions exist for any fixed value of depth and gravity and restricting
the vorticity parameter to a Borel set of asymptotically full Lebesgue
measure.
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1 Introduction

A problem of fundamental importance in fluid mechanics regards the
search for traveling surface waves. Since the pioneering work of Stokes
[32] in 1847, a huge literature has established the existence of steady trav-
eling waves, namely solutions (either periodic or localized in space) which
look stationary in a moving frame. The majority of the results concern
bidimensional fluids. At the end of the section we shortly report on the vast
literature on this problem.

In the recent work [7] we proved the first bifurcation result of time quasi-
periodic traveling solutions of the water waves equations under the effects
of gravity, constant vorticity, and exploiting the capillarity effects at the
free surface. For pure gravity irrotational water waves with infinite depth,
quasi-periodic traveling waves has been obtained in Feola-Giuliani [16].

The goal of this paper is to prove the existence of time quasi-periodic
traveling water waves, also in the physically important case of the pure
gravity equations with non zero constant vorticity, for any value of the
depth of the water, finite or infinite. These solutions are a nonlinear su-
perposition of multiple Stokes waves traveling with rationally independent
speeds, and can not be reduced to steady solutions in any moving frame. We
are able to use the vorticity as a parameter: the solutions that we construct
exist for any value of gravity and depth of the fluid, provided the vorticity
is restricted to a Borel set of asymptotically full measure, see Theorem 1.2.
We also remark that, in case of non zero vorticity, bifurcation of standing
waves can not be expected, as they are not allowed by the linear theory.

It is well known that this is a subtle small divisor problem. Major
difficulties are that: (i) the vorticity parameter enters in the dispersion
relation only at the zero order; (ii) there are resonances among the lin-
ear frequencies which can be avoided only for traveling waves; piiiq the
dispersion relation of the pure gravity equations is sublinear at infinity;
(iv) the nonlinear transport term is a singular perturbation of the unper-
turbed linear water waves vector field. Related difficulties appear in the
search of pure gravity time periodic standing waves which have been con-
structed in the last years for irrotational fluids by Iooss, Plotnikov, Toland
[30, 24, 21], extended to time quasi-periodic standing waves in Baldi-Berti-
Haus-Montalto [2]. In presence of surface tension, time periodic and quasi-
periodic standing waves were constructed respectively by Alazard-Baldi
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[1] and Berti-Montalto [9]. We mention that also the construction of grav-
ity steady traveling waves periodic in space presents small divisor difficul-
ties for three dimensional fluids. These solutions, in a moving frame, look
steady bi-periodic waves and have been constructed for irrotational fluids
by Iooss-Plotnikov [22, 23] using the speed as a bidimensional parameter
(for gravity-capillary waves in [13], this is not a small divisor problem).

We first recall the equations. We consider the Euler equations of hydro-
dynamics for a 2-dimensional incompressible and inviscid fluid with con-
stant vorticity γ, under the action of pure gravity. The fluid occupies the re-
gion Dη,h :“

␣

px, yq P TˆR : ´h ă y ă ηpt, xq
(

, T :“ Tx :“ R{p2πZq,
with a (possibly infinite) depth h ą 0 and space periodic boundary con-
ditions. The unknowns of the problem are the free surface y “ ηpt, xq

of the time dependent domain Dη,h and the divergence free velocity field
` upt,x,yq

vpt,x,yq

˘

. If the fluid has constant vorticity vx ´ uy “ γ, the velocity
field is the sum of the Couette flow

`

´γy
0

˘

(recently studied in [5, 37] and
references therein), which carries all the vorticity γ of the fluid, and an ir-
rotational field, expressed as the gradient of a harmonic function Φ, called
the generalized velocity potential. Denoting ψpt, xq :“ Φpt, x, ηpt, xqq the
evaluation of the generalized velocity potential at the free interface, one re-
covers Φ by solving the elliptic problem ∆Φ “ 0 in Dη,h, Φ “ ψ at y “

ηpt, xq and Φy Ñ 0 as y Ñ ´h. The last condition means the impermeabil-
ity of the bottom: Φypt, x,´hq “ 0 if h ă 8, and lim

yÑ´8
Φypt, x, yq “ 0,

if h “ `8. Imposing that the fluid particles at the free surface evolve onto
it (kinematic boundary condition) and that the pressure of the fluid equals
the constant atmospheric pressure at the free surface (dynamic boundary
condition), the time evolution of the fluid is determined by the following
system of equations

(1.1)

#

ηt “ Gpηqψ ` γηηx

ψt “ ´gη ´
ψ2
x
2 `

pηxψx`Gpηqψq2

2p1`η2xq
` γηψx ` γB´1

x Gpηqψ .

Here g is the gravity and Gpηq is the Dirichlet-Neumann operator

Gpηqψ :“ Gpη, hqψ :“ p´Φxηx ` Φyq|y“ηpxq .

As observed in the irrotational case by Zakharov [39], and in presence of
constant vorticity by Wahlén [36], the water waves equations (1.1) are the
Hamiltonian system ηt “ ∇ψH , ψt “ p´∇η ` γB´1

x ∇ψqH , where ∇
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denotes the L2-gradient, with Hamiltonian (cfr. Section 2)

(1.2) Hpη, ψq “
1

2

ż

T

´

ψGpηqψ`gη2
¯

dx`
γ

2

ż

T

´

´ψxη
2`

γ

3
η3
¯

dx .

The equations (1.1) enjoy two important symmetries. First of all, they are
time reversible. We say that a solution of (1.1) is reversible if ηp´t,´xq “

ηpt, xq, ψp´t,´xq “ ´ψpt, xq. Second, since the bottom of the fluid
domain is flat, they are invariant by space translations.

The variables pη, ψq of system (1.1) belong to some Sobolev space
Hs

0pTq ˆ 9HspTq for some s large. Here Hs
0pTq is the Sobolev space of

functions with zero average Hs
0pTq :“

␣

u P HspTq :
ş

T upxqdx “ 0
(

and 9HspTq the corresponding homogeneous Sobolev space, obtained by
identifying the functions in HspTq which differ by a constant. This choice
of the phase space is allowed because

ş

T ηpt, xq dx is a prime integral of
(1.1) and the right hand side of (1.1) depends only on η and ψ´ 1

2π

ş

T ψ dx.

Linearizing (1.1) at the equilibrium pη, ψq “ p0, 0q gives the system

(1.3) Btη “ Gp0qψ , Btψ “ ´gη ` γB´1
x Gp0qψ ,

where Gp0q is the Dirichlet-Neumann operator at the flat surface η “ 0. A
direct computation reveals that Gp0q :“ Gp0, hq is the Fourier multiplier
operator

(1.4) Gp0, hq :“ D tanhphDq if h ă 8 , Gp0, hq :“ |D| if h “ `8 ,

where D :“ 1
i Bx. Thus its symbol Gjp0q :“ Gjp0, hq is, for any j P Z,

(1.5) Gjp0, hq :“ j tanhphjq if h ă 8 , Gjp0, hq :“ |j| if h “ `8 .

As showed in Section 2, all reversible solutions of (1.3) are the linear su-
perposition of plane waves, traveling either to the right or to the left, given
by

(1.6)

ˆ

ηpt, xq

ψpt, xq

˙

“
ÿ

nPN

ˆ

Mnρn cospnx´ Ωnpγqtq
Pnρn sinpnx´ Ωnpγqtq

˙

`

ˆ

Mnρ´n cospnx` Ω´npγqtq
P´nρ´n sinpnx` Ω´npγqtq

˙

,

where ρn ě 0 are arbitrary amplitudes and Mn, P˘n are the real coeffi-
cients

(1.7) Mj :“
´

Gjp0q

g`
γ2

4

Gjp0q

j2

¯
1
4
, j P Zzt0u, P˘n :“

γ

2

Mn

n
˘M´1

n , n P N .
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The frequencies Ω˘npγq in (1.6) are

(1.8) Ωjpγq :“

d

´

g `
γ2

4

Gjp0q

j2

¯

Gjp0q `
γ

2

Gjp0q

j
, j P Zzt0u .

Note that the map j ÞÑ Ωjpγq is not even due to the vorticity term γGjp0q{j,
which is odd in j.

All the linear solutions (1.6) are either time periodic, quasi-periodic or
almost-periodic, depending on the irrationality properties of the frequencies
Ω˘npγq and the number of non zero amplitudes ρ˘n. The problem of the
existence of traveling quasi-periodic in time water waves is formulated as
follows.

Definition 1.1. (Quasi-periodic traveling wave) We call pηpt, xq, ψpt, xqq

a time quasi-periodic traveling wave with irrational frequency vector ω “

pω1, . . . , ωνq P Rν , ν P N, i.e. ω ¨ ℓ ‰ 0 for any ℓ P Zνzt0u, and “wave
vectors” pj1, . . . , jνq P Zν , if there exist functions pη̆, ψ̆q : Tν Ñ R2 such
that pηpt, xq, ψpt, xqq “ pη̆pω1t´ j1x, . . . , ωνt´ jνxq, ψ̆pω1t´ j1x, . . . , ωνt´ jνxqq.

Note that, if ν “ 1, such functions are time periodic and indeed station-
ary in a moving frame with speed ω1{j1. If the number of the irrational
frequencies in greater or equal than 2, such waves cannot be reduced to
steady waves by any choice of the moving frame.

We construct traveling quasi-periodic solutions of the nonlinear equa-
tions (1.1) with a diophantine frequency vector ω belonging to an open
bounded subset Ω in Rν , namely, for some υ P p0, 1q, τ ą ν ´ 1,

DCpυ, τq :“
!

ω P Ω Ă Rν : |ω ¨ ℓ| ě υxℓy´τ , @ ℓ P Zνzt0u

)

,

where xℓy :“ maxt1, |ℓ|u, and with pη̆, ψ̆q in some Sobolev space

HspTν ,R2q “

!

f̆pφq “
ÿ

ℓPZν

fℓ e
iℓ¨φ P R2 : }f̆}2s :“

ÿ

ℓPZν

|fℓ|
2xℓy2să 8

)

.

Fixed finitely many arbitrary distinct natural numbers

(1.9) S` :“ tn1, . . . , nνu Ă N , 1 ď n1 ă . . . ă nν ,

and signs

(1.10) Σ :“ tσ1, . . . , σνu, σa P t´1, 1u , a “ 1, . . . , ν ,
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we consider reversible quasi-periodic traveling wave solutions of the linear
system (1.3), given by
ˆ

ηpt, xq

ψpt, xq

˙

“
ÿ

aPt1,...,ν : σa“`1u

ˆ

Mna

a

ξna cospnax´ Ωnapγqtq

Pna

a

ξna sinpnax´ Ωnapγqtq

˙

`
ÿ

aPt1,...,ν : σa“´1u

ˆ

Mna

a

ξ´na cospnax` Ω´napγqtq

P´na

a

ξ´na sinpnax` Ω´napγqtq

˙

(1.11)

where ξ˘na ą 0, a “ 1, . . . , ν. The frequency vector of (1.11) is given by

(1.12) Ω⃗pγq :“ pΩσanapγqqa“1,...,ν P Rν .

Theorem 1.2 proves the existence of quasi-periodic traveling waves of (1.1),
close to the linear solutions (1.11), for most values of the vorticity γ P

rγ1, γ2s, with a frequency vector rΩ :“ prΩσanaqa“1,...,ν , close to Ω⃗pγq :“
pΩσanapγqqa“1,...,ν .

Theorem 1.2. (KAM for traveling gravity water waves with constant
vorticity) Consider finitely many tangential sites S` Ă N as in (1.9) and
signs Σ as in (1.10). Fix a subset rγ1, γ2s Ă R. Then there exist s ą 0,
ε0 P p0, 1q such that, for any |ξ| ď ε20, ξ :“ pξσanaqa“1,...,ν P Rν`, the
following hold:
1) There exists a Borel set Gξ Ă rγ1, γ2s with density one at ξ “ 0, i.e.
limξÑ0 |Gξ| “ γ2 ´ γ1;
2) For any γ P Gξ, the gravity water waves equations (1.1) have a reversible
quasi-periodic traveling wave solution (according to Definition 1.1) of the
form

(1.13)

ˆ

ηpt, xq

ψpt, xq

˙

“
ÿ

aPt1,...,νu : σa“`1

ˆ

Mna

a

ξna cospnax´ rΩnapγqtq

Pna

a

ξna sinpnax´ rΩnapγqtq

˙

`
ÿ

aPt1,...,νu : σa“´1

ˆ

Mna

a

ξ´na cospnax` rΩ´napγqtq

P´na

a

ξ´na sinpnax` rΩ´napγqtq

˙

` rpt, xq

where rpt, xq “ r̆prΩσ1n1pγqt ´ σ1n1x, . . . , rΩσνnν pγqt ´ σνnνxq, for r̆ P

HspTν ,R2q, satisfying limξÑ0
}r̆}s?

|ξ|
“ 0, with a Diophantine frequency

vector rΩ :“ prΩσanaqa“1,...,ν P Rν , depending on γ, ξ, and satisfying
limξÑ0

rΩ “ Ω⃗pγq. In addition these quasi-periodic solutions are linearly
stable.
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The solutions (1.13) are a slight deformation of the quasi-periodic linear
traveling waves (1.11). Thus, for ξ ‰ ξ1 small enough, and γ P Gξ XGξ1 the
quasi-periodic solutions (1.13) are different. The solutions (1.13) are lin-
early stable in the sense that the linearized vector field at the quasi-periodic
traveling wave solutions (1.13) has purely imaginary Floquet exponents,
see (5.8). This is a byproduct of the KAM reducibility of section 7. In par-
ticular, arguing as in [9, pages 6-7], the Sobolev norms of the solutions of
the linearized equations at the solutions (1.13) are uniformly bounded in t.

Let us make some comments about the result.
1) Vorticity as parameter and irrotational quasi-periodic traveling waves.
We are able to use the vorticity γ as a parameter, even though the depen-
dence of the linear frequencies Ωjpγq in (1.8) with respect to γ affects only
the order 0. If γ1 ă 0 ă γ2 we do not know if the value γ “ 0 belongs to
the set Gξ for which the quasi periodic solutions (1.13) exist. Nevertheless,
irrotational quasi-periodic traveling solutions of (1.1) with γ “ 0 exist for
most values of the depth h, see Remark 4.6. These traveling waves do not
clearly reduce to the standing waves constructed in [2], which are even in
the space variable.
2) More general traveling solutions. The Diophantine condition (5.10)
could be weakened requiring only |ω ¨ ℓ| ě υxℓy´τ for any ℓ P Zνzt0u

with ℓ1 σ1n1 ` ... ` ℓν σνnν “ 0, so that ω could admit one non-trivial
resonance. This is the natural minimal requirement to look for traveling
solutions of the form Upωt ´ ȷ⃗xq, see Definition 3.1 and Remark 5.2. For
ν “ 2 solutions of these kind could be time periodic, with clearly a com-
pletely different shape with respect to the classical Stokes traveling waves
[32].

Let us make some comments about the proof.
3) Symmetrization and reduction in order of the linearized operator. The
leading order of the linearization of the water waves system (1.1) at any
quasi-periodic traveling wave is given by the Hamiltonian transport oper-
ator (see (6.15)) LTR :“ ω ¨ Bφ `

´

Bx rV 0

0 rV Bx

¯

where rV pφ, xq is a small
quasi-periodic traveling wave. By the almost-straightening Lemma 6.3
(cfr. Appendix A), for any pω, γq satisfying non-resonance conditions as
in (5.11), we conjugate LTR via a symplectic transformation induced by
a diffeomorphism of the torus y “ x ` βpφ, xq to a transport operator
ω ¨ Bφ `

´

m1By 0
0 m1By

¯

`

´

By pn 0
0 pn By

¯

, for some constant m1 P R and an
exponentially small function pnpφ, xq, see (6.24). For standing waves [2]
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we have m1 “ 0 and the complete conjugation of LTR is proved for any ω
diophantine. Here we do not perform the full straightening of the transport
operator LTR (i.e. we have n ă 8) in order to formulate a simple non-
resonance condition as in (5.11). The KAM algebraic reduction scheme is
like in [17, 3] (the estimates in [17] after finitely many iterative steps are
not sufficient for our purposes). We also perform in a symplectic way other
steps of the reduction to constant coefficients of the lower order terms of
the linearized operator. This prevents the appearance of unstable operators.
Since Section 6.4 we shall preserve only the reversible structure.
4) Traveling waves and Melnikov non-resonance conditions. We strongly
use the invariance under space translations of the Hamiltonian nonlinear
water waves vector field (1.1), i.e. the “momentum conservation”, in the
construction of the traveling quasi-periodic waves. We list the main points:

(i) The Floquet exponents (5.8) of the quasi-periodic solutions (1.13)
are a singular perturbation of the unperturbed linear frequencies in (1.8),
with leading terms of order 1. The Melnikov non-resonance conditions
formulated in the Cantor-like set Cυ8 in (5.10)-(5.13) hold on a set of large
measure only thanks to the conservation of the momentum, see Section 5.2.

(ii) We can impose Melnikov conditions that do not lose space deriva-
tives, see (5.12), simplifying the reduction in decreasing orders of Section
6 and the KAM reducibility scheme of Section 7. Indeed, it is enough to re-
duce to constant coefficients the linearized vector operator until the order 0
(included) in order to have a sufficiently good asymptotic expansion of the
perturbed frequencies to prove the inclusion Lemma 5.6. Conversely, in [2]
the second order Melnikov conditions verified for the standing pure gravity
waves lose several space derivatives and many more steps of regularization
are needed.

(iii) The invariance by space translations allows to avoid resonances be-
tween the linear frequencies in the construction of the quasiperiodic trav-
eling waves. For example, with infinite depth h “ `8, these are given by
Ωjpγq “ ωjpγq`

γ
2 signpjq, and there are ℓ P Zνzt0u, j, j1 R tσanaua“1,...,ν ,

with j ‰ j1, such that
řν
a“1 ℓaΩσanapγq ` Ωjpγq ´ Ωj1pγq ” 0 for all γ.

For example if σ1 “ σ2, it is enough to take ℓ “ pℓ1, ℓ2, 0, . . . , 0q “

p´1, 1, 0, . . . , 0q and j “ ´σ1n1, j1 “ ´σ2n2. To exclude this resonance
we exploit the momentum condition

řν
a“1 ℓa σana ` j ´ j1 “ 0. The

indexes above violate this constraint, as n1 ‰ n2 by (1.9). We shall sys-
tematically use this kind of arguments to exclude nontrivial resonances.
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Before concluding this introduction, we shortly describe the huge litera-
ture regarding time periodic traveling waves, which are steady in a moving
frame, and refer to [7] for a wider overview.
Literature about time periodic traveling wave solutions. After the work
of Stokes [32], the first rigorous construction of small amplitude space pe-
riodic steady traveling waves goes back to the 1920’s with the papers of
Nekrasov [29], Levi-Civita [26] and Struik [33], in case of irrotational bidi-
mensional flows under the action of pure gravity. In the presence of vor-
ticity, Gerstner [19] in 1802 gave an explicit example of periodic traveling
wave, in infinite depth, and non-zero vorticity, while Dubreil-Jacotin [15]
in 1934 proved the first bifurcation result of periodic traveling waves with
small vorticity, extended later by Goyon [20] and Zeidler [40] for large vor-
ticity. We point out the recent works of Wahlén [35] for capillary-gravity
waves and non-constant vorticity, and of Martin [28], Walhén [36] for con-
stant vorticity. They all deal with 2d water waves and can ultimately be
deduced by the classical Crandall-Rabinowitz bifurcation theorem from a
simple eigenvalue. We also mention that these local bifurcation results can
be extended to global branches of steady traveling waves by the theory of
global analytic, or topological, bifurcation, see e.g. Keady-Norbury [27],
Toland [34], for irrotational flows and Constantin-Strauss [12] with non-
constant vorticity. We suggest the reading of [10] for further results. We
finally quote the recent numerical work of Wilkening-Zhao [38] about spa-
tially quasi-periodic gravity-capillary 1d-water waves.

2 Hamiltonian structure and linearization at the origin

The Hamiltonian formulation of the water waves equations (1.1) was ob-
tained by Constantin-Ivanov-Prodanov [11] and Wahlén [36]. It reduces to
the Craig-Sulem-Zakharov formulation in [39, 14] if γ “ 0. On the phase
space H1

0 pTq ˆ 9H1pTq, endowed with the non canonical Poisson tensor

JM pγq :“
´

0 Id
´Id γB

´1
x

¯

, we consider the Hamiltonian H defined in (1.2).

Such Hamiltonian is well defined on H1
0 pTq ˆ 9H1pTq since Gpηqr1s “ 0

and
ş

TGpηqψ dx “ 0. It turns out [11, 36] that equations (1.1) are the
Hamiltonian system generated by Hpη, ψq with respect to the Poisson ten-
sor JM pγq.

Reversible structure. Defining on the phase space H1
0 pTq ˆ 9H1pTq the
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involution

(2.1) S
ˆ

η
ψ

˙

:“

ˆ

η_

´ψ_

˙

, η_pxq :“ ηp´xq ,

the Hamiltonian (1.2) is invariant under S, that is H ˝S “ H . This follows
as the Dirichlet-Neumann operator satisfies Gpη_qrψ_s “ pGpηqrψsq

_.
Equivalently, since the involution S is anti-symplectic, the water waves vec-
tor field X in the right hand side on (1.1) satisfies X ˝ S “ ´S ˝X .
Translation invariance. Since the bottom of the domain occupied by the
fluid is flat, the water waves equations (1.1) are invariant under space trans-
lations. Specifically, defining the translation operator

(2.2) τς : upxq ÞÑ upx` ςq , ς P R ,
the Hamiltonian (1.2) satisfies H ˝ τς “ H for any ς P R. Equivalently,
the water waves vector field satisfies X ˝ τς “ τς ˝ X , for all ς P R. This
property follows since τς ˝Gpηq “ Gpτςηq ˝ τς .
Wahlén coordinates. We introduce the Wahlén [36] coordinates pη, ζq via
the map

(2.3)
ˆ

η
ψ

˙

“ W

ˆ

η
ζ

˙

,W :“

ˆ

Id 0
γ
2B´1
x Id

˙

,W´1 :“

ˆ

Id 0
´
γ
2B´1
x Id

˙

.

The change of coordinatesW maps the phase spaceH1
0 ˆ 9H1 into itself and

conjugates the Poisson tensor JM pγq to W´1JM pγqpW´1q˚ “ J , where
J :“

`

0 Id
´Id 0

˘

is the canonical one. The Hamiltonian (1.2) becomes

(2.4) H :“ H ˝W , i.e. Hpη, ζq :“ H
`

η, ζ `
γ

2
B´1
x η

˘

,

and the Hamiltonian equations are transformed into

(2.5) Btη “ ∇ζH , Btζ “ ´∇ηH .

The symplectic form of (2.5) is the standard one,

W
` ` η1

ζ1

˘

,
` η2
ζ2

˘ ˘

:“ p´ζ1, η2qL2 ` pη1, ζ2qL2 .(2.6)

The transformation W defined in (2.3) is reversibility preserving, namely
it commutes with the involution S in (2.1) (see Definition 3.14 below), and
commutes with the translation operator τς . Thus also the Hamiltonian H in
(2.4) is invariant under the involution S and the translation operator τς .
Linearization at the equilibrium. We now show that the reversible solu-
tions of the linear system (1.3) have the form (1.6). In the Wahlén coor-
dinates (2.3), the linear Hamiltonian system (1.3) is transformed into the
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Hamiltonian system
(2.7)

Bt

ˆ

η
ζ

˙

“JΩW

ˆ

η
ζ

˙

, ΩW :“

ˆ

g ´
`

γ
2

˘2
B´1
x Gp0qB´1

x ´
γ
2B´1
x Gp0q

γ
2Gp0qB´1

x Gp0q

˙

generated by the quadratic Hamiltonian

(2.8) HLpη, ζq “
1

2

ˆ

ΩW

ˆ

η
ζ

˙

,

ˆ

η
ζ

˙˙

L2

.

We first conjugate (2.7) under the symplectic transformation
ˆ

η
ζ

˙

“M
ˆ

u
v

˙

where M is the diagonal matrix of self-adjoint Fourier multipliers

(2.9) M :“

ˆ

MpDq 0
0 MpDq´1

˙

, MpDq :“
´ Gp0q

g ´
γ2

4 B
´1
x Gp0qB

´1
x

¯1{4
,

with the real valued symbol Mj as in (1.7). The map M is reversibility
preserving. By a direct computation, system (2.7) assumes the symmetric
form

Bt

ˆ

u
v

˙

“JΩS

ˆ

u
v

˙

, ΩS :“ M˚ΩWM “

ˆ

ωpγ,Dq ´
γ
2B´1
x Gp0q

γ
2Gp0qB´1

x ωpγ,Dq

˙

,

(2.10)

where

(2.11) ωpγ,Dq :“

c

g Gp0q ´

´γ

2
B

´1
x Gp0q

¯2
.

Now we introduce complex coordinates by the transformation

(2.12)
ˆ

u
v

˙

“ C
ˆ

z
z

˙

, C :“
1

?
2

ˆ

Id Id
´i i

˙

, C´1 :“
1

?
2

ˆ

Id i
Id ´i

˙

.

In these variables, the Hamiltonian system (2.10) becomes the diagonal
system

Bt

ˆ

z
z

˙

“

ˆ

´i 0
0 i

˙

ΩD

ˆ

z
z

˙

, ΩD :“ C˚ΩSC “

ˆ

Ωpγ,Dq 0
0 Ωpγ,Dq

˙

,

(2.13)

where

(2.14) Ωpγ,Dq :“ ωpγ,Dq ` i
γ

2
B´1
x Gp0q .
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We regard the system (2.13) in 9H1 ˆ 9H1. The diagonal system (2.13)
amounts to the scalar equation

(2.15) Btz “ ´iΩpγ,Dqz , zpxq “
ÿ

jPZzt0u
zje

ijx ,

which, written in the exponential Fourier basis, amounts to 9zj “ ´iΩjpγqzj ,
j P Zzt0u. Note that, in these complex coordinates, the involution S in
(2.1) reads as

(2.16)
ˆ

zpxq

zpxq

˙

ÞÑ

ˆ

zp´xq

zp´xq

˙

, i.e. zj ÞÑ zj , @j P Zzt0u .

Any reversible solution of (2.15) has the form

zpt, xq :“
1

?
2

ÿ

jPZzt0u
ρj e

´i pΩjpγqt´j xq with ρj P R .

Back in the variables pη, ψq defined in (2.3), using that by (2.9), (2.12),
ˆ

η
ζ

˙

“ MC
ˆ

z
z

˙

“
1

?
2

ˆ

MpDq MpDq

´iMpDq´1 iMpDq´1

˙ˆ

z
z

˙

,

these solutions assume the form (1.6).
We finally express the Fourier coefficients zj P C in (2.15) as zj “

αj`iβj?
2

, where pαj , βjq P R2, for any j P Zzt0u. In the new coordinates
pαj , βjqjPZzt0u, the symplectic form (2.6) becomes 2π

ř

jPZzt0u dαj ^dβj .

The quadratic Hamiltonian HL in (2.8) reads 2π
ř

jPZzt0u

Ωjpγq

2 pα2
j ` β2j q,

and the involution S in (2.1) reads pαj , βjq ÞÑ pαj ,´βjq, j P Zzt0u. We
may also enumerate these independent variables as

`

α´n, β´n, αn, βn
˘

,
n P N. Thus the phase space H :“ L2

0 ˆ 9L2 of (2.5) decomposes as the
direct sum H “

ř

nPN Vn,` ‘ Vn,´ of 2-dimensional symplectic subspaces

Vn,` :“

"ˆ

η
ζ

˙

“

ˆ

Mnpαn cospnxq ´ βn sinpnxqq

M´1
n pβn cospnxq ` αn sinpnxqq

˙

, pαn, βnq P R2

*

,

Vn,´ :“

"ˆ

η
ζ

˙

“

ˆ

Mnpα´n cospnxq ` β´n sinpnxqq

M´1
n pβ´n cospnxq ´ α´n sinpnxqq

˙

, pα´n, β´nq P R2

*

,

which are invariant for the linear Hamiltonian system (2.7). The involution
S defined in (2.1) and the translation operator τς in (2.2) leave the subspaces
Vn,σ, σ P t˘u, invariant.
Tangential and normal subspaces of the phase space. We split the phase
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space H “ H⊺
S`,Σ

‘H=
S`,Σ, where H⊺

S`,Σ
is the finite dimensional tangential

subspace

(2.17) H⊺
S`,Σ

:“
ÿν

a“1
Vna,σa

and H=
S`,Σ is the normal subspace

(2.18) H=
S`,Σ :“

ÿν

a“1
Vna,´σa ‘

ÿ

nPNzS`

`

Vn,` ‘ Vn,´
˘

.

Both the subspaces H⊺
S`,Σ

and H=
S`,Σ are symplectic. We denote by Π⊺

S`,Σ

and Π=
S`,Σ the symplectic projections on the subspaces H⊺

S`,Σ
and H=

S`,Σ,
respectively. The restricted symplectic form W|H=

S`,Σ
is represented by the

symplectic structure J´1
=

:“ ΠL
2

= J´1
|H=

S`,Σ

where ΠL
2

= is the L2-projector on

the subspace H=
S`,Σ. Its associated Poisson tensor is J= :“ Π=

S`,Σ J|H=

S`,Σ
.

By Lemma 2.6 in [7], we have that J´1
=
J= “ J= J

´1
=

“ IdH=

S`,Σ
.

Action-angle coordinates. We introduce action-angle coordinates on the
tangential subspace H⊺

S`,Σ
defined in (2.17). Given the sets S` and Σ de-

fined respectively in (1.9) and (1.10), we define the set

(2.19) S :“ tȷ1, . . . , ȷνu Ă Z zt0u , ȷa :“ σana , a “ 1, . . . , ν ,

and the action-angle coordinates pθj , IjqjPS, by the relations, for any j P S,
for any 0 ă |Ij | ă ξj ,

(2.20) αj “

c

1

π
pIj ` ξjq cospθjq , βj “ ´

c

1

π
pIj ` ξjq sinpθjq .

In view of (2.17)-(2.18), we represent any function of the phase space H as

(2.21)

Apθ, I, wq :“ v⊺pθ, Iq ` w

“
1

?
π

ÿ

jPS

„ˆ

Mj

a

Ij ` ξj cospθj ´ jxq

´M´1
j

a

Ij ` ξj sinpθj ´ jxq

˙ȷ

` w ,

where θ :“ pθjqjPS P Tν , I :“ pIjqjPS P Rν and w P H=
S`,Σ. In view of

(2.21), the involution S in (2.1) reads

(2.22) S⃗ : pθ, I, wq ÞÑ p´θ, I,Swq ,

the translation operator τς in (2.2) reads

(2.23) τ⃗ς : pθ, I, wq ÞÑ pθ ´ ȷ⃗ς, I, τςwq, @ς P R ,
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where

(2.24) ȷ⃗ :“ pjqjPS “ pȷ1, . . . , ȷνq P Zνzt0u ,

and the symplectic 2-form (2.6) becomes

(2.25) W “
ÿ

jPS
pdθj ^ dIjq ‘ W|H=

S`,Σ
.

Given a HamiltonianK : TνˆRνˆH=
S`,Σ Ñ R, the associated Hamiltonian

vector field is XK :“
`

BIK,´BθK,J=∇wK
˘

where ∇wK denotes the L2

gradient of K with respect to w P H=
S`,Σ.

Tangential and normal subspaces in complex variables. The linear map
MC is an isomorphism between the tangential subspace H⊺

S`,Σ
defined in

(2.17) and

HS :“
!

ˆ

z
z

˙

: zpxq “
ÿ

jPS
zje

ijx
)

,

and between the normal subspace H=
S`,Σ defined in (2.18) and

(2.26) HK
S0 :“

!

ˆ

z
z

˙

: zpxq “
ÿ

jPSc0
zje

ijx P L2
)

, Sc0 :“ ZzpSYt0uq .

Denoting by Π⊺
S, ΠK

S0 , the L2-orthogonal projections on the subspaces HS
and HK

S0 , we have that

(2.27) Π⊺
S`,Σ

“ MC Π⊺
S pMCq´1 , Π=

S`,Σ “ MC ΠK
S0 pMCq´1 .

Moreover (cfr. Lemma 2.9 in [7])

(2.28) pv⊺,ΩWwqL2 “ 0 , @v⊺ P H⊺
S`,Σ

, @w P H=
S`,Σ .

Notation. For a Às b we mean a ď Cpsqb for a constant Cpsq ą 0. Let
N :“t1, 2, . . .u and N0 :“t0uYN.

3 Functional setting

We report basic notation, definitions, and results used along the paper,
concerning traveling waves, pseudo-differential operators, tame operators,
and the algebraic properties of Hamiltonian, reversible and momentum pre-
serving operators.

Definition 3.1. (Quasi-periodic traveling waves) Let ȷ⃗ :“ pȷ1, . . . , ȷνq P

Zν be the vector defined in (2.24). A function upφ, xq is a quasi-periodic
traveling wave if it has the form upφ, xq “ Upφ´ȷ⃗xq whereU : Tν Ñ CK ,
K P N, is a p2πqν-periodic function.
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Comparing with Definition 1.1, we call quasi-periodic traveling wave
both upφ, xq “ Upφ´ ȷ⃗xq and the function of time upωt, xq “ Upωt´ ȷ⃗xq.
Quasi-periodic traveling waves are characterized by upφ ´ ȷ⃗ς, ¨q “ τςu
for any ς P R, where τς is the translation operator in (2.2). Product and
composition of quasi-periodic traveling waves are quasi-periodic traveling
waves. Expanded in Fourier series, a quasi-periodic traveling wave has the
form upφ, xq “

ř

ℓPZν ,jPZ,j`ȷ⃗¨ℓ“0 uℓ,je
ipℓ¨φ`jxq. For K ě 1 we define

(3.1) ΠKu :“
ÿ

xℓyďK, jPSc0, j`ȷ⃗¨ℓ“0

uℓ,je
ipℓ¨φ`jxq ,

and ΠK
K :“ Id ´ ΠK . For a function upφ, xq we define the averages

(3.2)
xuyφ,x :“

1

p2πqν`1

ż

Tν`1

upφ, xq dφdx,

xuyφpxq :“
1

p2πqν

ż

Tν`1

upφ, xq dφ ;

we note that xuyφ“xuyφ,x when upφ, xq is a quasi-periodic traveling wave.
Whitney-Sobolev functions. We consider families of Sobolev functions
λ ÞÑ upλq P HspTν`1q which are k0-times differentiable in the sense
of Whitney with respect to the parameter λ :“ pω, γq P F Ă Rν ˆ

rγ1, γ2s where F Ă Rν`1 is a closed set. We refer to Definition 2.1 in
[2], for the definition of Whitney-Sobolev functions. Given υ P p0, 1q,
by the Whitney extension theorem, we have the equivalence }u}

k0,υ
s,F „ν,k0

ř

|α|ďk0
υ|α|}Bαλu}L8pRν`1,Hsq. For simplicity we denote } }

k0,υ
s,F “ } }

k0,υ
s .

Classical tame estimates for the product hold (see e.g. Lemma 2.4 in [2]):
for all s ě s0 ą pν ` 1q{2,

(3.3) }uv}k0,υs ď Cps, k0q}u}k0,υs }v}k0,υs0 ` Cps0, k0q}u}k0,υs0 }v}k0,υs ,

and

(3.4)
}ΠKu}k0,υs ďKα}u}

k0,υ
s´α , 0 ď α ď s,

}ΠK
Ku}k0,υs ďK´α}u}

k0,υ
s`α , α ě 0 .

The composition operator upφ, xq ÞÑ fpuqpφ, xq :“ fpφ, x, upφ, xqq satis-
fies the following lemma.

Lemma 3.2. (Lemma 2.6 in [2]) Let f P C8pTdˆR,Rq. If upλq P HspTdq

is a family of Sobolev functions with }u}
k0,υ
s0 ď 1, then, for all s ě s0 :“
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pd ` 1q{2, }fpuq}
k0,υ
s ď Cps, k0, fq

`

1 ` }u}
k0,υ
s

˘

. If fpφ, x, 0q “ 0 then
}fpuq}

k0,υ
s ď Cps, k0, fq}u}

k0,υ
s .

Consider aφ-dependent diffeomorphism of Tx given by y“x`βpφ, xq.

Lemma 3.3. Let }β}
k0,υ
2s0`k0`2 ď δps0, k0q small enough. Then the com-

position operator pBuqpφ, xq :“upφ, x` βpφ, xqq satisfies }Bu}
k0,υ
s Às,k0

}u}
k0,υ
s`k0

`}β}
k0,υ
s }u}

k0,υ
s0`k0`1, for any s ě s0, and the function β̆ defined by

the inverse diffeomorphism x“y`β̆pφ, yq, satisfies }β̆}
k0,υ
s Às,k0 }β}

k0,υ
s`k0

.

Constant transport equation on quasi-periodic traveling waves. Let m P

R. For any pω, γq satisfying |ω ¨ ℓ`m j| ě υxℓy´τ for all pℓ, jq P Zν`1zt0u

with ȷ⃗ ¨ ℓ ` j “ 0, given a quasi-periodic traveling wave upφ, xq with
zero average with respect to φ the transport equation pω ¨ Bφ ` m Bxqv “

u has the quasi-periodic traveling wave solution pω ¨ Bφ ` m Bxq´1u :“
ř

pℓ,jqPZν`1zt0u

ȷ⃗¨ℓ`j“0

uℓ,j
ipω¨ℓ`m jq

eipℓ¨φ`jxq. For any pω, γq P Rνˆrγ1, γ2s, we define

its extension

(3.5) pω ¨ Bφ ` m Bxq
´1
extupφ, xq :“

ÿ

pℓ,jqPZν`1

ȷ⃗¨ℓ`j“0

χppω ¨ ℓ` m jqυ´1
xℓyτ q

ipω ¨ ℓ` m jq
uℓ,je

ipℓ¨φ`jxq ,

where χ P C8pR,Rq is an even positive C8 cut-off function such that

(3.6) χpξq “ 0 if |ξ| ď 1
3 , χpξq “ 1 if |ξ| ě 2

3 , Bξχpξq ą 0,@ ξ P p13 ,
2
3q.

Note that pω ¨Bφ`m Bxq
´1
extu“pω ¨Bφ`m Bxq´1u for all pω, γq P TCpm; υ, τq.

If m : Rν ˆ rγ1, γ2s Ñ R, pω, γq ÞÑ mpω, γq is a function with |m|k0,υ ď C,
then, for µ :“ k0 ` τpk0 ` 1q,

(3.7) }pω ¨ Bφ ` m Bxq
´1
extu}

k0,υ
s,Rν`1 ďCpk0qυ´1}u}

k0,υ
s`µ,Rν`1 .

Furthermore, for any ω P Rν , m1, m2 P R and s ě 0

(3.8) }
`

pω ¨ Bφ ` m1 Bxq
´1
ext ´ pω ¨ Bφ ` m2 Bxq

´1
ext

˘

u}s ď Cυ´2
|m1´m2| }u}s`2τ`1 .

Linear operators. We consider φ-dependent families of linear operators
A : Tν ÞÑ LpL2pTxqq, φ ÞÑ Apφq, acting on subspaces of L2pTxq. We
also regardA as an operator pAuqpφ, xq :“ pApφqupφ, ¨ qq pxq. Expanding
upφ, xq in Fourier,

(3.9) Aupφ, xq “
ÿ

j,j1PZ

ÿ

ℓ,ℓ1PZν

Aj
1

j pℓ´ ℓ1quℓ1,j1eipℓ¨φ`jxq .

We identify an operator A with its matrix
`

Aj
1

j pℓ´ ℓ1q
˘

j,j1PZ,ℓ,ℓ1PZν .
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Real operators. A linear operator A is real if A “ A, where A is defined
by Apuq :“ Apuq. We represent a real operator acting on pη, ζq by a matrix

R “

ˆ

A B
C D

˙

, where A,B,C,D are real operators acting on the scalar

valued components η, ζ P L2pTx,Rq. The change of coordinates (2.12)
transforms a real operator R into a complex one acting on the variables
pz, zq, given by the matrix

(3.10) R :“ C´1RC “

ˆ

R1 R2

R2 R1

˙

,
R1 :“ tpA`Dq ´ ipB ´ Cqu {2 ,
R2 :“ tpA´Dq ` ipB ` Cqu {2 .

We call real a matrix operator acting on the complex variables pz, zq of this
form.
Pseudodifferential calculus. We report basic notions of pseudodifferential
calculus, following [9].

Definition 3.4. (ΨDO) A pseudodifferential symbol apx, jq of order m
is the restriction to R ˆ Z of a function apx, ξq which is C8-smooth on
R ˆ R, 2π-periodic in x, and satisfies, @α, β P N0, |BαxB

β
ξ apx, ξq| ď

Cα,βxξym´β . We denote by Sm the class of symbols of order m and
S´8 :“ Xmě0S

m. To a symbol apx, ξq in Sm we associate its quantization
acting on a 2π-periodic function upxq “

ř

jPZ uj e
ijx as rOppaquspxq :“

ř

jPZ apx, jquj e
ijx . We denote by OPSm the set of pseudodifferential op-

erators of order m and OPS´8 :“
Ş

mPROPSm. For a matrix of pseudo-

differential operators A “

ˆ

A1 A2

A3 A4

˙

, Ai P OPSm, i “ 1, . . . , 4, we say

that A P OPSm.

When the symbol apxq is independent of ξ, the operator Oppaq is the
multiplication operator by the function apxq, i.e. Oppaq : upxq ÞÑ apxqupxq.
In such a case we also denote Oppaq “ apxq.

For anym P Rzt0u, we set |D|m :“ Op
`

χpξq|ξ|m
˘

, where χ is an even,
positive C8 cut-off satisfying (3.6). We identify the Hilbert transform H,
acting on the 2π-periodic functions, defined by

(3.11) Hpeijxq :“ ´i sign pjqeijx @j ‰ 0 , Hp1q :“ 0 ,

with the Fourier multiplier Opp´i sign pξqχpξqq. Similarly we regard the
operator

(3.12) B´1
x

“

eijx
‰

:“ ´ i j´1 eijx @ j ‰ 0 , B´1
x r1s :“ 0 ,
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as the Fourier multiplier B´1
x “ Op

`

´iχpξqξ´1
˘

and the projector π0 as

(3.13) π0u :“
1

2π

ż

T
upxq dx ,

with the Fourier multiplier Op
`

1 ´ χpξq
˘

. Finally we define, for any m P

Rzt0u, xDym :“ π0 ` |D|m.
We consider families of pseudodifferential operators having symbols

apλ;φ, x, ξq which are k0-times differentiable with respect to a parameter
λ :“ pω, γq in an open subset Λ0 Ă Rν ˆ rγ1, γ2s. Note that BkλA “

Op
`

Bkλa
˘

for any k P Nν`1
0 . We recall the pseudodifferential norm as in

Definition 2.11 in [9].

Definition 3.5. (Weighted ΨDO norm) Let Apλq :“ apλ;φ, x,Dq P

OPSm be a pseudodifferential operator with symbol apλ;φ, x, ξq P Sm,
m P R, k0-times differentiable with respect to λ P Λ0 Ă Rν`1. For
υ P p0, 1q, α P N0, s ě 0, we define

}A}
k0,υ
m,s,α :“

ÿ

|k|ďk0
υ|k| sup

λPΛ0

›

›

›
BkλApλq

›

›

›

m,s,α
,

where }Apλq}m,s,α :“ max0ďβďα supξPR }B
β
ξ apλ, ¨, ¨, ξq}s xξy´m`β . For

a matrix A P OPSm, we define }A}
k0,υ
m,s,α :“ maxi“1,...,4 }Ai}

k0,υ
m,s,α .

If Oppaq, Oppbq are pseudodifferential operators with symbols a P Sm,
b P Sm

1

, m,m1 P R, then the composition operator OppaqOppbq is a pseu-
dodifferential operator Oppa#bq with symbol a#b P Sm`m1

. It admits the
asymptotic expansion: for any N ě 1

(3.14) pa#bqpx, ξq“

N´1
ÿ

β“0

1

iββ!
B
β
ξ apx, ξqBβxbpx, ξq ` prN pa, bqqpx, ξq ,

where rN pa, bq P Sm`m1´N . The commutator between two pseudodiffer-
ential operators Oppaq P OPSm and Oppbq P OPSm

1

is a pseudodifferen-
tial operator in OPSm`m1´1 with symbol a ‹ b P Sm`m1´1, that admits,
by (3.14), the expansion a ‹ b “ ´i ta, bu ` rr2pa, bq, where ta, bu :“
BξaBxb´ BxaBξb is the Poisson bracket between apx, ξq and bpx, ξq, and

(3.15) rr2pa, bq :“r2pa, bq ´ r2pb, aq P Sm`m1´2 .

The following quantitative estimates are proved in Lemma 2.13 in [9].
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Lemma 3.6. (Composition and Commutator) Let A “ apλ;φ, x,Dq,
B “ bpλ;φ, x,Dq be pseudodifferential operators with apλ;φ, x, ξq P Sm,
bpλ;φ, x, ξq P Sm

1

, m,m1 P R. Then A ˝B P OPSm`m1

satisfies, for any
α P N0, s ě s0,

}AB}
k0,υ
m`m1,s,α Àm,α,k0 Cpsq }A}

k0,υ
m,s,α }B}

k0,υ
m1,s0`|m|`α,α

` Cps0q }A}
k0,υ
m,s0,α

}B}
k0,υ
m1,s`|m|`α,α .

Moreover, for any integer N ě 1, the remainder RN :“ OpprN q in (3.14)
satisfies

}OpprN pa, bqq}
k0,υ
m`m1´N,s,α

Àm,N,α,k0 Cpsq }A}
k0,υ
m,s,N`α }B}

k0,υ
m1,s0`|m|`2N`α,N`α

`Cps0q }A}
k0,υ
m,s0,N`α }B}

k0,υ
m1,s`|m|`2N`α,N`α .(3.16)

As a consequence the commutator rA,Bs :“ AB ´ BA P OPSm`m1´1

satisfies

}rA,Bs}
k0,υ
m`m1´1,s,α

Àm,m1,α,k0
Cpsq }A}

k0,υ
m,s`|m1|`α`2,α`1 }B}

k0,υ
m1,s0`|m|`α`2,α`1

`Cps0q }A}
k0,υ
m,s0`|m1|`α`2,α`1 }B}

k0,υ
m1,s`|m|`α`2,α`1 .(3.17)

Finally we consider the exponential of pseudodifferential operators of
order 0, see Lemma 2.12 in [8].

Lemma 3.7. (Exponential map) If A :“ Oppapλ;φ, x, ξqq is in OPS0,
then eA is in OPS0 and for any s ě s0, α P N0, there exists Cps, αq ą 0

so that }eA ´ Id}
k0,υ
0,s,α ď }A}

k0,υ
0,s`α,α exp

`

Cps, αq}A}
k0,υ
0,s0`α,α

˘

.

Dk0-tame and -p´1
2q-modulo-tame operators. Let A :“ Apλq be a linear

operator k0-times differentiable with respect to the parameter λ in an open
set Λ0 Ă Rν`1.

Definition 3.8. (Dk0-σ-tame, [9]) Let σ ě 0. A linear operatorA :“ Apλq

is Dk0-σ-tame if there exists a non-decreasing function rs0, Ss Ñ r0,`8q,
s ÞÑ MApsq, with possibly S “ `8, such that, for all s0 ď s ď S

and u P Hs`σ, sup|k|ďk0 supλPΛ0
υ|k|}pBkλApλqqu}s ď MAps0q }u}s`σ `

MApsq }u}s0`σ. We say that MApsq is a tame constant of the operator
A. The constant MApsq “ MApk0, σ, sq may also depend on k0, σ but we
omit to write them. When the "loss of derivatives" σ is zero, we simply
write Dk0-tame instead of Dk0-0-tame. For a matrix as in (3.10), we denote
MRpsq :“ max tMR1psq,MR2psqu.

The class of Dk0-σ-tame operators is closed under composition.
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Lemma 3.9. (Composition, Lemma 2.20 in [9]) Let A,B be respectively
Dk0-σA-tame and Dk0-σB-tame operators with tame constants respectively
MApsq and MBpsq. Then the composed operatorA˝B is Dk0-pσA`σBq-
tame with

MABpsq ď Cpk0q pMApsqMBps0 ` σAq ` MAps0qMBps` σAqq .

The action of a Dk0-σ-tame operator Apλq on a Sobolev function u“

upλq PHs`σ is bounded by }Au}
k0,υ
s Àk0 MAps0q}u}

k0,υ
s`σ`MApsq}u}

k0,υ
s0`σ

(see Lemma 2.22 in [9] ) and pseudodifferential operators are tame opera-
tors. In particular, we use the following lemma, see Lemma 2.21 in [9].

Lemma 3.10. Let A “ apλ;φ, x,Dq P OPS0 be a family of pseudodiffer-
ential operators satisfying }A}

k0,υ
0,s,0 ă 8 for s ě s0. Then A is Dk0-tame,

with MApsq ď Cpsq}A}
k0,υ
0,s,0, for any s ě s0.

In view of the KAM reducibility scheme of Section 7 we also consider
the notion of Dk0-p´1

2q-modulo-tame operator. Given a linear operator A
acting as in (3.9), the majorant operator |A| is defined to have the matrix
elements p|Aj

1

j pℓ´ ℓ1q|qℓ,ℓ1PZν ,j,j1PZ.

Definition 3.11. (Dk0-p´1
2q-modulo-tame) A linear operatorA “ Apλq is

Dk0-p´1
2q-modulo-tame if there exists a non-decreasing function rs0, Ss Ñ

r0,`8s, s ÞÑ M7

xDy
1
4AxDy

1
4

psq, such that for all k P Nν`1
0 , |k| ď k0,

the majorant operator xDy
1
4 |BkλA|xDy

1
4 satisfies, for all s0 ď s ď S and

u P Hs,

sup
|k|ďk0

sup
λPΛ0

υ|k|}xDy
1
4 |BkλA|xDy

1
4u}s ď

M7

xDy
1
4AxDy

1
4

ps0q }u}s ` M7

xDy
1
4AxDy

1
4

psq }u}s0 .

For a matrix as in (3.10), we denote

M7

xDy
1
4RxDy

1
4

psq :“ max
␣

M7

xDy
1
4R1xDy

1
4

psq,M7

xDy
1
4R2xDy

1
4

psq
(

.

Given a linear operator A acting as in (3.9), we define the operator
xBφybA, b P R, whose matrix elements are xℓ ´ ℓ1ybAj

1

j pℓ ´ ℓ1q and the
smoothed operator ΠNA, N P N whose matrix elements are

(3.18) pΠNAq
j1

j pℓ´ ℓ1q :“

#

Aj
1

j pℓ´ ℓ1q if xℓ´ ℓ1y ď N

0 otherwise .
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We also denote ΠK
N :“ Id ´ ΠN . Arguing as in Lemma 2.27 in [9], we

have that

(3.19)
M7

xDy
1
4ΠK

NAxDy
1
4

psq ď N´bM7

xDy
1
4 xBφybAxDy

1
4

psq ,

M7

xDy
1
4ΠK

NAxDy
1
4

psq ď M7

xDy
1
4AxDy

1
4

psq .

From Lemma A.5-(iv) in [18] and the proof of Lemma 2.22 in [8], we
deduce the following lemma.

Lemma 3.12. Let A, B, xBφy
bA, xBφy

bB be Dk0-p´1
2q-modulo-tame op-

erators. Then A ` B, A ˝ B and xBφy
b

pABq are Dk0-p´1
2q-modulo-tame

with

M7

xDy
1
4 pA`BqxDy

1
4

psq ď M7

xDy
1
4AxDy

1
4

psq ` M7

xDy
1
4BxDy

1
4

psq

M7

xDy
1
4ABxDy

1
4

psq Àk0 M7

xDy
1
4AxDy

1
4

psqM7

xDy
1
4BxDy

1
4

ps0q

` M7

xDy
1
4AxDy

1
4

ps0qM7

xDy
1
4BxDy

1
4

psq

and

M7

xDy
1
4 xBφybpABqxDy

1
4

psq Àb,k0

M7

xDy
1
4 xBφybAxDy

1
4

psqM7

xDy
1
4 BxDy

1
4

ps0q` M7

xDy
1
4 xBφybAxDy

1
4

ps0qM7

xDy
1
4 BxDy

1
4

psq

` M7

xDy
1
4 AxDy

1
4

psqM7

xDy
1
4 xBφybBxDy

1
4

ps0q` M7

xDy
1
4 AxDy

1
4

ps0qM7

xDy
1
4 xBφybBxDy

1
4

psq.

If M7

xDy
1
4AxDy

1
4

ps0q ď 1, then e˘A ´ Id and xBφy
b

pe˘A ´ Idq are Dk0-

p´1
2q-modulo-tame with

M7

xDy
1
4 pe˘A´IdqxDy

1
4

psq Àk0 M7

xDy
1
4AxDy

1
4

psq ,

M7

xDy
1
4 xBφybpe˘A´IdqxDy

1
4

psq Àk0,b M
7

xDy
1
4 xBφybAxDy

1
4

psq

` M7

xDy
1
4AxDy

1
4

psqM7

xDy
1
4 xBφybAxDy

1
4

ps0q .

The next inequality provides a sufficient condition for an operator R to
be Dk0-p´1

2q-modulo-tame: it results (cfr. with Lemma 7.6 in [9])

(3.20) M7

xDy
1
4RxDy

1
4
psq, M7

xDy
1
4 xBφybRxDy

1
4

psq Às0 max
␣

rMpsq, rMps, bq
(
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where rMps, bq :“ max
m“1,...,ν

␣

M
xDy

1
4 B

s0`b
φm RxDy

1
4

psq,M
xDy

1
4 rB

s0`b
φm R,BxsxDy

1
4

psq
(

and

rMpsq :“ max
m“1,...,ν

␣

M
xDy

1
4 RxDy

1
4

psq,M
xDy

1
4 rR,BxsxDy

1
4

psq,M
xDy

1
4 B

s0
φmRxDy

1
4

psq,

M
xDy

1
4 rB

s0
φmR,BxsxDy

1
4

psq
(

.

Hamiltonian, Reversible and Momentum preserving operators. We
shall exploit the Hamiltonian and reversible structure of the water waves
equations as well as their invariance under space translations.

Definition 3.13. (Hamiltonian and Symplectic operators) A real matrix
operator R on L2pTx,R2q is Hamiltonian if J´1R is self-adjoint, namely
B˚ “ B, C˚ “ C, A˚ “ ´D and A,B,C,D are real. It is symplectic if
WpRu,Rvq “ Wpu, vq, @u, v P L2pTx,R2q, where W is the symplectic
2-form in (2.6).

Let S be the involution (2.1) acting on the variables pη, ζq P R2, or
(2.22) acting on the action-angle-normal variables pθ, I, wq, or (2.16) acting
in the pz, zq complex variables introduced in (2.12).

Definition 3.14. (Reversible/reversibility preserving op.) The operator
Rpφq is reversible if Rp´φq ˝ S “ ´S ˝ Rpφq for all φ P Tν . It is
reversibility preserving if Rp´φq ˝ S “ S ˝ Rpφq for all φ P Tν .

By (2.16), an operator Rpφq as in (3.10) is reversible, respectively anti-
reversible, if, for any i “ 1, 2, Rip´φq ˝S “ ´S ˝Ripφq, resp. Rip´φq ˝

S “ S˝Ripφq, where, with a small abuse of notation, we denote pSuqpxq “

up´xq. Moreover we have the following lemma (cfr. Lemmata 3.18 and
3.19 of [7]).

Lemma 3.15. An operator Rpφq, φ P Tν , as in (3.10) is reversible, re-
spectively reversibility preserving, if, for any i “ 1, 2, pRiq

j1

j p´φq “

´pRiq
j1

j pφq, resp. pRiq
j1

j p´φq “ pRiq
j1

j pφq, @φ P Tν , i.e. pRiq
j1

j pℓq “

´pRiq
j1

j pℓq, respectively pRiq
j1

j pℓq “ pRiq
j1

j pℓq, @ ℓ P Zν . A pseudo-
differential operator Oppapφ, x, ξqq is reversible, respectively reversibility
preserving, if and only if its symbol satisfies ap´φ,´x, ξq “ ´apφ, x, ξq,
resp. ap´φ,´x, ξq “ apφ, x, ξq.

The composition of a reversible operator with a reversibility preserving
operator is reversible. The flow generated by a reversibility preserving op-
erator is reversibility preserving. If Rpφq is reversibility preserving, then
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pω ¨ BφRqpφq is reversible. We shall say that a linear operator of the form
ω ¨ Bφ `Apφq is reversible if Apφq is reversible. Conjugating the reversible
operator ω ¨ Bφ ` Apφq by a family of invertible reversibility preserving
maps Φpφq, we get the transformed reversible operator

(3.21)
Φ´1pφq ˝

`

ω ¨ Bφ `Apφq
˘

˝ Φpφq “ ω ¨ Bφ `A`pφq ,

A`pφq :“ Φ´1pφq pω ¨ BφΦpφqq ` Φ´1pφqApφqΦpφq .

A function upφ, ¨q is reversible if Supφ, ¨q “ up´φ, ¨q and antireversible
if ´Supφ, ¨q “ up´φ, ¨q. The same definition holds in the action-angle-
normal variables pθ, I, wq with the involution S⃗ defined in (2.22) and in
the pz, zq complex variables with the involution in (2.16). A reversibility
preserving operator maps reversible, respectively anti-reversible, functions
into reversible, respectively anti-reversible, functions, see Lemma 3.22 in
[7]. If X is a reversible vector field, namely X ˝ S “ ´S ˝ X , and
upφ, xq is a reversible quasi-periodic function, then the linearized opera-
tor duXpupφ, ¨qq is reversible, see Lemma 3.22 in [7]. Finally we recall
that the projections Π⊺

S`,Σ
, Π=

S`,Σ defined below (2.18) commute with the
involution S in (2.1) and the orthogonal projectors ΠS and ΠK

S0 commute
with the involution in (2.16).

Definition 3.16. (Momentum preserving operators) A φ-dependent fam-
ily of linear operatorsApφq, φ P Tν , is momentum preserving ifApφ´ ȷ⃗ςq˝

τς “ τς ˝Apφq, @φ P Tν , ς P R, where the translation operator τς is defined
in (2.2). A linear matrix operator Apφq is momentum preserving if each of
its components is momentum preserving.

If X is a translation invariant vector field, i.e. X ˝ τς “ τς ˝ X , for
all ς P R, and u is a quasi-periodic traveling wave, then the linearized
operator duXpupφ, ¨qq is momentum preserving. If Apφq, Bpφq are mo-
mentum preserving operators then the composition Apφq ˝ Bpφq and the
adjoint pApφqq˚ are momentum preserving, cfr. Lemma 3.25 in [7]. More-
over, if Apφq is invertible, then Apφq´1 is momentum preserving. Assume
that BtΦ

tpφq “ ApφqΦtpφq, Φ0pφq “ Id, has a unique propagator Φtpφq,
t P r0, 1s. Then Φtpφq is momentum preserving.

We shall say that a linear operator of the form ω ¨ Bφ ` Apφq is mo-
mentum preserving if Apφq is momentum preserving. If ω ¨ Bφ `Apφq and
Φpφq are momentum preserving, the transformed operator ω ¨ Bφ `A`pφq

in (3.21) is momentum preserving as well. Given a momentum preserving
linear operator Apφq and a quasi-periodic traveling wave u, according to
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Definition 3.1, then Apφqu is a quasi-periodic traveling wave. The charac-
terizations of the momentum preserving property, in Fourier space and for
a pseudo-differential operator, is given below (see Lemmata 3.28 and 3.29
in [7]).

Lemma 3.17. Let φ-dependent family of operators Apφq, φ P Tν , is mo-
mentum preserving if and only if the matrix elements Aj

1

j pℓq of Apφq, de-
fined by (3.9), are different from zero if ȷ⃗¨ℓ`j´j1 “ 0, @ ℓ P Zν , j, j1 P Z. A
pseudodifferential operator Oppapφ, x, ξqq is momentum preserving if and
only if its symbol satisfies apφ´ ȷ⃗ς, x, ξq “ apφ, x` ς, ξq for any ς P R.

The symplectic projections Π⊺
S`,Σ

, Π=
S`,Σ, defined below (2.18), the L2-

projections ΠL
2

= , ΠS, ΠK
S0 defined below (2.26) are momentum preserving,

cfr. Lemma 3.31 in [7].
Quasi-periodic traveling waves in action-angle-normal coordinates. Re-
calling (2.23), if upφ, xq is a quasi-periodic traveling wave with action-
angle-normal components pθpφq, Ipφq, wpφ, xqq, the condition τςu “ upφ´

ȷ⃗ς, ¨q becomes
ˆ

θpφq´ȷ⃗ς
Ipφq

τςwpφ,¨q

˙

“

ˆ

θpφ´ȷ⃗ςq
Ipφ´ȷ⃗ςq
wpφ´ȷ⃗ς,¨q

˙

, for any ς P R. Since θpφq “

φ ` Θpφq, with a p2πqν-periodic function Θ : Rν ÞÑ Rν , φ ÞÑ Θpφq, the
traveling wave condition becomes

(3.22)

¨

˝

Θpφq

Ipφq

τςwpφ, ¨q

˛

‚“

¨

˝

Θpφ´ ȷ⃗ςq
Ipφ´ ȷ⃗ςq
wpφ´ ȷ⃗ς, ¨q

˛

‚ , @ ς P R .

Definition 3.18. (Traveling wave variation) A traveling wave variation
gpφq “ pg1pφq, g2pφq, g3pφ, ¨qq P Rν ˆRν ˆH=

S`,Σ is a function satisfying
(3.22). or equivalently Dτ⃗ςgpφq “ gpφ ´ ȷ⃗ςq for any ς P R, where Dτ⃗ς is
the differential of τ⃗ς , namely Dτ⃗ςpΘ, I, wqJ “ pΘ, I, τςwqJ.

According to Definition 3.16, a linear operator acting in RνˆRνˆH=
S`,Σ

is momentum preserving if Apφ´ ȷ⃗ςq ˝Dτ⃗ς “ Dτ⃗ς ˝Apφq for any ς P R.
In this case if g P Rν ˆ Rν ˆ H=

S`,Σ is a traveling wave variation, then
Apφqgpφq is a traveling wave variation.

4 Transversality of linear frequencies

In this section we extend the KAM theory approach in [4, 9, 2, 7] to deal
with the linear frequencies Ωjpγq defined in (1.8), using the vorticity as a
parameter.
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Definition 4.1. A function f “ pf1, . . . , fN q : rγ1, γ2s Ñ RN is non-
degenerate if, for any c P RNzt0u, the scalar function f ¨c is not identically
zero on the whole interval rγ1, γ2s.

From a geometric point of view, the function f is non-degenerate if and
only if the image curve fprγ1, γ2sq Ă RN is not contained in any hyper-
plane of RN .

We shall use that the maps γ ÞÑ Ωjpγq are analytic in rγ1, γ2s. For any
j P Zzt0u, we decompose the linear frequencies Ωjpγq as

(4.1) Ωjpγq “ ωjpγq `
γ

2

Gjp0q

j
, ωjpγq :“

d

g Gjp0q `

´γ

2

Gjp0q

j

¯2
,

where Gjp0q is the Dirichlet-Neumann operator defined in (1.5).

Lemma 4.2. (Non-degeneracy-I) The following frequency vectors are non-
degenerate on rγ1, γ2s: p1q Ω⃗pγq :“ pΩjpγqqjPS P Rν; p2q

`

Ω⃗pγq, 1
˘

P

Rν`1; p3q
`

Ω⃗pγq,Ωjpγq
˘

P Rν`1 for any j P Zzpt0u Y S Y p´Sqq; p4q
`

Ω⃗pγq,Ωjpγq,Ωj1pγq
˘

P Rν`2, for any j, j1 P Zzpt0u Y S Y p´Sqq and
|j| ‰ |j1|.

Proof. We prove items 1, 3, 4 of the Lemma. We first compute the jets of
the functions γ ÞÑ Ωjpγq at γ “ 0. Using that Gjp0q “ G|j|p0q ą 0, see
(1.5), we write (4.1) as

Ωjpγq“

b

g G|j|p0q

´b

1`γ2c2j ` γsgnpjqcj

¯

, cj :“
1

2|j|

b

G|j|p0q g´1,

for any j P Zzt0u. Each function γ ÞÑ p1 ` γ2c2j q
1{2 ` γ sgnpjqcj is real

analytic on the whole real line R, and in a neighborhood of γ “ 0, it admits
the power series expansion

(4.2)

Ωjpγq “

b

g G|j|p0q

´

1 `
ÿ

ně1

anpγ2
c
2
j q

n
` γ sgnpjqcj

¯

“

b

g G|j|p0q `
sgnpjq

2

G|j|p0q

|j|
γ `

ÿ

ně1

an

gn´ 1
2 22n

pG|j|p0qq
n` 1

2

|j|2n
γ2n

where an :“
`

1{2
n

˘

‰ 0 for any n ě 1. From (4.2), we deduce that, for any
j P Zzt0u, for any n ě 1,

(4.3) B
2n
γ Ωjp0q “ b2ngj

´G|j|p0q

|j|2

¯n

, gj :“
b

g G|j|p0q ą 0 , b2n :“
p2nq! an
gn22n

‰ 0 .
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We now prove that, for any N and integers 1 ď |j1| ă |j2| ă . . . ă

|jN |, the function rγ1, γ2s Q γ ÞÑ pΩj1pγq, ...,ΩjN pγqq P RN is non-
degenerate according to Definition 4.1. Suppose, by contradiction, that
pΩj1pγq, ...,ΩjN pγqq is degenerate, i.e. there exists c P RNzt0u such that
c1Ωj1pγq ` ... ` cNΩjN pγq “ 0, @ γ P rγ1, γ2s, hence, by analyticity, it is
identically zero for any γ P R. By differentiation we get c1pB

2
γΩj1qpγq ` ...`

cN pB
2
γΩjN qpγq “ 0, . . . , c1pB

2N
γ Ωj1qpγq ` ... ` cN pB

2N
γ ΩjN qpγq “ 0. As a conse-

quence theNˆN matrix Apγq :“

¨

˝

pB2
γΩj1

qpγq ¨¨¨ pB2
γΩjN

qpγq

...
. . .

...
pB2N

γ Ωj1
qpγq ¨¨¨ pB2N

γ ΩjN
qpγq

˛

‚is singu-

lar for any γ P R and detApγq “ 0, for all γ P R. In particular, at γ “ 0 we
have detAp0q “ 0. On the other hand, by (4.3) and the multi-linearity of
the determinant, we compute detAp0q “ b2...b2N

śN
a“1 gjafpjaqdetVpfq,

where Vpfq :“

¨

˝

1 ¨¨¨ 1
fpj1q ¨¨¨ fpjN q

...
. . .

...
fpj1qN´1 ¨¨¨ fpjN qN´1

˛

‚and fpjq :“ |j|´2G|j|p0q. This

Vandermonde determinant is

detAp0q “ b2...b2N

N
ź

a“1

gjafpjaq
ź

1ďpăqďN

pfpjqq ´ fpjpqq .

Note that fpjq “ |j|´2G|j|p0q ą 0 is even in j P Zzt0u. We claim that the
function fpjq is monotone for any j ą 0, from which, together with (4.3)
and the assumption 1 ď |j1| ă ... ă |jN |, we obtain detAp0q ‰ 0. This is
a contradiction.

We now prove the monotonicity of the function f : p0,`8q Ñ p0,`8q,
fpyq :“ y´1 tanhphyq. For h “ `8, it is trivial. If h ă `8, we compute
Byfpyq “ y´2gphyq where gpxq :“ ´ tanhpxq ` xp1 ´ tanh2pxqq. Then
Byfpyq ă 0 for any y ą 0 if and only if gpxq ă 0 for any x ą 0. We
note that limxÑ0` gpxq “ 0, limxÑ`8 gpxq “ ´1 and gpxq is monotone
decreasing for x ą 0 because Bxgpxq “ ´2x tanhpxqp1 ´ tanh2pxqq ă 0
for any x ą 0. The proof of item 2 is similar. □

Note that in items 3 and 4 of Lemma 4.2 we require that j and j1 do not
belong to t0u YSY p´Sq. In order to deal in Proposition 4.5 when j and j1

belong to ´S, we need also the following lemma. It is a direct consequence
of the proof of Lemma 4.2, noting that Ωjpγq ´ ωjpγq is linear in γ (cfr.
(4.1)) and its derivatives of order higher than two identically vanish.
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Lemma 4.3. (Non-degeneracy-II) Let ω⃗pγq :“
`

ωȷ1pγq, . . . , ωȷν pγq
˘

. The
following vectors are non-degenerate on rγ1, γ2s: pω⃗pγq, γq P Rν`1 and
pω⃗pγq, ωjpγq, γq P Rν`2 for any j P Zz pt0u Y S Y p´Sqq.

We provide the following asymptotic estimate of the linear frequencies.

Lemma 4.4. (Asymptotics) For any j P Zzt0u we have

(4.4) ωjpγq “
?
g|j|

1
2 `

cjpγq
?
g|j|

1
2

, where sup
jPZzt0u,γPrγ1,γ2s

|Bnγ cjpγq| ď Cn,h

for any n P N0 and for some finite constant Cn,h ą 0.

Proof. By (4.1), we deduce (4.4) with

(4.5) cjpγq :“
g|j|

`G|j|p0q

|j|
´ 1

˘

`
`

γ
2

G|j|p0q

|j|

˘2

1 `

c

G|j|p0q

|j|
` 1

g|j|

´

γ
2

G|j|p0q

|j|

¯2

and using that G|j|p0q

|j|
´ 1 “ ´ 2

1`e2h|j| , cfr. (1.5). □

The next proposition is the main result of the section. We remind that
ȷ⃗ “ pȷ1, . . . , ȷνq denotes the vector in Zνzt0u of tangential sites, cfr. (2.24)
and (2.19). We also recall that Sc0 “ ZzpS Y t0uq.

Proposition 4.5. (Transversality) There exist m0 P N and ρ0 ą 0 such
that, for any γ P rγ1, γ2s, the following hold:

max
0ďnďm0

|Bnγ Ω⃗pγq ¨ ℓ| ě ρ0xℓy , @ ℓ P Zνzt0u ;(4.6)
#

max
0ďnďm0

|Bnγ pΩ⃗pγq ¨ ℓ` Ωjpγqq| ě ρ0xℓy ,

ȷ⃗ ¨ ℓ` j “ 0 , ℓ P Zν , j P Sc0 ;
(4.7)

#

max
0ďnďm0

|Bnγ pΩ⃗pγq ¨ ℓ` Ωjpγq ´ Ωj1pγqq| ě ρ0xℓy

ȷ⃗ ¨ ℓ` j ´ j1 “ 0 , ℓ P Zν , j, j1 P Sc0 , pℓ, j, j1q ‰ p0, j, jq ;
(4.8)

#

max
0ďnďm0

|Bnγ pΩ⃗pγq ¨ ℓ` Ωjpγq ` Ωj1pγqq| ě ρ0xℓy

ȷ⃗ ¨ ℓ` j ` j1 “ 0 , ℓ P Zν , j, j1 P Sc0 .
(4.9)

We call ρ0 the amount of non-degeneracy, m0 the index of non-degeneracy.
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Proof. We now prove (4.8). The proof of (4.6), (4.7), (4.9) follows sim-
ilarly. We set for brevity Γ :“ rγ1, γ2s. We assume jm ‰ j1

m because
the case jm “ j1

m is included in (4.6). By contradiction, we assume
that, for any m P N, there exist γm P Γ, ℓm P Zν and jm, j

1
m P Sc0,

pℓm, jm, j
1
mq ‰ p0, jm, jmq, such that, for any 0 ď n ď m, satisfying

ȷ⃗ ¨ ℓm ` jm ´ j1
m “ 0,

(4.10)
ˇ

ˇBnγ

`

Ω⃗pγq ¨ ℓm
xℓmy

` 1
xℓmy

`

Ωjmpγq ´ Ωj1
m

pγq
˘˘

|γ“γm

ˇ

ˇ ă 1
xmy

.

We have that ℓm ‰ 0, otherwise, by the momentum condition jm “ j1
m.

Up to subsequences γm Ñ γ P Γ and ℓm{xℓmy Ñ c P Rνzt0u.
STEP 1. We start with the case when pℓmqmPN Ă Zν is bounded. Up
to subsequences, we have definitively that ℓm “ ℓ P Zνzt0u. The se-
quences pjmqmPN and pj1

mqmPN may be bounded or unbounded. Up to sub-
sequences, we consider the different cases:

Case (a). |jm|, |j1
m| Ñ `8 for m Ñ 8. We have that jm ¨ j1

m ą 0,
because, otherwise, |jm ´ j1

m| “ |jm| ` |j1
m| Ñ `8 contradicting that

|jm ´ j1
m| “ |⃗ȷ ¨ ℓm| ď C. Recalling (1.5) we have, for any j ¨ j1 ą 0, that

(4.11)
ˇ

ˇ

ˇ

Gjp0q

j ´
Gj1 p0q

j1

ˇ

ˇ

ˇ
ď Ch

´

1

|j|
1
2

` 1

|j1|
1
2

¯

.

Moreover, by the momentum condition ȷ⃗ ¨ ℓm ` jm ´ j1
m “ 0, we deduce

(4.12) |
a

|jm| ´
a

|j1
m|| ď

|jm ´ j1
m|

a

|jm| `
a

|j1
m|

ď
C|ℓm|

a

|jm| `
a

|j1
m|
.

By (4.1), Lemma 4.4, jm ¨ j1
m ą 0, (4.11), (4.12), we conclude that

Bnγ pΩjmpγq ´ Ωj1
m

pγqq “
?
gBnγ

`

a

|jm| ´
a

|j1
m|
˘

` Bnγ

´

cjm pγq

?
g|jm|

1
2

´
cj1

m
pγq

?
g|j1

m|
1
2

`
γ
2

´

Gjm p0q

jm
´

Gj1
m

p0q

j1
m

¯¯

Ñ 0

asm Ñ `8. Passing to the limit in (4.10), we obtain Bnγ tΩ⃗pγq¨ℓu|γ“γ “ 0

for any n P N0. Hence the analytic function γ ÞÑ Ω⃗pγq ¨ ℓ is identically
zero, contradicting Lemma 4.2-1, since ℓ ‰ 0.

Case (b). pjmqmPN is bounded and |j1
m| Ñ 8 (or viceversa): this case

is excluded by the momentum condition ȷ⃗ ¨ ℓm ` jm ´ j1
m “ 0 in (4.10) and

since pℓmq is bounded.
Case (c). Both pjmqmPN, pj1

mqmPN are bounded: we have definitively
that jm “ ȷ and j1

m “ ȷ1, with ȷ, ȷ1 P Sc0 and, since jm ‰ j1
m, we have

ȷ ‰ ȷ1. Therefore (4.10) becomes, in the limit m Ñ 8, Bnγ

`

Ω⃗pγq ¨ ℓ `
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Ωȷpγq ´ Ωȷ1pγq
˘

|γ“γ
“ 0, @n P N0, ȷ⃗ ¨ ℓ ` ȷ ´ ȷ1 “ 0. By analyticity, we

obtain that

(4.13) Ω⃗pγq ¨ ℓ` Ωȷpγq ´ Ωȷ1pγq “ 0 @ γ P Γ , ȷ⃗ ¨ ℓ` ȷ´ ȷ1 “ 0 .

We distinguish several cases:

‚ Let ȷ, ȷ1 R ´S and |ȷ| ‰ |ȷ1|. By (4.13) the vector pΩ⃗pγq,Ωȷpγq,Ωȷ1pγqq

is degenerate with c :“ pℓ, 1,´1q ‰ 0, contradicting Lemma 4.2-4.
‚ Let ȷ, ȷ1 R ´S and ȷ1 “ ´ȷ. In view of (4.1), the first equation in (4.13)

becomes ω⃗pγq ¨ ℓ `
γ
2

`
řν
a“1 ℓa

Gȷa p0q

ȷa
` 2

Gȷp0q

ȷ

˘

“ 0, @γ P Γ. By Lemma

4.3 the vector pω⃗pγq, γq is non-degenerate, thus ℓ “ 0 and 2
Gȷp0q

ȷ “ 0,
which is a contradiction.

‚ Let ȷ1 R ´S and ȷ P ´S. With no loss of generality suppose ȷ “ ´ȷ1.
In view of (4.1), the first equation in (4.13) implies that, for any γ P Γ,

pℓ1 ` 1qωȷ1pγq `

ν
ÿ

a“2

ℓaωȷapγq ´ ωȷ1pγq

`
γ
2

´

pℓ1 ´ 1q
Gȷ1

p0q

ȷ1
`

ν
ÿ

a“2

ℓa
Gȷa p0q

ȷa
´

Gȷ1 p0q

ȷ1

¯

“ 0 .

By Lemma 4.3 the vector
`

ω⃗pγq, ωȷ1pγq, γ
˘

is non-degenerate, which is a
contradiction.

‚ Last, let ȷ, ȷ1 P ´S and ȷ ‰ ȷ1. With no loss of generality suppose
ȷ “ ´ȷ1 and ȷ1 “ ´ȷ2. Then the first equation in (4.13) reads, for any
γ P Γ, pℓ1`1qωȷ1pγq`

`

ℓ2 ´ 1
˘

ωȷ2 `
řν
a“3ℓaωȷapγq`

γ
2

`

pℓ1´1q
Gȷ1

p0q

ȷ1
`

pℓ2 ` 1q
Gȷ2

p0q

ȷ2
`
řν
a“3ℓa

Gȷa p0q

ȷa

˘

“ 0. Since the vector pω⃗pγq, γq is non-

degenerate by Lemma 4.3, it implies ℓ1 “ ´1, ℓ2 “ 1, ℓ3 “ . . . “ ℓν “ 0.
Inserting these values in (4.13) we obtain ´2ȷ1 ` 2ȷ2 “ 0. This contradicts
ȷ ‰ ȷ1.

STEP 2. We finally consider the case when pℓmqmPN is unbounded. Up
to subsequences ℓm Ñ 8 as m Ñ 8 and limmÑ8 ℓm{xℓmy “: c ‰ 0. By
(4.1), Lemma 4.4, (4.11), we have, for any n ě 1,

Bnγ
1

xℓmy

`

Ωjmpγq ´ Ωj1
m

pγq
˘

|γ“γm
“ Bnγ

` 1

xℓmy
?
g

`cjmpγq

|jm|
1
2

´
cj1

m
pγq

|j1
m|

1
2

˘

`
γ

2xℓmy

`Gjmp0q

jm
´
Gj1

m
p0q

j1
m

˘

|γ“γm

˘

Ñ 0
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as m Ñ 8. Therefore, for any n ě 1, taking m Ñ 8 in (4.10) we get
Bnγ

`

Ω⃗pγq ¨ c
˘

|γ“γ
“ 0. By analyticity this implies Ω⃗pγq ¨ c “ d, for all

γ P Γ, contradicting Lemma 4.2-2, since c ‰ 0. □

Remark 4.6. For the irrotational case γ “ 0, quasi-periodic traveling
waves exist for most values of the depth h P rh1, h2s. In detail, the non-
degeneracy property of the linear frequencies with respect to h as in Lemma
4.2 is proved in Lemma 3.2 in [2], whereas the transversality properties
hold by restricting the bounds in Lemma 3.4 in [2] to the Fourier sites sat-
isfying the momentum conditions.

5 Proof of Theorem 1.2

Under the rescaling pη, ζq ÞÑ pεη, εζq, the Hamiltonian system (2.5)
transforms into the Hamiltonian system generated by

Hεpη, ζq :“ ε´2Hpεη, εζq “ HLpη, ζq ` εPεpη, ζq ,

where H is the water waves Hamiltonian (2.4) expressed in the Wahlén
coordinates (2.3), HL is as in (2.8) and Pεpη, ζq :“ ε´3Hě3pεη, εζq, de-
noting Hě3 :“ H ´ HL the cubic part of the Hamiltonian. We study this
Hamiltonian system in the action-angle and normal coordinates pθ, I, wq,
considering the Hamiltonian Hεpθ, I, wq defined by

(5.1) Hε :“ Hε ˝A “ ε´2H ˝ εA

where A is the map defined in (2.21). The associated symplectic form is
given in (2.25). By (2.28) (see also (2.20)), in the variables pθ, I, wq the
quadratic Hamiltonian HL defined in (2.8) simply reads, up to a constant,
N :“ HL ˝ A “ Ω⃗pγq ¨ I ` 1

2 pΩWw,wqL2 , where Ω⃗pγq P Rν is defined
in (1.12) and ΩW in (2.7). Thus the Hamiltonian Hε in (5.1) is

(5.2) Hε “ N ` εP with P :“ Pε ˝A .

5.1 Nash-Moser theorem of hypothetical conjugation
Instead of looking directly for quasi-periodic solutions of the Hamilton-

ian system generated by Hε, we look for quasi-periodic solutions of the
modified Hamiltonians, where α P Rν are additional parameters,

(5.3) Hα :“ Nα ` εP , Nα :“ α ¨ I ` 1
2 pw,ΩWwqL2 .

We consider the nonlinear operator Fpi, αq:“Fpω, γ, ε; i, αq :“ω¨Bφipφq´

XHαpipφqq. If Fpi, αq “ 0, then ipφq is an invariant torus for the Hamil-
tonian vector fieldXHα , filled with quasi-periodic solutions with frequency
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ω. Each Hamiltonian Hα in (5.3) is invariant under the involution S⃗ and
the translations τ⃗ς , ς P R, defined respectively in (2.22) and in (2.23):
Hα ˝ S⃗ “ Hα, Hα ˝ τ⃗ς “ Hα, @ ς P R. We look for a reversible trav-
eling torus embedding ipφq “ pθpφq, Ipφq, wpφqq, namely satisfying

(5.4) S⃗ipφq “ ip´φq , τ⃗ςipφq “ ipφ´ ȷ⃗ςq , @ ς P R .
The operator Fp¨, αq maps a reversible, respectively traveling, wave into an
anti-reversible, respectively traveling, wave variation, according to Defini-
tion 3.18.

The norm of the periodic components of the embedded torus

(5.5) Ipφq :“ ipφq ´ pφ, 0, 0q :“
`

Θpφq, Ipφq, wpφq
˘

, Θpφq :“θpφq ´φ ,

is }I}
k0,υ
s :“ }Θ}

k0,υ
Hs

φ
`}I}

k0,υ
Hs

φ
`}w}

k0,υ
s , where k0 :“ m0 `2 andm0 P N

is the index of non-degeneracy provided by Proposition 4.5. We will omit
to write the dependence of the various constants with respect to k0. We
look for quasi-periodic solutions of frequency ω in a δ-neighborhood

Ω :“
␣

ω P Rν : dist
`

ω, Ω⃗rγ1, γ2s
˘

ă δ
(

with δ ą 0 (independent of ε) of the curve Ω⃗rγ1, γ2s defined by (1.12).

Theorem 5.1. (Theorem of hypothetical conjugation) There exist posi-
tive constants a0, ε0, C depending on S, k0 and τ ě 1 such that, for all
υ “ εa, a P p0, a0q and for all ε P p0, ε0q, there exist:
1. a k0-times differentiable function of the form α8 : Ω ˆ rγ1, γ2s ÞÑ Rν ,

α8pω, γq :“ ω ` rεpω, γq with |rε|
k0,υ ď Cευ´1 ;(5.6)

2. embedded reversible traveling tori i8pφq (cfr. (5.4)), defined for all
pω, γq P Ω ˆ rγ1, γ2s, satisfying

(5.7) }i8pφq ´ pφ, 0, 0q}k0,υs0 ď Cευ´1 ;

3. k0-times differentiable functions µ8
j : Rν ˆ rγ1, γ2s Ñ R, j P Sc0 “

Z z pS Y t0uq, of the form
(5.8)
µ8
j pω, γq“m8

1 pω, γqj ` m8
1
2

pω, γqΩjpγq ´ m8
0 pω, γqsgnpjq ` r8

j pω, γq ,

with Ωjpγq defined in (1.8), satisfying

(5.9)
|m8

1 |k0,υ ď Cε , |m8
1
2

´ 1|k0,υ ` |m8
0 |k0,υ ď Cευ´1 ,

supjPSc0 |j|
1
2 |r8

j |k0,υ ď Cευ´3 ,
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such that, for all pω, γq in the Cantor-like set

Cυ
8 :“

!

pω, γq P Ω ˆ rγ1, γ2s : |ω ¨ ℓ| ě 8υxℓy´τ , @ ℓ P Zν
zt0u ;(5.10)

|ω ¨ ℓ´m
8
1 pω, γqj|ě8υxℓy´τ , @ ℓ P Zν , j P Sc

0 with ȷ⃗ ¨ ℓ` j “ 0;(5.11)

|ω ¨ ℓ` µ8
j pω, γq| ě 4υ |j|

1
2 xℓy´τ , @ ℓ P Zν , j P Sc

0 with ȷ⃗ ¨ ℓ` j “ 0 ;
ˇ

ˇω ¨ ℓ` µ8
j pω, γq ´ µ8

j1 pω, γq
ˇ

ˇ ě 4υ xℓy´τ ,(5.12)
@ℓ P Zν , j, j1

P Sc
0, pℓ, j, j1

q ‰ p0, j, jq with ȷ⃗ ¨ ℓ` j ´ j1
“ 0 ;

ˇ

ˇω ¨ ℓ` µ8
j pω, γq ` µ8

j1 pω, γq
ˇ

ˇ ě 4υ
`

|j|
1
2 ` |j1

|
1
2
˘

xℓy´τ ,(5.13)

@ ℓ P Zν , j, j1
P Sc

0 , with ȷ⃗ ¨ ℓ` j ` j1
“ 0

)

,

the function i8pφq :“ i8pω, γ, ε;φq solves Fpω, γ, ε; pi8, α8qpω, γqq “

0. As a consequence, the embedded torus φ ÞÑ i8pφq is invariant for
the Hamiltonian vector field XHα8pω,γq

as it is filled by quasi-periodic re-
versible traveling wave solutions with frequency ω.

Theorem 5.1 is deduced by a Nash-Moser iteration scheme at the end of
Section 7.

Remark 5.2. The Diophantine condition (5.10) could be weakened requir-
ing only |ω ¨ ℓ| ě υxℓy´τ for any ℓ ¨ ȷ⃗ “ 0. If so, the vector ω could admit
one non-trivial resonance, i.e. ℓ P Zνzt0u such that ω ¨ ℓ “ 0, and the orbit
tωtutPR would densely fill a (ν ´ 1)-dimensional torus, orthogonal to ℓ. In
any case ȷ⃗ ¨ ℓ ‰ 0 (otherwise |ω ¨ ℓ| ě υxℓy´τ ą 0, contradicting ω ¨ ℓ “ 0)
and then tωt´ ȷ⃗xutPR,xPR “ Tν . This is the natural minimal requirement
to look for traveling quasi-periodic solutions Upωt´ ȷ⃗xq (Definition 3.1).

5.2 Measure estimates: proof of Theorem 1.2
Now we deduce from Theorem 5.1 the existence of quasi-periodic solu-

tions of the original Hamiltonian system generated byHε in (5.2) and not of
just Hα8 . By (5.6), the function α8p ¨ , γq from Ω into its image α8pΩ, γq

is invertible and

(5.14)
β “ α8pω, γq “ ω ` rεpω, γq ô

ω “ α´1
8 pβ, γq “ β ` r̆εpβ, γq , |r̆ε|

k0,υ ď Cευ´1 .

Then, for any β P α8pCυ8q, Theorem 5.1 proves the existence of an embed-
ded invariant torus filled by quasi-periodic solutions with Diophantine fre-
quency ω “ α´1

8 pβ, γq for the Hamiltonian Hβ “ β ¨ I ` 1
2pw,ΩWwqL2 `

εP . Consider the curve of the unperturbed tangential frequency vector
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Ω⃗pγq in (1.12). In Theorem 5.3 below we prove that for "most" values of
γ P rγ1, γ2s the vector pα´1

8 pΩ⃗pγq, γq, γq is in Cυ8, obtaining an embedded
torus for the HamiltonianHε in (5.1), filled by quasi-periodic solutions with
Diophantine frequency vector ω “ α´1

8 pΩ⃗pγq, γq, denoted rΩ in Theorem
1.2. Thus εApi8prΩtqq, where A is defined in (2.21), is a quasi-periodic
traveling wave solution of the water waves equations (2.5) written in the
Wahlén variables. Finally, going back to the original Zakharov variables
via (2.3) we obtain solutions of (1.1). This proves Theorem 1.2 together
with the following measure estimates.

Theorem 5.3. (Measure estimates) Let

(5.15) υ “ εa , 0 ă a ă minta0, 1{p4m2
0qu , τ ą m0p2m0ν ` ν ` 2q ,

where m0 is given in Proposition 4.5 and k0 :“ m0 ` 2. Then, for ε P

p0, ε0q small enough, the measure of the set

Gε :“
␣

γ P rγ1, γ2s :
`

α´1
8 pΩ⃗pγq, γq, γ

˘

P Cυ8
(

satisfies |Gε| Ñ γ2 ´ γ1 as ε Ñ 0.

The rest of this section is devoted to prove Theorem 5.3. By (5.14) we
have

(5.16) Ω⃗εpγq :“ α´1
8 pΩ⃗pγq, γq “ Ω⃗pγq ` r⃗ε ,

where r⃗εpγq :“ r̆εpΩ⃗pγq, γq satisfies

(5.17) |Bkγ r⃗εpγq| ď Cευ´p1`kq , @ |k| ď k0 , uniformly on rγ1, γ2s .

We also denote, with a small abuse of notation, for all j P Sc0,

(5.18)
µ8
j pγq :“µ8

j

`

Ω⃗εpγq, γ
˘

:“m8
1 pγqj ` m8

1
2

pγqΩjpγq ´ m8
0 pγqsgnpjq ` r8

j pγq ,

where, for sake of simplicity in the notation, m8
1 pγq :“ m8

1 pΩ⃗εpγq, γq,
m8

1
2

pγq :“ m8
1
2

pΩ⃗εpγq, γq, m8
0 pγq :“ m8

0 pΩ⃗εpγq, γq, r8
j pγq :“ r8

j pΩ⃗εpγq, γq.
By (5.9) and (5.17) we get the estimates

|Bkγm
8
1 pγq| ď Cευ´k,

ˇ

ˇBkγ

`

m8
1
2

pγq ´ 1
˘ˇ

ˇ`|Bkγm
8
0 pγq| ď Cευ´k´1,(5.19)

supjPSc0 |j|
1
2

ˇ

ˇ

ˇ
Bkγr

8
j pγq

ˇ

ˇ

ˇ
ď Cευ´3´k , @ 0 ď k ď k0 .(5.20)
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Recalling (5.10)-(5.13), we estimate the measure of the complementary set

Gcε :“ rγ1, γ2szGε “

´

ď

ℓ‰0

R
p0q

ℓ YR
pT q

ℓ

¯

Y

´

ď

ℓPZν , jPSc0
ȷ⃗¨ℓ`j“0

R
pIq

ℓ,j

¯

Y

´

ď

pℓ,j,j1q‰p0,j,jq,j‰j1

ȷ⃗¨ℓ`j´j1“0

R
pIIq

ℓ,j,j1

¯

Y

´

ď

ℓPZν ,j,j1PSc0 ,

ȷ⃗¨ℓ`j`j1“0

Q
pIIq

ℓ,j,j1

¯

,(5.21)

where the “nearly-resonant sets" are, recalling the notation Γ “ rγ1, γ2s,

R
p0q

ℓ :“ R
p0q

ℓ pυ, τq :“
!

γ P Γ : |Ω⃗εpγq ¨ ℓ| ă 8υxℓy´τ
)

,(5.22)

R
pT q

ℓ :“ R
pT q

ℓ pυ, τq :“
!

γ P Γ : |pΩ⃗εpγq ´ m
8
1 pγqȷ⃗q ¨ ℓ| ă 8υxℓy´τ

)

,

R
pIq

ℓ,j :“ R
pIq

ℓ,j pυ, τq :“
!

γ P Γ : |Ω⃗εpγq ¨ ℓ` µ8
j pγq| ă 4υ|j|

1
2 xℓy´τ

)

,(5.23)

and the sets RpIIq

ℓ,j,j1 :“ R
pIIq

ℓ,j,j1pυ, τq, QpIIq

ℓ,j,j1 :“ Q
pIIq

ℓ,j,j1pυ, τq are

R
pIIq

ℓ,j,j1 :“
!

γ P Γ : |Ω⃗εpγq ¨ ℓ` µ8
j pγq ´ µ8

j1 pγq| ă 4υ xℓy´τ
)

,(5.24)

Q
pIIq

ℓ,j,j1 :“
!

γ P Γ : |Ω⃗εpγq ¨ ℓ` µ8
j pγq ` µ8

j1 pγq| ă
4υ
`

|j|
1
2 `|j1|

1
2

˘

xℓyτ

)

.(5.25)

The third union in (5.21) may require j ‰ j1 because RpIIq

ℓ,j,j Ă R
p0q

ℓ . In the
sequel we shall always suppose the momentum conditions on the indexes
ℓ, j, j1 in (5.21). Some of the above sets are empty.

Lemma 5.4. For εPp0, ε0q small enough, ifQpIIq

ℓ,j,j1 ‰ H then |j|
1
2 `|j1|

1
2 ď

Cxℓy.

Proof. If QpIIq

ℓ,j,j1 ‰ H then there is γ P rγ1, γ2s such that

|µ8
j pγq ` µ8

j1 pγq| ă
4υp|j|

1
2 ` |j1|

1
2 q

xℓyτ
` C|ℓ|.

By (5.18) we have µ8
j pγq ` µ8

j1 pγq “ m8
1 pγqpj ` j1q ` m8

1
2

pγqpΩjpγq `

Ωj1pγqq´m8
0 pγqpsgnpjq`sgnpj1qq`r8

j pγq`r8
j1 pγq. Then, by (5.19)-(5.20)

with k “ 0, Lemma 4.4 and the momentum condition j ` j1 “ ´ȷ⃗ ¨ ℓ, we
deduce, for ε small enough, |µ8

j pγq ` µ8
j1 pγq| ě ´Cε|ℓ| `

?
g
2

ˇ

ˇ|j|
1
2 `

|j1|
1
2

ˇ

ˇ ´ C 1 ´ Cευ´3. The above bounds imply ||j|
1
2 ` |j1|

1
2 | ď Cxℓy, for

ε small enough. □
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In order to estimate the measure of the sets (5.22)-(5.25), the key point
is to prove that the perturbed frequencies satisfy transversality properties
similar to the ones (4.6)-(4.9) satisfied by the unperturbed frequencies. By
Proposition 4.5, (5.16), and the estimates (5.17), (5.19)-(5.20) we deduce
the following lemma (cfr. Lemma 5.5 in [7]).

Lemma 5.5. (Perturbed transversality) For ε P p0, ε0q small enough and
for all γ P rγ1, γ2s,

max
0ďnďm0

|Bnγ Ω⃗εpγq ¨ ℓ| ě
ρ0
2

xℓy , @ ℓ P Zνzt0u ;

max
0ďnďm0

|Bnγ pΩ⃗εpγq ´ m8
1 pγqȷ⃗q ¨ ℓ| ě

ρ0
2

xℓy , @ℓ P Zνzt0u

#

max0ďnďm0 |Bnγ pΩ⃗εpγq ¨ ℓ` µ8
j pγqq| ě

ρ0
2 xℓy ,

ȷ⃗ ¨ ℓ` j “ 0 , ℓ P Zν , j P Sc0 ;
#

max0ďnďm0 |Bnγ pΩ⃗εpγq ¨ ℓ` µ8
j pγq ´ µ8

j1 pγqq| ě
ρ0
2 xℓy

ȷ⃗ ¨ ℓ` j ´ j1 “ 0 , ℓ P Zν , j, j1 P Sc0 , pℓ, j, j1q ‰ p0, j, jq ;
#

max0ďnďm0 |Bnγ pΩ⃗εpγq ¨ ℓ` µ8
j pγq ` µ8

j1 pγqq| ě
ρ0
2 xℓy

ȷ⃗ ¨ ℓ` j ` j1 “ 0 , ℓ P Zν , j, j1 P Sc0 .

The transversality estimates of Lemma 5.5 and an application of Rüss-
mann Theorem 17.1 in [31] (which applies as the functions Ω⃗εpγq, m8

1 pγq

and µ8
j pγq are bounded in the Cm0`1-topology thanks to (5.16)–(5.20))

directly imply the following bounds for the sets in (5.21): we have (cfr.
Lemma 5.6 in [7]).

|R
p0q

ℓ |, |R
pT q

ℓ | À pυxℓy´pτ`1qq
1

m0 , |R
pIq

ℓ,j | À
`

υ|j|
1
2 xℓy´pτ`1q

˘
1

m0 ,(5.26)

|R
pIIq

ℓ,j,j1 | À
`

υxℓy´pτ`1q
˘

1
m0 , |Q

pIIq

ℓ,j,j1 | À
`

υ
`

|j|
1
2 ` |j1|

1
2

˘

xℓy´pτ`1q
˘

1
m0 .

By (5.26), and the choice of τ in (5.15), we have
ˇ

ˇ

ˇ

ď

ℓ‰0

R
p0q

ℓ YR
pT q

ℓ

ˇ

ˇ

ˇ
ď

ÿ

ℓ‰0

|R
p0q

ℓ | ` |R
pT q

ℓ | À
ÿ

ℓ‰0

´ υ

xℓyτ`1

¯ 1
m0

À υ
1

m0 ,(5.27)

ˇ

ˇ

ˇ

ď

ℓ‰0,j“´ȷ⃗¨ℓ

R
pIq

ℓ,j

ˇ

ˇ

ˇ
ď

ÿ

ℓ‰0

|R
pIq

ℓ,´ȷ⃗¨ℓ| À
ÿ

ℓ

´ υ

xℓyτ` 1
2

¯ 1
m0

À υ
1

m0 ,(5.28)

and using also Lemma 5.4,

(5.29)
ˇ

ˇ

ˇ

ď

ℓ, j,j1PSc0
ȷ⃗¨ℓ`j`j1“0

Q
pIIq

ℓ,j,j1

ˇ

ˇ

ˇ
ď

ÿ

ℓ,|j|ďCxℓy2,

j1“´ȷ⃗¨ℓ´j

|Q
pIIq

ℓ,j,j1 | À
ÿ

ℓ,|j|ďCxℓy2

´ υ

xℓyτ

¯ 1
m0

À υ
1

m0 .
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We are left with estimating the measure of

(5.30)
ď

pℓ,j,j1q‰p0,j,jq,j‰j1

ȷ⃗¨ℓ`j´j1“0

R
pIIq

ℓ,j,j1 “

´

ď

j‰j1 , j¨j1ă0
ȷ⃗¨ℓ`j´j1“0

R
pIIq

ℓ,j,j1

¯

Y

´

ď

j‰j1 , j¨j1ą0
ȷ⃗¨ℓ`j´j1“0

R
pIIq

ℓ,j,j1

¯

:“ I1 Y I2 .

We first estimate the measure of I1. For j ¨j1 ă 0, the momentum condition
reads j ´ j1 “ sgnpjqp|j| ` |j1|q “ ´ȷ⃗ ¨ ℓ, thus |j|, |j1| ď C xℓy. Hence, by
(5.26) and the choice of τ in (5.15), we have

(5.31) |I1| ď
ÿ

ℓ,|j|ďCxℓy,j1“j`ȷ⃗¨ℓ

|R
pIIq

ℓ,j,j1 | À
ÿ

ℓ,|j|ďCxℓy

´ υ

xℓyτ`1

¯ 1
m0

À υ
1

m0 .

Then we estimate the measure of I2 in (5.30). The key step is given in the
next lemma. Remind the definition of the sets RpIIq

ℓ,j,j1 and RpT q

ℓ in (5.22)-
(5.24).

Lemma 5.6. Let υ0 ě υ and τ ě τ0 ě 1. There is a constant C1 ą 0
such that, for ε small enough, for any ȷ⃗ ¨ ℓ ` j ´ j1 “ 0, j ¨ j1 ą 0, if
mint|j|, |j1|u ě C1υ

´2
0 xℓy2pτ0`1q, then RpIIq

ℓ,j,j1pυ, τq Ă
Ť

ℓ‰0R
pT q

ℓ pυ0, τ0q.

Proof. If γ P rγ1, γ2sz
Ť

ℓ‰0R
pT q

ℓ pυ0, τ0q, then |pΩ⃗εpγq ´ m8
1 pγqȷ⃗q ¨ ℓ| ě

8υ0xℓy´τ0 for any ℓ P Zzt0u. By (5.18), the condition j ´ j1 “ ´ȷ⃗ ¨ ℓ,
(5.19), (5.20), Lemma 4.4 and j ¨ j1 ą 0, (4.11), we deduce that

|Ω⃗εpγq ¨ ℓ` µ8
j pγq ´ µ8

j1 pγq|

ě |Ω⃗εpγq ¨ ℓ` m8
1 pj ´ j1q| ´ |m8

1
2

||Ωjpγq ´ Ωj1pγq| ´ |r8
j pγq ´ r8

j1 pγq|

ě |pΩ⃗εpγq ´ m8
1 ȷ⃗q ¨ ℓ| ´ p1 ´ Cευ´1q

ˇ

ˇ|j|
1
2 ´ |j1|

1
2

ˇ

ˇ

´ C
´

1

|j|
1
2

` 1

|j1|
1
2

¯

´ C
ε

υ3

´

1

|j|
1
2

` 1

|j1|
1
2

¯

ě 8υ0
xℓyτ0 ´ 1

2
|j´j1|

|j|
1
2 `|j1|

1
2

´

´

C

|j|
1
2

` C

|j1|
1
2

¯

ě 8υ0
xℓyτ0 ´ C

´

xℓy

|j|
1
2

`
xℓy

|j1|
1
2

¯

ě 4υ0
xℓyτ0

for any |j|, |j1| ą C1υ
´2
0 xℓy2pτ0`1q, for C1 ą C2{64. Since υ0 ě υ and

τ ě τ0 we deduce that |Ω⃗εpγq ¨ ℓ ` µ8
j pγq ´ µ8

j1 pγq| ě 4υxℓy´τ , namely

γ R R
pIIq

ℓ,j,j1pυ, τq. □

Note that the set of indexes pℓ, j, j1q such that ȷ⃗ ¨ ℓ ` j ´ j1 “ 0 and
mint|j|, |j1|u ă C1υ

´2
0 xℓy2pτ0`1q is included, for υ0 small enough, into the

set

(5.32) Iℓ :“
!

pℓ, j, j1q : ȷ⃗ ¨ ℓ` j ´ j1 “ 0 , |j|, |j1| ď υ´3
0 xℓy2pτ0`1q

)
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because maxt|j|, |j1|u ď mint|j|, |j1|u ` |j ´ j1| ă C1υ
´2
0 xℓy2pτ0`1q `

Cxℓy ď υ´3
0 xℓy2pτ0`1q. As a consequence, by Lemma 5.6 we deduce that

(5.33)
I2 “

ď

j‰j1 , j¨j1ą0
ȷ⃗¨ℓ`j´j1“0

R
pIIq

ℓ,j,j1 pυ, τq Ă

´

ď

ℓ‰0

R
pT q

ℓ pυ0, τ0q

¯

ď

´

ď

pℓ,j,j1qPIℓ

R
pIIq

ℓ,j,j1 pυ, τq

¯

.

Lemma 5.7. Let τ0 :“ m0ν and υ0 “ υ
1

4m0 . Then |I2| ď Cυ
1

4m2
0 .

Proof. By (5.27) (applied with υ0, τ0 instead of υ, τ ), and τ0 “ m0ν, we
have

(5.34)
ˇ

ˇ

ˇ

ď

ℓ‰0

R
pT q

ℓ pυ0, τ0q

ˇ

ˇ

ˇ
À υ

1
m0
0 À υ

1

4m2
0 .

Moreover, recalling (5.32),

(5.35)

ˇ

ˇ

ˇ

ď

pℓ,j,j1qPIℓ

R
pIIq

ℓ,j,j1 pυ, τq

ˇ

ˇ

ˇ
À

ÿ

ℓPZν
|j|ďC1υ

´3
0 xℓy2pτ0`1q

´ υ

xℓyτ`1

¯ 1
m0

À
ÿ

ℓPZν

υ
1

m0 υ´3
0

xℓy
τ`1
m0

´2pτ0`1q
À υ

1
4m0 ,

by the choice of τ in (5.15) and υ0. The lemma follows by (5.33), (5.34)
and (5.35). □

Proof of Theorem 5.3 completed. By (5.21), (5.27), (5.28), (5.29), (5.30),

(5.31) and Lemma 5.7, we deduce that |Gcε| ď Cυ
1

4m2
0 . For υ “ εa as in

(5.15), we get |Gε| ě γ2 ´ γ1 ´ Cεa{4m2
0 . □

5.3 Approximate inverse
The key step to prove Theorem 5.1 via a Nash-Moser iterative scheme

is the construction of an almost approximate right inverse of the linearized
operator di,αFpi0, α0qrpı, pαs “ di,αFpi0q “ ω ¨ Bφpı´ diXHα pi0pφqq rpıs ´

ppα, 0, 0q. We follow closely the strategy in [6], implemented for the water
waves equations in [9, 2, 7]. Thus we shall be short. With this approach
we are reduced to construct an almost inverse for the linear operator Lω,
defined in (5.42) below, acting on the normal directions.

We assume the smallness condition, for some k :“ kpτ, νq ą 0, ευ´k !

1, and the following hypothesis, which is verified by the approximate solu-
tions obtained in the Nash-Moser Theorem 7.7.

‚ ANSATZ. The map pω, γq ÞÑ I0pω, γq “ i0pφ;ω, γq ´ pφ, 0, 0q is
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k0-times differentiable with respect to the parameters pω, γq P Rνˆrγ1, γ2s

and, for some µ :“ µpτ, νq ą 0, υ P p0, 1q,

(5.36) }I0}
k0,υ
s0`µ ` |α0 ´ ω|

k0,υ ď Cευ´1 .

The torus i0pφq “ pθ0pφq, I0pφq, w0pφqq is reversible and traveling, ac-
cording to (5.4).

We first modify i0pφq to a nearby isotropic torus iδpφq. The next lemma
follows as in Lemma 5.3 in [2] and Lemma 6.2 in [7]. Let Zpφq :“
Fpi0, α0qpφq “ ω ¨ Bφi0pφq ´XHα0

pi0pφqq.

Lemma 5.8. (Isotropic torus) There exists an isotropic torus iδpφq :“
pθ0pφq, Iδpφq, w0pφqq satisfying, for some σ :“ σpν, τq and for all s ě s0,

}Iδ´I0}
k0,υ
s Às}I0}

k0,υ
s`1 , }Iδ´I0}

k0,υ
s Àsυ

´1
`

}Z}
k0,υ
s`σ `}Z}

k0,υ
s0`σ }I0}

k0,υ
s`σ

˘

(5.37)

}Fpiδ, α0q}
k0,υ
s Às }Z}

k0,υ
s`σ ` }Z}

k0,υ
s0`σ }I0}

k0,υ
s`σ , }dipiδqrpıs}s1 Às1 }pı}s1`1 ,(5.38)

for s1 ď s0`µ (cfr. (5.36)). Furthermore iδpφq is a reversible and traveling
torus, cfr. (5.4).

We introduce the diffeomorphism Gδ : pϕ, y, wq Ñ pθ, I, wq of the
phase space Tν ˆ Rν ˆ H=

S`,Σ,

(5.39)

¨

˝

θ
I
w

˛

‚:“ Gδ

¨

˝

ϕ
y
w

˛

‚:“

˜

θ0pϕq

Iδpϕq`rBϕθ0pϕqs
´J

y`rpBθ rw0qpθ0pϕqqs
JJ´1

=
w

w0pϕq`w

¸

where rw0pθq :“ w0pθ´1
0 pθqq. It is proved in Lemma 2 of [6] that Gδ is

symplectic, because the torus iδ is isotropic (Lemma 5.8). In the new co-
ordinates, iδ is the trivial embedded torus pϕ, y, wq “ pϕ, 0, 0q. The dif-
feomorphismGδ in (5.39) is reversibility and momentum preserving, in the
sense that (Lemma 6.3 in [7]) S⃗ ˝Gδ “ Gδ ˝ S⃗, τ⃗ς ˝Gδ “ Gδ ˝ τ⃗ς for any
ς P R, where S⃗ and τ⃗ς are defined respectively in (2.22), (2.23). Under the
symplectic diffeomorphism Gδ, the Hamiltonian vector field XHα changes
into XKα “ pDGδq

´1XHα ˝ Gδ, where Kα :“ Hα ˝ Gδ is reversible
and momentum preserving. The Taylor expansion of Kα at the trivial torus
pϕ, 0, 0q is

Kαpϕ, y, wq“K00pϕ, αq`K10pϕ, αq¨y ` pK01pϕ, αq, wqL2 ` 1
2K20pϕqy ¨y

` pK11pϕqy, wqL2 ` 1
2pK02pϕqw, wqL2 `Kě3pϕ, y, wq ,

where Kě3 collects all terms at least cubic in py, wq. Here K02 is a self-
adjoint operator on H=

S`,Σ.



TRAVELING QUASI-PERIODIC WATER WAVES 39

The key step concerns the construction of an “almost approximate" in-
verse of

(5.40) Lω :“ Π=
S`,Σ pω ¨ Bφ ´ JK02pφqq |H=

S`,Σ

is "almost invertible" (on traveling waves) up to remainders of sizeOpN´a
n´1q,

where, for n P N0

(5.41) Nn :“ Kp
n , Kn :“ Kχn

0 , χ “ 3{2 .

The pKnqně0 is the scale used in the nonlinear Nash-Moser iteration at the
end of Section 7 and pNnqně0 is the one in the almost-straightening Lemma
6.3 and in the almost-diagonalization Theorem 7.1. Let Hs

=pTν`1q :“

HspTν`1q X H=
S`,Σ.

(AI) Almost invertibility of Lω: There exist positive real numbers σ,
µpbq, a, p, K0 and a subset Λo Ă DCpυ, τq ˆ rγ1, γ2s such that, for all
pω, γq P Λo, the operator Lω may be decomposed as

(5.42) Lω “ Lă
ω ` Rω ` RK

ω ,

where, for any traveling wave function g P Hs`σ
=

pTν`1,R2q and for any
pω, γq P Λo, there is a traveling wave solution h P Hs

=pTν`1,R2q of
Lă
ωh “ g satisfying, for all s0 ď s ď S ´ µpbq ´ σ,

›

›pLă
ω q´1g

›

›

k0,υ

s
ÀS

υ´1
`

}g}
k0,υ
s`σ ` }g}

k0,υ
s0`σ }I0}

k0,υ
s`µpbq`σ

˘

. In addition, if g is anti-reversible,
then h is reversible. Moreover, for any s0 ď s ď S ´ µpbq ´ σ, for any
traveling wave h P H=

S`,Σ and for any b ą 0, the operators Rω,RK
ω satisfy

the estimates

}Rωh}
k0,υ
s ÀS ευ

´3N´a
n´1

`

}h}
k0,υ
s`σ ` }h}

k0,υ
s0`σ }I0}

k0,υ
s`µpbq`σ

˘

,
›

›RK
ωh

›

›

k0,υ

s0
ÀS K

´b
n

`

}h}
k0,υ
s0`b`σ ` }h}

k0,υ
s0`σ }I0}

k0,υ
s0`µpbq`σ`b

˘

,
›

›RK
ωh

›

›

k0,υ

s
ÀS }h}

k0,υ
s`σ ` }h}

k0,υ
s0`σ }I0}

k0,υ
s`µpbq`σ .

The goal of Sections 6 and 7 is the proof of the above assumption (AI), see
Theorem 7.6. By (AI), arguing as in Proposition 6.5 and Theorem 6.6 in
[7], we deduce the following.

Theorem 5.9. (Almost approximate inverse) Assume (AI). There is σ :“
σpτ, ν, k0q ą 0 such that, if (5.36) holds with µ “ µpbq ` σ, there exists
an operator T0, defined for all pω, γq P Λo, that is an almost approximate
right inverse of di,αFpi0q, namely

di,αFpi0q ˝ T0 ´ Id “ Ppi0q ` Pωpi0q ` PK
ω pi0q.
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More precisely, for any anti-reversible traveling wave variation g :“ pg1, g2, g3q,
for all s0 ď s ď S ´ µpbq ´ σ,

}T0g}k0,υs ÀS υ
´1
`

}g}
k0,υ
s`σ ` }I0}

k0,υ
s`µpbq`σ}g}

k0,υ
s0`σ

˘

,

and, for any b ą 0, the following estimates hold:

}Pg}
k0,υ
s ÀS υ

´1
´

}Fpi0, α0q}
k0,υ
s0`σ}g}

k0,υ
s`σ

`
`

}Fpi0, α0q}
k0,υ
s`σ ` }Fpi0, α0q}

k0,υ
s0`σ}I0}

k0,υ
s`µpbq`σ

˘

}g}
k0,υ
s0`σ

¯

,
(5.43)

}Pωg}
k0,υ
s ÀS ευ

´4N´a
n´1

`

}g}
k0,υ
s`σ ` }I0}

k0,υ
s`µpbq`σ}g}

k0,υ
s0`σ

˘

,(5.44)

}PK
ω g}

k0,υ
s0 ÀS,b υ

´1K´b
n

´

}g}
k0,υ
s0`σ`b ` }I0}

k0,υ
s0`µpbq`b`σ}g}

k0,υ
s0`σ

¯

,(5.45)

}PK
ω g}

k0,υ
s ÀS υ

´1
`

}g}
k0,υ
s`σ ` }I0}

k0,υ
s`µpbq`σ}g}

k0,υ
s0`σ

˘

.(5.46)

6 The linearized operator in the normal subspace

The Hamiltonian operator Lω defined in (5.40) has the form (cfr. Lemma
7.1 in [7])

(6.1) Lω “ Π=
S`,ΣpL ´ εJRq|H=

S`,Σ
.

Here, L is the Hamiltonian operator L :“ ω ¨ Bφ´JBu∇uHpTδpφqq, where
H is the water waves Hamiltonian in the Wahlén variables defined in (2.4),
evaluated at the reversible traveling wave

(6.2)
Tδpϕq :“ εApiδpϕqq “ εA pθ0pϕq, Iδpϕq, w0pϕqq

“ εv⊺ pθ0pϕq, Iδpϕqq ` εw0pϕq ,

the torus iδpφq :“ pθ0pφq, Iδpφq, w0pφqq is defined in Lemma 5.8 and
Apθ, I, wq, v⊺pθ, Iq in (2.21), whereas Rpϕq has the ‘finite rank" form

(6.3) Rpϕqrhs “
ÿν

j“1
ph, gjqL2 χj , @h P H=

S`,Σ ,

for functions gj , χj P H=
S`,Σ satisfying, for some σ :“ σpτ, ν, k0q ą 0, any

j “ 1, . . . , ν, for all s ě s0,

(6.4)
}gj}

k0,υ
s ` }χj}

k0,υ
s Às 1 ` }Iδ}

k0,υ
s`σ ,

}digjrpıs}s ` }diχjrpıs}s Às }pı}s`σ ` }pı}s0`σ }Iδ}s`σ .

In order to compute L we use the "shape derivative" formula, see e.g. [25],
G1pηqrpηsψ “ ´GpηqpBpηq ´ BxpV pηq, where

(6.5) Bpη, ψq :“
Gpηqψ ` ηxψx

1 ` η2x
, V pη, ψq :“ ψx ´Bpη, ψqηx .
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Then, recalling (2.4), (2.3), (1.2) the operator L is given by

L “ ω ¨ Bφ `

ˆ

Bx rV `GpηqB ´Gpηq

g `B rVx `BGpηqB rV Bx ´BGpηq

˙

(6.6)

`
γ

2

ˆ

´GpηqB´1
x 0

B´1
x GpηqB ´BGpηqB´1

x ´
γ
2B´1
x GpηqB´1

x ´B´1
x Gpηq

˙

,

where

(6.7) rV :“ V ´ γη ,

and the functions B :“ Bpη, ψq, V :“ V pη, ψq in (6.6)-(6.7) are evaluated
at the reversible traveling wave pη, ψq :“ WTδpφq where Tδpφq is defined
in (6.2).
Notation. In (6.6) and hereafter the function B is identified with the mul-
tiplication operators h ÞÑ Bh. If there is no parenthesis, composition of
operators is understood, for example BGpηqB means B ˝Gpηq ˝B.

We consider the operator L in (6.6) acting on (a dense subspace of) the
whole L2pTq ˆ L2pTq. In particular we extend the operator B´1

x to act on
the whole L2pTq as in (3.12).

By the reversible and space-invariance properties of the water waves
equations explained in Section 2 and since pη, ζq “ Tδpφq is a reversible
traveling wave, pevenpφ, xq, oddpφ, xqq, we deduce that (cfr. Lemma 7.3
in [7]) the functionsB, rV defined in (6.5), (6.7) are quasi-periodic traveling
waves, B is oddpφ, xq and rV is evenpφ, xq. The Hamiltonian operator L is
reversible and momentum preserving.

We shall always assume the following ansatz (satisfied by the approx-
imate solutions along the nonlinear Nash-Moser iteration): for some con-
stants µ0 :“ µ0pτ, νq ą 0 (cfr. Lemma 5.8)

(6.8) }I0}
k0,υ
s0`µ0

, }Iδ}
k0,υ
s0`µ0

ď 1 .

It is sufficient to estimate the variation of operators, functions, etc, with
respect to the approximate torus ipφq in a low norm } }s1 for all Sobolev
indexes s1 such that

(6.9) s1 ` σ0 ď s0 ` µ0 , for some σ0 :“ σ0pτ, νq ą 0 .

Thus, by (6.8), we have }I0}
k0,υ
s1`σ0

, }Iδ}
k0,υ
s1`σ0

ď 1. The constants µ0 and σ0
represent the loss of derivatives accumulated along the reduction procedure
of the next sections. They are independent of the Sobolev index s. In
the next sections µ0 :“ µ0pτ, ν,M,αq ą 0 will depend also on indexes
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M,α, whose maximal values will be fixed depending only on τ and ν. In
particular M is fixed in (7.2), whereas the maximal value of α depends on
M , as explained in Remark 6.10.

As a consequence of Lemma 3.2 and (5.37), the Sobolev norm of the
function u “ Tδpφq defined in (6.2) satisfies }u}

k0,υ
s “ }η}

k0,υ
s ` }ζ}

k0,υ
s ď

εCpsq
`

1 ` }I0}
k0,υ
s

˘

for all s ě s0. Similarly, using (5.38), }∆12u}s1 Às1

ε }i2 ´ i1}s1 where ∆12u :“ upi2q ´ upi1q.
In Sections 6.1-6.6 we make several transformations to conjugate the

operator L in (6.6) to a constant coefficients Fourier multiplier, up to a
pseudo-differential operator of order ´1{2 and a remainder that satisfies
tame estimates, see L8 in (6.113). In Section 6.7 we shall conjugate the
operator Lω in (6.1).

6.1 Linearized good unknown of Alinhac
The first step is to conjugate the linear operator L in (6.6) by the sym-

plectic (Definition 3.13) multiplication matrix operator Z :“
`

Id 0
B Id

˘

. Since
Z´1 “

`

Id 0
´B Id

˘

we obtain

(6.10) L1 :“Z´1LZ “ ω ¨ Bφ`

˜

Bx
rV ´Gpηq

a rV Bx

¸

´
γ

2

ˆ

GpηqB
´1
x 0

γ
2

B
´1
x GpηqB

´1
x B

´1
x Gpηq

˙

,

where a is the function

(6.11) a :“ g ` rV Bx ` ω ¨ BφB .

As in [25] and [9, 2], the matrix Z amounts to a linear version of the “good
unknown of Alinhac".

Lemma 6.1. The maps Z˘1 ´ Id are Dk0-tame with tame constants sat-
isfying, for some σ :“ σpτ, ν, k0q ą 0, for all s ě s0, MZ˘1´Idpsq,
MpZ˘1´Idq˚psq Às ε

`

1 ` }I0}
k0,υ
s`σ

˘

. The function a in (6.11) is a quasi-
periodic traveling wave evenpφ, xq. There is σ :“ σpτ, ν, k0q ą 0 such
that, for all s ě s0,

(6.12) }a´ g}
k0,υ
s ` }rV }k0,υs ` }B}

k0,υ
s Às ε

`

1 ` }I0}
k0,υ
s`σ

˘

.

Moreover, for any s1 as in (6.9),

}∆12a}s1 ` }∆12
rV }s1 ` }∆12B}s1 Às1 ε }i1 ´ i2}s1`σ ,(6.13)

}∆12pZ˘1qh}s1 , }∆12pZ˘1q˚h}s1 Às1 ε }i1 ´ i2}s1`σ }h}s1 .(6.14)

The operator L1 is Hamiltonian, reversible and momentum preserving.
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Proof. The estimates for B, rV , a follow by their expressions in (6.5), (6.7),
(6.11), Lemma 3.2, (3.3) and the bounds for the Dirichlet-Neumann op-
erator in Lemma 3.10 in [7]. Since B is a quasi-periodic traveling wave,
oddpφ, xq, Z is reversibility and momentum preserving (Definitions 3.14
and 3.16). □

6.2 Almost-straightening of the first order transport operator
We now write the operator L1 in (6.10) as

(6.15) L1 “ω ¨ Bφ`

˜

Bx
rV 0

0 rV Bx

¸

`

ˆ

´
γ
2
Gp0qB

´1
x ´Gp0q

a´
`

γ
2

˘2
B

´1
x Gp0qB

´1
x ´

γ
2

B
´1
x Gp0q

˙

`R1,

where, by the decomposition of the Dirichlet-Neumann operator in Lemma
3.10 in [7],

(6.16) R1 :“ ´

ˆ γ
2RGpηqB´1

x RGpηq
`

γ
2

˘2
B´1
x RGpηqB´1

x
γ
2B´1
x RGpηq

˙

is a small remainder in OPS´8. The aim of this section is to conjugate
the variable coefficients quasi-periodic transport operator LTR :“ ω ¨ Bφ `
´

Bx rV 0

0 rV Bx

¯

to a constant coefficients transport operator ω ¨ Bφ ` m1,n By, up
to an exponentially small remainder, see (6.23)-(6.24), where n P N0 and

(6.17) Nn :“ Nχn

0 , N0 ą 1 , χ “ 3{2 , N´1 :“ 1 .

Such small remainder is left because we assume only finitely many non-
resonance conditions, see (6.22). In the next lemma we conjugate LTR by
a symplectic (Definition 3.13) transformation

(6.18) E :“

ˆ

p1 ` βxpφ, xqq ˝ B 0
0 B

˙

,

where the composition operator

(6.19) pBuqpφ, xq :“ u pφ, x` βpφ, xqq

is induced by a φ-dependent diffeomorphism y “ x ` βpφ, xq of the torus
Tx, for some small quasi-periodic traveling wave β : Tνφ ˆ Tx Ñ R,
oddpφ, xq.

Remark 6.2. We denote By the derivative operator in the new variable
y “ x` βpφ, xq, see Lemmata 6.3 and 6.5, and Appendix A. For simplicity
of notation, at the beginning of Section 6.3, the variable y is relabelled back
with x.
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Let

(6.20) b :“ ras ` 2 P N , a :“ 3pτ1 ` 1q ě 1 , τ1 :“ k0 ` pk0 ` 1qτ .

Lemma 6.3. (Almost-Straightening of the transport operator) There ex-
ists τ2pτ, νq ą τ1pτ, νq ` 1 ` a such that, for all S ą s0 ` k0, there are
N0 :“ N0pS, bq P N and δ :“ δpS, bq P p0, 1q such that, if N τ2

0 ευ
´1 ă δ

the following holds true. For any n P N0:
1. There exist a constant m1,n :“ m1,npω, γq P R, where m1,0 “ 0, de-
fined for any pω, γq P Rν ˆ rγ1, γ2s, and a quasi-periodic traveling wave
βpφ, xq :“ βnpφ, xq, oddpφ, xq, satisfying, for some σ “ σpτ, ν, k0q ą 0,
the estimates

(6.21) |m1,n|k0,υ À ε , }β}k0,υs ÀS ευ
´1p1` }I0}

k0,υ
s`σ`bq , @ s0 ď s ď S ,

independently of n;
2. For any pω, γq in TCn`1p2υ, τq :“ TCn`1pm1,n, 2υ, τq defined as
(6.22)

TCn`1p2υ, τq :“
!

pω, γq P Rν
r̂γ1, γ2s : |pω ´ m1,nȷ⃗q ¨ ℓ| ě

2υ

xℓyτ
,@ 0 ă |ℓ| ď Nn

)

the operator LTR “ ω ¨ Bφ `

´

Bx rV 0

0 rV Bx

¯

is conjugated to

(6.23) E´1LTRE “ ω ¨ Bφ ` m1,n By ` PK
2 , PK

2 :“

ˆ

Bypn 0
0 pnBy

˙

,

and the real quasi-periodic traveling wave function pnpφ, yq, evenpφ, yq,
satisfies, for some σ“σpτ, ν, k0q, σ ą 0, and for any s0 ď s ď S,

(6.24) }pn}k0,υs Às,b εN
´a
n´1p1 ` }I0}

k0,υ
s`σ`bq ;

3. The operators E˘ are Dk0-pk0`1q-tame, the operators E˘1´Id, pE˘1´

Idq˚ are Dk0-pk0 ` 2q-tame with tame constants satisfying, for some σ :“
σpτ, ν, k0q ą 0 and for all s0 ď s ď S ´ σ,
(6.25)
ME˘1psqÀS 1 ` }I0}

k0,υ
s`σ , ME˘1´Idpsq` M

pE˘1´Idq
˚ psqÀS ευ

´1
p1 ` }I0}

k0,υ
s`σ`bq .

4. Furthermore, for any s1 as in (6.9),

|∆12m1,n| À ε }i1 ´ i2}s1`σ , }∆12β}s1 Às1 ευ
´1

}i1 ´ i2}s1`σ`b ,(6.26)
}∆12pAqh}s1 Às1 ευ

´1
}i1 ´ i2}s1`σ`b }h}s1`σ`b , A P tE˘1, pE˘1

q
˚

u .(6.27)

Proof. We apply Theorem A.2 and Corollary A.4 to the transport opera-
tor X0 “ ω ¨ Bφ ` rV Bx, which has the form (A.1) with p0 “ rV . By
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(6.12) and (6.8), the smallness condition (A.3) holds for N τ2
0 ευ

´1 suffi-
ciently small. Therefore there exist a constant m1,n P R and a quasi-periodic
traveling wave βpφ, xq :“ βnpφ, xq, oddpφ, xq, such that, for any pω, γq in
TCn`1p2υ, τq Ď Λ

υ,T
n`1 Ď Λ

υ,T
n (see Corollary A.3) we have B´1

n pω ¨ Bφ `

rV BxqBn “ ω ¨ Bφ ` pm1,n ` pnpφ, yqqBy where the function pn satisfies
(6.24) by (A.5) and (6.12). The estimates (A.6), (A.12), (6.12) imply (6.21),
(6.25). The conjugated operator E´1LTRE “ ω ¨ Bφ `

´

A1 0
0 pm1,n`pnqBy

¯

,

where ω ¨ Bφ `A1 “ B´1p1`βxq´1
`

ω ¨ Bφ ` Bx rV
˘

p1`βxqB. Since LTR

is Hamiltonian (Definition 3.13), and the map E is symplectic, E´1LTRE is
Hamiltonian as well. In particularA1 “ ´ppm1,n`pnqByq˚ “ m1,nBy`Bypn.
This proves (6.23). The estimates (6.26)-(6.27) follow by (A.10)-(A.11),
the bound for }∆12βn}s1 in Corollary A.4 and (6.13)-(6.14). □

The next lemma is used to prove the inclusion of the Cantor sets associated
to two approximate solutions.

Lemma 6.4. Let i1, i2 be close enough and 0 ă 2υ ´ ρ ă 2υ ă 1. Then

εCps1qN τ`1
n }i1´i2}s1`σďρ ñ TCn`1p2υ, τqpi1qĎTCn`1p2υ´ρ, τqpi2q .

Proof. For any pω, γq P TCn`1p2υ, τqpi1q, using also (6.26), we have, for
any ℓ P Zνzt0u, |ℓ| ď Nn,

|pω ´ m1,npi2qȷ⃗q ¨ ℓ| ě |pω ´ m1,npi1qȷ⃗q ¨ ℓ| ´ C|∆12m1,n||ℓ|

ě
2υ

xℓyτ
´ Cps1qεNn}i1 ´ i2}s1`σ ě

2υ ´ ρ

xℓyτ
.

We conclude that pω, γq P TCn`1p2υ ´ ρ, τqpi2q. □

We now conjugate the whole operator L1 in (6.15)-(6.16) by the opera-
tor E in (6.18). We first compute the conjugation of the matrix

E´1

ˆ

´
γ
2Gp0qB´1

x ´Gp0q

a´
`

γ
2

˘2
B´1
x Gp0qB´1

x ´
γ
2B´1
x Gp0q

˙

E

“

ˆ

´
γ
2B

´1p1 ` βxq´1Gp0qB´1
x p1 ` βxqB ´B´1p1 ` βxq´1Gp0qB

B´1
`

a´
`

γ
2

˘2
B´1
x Gp0qB´1

x

˘

p1 ` βxqB ´
γ
2B

´1B´1
x Gp0qB

˙

.

The multiplication operator for apφ, xq is transformed into the multiplica-
tion operator for the function

(6.28) B´1ap1 ` βxqB “ B´1
`

ap1 ` βxq
˘

.
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We write the Dirichlet-Neumann operator Gp0q in (1.4) as

(6.29) Gp0q “ Gp0, hq “ BxHT phq ,

where H is the Hilbert transform defined in (3.11) and

(6.30) T phq :“

$

’

&

’

%

tanhph|D|q “ Id ` Opprhq if h ă `8 ,

rhpξq :“ ´ 2
1`e2h|ξ|χpξq P S´8 ,

Id if h “ 8 .

We have the conjugation formula (see formula (7.42) in [2])

(6.31) B´1Gp0qB “
␣

B´1p1 ` βxq
(

Gp0q ` R1 ,

where
R1 :“

␣

B´1
p1 ` βxq

(

By

`

H
`

B´1OpprhqB ´ Opprhq
˘

`
`

B´1HB ´ H
˘

pB´1T phqBq
˘

.

The operator R1 is in OPS´8 because both B´1OpprhqB ´ Opprhq and
B´1HB ´ H are in OPS´8 and there is σ ą 0 such that, for any m P N,
α P N0 and s ě s0,

(6.32)
}B´1HB ´ H}

k0,υ
´m,s,α Àm,s,α,k0 }β}

k0,υ
s`m`α`σ ,

}B´1OpprhqB ´ Opprhq}
k0,υ
´m,s,α Àm,s,α,k0 }β}

k0,υ
s`m`α`σ .

The first estimate is given in Lemmata 2.36 and 2.32 in [9], whereas the
second one follows because rh P S´8 (see (6.30)), Lemma 2.18 in [2] and
Lemmata 2.34, 2.32 in [9]. Therefore by (6.31) we obtain

(6.33) B´1
p1 ` βxq

´1Gp0qB “ tB´1
p1 ` βxq

´1
uB´1Gp0qB “ Gp0q ` RB ,

where

(6.34) RB :“ tB´1p1 ` βxq´1uR1 .

Next we transform Gp0qB´1
x . By (6.29) and using the identities HBxB´1

x “

H and HT phq “ B´1
y Gp0q on the periodic functions, we have that

(6.35)
B´1p1 ` βxq´1Gp0qB´1

x p1 ` βxqB “ Gp0qB´1
y ` RA

B´1B´1
x Gp0qB “ B´1

y Gp0q ` RD ,

where

RD “ pB´1HB ´ HqpB´1T phqBq ` H
`

B´1OpprhqB ´ Opprhq
˘

,

RA “ tB´1p1 ` βxq´1u
“

HT phq, tB´1p1 ` βxqu ´ 1
‰

(6.36)

`tB´1p1 ` βxq´1uRDtB´1p1 ` βxqu .
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The operator RD is in OPS´8 by (6.32), (6.30). Also RA is in OPS´8

using that, by Lemma 2.35 of [9] and (6.30), there is σ ą 0 such that, for
any m P N, s ě s0, and α P N0,

(6.37) }rHT phq,ras}
k0,υ
´m,s,α Àm,s,α,k0 }ra}

k0,υ
s`m`α`σ .

Finally we conjugate B´1
x Gp0qB´1

x . By the Egorov Proposition 3.9 in [7] to
B´1
x , for any N P N, we have

(6.38) B´1
B

´1
x p1 ` βxqB“B´1

B
´1
x B tB´1

p1 ` βxqu“B
´1
y `P

p1q

´2,N pφ, x,Dq`RN ,

where P p1q

´2,N pφ, x,Dq P OPS´2 is given by

P
p1q

´2,N pφ, x,Dq :“
“

tB´1
p1 ` βxq

´1
u, B´1

y

‰

tB´1
p1 ` βxqu

`

N
ÿ

j“1

p´1´jB
´1´j
y tB´1

p1 ` βxqu

for some functions p´1´jpλ;φ, yq, j “ 0, . . . , N , and a regularizing oper-
ator RN satisfying the estimates (3.30)-(3.31) of Proposition 3.9 in [7]. By
(6.35), (6.38), we obtain

(6.39) B´1B´1
x Gp0qB´1

x p1 ` βxqB “ B´1
y Gp0qB´1

y ` P
p2q

´2,N ` R2,N

where

P
p2q

´2,N :“ B´1
y Gp0qP

p1q

´2,N pφ, x,Dq P OPS´2(6.40)

R2,N :“ RDpB´1B´1
x p1 ` βxqBq `Gp0qB´1

y RN .(6.41)

In conclusion, by Lemma 6.3, (6.28), (6.33), (6.35) and (6.39) we obtain
the following lemma, which summarizes the main result of this section.

Lemma 6.5. LetN P N. For any n P N0 and for all pω, γq P TCn`1p2υ, τq,
the operator L1 in (6.15) is conjugated to the real, Hamiltonian, reversible
and momentum preserving operator

L2 :“ E´1L1E

“ ω ¨ Bφ ` m1,nBy `

ˆ

´
γ
2Gp0qB´1

y ´Gp0q

a1 ´
`

γ
2

˘2
B´1
y Gp0qB´1

y ´
γ
2B´1
y Gp0q

˙

(6.42)

`

´

0 0

´p γ
2 q

2
P

p2q

´2,N 0

¯

` RΨ
2 ` T2,N ` PK

2 ,

defined for any pω, γq P Rν ˆ rγ1, γ2s, where:
1. The constant m1,n “ m1,npω, γq P R satisfies |m1,n|k0,υ À ε, indepen-
dently on n;
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2. The real quasi-periodic traveling wave a1 :“ B´1
`

ap1`βxq
˘

, evenpφ, xq,
satisfies, for some σ :“ σpk0, τ, νq ą 0 and for all s0 ď s ď S ´ σ,

(6.43) }a1 ´ g}k0,υs Às ευ
´1p1 ` }I0}

k0,υ
s`σq ;

3. The operator P p2q

´2,N is a pseudodifferential operator in OPS´2, re-
versibility and momentum preserving, and, for some σN :“σN pτ, ν,Nqą0,
for finitely many 0 ď α ď αpMq (fixed in Remark 6.10) and for all
s0 ď s ď S ´ σN ´ α, satisfies

(6.44) }P
p2q

´2,N}
k0,υ
´2,s,α Às,N,α ευ

´1p1 ` }I0}
k0,υ
s`σN`αq ;

4. For any q P Nν0 with |q| ď q0, n1, n2 P N0 with n1 ` n2 ď N ´ pk0 `

q0q`2, the operator xDyn1B
q
φpRΨ

2 pφq`T2,N pφqqxDyn2 is Dk0-tame with
tame constant satisfying, for some σN pq0q “ σN pq0, k0, τ, νq ą 0, for any
s0 ď s ď S ´ σN pq0q,

(6.45) MxDyn1B
q
φpRΨ

2 pφq`T2,N pφqqxDyn2psqÀS,N,q0 ευ
´1
`

1̀ }I0}
k0,υ
s`σN pq0q

˘

;

5. The operator PK
2 is defined in (6.23) and the function pn satisfies (6.24);

6. Furthermore, for any s1 as in (6.9), finitely many 0 ď α ď αpMq,
q P Nν0 , with |q| ď q0, and n1, n2 P N0, with n1 ` n2 ď N ´ q0 ` 1,

|∆12m1,n| Às1 ε }i1 ´ i2}s1`σ , }∆12a1}s1 À ευ´1
}i1 ´ i2}s1`σ ,(6.46)

}∆12P
p2q

´2,N}´2,s1,α Às1,N,α ευ
´1

}i1 ´ i2}s1`σN `α ,

}xDy
n1B

q
φ∆12pRΨ

2 `T2,N qxDy
n2}LpHs1 q Às1,N,q0 ευ

´1
}i1´i2}s1̀ σN pq0q

.(6.47)

Proof. Item 1 follows by Lemma 6.3. The function a1 satisfies (6.43) by
(6.11), (3.3), (6.12), (6.25), (6.21). The estimate (6.44) follows by (6.40),
Lemmata 3.6, 6.3 and Lemma 3.8, Propositions 3.9 in [7]. The operators
RΨ

2 , T2,N in (6.42) are RΨ
2 :“ ´

´ γ
2
RA RB

0 γ
2
RD

¯

` E´1R1E , T2,N :“

´
`

γ
2

˘2 ` 0 0
R2,N 0

˘

where RB , RA, RD, are defined in (6.34), (6.36), and
R1, R2,N in (6.16), (6.41). Thus the estimate (6.45) holds by Lemmata 3.9,
3.10, 6.3, 3.3, (6.32), (6.37), Lemma (6.21), Proposition 3.9 in [7], Lemma
3.10 in [7] and Lemmata 2.34, 2.32 in [9]. The estimates (6.46)-(6.47) are
proved similarly. □

6.3 Symmetrization of the order 1{2

The goal of this section is to symmetrize the order 1{2 of the quasi-
periodic Hamiltonian operator L2 in (6.42). From now on, we neglect the
contribution of the operator PK

2 , which will be conjugated in Section 6.7.
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For simplicity of notation we denote such operator L2 as well.
Step 1: We first conjugate the operator L2 in (6.42), where we relabel
the space variable y ù x, by the real, symplectic, reversibility preserv-
ing and momentum preserving transformations ĂM :“

`

Λ 0
0 Λ´1

˘

, ĂM´1 :“
`

Λ´1 0
0 Λ

˘

, where Λ P OPS
1
4 is the Fourier multiplier

(6.48) Λ :“ 1?
gπ0 `MpDq , Λ´1 :“

?
gπ0 `MpDq´1 P OPS´ 1

4 ,

with π0 defined in (3.13) and (cfr. (2.9))

(6.49) MpDq :“ Gp0q
1
4

`

g ´ p
γ
2 q2B´1

x Gp0qB´1
x

˘´ 1
4 P OPS

1
4 .

We have the identities Λ´1Gp0qΛ´1 “ ωpγ,Dq and

(6.50) Λ
`

g´
`

γ
2

˘2
B´1
x Gp0qB´1

x

˘

Λ “ Λ´1Gp0qΛ´1`π0 “ ωpγ,Dq`π0 ,

where ωpγ,Dq P OPS
1
2 is defined in (2.11). By (6.42) we compute

(6.51)

L3 :“ ĂM´1L2
ĂM

“ ω ¨ Bφ ` m1,nBx `

ˆ

´
γ
2
Gp0qB

´1
x ´Λ´1Gp0qΛ´1

Λ
`

a1 ´ p
γ
2

q
2
B

´1
x Gp0qB

´1
x

˘

Λ ´
γ
2
Gp0qB

´1
x

˙

`

´

0 0

´p
γ
2

q2ΛP
p2q

´2,N
Λ 0

¯

` ĂM´1RΨ
2
ĂM ` ĂM´1T2,N

ĂM .

By (6.50), (6.48) and (6.49), we get

Λ
`

a1 ´ p
γ
2 q2B´1

x Gp0qB´1
x

˘

Λ “ ωpγ,Dq ` pa1 ´ gqΛ2 ` rΛ, a1sΛ ` π0

“ a22ωpγ,Dq `
a1´g
g p

γ
2 q2MpDq2B´1

x Gp0qB´1
x `rΛ, a1sΛ ` π0 `

a1´g
g π0

where a2 is the real quasi-periodic traveling wave function (with a1 defined
in Lemma 6.5)

(6.52) a2 :“
b

a1
g “

b

1 `
a1´g
g , evenpφ, xq .

Therefore, by (6.51), (6.50) and the above computation we obtain

L3 “ ω ¨ Bφ ` m1,nBx `

ˆ

´
γ
2Gp0qB´1

x ´ωpγ,Dq

a2ωpγ,Dqa2 ´
γ
2B´1
x Gp0q

˙

`

ˆ

0 0
π0 0

˙

`

ˆ

0 0
C3 0

˙

` RΨ
3 ` T3,N ,(6.53)

where

(6.54)
C3 :“ a2ra2, ωpγ,Dqs `

a1´g
g p

γ
2 q2MpDq2B´1

x Gp0qB´1
x

` rΛ, a1sΛ ´ p
γ
2 q2ΛP

p2q

´2,NΛ
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is in OPS´ 1
2 and

(6.55) RΨ
3 :“ ĂM´1RΨ

2
ĂM`

ˆ

0 0
pa1g ´ 1qπ0 0

˙

, T3,N :“ ĂM´1T2,N
ĂM .

The operator L3 in (6.53) is Hamiltonian, reversible and momentum pre-
serving.
Step 2: We now conjugate the operator L3 in (6.53) with the symplectic
matrix of multiplication operators Q :“

´

q 0
0 q´1

¯

, Q´1 :“
´

q´1 0
0 q

¯

, where
q is a real function, close to 1, to be determined, see (6.59). We have that

L4 :“ Q´1L3Q “ ω ¨ Bφ ` m1,nBx `

ˆ

A B
C D

˙

` Q´1
pRΨ

3 ` T3,N qQ ,(6.56)

where (see Definition 3.13)

A :“ ´D˚ “ ´
γ
2 q

´1Gp0qB´1
x q ` m1,nq

´1qx ` q´1pω ¨ Bφqq ,(6.57)

B :“ ´q´1ωpγ,Dqq´1 , C :“ qa2ωpγ,Dqa2q ` qπ0q ` qC3q .(6.58)

We choose the function q so that the coefficients of the highest order terms
of the off-diagonal self-adjoint operators B and C satisfy q´1 “ qa2,
namely as the real quasi-periodic traveling wave, evenpφ, xq

(6.59) qpφ, xq :“ a2pφ, xq´ 1
2 .

Thus Q is reversibility and momentum preserving. In view of (6.57)-(6.58)
and (6.59) the operator L4 in (6.56) becomes

(6.60)
L4 “ ω ¨ Bφ ` m1,nBx `

˜

´
γ
2Gp0qB´1

x ´a
1
2
2 ωpγ,Dqa

1
2
2

a
1
2
2 ωpγ,Dqa

1
2
2 ´

γ
2B´1
x Gp0q

¸

`

ˆ

0 0
π0 0

˙

`

ˆ

a3 0
C4 ´a3

˙

` RΨ
4 ` T4,N ,

where a3 is the real quasi-periodic traveling wave function, oddpφ, xq,

a3 :“ m1,nq
´1qx ` q´1pω ¨ Bφqq , C4 :“ qC3q P OPS´ 1

2 ,(6.61)

and RΨ
4 ,T4,N are the smoothing remainders (recall thatGp0qB´1

x “ HT phq)

RΨ
4 :“

´

´
γ
2
q´1rHT phq,q´1s 0

qπ0q´π0 ´
γ
2

rq´1,HT phqsq´1

¯

` Q´1RΨ
3 Q P OPS´8 ,

T4,N :“ Q´1T3,NQ .(6.62)

The operator L4 in (6.60) is Hamiltonian, reversible and momentum pre-
serving.
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Step 3: We finally move in complex coordinates, conjugating the operator
L4 in (6.60) via the transformation C defined in (2.12). The main result of
this section is the following lemma.

Lemma 6.6. Let N P N, q0 P N0. We have that

L5 :“ p ĂMQCq´1L2
ĂMQC “ ω ¨ Bφ ` m1,nBx ` i a2Ωpγ,Dq ` a4H

`iΠ0 ` R
p´ 1

2
,dq

5 ` R
p0,oq

5 ` T5,N ,(6.63)

where:
1. The real quasi-periodic traveling wave a2pφ, xq in (6.52), evenpφ, xq,
satisfies, for some σ “ σpk0, τ, νq ą and for any s0 ď s ď S ´ σ,

(6.64) }a2 ´ 1}k0,υs À ευ´1p1 ` }I0}
k0,υ
s`σq ;

2. Ωpγ,Dq is the matrix of Fourier multipliers (see (2.13), (2.14))

(6.65) Ωpγ,Dq“

´

Ωpγ,Dq 0

0 ´Ωpγ,Dq

¯

, Ωpγ,Dq“ωpγ,Dq̀ i
γ

2
B´1
x Gp0q ;

3. The operator Π0 :“
1
2 p

π0 π0
´π0 ´π0 q;

4. The real quasi-periodic traveling wave a4pφ, xq :“ γ
2 pa2pφ, xq ´ 1q,

evenpφ, xq, satisfies, for some σ :“ σpk0, τ, νq ą 0,

(6.66) }a4}k0,υs Às ευ
´1p1 ` }I0}

k0,υ
s`σq , @s0 ď s ď S ´ σ ;

5. R
p´ 1

2
,dq

5 P OPS´ 1
2 and R

p0,oq

5 P OPS0 are pseudodifferential operators
of the form

R
p´ 1

2
,dq

5 :“

ˆ

r
pdq

5 pφ, x,Dq 0

0 r
pdq

5 pφ, x,Dq

˙

,

R
p0,oq

5 :“

ˆ

0 r
poq

5 pφ, x,Dq

r
poq

5 pφ, x,Dq 0

˙

,

reversibility and momentum preserving and, for some σN :“σpτ, ν,Nqą0,
for finitely many 0 ď α ď αpMq (fixed in Remark 6.10), and for all s0 ď

s ď S ´ σN ´ 3α, satisfies

(6.67) }R
p´ 1

2
,dq

5 }
k0,υ

´ 1
2
,s,α

` }R
p0,oq

5 }
k0,υ
0,s,α Às,N,α ευ

´1p1 ` }I0}
k0,υ
s`σN`3αq ;

6. For any q P Nν0 with |q| ď q0, n1, n2 P N0 with n1 ` n2 ď N ´

pk0 `q0q ` 3
2 , the operator xDyn1B

q
φT5,N pφqxDyn2 is Dk0-tame with tame
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constant satisfying, for some σN pq0q “ σN pq0, k0, τ, νq ą 0 and for any
s0 ď s ď S ´ σN pq0q,

(6.68) MxDyn1B
q
φT5,N pφqxDyn2 psq ÀS,N,q0 ευ

´1
`

1 ` }I0}
k0,υ
s`σN pq0q

˘

;

7. The operators Q˘1, Q˘1 ´ Id, pQ˘1 ´ Idq˚ are Dk0-tame with tame
constants satisfying, for some σ :“σpτ, ν, k0qą0 and for all s0 ďsďS´σ,
(6.69)
MQ˘1psq ÀS 1 ` }I0}

k0,υ
s`σ , MQ˘1´Idpsq ` M

pQ˘1´Idq
˚ psq ÀS ευ

´1
p1 ` }I0}

k0,υ
s`σ q .

8. Furthermore, for any s1 as in (6.9), finitely many 0 ď α ď αpMq,
q P Nν0 , with |q| ď q0, and n1, n2 P N0, with n1 ` n2 ď N ´ q0 ` 1

2 ,

}∆12pAqh}s1 Às1 ευ
´1

}i1 ´ i2}s1`σ }h}s1`σ , A P tQ˘1
“ pQ˘1

q
˚

u ,(6.70)
}∆12a2}s1 Às1 ευ

´1
}i1 ´ i2}s1`σ , }∆12a4}s1 À ευ´1

}i1 ´ i2}s1`σ ,

}∆12R
p´ 1

2
,dq

5 }´ 1
2
,s1,α

` }∆12R
p0,oq

5 }0,s1,α Às1,N,α ευ
´1

}i1 ´ i2}s1`σN `2α ,
›

›xDy
n1B

q
φ∆12T5,N pφqxDy

n2
›

›

LpHs1 q
Às1,N,q0 ευ

´1
}i1 ´ i2}s1`σN pq0q

.(6.71)

The real operator L5 is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of L4 in (6.60) and (3.10) we obtain that L5

has the form (6.63) with r
pdq

5 :“ γ
2 pa2 ´ 1qHpT phq ´ 1q ` i

`

1
2C4 `

a
1
2
2 rωpγ,Dq, a

1
2
2 s
˘

P OPS´ 1
2 , rpoq

5 :“ a3 ` i
2C4 P OPS0 (with C4 given in

(6.61)) and T5,N :“ C´1pRΨ
4 ` T4,N qC. The function q defined in (6.59),

with a2 in (6.52), satisfies, by (6.43) and Lemma 3.2, for all s0 ď s ď S´σ,
}q˘1 ´ 1}

k0,υ
s Às ευ

´1p1 ` }I0}
k0,υ
s`σq. Therefore (6.64) and (6.66) fol-

low by (6.52). The estimate (6.67) follows by the above definitions of rpoq

5

and rpdq

5 , (6.64), (6.59), (6.54), (6.52), (6.43), (6.44), (6.61), (6.48), (2.9),
Lemma 6.5. The estimate (6.68) follows by (6.62), (6.55), (6.37), (6.45),
(6.43) Lemmata 3.9, 3.10. The estimates (6.69) follow by Lemma 3.10.
The estimates (6.70)- (6.71) are proved similarly. □

6.4 Symmetrization up to smoothing remainders
We now transform the operator L5 in (6.63) into the operator L6 in

(6.72) which is block diagonal up to a regularizing remainder. From this
step we do not preserve any further the Hamiltonian structure, but only
the reversible and momentum preserving one (it is sufficient for proving
Theorem 5.1).
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Lemma 6.7. Fix m, N P N, q0 P N0. There exist real, reversibility
and momentum preserving operator matrices tXkumk“1 of the form Xk :“
´

0 χkpφ,x,Dq

χkpφ,x,Dq 0

¯

, with χkpφ, x, ξq P S´ k
2 , such that, conjugating L5

in (6.63) via the map Φm :“ eX1 ˝ ¨ ¨ ¨ ˝ eXm , we obtain the real, reversible
and momentum preserving operator

(6.72)
L6 :“ Lpmq

6 :“ Φ´1
m L5Φm “ ω ¨ Bφ ` m1,nBx ` i a2Ωpγ,Dq

` a4H ` iΠ0 ` R
p´ 1

2
,dq

6 ` R
p´m

2
,oq

6 ` T6,N ,

where:

1. R
p´ 1

2
,dq

6 :“ R
p´ 1

2
,dq

6,m :“

ˆ

r
pdq

6 pφ,x,Dq 0

0 r
pdq

6 pφ,x,Dq

˙

P OPS´ 1
2 is block-

diagonal, R
p´ m

2
,oq

6 is a smoothing off-diagonal remainder

R
p´ m

2
,oq

6 :“ R
p´m

2
,oq

6,m :“

ˆ

0 r
poq

6 pφ,x,Dq

r
poq

6 pφ,x,Dq 0

˙

P OPS´m
2 ,(6.73)

satisfying, for finitely many 0 ď α ď αpmq (fixed in Remark 6.10), for
some σN :“ σN pk0, τ, ν,Nq ą 0, ℵmpαq ą 0 and for all s0 ď s ď

S ´ σN ´ ℵmpαq,

(6.74) }R
p´ 1

2
,dq

6 }
k0,υ

´ 1
2
,s,α

`}R
p´ m

2
,oq

6 }
k0,υ
´ m

2
,s,α

Às,m,N,α ευ
´1

`

1`}I0}
k0,υ
s`σN `ℵmpαq

˘

.

Both R
p´ 1

2
,dq

6 and R
p´m

2
,oq

6 are reversible and momentum preserving;
2. For any q P Nν0 with |q| ď q0, n1, n2 P N0 with n1 ` n2 ď N ´ pk0 `

q0q ` 3
2 , the operator xDyn1B

q
φT6,N pφqxDyn2 is Dk0-tame with a tame

constant satisfying, for some σN pq0q :“ σN pk0, τ, ν, q0q, for any s0 ď s ď

S ´ σN pq0q ´ ℵmp0q,

(6.75) MxDyn1B
q
φT6,N pφqxDyn2 psq ÀS,m,N,q0 ευ

´1
p1 ` }I0}

k0,υ
s`σN pq0q`ℵmp0q

q .

3. The conjugation map Φm satisfies, for all s0 ď s ď S ´ σN ´ ℵmp0q,

(6.76) }Φ˘1
m ´ Id}

k0,υ
0,s,0`}

`

Φ˘1
m ´ Id

˘˚
}
k0,υ
0,s,0 Às,m,N ευ´1

p1`}I0}
k0,υ
s`σN `ℵmp0q

q .

4. Furthermore, for any s1 as in (6.9), finitely many 0 ď α ď αpmq,
q P Nν0 , with |q| ď q0, and n1, n2 P N0, with n1 ` n2 ď N ´ q0 ` 1

2 , we
have

}∆12R
p´ 1

2
,dq

6 }´ 1
2
,s1,α

`}∆12R
p´ m

2
,oq

6 }´ m
2
,s1,α Às1,m,N,α ευ

´1
}i1 ´ i2}s1`σN `ℵmpαq

,



54 M. BERTI, L. FRANZOI, A. MASPERO

}xDy
n1B

q
φ∆12T6,NxDy

n2}LpHs1 q Às1,m,N,q0 ευ
´1

}i1 ´ i2}s1`σN pq0q`ℵmp0q
,

}∆12Φ
˘1
m }0,s1,0 ` }∆12pΦ˘1

m q
˚

}0,s1,0 Às1,m,N ευ´1
}i1 ´ i2}s1`σN `ℵmp0q

.

Proof. The proof is inductive. The operator Lp0q

6 :“ L5 satisfies (6.74)-
(6.75) with ℵ0pαq :“ 3α, by (6.67)-(6.68). Suppose we have done already

m steps obtaining an operator Lpmq

6 as in (6.72) with R
p´ 1

2
,dq

6,m :“ R
p´ 1

2
,dq

6

and R
p´ 1

2
,oq

6,m :“ R
p´m

2
,oq

6 and the remainder Φ´1
m T5,NΦm, instead of T6,N .

We now show how to define Lpm`1q

6 . Let

(6.77) χm`1pφ, x, ξq :“ ´
`

2i a2pφ, xqωpγ, ξq
˘´1

r
poq

6,mpφ, x, ξqχpξq P S´ m
2

´ 1
2 ,

where χ is the cut-off function defined in (3.6) and ωpγ, ξq is the symbol
(cfr. (2.11))

ωpγ, ξq :“

d

Gp0; ξq

´

g `
γ2

4

Gp0; ξq

ξ2

¯

PS
1
2 , Gp0; ξq :“

#

χpξq|ξ| tanhph|ξ|q , h ă `8

χpξq|ξ| , h “ `8 .

Note that χm`1 in (6.77) is well defined because ωpγ, ξq is positive on the
support of χpξq and a2 is close to 1. We conjugate Lpmq

6 in (6.72) by the
flow generated by Xm`1 with χm`1pφ, x, ξq defined in (6.77). By (6.74)
and (6.65), for suitable constants ℵm`1pαq ą ℵmpαq, for finitely many
α P N0 and for any s0 ď s ď S ´ σN ´ ℵm`1pαq,

(6.78) }Xm`1}
k0,υ

´m
2

´ 1
2
,s,α

Às,m,α ευ
´1
`

1 ` }I0}
k0,υ
s`σN`ℵm`1pαq

˘

.

Therefore, by Lemmata 3.7, 3.6 and the induction assumption (6.76) for
Φm, the conjugation map Φm`1 :“ Φme

Xm`1 is well defined and satisfies
estimate (6.76) with m` 1. By the Lie expansion (see (3.16)-(3.17) in [7]),
we have that Lpm`1q

6 :“ e´Xm`1 Lpmq

6 eXm`1 is equal to

Lpm`1q

6 “ ω ¨ Bφ ` m1,nBx ` ia2Ωpγ,Dq ` iΠ0 ` a4H ` R
p´ 1

2
,dq

6,m
(6.79)

´
“

Xm`1, m1,nBx ` i a2Ωpγ,Dq
‰

` R
p´ m

2
,oq

6,m ` Φ´1
m`1T5,NΦm`1

´

ż 1

0

e´τXm`1
“

Xm`1 , ω ¨ Bφ ` iΠ0 ` a4H ` R
p´ 1

2
,dq

6,m

‰

eτXm`1dτ(6.80)

´

ż 1

0

e´τXm`1
“

Xm`1,R
p´ m

2
,oq

6,m

‰

eτXm`1dτ(6.81)

`

ż 1

0

p1 ´ τqe´τXm`1
“

Xm`1,
“

Xm`1, m1,nBx`i a2Ωpγ,Dq
‰‰

eτXm`1dτ .(6.82)
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In view of (6.65), (6.73) and the form of Xm`1, we have that

´
“

Xm`1, m1,nBx ` i a2Ωpγ,Dq
‰

` R
p´m

2
,oq

6,m “

´

0 Zm`1

Zm`1 0

¯

“: Zm`1 ,

where, denoting for brevity χm`1 :“ χm`1pφ, x, ξq, it results

Zm`1 “ i pOppχm`1qa2 ωpγ,Dq ` a2 ωpγ,DqOppχm`1qq

`
“

Oppχm`1q,´m1,nBx ` a2
γ
2B´1
x Gp0q

‰

` Oppr
poq

6,mq .

By (3.14), (3.16) and χm`1 P S´m
2

´ 1
2 by (6.77), we get

Oppχm`1qa2ωpγ,Dq ` a2ωpγ,DqOppχm`1q “ Op
`

2a2ωpγ, ξqχm`1

˘

` rm`1,

where rm`1 is in OPS´m
2

´1. By (6.77) and (6.83)

Zm`1 “ irm`1 `
“

Oppχm`1q,´m1,nBx ` a2
γ
2

B
´1
x Gp0q

‰

` Oppr
poq

6,mp1 ´ χpξqqq P OPS´ m
2

´ 1
2 .

The remaining operators in (6.80)-(6.82) are in OPS´m`1
2 . Thus the oper-

ator Lpm`1q

6 in (6.79) has the form (6.72) at m ` 1 with

R
p´ 1

2
,dq

6,m`1 `R
p´m`1

2
,oq

6,m`1 :“R
p´ 1

2
,dq

6,m `Zm`1`(6.80)`(6.81)`(6.82)

and a smoothing remainder Φ´1
m`1T5,NΦm`1. By Lemma 3.6, (6.74), (6.78),

(6.66), we have that R
p´ 1

2
,dq

6,m`1 and R
p´m`1

2
,oq

6,m`1 satisfy (6.74) at order m ` 1

for suitable constants ℵm`1pαq ą ℵmpαq. The operator Φ´1
m`1T5,NΦm`1

satisfies (6.75) at order m ` 1 by Lemmata 3.9, 3.10 and (6.68), (6.76).
Item 4 follows similarly. □

So far the operator L6 of Lemma 6.7 depends on the two “regularizing"
indexes m, N . We now fix

(6.83) m :“ 2M , M P N , N “ M .

6.5 Reduction of the order 1/2
The goal of this section is to transform the operator L6 in (6.72) with

m :“ 2M , N “ M (cfr. (6.83)), into the operator L7 in (6.95) whose coef-
ficient in front of Ωpγ,Dq is constant. We write L6 “ ω ¨ Bφ `

´

P6 0
0 P6

¯

`

iΠ0 ` R
p´M,oq

6 ` T6,M , where P6 :“ P6pφ, x,Dq is

(6.84) P6 :“ m1,nBx ` ia2pφ, xqΩpγ,Dq ` a4H ` r
pdq

6 pφ, x,Dq .
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We conjugate L6 through the real operator Φpφq :“
´

Φpφq 0

0 Φpφq

¯

where
Φpφq :“ Φτ pφq|τ“1 is the time 1-flow of the PDE

(6.85) BτΦ
τ pφq “ iApφqΦτ pφq , Φ0pφq “ Id , Apφq :“ bpφ, xq|D|

1
2 ,

and bpφ, xq is a real quasi-periodic traveling wave, oddpφ, xq, chosen later,
see (6.92). Thus ibpφ, xq|D|

1
2 is reversibility and momentum preserving as

well as Φpφq. Moreover Φπ0 “ π0 “ Φ´1π0, which implies Φ´1Π0Φ “

Π0Φ. By the Lie expansion (see e.g. (3.16)-(3.17) in [7]), we have

Φ´1P6Φ “ P6 ´ irA,P6s ´
1

2
rA, rA,P6ss `

ÿ2M`1

n“3

p´iqn

n!
adn

ApφqpP6q ` TM ,

TM :“
p´iq2M`2

p2M ` 1q!

ż 1

0

p1 ´ τq
2M`1Φ´τ

pφq ad2M`2
Apφq pP6qΦτ

pφqdτ ,(6.86)

and

Φ´1
˝ ω ¨ Bφ ˝ Φ “ ω ¨ Bφ ` ipω ¨ BφAq `

1

2
rA,ω ¨ BφAs

´
ÿ2M`1

n“3

p´iqn

n!
adn´1

Apφqpω ¨ BφApφqq ` T 1
M ,(6.87)

T 1
M :“ ´

p´iq2M`2

p2M ` 1q!

ż 1

0

p1 ´ τq
2M`1Φ´τ

pφq ad2M`1
Apφq pω ¨ BφApφqqΦτ

pφqdτ .

Note that ad2M`2
Apφq

pP6q and ad2M`1
Apφq

pω ¨ BφApφqq are in OPS´M . We now
determine the pseudo-differential term of order 1{2 in (6.86)-(6.87). We use
the expansion of the linear dispersion operator Ωpγ,Dq, defined by (4.1),
(1.5), and, since j Ñ cjpγq P S0 (see (4.5)),

(6.88) Ωpγ,Dq “
?
g|D|

1
2 ` i γ2H` r´ 1

2
pγ,Dq , r´ 1

2
pγ,Dq P OPS´ 1

2 ,

where H is the Hilbert transform in (3.11). By (6.84), that A “ b|D|
1
2 ,

(3.15), (6.88) we get

rA,P6s “
“

b|D|
1
2 , m1,nBx ` i

?
ga2|D|

1
2

` pa4 ´
γ
2a2qH ` r

pdq

6 px,Dq ` i a2r´ 1
2
pγ,Dq

‰

“ ´m1,nbx|D|
1
2 ´ i

?
g
2 pbxa2 ´ pa2qxbqH ` Opprb,´ 1

2
q ,(6.89)

where rb,´ 1
2

P S´ 1
2 is small with b. As a consequence, the contribution at

order 1
2 of the operator iω ¨ BφA ` P6 ´ irA,P6s is i

`

ω ¨ Bφb ` m1,nbx `
?
g a2q|D|

1
2 . We choose bpφ, xq as the solution of

(6.90) pω ¨ Bφ ` m1,nBxqb`
?
gΠNn

a2 “
?
g m 1

2
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where m 1
2

is the average (see (3.2))

(6.91) m 1
2
:“ xa2yφ,x .

We define bpφ, xq to be the real, oddpφ, xq, quasi-periodic traveling wave

(6.92) bpφ, xq :“ ´
?
gpω ¨ Bφ ` m1,nBxq

´1
ext

`

ΠNn
a2pφ, xq ´ m 1

2

˘

recall (3.5). Note that bpφ, xq and m 1
2

are defined for any pω, γq P Rν ˆ

rγ1, γ2s and that, for any pω, γq P TCn`1p2υ, τq defined in (6.22), it solves
(6.90). We deduce by (6.86), (6.87), (6.84), (6.89)-(6.92), that

L7 :“ Φ´1pφq pω ¨ Bφ ` P6qΦpφq

is, for any pω, γq P TCn`1p2υ, τq,

L7 “ ω ¨ Bφ ` m1,nBx ` i m 1
2
Ωpγ,Dq ` a5H

` Oppr
pdq

7 q ` TM ` T 1
M ` i

?
gpΠK

Nn
a2q|D|

1
2 ,

where a5pφ, xq is the real function (using that a4 “
γ
2 pa2 ´ 1q)

(6.93)
a5 :“ γ

2
pm 1

2
´ 1q ´

?
g

2
pbxa2 ´ pa2qxbq

`
m1,n
4

`

bxxb´ b2x
˘

` 1
4

`

bpω ¨ Bφbqx ´ pω ¨ Bφbqbx
˘

,

and

(6.94)

Oppr
pdq

7 q :“ Opp´irb,´ 1
2

` i pa2 ´ m 1
2

qr´ 1
2

pγ,Dq ` r
pdq

6 q

` 1
2

“

b|D|
1
2 , i

?
g

2
pbxa2 ´ pa2qxbqH ´ Opprb,´ 1

2
q
‰

` 1
2
Opprr2pb|ξ|

1
2 , pm1,nbx ` ω ¨ Bφbq|ξ|

1
2 qq `

ÿ2M`1

n“3

p´iqn

n!
adn

ApφqpP6q

´
ÿ2M`1

n“3

p´iqn

n!
adn´1

Apφqpω ¨ BφApφqq P OPS´ 1
2 ,

with rr2p ¨ , ¨ q defined in (3.15). In conclusion we have the following lemma.

Lemma 6.8. Let M P N, q0 P N0. Let bpφ, xq be the quasi-periodic trav-
eling wave function oddpφ, xq in (6.92). Then, for any n P N0, conjugating
L6 in (6.72) via the invertible, real, reversibility and momentum preserving
map Φ (cfr. (6.85)), we obtain, for any pω, γq P TCn`1p2υ, τq, the real,
reversible and momentum preserving operator

(6.95)
L7 :“ Φ´1L6Φ “ ω ¨ Bφ ` m1,n Bx ` i m 1

2
Ωpγ,Dq ` a5H

` iΠ0 ` R
p´ 1

2
,dq

7 ` T7,M ` QK
7 ,

defined for any pω, γq P Rν ˆ rγ1, γ2s, where:
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1. The real constant m 1
2

defined in (6.91) satisfies |m 1
2

´ 1|k0,υ À ευ´1;

2. The real, quasi-periodic traveling wave function a5pφ, xq defined in
(6.93), evenpφ, xq, satisfies, for some σ “ σpτ, ν, k0q ą 0, for all s0 ď

s ď S ´ σ,

}a5}k0,υs Às ευ
´2p1 ` }I0}

k0,υ
s`σq , |xa5yφ,x|k0,υ À ευ´1 ;(6.96)

3. The block-diagonal operator R
p´ 1

2
,dq

7 :“

ˆ

r
pdq
7 pφ,x,Dq 0

0 r
pdq
7 pφ,x,Dq

˙

P OPS´ 1
2 ,

with rpdq

7 pφ, x,Dq defined in (6.94), satisfies for finitely many 0 ď α ď

αpMq (fixed in Remark 6.10), for some σM pαq :“ σM pk0, τ, ν, αq ą 0 and
for all s0 ď s ď S ´ σM pαq,

}R
p´ 1

2
,dq

7 }
k0,υ

´ 1
2
,s,α

Às,M,α ευ
´2p1 ` }I0}

k0,υ
s`σM pαq

q ;(6.97)

4. For any q P Nν0 with |q| ď q0, n1, n2 P N0 with n1 ` n2 ď M ´
3
2pk0 ` q0q ` 3

2 , the operator xDyn1B
q
φT7,M pφqxDyn2 is Dk0-tame with

tame constant satisfying, for some σM pq0q :“σM pk0, τ, ν, q0q, for any s0 ď

s ď S ´ σM pq0q,

(6.98) MxDyn1B
q
φT7,M pφqxDyn2 psq ÀS,M,q0 ευ

´2p1 ` }I0}
k0,υ
s`σM pq0q

q ;

5. The operator QK
7 :“ i

?
gpΠK

Nn
a2q|D|

1
2

`

1 0
0 ´1

˘

where a2pφ, xq is defined
in (6.52) and satisfies (6.64);
6. The operators Φ˘1 ´ Id, pΦ˘1 ´ Idq˚ are Dk0-12pk0 ` 1q-tame, with
tame constants satisfying, for some σ ą 0 and for all s0 ď s ď S ´ σ,

(6.99) MΦ˘1´Idpsq ` MpΦ˘1´Idq˚psq ÀS ευ
´2p1 ` }I0}

k0,υ
s`σq .

7. Furthermore, for any s1 as in (6.9), finitely many 0 ď α ď αpMq,
q P Nν0 , with |q| ď q0, and n1, n2 P N0, with n1 `n2 ď M ´ 3

2q0, we have

}∆12a5}s1 Às1 ευ
´2

}i1 ´ i2}s1`σ , |∆12m 1
2

| À ευ´1
}i1 ´ i2}s0`σ ,(6.100)

}∆12R
p´ 1

2
,dq

7 }´ 1
2
,s1,α

Às1,M,α ευ
´2

}i1 ´ i2}s1`σM pαq
,(6.101)

}xDy
n1B

q
φ∆12T7,MxDy

n2}LpHs1 q Às1,M,q0 ευ
´2

}i1 ´ i2}s1`σM pq0q
,(6.102)

}∆12pAqh}s1 Às1 ευ
´2

}i1 ´ i2}s1`σ }h}s1`σ , A P tΦ˘1, pΦ˘1
q

˚
u .(6.103)

Proof. The estimate |m 1
2

´1|k0,υ À ευ´1 follows by (6.91) and (6.64). The

function bpφ, xq defined in (6.92) satisfies, by (3.7) and (6.64), }b}k0,υs Às

ευ´2p1 ` }I0}
k0,υ
s`σq, for some σ ą 0 and for all s0 ď s ď S ´ σ. Thus,
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the estimate (6.96) is deduced by (6.93), |m 1
2

´1|k0,υ À ευ´1, (6.64), (6.8).
The estimate (6.97) follows by (6.94), (6.84), Lemma 3.6, the estimate for
}b}k0,υs , and (6.74), (6.64), (6.66). The smoothing term T7,M in (6.95) is,
using that Φ´1Π0Φ “ Π0Φ, T7,M :“ Φ´1T6,MΦ ` iΠ0pΦ ´ Idq `

Φ´1R
p´M,oq

6 Φ `

´

TM`T 1
M 0

0 TM`T 1
M

¯

with TM and T 1
M defined in (6.86),

(6.87). The estimate (6.99) follows by Lemma 2.38 in [2] and the estimate
for }b}k0,υs . The estimate (6.98) follows by (6.84), Lemmata 3.9, 3.10, the
tame estimates of Φ in Proposition 2.37 in [2], and (6.66), (6.99), (6.75).
The estimates (6.100), (6.101), (6.102), (6.103) are proved similarly, using
also (3.8). □

6.6 Reduction of the order 0
The goal of this section is to transform the operator L7 in (6.95) into the

operator L8 in (6.113) whose coefficient in front of the Hilbert transform
H is a real constant. From now on, we neglect the contribution of QK

7 in
(6.95) which will be conjugated in Section 6.7. For simplicity of notation
we denote such operator L7 as well. We first write L7 “ ω ¨Bφ`

´

P7 0
0 P7

¯

`

iΠ0 ` T7,M , where

(6.104) P7 :“ m1,nBx ` im 1
2
Ωpγ,Dq ` a5pφ, xqH ` Oppr

pdq

7 q .

We conjugate L7 through the time-1 flow Ψpφq :“ Ψτ pφq|τ“1 generated
by

(6.105) BτΨ
τ pφq “ BpφqΨτ pφq , Ψ0pφq “ Id , Bpφq :“ b1pφ, xqH ,

where b1pφ, xq is a real quasi-periodic traveling wave oddpφ, xq chosen
later (see (6.111)) and H is the Hilbert transform in (3.11). Thus by Lem-
mata 3.15, 3.17 the operator b1pφ, xqH is reversibility and momentum pre-
serving and so is its flow Ψτ pφq. Note that, since Hp1q “ 0, we have
Ψpφqπ0 “ π0 “ Ψ´1pφqπ0. By the Lie expansion (see (3.16)-(3.17) in
[7]), we have

(6.106)
Ψ´1P7Ψ “ P7 ´ rB,P7s `

ÿM

n“2

p´1q
n

n!
adn

BpφqpP7q ` LM ,

LM :“
p´1q

M`1

M !

ż 1

0

p1 ´ τq
MΨ´τ

pφq adM`1
BpφqpP7qΨτ

pφqdτ ,
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and

Ψ´1
˝ ω ¨ Bφ ˝Ψ“ω ¨ Bφ ` pω ¨ BφBpφqq ´

ÿM

n“2

p´1q
n

n!
adn´1

Bpφqpω ¨ BφBpφqq ` L1
M ,

L1
M :“

p´1q
M

M !

ż 1

0

p1 ´ τq
MΨ´τ

pφq adM
Bpφqpω ¨ BφBpφqqΨτ

pφqdτ .(6.107)

The number M will be fixed in (7.2). The contributions at order 0 come
from pω ¨ BφBq ` P7 ´ rB,P7s. Since B “ b1H, by (6.104), (3.15) and
(6.88) we have

(6.108) rB,P7s “ ´m1,npb1qxH ` Opprb1,´ 1
2
q ,

where Opprb1,´ 1
2
q P OPS´ 1

2 is small with b1. As a consequence, the 0

order term of the operator ω ¨ BφB`P7 ´ rB,P7s is
`

ω ¨ Bφb1 `m1,npb1qx`

a5
˘

H. We choose b1 as the solution of

(6.109) pω ¨ Bφb1 ` m1,nBxqb1 ` ΠNn
a5 “ m0

where m0 is the average (see (3.2))

(6.110) m0 :“ xa5yφ,x .

We define b1pφ, xq to be the real, oddpφ, xq, quasi-periodic traveling wave

(6.111) b1pφ, xq :“ ´pω ¨ Bφ ` m1,nBxq
´1
ext

`

ΠNn
a5pφ, xq ´ m0

˘

,

recall (3.5). Note that b1pφ, xq is defined for any pω, γq P Rν ˆ rγ1, γ2s and
that, for any pω, γq P TCn`1p2υ, τq defined in (6.22), it solves (6.109).

We deduce by (6.106)-(6.107) and (6.108), (6.111), that

L8:“Ψ´1pφq
`

ω ¨ Bφ ` P7

˘

Ψpφq

is, for any pω, γq P TCn`1p2υ, τq,

L8 “ω¨Bφ`m1,nBx`i m 1
2
Ωpγ,Dq`m0H`Oppr

pdq

8 q`LM`L1
M`pΠK

Nn
a5qH,

where

(6.112)
Oppr

pdq

8 q :“ Opp´rb1,´ 1
2

` r
pdq

7 q `
ÿM

n“2

p´1q
n

n!
adn

BpφqpP7q

´
ÿM

n“2

p´1q
n

n!
adn´1

Bpφqpω ¨ BφBpφqq P OPS´ 1
2 .

In conclusion we have the following lemma.

Lemma 6.9. Let M P N, q0 P N0. Let b1 be the quasi-periodic traveling
wave defined in (6.111). Then, for any n P N0, conjugating the operator
L7 in (6.95) via the invertible, real, reversibility and momentum preserving
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map Ψpφq (cfr. (6.105)), we obtain, for any pω, γq P TCn`1p2υ, τq, the real,
reversible and momentum preserving operator

(6.113)
L8 :“ Ψ´1L7Ψ “ ω ¨ Bφ ` m1,nBx ` i m 1

2
Ωpγ,Dq ` m0H

` iΠ0 ` R
p´ 1

2
,dq

8 ` T8,M ` QK
8 ,

defined for any pω, γq P Rν ˆ rγ1, γ2s, where
1. The constant m0 defined in (6.110) satisfies |m0|k0,υ À ευ´1;

2. The block-diagonal operator R
p´ 1

2
,dq

8 “

ˆ

r
pdq
8 pφ,x,Dq 0

0 r
pdq
8 pφ,x,Dq

˙

P OPS´ 1
2 ,with

r
pdq

8 pφ, x,Dq defined in (6.112) and, for some σM :“ σM pk0, τ, νq ą 0 and
for all s0 ď s ď S ´ σM , satisfies

}R
p´ 1

2
,dq

8 }
k0,υ

´ 1
2
,s,1

Às,M ευ´3p1 ` }I0}
k0,υ
s`σM

q ;(6.114)

3. For any q P Nν0 with |q| ď q0, n1, n2 P N0 with n1 ` n2 ď M ´
3
2pk0 ` q0q ` 3

2 , the operator xDyn1B
q
φT8,M pφqxDyn2 is Dk0-tame with

tame constant satisfying, for some σM pq0q :“σM pk0, τ, ν, q0q, for any s0 ď

s ď S ´ σM pq0q,

(6.115) MxDyn1B
q
φT8,M pφqxDyn2 psq ÀS,M,q0 ευ

´3p1 ` }I0}
k0,υ
s`σM pq0q

q ;

4. The operator QK
8 “ pΠK

Nn
a5qH p 1 0

0 1 q where a5pφ, xq is defined in (6.93)
and satisfies (6.96);
5. The operators Ψ˘1´Id, pΨ˘1´Idq˚ are Dk0-tame, with tame constants
satisfying, for some σ :“ σpk0, τ, νq ą 0 and for all s0 ď s ď S ´ σ,

MΨ˘1´Idpsq ` MpΨ˘1´Idq˚psq Às ευ
´3p1 ` }I0}

k0,υ
s`σq ;(6.116)

6. Furthermore, for any s1 as in (6.9), q P Nν0 , with |q| ď q0, and n1, n2 P

N0, with n1 ` n2 ď M ´ 3
2q0,

}∆12R
p´ 1

2
,dq

8 }´ 1
2
,s1,1

Às1,M
ε

υ3
}i1´i2}s1̀ σM

, |∆12m0| À
ε

υ
}i1´i2}s0̀ σ ,(6.117)

}xDy
n1B

q
φ∆12T8,MxDy

n2}LpHs1 q Às1,M,q0 ευ
´3

}i1 ´ i2}s1`σM pq0q
,(6.118)

}∆12pΨ˘1
qh}s1 ` }∆12pΨ˘1

q
˚h}s1 Às1 ευ

´3
}i1 ´ i2}s1`σ }h}s1`σ .(6.119)

Proof. The estimate for m0 follows by (6.110) and (6.96). The function
b1pφ, xq defined in (6.111), satisfies, by (6.96), (3.7), }b1}

k0,υ
s Às ευ

´3p1`

}I0}
k0,υ
s`σq for some σ ą 0 and for any s0 ď s ď S ´ σ. The estimate

(6.114) follows by (6.112), (6.104), Lemma 3.6, and (6.96), (6.97) and
the estimate for }b1}

k0,υ
s . Using that Ψpφqπ0 “ π0 “ Ψ´1pφqπ0, the
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smoothing term T8,M in (6.113) is T8,M :“ Ψ´1T7,MΨ` iΠ0pΨ´ Idq `
´

LM`L1
M 0

0 LM`L1
M

¯

with LM and L1
M introduced in (6.106), (6.107). The

estimate (6.115) follows by Lemmata 3.9, 3.10, 3.7, (6.104), (6.96), (6.98),
(6.116) and the estimate for }b1}

k0,υ
s . The estimate (6.116) follows by Lem-

mata 3.7, 3.10 and the estimate for }b1}
k0,υ
s . The estimates (6.117), (6.118),

(6.119) are proved in the same fashion. □

Remark 6.10. In Proposition 6.13 we shall estimate }rBx,R
p´ 1

2
,dq

8 s}
k0,υ

´ 1
2
,s,0

using (6.114) and (3.17). In order to control }R
p´ 1

2
,dq

8 }
k0,υ

´ 1
2
,s,1

we used the

estimates (6.97) for finitely many α P N0, α ď αpMq, depending on M ,

as well similar estimates for R
p´ 1

2
,dq

6 , R
p´ 1

2
,dq

5 , etc. In Proposition 6.13 we
shall use (6.117)-(6.118) only for s1 “ s0.

6.7 Conclusion: reduction of Lω

By Sections 6.1-6.6, the linear operator L in (6.6) is conjugated, under
the map

(6.120) W :“ ZE ĂMQCΦ2MΦΨ ,

for any pω, γq P TCn`1p2υ, τq, n P N0, into the real, reversible and momen-
tum preserving operator

(6.121) W´1LW “ L8 ´ QK
8 ` PK

n ` QK
n ,

where L8 is defined in (6.113), and

(6.122) PK
n :“

`

ĂMQCΦ2MΦΨ
˘´1

PK
2
ĂMQCΦ2MΦΨ, QK

n :“Ψ´1QK
7 Ψ ` QK

8 ,

with PK
2 , QK

7 and QK
8 defined respectively in (6.23), Lemmata 6.8, 6.9. The

operator L8 is defined for any pω, γq P Rν ˆ rγ1, γ2s.
A similar conjugation result holds for the projected operator Lω in (5.40),

i.e. (6.1), which acts in the normal subspace H=
S`,Σ. We denote by Π⊺

S`,Σ

and Π=
S`,Σ the projections on the subspaces H⊺

S`,Σ
and H=

S`,Σ and Π⊺
S`
0 ,Σ

:“

Π⊺
S`,Σ

` π0, so that Π⊺
S`
0 ,Σ

` Π=
S`,Σ “ Id on the whole L2 ˆ L2. We

remind that S0 “ S Y t0u, where S is the set defined in (2.19). We de-
note by ΠS0 :“ Π⊺

S ` π0, where Π⊺
S is defined below (2.26). We have

ΠS0 ` ΠK
S0 “ Id. Arguing as in Lemma 7.15 in [7] we have the following.

Lemma 6.11. Let M ą 0. There is σM ą 0 (depending also on k0, τ, ν)
such that, assuming (6.8) with µ0 ě σM , the following holds: the map W
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defined in (6.120) has the form W “ ĂMC ` Rpεq where, for all s0 ď

s ď S ´ σM , }Rpεqh}
k0,υ
s ÀS,M ευ´3

`

}h}
k0,υ
s`σM

` }I0}
k0,υ
s`σM

}h}
k0,υ
s0`σM

˘

.
Moreover WK :“ Π=

S`,ΣWΠK
S0 is invertible and, for all s0 ď s ď S´σM ,

(6.123)
}pWKq˘1h}k0,υs ÀS,M }h}

k0,υ
s`σM

` }I0}
k0,υ
s`σM

}h}
k0,υ
s0`σM

,

}∆12pWKq˘1h}s1 Às1,M ευ´3 }i1 ´ i2}s1`σM
}h}s1`σM

.

The operator WK maps (anti)-reversible, respectively traveling, waves, into
(anti)-reversible, respectively traveling, waves.

For any pω, γq P TCn`1p2υ, τq, n P N0, the operator Lω in (5.40) (i.e.
(6.1)) is conjugated via WK to

LK :“pWKq´1LωWK “ΠK
S0 pL8´QK

8 qΠK
S0 `PK,n`QK,n`Rf ,(6.124)

where

PK,n :“ ΠK
S0P

K
n Π

K
S0 , QK,n :“ ΠK

S0Q
K
n Π

K
S0 ,(6.125)

and Rf is, by (6.121), Lemma 6.11 and (2.27), the finite rank operator

(6.126)
Rf :“ pWK

q
´1Π=

S`,ΣRpεqΠS0
`

L8 ´ QK
8 ` PK

n ` QK
n

˘

ΠK
S0

´ pWK
q

´1Π=
S`,ΣLΠ

⊺

S`
0 ,Σ

RpεqΠK
S0 ´ εpWK

q
´1Π=

S`,ΣJRW
K .

Lemma 6.12. (Estimates of the remainders) The operator Rf in (6.126)
has the finite rank form (6.3), (6.4). Let q0 P N0 and M ě 3

2pk0 ` q0q ` 3
2 .

There exists ℵpM, q0q ą 0 (depending also on k0, τ , ν) such that, for any
n1, n2 P N0, with n1 ` n2 ď M ´ 3

2pk0 ` q0q ` 3
2 , and any q P Nν0 ,

with |q| ď q0, the operator xDyn1B
q
φRf xDyn2 is Dk0-tame, with a tame

constant satisfying, for any s0 ď s ď S ´ ℵpM, q0q and any s1 as in (6.9),

MxDyn1B
q
φRf xDyn2 psq ÀS,M,q0 ευ

´3p1 ` }I0}
k0,υ
s`ℵpM,q0q

q ,(6.127)

}xDyn1Bqφ∆12Rf xDyn2}LpHs1 qÀs1,M,q0

ε

υ3
}i1´i2}s1`ℵpM,q0q .(6.128)

The operators PK,n and QK,n in (6.125), (6.122) satisfy, for some σM “

σM pk0, τ, νq ą 0, for all s0 ď s ď S ´ σM ,

}PK,nh}k0,υs ÀS εN
´a
n´1

`

}h}
k0,υ
s`σM

` }I0}
k0,υ
s`σM`b}h}

k0,υ
s0`σM

˘

,(6.129)

}QK,nh}k0,υs0 ÀS ευ
´2N´b

n

`

1`}I0}
k0,υ
s0`σM`b

˘

}h}
k0,υ

s0` 1
2

, @bą0,(6.130)

}QK,nh}k0,υs ÀS ευ
´2
`

}h}
k0,υ

s` 1
2

` }I0}
k0,υ
s`σM

}h}
k0,υ

s0` 1
2

˘

.(6.131)
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Proof. The estimate (6.127) follows by (6.126), (6.120), Lemma 6.11, (6.113),
(6.3), (3.3), (6.123), (6.114), (6.115), (6.4). The estimate (6.128) follows
similarly. The estimates (6.129), (6.130), (6.131) follow from (6.125),
(6.122), (6.23), the definitions of QK

7 , QK
8 using the estimates (6.24), (6.64),

(6.96), (3.4), (6.123), (6.116), (6.99), (6.76), (6.69). □

The next proposition summarizes the main result of this section.

Proposition 6.13. (Reduction of Lω up to smoothing operators) For any
n P N0 and for all pω, γq P TCn`1p2υ, τq (cfr. (6.22)), the operator Lω
in (5.40) (i.e. (6.1)) is conjugated as in (6.124) to the real, reversible and
momentum preserving operator LK. For all pω, γq P Rν ˆ rγ1, γ2s the
extended operator defined by the right hand side in (6.124), has the form

(6.132) LK “ ω ¨ BφIK ` iDK ` RK ` PK,n ` QK,n ,

where IK denotes the identity map of HK
S0 (cfr. (2.26)) and:

1. DK is the diagonal operator

(6.133) DK :“

ˆ

DK 0
0 ´DK

˙

, DK :“ diagjPSc0 µj , S
c
0 :“ ZzpSYt0uq ,

with eigenvalues µj :“ m1,nj ` m 1
2
Ωjpγq ´ m0 sgnpjq P R , where Ωjpγq

is the dispersion relation (1.8) and the real constants m1,n, m 1
2
, m0, defined

respectively in Lemma 6.3, (6.91), (6.110), satisfy

(6.134) |m1,n|k0,υ À ε , |m 1
2

´ 1|k0,υ ` |m0|k0,υ À ευ´1 .

In addition, for some σ ą 0,

(6.135) |∆12m1,n| À ε }i1 ´ i2}s0`σ , |∆12m 1
2

| ` |∆12m0| À ευ´1
}i1 ´ i2}s0`σ ;

2. For any q0 P N0, M ą 3
2pk0 `q0q` 3

2 , there is a constant ℵpM, q0q ą 0
(depending also on k0, τ , ν) such that, assuming (6.8) with µ0 ě ℵpM, q0q,
for any s0 ď s ď S ´ ℵpM, q0q, q P Nν0 , with |q| ď q0, the operators
B
q
φRK, rB

q
φRK, Bxs are Dk0-tame with tame constants satisfying

(6.136)
M

xDy
1
4 B

q
φRKxDy

1
4
psq, M

xDy
1
4 rB

q
φRK,BxsxDy

1
4
psqÀS,M,q0

ε

υ3
p1`}I0}

k0,υ
s`ℵpM,q0q

q.

Moreover, for any q P Nν0 , with |q| ď q0,

(6.137)
}xDy

1
4 B

q
φ∆12RKxDy

1
4 }LpHs0 q ` }xDy

1
4 B

q
φ∆12rRK, BxsxDy

1
4 }LpHs0 q

ÀM ευ´3
}i1 ´ i2}s0`ℵpM,q0q

.

The operator RK :“ RKpφq is real, reversible and momentum preserving.
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3. The remainders PK,n,QK,n are defined in (6.125) and satisfy the esti-
mates (6.129)-(6.131).

Proof. By (6.124) and (6.113) we deduce (6.132) with

RK :“ ΠK
S0pR

p´ 1
2
,dq

8 ` T8,M qΠK
S0 ` Rf .

The estimates (6.134)-(6.135) follow by Lemmata 6.6, 6.8, 6.9. The esti-
mate (6.136) follows by Lemmata 3.6, 3.10 and (6.114), (6.115), (6.127),
choosing pn1, n2q “ p1, 2q, p2, 1q. The estimate (6.137) follows simi-
larly. □

7 Almost-invertibility of Lω and proof of Theorem 5.1

In this section we almost-diagonalize the operator ω ¨ BφIK ` iDK `

RKpφq obtained neglecting from LK in (6.132) the remainders PK,n and
QK,n, by a KAM iterative scheme, see Theorem 7.2. Then we deduce the
decomposition (5.42) of the operator Lω in the almost-invertibility assump-
tion (AI) of Section 5.3. Finally, we state Theorem 7.7, which implies
Theorem 5.1.

Almost-diagonalization
We start with the real, reversible and momentum preserving operator

LK “: L0 :“ L0piq :“ ω ¨ BφIK ` iD0 ` R
p0q

K
, acting in HK

S0 and defined
for all pω, γq P Rν ˆ rγ1, γ2s, with D0 :“ DK as in (6.133) and

(7.1) R
p0q

K
:“ RK :“

˜

R
p0,dq

K
R

p0,oq

K

R
p0,oq

K
R

p0,dq

K

¸

,
R

p0,dq

K
: HK

S0 Ñ HK
S0 ,

R
p0,oq

K
: HK

´S0 Ñ HK
S0 ,

which satisfies (6.136), (6.137). We denote

HK
˘S0 “ thpxq “

ÿ

jR˘S0
hje

˘ijx P L2u.

Note that D0 : HK
´S0 Ñ HK

´S0 , where D0 “ DK “ diagjP´Sc0pµ
p0q

´j q as

in (6.133). Proposition 6.13 implies that Rp0q

K
satisfies the estimates (7.4)-

(7.5) below by fixing the constant M large enough, namely

(7.2) M :“
“

3
2pk0 ` s0 ` bq ` 3

2

‰

` 1 P N ,

where b is defined in (6.20). We also set

(7.3) µpbq :“ ℵpM, s0 ` bq ,
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where the constant ℵpM, q0q is given in Proposition 6.13, with q0 “ s0`b.
We define

M0psq :“ max
m“1,...,ν

␣

M
xDy

1
4 R

p0q

K
xDy

1
4

psq, M
xDy

1
4 rR

p0q

K
,BxsxDy

1
4

psq,

M
xDy

1
4 B

s0
φmR

p0q

K
xDy

1
4

psq, M
xDy

1
4 rB

s0
φmR

p0q

K
,BxsxDy

1
4

psq
(

,

M0ps, bq :“ max
m“1,...,ν

␣

M
xDy

1
4 B

s0`b
φm R

p0q

K
xDy

1
4

psq, M
xDy

1
4 rB

s0`b
φm R

p0q

K
,BxsxDy

1
4

psq
(

.

Then, assuming (6.8) with µ0 ě µpbq, by (6.136), (7.2), (7.3), (6.137), we
have, for all s0 ď s ď S ´ µpbq,

(7.4)
M0ps, bq :“max

!

M0psq,M0ps, bq

)

ď CpSqευ´3
p1 ` }I0}

k0,υ
s`µpbq

q ,

M0ps0, bq ď CpSqευ´3 .

Moreover, for all q P Nν0 , with |q| ď s0 ` b,

(7.5)
}xDy

1
4 B

q
φ∆12R

p0q

K xDy
1
4 }LpHs0 q , }xDy

1
4∆12rB

q
φR

p0q

K , BxsxDy
1
4 }LpHs0 q

ď CpSqευ´3
}i1 ´ i2}s0`µpbq

.

We perform the almost-reducibility of L0 along the scale pNnqnPN0 , see
(6.17).

Theorem 7.1. (Almost-diagonalization of L0: KAM iteration) There ex-
ists τ2pτ, νq ą τ1pτ, νq ` 1 ` a (with τ1, a defined in (6.20)) such that, for
all S ą s0, there is N0 :“ N0pS, bq P N such that, if

(7.6) N τ2
0 M0ps0, bqυ´1 ď 1 ,

then, for all n P N0, n “ 0, 1, . . . , n:
pS1qn There exists a real, reversible and momentum preserving operator

(7.7) Ln :“ω ¨ BφIK ` iDn ` R
pnq

K
, Dn :“

ˆ

Dn 0
0 ´Dn

˙

,

where Dn :“ diagjPSc0 µ
pnq

j , defined for all pω, γq in Rν ˆ rγ1, γ2s, where

µ
pnq

j are k0-times differentiable real functions

(7.8)
µ

pnq

j pω, γq :“µ
p0q

j pω, γq ` r
pnq

j pω, γq ,

µ
p0q

j “ m1,n j ` m 1
2
Ωjpγq ´ m0 sgnpjq ,

satisfying r
p0q

j “ 0 and, for n ě 1 and any j P Sc0

(7.9) |j|
1
2 |r

pnq

j |
k0,υ ďCpS, bqευ´3, |j|

1
2 |µ

pnq

j ´µ
pn´1q

j |
k0,υ ďCpS, bqευ´3N´a

n´2.
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The remainder Rpnq

K
:“

ˆ

R
pn,dq

K
R

pn,oq

K

R
pn,oq

K
R

pn,dq

K

˙

with Rpn,dq

K
: HK

S0 Ñ HK
S0 , Rpn,oq

K
:

HK
´S0 Ñ HK

S0 , and the operator xBφybR
pbq

K
are Dk0-p´1

2q-modulo-tame,
with modulo-tame constants

M7
npsq :“ M7

xDy
1
4 R

pnq

K
xDy

1
4

psq , M7
nps, bq :“ M7

xDy
1
4 xBφybR

pnq

K
xDy

1
4

psq ,(7.10)

which satisfy, for some constant C˚ps0, bq ą 0, for all s0 ď s ď S ´ µpbq,

(7.11)
M7

npsq ď C˚ps0, bqM0ps, bqN´a
n´1 ,

M7
nps, bq ď C˚ps0, bqM0ps, bqNn´1 .

Define the sets Λυn “ Λυnpiq by Λυ0 :“ Rν ˆ rγ1, γ2s and, for n “ 1, ..., n,

(7.12)

Λ
υ
n :“

␣

λ “ pω, γq P Λ
υ
n´1 :

ˇ

ˇω ¨ ℓ` µ
pn´1q

j ´ µ
pn´1q

j1

ˇ

ˇ ě υ xℓy´τ

@ |ℓ| ď Nn´1 , j, j
1

R S0 , pℓ, j, j1
q ‰ p0, j, jq, with ȷ⃗ ¨ ℓ` j ´ j1

“ 0 ,
ˇ

ˇω ¨ ℓ` µ
pn´1q

j ` µ
pn´1q

j1

ˇ

ˇ ě υ
`

|j|
1
2 ` |j1

|
1
2
˘

xℓy´τ

@ |ℓ| ď Nn´1 , j, j
1

R S0 with ȷ⃗ ¨ ℓ` j ` j1
“ 0

(

.

For n ě 1 there exists a real, reversibility and momentum preserving map,
defined for all pω, γq P Rν ˆ rγ1, γ2s, of the form Φn´1 “ eXn´1 , where

Xn´1 :“

ˆ

X
pdq

n´1 X
poq

n´1

X
poq

n´1 X
pdq

n´1

˙

and the operators Xpdq

n´1 : HK
S0 Ñ HK

S0 , Xpoq

n´1 :

HK
´S0 Ñ HK

S0 , such that, for all λ P Λυn , the following conjugation formula
holds:

(7.13) Ln “ Φ´1
n´1Ln´1Φn´1 .

The operators Xn´1, xBφybXn´1 are Dk0-p´1
2q-modulo-tame satisfying,

for all s0 ď s ď S ´ µpbq,

(7.14)
M7

xDy
1
4Xn´1xDy

1
4

psq ď Cps0, bqυ´1N τ1
n´1N

´a
n´2M0ps, bq ,

M7

xDy
1
4 xBφybXn´1xDy

1
4

psq ď Cps0, bqυ´1N τ1
n´1Nn´2M0ps, bq .

pS2qn Let i1pω, γq, i2pω, γq such that Rpnq

K
pi1q, Rpnq

K
pi2q satisfy (7.4), (7.5).

Then, for all pω, γq P Rν ˆ R

}xDy
1
4 |∆12R

pnq

K |xDy
1
4 }LpHs0 q ÀS,b ευ

´3N´a
n´1 }i1 ´ i2}s0`µpbq

,(7.15)

}xDy
1
4 | xBφy

b ∆12R
pnq

K |xDy
1
4 }LpHs0 qÀS,b ευ

´3Nn´1}i1´i2}s0`µpbq
.(7.16)
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Furthermore, for n ě 1, for all j P Sc0,

|j|
1
2 |∆12pr

pnq

j ´ r
pn´1q

j q| ď C}xDy
1
4 |∆12R

pnq

K |xDy
1
4 }LpHs0 q ,

|j|
1
2 |∆12r

pnq

j | ď CpS, bqευ´3
}i1 ´ i2}s0`µpbq

.

pS3qn Let i1, i2 be like in pS2qn and 0 ă ρ ă υ{2. Then

(7.17) ευ´3CpSqN τ`1
n´1 }i1 ´ i2}s0`µpbq ď ρ ñ Λυnpi1q Ď Λυ´ρ

n pi2q .

Theorem 7.1 implies also that the invertible operator U0 :“ IK, Un :“
Φ0 ˝ . . . ˝ Φn´1 for n ě 1, has almost diagonalized L0. We have indeed
the following corollary.

Theorem 7.2. (Almost-diagonalization of L0) Assume (6.8) with µ0 ě

µpbq. For all S ą s0, there exist N0 “ N0pS, bq ą 0 and δ0 “ δ0pSq ą

0 such that, if the smallness condition N τ2
0 ευ

´4 ď δ0 holds, with τ2 “

τ2pτ, νq as in in Theorem 7.1, then, for all n P N0 and for all pω, γq P

Rνˆrγ1, γ2s the operators U˘1
n ´IK are Dk0-p´1

2q-modulo-tame satisfying
M7

U˘1
n ´1K

psq ÀS ευ
´4N τ1

0 p1`}I0}
k0,υ
s`µpbq

q for all s0 ď s ď S´µpbq, with

τ1 as in (6.20). Moreover Un, U´1
n are real, reversibility and momentum

preserving. The operator Ln “ ω ¨BφIK ` iDn`R
pnq

K
, defined in (7.7) with

n “ n is real, reversible and momentum preserving. The operator Rpnq

K
is

Dk0-p´1
2q-modulo-tame and, for all s0 ď s ď S ´ µpbq,

(7.18) M7

xDy
1
4R

pnq

K
xDy

1
4

psq ÀS ευ
´3N´a

n´1p1 ` }I0}
k0,υ
s`µpbq

q .

Moreover, for all pω, γq in Λυn “ Λυnpiq “
Şn

n“0 Λ
υ
n , where the sets Λυn are

defined in (7.12), the conjugation formula Ln :“ U´1
n L0Un holds.

Proof of Theorem 7.1.
The proof of Theorem 7.1 is inductive. We first show that pS1qn-pS3qn

hold when n “ 0.
Proof of pS1q0-pS3q0. Properties (7.7)-(7.8) for n “ 0 hold by (6.132),
(6.133), (7.1) with r

p0q

j “ 0. Moreover, by (3.20), we get, for any s0 ď s ď

S ´ µpbq, that M7
0psq,M7

0ps, bq Às0,b M0ps, bq and that (7.11) for n “ 0
holds. The estimates (7.15), (7.16) at n “ 0 follow similarly by (7.5). Fi-
nally pS3q0 is trivial since Λυ0pi1q “ Λ

υ´ρ
0 pi2q “ Rν ˆ rγ1, γ2s.
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The reducibility step. We now describe the generic inductive step, show-
ing how to transform Ln into Ln`1 by the conjugation with Φn. For sim-
plicity we drop the index n and we write ` instead of n`1, so that we write
L :“ Ln, L` :“ Ln`1, RK :“ R

pnq

K
, Rp`q

K
:“ R

pn`1q

K
, N :“ Nn, etc.. Let

(7.19) Φ :“ eX , X :“

ˆ

Xpdq Xpoq

Xpoq Xpdq

˙

,
Xpdq : HK

S0 Ñ HK
S0 ,

Xpoq : HK
´S0 Ñ HK

S0 ,

where X is chosen below in (7.23), (7.24). We transform L in (7.7) into

L` :“ Φ´1LΦ “ ω ¨ BφIK ` iD ` ppω ¨ BφXq ´ irX,Ds ` ΠNRKq ` ΠK
NRK

´

ż 1

0

e´τX
rX,RKseτX dτ´

ż 1

0

p1´τqe´τX
rX, pω ¨ BφXq´irX,DsseτX dτ,(7.20)

with ΠNRK defined as in (3.18) and ΠK
N :“ Id ´ ΠN . We want to solve

the homological equation

(7.21) ω ¨ BφX ´ irX,Ds ` ΠNRK “ rRKs

where rRKs :“

ˆ

rR
pdq

K
s 0

0 rR
pdq

K
s

˙

, with rR
pdq

K
s :“ diagjPSc0pR

pdq

K
q
j
jp0q. By

(7.7) and (7.19), the homological equation (7.21) is equivalent to the two
scalar homological equations

(7.22)
ω ¨ BφX

pdq ´ ipXpdqD ´ DXpdqq ` ΠNR
pdq

K
“ rR

pdq

K
s

ω ¨ BφX
poq ` ipXpoqD ` DXpoqq ` ΠNR

poq

K
“ 0 .

The solutions of (7.22) are, for all pω, γq P Λυn`1 (see (7.12) with n ù

n ` 1)
(7.23)

pXpdq
q
j1

j pℓq :“

$

’

&

’

%

´
pR

pdq

K q
j1

j pℓq

ipω ¨ ℓ` µj ´ µj1 q
if

#

pℓ, j, j1
q ‰ p0, j, jq, j, j1

P Sc
0, xℓy ď N

ℓ ¨ ȷ⃗` j ´ j1
“ 0

0 otherwise ,

(7.24)

pXpoq
q
j1

j pℓq :“

$

’

&

’

%

´
pR

poq

K q
j1

j pℓq

ipω ¨ ℓ` µj ` µ´j1 q
if

#

@ ℓ P Zν j,´j1
P Sc

0, xℓy ď N

ℓ ¨ ȷ⃗` j ´ j1
“ 0

0 otherwise .

Note that, since ´j1 P Sc0, we can apply the bounds (7.12) for pω, γq P Λυn`1.

Lemma 7.3. (Homological equations) The real operator X defined in
(7.19), (7.23), (7.24), (which for all pω, γq P Λυn`1 solves the homologi-
cal equation (7.21)) admits an extension to Rν ˆ rγ1, γ2s. Such extended
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operator is Dk0-p´1
2q-modulo-tame satisfying, for all s0 ď s ď S ´ µpbq,

(7.25) M7

xDy
1
4 XxDy

1
4

psqÀk0

Nτ1

υ
M7

psq , M7

xDy
1
4 xBφybXxDy

1
4

psq Àk0

Nτ1

υ
M7

ps, bq,

where τ1 :“ τpk0 ` 1q ` k0. For all pω, γq P Rν ˆ R,

}xDy
1
4 |∆12X|xDy

1
4 }LpHs0 q À N2τ`1υ´1

p}xDy
1
4 |∆12RK|xDy

1
4 }LpHs0 q

`}xDy
1
4 |RKpi2q|xDy

1
4 }LpHs0 q }i1 ´ i2}s0`µpbq

q ,(7.26)

}xDy
1
4 |xBφy

b∆12X|xDy
1
4 }LpHs0 q À N2τ`1υ´1

p}xDy
1
4 |xBφy

b∆12RK|xDy
1
4 }LpHs0 q

`}xDy
1
4 |xBφy

bRKpi2q|xDy
1
4 }LpHs0 q }i1 ´ i2}s0`µpbq

q .(7.27)

The operator X is reversibility and momentum preserving.

Proof. We prove that (7.25) holds for Xpdq. The proof for Xpoq holds anal-
ogously. First, we extend the solution in (7.23) to all λ in Rν ˆ rγ1, γ2s by
setting pXpdqq

j1

j pℓq “ i gℓ,j,j1pλqpR
pdq

K
q
j1

j pℓq, where gℓ,j,j1pλq :“ χpfpλqρ´1q

fpλq
,

with fpλq :“ ω ¨ ℓ ` µj ´ µj1 , ρ :“ υxℓy´τ , and χ is the cut-off func-
tion (3.6). By (7.8), (7.9), (6.134), (7.12), Lemma 4.4, (3.6), we deduce
that, for any k1 P Nν0 , |k1| ď k0, sup|k1|ďk0

ˇ

ˇB
k1
λ gℓ,j,j1

ˇ

ˇ Àk0 xℓyτ1υ´1´|k1|,
τ1 “ τpk0 ` 1q ` k0, and we deduce, for all 0 ď |k| ď k0,

|BkλpXpdqq
j1

j pℓq| Àk0 xℓyτ1υ´1´|k|
ÿ

|k2|ď|k|
υ|k2||B

k2
λ pR

pdq

K
q
j1

j pℓq|.

By (7.23) we have pXpdqq
j1

j pℓq “ 0 for all xℓy ą N . For all |k| ď k0, we
get

}xDy
1
4 | xBφy

b
B
k
λX

pdq
|xDy

1
4 h}

2
s Àk0 N

2τ1

υ´2p1`|k|q
ÿ

|k2|ď|k|

υ2|k2|
}xDy

1
4 | xBφy

b
B
k2
λ R

pdq

K |xDy
1
4 |h|}

2
s

Def.3.11,(7.10)
Àk0 N2τ1υ´2p1`|k|q

`

M7
ps, bq

2
}h}

2
s0

` M7
ps0, bq

2
}h}

2
s

˘

,

and, by Definition 3.11, we conclude that M7

xDy
1
4 xBφybXpdqxDy

1
4

psq Àk0

N τ1υ´1M7ps, bq. The analogous estimates for xBφy
bXpoq, Xpdq, Xpoq and

(7.26), (7.27) follow similarly. □

By (7.20), (7.21), for all λ P Λυn`1, we have

(7.28) L` “ Φ´1LΦ “ ω ¨ BφIK ` iD` ` R
p`q

K
,
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where

(7.29)

D` :“ D ´ irRKs ,

R
p`q

K
:“ ΠK

NRK ´

ż 1

0
e´τXrX,RKseτX dτ

`

ż 1

0
p1 ´ τqe´τXrX,ΠNRK ´ rRKsseτX dτ .

The right hand sides of (7.28)-(7.29) define an extension of L` to the whole
parameter space Rνˆrγ1, γ2s, since RK and X are defined on Rνˆrγ1, γ2s.
The new operator L` in (7.28) has the same form of L in (7.7) with the
non-diagonal remainder R

p`q

K
, sum of a term ΠK

NRK supported on high
frequencies and of a quadratic function of X and RK. The new normal
form D` is diagonal:

Lemma 7.4. (New diagonal part) For all pω, γq P Rν ˆ rγ1, γ2s, we have

iD` “ iD ` rRKs “ i

ˆ

D` 0

0 ´D`

˙

, D` :“ diagjPSc0
µ

p`q

j , µ
p`q

j :“ µj ` rj P R ,

where each rj satisfies, on Rν ˆ rγ1, γ2s,

(7.30) |j|
1
2 |rj |

k0,υ “ |j|
1
2 |µ

p`q

j ´ µj |
k0,υ À M7ps0q .

Moreover |j|
1
2 |rjpi1q ´ rjpi2q| À }xDy

1
4 |∆12RK|xDy

1
4 }LpHs0 q.

Proof. We have that rj :“ ´ipR
pdq

K
q
j
jp0q P R, by the reversibility of Rpdq

K

and Lemma 3.15. Recalling the definition of M7ps0q in (7.10) (with s “ s0)
and Definition 3.11, we deduce that |j|

1
2 |BkλpR

pdq

K
q
j
jp0q| À υ´|k|M7ps0q, for

all 0 ď |k| ď k0, and (7.30) follows. The bound for |j|
1
2 |rjpi1q ´ rjpi2q| is

similar. □

The iterative step. Assume that the statements pS1qn-pS3qn are true. We
now prove pS1qn`1-pS3qn`1.
PROOF OF pS1qn`1. The real operator Xn defined in Lemma 7.3 is defined
for all pω, γq P Rν ˆ rγ1, γ2s and, by (7.25), (7.11), satisfies the estimates
(7.14) at the step n`1. By (7.28), for all λ P Λυn`1, the conjugation formula
(7.13) holds at the step n`1. By Lemma 7.4, the operator Dn`1 is diagonal
with eigenvalues µpn`1q

j “ µ
p0q

j `r
pn`1q

j with r
pn`1q

j :“ r
pnq

j `r
pnq

j satisfying,
using also (7.11), (7.9) at the step n ` 1. The next lemma provides the
estimates for Rpn`1q

K
“ R

p`q

K
defined in (7.29).
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Lemma 7.5. The operators Rpn`1q

K
and xBφybR

pn`1q

K
are Dk0-p´1

2q-modulo-
tame with modulo-tame constants satisfying, for any s0 ď s ď S ´ µpbq,

M7
n`1psqÀsN

´b
n M7

nps, bq`N τ1
n υ

´1M7
npsqM

7
nps0q ,(7.31)

M7

n`1ps, bqÀs,bM
7
nps, bq`Nτ1

n υ´1
`

M7
nps, bqM7

nps0q`M7
nps0, bqM7

npsq
˘

.(7.32)

Moreover, the estimates (7.11) hold at the step n ` 1.

Proof. The estimates (7.31), (7.32) follow by (7.29), (3.19), Lemma 3.12,
and (7.25), (7.11), (6.20), (6.17), (7.6). The estimates (7.11) at the step n`1
follow by (7.31), (7.32), (7.11) at the step n, (6.20), the smallness condition
(7.6) with N0 “ N0pS, s0, bq ą 0 large enough and τ2 ą τ1 ` 1 ` a. □

PROOF OF pS2qn`1. It follows by similar arguments and we omit it.
PROOF OF pS3qn`1. Use (7.8), (6.134)-(6.135), pS2qn, and the momentum
conditions in (7.12).

Almost invertibility of Lω

By (6.132), (6.124) and Theorem 7.2, we obtain

(7.33) Lω “WnLnW
´1
n ` WKPK,npWK

q
´1

` WKQK,npWK
q

´1, Wn :“WKUn ,

where the operator Ln is defined in (7.7) with n “ n and PK,n, QK,n satisfy
the estimates in Lemma 6.12. By (6.123) and Theorem 7.2, we have, for
some σ :“ σpτ, ν, k0q ą 0, for any s0 ď s ď S ´ µpbq ´ σ,

(7.34) }W˘1
n h}k0,υs ÀS }h}

k0,υ
s`σ ` }I0}

k0,υ
s`µpbq`σ}h}

k0,υ
s0`σ .

In order to prove the almost invertibility assumption (AI) of Lω in Section
5.3, we decompose the operator Ln in (7.7) (with n instead of n) as

(7.35) Ln “ Dă
n ` Q

pnq

K
` R

pnq

K

where R
pnq

K
satisfies (7.18), whereas

(7.36)
Dă

n :“ ΠKn
pω ¨ BφIK ` iDnqΠKn

` iΠK
Kn

Σ ,

Q
pnq

K
:“ ΠK

Kn
pω ¨ BφIK ` iDnqΠK

Kn
´ iΠK

Kn
Σ ,

the smoothing operator ΠK on the traveling waves is defined in (3.1), ΠK
K :“

Id ´ ΠK and Σ :“

ˆ

1 0
0 ´1

˙

. We have that Kn :“ Kχn

0 , χ “ 3{2 (cfr.
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(5.41)), and K0 will be fixed in (7.40). For all λ “ pω, γq in the set
(7.37)

Λ
υ,I
n`1 :“

!

λ P Rν
ˆrγ1, γ2s : |ω ¨ ℓ`µ

pnq

j | ě υ
|j|

1
2

xℓyτ
, @ |ℓ| ď Kn, j P Sc

0 , j ` ȷ⃗ ¨ ℓ “ 0
)

,

the operator Dă
n in (7.36) is invertible on the subspace of the traveling

waves τςgpφq “ gpφ´ ȷ⃗ςq, ς P R, such that gpφ, ¨q P HK
S0 . More precisely

there exists an extension of the inverse operator to the whole Rν ˆ rγ1, γ2s

satisfying }pDă
n q´1g}

k0,υ
s Àk0 υ

´1}g}
k0,υ
s`τ1 , τ1 “ k0 ` τpk0 ` 1q. Standard

smoothing properties imply that the operator Q
pnq

K
in (7.36) satisfies, for

any traveling wave h P HK
S0 , for all b ą 0, }Q

pnq

K
h}
k0,υ
s0 À K´b

n }h}
k0,υ
s0`b`1,

}Q
pnq

K
h}
k0,υ
s À }h}

k0,υ
s`1 . Therefore, by the decompositions (7.33), (7.35),

Theorem 7.2 (note that (5.36) and Lemma 5.8 imply (6.8)), Proposition
6.13, the fact that Wn maps (anti)-reversible, respectively traveling, waves,
into (anti)-reversible, respectively traveling, waves (Lemma 6.11) and esti-
mates (7.34), (3.4) we deduce the following theorem.

Theorem 7.6. (Almost invertibility of Lω) Assume (5.36). Let a, b as in
(6.20) and M as in (7.2). Let S ą s0 ` k0 and assume the smallness
condition N τ2

0 ευ
´4 ď δ0 of Theorem 7.2. Then the almost invertibility

assumption (AI) in Section 5.3 holds with Λo replaced by

(7.38) Λυ
n`1 :“ Λυ

n`1piq :“ Λυn`1 X Λ
υ,I
n`1 X TCn`1p2υ, τq ,

(see (7.12), (7.37), (6.22)), with µpbq defined in (7.3), and

Lă
ω :“ WnD

ă
n W

´1
n ,

Rω :“ WnR
pnq

K W´1
n ` WKPK,npWK

q
´1 ,

RK
ω :“ WnQ

pnq

K W´1
n ` WKQK,npWK

q
´1 .

Proof of Theorem 5.1
Theorem 7.7 is deduced, in a by now standard way, from the almost

invertibility of Lω in Theorem 7.6, as in [9, 2, 7]. Note that the estimates
(5.43), (5.44), (5.45), (5.46) coincide with (5.49)-(5.52) in [2] with M “
1{2. Thus we shall be short. Consider the finite dimensional subspaces of
traveling wave variations

En :“
␣

Ipφq “ pΘ, I, wqpφq such that (3.22) holds : Θ “ ΠnΘ , I “ ΠnI , w “ Πnw
(
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where Πnw :“ ΠKnw as in (3.1) with Kn in (5.41), and Πngpφq :“
ř

|ℓ|ďKn
gℓe

iℓ¨φ. Let

a1 :“ maxt6σ1 ` 13, χpppτ ` 1q ` µpbq ` 2σ1q ` 1u ,

a2 :“ χ´1a1 ´ µpbq ´ 2σ1 , µ1 :“ 3pµpbq ` 2σ1q ` 1 ,

b1 :“ a1 ` 2µpbq ` 4σ1 ` 3 ` χ´1µ1 , χ “ 3{2 ,

σ1 :“ maxtσ, 2s0 ` 2k0 ` 5u , S ´ µpbq ´ σ “ s0 ` b1 ,(7.39)

where σ “ σpτ, ν, k0q ą 0 is defined by Theorem 5.9, µpbq is defined
in (7.3), and b “ ras ` 2 in (6.20). The exponent p in (5.41) is p :“
3a´1pµpbq ` 4σ1 ` 1q. Given a function W “ pI, βq where I is the peri-
odic component of a torus as in (5.5) and β P Rν , we denote }W }

k0,υ
s :“

}I}
k0,υ
s ` |β|

k0,υ.

Theorem 7.7. (Nash-Moser) There exist δ0, C˚ ą 0 such that, if

(7.40)
Kτ3

0 ευ
´4 ă δ0 , τ3 :“ maxtpτ2, 2σ1 ` a1 ` 4u ,

K0 :“ υ´1 , υ :“ εa , 0 ă a ă p4 ` τ3q´1 ,

where τ2 “ τ2pτ, νq is given by Theorem 7.1, then, for all n ě 0:
pP1qn There exists a k0-times differentiable function

ĂWn : Rνˆrγ1, γ2sÑEn´1ˆRν , λ“pω, γq ÞÑ ĂWnpλq :“prIn, rαn ´ ωq,

for n ě 1, and ĂW0 :“ 0, satisfying }ĂWn}
k0,υ
s0`µpbq`σ1

ďC˚ευ
´1. Let rUn :“

U0 ` ĂWn, where U0 :“ pφ, 0, 0, ωq. The difference rHn :“ rUn ´ rUn´1,
for n ě 1, satisfies } rH1}

k0,υ
s0`µpbq`σ1

ď C˚ευ
´1 and, for any n ě 2,

} rHn}
k0,υ
s0`µpbq`σ1

ď C˚ευ
´1K´a2

n´1 . The torus embeddingrın :“ pφ, 0, 0q`rIn
is reversible and traveling, i.e. (5.4) holds;

pP2qn We define G0 :“ Ω ˆ rγ1, γ2s, Gn`1 :“ Gn X Λυ
n`1prınq, n ě 0,

where Λυ
n`1prınq is in (7.38). Then, for any λ P Gn , setting K´1 :“ 1, we

have }FprUnq}
k0,υ
s0 ď C˚εK

´a1
n´1 ;

pP3qn (HIGH NORM) For all λ P Gn, we have }ĂWn}
k0,υ
s0`b1

ďC˚ευ
´1Kµ1

n´1.

Proof. The proof follows as in [9, 2]. The verification that each rın is re-
versible and traveling is in [7]. □

Theorem 5.1 is a standard corollary of Theorem 7.7, as in [9, 2, 7]. Let
υ “ εa, with 0 ă a ă a0 :“ 1{p4 ` τ3q. Then, the smallness condition
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in (7.40) is verified for 0 ă ε ă ε0 small enough and Theorem 7.7 holds.
By pP1qn the sequence ĂWn converges to a function W8 : Rν ˆ rγ1, γ2s Ñ

Hs0
φ ˆHs0

φ ˆHs0 ˆ Rν , and we define U8 :“ pi8, α8q :“ pφ, 0, 0, ωq `

W8 . The torus i8 is reversible and traveling, i.e. (5.4) holds. By pP1qn
we also deduce the bounds

(7.41)
}U8 ´ U0}

k0,υ
s0`µpbq`σ1

ď C˚ευ
´1 ,

}U8 ´ rUn}
k0,υ
s0`µpbq`σ1

ď Cευ´1K´a2
n , @ n ě 1 .

In particular (5.6)-(5.7) hold. By Theorem 7.7-pP2qn, Fpλ;U8pλqq “ 0
holds for any λ in the set

č

nPN0

Gn
(7.38)
“ G0 X

”

č

ně1

Λ
υ
n prın´1q

ı

X

”

č

ně1

Λ
υ,I
n prın´1q

ı

X

”

č

ně1

TCnp2υ, τqprın´1q

ı

,

where G0 :“ Ωˆ rγ1, γ2s. To conclude the proof of Theorem 5.1 it remains
only to define the µ8

j in (5.8) and prove that the set Cυ8 in (5.10)-(5.13) is
contained in Xně0Gn. We first define

(7.42) G8 :“ G0 X

”

č

ně1

Λ
2υ
n pi8q

ı

X

”

č

ně1

Λ
2υ,I
n pi8q

ı

X

”

č

ně1

TCnp4υ, τqpi8q

ı

.

By (7.41), Lemma 6.4 and (7.17), one deduces that G8 Ď Xně0Gn, where
Gn are defined in pP2qn (cfr. e.g. Lemma 8.6 in [9]). We define µ8

j in (5.8)
with m8

1,n :“ m1,npi8q, m8
1
2

“ m 1
2
pi8q, m8

0 “ m0pi8q, and m1,n, m 1
2
, m0 as in

Proposition 6.13. By (7.9), pr
pnq

j pi8qqnPN, with r
pnq

j given by Theorem 7.1-
pS1qn (evaluated at i “ i8), is a Cauchy sequence in | ¨ |k0,υ. Let r8

j :“

limnÑ8 r
pnq

j pi8q, j P Sc0. It results |j|
1
2 |r8

j ´ r
pnq

j pi8q|k0,υ ď Cευ´3N´a
n´1

for any n ě 0. Recalling that rp0q

j pi8q “ 0 and (6.134), the estimates (5.9)
hold. Finally one checks (see e.g. Lemma 8.7 in [9]) that the set Cυ8 in
(5.10)-(5.13) satisfies Cυ8 Ď G8, with G8 in (7.42), and so Cυ8 Ď Xně0Gn.
This concludes the proof of Theorem 5.1.

Appendix A: Almost straightening of a transport operator

The main results of this appendix are Theorem A.2 and Corollary A.4.
The goal is to almost-straighten a linear quasi-periodic transport operator
of the form

(A.1) X0 :“ ω ¨ Bφ ` p0pφ, xqBx ,
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to a constant coefficient one ω ¨ Bφ ` m1,nBx, up to a small term pnBx, see
(A.4) and (A.5). We follow the scheme of Section 4 in [3]. We first intro-
duce the following norm: for any u “ upλq P HspTν`1q, s P R, k0-times
differentiable with respect to λ “ pω, γq P Rν ˆ rγ1, γ2s, we define the
norm

|u|k0,υs :“
ÿ

kPNν`1,0ď|k|ďk0

υ|k| sup
λPRνˆrγ1,γ2s

}Bkλupλq}s´|k|.

It satisfies |u|
k0,υ
s ď }u}

k0,υ
s ď |u|

k0,υ
s`k0

for any s P R. Note the key
estimate (A.2) for the composition where there is no loss of k0-derivatives
on the highest norm |u|

k0,υ
s , unlike the corresponding estimate in Lemma

3.3 with } }
k0,υ
s . This is crucial to prove (A.18) and then deduce the a-priori

bound (A.5) for the divergence of the high norms of the functions pn. The
following lemma follows as in [9]. Let s0 :“ s0 ` k0 ą 1

2pν ` 1q ` k0.

Lemma A.1. The following hold:
(i) For any s ě s0, we have

|uv|k0,υs ď Cpsq|u|k0,υs |v|k0,υs0 ` Cps0q|u|k0,υs0 |v|k0,υs .

The tame constant Cpsq :“ Cps, k0q is monotone in s ě s0.

(ii) ForN ě 1 andα ě 0 we have |ΠNu|
k0,υ
s ď Nα|u|

k0,υ
s´α and |ΠK

Nu|
k0,υ
s ď

N´α|u|
k0,υ
s`α for any s P R.

(iii) Let |β|
k0,υ
2s0`1 ď δps0q small enough. Then the composition operator B

defined as in (6.19) satisfies the tame estimate, for any s ě s0 ` 1,

(A.2) |Bu|k0,υs ď Cpsqp|u|k0,υs ` |β|k0,υs |u|
k0,υ
s0`1q.

The constant Cpsq :“ Cps, k0q is monotone in s ě s0. Moreover, the
diffeomorphism x ÞÑ x ` βpφ, xq is invertible and its inverse y ÞÑ y `

β̆pφ, yq satisfies, for any s ě s0, |β̆|
k0,υ
s ď Cpsq|β|

k0,υ
s .

(iv) For any ϵ ą 0, a0, b0 ě 0 and p, q ą 0, there exists Cϵ “ Cϵpp, qq ą 0,
with C1 ă 1, such that

|u|
k0,υ
a0`p|v|

k0,υ
b0`q ď ϵ|u|

k0,υ
a0`p`q|v|

k0,υ
b0

` Cϵ|u|k0,υa0 |v|
k0,υ
b0`p`q.

Remind that Nn :“ Nχn

0 , χ “ 3{2, N´1 :“ 1, see (6.17).

Theorem A.2 (Almost straightening). LetX0 be the quasi-periodic trans-
port operator in (A.1), where p0pφ, xq is a quasi-periodic traveling wave,
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evenpφ, xq, defined for all pω, γq P Rνˆrγ1, γ2s. For any S ą s0, there ex-
ist τ2 ą τ1`1`a, δ :“ δpS, s0, k0, bq ą 0 andN0 :“ N0pS, s0, k0, bq P N
(with τ1, a, b in (6.20)) such that, if

(A.3) N τ2
0 |p0|

k0,υ
2s0`b`1 υ

´1 ď δ ă 1 ,

then, for any n P N0, for any n “ 0, . . . , n, the following holds true:
pS1qn There exists a linear quasi-periodic transport operator

(A.4) Xn :“ ω ¨ Bφ ` pm1,n ` pnpφ, xqqBx ,

defined for all pω, γq P Rν ˆ rγ1, γ2s, where pnpφ, xq is a quasi-periodic
traveling wave function, evenpφ, xq, such that, for any s0 ď s ď S,

(A.5) |pn|k0,υs ď Cps, bqN´a
n´1|p0|

k0,υ
s`b , |pn|

k0,υ
s`b ď Cps, bqNn´1|p0|

k0,υ
s`b ,

for some constant Cps, bq ě 1 monotone in s P rs0, Ss, and m1,n is a real
constant satisfying

(A.6)
|m1,n|k0,υ ď 2 |p0|

k0,υ
s0`b ,

|m1,n ´ m1,n´1|k0,υ ď Cps0, bqN´a
n´2|p0|

k0,υ
s0`b , @n ě 2 .

Let ΛT0 :“ Rν ˆ rγ1, γ2s, and, for n ě 1, ΛTn :“ Λ
υ,T
n pp0q defined as

(A.7) Λ
T
n :“

␣

pω, γq P Λ
T
n´1 : |pω ´ m1,n´1ȷ⃗q ¨ ℓ| ě

υ

xℓyτ
@ ℓ P Zν

zt0u, |ℓ| ď Nn´1

(

.

For n ě 1, there exists a quasi-periodic traveling wave function gn´1pφ, xq,
oddpφ, xq, defined for all pω, γq P Rν ˆ rγ1, γ2s, fulfilling

(A.8) |gn´1|k0,υs ď CpsqN τ1
n´1υ

´1|ΠNn´1pn´1|k0,υs , @s0 ď s ď S ,

for some constant Cpsq ě 1 monotone in s P rs0, Ss, such that, defining
the composition operator pGn´1uqpφ, xq :“ upφ, x` gn´1pφ, xqq, induced
by the diffeomorphism x ÞÑ x ` gn´1pφ, xq, we have, for any pω, γq in the
set ΛTn (cfr. (A.7)), the following conjugation formula

(A.9) Xn “ G´1
n´1Xn´1 Gn´1 .

pS2qn Let ∆12p0 :“ p0,1 ´ p0,2. For any s1 P rs0 ` 1, Ss, there exist
Cps1q ą 0 and δ1ps1q P p0, 1q such that if

N τ2
0 sup

pω,γqPRνˆrγ1,γ2s

`

}p0,1}s1`b ` }p0,2}s1`b

˘

υ´1 ď δ1ps1q,
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then, for all pω, γq P Rν ˆ R,

}∆12pn}s1´1 ď Cps1qN´a
n´1}∆12p0}s1`b, }∆12pn}s1`b ď Cps1qNn´1}∆12p0}s1`b,

(A.10)

|∆12pm1,n`1 ´ m1,nq| ď }∆12pn}s0 , |∆12m1,n| ď Cps1q}∆12p0}s0 .(A.11)

Moreover, for any s ě s0, one has

}∆12gn}s Às υ
´1
`

}ΠNn∆12pn}s`τ ` υ´1|∆12m1,n|}ΠNnpn,2}s`2τ`1

˘

.

We deduce the following corollaries.

Corollary A.3. For any n P N0 we have TCn`1pm1,n, 2υ, τq Ă Λ
υ,T
n`1, with

TCn`1pm1,n, 2υ, τq as in (6.22).

Proof. When n “ 0, by definition we have TC1p2υ, τq Ă Λ
υ,T
1 . Let pω, γq P

TCn`1pm1,n, 2υ, τq. For any k “ 0, . . . , n ´ 1 we have, by (A.6), |m1,n ´

m1,k| Às0,b N
´a
k´1|p0|

k0,υ
s0`b. Thus, recalling (6.22), for all 0 ă |ℓ| ď Nk, we

have |pω ´ m1,k ȷ⃗q ¨ ℓ| ě |pω ´ m1,nȷ⃗q ¨ ℓ| ´ |m1,n ´ m1,k||⃗ȷ||ℓ| ě 2υxℓy´τ ´

CN´a
k´1|p0|

k0,υ
s0`b|ℓ| ě υxℓy´τ if CN τ`1

k N´a
k´1|p0|

k0,υ
s0`bυ

´1 ă 1, which is
satisfied by (A.3) and (6.20). Thus, recalling (A.7), we have proved that
pω, γq P Λ

υ,T
n`1. □

The composition operator Bn, defined inductively by Bn :“ Bn´1˝Gn´1,
n P N, B0 :“ Id, provides the almost-straightening conjugation of the
transport vector field X0.

Corollary A.4. For any n P N0 and pω, γq P TCn`1pm1,n, 2υ, τq we have
the conjugation formula Xn “ B´1

n X0Bn, where Xn is given in (A.4) with
n “ n. Moreover, when n ě 1, for any n “ 1, . . . , n, each Bn is the
composition operator induced by the diffeomorphism of the torus x ÞÑ x`

βnpφ, xq, pBnuqpφ, xq “ upφ, x ` βnpφ, xqq, where the function βn is a
quasi-periodic traveling wave, oddpφ, xq, satisfying, for any s0 ď s ď S,
for some constant CpSq ě 1,

(A.12) |βn|k0,υs ď CpSqυ´1N τ1
0 |p0|

k0,υ
s`b .

Furthermore, for p0,1, p0,2 as in pS2qn, we have

}∆12βn}s1 ď CpSqυ´1N τ
0 }∆12p0}s1`b.

Proof. We have β1 “ g0, and inductively βn “ βn´1 `Bn´1gn´1. Since gn
is a quasi-periodic traveling wave oddpφ, xq, so is βn. The estimates follow
by Theorem A.2 and Lemma A.1. □
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Proof of Theorem A.2. The proof is inductive. In Lemma A.5 we prove that
the norms |pn|

k0,υ
s satisfy inequalities of a Nash-Moser iterative scheme,

which converges under the smallness condition (A.3).
The step n “ 0. Items pS1q0, pS2q0, hold with m1,0 :“ 0.
The reducibility step. We show now how to transform Xn in (A.4) into
Xn`1 by conjugating with the composition operator Gn induced by the dif-
feomorphism y :“ x`gnpφ, xq of Tx where gnpφ, xq is a periodic function
defined below, see (A.14). A direct computation gives (cfr. Remark 6.2 )

G´1
n Xn Gn “ ω ¨Bφ`m1,nBy`tG´1

n

`

pω ¨Bφ`m1,nBxqgn`pn`pnpgnqx
˘

uBy .

We choose gnpφ, xq as the solution of the homological equation

(A.13) pω ¨ Bφ ` m1,nBxqgnpφ, xq ` ΠNnpn “ xpnyφ,x

where xpnyφ,x is the average of pn defined as in (3.2). So we define

(A.14) gnpφ, xq :“ ´pω ¨ Bφ ` m1,nBxq
´1
extpΠNnpn ´ xpnyφ,xq

where the operator pω ¨ Bφ ` m1,nBxq
´1
ext is introduced in (3.5). The function

gnpφ, xq is defined for all parameters pω, γq P Rν ˆ rγ1, γ2s, it is a quasi-
periodic traveling wave, oddpφ, xq, fulfills (A.8) at the step n (by (3.7)), and
for any pω, γq in the set ΛTn`1 defined in (A.7), it solves the homological
equation (A.13). By (A.8) at the step n, (A.5), (A.3), a ě χτ1 ` 3 (see
(6.20))

(A.15) |gn|
k0,υ
2s0`1 ď Cps0qN τ1

n N
´a
n´1|p0|

k0,υ
2s0`b`1υ

´1 ă δps0q

provided N0 is large enough. By Lemma A.1 the diffeomorphism y “

x ` gnpφ, xq is invertible and its inverse x “ y ` ğnpφ, yq (which induces
the operator G´1

n ) satisfies |ğn|
k0,υ
s ď Cpsq|gn|

k0,υ
s . For any pω, γq in ΛTn`1,

the operator Xn`1 “ G´1
n Xn Gn takes the form (A.4) at step n ` 1 with

(A.16)
m1,n`1 :“ m1,n ` xpnyφ,x P R ,

pn`1pφ, yq :“ tG´1
n

`

ΠK
Nn
pn ` pnpgnqx

˘

upφ, yq .

This verifies (A.9) at step n ` 1. Note that m1,n`1 P R and pn`1pφ, yq in
(A.16) are defined for all pω, γq P Rνˆrγ1, γ2s. We first show the following
iterative estimates of Nash-Moser type.

Lemma A.5. The function pn`1 in (A.16) satisfies, for any s0 ď s ď S,

|pn`1|k0,υs ď C1psq
`

N´b
n |pn|

k0,υ
s`b `N τ1`1

n υ´1|pn|k0,υs |pn|k0,υs0

˘

(A.17)

|pn`1|
k0,υ
s`b ď C2ps, bq

`

|pn|
k0,υ
s`b `N τ1`1

n υ´1|pn|
k0,υ
s`b |pn|k0,υs0

˘

(A.18)
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where C1psq, C2ps, bq ą 0 are monotone in s0 ď s ď S. Moreover, (A.5)-
(A.6) hold at the step n ` 1.

Proof. We write pn`1 in (A.16) as pn`1 :“ G´1
n Fn with Fn :“ ΠK

Nn
pn `

pnpgnqx. By Lemma A.1, we get

|Fn|k0,υs ď |ΠK
Nn
pn|k0,υs ` Cpsq|pn|k0,υs |gn|

k0,υ
s0`1 ` Cps0q|pn|k0,υs0 |gn|

k0,υ
s`1 .

Therefore (A.17) follows by (A.2), (A.8) at step n, Lemma A.1 and (A.15).
The estimate (A.18) follows analogously.

By (A.17) and (A.5) we have, for any s0 ď s ď S,

|pn`1|k0,υs ď C1pSqCps, bq
`

N´b
n Nn´1|p0|

k0,υ
s`b

` Cps0, bqυ´1N τ1`1
n N´2a

n´1 |p0|
k0,υ
s`b |p0|

k0,υ
s0`b

˘

ď Cps, bqN´a
n |p0|

k0,υ
s`b ,

asking C1pSqN´b
n Nn´1 ď 1

2N
´a
n and

C1pSqCps0, bqυ´1N τ1`1
n N´2a

n´1 |p0|
k0,υ
s0`b ď 1

2N
´a
n ,

which both follow by (6.20), the smallness assumption (A.3) and with
N0 :“ N0pSq ą 0 sufficiently large. This proves the first estimate of (A.5)
at step n ` 1. The second follows similarly. By (A.16) and (A.5), we prove
(A.6) at step n ` 1. □

The proof of pS1qn`1 is complete. The item pS2qn`1 follows similarly.
The proof of Theorem A.2 is concluded. □
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