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Abstract

We prove the existence of small amplitude time quasi-periodic solutions
of the pure gravity water waves equations with constant vorticity, for a
bidimensional fluid over a flat bottom delimited by a space periodic
free interface. Using a Nash-Moser implicit function iterative scheme
we construct traveling nonlinear waves which pass through each other
slightly deforming and retaining forever a quasiperiodic structure. These
solutions exist for any fixed value of depth and gravity and restricting
the vorticity parameter to a Borel set of asymptotically full Lebesgue
measure.
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2 M. BERTI, L. FRANZOI, A. MASPERO
1 Introduction

A problem of fundamental importance in fluid mechanics regards the
search for traveling surface waves. Since the pioneering work of Stokes
[32] in 1847, a huge literature has established the existence of steady trav-
eling waves, namely solutions (either periodic or localized in space) which
look stationary in a moving frame. The majority of the results concern
bidimensional fluids. At the end of the section we shortly report on the vast
literature on this problem.

In the recent work [[7]] we proved the first bifurcation result of time quasi-
periodic traveling solutions of the water waves equations under the effects
of gravity, constant vorticity, and exploiting the capillarity effects at the
free surface. For pure gravity irrotational water waves with infinite depth,
quasi-periodic traveling waves has been obtained in Feola-Giuliani [16].

The goal of this paper is to prove the existence of time quasi-periodic
traveling water waves, also in the physically important case of the pure
gravity equations with non zero constant vorticity, for any value of the
depth of the water, finite or infinite. These solutions are a nonlinear su-
perposition of multiple Stokes waves traveling with rationally independent
speeds, and can not be reduced to steady solutions in any moving frame. We
are able to use the vorticity as a parameter: the solutions that we construct
exist for any value of gravity and depth of the fluid, provided the vorticity
is restricted to a Borel set of asymptotically full measure, see Theorem[1.2]
We also remark that, in case of non zero vorticity, bifurcation of standing
waves can not be expected, as they are not allowed by the linear theory.

It is well known that this is a subtle small divisor problem. Major
difficulties are that: (¢) the vorticity parameter enters in the dispersion
relation only at the zero order; (i¢) there are resonances among the lin-
ear frequencies which can be avoided only for traveling waves; (iii) the
dispersion relation of the pure gravity equations is sublinear at infinity;
(v) the nonlinear transport term is a singular perturbation of the unper-
turbed linear water waves vector field. Related difficulties appear in the
search of pure gravity time periodic standing waves which have been con-
structed in the last years for irrotational fluids by looss, Plotnikov, Toland
(30,124, 21]], extended to time quasi-periodic standing waves in Baldi-Berti-
Haus-Montalto [2]]. In presence of surface tension, time periodic and quasi-
periodic standing waves were constructed respectively by Alazard-Baldi
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[L] and Berti-Montalto [9]. We mention that also the construction of grav-
ity steady traveling waves periodic in space presents small divisor difficul-
ties for three dimensional fluids. These solutions, in a moving frame, look
steady bi-periodic waves and have been constructed for irrotational fluids
by Iooss-Plotnikov [22| 23] using the speed as a bidimensional parameter
(for gravity-capillary waves in [13]], this is not a small divisor problem).

We first recall the equations. We consider the Euler equations of hydro-
dynamics for a 2-dimensional incompressible and inviscid fluid with con-
stant vorticity -y, under the action of pure gravity. The fluid occupies the re-
gionDyy :={(z,y) e TxR : —h <y <n(t,z)},T:=T, :=R/(2nZ),
with a (possibly infinite) depth h > 0 and space periodic boundary con-
ditions. The unknowns of the problem are the free surface y = n(t,x)
of the time dependent domain D,y and the divergence free velocity field
(e
field is the sum of the Couette flow ( _g y) (recently studied in [5} 137] and
references therein), which carries all the vorticity ~ of the fluid, and an ir-
rotational field, expressed as the gradient of a harmonic function ®, called
the generalized velocity potential. Denoting v (¢, x) := ®(t, z, n(t, x)) the
evaluation of the generalized velocity potential at the free interface, one re-
covers ® by solving the elliptic problem A® = 0in Dy, & = aty =
n(t,z) and ®, — 0asy — —h. The last condition means the impermeabil-

ity of the bottom: ®,(t,z,—h) = 0if h < o0, and lim @, (¢, z,y) = 0,
y——00
if h = 400. Imposing that the fluid particles at the free surface evolve onto

it (kinematic boundary condition) and that the pressure of the fluid equals
the constant atmospheric pressure at the free surface (dynamic boundary
condition), the time evolution of the fluid is determined by the following
system of equations

an { m = Gy + v

2 2
o = —gn — % + UG OQE 4y, + 401G ()Y

). If the fluid has constant vorticity v, — u, = <, the velocity

Here g is the gravity and G(n) is the Dirichlet-Neumann operator

G(U)?/) = G(%hW = (_(I):Jcnm + (I)y)|y:77(:c) :

As observed in the irrotational case by Zakharov [39], and in presence of
constant vorticity by Wahlén [36], the water waves equations (I.1)) are the
Hamiltonian system 1y = Vy,H, ¢y = (—V, + 70, 'Vy)H, where V
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denotes the L?-gradient, with Hamiltonian (cfr. Section

(1.2) H(n,4) = ;J (w G(n)¢+gn2) dx+% f (—wxn2+%n3> dz.
T T

The equations (I.1) enjoy two important symmetries. First of all, they are

time reversible. We say that a solution of (I.1)) is reversible if n(—t, —x) =

n(t,z), Y(—t,—x) = —i(t,z). Second, since the bottom of the fluid

domain is flat, they are invariant by space translations.

The variables (1,) of system belong to some Sobolev space
H;(T) x H*(T) for some s large. Here H(T) is the Sobolev space of
functions with zero average H§(T) := {u € H(T) : { u(z)dz = 0}
and H *(T) the corresponding homogeneous Sobolev space, obtained by
identifying the functions in H*(T) which differ by a constant. This choice
of the phase space is allowed because ST n(t,z)dx is a prime integral of

(T-T) and the right hand side of (T-T)) depends only on 7 and ¢ — 5= {9 da.
Linearizing (I.1)) at the equilibrium (7, 1)) = (0, 0) gives the system

(1.3) om=GO), b =—gn+~3,'G0)Y,

where G(0) is the Dirichlet-Neumann operator at the flat surface n = 0. A
direct computation reveals that G(0) := G(0,h) is the Fourier multiplier
operator

(1.4) G(0,h) := D tanh(hD) if h < oo, G(0,h):=|D|ifh =+,
where D := 10,. Thus its symbol G;(0) := G;(0,h) is, for any j € Z,
(1.5) G4(0,h) := jtanh(hj) ifh < oo, G;(0,h):=|j| ifh=400.

As showed in Section [2] all reversible solutions of (1.3 are the linear su-
perposition of plane waves, traveling either to the right or to the left, given

by
(62) - 5 (s =a)
(1.0 . (ann cos(na + Qn(v)t)>
P_pp_nsin(nz + Q_,(7)t)

where p, > 0 are arbitrary amplitudes and M,,, Py, are the real coeffi-
cients
G,(0 i v M,
; 4 .
A7) My i= (=% )", G Z\0}, Peni= 2= M, ne N,
gtz 2

j2
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The frequencies Q.+, (7) in (1.6) are

(1.8) Q7)== \/(g + ’fGégO))Gj(o) + ;GJ;O) . jez\{0}.

Note that the map j — €2;(7) is not even due to the vorticity term vG(0) /4,
which is odd in j.

All the linear solutions are either time periodic, quasi-periodic or
almost-periodic, depending on the irrationality properties of the frequencies
Q4 () and the number of non zero amplitudes p4,. The problem of the
existence of traveling quasi-periodic in time water waves is formulated as
follows.

Definition 1.1. (Quasi-periodic traveling wave) We call (n(¢, z), ¥ (¢, x))
a time quasi-periodic traveling wave with irrational frequency vector w =
(wi,...,wy) € R", v e N,ie. w- L # 0 for any ¢ € Z"\{0}, and “wave
vectors” (j1,...,Jv) € Z", if there exist functions (7, 15) : T — R? such

v

that (77(t7 l‘), 7/’(t7 l‘)) = (ﬁ(wlt - jllE, e awut - ju$)7¢(uf1t - j1$, e awut - ]l/x))

Note that, if v = 1, such functions are time periodic and indeed station-
ary in a moving frame with speed wj/j1. If the number of the irrational
frequencies in greater or equal than 2, such waves cannot be reduced to
steady waves by any choice of the moving frame.

We construct traveling quasi-periodic solutions of the nonlinear equa-
tions (I.I) with a diophantine frequency vector w belonging to an open
bounded subset  in R”, namely, for some v € (0,1), 7 > v — 1,

DC(v,T) := {w EQCRY : jw- Ll zvll) ", VLle Z”\{O}},

v

where (¢) := max{1, |¢|}, and with (77, 7)) in some Sobolev space

HY(T,R?) = {[(¢) = Y fee™* e B2 ¢ | fI2 = 3 |fol0% < oo}

LeZ” LeZ”

Fixed finitely many arbitrary distinct natural numbers
(1.9) ST :={n,....,m}cN, 1<m<...<n,,
and signs

(1.10) Y:={o1,...,0,}, o.{-1,1}, a=1,...,v,
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we consider reversible quasi-periodic traveling wave solutions of the linear
system (1.3), given by

(-, 5, GV an)

Mz,A/& -, cos(Taz + Q_p, (7))
(1.11) + > <p \/\/%SIH(RQIL‘-FQ na(;y) )>

where {45, > 0,a = 1,...,v. The frequency vector of (I.TT)) is given by
(1.12) Q) == (Qouna (V))a=1,...» € RV.

Theorem[I.2]proves the existence of quasi-periodic traveling waves of (I.1)),
close to the linear solutions (L.IT), for most values of the vorticity y €
[Y1,72], with a frequency vector Q= (anna)a 1,...v» close to Q( ) =

(Qaaﬁa (’Y))azl,..., .

Theorem 1.2. (KAM for traveling gravity water waves with constant
vorticity) Consider finitely many tangential sites ST < N as in and
signs 3 as in (I.10). Fix a subset [y1,72] < R. Then there exist 5 > 0,
eo € (0,1) such that, for any |€| < €2, € = ((puma)a=1,.v € RY, the
following hold:

1) There exists a Borel set G¢ < [y1,72] with density one at & = 0, i.e.
lime o [Ge| = 72 — 715

2) For any y € Gy, the gravity water waves equations have a reversible
quasi-periodic traveling wave solution (according to Definition[I.1) of the
form

ae{l,...v: oq=

ae{l,...,v: cq=—1}

(n(m?) - A (Azf ﬁ: i s%(%))

Mm\/éqcos(ﬁam + ﬁ_ﬁa (7)t) (o
¥ Z (PnGMSin(nax + Q5 (7)75)> +r(t )

where r(t,x) = %(ﬁalﬁl ()t — oz, .. ., (ngyﬁu ()t — o x), for v €

ac{l,....v}: og=
(1.13) Sthwhi o=t

ae{l,...v}: og=—1

H5(T",R?), satisfying limg E/Hi 0, with a Diophantine frequency

vector 0 = (anm)azlw,y € RY, depending on ~,&, and satisfying

~ —

lime_,o Q2 = Q(v). In addition these quasi-periodic solutions are linearly
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The solutions (I.13)) are a slight deformation of the quasi-periodic linear
traveling waves (I.TT)). Thus, for { # £’ small enough, and y € G¢ N G the
quasi-periodic solutions (L.13)) are different. The solutions (I.13) are lin-
early stable in the sense that the linearized vector field at the quasi-periodic
traveling wave solutions (I.13) has purely imaginary Floquet exponents,
see (5.8). This is a byproduct of the KAM reducibility of section[7] In par-
ticular, arguing as in [9, pages 6-7], the Sobolev norms of the solutions of
the linearized equations at the solutions (I.13) are uniformly bounded in ¢.

Let us make some comments about the result.

1) Vorticity as parameter and irrotational quasi-periodic traveling waves.
We are able to use the vorticity -y as a parameter, even though the depen-
dence of the linear frequencies £2;(-y) in (L.8) with respect to y affects only
the order 0. If 74 < 0 < y2 we do not know if the value v = 0 belongs to
the set G, for which the quasi periodic solutions exist. Nevertheless,
irrotational quasi-periodic traveling solutions of with v = 0 exist for
most values of the depth h, see Remark f.6] These traveling waves do not
clearly reduce to the standing waves constructed in [2]], which are even in
the space variable.

2) More general traveling solutions. The Diophantine condition (5.10)
could be weakened requiring only |w - ¢| = wv{¢)~" for any ¢ € Z"\{0}
with /1 o171 + ... + ¢, 0,1, = 0, so that w could admit one non-trivial
resonance. This is the natural minimal requirement to look for traveling
solutions of the form U (wt — ), see Definition [3.1]and Remark [5.2] For
v = 2 solutions of these kind could be time periodic, with clearly a com-
pletely different shape with respect to the classical Stokes traveling waves
[32].
Let us make some comments about the proof.

3) Symmetrization and reduction in order of the linearized operator. The
leading order of the linearization of the water waves system (1.1) at any
quasi-periodic traveling wave is given by the Hamiltonian transport oper-

ator (see (6.15)) L1r = w - 0y, + (aﬁ)v ‘706 ) where V (g, z) is a small
quasi-periodic traveling wave. By the almést-straightening Lemma [6.3]
(cfr. Appendix , for any (w,~y) satisfying non-resonance conditions as
in (5.11), we conjugate LR via a symplectic transformation induced by

a diffeomorphism of the torus y = = + [(p,x) to a transport operator

moy O Oyps O
w.éw—k( 0 mlay) +( 0 pao, , for some constant m; € R and an

exponentially small function pg(p, =), see (6.24). For standing waves [2]
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we have m; = 0 and the complete conjugation of LR is proved for any w
diophantine. Here we do not perform the full straightening of the transport
operator L1gr (i.e. we have T < o0) in order to formulate a simple non-
resonance condition as in (5.11). The KAM algebraic reduction scheme is
like in [[17, 3]] (the estimates in [17] after finitely many iterative steps are
not sufficient for our purposes). We also perform in a symplectic way other
steps of the reduction to constant coefficients of the lower order terms of
the linearized operator. This prevents the appearance of unstable operators.
Since Section [6.4] we shall preserve only the reversible structure.

4) Traveling waves and Melnikov non-resonance conditions. We strongly
use the invariance under space translations of the Hamiltonian nonlinear
water waves vector field (I.T)), i.e. the “momentum conservation”, in the
construction of the traveling quasi-periodic waves. We list the main points:

(i) The Floquet exponents (5.8) of the quasi-periodic solutions (I.13))
are a singular perturbation of the unperturbed linear frequencies in (1.8]),
with leading terms of order 1. The Melnikov non-resonance conditions
formulated in the Cantor-like set C%, in (5.10)-(5.13) hold on a set of large
measure only thanks to the conservation of the momentum, see Section[5.2]

(if) We can impose Melnikov conditions that do not lose space deriva-
tives, see (5.12), simplifying the reduction in decreasing orders of Section
[land the KAM reducibility scheme of Section[7] Indeed, it is enough to re-
duce to constant coefficients the linearized vector operator until the order 0
(included) in order to have a sufficiently good asymptotic expansion of the
perturbed frequencies to prove the inclusion Lemma5.6] Conversely, in [2]
the second order Melnikov conditions verified for the standing pure gravity
waves lose several space derivatives and many more steps of regularization
are needed.

(22¢) The invariance by space translations allows to avoid resonances be-
tween the linear frequencies in the construction of the quasiperiodic trav-
eling waves. For example, with infinite depth h = 400, these are given by
Q;(v) = wj(y)+3sign(j), and there are £ € Z¥\{0}, j, j’ ¢ {0aTa}a=1,....0»
with j # j, such that >, _; €4 Qo5 (7) + 25 (7) — Qs () = 0 for all ~.
For example if 01 = o9, it is enough to take ¢ = (¢1,¢3,0,...,0) =
(—=1,1,0,...,0) and j = —o171, j/ = —oane. To exclude this resonance
we exploit the momentum condition Y/ _, lq 0,7 + j — j' = 0. The
indexes above violate this constraint, as ; # 72 by (I.9). We shall sys-
tematically use this kind of arguments to exclude nontrivial resonances.



TRAVELING QUASI-PERIODIC WATER WAVES 9

Before concluding this introduction, we shortly describe the huge litera-
ture regarding time periodic traveling waves, which are steady in a moving
frame, and refer to [[7]] for a wider overview.

Literature about time periodic traveling wave solutions. After the work
of Stokes [32], the first rigorous construction of small amplitude space pe-
riodic steady traveling waves goes back to the 1920’s with the papers of
Nekrasov [29], Levi-Civita [26] and Struik [33]], in case of irrotational bidi-
mensional flows under the action of pure gravity. In the presence of vor-
ticity, Gerstner [[19] in 1802 gave an explicit example of periodic traveling
wave, in infinite depth, and non-zero vorticity, while Dubreil-Jacotin [[15]]
in 1934 proved the first bifurcation result of periodic traveling waves with
small vorticity, extended later by Goyon [20] and Zeidler [40] for large vor-
ticity. We point out the recent works of Wahlén [35] for capillary-gravity
waves and non-constant vorticity, and of Martin [28]], Walhén [36] for con-
stant vorticity. They all deal with 2d water waves and can ultimately be
deduced by the classical Crandall-Rabinowitz bifurcation theorem from a
simple eigenvalue. We also mention that these local bifurcation results can
be extended to global branches of steady traveling waves by the theory of
global analytic, or topological, bifurcation, see e.g. Keady-Norbury [27],
Toland [34], for irrotational flows and Constantin-Strauss [12]] with non-
constant vorticity. We suggest the reading of [10]] for further results. We
finally quote the recent numerical work of Wilkening-Zhao [38]] about spa-
tially quasi-periodic gravity-capillary 1d-water waves.

2 Hamiltonian structure and linearization at the origin

The Hamiltonian formulation of the water waves equations (1.1) was ob-
tained by Constantin-Ivanov-Prodanov [11] and Wahlén [36]. It reduces to
the Craig-Sulem-Zakharov formulation in [39}[14] if v = 0. On the phase
space H}(T) x H'(T), endowed with the non canonical Poisson tensor

Ju(y) = (_[} 4 Wé‘gl ) we consider the Hamiltonian H defined in (1.2).
Such Hamiltonian is well defined on H}(T) x H(T) since G(n)[1] = 0
and {1 G(n)yydx = 0. It turns out [T} 36] that equations (II)) are the

Hamiltonian system generated by H (), ¢) with respect to the Poisson ten-
sor Jar (7).

Reversible structure. Defining on the phase space H{ (T) x H'(T) the
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involution

2.1) S <Z> = (_”;V) . 0¥ (x) = n(-w),

the Hamiltonian (1.2)) is invariant under S, thatis H oS = H. This follows
as the Dirichlet-Neumann operator satisfies G(n¥)[¢Y] = (G(n)[¢¥])".
Equivalently, since the involution S is anti-symplectic, the water waves vec-
tor field X in the right hand side on satisfies X 0 S = =S 0 X.

Translation invariance. Since the bottom of the domain occupied by the
fluid is flat, the water waves equations (I.1) are invariant under space trans-
lations. Specifically, defining the translation operator
(2.2) T u(x) —»u(z +¢), <eR,

the Hamiltonian (1.2) satisfies H o 7. = H for any ¢ € R. Equivalently,
the water waves vector field satisfies X o 7. = 7. o X, for all ¢ € R. This
property follows since 7. o G(n) = G(7cn) o 7.

Wahlén coordinates. We introduce the Wahlén [36]] coordinates (7, ) via
the map

n\ n L Id 0 -1 Id 0
o (3w (- (2 D) (2 8)

The change of coordinates W maps the phase space H, é x H' into itself and
conjugates the Poisson tensor Jys(7y) to W=LJy (v)(W1)* = J, where
J:= (948 is the canonical one. The Hamiltonian (T2) becomes

Q4 H=HoW, ie H®.Q):=H(n(+ 30 ),
and the Hamiltonian equations are transformed into

(2.5) om=VeH, &(=-V,H.

The symplectic form of (2.5)) is the standard one,

(2.6) W) (&) = (=C,m)ez + (n, &) e -

The transformation W defined in (2.3)) is reversibility preserving, namely
it commutes with the involution S in (see Definition [3.14] below), and
commutes with the translation operator 7.. Thus also the Hamiltonian # in
(2.4) is invariant under the involution S and the translation operator 7.

Linearization at the equilibrium. We now show that the reversible solu-
tions of the linear system (I.3) have the form (1.6). In the Wahlén coor-
dinates (2.3), the linear Hamiltonian system (I.3) is transformed into the
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Hamiltonian system
2.7)

) @ I @ Qi <g - (3)* 81 6(0)5; —;a;lG(m)

generated by the quadratic Hamiltonian

v win = (0).3),

We first conjugate (2.7)) under the symplectic transformation <77> =M <u>

¢ v
where M is the diagonal matrix of self-adjoint Fourier multipliers
M (D) 0 ) G(0) 1/4
29) M:= 1), M(D):= ,
29) < 0 M(D)*! (D) (g—fﬁle(O)&Cl)

with the real valued symbol M; as in (1.7). The map M is reversibility
preserving. By a direct computation, system (2.7) assumes the symmetric
form

(2.10)

) 0 s (2 )

T

where

@.11) w(y, D) := \/gG(O) - (%a;lG(o))Q.

Now we introduce complex coordinates by the transformation

w\ z 1 /1d 1d 1.1 (Id i
o ()-e(oe 551 e 0 )

In these variables, the Hamiltonian system (2.I0) becomes the diagonal
system

(2.13)
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We regard the system (2.13) in H' x H'. The diagonal system (2.13))
amounts to the scalar equation

(2.15) oz = —iQ(y, D)z, 2(x) = ZjeZ\{o}Zjeijx7

which, written in the exponential Fourier basis, amounts to 2; = —i€;(7)z;,
j € Z\{0}. Note that, in these complex coordinates, the involution S in
(2.1) reads as

z(x) z(—) . - .
(2.16) (z(:p)) <z(—a:)> , te. zj—7Zj, VjeZ\{0}.
Any reversible solution of (2.13) has the form

2(t,7) : QM) with p; e R.

1
- ﬁZjeZ\{O}pj ¢
Back in the variables (7, ) defined in (2.3)), using that by (2.9), (2.12),

(¢) = () - 3 (o i) ()

these solutions assume the form (1.6)).

We finally express the Fourier coefficients z; € C in (2.15) as z; =
J\/i J
(j, Bj) jez {0y the symplectic form (2.6) becomes 27 3 7, () davj A d;.
The quadratic Hamiltonian #, in .8) reads 27 3,5, (o) QjTM(a? + 53),
and the involution S in 2.1) reads (¢, 5;) — (o5, —5;), 7 € Z\{0}. We
may also enumerate these independent variables as (a_n, B_n, Qn, Bn),
n € N. Thus the phase space § := L3 x L? of (2.5) decomposes as the
direct sum ) = > Vi, + @ Vi, — of 2-dimensional symplectic subspaces

, where (avj, 8;) € R?, for any j € Z\{0}. In the new coordinates

neN

Vi, = {(n) _ (Mn(an cos(nx) — By sin(nx)) ) (am i) € Rg} 7

¢ MY (Bn cos(nz) + an sin(nz))

v = {(0) = (Ve L ) e e

which are invariant for the linear Hamiltonian system (2.7). The involution
& defined in (2.1)) and the translation operator 7. in (2.2) leave the subspaces
Vo, 0 € {£}, invariant.

Tangential and normal subspaces of the phase space. We split the phase
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space ) = H{ +,2®5§+ s> Where nl + , i8 the finite dimensional tangential
subspace

2.17) s =20 Viwoa
and ﬁgﬁ 5, 18 the normal subspace
Z ._\V
(2.18) 9557 Dy Viaroa ® D gge (Vs @ Vi)

.
S+,

and H§+,2 the symplectic projections on the subspaces ﬁg . and ﬁSLﬁE’

Both the subspaces .6§+ 5, and ﬁ§+ 5, are symplectic. We denote by 11

respectively. The restricted symplectic form W 57, is represented by the
ST,5
-1

Z
|'65+,2

the subspace ﬁé 5;- Its associated Poisson tensor is J, := HSﬁ v Jnz

st,=
By Lemma 2.6 in [7]], we have that JZI J,=J, JZI = Id54+
ST,%2

Action-angle coordinates. We introduce action-angle coordinates on the
tangential subspace ), , defined in (Z.I7). Given the sets ST and X de-
fined respectively in (I.9) and (T-10), we define the set

219 S:={7,...,3,} < Z\{0}, J,:=04aa, a=1,...,v,

and the action-angle coordinates (6, I;) jes, by the relations, for any j € S,
forany 0 < |I;| <&,

(220) ;= m cos(0;), Bj = —m sin(6;) .

In view of (2.17)-(2.18), we represent any function of the phase space $) as
A0, I,w) :==v7(0,1) + w

(2.21) 1 Z {( M;\/I; + & cos(0; — jx) >] W
= — 71 . . b
ﬁjeg —M; /1 + &sin(0; — jx)
where 0 := (6;)jes € T, I := (Ij)jes € RV and w € HE; . In view of

(2.21)), the involution & in (2.1)) reads

—

(2.22) S:(0,I,w) — (—60,1,Sw) ,

symplectic structure JZl = HIZQ J where HIZQ is the L2-projector on

the translation operator 7¢ in (2.2) reads

(223) 7_—; : (97 Ia U}) — (9 —j§, Ia T§w)7 Ve e R)
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where

(2.24) Ji= (j)jES = (jl? s 7ju) € ZV\{O} )
and the symplectic 2-form (2.6) becomes

(2.25) W=), (0 ~dlj) @ W ot

Given a Hamiltonian K : T" xR” xﬁS 5, — R, the associated Hamiltonian
vector field is X := (81K, —0p K, JLVwK) where V,, K denotes the L?
gradient of K with respect to w € 55§+ 5

Tangential and normal subspaces in complex variables. The linear map
M(C is an isomorphism between the tangential subspace ﬁg + y, defined in

(2.17) and
— (%) . - , ijz}
Hs : { <z> : z(x) E jes€ |

and between the normal subspace )%, . defined in (2-18) and

z

(2.26) Hg, := { <> 2(x) = Zjesv jelt e L2}7 ¢ .= Z\(Su{0}).

z

Denoting by IIY, IIg , the L?-orthogonal projections on the subspaces Hg
and HLO, we have that

227 If, o =MCUL(MC)™, TIg 5 = MCIg, (MC) ™!
Moreover (cfr. Lemma 2.9 in [7]])
(2.28) (T, Quw) 2 =0, Yol eHl, ., YweHg 5.

Notation. For a <; b we mean a < C(s)b for a constant C(s) > 0. Let
N:={1,2,...} and Ny:={0} UN.

3 Functional setting

We report basic notation, definitions, and results used along the paper,
concerning traveling waves, pseudo-differential operators, tame operators,
and the algebraic properties of Hamiltonian, reversible and momentum pre-
serving operators.

Definition 3.1. (Quasi-periodic traveling waves) Let 7:= (7;,...,7,) €
Z" be the vector defined in (2.24). A function u(yp, ) is a quasi-periodic
traveling wave if it has the form u(p, ) = U(¢p—7r) where U : TV — CXK,
K € N, is a (27)"-periodic function.
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Comparing with Definition [I.T| we call quasi-periodic traveling wave
both u(p, x) = U(¢— Jx) and the function of time u(wt, ) = U(wt— Jz).
Quasi-periodic traveling waves are characterized by u(¢p — 55,:) = Tcu
for any ¢ € R, where ¢ is the translation operator in (2.2). Product and
composition of quasi-periodic traveling waves are quasi-periodic traveling
waves. Expanded in Fourier series, a quasi-periodic traveling wave has the
form u(p, x) = Yyezv jez. jti0=0 g ;€' +37) For K > 1 we define

3.1 Igu:= Z u&jei(z'“"”x),
(<K, j€S5, j+ =0

and IT%; := Id — IIx. For a function u (i, ) we define the averages

1
(W = Wﬁry“u(% z) dpdz,

1
Wyla) = s | ulpa)de

we note that (u), = (u), » when u(y, ) is a quasi-periodic traveling wave.

3.2)

Whitney-Sobolev functions. We consider families of Sobolev functions
A — u()\) € H¥(T*!) which are ko-times differentiable in the sense
of Whitney with respect to the parameter A := (w,vy) € F < RY x
[v1,72] where FF < R”*1 is a closed set. We refer to Definition 2.1 in
[2], for the definition of Whitney-Sobolev functions. Given v € (0, 1),
by the Whitney extension theorem, we have the equivalence HquOﬁ” ~u ko

Slat<ko V11050 oo o1 g+ For simplicity we denote | |55 = | 5.

Classical tame estimates for the product hold (see e.g. Lemma 2.4 in [2]):
forall s > sp > (v +1)/2,

(33)  Juv|{ < O(s, ko)l 8 [vlsg + C(so, ko) Jul s ol 5,

and
G IMgulfor < Kulf?, 0<a<s,
ITgulfor < K=u®8, a=0.

The composition operator u(p, z) — £(u)(p,z) := f(p, z,u(p, x)) satis-
fies the following lemma.

Lemma 3.2. (Lemma 2.6 in [2]) Let f € C*(T?xR,R). Ifu()\) € H*(T%)

is a family of Sobolev functions with HquO’ < 1, then, forall s > sy :=
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(d+1)/2 [£@)]5 < C(s, ko, )1+ [ul5®). If f(i,2,0) = O then
£ ()£ < O (s, ko, Hlule.

Consider a p-dependent diffeomorphism of T, given by y=xz+5(p, ).

Lemma 3.3. Let HBHgg(ﬁrkOH < 0(s0, ko) small enough. Then the com-
position operator (Bu) (¢, x):=u(p, x + B(p, x)) satisfies | Bu|2" <k,

k7 kv ka
a2 + 181 ful 22y, 1o

the inverse diffeomorphism z =+ (¢, y), satisfies || 3] % Ss.ko 18]

forany s = sq, and the function B defined by
ko,v
s+ko*

[

Constant transport equation on quasi-periodic traveling waves. Letm €
R. For any (w, ) satisfying |w- £ +mj| > v{¢)~7 forall (¢, j) € Z"*1\{0}
with 7- ¢ + j = 0, given a quasi-periodic traveling wave u(p, ) with
zero average with respect to ¢ the transport equation (w - 0, + m0,)v =
u has the quasi-periodic traveling wave solution (w - 0, + md,) lu :=
2 e+ wﬁj)emwwx)- Forany (w,y) € R” x [y1,72], we define

] J+j=0
1ts extension

Z X((w-£+mjv 1<€>T) ol(Cetiz)

i(w-€+mj)

)

_1 L

(3.5) @0 +mi)aqulp,@)i=
(¢,j)ezv+1

JL+3=0

where x € C* (R, R) is an even positive C* cut-off function such that
(3.6) x(§) = 0if [¢] < 3, x(§) = 1if [§] = 3, dex(€) > 0, ¥ € (3, 3).
Note that (w- 0y +m 0y ) it = (w- 0 +m ;) "Lu for all (w, ) € TC(m; v, 7).
Ifm: R x [71,72] — R, (w,7) = m(w, ) is a function with |m|*¥ < C,
then, for pu := ko + 7(ko + 1),

(3.7) (w0, +mda); tuu’foﬂw<C(ko)vfluuu’;°+’gwﬂ.

Furthermore, for any w € R, m;,my € Rand s >
(3.8) H((w < 0p +m1 O )ext (W 0p +m2 0y )e_xlt)uHs <
Linear operators. We consider -dependent families of linear operators
AT — L(L*(T,)), ¢ — A(p), acting on subspaces of L?(T,). We
also regard A as an operator (Au)(p, z) := (A(¢)u(p, -)) (z). Expanding
u(¢p, ) in Fourier,

(3.9 Au(p, Z Z A] (=0 up Jel(betin)

1.J'€L Ll er”

0
Cv™? m —mo| [ufls 2741 -

-/
We identify an operator A with its matrix (Ag (- ))j,j’eZ, ez
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Real operators. A linear operator A is real if A = A, where A is defined
by A(u) := A(w). We represent a real operator acting on (7, () by a matrix

R = (é g), where A, B, C, D are real operators acting on the scalar

valued components 7,( € L?(T,,R). The change of coordinates (2.12)
transforms a real operator ‘R into a complex one acting on the variables
(z,%), given by the matrix

(3.10) R := C~'RC = (721 RQ) Ri:={(A+D)—i(B-C)}/2,

Ro Ri) ' Rg:= {(A—D)+i(B+C)}/2.

We call real a matrix operator acting on the complex variables (z, Z) of this
form.

Pseudodifferential calculus. We report basic notions of pseudodifferential
calculus, following [9].

Definition 3.4. ('DO) A pseudodifferential symbol a(x,j) of order m
is the restriction to R x Z of a function a(x,§) which is C*-smooth on
R x R, 2m-periodic in z, and satisfies, Vo, 5 € Ny, |8§8£’8a(:c,§)| <
Copl€)™ P, We denote by S™ the class of symbols of order m and
S7% 1= Nm=0S™. Toasymbol a(z, §) in S™ we associate its quantization
acting on a 2m-periodic function u(z) = ;.7 u;j €’ as [Op(a)ul(z) :=
ez (T, j)u; €% . We denote by OPS™ the set of pseudodifferential op-
erators of order m and OPS~% := (") _r OPS™. For a matrix of pseudo-

A A2>,Ai e OPS™, 1 =1,...,4, we say

differential operators A = < As Ay

that A € OPS™.

When the symbol a(z) is independent of £, the operator Op(a) is the
multiplication operator by the function a(x), i.e. Op(a) : u(z) — a(x)u(z).
In such a case we also denote Op(a) = a(x).

For any m € R\{0}, we set | D|™ := Op(x(£)|£|™), where y is an even,
positive C* cut-off satisfying (3.6). We identify the Hilbert transform #,
acting on the 27-periodic functions, defined by

(3.11) H(e?) := —isign (§)eV® Vj#0, H(1):=0,

with the Fourier multiplier Op(—isign (£)x(§)). Similarly we regard the
operator

(3.12) oy [e97] = —1j7t e Wi£0, 0;'[1]:=0,

T
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as the Fourier multiplier 0; 1 = Op (—ix(£)¢") and the projector g as

(3.13) ToU := u(x) dx,

27 Jr

with the Fourier multiplier Op(l —x(& )) Finally we define, for any m €
R\{0}, (D)™ := my + |D|™.

We consider families of pseudodifferential operators having symbols
a(X; p, z,&) which are ko-times differentiable with respect to a parameter
A := (w,7) in an open subset Ag = R” x [y1,72]. Note that 0fA =
Op (0%a) for any k € N§*'. We recall the pseudodifferential norm as in
Definition 2.11 in [9]].

Definition 3.5. (Weighted YDO norm) Let A(\) := a(\;p,2,D) €

OPS™ be a pseudodifferential operator with symbol a(A; ¢, z, &) € S™,

m € R, ko-times differentiable with respect to A € Ag — RY*!. For
€ (0,1), @ € Ny, s = 0, we define

koo . _ k
A0 = D, sp A,
where HA()\)Hm,s,a ‘= MaXogp<a SUPgeRr Hag a()‘7 K a{)H <§>7m+6' For
amatrix A € OPS™, we define |A [V = max;—1 4|l A; Hko

m,s,a T T Ot=1,., m,s,a °

If Op(a), Op(b) are pseudodifferential operators with symbols a € S™,
be S™, m,m’ € R, then the composition operator Op(a)Op(b) is a pseu-
dodifferential operator Op(a#tb) with symbol a#b € S™+" It admits the
asymptotic expansion: for any N > 1

N-—1
Gl4)  (ath)(z,€) - 2;5,@5 (2,€)28b(2,€) + (rn(a,6))(2,€)

where ry(a,b) € Sm+m' =N The commutator between two pseudodiffer-
ential operators Op(a) € OP.S™ and Op(b) € OPS™ is a pseudodifferen-
tial operator in OP.S™*™ ~1 with symbol a * b € ™™~ that admits,
by (3.14), the expansion a * b = —i{a,b} + 7T2(a,b), where {a,b} :=
Oca0yb — 0ya0¢b is the Poisson bracket between a(x, ) and b(x, ), and

(315) ’[72(@7 b) :=7‘2(a, b) _ 7«2(b7 CL) e Sm+m/72 )

The following quantitative estimates are proved in Lemma 2.13 in [9].
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Lemma 3.6. (Composition and Commutator) Let A = a(\;p,x, D),
B = b(\; v, x, D) be pseudodifferential operators with a(\; p, x,§) € S™,
b(\;p,x,6) € 8™, m,m' € R. Then Ao B e OPS™"™ satisfies, for any
a € Ny, s = s,

[ABI g < Cls) Ao 1Bl

m+m/,s,a ~m,a,ko m,s,a m/,so+|m|+a,a

v ko,v
+C(s0) |Alns o I Bl

m,so,x m/ s+|m|+a,a
Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (3.14)
satisfies
[0p(rwv (@ D)o v, .0 SmNoako C8) 1AL S v [ Bl g 4 i 428 4N 4
ko, ko,
(316) +C(50) |‘A‘|TH[,J,,;,N+Q HBH’rri)/,l;+|m|+2N+Dt,N+Dé .

As a consequence the commutator [A, B] := AB — BA e OPS§™+m'~1
satisfies

1A, Bl S O(s) [ Al |Bler

m+m/—1,s,a~m,m’ o ko m,s+|m/|+a+2,a+1 m/,so+|m|+a+2,a+1

ko, ko,
(3.17) +C(50) A1 4 it niost IBIES Yt asas -

Finally we consider the exponential of pseudodifferential operators of
order 0, see Lemma 2.12 in [8]].

Lemma 3.7. (Exponential map) If A := Op(a(\; p,z,€)) is in OPS°,
then e? is in OPS® and for any s > s, a € Ny, there exists C(s,a) >0
so that |le? —1d[8%%, < JAE%Y o exp(C(s,a) | AIE5Y, 0 0)-

0,s,c 0,s+a,c 0,s0+a,a

Do-tame and -(— 3 )-modulo-tame operators. Let A := A()) be a linear
operator ko-times differentiable with respect to the parameter A in an open
set Ag < RV,

Definition 3.8. (D*0-o-tame, [9])) Let o > 0. A linear operator A := A()\)
is D*0-g-tame if there exists a non-decreasing function [sg, S] — [0, +0),
s — IM4(s), with possibly S = +o0, such that, for all sp < s < S
and u € H*, supj <, supren, VM [(FAMN)uls < Ma(so) ul,yq +
Ma(s) [uly, 4o We say that DM (s) is a tame constant of the operator
A. The constant M 4(s) = M 4(ko, o, s) may also depend on kg, o but we
omit to write them. When the "loss of derivatives" o is zero, we simply
write D*0-tame instead of D*0-0-tame. For a matrix as in (3.10)), we denote
Mr(s) := max {Mg, (s), Mg, (s)}.

The class of D*0-g-tame operators is closed under composition.
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Lemma 3.9. (Composition, Lemma 2.20 in [9])) Let A, B be respectively
DF0-g 5-tame and D*0-o g-tame operators with tame constants respectively
M A (s) and Mp(s). Then the composed operator Ao B is D*0-(c 4+ op)-
tame with

Map(s) < Clko) (Ma(s)Mp(so+ 04) + Ma(s0)Mp(s+04)) -

The action of a D*0-g-tame operator A()\) on a Sobolev function u =
u(\) € H¥ is bounded by || Au|5 <p0 90 (s0) ] 502+ (5) ] F020

So+o
(see Lemma 2.22 in [9] ) and pseudodifferential operators are tame opera-

tors. In particular, we use the following lemma, see Lemma 2.21 in [9].

Lemma 3.10. Let A = a()\; ¢, x, D) € OPSY be a family of pseudodiffer-

ential operators satisfying HAHISOS% < o for s = so. Then A is D*-tame,
with Ma(s) < C(s)|A g?;}é,for any s = sg.

In view of the KAM reducibility scheme of Section [/| we also consider
the notion of Dko—(—%)—modulo—tame operator. Given a linear operator A

acting as in (3.9), the majorant operator |A| is defined to have the matrix

elements (]A; (€= 0))eez j e
Definition 3.11. (D*-(—3)-modulo-tame) A linear operator A = A()) is
1

DHo-(—1)-modulo-tame if there exists a non-decreasing function [so, S] —

— ot h that for all ptl <
[0, +0], s 9ﬁ<D>%A<D>% (s), such that for all k£ € Ny, |k| < ko,

the majorant operator <D>i|§’/{A|<D>i satisfies, for all s9 < s < S and
ue H?,
F(DYy3|ok A(DYiul, <
sup sup v |[(D)T|oXAKD)duls <

‘k‘ék‘o AeAg

i i
W1 ot GO+ (9) o,

For a matrix as in (3.10), we denote

m’ = o’ , :
(DyiR(DY1 (s) 1= max { (DyTR (D)1 () (Dy1Ry(D)H ()}
Given a linear operator A acting as in (3.9), we define the operator
(0,)°A, b € R, whose matrix elements are (¢ — ¢")° A} (¢ — ¢') and the
smoothed operator 11y A, N € N whose matrix elements are
, A0y ifU—Y<S N
(.18 (yAY(0— )= {0] (=6 =)

otherwise .
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We also denote H}V := Id — IIy. Arguing as in Lemma 2.27 in [9], we
have that

m* (s) < NPt (s),

(Dy4 1Tk A(D) (D)T (2, D)

o (s) < (s).

(DYATLL, A(D) (DYt A(DYE

(3.19)

From Lemma A.5-(iv) in [18]] and the proof of Lemma 2.22 in [8], we
deduce the following lemma.

Lemma 3.12. Let A, B, {0,)° A, {0,)° B be D*o-(—1)-modulo-tame op-
erators. Then A + B, Ao B and {0,)° (AB) are DM -(—1)-modulo-tame
with
o <M m*
T R P UYL P P A
o Sy I mF
@yt amcoyt D 00 T 4oyt M ot oyt (50)
m* o
ot O k1 )
and

om’ 1 1 (s) Sb,ko
(D)4{0,)*(AB)XD)4

o 1 ;(s)fmﬁ 1 L(80)+mﬁ 1 ;(So)fmﬁ 1 1(8)
(DY (0, ACD) T (Dy1B(D)i (Dy1(2,)> A(D) 1 (Dyi B(DY4
mﬁ 1 1 S)Wﬁ 1 1(5 )erﬁ 1 1(30)9ﬁn 1 1
(D>3 A(D>3 (DY1{0,Y*B(DY1 (DY>T A(DY3 (DY1{0,)*B(DY1
If M so) < 1, then e — 1d and (3,)° (e*4 — 1d) are DFo-
f <D>%A<D>%( 0) < 90> ( )
(—3)-modulo-tame with
DIl s) <, MM
Dy erataoyt ) S0 Tyt
imﬁ s) < om? s
<D>%f<a¢>b<e¢f*71c1><D>‘if< ) Shop <D>%<a¢>bA<D>%f( )

RIE (s) 0% (s0) -

(D>} Ay (DY (0, > A(Dy

(s),

The next inequality provides a sufficient condition for an operator R to
be D*0-(—1)-modulo-tame: it results (cfr. with Lemma 7.6 in [9])

(3.20) M

4 ~ ~
<D>21£R<D>211(S)’ m (s) <so maX{M(s),M(s,b)}

(Dy4 (2, > R(DY
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here M(s,b) := s
where M(s,b) ax {m@ﬁagfg:"mmi

1(s), M

M 1 1
m=1,...,v (D)4 R(D)4

(5)79:R S)} and

1 g 1 (
(DY [039, " R,0,1(Dy4

1 (s), M (s),

(DYE[R,2,)(Dy 1 (DYE %9, R(DYE
1 (s

im<D>4[a 20 R,0,1(Dy1 ix
Hamiltonian, Reversible and Momentum preserving operators. We

shall exploit the Hamiltonian and reversible structure of the water waves
equations as well as their invariance under space translations.

Definition 3.13. (Hamiltonian and Symplectic operators) A real matrix
operator R on L?(T,,R?) is Hamiltonian if J~'R is self-adjoint, namely
B*=B,C* =C,A* = —D and A, B,C, D are real. It is symplectic if
W(Ru, Rv) = W(u,v), Yu,v € L?(T,, R?), where W is the symplectic
2-form in (2.6).

Let S be the involution (2.1)) acting on the variables (1,¢) € R?, o
(2.22) acting on the action-angle-normal variables (6, I, w), or (2.16) actmg
in the (z,%) complex variables introduced in @D

Definition 3.14. (Reversible/reversibility preserving op.) The operator
R(p) is reversible if R(—p) oS = —S o R(p) for all ¢ € T". It is
reversibility preserving if R(—p) oS = SoR(yp) forall p € T".

By (2.16), an operator R(¢) as in (3.10) is reversible, respectively anti-
reversible, if, forany i = 1,2, R;(—¢) oS = —SoR;(p), resp. Ri(—p) o
S = SoR;(p), where, with a small abuse of notation, we denote (Su)(x) =

u(—x). Moreover we have the following lemma (cfr. Lemmata 3.18 and
3.19 of [7]).

Lemma 3.15. An operator R(p), ¢ € T, as in is reversible, re-

spectively reversibility preserving, if, for any i = 1,2, (Rl)zl (—p) =

—(Ri)) (), resp. (Ri)) (=) = (Ri)] (). Vp € TV ie. (Ri)) (0) =
—(Rl)ﬁ/ (), respectively (RZ);/ () = (Rl);/ (¢), VL € Z¥. A pseudo-
differential operator Op(a(p, x,£)) is reversible, respectively reversibility
preserving, if and only if its symbol satisfies a(—p, —x,&) = —a(p, x,§),

resp. a(—p, —x,§) = a(p, z,§).

The composition of a reversible operator with a reversibility preserving
operator is reversible. The flow generated by a reversibility preserving op-
erator is reversibility preserving. If R(yp) is reversibility preserving, then
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(w - 0,R)(y) is reversible. We shall say that a linear operator of the form
w- 0y + A(p) is reversible if A(¢) is reversible. Conjugating the reversible
operator w - 0, + A(p) by a family of invertible reversibility preserving
maps ®(p), we get the transformed reversible operator

D H(p)o (w0, + Ap)) 0 ®(p) =w -y + Ar(e),
A (p) = 07 (p) (w- 0p,B(p)) + D () A()D() -

A function u(yp, -) is reversible if Su(p,-) = u(—,-) and antireversible
if —Su(p,-) = u(—y,-). The same definition holds in the action-angle-
normal variables (6, I, w) with the involution S defined in (2.22) and in
the (z,%Z) complex variables with the involution in (2.16). A reversibility
preserving operator maps reversible, respectively anti-reversible, functions
into reversible, respectively anti-reversible, functions, see Lemma 3.22 in
[7]. If X is a reversible vector field, namely X o S = —S§ o X, and
u(p,x) is a reversible quasi-periodic function, then the linearized opera-
tor d, X (u(ep,-)) is reversible, see Lemma 3.22 in [7]. Finally we recall
that the projections II{ T Hgﬁz defined below (2.18) commute with the

. . . . J_
1ny01utlop S in @]) and the orthogonal projectors Ils and Il commute
with the involution in (2.16).

(3.21)

Definition 3.16. (Momentum preserving operators) A ¢-dependent fam-
ily of linear operators A(y), ¢ € T", is momentum preserving if A(¢—75)0
7. = 7.0 A(yp), Vp € T, ¢ € R, where the translation operator 7 is defined
in (2.2). A linear matrix operator A (i) is momentum preserving if each of
its components is momentum preserving.

If X is a translation invariant vector field, i.e. X o7c = 7. o X, for
all ¢ € R, and u is a quasi-periodic traveling wave, then the linearized
operator d, X (u(ep,-)) is momentum preserving. If A(p), B(y) are mo-
mentum preserving operators then the composition A(y) o B(p) and the
adjoint (A(y))* are momentum preserving, cfr. Lemma 3.25 in [7]. More-
over, if A(p) is invertible, then A()~! is momentum preserving. Assume
that 0,®'() = A(p)®(p), ®°(¢) = Id, has a unique propagator ® (),
t € [0,1]. Then ®!() is momentum preserving.

We shall say that a linear operator of the form w - 0, + A(yp) is mo-
mentum preserving if A(y) is momentum preserving. If w - 0, + A(y) and
P () are momentum preserving, the transformed operator w - d, + A ()
in (3.21) is momentum preserving as well. Given a momentum preserving
linear operator A(y) and a quasi-periodic traveling wave u, according to
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Definition then A(p)u is a quasi-periodic traveling wave. The charac-
terizations of the momentum preserving property, in Fourier space and for
a pseudo-differential operator, is given below (see Lemmata 3.28 and 3.29
in 7).

Lemma 3.17. Let @-dependent family of operators A(p), ¢ € T, is mo-
mentum preserving if and only if the matrix elements A;:/ (£) of A(p), de-
fined by (3.9), are different from zero if J4+j—j =0, VL e Z", j,j € Z. A
pseudodifferential operator Op(a(p,x,§)) is momentum preserving if and
only if its symbol satisfies a(p — 75, x,&) = a(p, x + ¢,§) forany s € R.

The symplectic projections IIL, ., Hgﬁ 5. defined below (2:18), the L2-

projections ITL°, T, Hgo defined below (2.26)) are momentum preserving,
cfr. Lemma 3.31 in [[7].

Quasi-periodic traveling waves in action-angle-normal coordinates. Re-

calling 2.23), if u(p, ) is a quasi-periodic traveling wave with action-

angle-normal components (6(¢), I (), w(p, z)), the condition 7cu = u(p—
0(p)—J% 0(p—35 ]

Js, ) becomes | I(y) = | I(p—5%) |, forany ¢ € R. Since O(p) =
Tsw(p,) w(p—J5,)

© + O(yp), with a (27)"-periodic function © : R” — R”, ¢ — O(p), the

traveling wave condition becomes

O(p) O(p — J)
(3.22) Ie) |=| Ite—5) |, VeeR.
T§w((p7') w(()p_fgv')

Definition 3.18. (Traveling wave variation) A traveling wave variation
9(¢) = (g1(), g2(¥), g3(p, ) € RV x R¥ x ﬁéﬂE is a function satisfying
(3.22)). or equivalently D7.g(¢) = g(¢ — J5) for any ¢ € R, where D7, is
the differential of 7., namely D7.(0,I,w)" = (0,1, 7.w)".

According to Deﬁnition a linear operator acting in R x R" x 5384+ =
is momentum preserving if A(¢ — ) o D7. = D7 o A(yp) for any ¢ € R.
In this case if g € R” x RY x ﬁéﬂz is a traveling wave variation, then
A(p)g(yp) is a traveling wave variation.

4 Transversality of linear frequencies

In this section we extend the KAM theory approach in [4, 9} 2] [7] to deal
with the linear frequencies §2;(y) defined in (I.8)), using the vorticity as a
parameter.
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Definition 4.1. A function f = (f1,..., f~n) : [11,72] — RY is non-
degenerate if, for any c € RV\{0}, the scalar function f - ¢ is not identically
zero on the whole interval [v1, y2].

From a geometric point of view, the function f is non-degenerate if and
only if the image curve f([7y1,72]) = RY is not contained in any hyper-
plane of RY.

We shall use that the maps v — () are analytic in [y, y2]. For any
j € Z\{0}, we decompose the linear frequencies §2;(y) as

4.1 Qi(y) =wji(y) + ;Gj;j(o) , wi(y) = \/ng(O) + (% ij(O))27

where G;(0) is the Dirichlet-Neumann operator defined in (L.5).

Lemma 4.2. (Non-degeneracy-I) The following frequency vectors are non-
degenerate on [y1,72]: (1) Q(’y) = (Q2(7))jes € R”; (2) (Q(’y),l) €
R (3) (@), () € R for any j € Z\({0} U S U (=5)); (4)
(2(7),925(7),9Q5(7)) € RV forany j, 5" € Z\({0} v S U (=S)) and
il # 15'l-

Proof. We prove items 1, 3, 4 of the Lemma. We first compute the jets of
the functions v — €2;(v) at v = 0. Using that G;(0) = G|;(0) > 0, see
(L.5), we write @.1)) as

Qi(v)= \/g G;(0) (\/1 +y2ck + 'ngn(j)Cj)a Cj:

1

= G 0 _1,
2] 51(0) g

for any j € Z\{0}. Bach function y — (1 4+ 72c2)"/2 + ysgn(j)c; is real
analytic on the whole real line R, and in a neighborhood of v = 0, it admits
the power series expansion

(1) = /9G30) (1+ Y] an(r’c))" +vsen(i)e; )

n=1

1
sgn(j) G;/(0) an (G (0)"T2 ,,
= /9Gp;(0) + S .
A T ndgm i

n>19

4.2)

where a,, := (17/l 2) # 0 for any n > 1. From (4.2), we deduce that, for any

j € Z\{0}, forany n > 1,
2n G151 (0)\™ / (2n)!an
4.3) (97 Q;(0) = b2ngj< TE ) , gj 1= gGm(O) >0, bay := £0.

gn22n
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We now prove that, for any N and integers 1 < [ji| < [jo] < ... <
ljn|, the function [y1,72] 3 v = (25,(7), ., 2y (7)) € RY is non-
degenerate according to Definition Suppose, by contradiction, that
(Q, (7)., Q5 (7)) is degenerate, i.e. there exists ¢ € RV\{0} such that
19, (v) + ... + enQjy (v) = 0, Vv € [71,72], hence, by analyticity, it is
identically zero for any v € R. By differentiation we get ¢1(32Q;,)(7y) + ... +
en(2)(Y) =0, ..., c1(2NQ) () + o+ en (2N Q) () = 0. As a conse-
(@39)() + (39)()
quence the N x N matrix A(y) := : : is singu-
(@3NQ5) () (3N ()
lar for any v € R and det A() = 0, forall v € R. In particular, aty = 0 we
have det A(0) = 0. On the other hand, by (4.3) and the multi-linearity of
the determinant, we compute det A(0) = by...bay Hflvzl Gjo f(ja) det V(f),
f(;d) f(]lN)

where V(f) := and f(j) := |j]72G;(0). This

FGON=L - fGn)N
Vandermonde determinant is

N
det A(0) = bz...ban H 9jaf Ua) H (f(a) = f(p))-
a=1 1

<p<gsN

Note that f(j) = |j|7>G|;(0) > O is evenin j € Z\{0}. We claim that the
function f(j) is monotone for any j > 0, from which, together with (4.3))
and the assumption 1 < |j1] < ... < |jn], we obtain det A(0) 5 0. This is
a contradiction.

We now prove the monotonicity of the function f : (0, +00) — (0, +0),
f(y) :== y~tanh(hy). For h = +oo, it is trivial. If h < 400, we compute
dyf(y) = y~2g(hy) where g(z) := —tanh(z) + (1 — tanh?(x)). Then
Oyf(y) < 0 for any y > 0 if and only if g(x) < O for any > 0. We
note that lim,_,o+ g(z) = 0, lim,_, ;5 g(x) = —1 and g(x) is monotone
decreasing for = > 0 because 0,g(x) = —2x tanh(z)(1 — tanh?(z)) < 0
for any « > 0. The proof of item 2 is similar. U

Note that in items 3 and 4 of Lemma we require that 7 and j” do not
belong to {0} US U (—S). In order to deal in Proposition[4.5|when j and ;'
belong to —S, we need also the following lemma. It is a direct consequence
of the proof of Lemma noting that 2;(y) — w;(~y) is linear in ~y (cfr.
(4.1)) and its derivatives of order higher than two identically vanish.
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Lemma 4.3. (Non-degeneracy-II) Ler &(7) := (wj, (7), ..., w;, (7)). The
following vectors are non-degenerate on [y1,7v2]: (&(7), ) ]R” +1and
(&(7),wj(7),7) € R™*? for any j € Z\ ({0} U S U (=5)).

We provide the following asymptotic estimate of the linear frequencies.

Lemma 4.4. (Asymptotics) For any j € Z\{0} we have

44) wi(7) = valilt + <|)1, where  sup |%¢;(7)] < Con

NCIME JETN{O} relv1 12]| ’

for any n € Ng and for some finite constant Cp, y, > 0.

Proof. By [@.1), we deduce (4.4)) with

G310 4 (2G110)y2
© 1 (1G@)?
1*\/ T +g|j|<2 i)
and using that G‘fj‘.fo) —-1= —m, cfr. (L.5). O

The next proposition is the main result of the section. We remind that
7= (J1,---,7,) denotes the vector in Z"\{0} of tangential sites, cfr. (2.24))
and (2.19). We also recall that S§ = Z\ (S u {0}).

Proposition 4.5. (Transversality) There exist mg € N and py > 0 such
that, for any «y € [y1,v2], the following hold:

(4.6) oJax |00 A(y) - €] = polly, VLeZ\{0};

o max |7 () Q(y) - £+ Q5(7)] = polt),
JAl+j=0,0eZ, jeS§;

4.7)

0<n<myg

ws) { max |97 (G(7) - £+ Q(7) — Q5 (1))] = poll)
' Jl+j—j=0,0e2", j,5 €S, (6,5,7) # (0,4,4);

oy {02,105 (00) £+ 950) + Q)] > polt)
Jl+j+j=0,0eZ", 4,57 €S§.

We call py the amount of non-degeneracy, my the index of non-degeneracy.
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Proof. We now prove (4.8). The proof of (4.6), (.7), (.9) follows sim-
ilarly. We set for brevity I' := [y1,72]. We assume j,, # j,, because

the case j,, = j,, is included in (@.6). By contradiction, we assume
that, for any m € N, there exist v, € T, ¢, € Z” and j,,j,, € S§,
(s Jms i) # (0, Gm, Jm), such that, for any 0 < n < m, satisfying

jgm + Jm — 7/71_0
@100 2520 - 7725 + 705 (2 (V) = i, (N)) 1| < 5 -

We have that ¢,,, # 0, otherwise, by the momentum condition j,, = j,.
Up to subsequences 7, — 7 € I" and ¢, /{{,,, ) — ¢ € R¥\{0}.

STEP 1. We start with the case when ({,;,)men < ZY is bounded. Up
to subsequences, we have definitively that /,, = ¢ € Z"\{0}. The se-
quences (jm )men and (), )men may be bounded or unbounded. Up to sub-
sequences, we consider the different cases:

Case (a). |jml,|j,| — +00 for m — oo. We have that j,, - j,, > 0,
because, otherwise, |jm, — ji,| = |jm| + |j,| — +o contradicting that
|7m — 45| = |7 €m| < C. Recalling (I.3) we have, for any j - j' > 0, that

G;(0)  G;(0) 1 1
o150 <+ )

Moreover, by the momentum condition J- £,,, + jmm — 1, = 0, we deduce

| -y Clen]
412)  Wiiml = Vil <
@D Wlim| = Vlimll < w |+w.7m| S Tl

By @), Lemma[d.4] j,, - j., > 0, @II), @I2), we conclude that
(o (v) = Qg () = V905 (V]im| — Vi1l

" an( cim () _ %(7)1 I 1<Gjm(0) _ Gj{,}(o)» 50
Valinl?  aliz 2N I I

as m — +00. Passing to the limit in (4.10), we obtain 6’;{@(7) L}y =0

for any n € No. Hence the analytic function y — ﬁ(v) - £ is identically

zero, contradicting Lemmal, since ¢ # 0.

@.11)

Case (b). (jm)men is bounded and |j],| — oo (or viceversa): this case
is excluded by the momentum condition 7 £, + jm, — ji, = 0 in @.I0) and
since (¥,,) is bounded.

Case (c). Both (jm)meN, (Jh,)meN are bounded: we have definitively
that j,, = 7 and j,, = 7, with 7,7 € S§ and, since j,, # j,,, we have
7 # 7. Therefore (.10) becomes, in the limit m — o, 0% (Q'(v) A+
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Q(y) — Qy (7))Iw=7 =0,Vne Ny, 7-£+7—7 = 0. By analyticity, we

obtain that
@.13) Q) T+ Q(7) —Qy() =0 Vyel, J-I+7-7=0.
We distinguish several cases:
eLet],7 ¢ —Sand (7] # |7|. By @I3) the vector (§3(y), (), 2 (7))
is degenerate with ¢ := (¢, 1, —1) # 0, contradicting Lemma 4.
elet7,7 ¢ —Sand7 = —7. In view of (@), the first equation in (4.13)
becomes &(y) - £+ 3(Xr_, Ca i(o) G%(O)) =0, Vy e I'. By Lemma

the vector ((7y),~y) is non-degenerate, thus ¢ = 0 and QG%(O) =0,
which is a contradiction.

eLetj ¢ —S and j € —S. With no loss of generality suppose 7 = —7;.
In view of ({@.1)), the first equation in (.13)) implies that, for any v € T,

(£1 + Dy, (7) + Z Lawy, () — wy (7)
_ - Gy, (0) G ,(0)
+ %(wl + 2 LA -2 0.
By Lemma 4.3| the vector (&(7),wy(7),7) is non-degenerate, which is a

contradlctlon

e Last, let 7,7 € —S and 7 # 7. With no loss of generality suppose
7 = —7; and 7 = —7J,. Then the first equation in (#.13)) reads, for any

— - - - Gy, (0

veT, (€1+1) (+ (@ 1) wy, + 3 _glaws, (1) + 3 (G —1) 29 ¢
(Co + ) )+ S 37 L 0)) = 0. Since the vector (d(7),~) is non-
degenerate by Lemma it implies /1 = —1, 0, =1,03= ... =0, =
Inserting these values in (#.13) we obtain —27; + 27, = 0. This contradicts
7#7.

STEP 2. We finally consider the case when (¢, )men is unbounded. Up
to subsequences ¢,,, — 00 as m — 00 and lim,, 0 €y /L) =: € # 0. By

@), Lemma[.4] (@.11), we have, for any n > 1,

() = Qi (M) 2 = 5 ( (7 1> \f(cémﬂz) i;fl'f(z))
2l (Gjm(o) _ Gjén(o)) ) —

2lmy”  jm Gy =

n_ 1
07 <fm>(

+
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as m — 0. Therefore, for any n > 1, taking m — oo in (.10) we get

an(Qy) - E)h:7 = 0. By analyticity this implies () - ¢ = d, for all
7 € T, contradicting Lemma[4.2}2, since ¢ # 0. O

Remark 4.6. For the irrotational case v = 0, quasi-periodic traveling
waves exist for most values of the depth h € [hy,hy]. In detail, the non-
degeneracy property of the linear frequencies with respect to h as in Lemma
is proved in Lemma 3.2 in |2)|, whereas the transversality properties
hold by restricting the bounds in Lemma 3.4 in [2|] to the Fourier sites sat-
isfying the momentum conditions.

5 Proof of Theorem [1.2]

Under the rescaling (n,() — (en, (), the Hamiltonian system (2.5)
transforms into the Hamiltonian system generated by

Ho(,€) := e *H(en, &) = Hr(n, () + eP-(n, (),
where H is the water waves Hamiltonian (2.4)) expressed in the Wahlén
coordinates (2.3), H, is as in (2.8) and P.(n, () := e 3Hx3(en, eC), de-
noting H>3 := H — H, the cubic part of the Hamiltonian. We study this
Hamiltonian system in the action-angle and normal coordinates (6, I, w),
considering the Hamiltonian H. (6, I, w) defined by

(5.1) H.:=H.ocA=c2HocA

where A is the map defined in (2.21). The associated symplectic form is
given in (2.25). By (2.28) (see also (2.20)), in the variables (6, I, w) the

quadratic Hamiltonian H, defined in (2.8)) simply reads, up to a constant,
Ni=HroA=Q(y) I+3(Qww,w)2 , where Q(7) € R is defined
in (T.12) and Qyy in (2.7). Thus the Hamiltonian H, in (5.1) is

5.2) H.=N +¢P with P:=P.oA.

5.1 Nash-Moser theorem of hypothetical conjugation

Instead of looking directly for quasi-periodic solutions of the Hamilton-
ian system generated by H., we look for quasi-periodic solutions of the
modified Hamiltonians, where « € R” are additional parameters,

(5.3) Hy:=Ny+eP, Nyi=a I+1i(wQuw)..

We consider the nonlinear operator F (i, a):=F (w, v, €; 1, &) :=w-0yi(p)—
Xg, (i(p)). If F(i,a) = 0, then i(¢p) is an invariant torus for the Hamil-
tonian vector field Xz, filled with quasi-periodic solutions with frequency
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w. Each Hamiltonian H, in (5.3) is invariant under the involution S and
the translations 7, ¢ € R, defined respectively in (2.22) and in (2.23):
H, o S = H,, HyoT. = H,, V¢ € R. We look for a reversible trav-
eling torus embedding i(p) = (0(¢), I(p), w(p)), namely satisfying

G4 Si(p)=i(~p), Ti(p)=ilp—F%), VseR.

The operator (-, ) maps a reversible, respectively traveling, wave into an
anti-reversible, respectively traveling, wave variation, according to Defini-

tion 3.18l

The norm of the periodic components of the embedded torus

(5.5) I(p):=i(p) = (#,0,0):= (0(p), I(0), w(p)), Op):=0(p) — ¢,

is 3157 = O] 5727 + 752" + |wl . where ko := mo +2 and mo € N
is the index of nonfdegeneragy provided by Proposition d.5] We will omit
to write the dependence of the various constants with respect to ky. We
look for quasi-periodic solutions of frequency w in a §-neighborhood

Q:= {w e R¥ : dist (w,ﬁ[’yl,vg]) < (5}
with § > 0 (independent of ¢) of the curve €[;,v2] defined by (T.12).
Theorem 5.1. (Theorem of hypothetical conjugation) There exist posi-

tive constants ag, g, C' depending on S, kg and T = 1 such that, for all
v=2¢e? ae (0,a9) and for all € € (0, (), there exist:

1. a ko-times differentiable function of the form o, : Q x [y1,72] — R,
(5.6) oo (W, ) 1= w + 1e(w,y)  with |r.|foV < Cev™?;

2. embedded reversible traveling tori i (@) (cfr. (5.4), defined for all
(w,7) € Q x [y1,72], satisfying

(5.7) lise () = (,0,0)| 55" < Cev ™t

3. ko-times differentiable functions p° : R” x [v1,72] = R j e Sf =
Z\ (S u {0}), of the form

(5.8)

#i () =i (w,7)j + T (@, 7)2(7) = ng’ (@, 7)sen(j) + ¢ (w,7),

with Q;(7y) defined in (1.8), satisfying

mP oY < Ce, nf — 150 4 g [Fo < Cev™?,
(5.9) . ’
supjegg |72 [t [ < Cev™®,
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such that, for all (w,~y) in the Cantor-like set
(5.10) Cop = {(wﬁ) €Qx [y1,72] ¢ |w- 4 = 8u{)™", Ve Z"\{0};
(5.11) |w - £—mP (w,7)j|=8vl)" ", VLeZ, jeSswithT £+ j = 0;
w - £+ pZ(w,y)| = Avj|Z 0, Ve, jeS;with] L+j=0;
(5.12) |w - €+ pf (w,7) = 15 (w,7)| = 40 )77,
VeeZ, j,j €S, (6,5,5") # (0,4,§) with- £+ j — j' = 0;

1 g1 _r
(5.13) |w'£+uyo'o(wﬁ)+ﬂ?(w”¥)| 24U(|j\2 + g |2)<g> ,
VeeZ, j,j' €S;, withj‘-£+j+j’:()}’

the function i (@) = ig(w,, ;@) solves F(w,7,€; (i, ) (w,7y)) =
0. As a consequence, the embedded torus ¢ — i (p) is invariant for
the Hamiltonian vector field Xp, () GS IL IS filled by quasi-periodic re-
versible traveling wave solutions with frequency w.

Theorem [5.1]is deduced by a Nash-Moser iteration scheme at the end of
Section[7l

Remark 5.2. The Diophantine condition could be weakened requir-
ing only |w - €| = v{€)~7 forany { - 7= 0. If so, the vector w could admit
one non-trivial resonance, i.e. { € 7ZV\{0} such that w - { = 0, and the orbit
{wt}ier would densely fill a (v — 1)-dimensional torus, orthogonal to {. In
any case J- £ # 0 (otherwise |w - €| = v(€)~™ > 0, contradicting w - { = 0)
and then {wt — Jix}ier zer = TY. This is the natural minimal requirement
to look for traveling quasi-periodic solutions U (wt — jz) (Definition .

5.2 Measure estimates: proof of Theorem 1.2]

Now we deduce from Theorem [5.1]the existence of quasi-periodic solu-
tions of the original Hamiltonian system generated by H. in (5.2)) and not of
just H, . By (5.6), the function a( -, y) from Q into its image a, (R, )
is invertible and

B =anw,y) =w+r(wy) <
w=ayz'(B,7) =B +7(B7), |FY < Cevt.

Then, for any 8 € a4, (C% ), Theorem|5.1|proves the existence of an embed-
ded invariant torus filled by quasi-periodic solutions with Diophantine fre-
quency w = a;!(j3,v) for the Hamiltonian Hg = - I + 3(w, Qww) 2 +
eP. Consider the curve of the unperturbed tangential frequency vector

(5.14)
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Q('y) in (I.12). In Theorem below we prove that for "most" values of
7 € [y1,72] the vector (a ' (2(7),7),7) is in C%, obtaining an embedded
torus for the Hamiltonian H. in (5.1), filled by quasi-periodic solutions with
Diophantine frequency vector w = .} (€(7),~), denoted ) in Theorem
Thus A (i (), where A is defined in (Z21), is a quasi-periodic
traveling wave solution of the water waves equations (2.5) written in the
Wahlén variables. Finally, going back to the original Zakharov variables
via (2.3) we obtain solutions of (L.I). This proves Theorem [I.2] together
with the following measure estimates.

Theorem 5.3. (Measure estimates) Let
(5.15) v=¢", 0 <a<minfag,1/(4m3)}, 7 > mo(2mov +v +2),

where myg is given in Proposition and ko 1= mqg + 2. Then, for € €
(0,e0) small enough, the measure of the set

G :={y el « (az' (G(7),7).7) e Ci}
satisfies |Ge| — v2 —y1 as e — 0.

The rest of this section is devoted to prove Theorem By (5.14) we
have

(5.16) 0 (7) = aig! (U7),7) = D7) + 7%,
where 7. (7) := #(Q(v),~) satisfies
(5.17) ]8§FE(7)| < Cev™ (R v k| < ko, uniformly on [y1,72] .

We also denote, with a small abuse of notation, for all j € S§,

1P (7) = pF (e (7). 7)

(5.18) . .
=np’ ()] + 0T () (y) = mg’ (v)sen(d) + (),
where, for sake of simplicity in the notation, m}°(7y) := m%’(ﬁa(v)w),

n() = 17 (7)), 1 () = 1 (-(7),7), €7 () = e (0), 7).
By (5.9) and (5.17) we get the estimates
(5.19) |0]§mcl>o(*y)| < Cev™*, 8’; mP(y) - l)l—i-laljmgo(*y)] < Cev™F71,

2

a1 3
(5.20) supjesg |72 5%‘(7)‘ <Cev™F YOo<k<k.
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Recalling (5.10)-(5.13)), we estimate the measure of the complementary set

ge == [n,72\G: = (URe ) ( U RE,g)

LeZV geSC

7 l+j= 0
(1) U
(5‘21) U ( U RE?J’J Qé?]?]
(£,3,5")#(0,4,3),3#3" ez” 5,5’ €S ,
Je+j—j'=0 Fe+i+i'= 0

where the “nearly-resonant sets" are, recalling the notation I = [y1, 2],
(5.22) RY = RP(v,7) == {yeT : [6h(r)- €] < 80y},

R = RV (v,7) = {7 e« [(e() —nP ()7 - €] < 8007},
(523) R =R (v,7) = {yer - 8.0 £+ uF ()] < wlil3 077},

and the sets Rélfj) = Rélﬁ (v,7), lej{;, = ng{;/ (v,7) are

(5.24) jo Ij :

= {yeT : 18.0) - £+ 1P () — WS ()] < 4w},
(5:25) QU= {reT s [6.0)- £+ uf () + ()] < UL,

The third union in (5.21)) may require j # j’ because Ré = REO). In the
sequel we shall always suppose the momentum condltlons on the indexes
¢, 7,7 in (5.21)). Some of the above sets are empty.

Lemma 5.4. Foree(0,2) small enough, ifQéIjI;, # S then |]|% + \j’|% <
C{L).

Proof. If QEIJ.I;., # ¢ then there is y € [71, 72] such that

1 1
do(|7]2 + |5'|2
) + o) < I g

By (B.18) we have y°(7) + 17 (v) = mf*(1)(G + 5) +mF () (%(7) +
Qy (7)) —mg” () (sgn(s) +sgn(j")) +v5° (v) +157 (7). Then, by (.19)-(.20)
with & = 0, Lemmaand the momentum condltlon j+g ==74 we
deduce, for £ small enough, [u°(v) + p7(v)| = —Celf| + % H]|2 +
|j’|%| — " — Cev~3. The above bounds imply ||j\% + !j’|é| < CU), for
€ small enough. U
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In order to estimate the measure of the sets (5.22)-(5.23)), the key point
is to prove that the perturbed frequencies satisfy transversality properties
similar to the ones (4.6)-(@.9) satisfied by the unperturbed frequencies. By
Proposition {.3] (5.16)), and the estimates (5.17)), (5.19)-(5.20) we deduce

the following lemma (cfr. Lemma 5.5 in [[7]]).

Lemma 5.5. (Perturbed transversality) For ¢ € (0, eg) small enough and
Sforall v € [y1,72],

max [070.(7) - 4 = Dy, Veezn\{o};

0<n<mg 2
n 0 PO v
Jma |20(@() —mE ()] 0> 24, vee z\(o)

maxo<n<my |02(Q(y) - £+ pP ()] = 240,
7 l+j=0,LeZ”, jeS§;

maxo<n<m, |07 (Qe(y) - £+ pP(7) — 1y ()| = 28
Jl+j—j3 =0, j,j €Sf ( 4,3") #(0,4,7);
N = 5

maxpo<n<mg ’62(96(7) £+:U’] ( )+I’LJ (fy )|
Fl+jri=0,0eZ, jj €SS

The transversality estimates of Lemma[5.5] and an application of Riiss-
mann Theorem 17.1 in [31] (which applies as the functions (. (v), m?(~)
and p}°(v) are bounded in the ™ot topology thanks to (5.16)—(5.20))
directly imply the following bounds for the sets in (5.21): we have (cfr.
Lemma 5.6 in [7]]).

526) |ROLIRD| 5 (0@ )70, [R5 (vljl2¢0 )70

11 (r 1 7- N
| ggg) NCOS +1))m , |Qe”’ (v (mg + 1|2 )<g> (+1))m
By @, and the choice of 7 in @), we have

1
(5.27) ‘ U R o R,&m‘ < Z R+ |R{"| < ZZ;) <<€>€+1) ™0 <y

£#0 £#0

I m
(5:28) ‘ U 63 <Z|R()ﬂ|<2( T+3 ) PRume,
0£0,j=—J0 %0 &
and using also Lemma([5.4]
1
(11) (I1) U\ mg L
(529) ) U QZJJ < Z |Q57]‘,]‘/‘ § Z (W) § vm™mo .
£ 30"e% e ljl<C?, 0,131<C<)?

Je+j+3'=0 jl=—7t—j
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We are left with estimating the measure of

II) (I1) (I1)
| R =( R ) ( R )::11u12.
(5.30) Gagt S had! !
(€,5,3")#(0,4,3),5#35" i#i’, 3-3'<0 J#3’, §-3'>0
Je+j—j’=0 Tl+5—3'=0 F+j—j'=0

We first estimate the measure of I;. For j-j' < 0, the momentum condition
reads j — j' = sgn(7)(|j| + 1)) = —7- €, thus [j,|j'| < C (6). Hence, by
(5.26) and the choice of 7 in (5.13)), we have
1
53 mls N RIs N (gre) " sem
4,151<CW, 5" =5+ L,]71<CLE

Then we estimate the measure of I in (5.30). The key step is given in the
next lemma. Remind the definition of the sets R\""), and RET) in (3.22)-

N
(©:29).

Lemma 5.6. Let vg > vand 7 = 19 = 1. There is a constant C7 > 0
such that for € small enough, for any 7- £ —I—j —j 0,7 j > 0, if

2<€>2 70+ then R( ) UZ¢0 UO, 70)-

Proof. 1t 7 € [11,72]\Usso By (v, 70). then r(ﬁ () —nf'(1)7) 4] =
8up{l)~™ for any ¢ € Z\{0}. By (3:18), the condition j — j' = —7- ¢,

(5-19), (5:20), Lemmafd.4)and j - j/ > 0, @.I1), we deduce that
[Q=(7) - €+ 1P () = 15 ()]
> [Qe(y) - £+ = 7] = ]9 (7) = (N = [ (7) =57 ()]

> [(G-(y) —uf7) - €] — (1 — Cev)|4]2 - |j']3]

o( ) oS )
i1z 152 CasN VIERE VAR
= 5;)90 - %mg;ﬁ"\% - (ﬁ ﬁ> 25;90 a C<% " %> >
for any |j], 5| > C1U6i<€>2(70+1), for C; > C?/64. Since vy > v and
T > 7o we deduce that [Q=(7) - £ + p°(v) — p37 ()| = 4v{€)~", namely
¢ Ry (v,7). O
Note that the set of indexes (¢, 7, ;) such that 7’- ¢/ + j — j/ = 0 and

min{|j], 5|} < Crug 2¢€)*™+1) is included, for vy small enough, into the
set

(532 Tri={(64.f) : J-0+5 =5 =0, |jl|7] < vg™ 0D}
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because max{|jl, ||} < minfljl, 1} + i — 7] < CrogXHAm+D) 4
Oy < vy Y10+ As a consequence, by Lemmawe deduce that

533 2= U R0 (URDeom)U( YR @n).

i#3’, 5- g '>0 £#0 (£,5,5")€Zy
7 2+J j’=0

1

1
Lemma 5.7. Let 79 := mov and vg = v¥™0. Then |Io| < Cv*™.

Proof. By (5.27) (applied with vy, 79 instead of v, 7), and 79 = mov, we
have

(5.34) U R w0 m0)| £ 0 < v

Moreover, recalling (5.32),

1

U e Y ()

(£,5,5")€Ze Lezv
lil<Cyvg 3¢ey2(To+h)

(5.35)

1
-3
V0 Uy

tezv <€> o ~2(ro+D)
by the choice of 7 in (5.15) and vy. The lemma follows by (5.33), (5.34)
and (5.35). O
Proof of Theorem|[5.3| completed. By (5.21), (5.27), m (.29), (53.30),
(3.31)) and Lemma , we deduce that |GS| < Cv 4'"0 For v = €* as in
(13, we get |Ge| > 72 — 31 — Ce®/4ms, O

5.3 Approximate inverse

< <U4m0 s

The key step to prove Theorem [5.1] via a Nash-Moser iterative scheme
is the construction of an almost approximate right inverse of the linearized
operator d; o F (i, a)[2, @] = dj o F(i0) = w - Opt — di X, (i0()) [2] —
(@,0,0). We follow closely the strategy in [6], implemented for the water
waves equations in [9, [2, [7]. Thus we shall be short. With this approach
we are reduced to construct an almost inverse for the linear operator L,
defined in (5.42) below, acting on the normal directions.

We assume the smallness condition, for some k := k(7,v) > 0, v «
1, and the following hypothesis, which is verified by the approximate solu-
tions obtained in the Nash-Moser Theorem [7.71

o ANSATZ. The map (wﬁ) — ’JO(wary) = ZO(SO,W,’)/) - ((107()’0) is
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ko-times differentiable with respect to the parameters (w,y) € R x [y1,y2]
and, for some p := p(7,v) > 0,v € (0,1),

(5.36) 130150, + lag — w|*¥ < Cev".

The torus io() = (Oo(p), lo(v), wo(y)) is reversible and traveling, ac-
cording to (5.4).

We first modify i () to a nearby isotropic torus is(¢). The next lemma
follows as in Lemma 5.3 in [2] and Lemma 6.2 in [7]. Let Z(p) :=

F(io, a0)(p) = w - Opin(p) — X, (i0(¥))-

Lemma 5.8. (Isotropic torus) There exists an isotropic torus is(p) =
(0o(), Is(v), wo(p)) satisfying, for some o := o(v,T) and for all s = s,

ko, ko, ko, — ko, ko, ko,
(5.37) | Is—To] s l30l5% Y s s —To|5° ssv™ (120507 + 12150, 1301597

- ko,v ko,v ko,v ||~ |ko,v NS N
(5.38) [ F(is, c0) [ ,°" <5 12155 + 1205020 1F0ll555  Ide(ia) [, S 2l 41 5

s+o sop+o s+o

for s1 < so+u (cfr. (5.36)). Furthermore is(yp) is a reversible and traveling

torus, cfr. (5.4).

We introduce the diffeomorphism Gy : (¢,y,w) — (0,I,w) of the
phase space T x R” x %, ..,

0 ¢ 00(¢)
(539) | I |:=Gs |y |:={ 150)+[0500(&)] Ty+[(G0ii0) (0 (6))]T I w
w W wo(¢)+w

where @ (0) := wo(f, " (#)). It is proved in Lemma 2 of [6] that Gy is
symplectic, because the torus i; is isotropic (Lemma [5.8). In the new co-
ordinates, i; is the trivial embedded torus (¢, y,w) = (¢,0,0). The dif-
feomorphism G in (5.39) is reversibility and momentum preserving, in the
sense that (Lemma 6.3 in [7]]) So Gs =Ggo §, T. 0o Gg = Gg o T for any
¢ € R, where S and 7. are defined respectively in (2.22), (2.23). Under the
symplectic diffeomorphism G, the Hamiltonian vector field Xy, changes
into Xg, = (DG(;)_1 Xp, o Gs, where K, := H, o Gjs is reversible
and momentum preserving. The Taylor expansion of K, at the trivial torus
(¢,0,0) is

Ka(¢7 Y, W) :KO(](Cb, Oé) +K10(¢7 Oé) Y+ (K()l(@, Oé), W)LZ + %KQO(gb)yy

+ (K11 (9)y, w) 2 + 5 (Koz()w, w) 2 + K=3(¢,y,w),

where K>3 collects all terms at least cubic in (y,w). Here Kq is a self-
adjoint operator on .6§+ o
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The key step concerns the construction of an “almost approximate" in-
verse of

(5.40) Ly =15 5 (w0, — JKo2(¢)) 92,

is "almost invertible" (on traveling waves) up to remainders of size O(N_ %),
where, forn € Ny

(5.41) Ny:=KP, Ky:=K}, x=3/2.

The (Kp)a>0 is the scale used in the nonlinear Nash-Moser iteration at the
end of Sectlonl 7|and (IVp)n>0 is the one in the almost-straightening Lemma
and in the almost-diagonalization Theorem [7.1] . Let HS(T"*1) =
HS(TV+1) A ij+,E

(AI) Almost invertibility of L,: There exist positive real numbers o,
w(b), a, p, Ko and a subset A, < DC(v,T) X [v1,72] such that, for all
(w, ) € A, the operator L, may be decomposed as

(5.42) L,=L5+Ry+RS,

where, for any traveling wave function g € HZ+”(']I‘”+1,R2) and for any
(w,) € M, there is a traveling wave solution h € H%(T"T1 R?) of
LSh = g satisfying, for all sp < s < S — u(b) — (L5 g”ko’

- k k ko, e
1( lgllsee + HgHsg;o HJOHsip (b)+o ) In addition, if g is antz-reverszble,

then h is reversible. Moreover, for any sy < s < S — u(b) — o, for any
traveling wave h € 5’)8+ 5, and for any b > 0, the operators R, Ri satisfy
the estimates

k: ) - - k ’ k ’ k ?
[Ruh]" S5 v N2 (Ih]3%5 + Ihlts 1300 % ey 40 ) -
14 |/ko0s - ko, ko, ko,
HR hH o <S Kn b( HhHsg-:-}b—&-O' + HhHs:)J+a' HJ HS(())+,U« +U+b)

kO)

1 ko, ko, ~ |1ko0,
[RER™ s IBIS + IR, 901, o -

The goal of Sections[6]and[7]is the proof of the above assumption (Al), see
Theorem By (AI), arguing as in Proposition 6.5 and Theorem 6.6 in
[7], we deduce the following.

Theorem 5.9. (Almost approximate inverse) Assume (Al). There is T :=
o(7,v, ko) > 0 such that, if (5.36) holds with ;v = p(o) + &, there exists
an operator Ty, defined for all (w,7) € A, that is an almost approximate
right inverse of d; o F (io), namely

di o F (i) © To — Id = P(in) + Pu(io) + P (io).
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More precisely, for any anti-reversible traveling wave variation g := (g1, g2, g3),
forall sp < s <S—p(b)—7,

k _ ko, ~ ko, ko,
I Togl " <5 v (9l + 190035 0wy s 219150 15)

and, for any b > 0, the following estimates hold:

ko, — - ko, ko,
1Pglee <s vt (17 (o, ao)15035 1gl0s

(5.43)

(17 o, o) 535 + 17 (o, o) 1505 130152 8 vy ) Lal055)
(544)  [Pugli®” S5 v N2 (191555 + 1301y 19 150%) -
(5.45)  |PLglfoY <on v KD (Hgn’;gfm + \ljo\lfﬁi;<b)+b+aHgHéW) 7
(546)  [Paglto” <5 v (lglh2y + 13055 o la150)

6 The linearized operator in the normal subspace

The Hamiltonian operator £, defined in (5.40) has the form (cfr. Lemma
7.1 in [7])
z
6.1) Lo =T (L~ TRz, |
Here, £ is the Hamiltonian operator £ := w- 0, — J 0,V H(T5()), where

H is the water waves Hamiltonian in the Wahlén variables defined in (2.4),
evaluated at the reversible traveling wave

T5(¢) := eAl(is(¢)) = €A (00(), I5(¢), wo(¢))
= evT (60(9), I5(9)) + ewo(d)
the torus 2'5( ) = (Bo(v), Is(¢), wo(p)) is defined in Lemma and
A0, I,w),vT(6,1 ) (2:21)), whereas R(¢) has the “finite rank" form
63) RO =3 (hg)pexi, Yhe Doy,

for functions g;, x; € ﬁs+,2 satisfying, for some o := o (7, v, ko) > 0, any
j=1,...,v,forall s > s,

(6.2)

ko, ko, ko,
lgils™” + x5l <s 1+ 1350555

Idig; (2]l + dix; [l = 7l g46 + |

In order to compute £ we use the "shape derivative" formula, see e.g. [25]],
G' (MY = —G(n)(BN) — 0:(V7), where

G + nzpdy
W, V(n,) ==t — B(n,¥)ns .

6.4)

040 1351

so+o s+o

(6.5) B(Uﬂﬁ) =
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Then, recalling (2.4), 2.3), (I.2) the operator L is given by

ax‘2+ G(U)B - *G(n)
g+ BV, + BG(n)B Vé, — BG(n)

+v< ~G(n)o;! 0 >
2 \0,'G(n)B — BG(n)o; ' — 30, G(n)o,t —0,*'G(n) )’

where

(6.6) L’—w-&p#—(

6.7) Vi=V—mn,

and the functions B := B(n, ), V := V(n, ) in (6.6)-(6.7) are evaluated
at the reversible traveling wave (1, 1) := WTs(p) where Ts(p) is defined
in (6.2).

Notation. In (6.6) and hereafter the function B is identified with the mul-
tiplication operators h — Bh. If there is no parenthesis, composition of
operators is understood, for example BG(n)B means B o G(n) o B.

We consider the operator £ in (6.6) acting on (a dense subspace of) the
whole L?(T) x L?(T). In particular we extend the operator J; ! to act on
the whole L?(T) as in (3.12).

By the reversible and space-invariance properties of the water waves
equations explained in Section [2[and since (1,() = Ts(¢p) is a reversible
traveling wave, (even(y, z), odd(y, z)), we deduce that (cfr. Lemma 7.3
in [I7]) the functions B, V defined in (6.3), are quasi-periodic traveling
waves, B is odd(y, x) and V is even(y, x). The Hamiltonian operator £ is
reversible and momentum preserving.

We shall always assume the following ansatz (satisfied by the approx-
imate solutions along the nonlinear Nash-Moser iteration): for some con-
stants p := po(7,v) > 0 (cfr. Lemma

~ ko, ~ ko,
(6.8) 1T0lleyt e » 1Tsl50, <1

It is sufficient to estimate the variation of operators, functions, etc, with
respect to the approximate torus i(,) in a low norm || ||, for all Sobolev
indexes s such that

(6.9) s14+ 09 <So+ po, forsome og:=ogp(r,v)>0.

~ k 5 ~ k 5
Thus, by (6.8), we have |Jo| 07 . [Tslls) 25, < 1. The constants (i and o
represent the loss of derivatives accumulated along the reduction procedure
of the next sections. They are independent of the Sobolev index s. In

the next sections pg := po(7,v, M,a) > 0 will depend also on indexes
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M, o, whose maximal values will be fixed depending only on 7 and v. In
particular M is fixed in (7.2), whereas the maximal value of a depends on
M, as explained in Remark [6.10]

As a consequence of Lemma [3.2] and (5.37), the Sobolev norm of the
function u = Tj(¢) defined in (6:2) satisfies ] = |n]/*" + |¢[* <
eC(s)(1+ HSOH’;O’”) for all s > so. Similarly, using (5.38), [A1zul,, <5
e “ZQ — il”sl where A12u = u(lg) — ’U,(Zl)

In Sections we make several transformations to conjugate the
operator £ in (6.6) to a constant coefficients Fourier multiplier, up to a
pseudo-differential operator of order —1/2 and a remainder that satisfies
tame estimates, see Lg in (6.113). In Section [6.7] we shall conjugate the
operator L, in (6.1).

6.1 Linearized good unknown of Alinhac

The first step is to conjugate the linear operator £ in (6.6)) by the sym-
plectic (Definition i multiplication matrix operator Z := ( 5‘91 I% ) Since
Z=1 = (14, %) we obtain

i .V —Gm)\ v ( Gz 0
(6.10) L1:=Z llZ—w»(?@—i-( A >_2 <ga;1@(n)a;1 a;la(n))

where a is the function
(6.11) a:=g+ VB, +w- 0,B.
As in [25]] and [9, 2], the matrix Z amounts to a linear version of the “good

unknown of Alinhac".

Lemma 6.1. The maps Z*' — Id are D*-tame with tame constants sat-
isfying, for some o = o(1,v,kg) > 0, for all s = so, Mz+1_14(5),
Mz+1_1a)+(s) Ss (1 + |\30H§$§ ). The function a in (6.11)) is a quasi-
periodic traveling wave even(yp,z). There is 0 1= o(T,v, ko) > 0 such

that, for all s = s,

ko, 7 11ko, ko, ~ ko,
(6.12) la =gl + VI + B <s e (1 + [ Tols47) -
Moreover, for any sy as in (6.9)),
6.13)  |Apal,, + A0V + [AwnBl,, <s e lin =iz, .
6.14)  |A12(ZFDh]s,, [ A2(Z5Y) by S5, € i — 2l 40 11, -

The operator L is Hamiltonian, reversible and momentum preserving.
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Proof. The estimates for B, V, a follow by their expressions in (6.3), (6.7),
(6.11), Lemma [3.2] (3.3) and the bounds for the Dirichlet-Neumann op-
erator in Lemma 3.10 in [[7]. Since B is a quasi-periodic traveling wave,
odd(p, x), Z is reversibility and momentum preserving (Definitions

and[3.16). O

6.2 Almost-straightening of the first order transport operator
We now write the operator £ in (6.10) as

B ov 0 —2G(0)0;" —G(0)
(6.15) ﬁl—wﬁﬁ( 0 m>+<a— (3) o clo)er —%6510(0)) o

2

where, by the decomposition of the Dirichlet-Neumann operator in Lemma
3.10in [7],

6.16) Ry ::( IRG(mo;" Re(n) >

(3)" 0, 'Ra(mozt 30, Ra(n)

is a small remainder in OPS™®. The aim of this section is to conjugate
the variable coefficients quasi-periodic transport operator LR := w - 0, +

( a% v ‘7% ) to a constant coefficients transport operator w - 0y, + m1 7 Oy, Up
to an exponentially small remainder, see (6.23)-(6.24), where n € N and

(6.17) Ny:=NY, No>1, x=3/2, N_j:=1.

Such small remainder is left because we assume only finitely many non-
resonance conditions, see (6.22). In the next lemma we conjugate LR by
a symplectic (Definition [3.13) transformation

_ (1 +Bu(p,x) 0B 0
(6.18) 5._( 0 B),

where the composition operator

(6.19) (Bu)(p, ) := u(p,x + B(p, 7))

is induced by a ¢-dependent diffeomorphism y = = + (¢, x) of the torus
T,, for some small quasi-periodic traveling wave 8 : T/ x T, — R,
odd(¢p, ).

Remark 6.2. We denote 0, the derivative operator in the new variable

y =z + B(p,x), see Lemmata and and Appendix@ For simplicity
of notation, at the beginning of Section[6.3] the variable y is relabelled back
with x.
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Let
(620) b:=[a]+2eN, a:=3(n+1)=>1, 7:=ko+ (ko+ 1)7

Lemma 6.3. (Almost-Straightening of the transport operator) There ex-
ists To(7,v) > T1(7,v) + 1 + a such that, for all S > so + ko, there are
No := No(9,b) € Nand & := 8(5,b) € (0,1) such that, if Nj?cv™! < &
the following holds true. For any n € Ny:

1. There exist a constant m; 7 = myz(w,7y) € R, where m; o = 0, de-
fined for any (w,7y) € R” x [y1,72], and a quasi-periodic traveling wave
B, x) = Ba(p, ), odd(p, x), satisfying, for some o = o(7,v,kg) > 0,
the estimates

Use, [BIFY g5 evT (14 [Toley) s Yso <s < S,

independently of n;
2. For any (w,7) in TCqt+1(2v, 7) := TCat1(m 7, 2v, T) defined as
(6.22)

Tcﬁﬂ(zu,f);:{(w,y) e R'x[71,72] : [(w —miz]) - ] = < > YO0 < |f] < Ny }

0V 0

A ) is conjugated to

the operator LTR = w - 0y + (

B Oypa O
(623) €'LrRE =w 0y +mzdy + Py, Pyi= < yO pﬁ0y> ’

and the real quasi-periodic traveling wave function pz(p,y), even(p,y),
satisfies, for some o =0 (1,v, ko), 0 > 0, and for any sy < s < S,

—_ ~ k
(6.24) Ipalf? <op e No2 (1 + [ TolsSess) s

3. The operators E* are D¥-(ko+1)-tame, the operators E¥1 —1d, (£+! —
I1d)* are D*o-(ko + 2)-tame with tame constants satisfying, for some o :=
o(1,v, ko) > 0and forall sy) < s < S — o,

(6.25)

Mes1(s) S5 1+ [Tof35, Mexr 1a(s)+ M1 _1a)*(5) Ss e (1+ 30397 4)

4. Furthermore, for any si as in (6.9),
(6.26) |Amig| Selit—ial, ,, 1A128]s Ssy 0 it —iafsyosn,

(6.27) [A12(Mhlsy Sy ev™" lin 2l gy yopn Bl sorn A {ET(E)F)

Proof. We apply Theorem [A.2] and Corollary [A4] to the transport opera-
tor Xo = w - 0, + Vd,, which has the form (A.I) with py = V. By
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(6-12) and (6.8), the smallness condition (A.3) holds for Nj?ev ™! suffi-
ciently small. Therefore there exist a constantm; z € R and a quasi-periodic

traveling wave B(«p, x) = Ba(p, x), odd(ep, xi, such that, for any (w, ) in

TCa+1(2v,7) € Aﬁ+1 c A%’T (see Corollary |A.3)) we have Bﬁ_l(w - 0p +

VO.)Bs = w0y + (mz + pa(p,y))0y where the function py satisfies

(620 by (3 and (612 The estimates (A8). (513, (.12 imply G621,

(6-25). The conjugated operator E1LTRE = w - 0, + ( 0 (mia HHE}

where w- 0, + Ay = B~ Y14 82)~ (w 0y + é’xV)(l + B2)B. Since ETR
is Hamiltonian (Definition|3.13), and the map & is symplectic, €1 LTRE is
Hamiltonian as well. In particular A; = —((m1 5+pa)0y)* = m1 50y +0,pr.

This proves (6.23). The estimates (6.26)-(6.27) follow by (]@[) (]E[)
the bound for ||A1255]|s, in Corollarynand (6.13)-(6.14).

The next lemma is used to prove the inclusion of the Cantor sets associated
to two approximate solutions.

Lemma 6.4. Let i1, 15 be close enough and 0 < 2v — p < 2v < 1. Then
eC(s1) NIt i1 —ig) sy 10 <p = TCay1(2v,7)(i1) S TChi1(20—p, T)(i2) -
Proof. For any (w,7) € TCqt+1(2v,7)(41), using also (6.26)), we have, for
any ¢ € Z"\{0}, |¢| < Ng,

[(w—ma(i2)]) €] = |(w—ma(i1)]) - £] — C|Aram 5[]
2v . . 20—0p
> = C(s1)eNallin — ialls, 10 = =
@ (s1)eNzlin — izfs, + 0%
We conclude that (w,y) € TCat1(2v — p, 7)(i2). O

We now conjugate the whole operator £; in (6.13)-(6.16) by the opera-
tor & in (6.18)). We first compute the conjugation of the matrix

_ —2G(0)o; " —G(0)
© 1<a— (%)22 0, 1G(0)o; ! —;8;1G(0>> ¢

(—3BTM A4 B)TIG(0)0 (14 B)B =BT (1 + B.)TIG(0)B
- <B_1(a - (1)?6,1G(0); )1+ Bo)B  —3B7o;1G(0)B > :

The multiplication operator for a(p, x) is transformed into the multiplica-
tion operator for the function

(6.28) B~ la(1 + B,)B =B (a(1 + 5.)) .
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We write the Dirichlet-Neumann operator G(0) in (I.4) as
(6.29) G(0) = G(0,h) = &, HT(h),
where # is the Hilbert transform defined in (3.11)) and
tanh(h|D|) =1Id+ Op(r) ifh<+o0,

(6.30) T(h):= () = — e €57,
Id ifh =00

We have the conjugation formula (see formula (7.42) in [2])

(6.31) B7'G(0)B = {B~'(1+ 3:)} G(0) + Ri,

where

Ri:={B""(1+ )} &y(H (B~ Op(rs)B — Op(r)) + (B~ 'HB —H) (B~ 'T(n)B)) .

The operator R is in OP.S~% because both B~'Op(r,)B — Op(ry) and
B~ 'HB — H are in OPS~® and there is ¢ > 0 such that, for any m € N,
o € Ny and s > sg,

_ ko, ko,
HB IHB - HH Om ,S,Q ~m s,a,ko HIBHS?F’13’L+01+O' ’

_ k ko,
HB 1OP(Th)B - OP(Th)” Orr?s o Sm,s,a.ko H5H59r:7)1+a+a :

The first estimate is given in Lemmata 2.36 and 2.32 in [9], whereas the
second one follows because , € S™% (see (6.30)), Lemma 2.18 in [2] and
Lemmata 2.34, 2.32 in [9]. Therefore by (6.31) we obtain

(633) B '(1+48:.)'GO)B={B'1+8:) "B 'G0)B=G0)+ Rz,

(6.32)

where
(6.34) Rp:={B1(1+8:)" IRy,

Next we transform G(0)0;, L. By (6.29) and using the identities H0,0, ! =
H and HT'(h) = 0, *G(0) on the periodic functions, we have that

BT+ B2) T G(0)0; (L + B2)B = G(0)0," + Ra

(6:33) B'0,'G(0)B=d,'G(0) + Rp,
where

Rp = (B'HB —H)(B'T(h)B) + H(B 'Op(rs)B — Op(ry)) ,
(6.36) Ra={B7'(1+ B:) HHT (), {B~ (1 + Bx)} — 1]

+H{B1(1+ B,) NRp{BH1 + B.)}.
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The operator R p is in OPS~* by (6.32), (6.30). Also R4 is in OPS~®
using that, by Lemma 2.35 of [9] and (6.30), there is ¢ > 0 such that, for
any me N, s > sg, and a € Ny,

ko, ko,
(6.37) H[HT( ) ]H Omsa ~m,s,a,ko HaHs?Hlv)’L+a+o' :

Finally we conjugate d; 1G(0)0, 1. By the Egorov Proposition 3.9 in [7] to
0,1, for any N € N, we have

(6.38) B0, (1 + Bu)B=B"'0,"B{B (1 + fa)} =0, + P y (0,2, D) +Rw,
where PEIQ)jN(go, x, D) e OPS~? s given by
PY) (e, D) = [{B1(1+ B2) 1}, 0, B (1 + B.)}

N
+ ) P10 BT (14 Ba)}
j=1
for some functions p_1_j(A; ¢,y), 7 = 0,..., N, and a regularizing oper-
ator Ry satisfying the estimates (3.30)-(3.31) of Proposition 3.9 in [7]]. By

(633), (6.38), we obtain

(6.39)  B71o,1G(0)0; (1 + B2)B = 0,1 G(0)0," + Py + Roy
where

©40)  PY) = 0,'G(0)PY) y(p,z, D) € OPS™?

(6.41) Ron := Rp(B~'0, (1 + B:)B) + G(0)d, 'Ry .

In conclusion, by Lemma [6.3] (6.28), (6.33)), (6.35) and (6.39) we obtain

the following lemma, which summarizes the main result of this section.

Lemma 6.5. Let N € N. For anyn € Ny and for all (w,~) € TCqy1(2v,7),
the operator Ly in (6.13) is conjugated to the real, Hamiltonian, reversible
and momentum preserving operator

Lo:= 871[,15

_ 1 B
642) =w- acp + ml,ﬁay + < 2G( )a G(O)(0)>

ar - (3)°0,1G(0)0,0 —30,'G

0 0
+ (_(%)ng;N 0) +RY + Ton + Py,
defined for any (w,y) € RY x [y1,72], where:

1. The constant m; 5 = mjg(w,7y) € R satisfies |m17ﬁ|k0’v < ¢, indepen-
dently on n;



48 M. BERTIL, L. FRANZOI, A. MASPERO

2. The real quasi-periodic traveling wave a; := B~! (a(1+ﬁx)), even(p, ),
satisfies, for some o := o(ko, T,v) > 0 and forall sy) < s < S — o,

(6.43) lar — g*o? <o 0™ (1 4 T0)500)

3. The operator P( ) 9N is a pseudodifferential operator in OPS™2, re-

versibility andmomentumpreservmg, and, for some o :=on(T,v, N) >O
for finitely many 0 < o < «(M) (fixed in Remark and for all
so < s <5 —on — q, satisfies

(6.44) IP2) 0 1F%8 o Soma cv™ L+ 30592 1a)

sSton+ta

4. For any q € Nj with |q| < qq, n1,n2 € Ng withny +ng < N — (ko +
Qo) +2, the operator (DY 03(RY (¢) + Ta n()){ D)2 is D*0-tame with
tame constant satisfying, for some on(qo) = on(qo, ko, 7,v) > 0, for any
50 <5< S5 —on(qo)

_ ~ ko
(6.45) M pyyms 03 (RY ()T () (Dya(8) S8, N.00 €0 (HT0 TS 1 (q0))5

5. The operator Py is defined in (6.23) and the function pg satisfies (6.24);

6. Furthermore, for any s1 as in (6.9), finitely many 0 < o < a(M),
q € Ny, with |q| < qo, and ny,ng € No, withny +nay < N —qp + 1,

(6.46) \A12m1 n| st € Hll Zz”
1812 g -2051.0 Ser,v.a €07 [in — s

(6.47) [<D)"0% Ava(RY +Ta,n DY £(rrs1) Sor,Niao €V

|A12a1 )5, S g0 [in —d2

sit+o ? s1t+o ?

siton+a ?
i =2 H51+0'N(q0) :

Proof. Item 1 follows by Lemma [6.3] The function a; satisfies (6.43) by
@11, 33), (6.12), (6.23), (6.21). The estimate (6.44) follows by (6.40),
Lemmata [3.6] [6.3] and Lemma 3.8, Propositions 3.9 in [7]. The operators

J
RY, Ty in (642) are RY = —(27§A e ) + EIRYE, Toy o=

- (%)2 (RQ(?N 0) where Rp, Ra, Rp, are defined in (6-34), (6:36), and
R, Ry v in (6.16), (6.41). Thus the estimate (6.45) holds by Lemmata[3.9

3.101[6.31 3.3] (6.32), (6.37), Lemma (6.21), Proposition 3.9 in [7], Lemma
3.10 in [7] and Lemmata 2.34, 2.32 in [9]. The estimates (6.46)-(6.47) are

proved similarly. 0

6.3 Symmetrization of the order 1/2

The goal of this section is to symmetrize the order 1/2 of the quasi-
periodic Hamiltonian operator L2 in (6.42). From now on, we neglect the
contribution of the operator P3-, which will be conjugated in Section
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For simplicity of notation we denote such operator L2 as well.

Step 1: We first conjugate the operator Ly in (6.42), where we relabel
the space variable y > z, by the real, symplectic, reversibility preserv-

ing and momentum preserving transformations M := (A 0 ), M=

0 A1
(Aa ' R) where A € OPS i is the Fourier multiplier

(648) A= Lmo+ M(D), A" i= \/gmo + M(D) ' € OPS~ 7,

with 7 defined in (3.13)) and (cfr. (2.9))
649  M(D):= G(0)i(g— (3)20;'G(0)3;}) 1 € OPSY |
We have the identities A~*G(0)A~! = w(v, D) and
6.50) A(g—(3)0;'G(0)a; 1) A = A" G(0)A™ +mp = w(v, D)+,
where w(v, D) € OPS? is defined in (2-17). By (6.42) we compute
Ly =M LM

B —1G(0)05! CATIG(0)A?
651 = dermatet (4o, Bolcopa Sxetn )

+ (,(%FAOPQNA 8) + MTOIRIM + M Ty n M.
By (6.50), (6.48) and (6.49), we get
Aar — (3)?0;'G(0)0; ')A = w(v, D) + (a1 — g)A* + [A, a1 ]A + g
= a3w(v, D) + %(%)ZM(D)Q;IG(O)G;I—F[A, ar]A + 7o + H =2 mg

where as is the real quasi-periodic traveling wave function (with a; defined
in Lemma [6.3)

(6.52) as :=4/%=4/1+%, even(p,x) .

Therefore, by (6.51)), (6.50) and the above computation we obtain

~1G(0)0;'  —w(y,D)
— . Y 2 ‘ ’
,C3 =W acp + ml,nax + (a/2w(fy7 D)a2 —%8;1G(0)

0 O 0 0 v
(6.53) + (71'0 0> + (CS 0> + R3 + T37N,

where

C3 := aslaz,w(y, D)] + %(%)QM(D)%;lG(O)a;l

(6.54)
+[A ar]A — (3)°AP%) 4 A
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isin OPS~7 and
0 0

V. A A-1pV¥ iy
(6.55) Ry :=M "R, M‘|‘<(c§;1 —1)me 0

) Ty = M Ty M.

The operator L3 in is Hamiltonian, reversible and momentum pre-
serving.

Step 2: We now conjugate the operator £3 in (6.53)) with the symplectic
0g¢! 0 ¢
q is a real function, close to 1, to be determined, see (6.59). We have that

A B
Cc D

) N -1
matrix of multiplication operators Q := (q 0 ), Q1= (q 0 ), where

(6.56) Li:=0Q 'L3Q=w 0, +miads + < ) + Q' (Ry +T3n)Q,

where (see Definition [3.13)
(657) A:=-D*=-2¢"'G(0)0; ' ¢ + miaq "¢z + ¢ (w - 0p0q),
(6.58) B:=—q 'w(y,D)g ", C:= gasw(v, D)asq + qmoq + qCsq.

We choose the function ¢ so that the coefficients of the highest order terms

of the off-diagonal self-adjoint operators B and C satisfy ¢~ = qag,

namely as the real quasi-periodic traveling wave, even(yp, x)

1
(6.59) q(p, ) = az(p, )" 2.
Thus Q is reversibility and momentum preserving. In view of (6.57)-(6.58)
and (6.59) the operator L, in (6.56) becomes

1 1
L4=w-0p+mz0; + < lQG(O)GI . as w(7, D)a2>
ajw(y,D)ai  —30;'G(0)

0 0 a3 0 v
N

where ag is the real quasi-periodic traveling wave function, odd (¢, x),
(6.61) a3:= mlyﬁq_qu +q¢ Y w- 00q9), Ci:=qCsqc€ OPS—> ,
and RY, T4 y are the smoothing remainders (recall that G(0)0; 1 = HT'(h))

(6.60)

v . (—3a ' [HT(h),q-1] 0 g .
Ri = ( qmog—mo —g[q—l,HT(h)]qﬂ) +Q R3 Qe OPS™ 7,
(6'62) T4,N = Q_1T37NQ.

The operator £4 in (6.60) is Hamiltonian, reversible and momentum pre-
serving.
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Step 3: We finally move in complex coordinates, conjugating the operator
L4 in (6.60) via the transformation C defined in (2.12). The main result of
this section is the following lemma.

Lemma 6.6. Let N € N, qg € Ng. We have that

L5:= (MQC) ' LoMQC = w0, +m 50 + 103 (7, D) + asH

(_%d)

(6.63) HIL + RS 27+ RO + Ty,

where:

1. The real quasi-periodic traveling wave as (g, z) in (6.52), even(y, ),
satisfies, for some o = o(ko, T,v) > and for any sy < s < S — o,

(6.64) Jaz = 1% 5 eo™ (14 3055

2. Q(~, D) is the matrix of Fourier multipliers (see (2.13)), (2.14))

665 2. D) =" o) QD) =wly, D)+ 301 G(0);

3. The operator T := & ( ™0 ™ );

4. The real quasi-periodic traveling wave as(p,x) = Z(az(p,z) — 1),
even(yp, ), satisfies, for some o := o(ko, T,v) > 0,

(6.66) lag]f 0¥ <o ev™ (1 + | TolY), Vso<s<S—o;

_1
5. Ré 2:4) € OPS™3 and Réo’o) e OPSC are pseudodifferential operators

of the form

0 (¢, 2, D)

R(O,o) — 0 ( )(507$ D)
> (¢, 2,D) 0 ’

reversibility and momentum preserving and, for some oy :=o(1,v, N) >0,
for finitely many 0 < o < (M) (fixed in Remark[6.10), and for all sy <
s < S —on — 3a, satisfies

RU#D . ( (¢, D) 0 >

(=%.d) ko, ko, ~ ko,
(6.67) |R; * |\_°;S,a+HR5 ot Sona cv 1+ [T0508 50

6. For any q € Ny with |q] < qo, n1,n2 € Ng withny + ny < N —
(ko +qo) + 3, the operator (D)™ 03T n (p)(D)"2 is D*-tame with tame
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constant satisfying, for some on(qo) = on(qo, ko, 7,v) > 0 and for any
50 <5< S —on(qo)

(668) m<D>”16q¢T5,N(<p)<D>”2 (8) SS’NHO eV (1 + HJ Hfid’]\f qo)) N

7. The operators Q*', Q*! —1d, (Q*! — 1d)* are D*0-tame with tame
constants satisfying, for some o :=o (1, v, ko) >0 and for all s)<s<S—o,
(6.69)

Mos1(s) S5 1+ [Tl %5, Mo 1a(s) + M guy_yx(s) Ss 0™ (1+ 3l 2)

8. Furthermore, for any s1 as in (6.9), finitely many 0 < o < a(M),
q € N§, with |q| < qo, and nq1,ng € Ny, withni + ng < N —qo + %

(6.70)  [Ar2(Mhls, Say ev™t in 2l 4o 1Bl 40, A€ {QT = (2%},

|As2ass, Ssy e [lia — e [As2asls, S v Jia — e

si1+o ? s1t+o

[R5 1812 RO .01 0 S iy — i
12105 ~Lsi,a 128y 0,51, ~s1,N,a EV 1 =25 1on+2a 0

(6.71)  [<(D)" 03 A12Ts,n (0){D)" Hﬁ(Hsl) So1Na0 €0 i1 =2l pon (ao) -

The real operator L5 is Hamiltonian, reversible and momentum preserving.

Proof. By the expression of L4 in (6.60) and (3.10) we obtain that L5
has the form @ with ré) = L(ap — DH(T(h) — 1) + i(3Cs +

[ (v,D),a ]) e OPS 2, ré o) = az + 3C4 € OPS (with Cy given in
(@) and T35y := C"1(RY + T4 n)C. The function g defined in (6.39),
with as in (6.52)), satisfies, by (6.43) and Lemma[3.2] forall s) < s < S—o,
lgtt — 15 <, ev (1 + |To|*0Y). Therefore (6.64) and (6.66) fol-
low by (6.52)). The estimate (6.67)) follows by the above definitions of réo)

d
and (", (669, €39, €38, €32). 33, 639, 61, G48). €I,
Lemma [6.5] The estimate (6.68) follows by (6.62), (6.53), (6.37), (6.43),

(643) Lemmata [3.9] 3.10] The estimates (6.69) follow by Lemma @
The estimates (6.70)- (6.71)) are proved similarly.

6.4 Symmetrization up to smoothing remainders

We now transform the operator L5 in (6.63) into the operator Lg in
(6.72) which is block diagonal up to a regularizing remainder. From this
step we do not preserve any further the Hamiltonian structure, but only
the reversible and momentum preserving one (it is sufficient for proving
Theorem [5.1)).
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Lemma 6.7. Fix m, N € N, qo € Ng. There exist real, reversibility
and momentum preserving operator matrices {X}1_, of the form X}, :=

0 Xk (¢,x,D) . —k . .
(m 0 ) , with xr (¢, z,£) € S™2 | such that, conjugating Ls

in (6.63) via the map ®, := eX1 o---0eXn we obtain the real, reversible
and momentum preserving operator

Le = ,Cém) = @;1 LsPyn =w:0,+m 50, +1ia282(7y,D)

6.72) (—5.d) (=30
+aH+illp+ Ry 27 +Ry 277 + Te v,
where:
1 r{® (p,2
1 RS = R - ( (oe.0) ()0) € OPS™% is block-
. 0 (¢,z,D)
diagonal, Réﬁi’o) is a smoothing off-diagonal remainder

_mn, _m <) x,
673 R{ ¥ =Ry = (0) (T;’ D)> cOPS %,

satisfying, for finitely many 0 < o < «a(m) (fixed in Remark , for
some oy = on(ko,T,v,N) > 0, Xn(a) > 0 and for all sy < s <
S — ON — Nm(a),

d) ko,v 0) ko,v
(6.74) HR H 0 +HR H Om Sassl’ﬂNOA v (1+HJOH5+0N+N (a))'

77504

14 —m . .
Both Ré 2:4) and Ré 2:0) are reversible and momentum preservmg;
2. For any q € Ny with |q| < qo, n1,n2 € No withny +ng < N — (ko +

qo) + %, the operator (DY 03Tg n(p)(D)™2 is DFo_tame with a tame
constant satisfying, for some on(qo) := on(ko, T, v, qp), forany sp < s <
S —on(qo) — Ru(0),

_ ko,
(6.75)  Mpymisarg wippyma (5) SsmNao €0 (L4 [Tol550 1 00y 4 () -
3. The conjugation map P, satisfies, for all s) < s < S — oy — N (0),

(6.76) @' —Td|5%5+] (B5" —1d)™ 6% Somv e (14]T0 527 o) -

4. Furthermore, for any s1 as in (6.9), finitely many 0 < a < «a(m),

26 Ny, with |q| < qo, and ny,n2 € No, withny +ng < N —qo + %, we
ave

NS +1Aa12Rg 71 4o Sermvacsy i -

”—— )51, Z‘2H51+0'N+Nm(04)7
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[KDY™ 03 A2 To, N (D)™ | c(rro1) SsrmiNiao U i1 = i2]l4, 4 o (q0) 450 (0)

| A2 o,51,0 + [A12(B5")*l0,61,0 Sermv €07 it — 2], 4o 4xm(o) -

Proof The proof is inductive. The operator £( ) = L5 satisfies (6.74)-
with Rg () := 3c, by (6.67 @) Suppose we have done already

_1
m steps obtalmng an operator E ) as in (6.72) with R D Ré 2:9)

and Ré ) = Ré 2°) and the remainder <I>;1T5,N<I>m, instead of T .

We now show how to define L’(mH) Let

6.77)  xm1(9,,6) i= —(2ias(p, 2)0(7,6)) T (02, E)x(€) € ST 72,
where x is the cut-off function defined in (3.6) and w(~,¢) is the symbol

(cfr. 2.10))

a , P2 G(0;6)\ _ 1 ey ) x(©)[¢ltanh(nf¢]), b < +o0
w(%f)-\/G(O’f)<g+ 4 52 )ES ’G(O’é){X(g)KL h=+40w0.

Note that Y1 in is well defined because w(7, f ) is positive on the

support of x (&) and as is close to 1. We conjugate E ) in (6.72) by the

flow generated by X1 with xm+1(p, x,§) defined in (6.77). By (6.74)
and (6.63)), for suitable constants Nm+1(a) > Np(«), for finitely many
a € Ny and forany s) < s < S — oy — Npy1(@),

ko, . ~ (Ko,
(678) H m+1H 0 575@ gs,m,a EV 1(1 + HJOHS?F}T}N-FNm+1(a)) .

Therefore, by Lemmata [3.7] [3.6] and the induction assumption (6.76) for
&, the conjugation map ®, 1 := PpeXm+1 is well defined and satisfies
estimate (6.76) with m + 1. By the Lie expansion (see (3.16)-(3.17) in [7]),

we have that E(mﬂ) = e Xmt1 £ém) eXm+1 is equal to
_1
(6.79) L™V = w0, +miads +iasQ(y, D) + il + asH + R 27
_I:Xl’n+17m1,ﬁaz + iQQQ(’V? D):I R( 2 £ + ®m+1T5 N®mi1

1
(6.80) _j e THmi [Xunt1, w-0p +illo + asH + Réy_mi’d ]eTX‘““dT
0

1
681) - J Xt [X 1, REE | Xmtdr

6,m
0

1
(6.82) + J (1 —7)e TXm+1 [Xont1,[Xims1,m1 502 +ia202(7, D)]]eTX"‘“dT,
0
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In view of (6.63), (6.73)) and the form of X,41, we have that

. -2 o Zn
_[Xm+1’mlvﬁax + IGQQ(V’ D)] + Ré,mz : - <Z|t?+1 0+1> = L1

where, denoting for brevity Xm+1 := Xm+1(, Z, §), it results
Zm+1 = 1(0p(Xm+1)az w(y, D) + azw(v, D)Op(Xm+1))
+ [Op(XmH), —my 50z + a2 %8;161(0)] + Op(ré?%) .

By (314), (316) and xm1 € S22 by (&77), we get

Op(xm+1)azw(y, D) + azW(% D)Op(xm+1) = Op(2a2w (7, &) Xm+1) + Tmi1,

where Ty 1 is in OPS™ 2 ~1. By (6.77) and (6.83)
Zmy1 = iTmy1 + [Op(Xm+1), —my 502 + a2, 'G(0)]
+0p(rgn(1 - x(§))) e OPS™E .

The remaining operators in (6.80)-(6.82) are in OPS™ 2 . Thus the oper-
ator EémH in (6.79) has the form (6.72) at m + 1 with

—l,d _m+1
RS 2R3 =R 1 Z 1+ 650) + @31+ 63D

and a smoothing remainder &, ; Ts, N(IJmH. By Lemma ©74), (©.73),
1
(6-66), we have that Ré o +1) nd R, . O) satisfy (6.74) at order m + 1

6,m+
for suitable constants Nyt (a) > Ny (« ) The operator &, +1T5 NPmi1

satisfies (6.73) at order m + 1 by Lemmata [3.9] [3.10] and (6.68), m

Item 4 follows similarly.

So far the operator Lg of Lemmal6.7]depends on the two “regularizing”
indexes m, N. We now fix

(6.83) m:=2M, MeN, N=DM.

6.5 Reduction of the order 1/2

The goal of this section is to transform the operator Lg in (6.72) with
m:=2M, N = M (cfr. (6.83)), into the operator L7 in (6.95) whose coef-

ficient in front of £2(v, D) is constant. We write Ls = w - 0, + ( 0 g ) +
iy + RS ™M) + T, where Pg := Py(p, z, D) is

(6.84) Ps :=my 50, +ia2(p, )y, D) + asH + réd)(go, x,D).
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We conjugate Lg through the real operator ®(p) := (@(O@ 680)) where
D(p) := D7 (p)|r=1 is the time 1-flow of the PDE

(6.85) 0,97 () = iA(9)®" (), () = 1d, A(p) := b(ep,z)|D|2,

and b(y, x) is a real quasi-periodic traveling wave, odd(¢p, ), chosen later,

ee (6.92)). Thus ib(p, z) |D|% is reversibility and momentum preserving as
well as ® (). Moreover &1y = my = &~ mp, which implies @~ 'TTy® =
IIy®. By the Lie expansion (see e.g. (3.16)-(3.17) in [7]]), we have

2M+1 (—1)"
O 'Ps® = Ps —i[A, Ps] — [A [A P]l+) N n) ad%(p)(Ps) + Tr

(6.86) Tar := ﬂfu—ﬂ”f“@”( )ad% (% (Ps) @7 (p)dr,
(2M + 1)! J, ¢
and
P low - ,0P =w-0y +i(w-dy A)+1[A w-0,A]
(6.87) 7212“(”) ad’y ) (w - 0pA(p)) + Thi
4 (_i)2jw+2 ! 2M+1 2M+1
T =~y |, 0= 77 (@ kil @ 0,A(0) 97

Note that adQJEﬁ)ﬂ(Pg) and adQA]g;)rl(w - 0,A(p)) are in OPS~M. We now

determine the pseudo-differential term of order 1/2 in (6.86)-(6.87). We use
the expansion of the linear dispersion operator (-, D), defined by {@.1),

(T:3), and, since j — ¢;(7) € SO (see @3)),
(6:88) Q(v,D) = \/g|D|z +i§H+7_1(7,D), r_1(v,D) € OPS ™2,

where H is the Hilbert transform in (3.11). By (6.84)), that A = b|D|%,
(B.13). (6.88) we get
[ARﬂ=MWﬁmM8+Rf@mﬁ

+ <a4 — *CLQ)H + TG )(IIJ,D> + iQQT_%(’Y, D)]

(689) = —miahy|D|2 — 1% (bsaz — (a2)sb)H + Op(r, ;).

wherer, 1 €S -3 is small with b. As a consequence, the contribution at
)

order % of Ihe operator iw - O, A + Ps — i[A, Pg] is i(w - 0pb + my 5by +

V9 az2)|D|z. We choose b(y, x) as the solution of

(6.90) (w . aw + ml,ﬁaz)b + \/EHNH as = \/Em%
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where m; is the average (see (3.2))
2

(6.91) mi = {ag)ez -

We define b(¢p, x) to be the real, odd (¢, x), quasi-periodic traveling wave
(6.92) b(p,x) := —/g(w - Op + m1 50) ot (Ingaz(p, z) — m%)

recall (3.3). Note that b(p, ) and m1 are defined for any (w,v) € R” x
2

[v1,72] and that, for any (w,v) € TCz41(2v, 7) defined in (6.22)), it solves
(6:90). We deduce by (6.86), (6.87), (6.84), (6.89)-(6.92), that

Lz := @7 (p) (w0, + Ps) 2(¢)
is, for any (w,~y) € TCqy1(2v,7),
L; = w-& +m158x -l-im%Q(’y,D) + asH

1
2

+Op(ri?) + Tar + Tjy + 1y/g(ITx,az)| D)2

where a5 (¢, x) is the real function (using that a4 = 3 (ag — 1))

6.93) = (my —1) - Y9 (bpas — (az).b)
' + 22 (bapb — 02) + 1 (b(w - 0pb)s — (w - Opb)ba)
and
Op(ry”) := Op(—ir, _1 +i(az —my)r_1 (v, D) + (")
+ 1 [B1D|7 1 (baas — (az)a b)H — Op(r, _1)]
6.94 1 —i)"
€9, lom(bmw (muabe + 02,0061 H) + Y W ()
_2”’“ ad’y ) (w - ,A(p)) € OPS™ 2,

with (-, - ) defined in @D In conclusion we have the following lemma.

Lemma 6.8. Let M € N, qp € Ny. Let b(p, x) be the quasi-periodic trav-
eling wave function odd(yp, z) in (6.92). Then, for any & € Ny, conjugating
Lg in via the invertible, real, reversibility and momentum preserving
map ® (cfr. (6.89)), we obtain, for any (w,v) € TCay1(2v,T), the real,
reversible and momentum preserving operator

Lr:=® L@ =w 0, +mz0; +im1Q(y, D) + asH
(6.95) 1a) ’
+iH0+R7 2 +T77M+Q%',

defined for any (w,vy) € RY x [v1,v2], where:
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1. The real constant my defined in (6.91) satisfies [m1 — 1|F0v < ev™1;
2 2

2. The real, quasi-periodic traveling wave function as(p,x) defined in
(6.93), even(yp, ), satisfies, for some o = o(7,v, ko) > 0, for all sp <
s< S —o,

_ ~ ko, _
(6.96) 5[ $s e (1 + [F0ls55) s Kasyeal™ < o™
D)
3. The block-diagonal operator Rf%’@ = ( 4 (z’m’D) ﬁ) € OPS™ 2,
re (.,

with ré )((p, x, D) defined in (6.94), satisfies for finitely many 0 < « <
(M) (fixed in Remark|6.10), for some opr () := op(ko, 7, v, @) > 0 and
forall sp < s < S —op(a),

(6.97) IRV Sonta e (14 (30102, )

s, S+0’M

4. For any q e N§ with |q] < qo, n1,n2 € Ng with ny +ng < M —
3(ko + qo) + 3, the operator (DY 03T v (¢){D)"* is D*0-tame with
tame constant satisfying, for some o p;(qo) := o (ko, 7, v, qo), for any s <
s < S —om(qo),

ko,v ) .

(698) m<D>nlaqT7 2 () {(DY"2 (S) $S7M7qo EV (1 + HJ HS+01\[ (q0)

5 The operator Q= := 1\f(HL ag)]D| (§ O0) where as (e, x) is defined

in (6.32) and satisfies (6.64);
6. The operators ®*1 —1d, (®* — 1d)* are D*-1 (ko + 1)-tame, with
tame constants satisfying, for some o > 0 and for all s < s < S — 0,

(6.99) mq;.irl_ld(S) + ﬁﬁ(q,ﬂ_ld)* (S) <s 81}72(1 + Hjongi’;) .

7. Furthermore, for any s1 as in (6.9), finitely many 0 < a < «a(M),
q € N§, with |q| < qo, and n1,ms € Ny, with ny +no < M — 3qo, we have

(6.100)  [Arzas]s, S5, €2 lin — a4, |Aremy | S ev ™! ir — ol 4y s
—La) —2 . .
(6.101) |AR,; 2 |L§,sl,a Sy Moo €U 2 |in — zz“sﬁgM(a) ,

(6.102)  [<DY" 0L A12T7,24{D)Y"* || c(rro1) Ssr.0ra0 €V |li1 — 2]
(6.103)  |A12(A)hs; Ssy g0 |lin — i |h]

s1+on(qo) ?

+ +
s1t+o s1+o ? AE {¢_17(¢_1)*}'

Proof. The estimate |m1 — 1[0 < ev~! follows by (6.91)) and (6.64). The

function b(¢, z) defined in (692) satisfies, by (3-7) and (6.64), [b]%" <

ev (1 + HJOHESF’U), for some 0 > 0 and forall sp < s < S —o. Thus,
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the estimate (6.96)) i 1 — 1Y < evl, (6.64), (6.9).
The estimate (6.97)) follows by (6.94), (]67_8%[[} Lemma 3.6 the estimate for
HkaO ", and (6.74), (6.64), (6-66). The smoothing term T+7 5 in (6.99) is,
using that I P = Iy®, Try = & 1T 0@ + illg(® — 1d) +

P R(f VP 4 TM:;T TMST, with Ty and T}, defined in (6.86),

(6-87). The estimate (6.99) follows. by Lemma 2.38 in [2] and the estimate
for |6 %Y. The estimate (6.98) follows by (6.84), Lemmata @ the
tame estimates of ® in Proposition 2.37 in [2]], and (6.66)), (6.99), (6.73).
The estimates (6.100), (6.101)), (6.102)), (6.103)) are proved similarly, using
also (3:8). O

6.6 Reduction of the order 0

The goal of this section is to transform the operator L7 in (6.93) into the
operator Lg in (6.113) whose coefficient in front of the Hilbert transform
‘H is a real constant. From now on, we neglect the contribution of Q% in
(6.93) which will be conjugated in Section[6.7] For simplicity of notation

we denote such operator L7 as well. We first write L7 = w-0, + ( 0 137 ) +
illp + T'7 a1, where

(6.104) P;:=m; 50, + im%Q('y, D) + as(p,z)H + Op(rgd)) .

We conjugate L7 through the time-1 flow WU (yp) := U7 (¢)|,—1 generated
by

(6.105) 0,97 () = B(p)U7(p), ¥(p) =1d, B(p) :=bi(p,2)H,

where b;(p, ) is a real quasi-periodic traveling wave odd(p, ) chosen
later (see (6.111)) and # is the Hilbert transform in (3.11). Thus by Lem-
mata the operator by (¢, x)H is reversibility and momentum pre-
serving and so is its flow ¥7(¢). Note that, since H(1) = 0, we have
U(p)mg = mo = ¥ 1(p)m. By the Lie expansion (see (3.16)-(3.17) in
[ZI), we have

U'PU = Py — [B, Py +Z — ) ~——adp()(Pr) + Lar,
(6.106)

(—1)M+1 1 " Ml
Ly o= TJ (1= n)"¥ 7 () ady) (Pr) ¥ ()d7
. 0
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and
M=)
n=2 nl

Ulow:0p 00— 0, + (- 0:B(p)) — ) adpg) (w20 B()) + Ly

6.107)  Thim = [0 ) a2 B0 W (o)

The number M will be fixed in (7.2). The contributions at order 0 come
from (w - 0,B) + P; — [B, P;]. Since B = by, by (6.104), (3.15) and
(6-88) we have

(6.108) [B, Pr] = —miz(b1)eH + Op(r,, _1),

where Op(rbh_%) € OPS™2 is small with by. As a consequence, the 0
order term of the operator w-0,B + Py — B, Pr] is (w 0pb1 +m17(b1)g +
a5)’H. We choose by as the solution of

(6.109) (w - by + m1502)b1 + My.as = mg

where mg is the average (see (3.2))

(6.110) mg := <{as)p.z -

We define by (¢, x) to be the real, odd (¢, =), quasi-periodic traveling wave
(6.111) bi(p,z) = —(w-0p + ml,ﬁ&’z)gxlt (HNHag,(gp, x) — mo) ,
recall (3.5). Note that b (i, z) is defined for any (w,~) € R” x [y1,72] and

that, for any (w,~y) € TCz+1(2v, 7) defined in (6.22), it solves (6.109).
We deduce by (6.106)-(6.107) and (6.108)), (6.111]), that

Ly=U""(p) (w0, + Pr)U(p)
is, for any (w,~) € TCqt+1(2v, 7),

Lg =w-a¢+m1,ﬁax+im%9(% D)+mo’H+Op(r§d))+LM+L’M+(Hﬁﬁa5)’H,
where

M (=)™
Op(r{?) := Op(=7y,, 1 + )+ ZR:Q%MB(@)(P”

6.112) )
-1 . o
-y Sl ey @ aoBe) e oPsTE

In conclusion we have the following lemma.

Lemma 6.9. Let M € N, qg € Ng. Let by be the quasi-periodic traveling
wave defined in (6.111). Then, for any 1 € Ny, conjugating the operator
L7 in (6.99) via the invertible, real, reversibility and momentum preserving
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map V(o) (cfr. (6.103)), we obtain, for any (w, ) € TCqt1(2v, T), the real,
reversible and momentum preserving operator

_1lyq
Filly + RS 2 4 T + QL

(6.113)

defined for any (w,7y) € RY x [y1,72], where
1. The constant mg defined in (6.110) satisfies |mg|*oV < ev™!;

rP(p2,D) 0

2. The block-diagonal operator Rz([%’d) = ( ) € OPS~ 2 ,with

0 réd>(ap,;c,D)
'réd) (p,x, D) defined in (6.112)) and, for some ops := opr(ko, 7,v) > 0and
forall so < s <5 — oy, satisfies

—l,d -~
(6.114) RGP Soar e (14 300825,

S+on

3. For any q € N§ with |q| < qo, n1,n2 € Ng with n; +ng < M —
3(ko + qo) + 3, the operator (D)™ 03T a1 (¢){D)"? is D*°-tame with
tame constant satisfying, for some o1 (qo) :=onr(ko, 7, v, Qo), for any sg <
s<S—oum(q)

- ~ k k) .
(6.115) M pyms 8 m, 4 ()2 (8) Ss000 €0 (14 [Tol %0 (00

4. The operator Qg = (H]LVH%)H (39) where as (i, x) is defined in (6.93)
and satisfies (6.96));

5. The operators Ul 14, (\Ilil —1d)* are DFo_tame, with tame constants
satisfying, for some o := o(kg,T,v) > 0 and forall sp < s < S — o,

— k
(6.116)  Mys1_1q(s) + M1y (s) S 207 (1+ [To[5) :
6. Furthermore, for any sy as in (6.9), q € N, with |q| < qo, and n1,ng €
No, withny +ne < M — %q(),

—1.d € . . € .
6117 2R >y o Seanr 5 fin =il [Ar2mol 5 [in

s1Honr? _i2‘|504.g7

(6.118) H<D>nl 62A12T8,M<D>n2 HL(HSl) Ss1,M,q0 ev™? Hll - i2|‘sl+(,M(qO) ’
(6.119)  [An (T Dhlsy + A (U5 ks, oy 07 it —ia]l g, o Bl 4o -

Proof. The estimate for my follows by (6.110) and (6.96). The function
b1 (i, ) defined in (6.1T1), satisfies, by (6:96), 37). [b1] 20" <, ev3(1+

\]30\\513) for some o > 0 and for any s9p < s < S — 0. The estimate

ollows s , Lemma an , (6.97) an
(6.114) follows by (6.112). EI04). Lemma 58 and (695, I7) and

the estimate for by %", Using that U(p)my = mo = U~ 1(¢)m, the
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smoothing term Tg 57 in (6.113) is Ts as := U1 T7 3y ¥ +illp (¥ —1d) +

(LM; Fas TiT) with Ly and L/, introduced in (6.106), (6.107). The
M
estimate (6.115]) follows by Lemmata[3.9] [3.10] (6.104), (6.96), (6.98),

@%nd the estimate for [[by||X°"". The estimate (6.116) follows by Lem-
mata

3.7 and the estimate for |[b; %", The estimates (6.117), (6.118),
(6.119) are proved in the same fashion. O

_1
Remark 6.10. In Proposition|6.13|we shall estimate [0y, Ré 2 ’d)] H]ioivs 0
2 19

1
14
using (6.114) and (3.17). In order to control HRE(3 2 )Hlioivs | we used the
2 1<
estimates (6.97) for finitely many o € Ny, o < (M), depending on M,
1

1y _1y4
as well similar estimates for Ré 2’ ), Ré 2’ ), etc. In Proposition|6.13|we

shall use (6.117)-(6.118)) only for s1 = so.
6.7 Conclusion: reduction of L,

By Sections [6.1}{6.6] the linear operator £ in (6.6) is conjugated, under
the map

(6.120) W = ZEMOC®2) PV,

forany (w, ) € TCz+1(2v, 7), 1 € Np, into the real, reversible and momen-
tum preserving operator

(6.121) WTILW = Ls — Qs + PE + Q2
where Ly is defined in (6.113)), and

(6.122) Py :=(MQC®21®T) Py MOCP20 @Y, Qr =V 'Q7¥ +Qy,
with Py, Q% and Q§ defined respectively in (6.23)), Lemmata The
operator Lg is defined for any (w,y) € R x [v1,72]-

A similar conjugation result holds for the projected operator L, in (5.40),
i.e. (6.1). which acts in the normal subspace $5. y,. We denote by II, ..

/ . . T ya T Py—
and HSJF,E the projections on the subspaces $q . and ﬁSJr’E and 1'[S o

NE, s + 7o, so that TIT, o + II§, 5, = Id on the whole L? x L*. We
remind that Sy = S U {0}, where S is the set defined in (2.19). We de-
note by Ils, := II{ + mo, where II{ is defined below (2:26). We have
IIs, + Héo = Id. Arguing as in Lemma 7.15 in [[7] we have the following.

Lemma 6.11. Let M > 0. There is oy > 0 (depending also on ko, T,v)
such that, assuming (6.8)) with py = oy, the following holds: the map VW
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defined in (6120) has the form W = MC + R(c) where, for all sy <
k. R — k s ~ Ik s k ’

s < S —our, R Ssar v ([hlls3es + 1T0ls50 0 1750 on,)-

Moreover W+ = HSﬁ EWHé{) is invertible and, for all s < s < S —oyy,

1 ko, ~ ko, ko,
6.123) [ OV E RIS S5 a0 1hlls%e, + 1T0ls3on IR lsoion -

1 —3 1. .
[AWVH)  hllsy Ssiar 0™ in = ol o, 1Bl 1y, -

The operator W+ maps (anti)-reversible, respectively traveling, waves, into
(anti)-reversible, respectively traveling, waves.

For any (w,v) € TCz+1(2v,7), 7 € Ny, the operator £, in (5.40) (i.e.
(6-1)) is conjugated via W+ to
(6:124) L1:= (W) LW =TI, (Ls—Qs) g, +P s+ Qua+ R,
where

(6.125) P, g:=15P:Ts,, Quz:=1I5Qz1;,,

and R/ is, by (6.121)), Lemma and (2.27)), the finite rank operator
R = (W5 TG sR(e)s, (Ls — Qs + Pz + Qq)lIg,

(6.126) - (WL)*1H§+,E£H;+,2R(5)H§O —e(Wh) IS JRWE.

Lemma 6.12. (Estimates of the remainders) The operator R/ in (6.126)
has the finite rank form (6.3), (64). Let qo € Ng and M > 3 (ko + qo) + 3.
There exists X(M, qo) > 0 (depending also on kg, T, v) such that, for any
ni,ng € No, withny +ng < M — %(k‘o +qo) + % and any q € N,
with |q| < qo, the operator (D)™ 03RRI (D)2 is D*o-tame, with a tame
constant satisfying, for any so < s < S — N(M, qo) and any s; as in (6.9),

- ~ (Ko,
(6.127) M pym g s pyna () S5, Ma0 0 (L + |T0l % ar.q0))
€. .
(6.128) [<D)™ 03 A12RI(DY™ | e(ron)Ssr mar —3lin—1alls, 1x(rqn) -
The operators P | 5 and Q| 5 in (6.125)), (6.122)) satisfy, for some oy =

or(ko, 7, v) >0, forall so < s < S — o,

6.129)  [PLghlf" s5 eNZ2 (IR13%7,, + 130530, colhli L)

s+om stopn+Db so+onm

(6.130) |Q. k[ <5 cv NP (14 |T0)%0 )||h||’;§f% ,Vb>0,

S0 so+opn+b

— ~ k
(6.131) |QLzh[" <5 ev 2(HhHlj°+§ + [Jol3Sz,, IR )

S+o 50_;'_%
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Proof. The estimate (6.127) follows by (6.126)), (6.120), Lemmal6.11] (6.113),
6.3), 3-3), ©6.123), (6.114), (6.113), (6.4). The estimate (6.128)) follows
similarly. The estimates (6.129), m (6.131) follow from (6.123)),
({6-122), (6.23), the definitions of Q7 , Qg using the estimates (6.24), (]@)
(6.96), 3.4, (6.123), (6.116), (6.99). (6.76). (6.69).

The next proposition summarizes the main result of this section.

Proposition 6.13. (Reduction of £, up to smoothing operators) For any
1 € Ny and for all (w,7) € TCqt+1(2v,7) (¢fr (6.22), the operator L,
in (5.40) (i.e. (6.1)) is conjugated as in (6.124) to the real, reversible and

momentum preserving operator L. For all (w,v) € R” x [v1,72] the
extended operator defined by the right hand side in (6.124), has the form

(6.132) Li=w- 0,1, +iD| +R| +P 5+ Qix,

where 1| denotes the identity map of H§O (cfr. 2.26)) and:
1. D is the diagonal operator

D 0 .
6.133) D, = ( . —m> Dy = diagesg 1, S := Z\(SU{0}),

with eigenvalues (i := mi 7] + m%Qj (v) —mosgn(j) € R, where Q;()
is the dispersion relation (I.8) and the real constants m; z,m 1, o, defined

respectively in Lemmal6.3} (6.91)), (6.110), satisfy

(6.134) mia S e, fmy — 1Y 4 mo[Y S evt
2
In addition, for some o > (),

(6.135) |Aromi 5| < i —i2] soto

soto |A12m%| + |A12m0\ < E'U71 HZl — 7,2”

2. Forany qp € Ng, M > (k:g +qo) + there is a constant X(M, qg) > 0
(depending also on kg, T, v ) such that, assuming (6-8) with 1o = N(M, qp),
forany sp < s < S —X(M,qp), q € Ni, with |q| < qo, the operators
0oR 1, [03R 1, 0y are DFo-tame with tame constants satisfying

(6.136)

€ ko,v
< _— 0>
oy ianm. a,1cpyd (D) a0 5 (110l v o))

1(s), M

(DYToLR, (DYE
Moreover, for any q € Ng, with |q! 90,

(6.137) H<D>Z‘32’A12RL<D>ZHL(HSO) + ||<D>i63A12[RL,&](Dﬁﬂamo)

—3 . .
SM EV H’Ll — 7’2H50+N(]V[,q0) .

The operator R := R () is real, reversible and momentum preserving.
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3. The remainders P | 5, Q| 5 are defined in (6.123)) and satisfy the esti-
mates (6.129)-(6.131).

Proof. By (6.124)) and (6.113) we deduce (6.132) with
_1
Ry = 4 (RY 2 + T an)lIg, + R/

The estimates (6.134)-(6.135) follow by Lemmata [6.6] [6-8] [6.9] The esti-
mate (6.136) follows by Lemmata [3.6] [3.10] and (6.114), (6.115), (6.127),
choosing (n1,n2) = (1,2),(2,1). The estimate (6.137) follows simi-
larly. U

7 Almost-invertibility of £, and proof of Theorem [5.1]

In this section we almost-diagonalize the operator w - 0,1 + 1D +
R | () obtained neglecting from £ in (6.132) the remainders P | 5 and
Q. 5, by a KAM iterative scheme, see Theorem Then we deduce the
decomposition (5.42) of the operator L,, in the almost-invertibility assump-
tion (AI) of Section [5.3] Finally, we state Theorem which implies
Theorem 3.1}

Almost-diagonalization
We start with the real, reversible and momentum preserving operator
L) =:Lg:=Ly(i) :=w- 0,1 +iDg+ Rf), acting in Hslo and defined
for all (w,~y) € R” x [y1,72], with Dy := D, as in (6.133) and
(0.d)  p(0,0) 0,d

0,0) 1(0,d) (0,0) | 77l 1
R g0 R HYy — Hi.

which satisfies (6.136), (6.137). We denote
L +ij 2
Hig, = {h(x) = ), hje™ 7" e L7},

Note that Dy : HYg — HZg , where Dy = D = diagje,g(c)(u(_o;) as

in (6.133). Proposition implies that RT) satisfies the estimates (7.4)-
(7-3) below by fixing the constant M large enough, namely

(7.2) M:=[3(ko+so+b)+3]+1eN,
where b is defined in (6.20). We also set
13) u(o) := R(M, 50 +b)

71 RY =Ry = (
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where the constant R(M, qq) is given in Proposition|6.13] with g9 = s¢+b.
We define

Mo (s):= max {W<D>4R(O)<D>%

(), T ot R 210054 ()

(), M byt 1o, RO 2,10

(s), M

Dy [0 R 2,10y ()}

1 ()},

(Dyias r® (pyi \°

Mo (s, b) = met, {m<D>4fﬂ“’ <°><D>i

Then, assuming (6.8) with y9 > p(b), by (6.136), (7.2), (7.3), (6.137), we
have, for all sp < s < S — u(b),

4 Mo (s, b) :=max {Mo(s),Mo(s,b)} < O(8)ev (1 + [To]52%,,))
' Mo (s0,b) < O(S)ev 3.

Moreover, for all q € NY, with |gq] < sp + b,

KDY 08 A1R (D) | oqeoy , [(D)F Ara[03R, 0 1<DY¥ | (s

(7.5) < O(S)ev=> s —

i2[l o4 o -
We perform the almost-reducibility of Ly along the scale (Np)nen,, see

Theorem 7.1. (Almost-diagonalization of Ly: KAM iteration) There ex-
ists To(7,v) > 11(7,v) + 1 + a (with 11, a defined in (6.20)) such that, for
all S > sy, there is Ny := No(S,b) € N such that, if

(7.6) NPy (s0,b)vt < 1,
then, foralln e Ng,n=0,1,...,n

(S1), There exists a real, reversible and momentum preserving operator

(77 La=w-0,1, +iD, + R, Dy <1(7) _%>,

where Dy := diag e ;L] defined for all (w,v) in RY x [y1,72], where

,ug» " are ko-times differentiable real functions
1 (w,7) = (w,
(7.8)

satisfying t( ) =0 and, forn > 1 and any j € S§

(7.9)  [jIE[P o <C(Sp)ev 2, [5]F |u® —p D R0 < O(S, b)ev PN,
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Rf’d) R®0)

0’

The remainder RS?) = < ) with Rf’d) : HS HS R(n O)

RT,o) R(f,d)

H* . HSLO, and the operator <é’¢>bR(f) are DM -(—1)-modulo-tame,
with modulo-tame constants

(7.10)  Mi(s) = L(s), DMi(s,p) =M 1 (),

(DyTR{(Dy (D)2, RIV(D)E
which satisfy, for some constant C(so,b) > 0, forall sy) < s < S — pu(b),
. M (s) < Cs(s0,b)Mo (s, B)N;
‘ M (s,b) < Ci(s0, )Mo (s,b) N
Define the sets £y = A (i) by Aj := R” x [y1,72] and, forn =1, ....1,
A i={A=(w,7) ey tw- €+,LL(D D _ (.1,1_1)| EXRON
V[l < Naov, 53" ¢ S0, (6,5,5) # (0,5,5), withj-£+j—j =0,
jw €4 pP S = 0 (112 + 15120
V|0 < Na-1, §,§" ¢ Sowith - £+ j + j = 0}.

(7.12)

For n = 1 there exists a real, reversibility and momentum preserving map,

defined for all (w,v) € R x [y1,72], of the form &, 1 = eX=1, where
x@ x©)

Xp_1 = ( 21 ) and the operators Xr(fi)l : HSLO — H§)’ XI(I‘i)l :

(0) (d)
nfl n 1

Ht . HSO, such that, for all A € A}, the following conjugation formula
holds:

(7.13) Lon=® "L, 1®, ;.

The operators Xpn_1, (0,)°Xn_1 are D*-(—3)-modulo-tame satisfying,
forall sp < s < S — u(b),

ﬂ < —1ar71
9)?<D>%Xn71<D>% (s) < C(so,b)v™ N1 N %Mp(s,b),

mﬁ <C ,b _1N7'1 anm ,b )
<D>21{<aw>bxn—1<D>?ll (S) (80 )U n—1 2 O(S )

(7.14)

(S2), Let i1 (w, ), i2(w, ) such that RT) (1), R(f) (i) satisfy (T4), (T.5).
Then, for all (w,v) € R¥ x R

(7.15) KDY | AR KDY o0y S 0 No [ —

i2”80+#(b) ’

1 n 1 _ . .
(7.16) (D)3 [{0,)° ARP (DY | £(areo)Ssmev™* Nacallin—ial, 4 o -
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Furthermore, forn = 1, for all j € S§,

o1 n n—1 1 n 1
121212 — D) < CD)E | AR (DY T | 200y

e n =3 .
1512 1Azt | < O(S,0)ev ™2 flin — a4 4 oy -

(S3), Let i1, 19 be like in (S2), and 0 < p < v/2. Then

(7.17)  evC(S)NIH in — iallgy s ) < P = Mi(i1) S AL P (i2) -
Theorem [7.1) implies also that the invertible operator Uy := I, Ug :=
®yo0...0P5 1 forn > 1, has almost diagonalized Ly. We have indeed

the following corollary.

Theorem 7.2. (Almost-diagonalization of L) Assume (6.8) with uy >
w(o). Forall S > so, there exist Ny = Ny(S,b) > 0 and §p = 0o(S) >
0 such that, if the smallness condition NOTZHF4 < &g holds, with 79 =
To(T,v) as in in Theorem then, for all n € Ny and for all (w,v) €
RY x [y1, 2] the operators U=' —1 are Dko-(—%)-modulo-mme satisfying

fmﬁUiﬂih(s) <g ev NS (1430 Hf:iu ) forall sy < s < S—pu(b), with

1 as in (620). Moreover Uy, U_! are real, reversibility and momentum
preserving. The operator Ly = w- 0,1 +1Dg+ R(n) defined in ([T.7) with

n = 1 is real, reversible and momentum preservmg The operator R( % s
Dho.(— 1) modulo-tame and, for all sy < s < S — pu(b),

ﬁ < -3 k'07
(7.18) m<D>?11R(f)<D>71! (s) <gev "N % (1 + |30 || ) )
Moreover; for all (w,7) in A2 = A2(i) = (E_, AL, where the sets \! are

defined in (1.12)), the conjugation formula Ly := UZ 'Ly Us holds.

Proof of Theorem [7.11

The proof of Theorem|[7.1]is inductive. We first show that (S1),-(S3),
hold whenn = 0.
Proof of (S1)o-(S3)¢. Properties (7.7)-(7.8) for n = 0 hold by (6.132),
(6.133), (7.1) with tgo) = 0. Moreover, by (3:20)), we get, for any sp < s <
S — pu(b), that D (s), M (5,b) Sep0 Mo(s,b) and that (7.1T) forn = 0
holds. The estimates (7.13), (7.16) at n = 0 follow similarly by (7.5). Fi-
nally (S3)o is trivial since A§(i1) = Ay “(i2) = R” x [y1,72].
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The reducibility step. We now describe the generic inductive step, show-
ing how to transform L, into L, ; by the conjugation with ®,. For sim-
plicity we drop the index n and we write + instead of n+ 1, so that we write

L:=Ly L, =Ly, Ry = RY, R = RPPY, N = N, etc.. Let
x@  x() x@ . gL . gL
— X N : So Sq
(7.19) ®:=¢", X (X(O) X(d)> » x (o) :HfSo N H§)’
where X is chosen below in (7.23)), (7.24). We transform L in ({7.7) into

Ly :=® 'L® =w-0,0, +iD + ((w-8,X) —i[X,D] + IIyRy) + xR,

(7.20) — J

0

1 1
e XX, R.]e™® dT—J (1—7)e "X [X, (w - 0,X)—i[X,D]]e"* dr,
0

with IIyR, defined as in (3.18) and IT3; := Id — I1y. We want to solve
the homological equation

(7.21) w - &PX — i[X, D] +IIyR | = [RL]
R¥1 o : : j
where [R] ] := [ ; ] [R<d)]>’ with [R(f)] = dlangSS(R(f));(O). By
1

(7.7) and (7.19)), the homological equation (7.21) is equivalent to the two
scalar homological equations

w-3,XD — (XD - pxD) 4+ TyRY = [R]
w-0,X© +i(XOD + DX+ TIyR = 0.

The solutions of (7.22) are, for all (w,vy) € Ay ; (see (7.12) with n v~
n+1)
(7.23)

(7.22)

(RY)5 () o [0 # (0,5.4), 5.0 €6, ) < N
d .7 2 N g y y
(X7 (0) = i ety — ) tJ+j=i =0
0 otherwise ,

(7.24)

(R (0 L veenj—jesi <N
(XY (@) :={ Tiw L+ +py) CG+j—j=0
0 otherwise .

Note that, since —j" € S§, we can apply the bounds (7.12) for (w,y) € A, ;.

Lemma 7.3. (Homological equations) The real operator X defined in

(7.19), ([7.23), ([7.24), (which for all (w,~) € A7, solves the homologi-
cal equation (1.21)) admits an extension to R” x [vy1,v2]. Such extended
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operator is Dko-(—%)-modulo-mme satisfying, for all sy < s < S — u(b),

N™ N™
¢ 3) ko 9ﬁﬁ(s) mﬁ (3) Sko

1 1 N , 1 1 o’ (s,b),
(DYTIX(D)1 v (D)4 (2,5°X(DY4 v

(7.25) m

where 1 := T(ko + 1) + ko. For all (w,7) € R” x R,
KDY |A1XI(DYH | me0y < N* 0™ (KDY ¥ |A12RL KDY | a0
(7.26) HIKDYE R L (12) KDY (aeo) lir — 2l 1)
(DY (0 P A12X (DY a0y < N2 0™ (KDY (0P AR KDY T | £ sr0)
(7.27) HIKDYE (0 Y R (i2) KDY | a0y lin — 2oy 4 o)) -

The operator X is reversibility and momentum preserving.

Proof. We prove that (7.25) holds for X (%), The proof for X (°) holds anal-
ogously. First, we extend the solution in (7.23)) to all A in R” x [v1, 2] by

. -/ . d -/ by —1
setting (X(@)7 (€) = iggj,/(\)(RV)) (0), where gg j o (\) := M
with f(A) := w - €+ pj — py, p := v{€)~7, and x is the cut-off func-
tion (3.6). By (7.8), (7.9), (6.134), (7.12), Lemma [4.4] (3.6), we deduce
that, for any k; € Ny, |k1| < ko, SUD|, [ <k ’a’;lge’j,j,’ <ho <£>T1U—1f|k1|7

71 = 7(ko + 1) + ko, and we deduce, for all 0 < |k| < ko,

! T _1_ d -/
KXY O siy om0 MY oS (RE) (0)]

By (7.23) we have (X(d))gl(é) =0 for all (¢) > N. For all |k| < ko, we
get

[KDYE] {0y 5 X D DYEA|? Sig NPT
pT2HD Y2kl (DY R (0,00 052 RV [(D) |2

[ka|<|k|

Def] m
ETOE N2r1 =204 D (97 5, 1) 2, + 90 (s0,1)% [ ]2

and, by Definition [3.11, we conclude that K 1 1 (8) <k
(D)(0,)* X (D)1

NTw~190% (s, b). The analogous estimates for (9,)° X (), X (4 x(©) and

(7:26), [7.27) follow similarly. 0
By (7.20), (7.21), for all A € AY, ;, we have

(7.28) L, =& L& —w-d,0, +iD, + R{",
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where
D, :=D—i[R,],
1
(+) 1 —7X X
R’ =11 RL—Je X, R |e™dr
(7.29) 1 N 0 [ ]

1
+ f (1—71)e ™X[X,IyR, — [R_]]e™™dr.
0

The right hand sides of (7.28)-(7.29) define an extension of L. to the whole
parameter space R” x [1, 72], since R | and X are defined on R” x [y1, 72].

The new operator L in has the same form of L in (7.7) with the

non-diagonal remainder R(f), sum of a term H}VR 1 supported on high

frequencies and of a quadratic function of X and R;. The new normal
form D is diagonal:
Lemma 7.4. (New diagonal part) For all (w,~) € R” x [v1,72], we have

. . . (D 0 .
iDy=iD+[R.] = 1( 0+ _D—Jr) » Dy = diagjese p§.+), /L§+) =pu; +rjeR,

where each rj satisfies, on R” x [v1,72],
1 1
(730) 12 R0 = 12 |f ™) = g < (o)
a1 . . 1 1
Moreover |j|2|r;(i1) — 1;(i2)| < [KD)3[A1R (D)% || £ (are0).

Proof. We have that r; := —i(R{")’(0) € R, by the reversibility of R{"
and Lemma(3.15| Recalling the definition of ot (so) in (7.10) (with s = s¢)
and Definition|3.11} we deduce that m% |8§(R(f))j-(0)| < vkl (), for

all 0 < |k| < ko, and follows. The bound for \j|%|rj(i1) —rj(ig)|is
similar. O

The iterative step. Assume that the statements (S1),-(S3), are true. We
now prove (S1),4+1-(S3)n+1-

PROOF OF (S1),1. The real operator X,, defined in Lemmais defined
for all (w,vy) € R” x [v1,72] and, by (7.23), (7.11), satisfies the estimates
at the stepn+ 1. By (7.28), for all A € A, ,, the conjugation formula

(7.13) holds at the step n+ 1. By Lemma([7.4] the operator Dy, is diagonal
. (m+1) _ (0) (n+1) oo (1) (m), (n) oo
with eigenvalues i, A with t; =t +r; ’ satisfying,
using also (7.T1), at the step n + 1. The next lemma provides the

estimates for RTH) = R(f) defined in (7.29).
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Lemma 7.5. The operators R(HH) and {0, >bR(n+1) are DFo-(— %) modulo-
tame with modulo-tame constants satisfying, for any sop < s < wu(b),
(7.31) ML, 1(5) <o N POE(s, b) + N o™ L0 (s) (50
(7.32) 9%, 1(5,D) up ME(s,b) + Ny v~ (M(s, b)M(s0) + M50, b)M(s)) -

Moreover, the estimates (T.11)) hold at the step n + 1.

Proof. The estimates (7.31)), (7.32) follow by (7.29), (3.19), Lemma [3.12]
and (7.23)), (7.11), (6.20), (6.17), (7.6). The estimates (7.11) at the stepn+1
follow by (7.31)), (7.32), (7-11)) at the step n, (6.20), the smallness condition
(7.6) with Ny = Ny(S, so,b) > 0 large enoughand 5 > 7 +1+a. O

PROOF OF (S2),41. It follows by similar arguments and we omit it.

PROOF OF (S3),1. Use (7.8), (6.134)-(6.133), (S2),, and the momentum
conditions in ([7.12).

Almost invertibility of L,
By (6.132), (6.124) and Theorem[7.2} we obtain
(7.33) Lo=WsLasW_ ' + WP VY + W QLsWH) ™!, Wa:=W' Uy,

where the operator Ly is defined in (7.7) withn = nand P | 7, Q| 5 satisfy
the estimates in Lemma [6.12] By (6.123) and Theorem we have, for
some o := o(T,v, kg) > 0, forany sp < s < S — p(b) — o,

+17 1k ko, ~ Iiko, ko,
(734) W Rl ss [t + 130l m) s lPllso o -

In order to prove the almost invertibility assumption (Al) of £, in Section
[5.3] we decompose the operator Lz in (7.7) (with 1 instead of n) as

(7.35) L = DF + QP + RY
where R(f) satisfies (7.18), whereas

D5 =g, (w- 0,1 +iDg)lg, + il 2,
(730 QY := Tk (w- 0,1 +iDg)Ik_ — illf 5,

the smoothing operator I1; on the traveling waves is defined in (3.1, [T :=

Id — I and & == (é fl). We have that K, := KX, v = 3/2 (ctr
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(3-47)), and K will be fixed in (7.40). For all A = (w, ) in the set

(7.37)

Azﬁ}_"_ll = {)\ € R X [y1,72] : |w -€+u§.ﬁ)| > U% VI < Ks, jeS,j+7 L= O},
the operator D= in (7.36) is invertible on the subspace of the traveling
waves 7.g(¢) = g(¢ — %), ¢ € R, such that g(p, ) € Héo. More precisely
there exists an extension of the inverse operator to the whole R x [v1, y2]

ko,v ko,v
s

satisfying [(DZ) g <ko U_1]|g|\s+n, 71 = ko + 7(ko + 1). Standard

smoothing properties imply that the operator Q(f) in satisfies, for

1), ko, —b ko,
QP < KR, .

HQ(f)hHi?O’v < |h|%9Y. Therefore, by the decompositions (7:33), (7-33),
Theorem [7.2] (note that (5.36) and Lemma [5.8] imply (6.8)), Proposition
[6.13] the fact that W maps (anti)-reversible, respectively traveling, waves,
into (anti)-reversible, respectively traveling, waves (Lemma [6.T1)) and esti-
mates (7.34), (3:4) we deduce the following theorem.

any traveling wave h € Hgo, forall b > 0,

Theorem 7.6. (Almost invertibility of £,) Assume (5.36). Let a,b as in
(©.20) and M as in (T2). Let S > so + ko and assume the smallness
condition NOTQz-:U_"‘ < &g of Theorem Then the almost invertibility
assumption (Al) in Section[5.3| holds with A, replaced by

(7.38) V1= AL () = ALy A AL A TCa (20, 7),

(see (T.12), (7.37), (6.22))), with 11(b) defined in (1.3), and

L5 := WiDs W ',
Ry = WeRPWI + WP s (WH)
RE = WaQP W+ WhQs(WH) L.

Proof of Theorem
Theorem is deduced, in a by now standard way, from the almost

invertibility of £,, in Theorem [7.6] as in [9] 2| [7]. Note that the estimates

43), (IS%Z[) 5.43), (5.46) coincide with (5.49)-(5.52) in [2] with M =
1/2. Thus we shall be short. Consider the finite dimensional subspaces of
traveling wave variations

En:={3(p) = (0,1, w)(p) such that 322 holds : © = 11,0, I =III, w = w}



74 M. BERTIL, L. FRANZOI, A. MASPERO

where ILyw := Il w as in B.I) with Ky in G.A41), and Ilhg(p) :=
ZM'SKn g@@lz.w. Let

aj := max{6o; + 13, x(p(7 + 1) + p(b) + 201) + 1},

ag:=x ‘a; — u(d) — 201, w1 :=3(u(b) +201) + 1,

by :=ay +2u(b) +4o1 + 3+ x tpu, x=3/2,
(7.39) o1 :=max{7,2s9 + 2ko + 5}, S —u(b)—7 =sg+Dby,
where ¢ = &(7,v, ko) > 0 is defined by Theorem [5.9] p(b) is defined

n (7.3), and b = [a] + 2 in (6.20). The exponent p in B.41) is p :=
3a~!(u(b) + 401 + 1). Given a function W = (J, ) where J is the peri-

odic component of a torus as in (3.3) and 8 € R¥, we denote |[W |5 .=

|35 + |8

Theorem 7.7. (Nash-Moser) There exist dy, Cyx > 0 such that, if

Kg3svf4 < 0, T3 := max{pre, 201 + aj + 4},
vi=vl,vi=e*, 0<a<(4+m)t,

where 7y = 75(7, V) is given by Theorem|[7.1} then, for all n >
(P1)y There exists a ko-times differentiable function

Wa : RY x[v1,72] = Fa_1 xR, A=(w,7) — Wa(A) =T, dn — w),

(7.40)

forn =1, and Wy := 0, satisfying HW ||I;§’+u < Crev. Let Uy =

Up + Wn, where Uy = (go,() 0,w). The dlﬁerence I:Tn = ﬁn — ﬁn,l,
forn = 1, satisfies HHl‘soﬂt( b)+o1

| an(?:rllz(b)'f‘O'l < Chev LK 2. The torus embedding iy = (¢, 0,0)+Jp

is reversible and traveling, i.e. (5.4) holds;

(P2), We define Qo = QX [v1,7), Gag1 = Go N AL (i), n = 0,
where An+1(ln) is in (1.38). Then, for any A € Gy, setting K_1 := 1, we

have | F(Uy)||50 < CweK_° ;

(P3), (HIGH NORM) For all A € Gy, we have HW |80+b1< Crev K .

< Cyev™! and, for any n > 2,

Proof. The proof follows as in [9, 2]]. The verification that each %, is re-
versible and traveling is in [[7]]. O

Theorem [5.1]is a standard corollary of Theorem[7.7] as in [9] 2 [7]. Let
v =¢e* with0 < a < ag := 1/(4 + 73). Then, the smallness condition
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in (7.40) is verified for 0 < £ < &y small enough and Theorem [7.7] holds.
By (P1), the sequence I/IN/n converges to a function Wy, : R” x [y1,72] —
HZ x Hi x H* x R”, and we define Ue, := (ico, aop) 1= (,0,0,w) +
Wy, . The torus iy, is reversible and traveling, i.e. (5.4) holds. By (P1),
we also deduce the bounds

Uy — U0||k°’ < Chev !,
(7.41) k oFu(d
U — U ||S§’+M(b S C»Sv_lKn_a2 ,Vn>1

In particular (5.6)-(5.7) hold. By Theorem [7.7}(P2)n, F(X; Uss(A)) =0
holds for any A in the set

N%2a6n| ﬂ 8 0n)| o [ )82 Gan) | o [ () Tea(20,m) )]

neNg n=1 n>1

where Gy := Q x [y1,72]. To conclude the proof of Theorem [5.1]it remains

only to define the 127 in (5.8) and prove that the set C3, in (5.10)-(5.13) is
contained in Ny>0G,. We first define

(742) 9o i=Gon [ N Af“(iw)] A [ N Af”’l(ioo)] A [ N TCn(4v,T)(ioo)] :

By (7.41), Lemma6.4] and (7.17), one deduces that G, & Mn>0Gn, Where
Gy are defined in (P2), (cfr. e.g. Lemma 8.6 in [9]). We define ,u‘;-o in (5.8)

with m1n = my n (o), m1 = m1(200> m = mp(is), and m; n, M1, M0 S in

Proposition [6.13} By - zoo )neN, With t( ») given by Theorem
(S1), (evaluated at i = zoo) is a Cauchy sequence in | - [0V, Let t] =
limy, o0 tgn) (i), J € S§. It results |j]%|t?o - tgn) (i)|Fo¥ < Cev N3
for any n > 0. Recalling that t( )(ioo) = 0 and (6.134), the estimates (5.9)
hold. Finally one checks (see e.g. Lemma 8.7 in [9]]) that the set C3, in

(B-10)-(B-13) satisfies Cy, S Gy, with Go, in (7:42)), and so CY S Np>0Gn.
This concludes the proof of Theorem [5.1]

Appendix A: Almost straightening of a transport operator

The main results of this appendix are Theorem [A.2]and Corollary [A.4]
The goal is to almost-straighten a linear quasi-periodic transport operator
of the form

(A.D Xo:=wdp + polp, )0z ,
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to a constant coefficient one w - d, + my x 0z, up to a small term p,0,., see
(A.4) and (A.5). We follow the scheme of Section 4 in [3]. We first intro-
duce the following norm: for any u = u(\) € H*(T"1), s € R, ko-times
differentiable with respect to A = (w,7) € R” x [v1,72], we define the
norm

Jul o = > o sup R u(N) ey
keNv+1 0<|k|<ko AERY x[y1,72]

It satisfies [u[f" < [uf? < |u S+Z0 for any s € R. Note the key

estimate (A.2]) for the composmon where there is no loss of ky-derivatives
on the highest norm |u|]§°’v, unlike the corresponding estimate in Lemma
With I Hljo’“. This is crucial to prove (A.I8) and then deduce the a-priori

bound (A.5) for the divergence of the high norms of the functions p,. The
following lemma follows as in [9]. Let 5¢ := sg + kg > %(1/ + 1) + ko.
Lemma A.1. The following hold:

(i) For any s = sg, we have

[uv[32 < C(s)ul> vlee.

vlfov 4 O(sg)|ulkov

The tame constant C(s) := C(s, ko) is monotone in s = sy.

(s
(i) For N = 1and o > 0 we have [Ty u|* < N®|u|*? and |ITL ulf <

_ k
“fulsYa

for any s € R.

(iii) Let ]ﬂ|§§(’)+1 < d(so) small enough. Then the composition operator B
defined as in (6.19) satisfies the tame estimate, for any s = so + 1,

(A2) [Buli” < Cls)(fuli™” + 113 Julggy)-
The constant C(s) := C(s, ko) is monotone in s = sy. Moreover, the

diffeomorphism x — x + [(p,x) is invertible and its inverse y — y +
B(p,y) satisfies, for any s > s, B|I§O’U < C(s)\ﬁ\lgo’“.

(iv) For any € > 0, ag, by = 0 and p,q > 0, there exists Cc = Cc(p,q) > 0,
with C1 < 1, such that

ko, ko, ko, ko, ko,
oo a0t < el [l + Celulfo

|k0,v
bo+p+q-

Jul

Remind that N, := N, x = 3/2, N_; := 1, see (&.17).

Theorem A.2 (Almost straightening). Let X be the quasi-periodic trans-
port operator in (A1), where po(p, ©) is a quasi-periodic traveling wave,
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even(y, x), defined for all (w,y) € RY x [y1,72]. Forany S > s, there ex-
istTo > 11+ 144a, 6 := (S5, 50, ko, b) > 0and Ny := Ny(S, s9, ko, b) € N
(with 11, a, b in (6.20)) such that, if

(A.3) N§? ]po|250+bJrl v <1,

then, for any 1 € Ny, for anyn = 0, ..., 1, the following holds true:

(S1), There exists a linear quasi-periodic transport operator
(A4) Xni=w-0p+ (min+ palp, )0y,

defined for all (w,~) € RY x [v1,72], where py(p, x) is a quasi-periodic
traveling wave function, even(p, ), such that, for any sy < s < S,

_ k k k
(A.5) ‘pn’ko, C(S b) n—al ’p0|80+711>}7 ‘pn’s?i:}b} < C(‘S’b)NH—l’pO’sg:g?

for some constant C(s,b) = 1 monotone in s € [sq, S|, and m; y, is a real
constant satisfying

ko,v

’ko,v <2 |p0|50+b )

Min
(A6) |my,

A\

_ k
|m1,n —Min— 1|k°’ C(soab)Nnj2|p0|58fb? Vn > 2.

Let A} :=RY x [y1,72], and, forn > 1, A} := A;‘f’T(po) defined as

(A7) b = {(@, ) e Ny [ —mia]) €] = 75 Ve Z\{0}, |€] < Naor}.

<€>T
Forn > 1, there exists a quasi-periodic traveling wave function gn—1(p, ),
odd(¢p, ), defined for all (w,v) € R” x [v1,v2], fulfilling

(A.8) |gn_1|ls€071) < C( )Nﬁ 1Y 1|]'_’[Nn 1Pn— 1’50’ Vo <s< 9,

for some constant C(s) = 1 monotone in s € [sg, S|, such that, defining
the composition operator (Gy_1u)(p, ) 1= u(@, T + gn—1(p, )), induced
by the diffeomorphism x — x + gn_1(p, x), we have, for any (w,y) in the
set A (cfr ), the following conjugation formula

(A9) Xn = g;jl Xn-1 gn—l .

(S2)n Let A12po = po1 — po2. For any sy € [so + 1, 5], there exist
C(s1) > 0and & (s1) € (0,1) such that if

Ny? sup (

)v_l < §(s1),
(w,m)ERY X [71,72]
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then, for all (w,~) € R x R,

(A.10)
[Av2pafs;—1 < C(s1) N1 [Av2pollsy+b, [Ar2pafsy+v < C(s1)Na—1]Ar2pols; +5,
(A.11) [Ar2(minr1 —min)| < |A12pnlsg, [Ar2mia] < C(s1)|A12p0]s -

Moreover, for any s = sq, one has

|A12Ga s Ss v (TN, Av2pn | sor + v Aramy o [T, pa.2 ls+2r41)-

We deduce the following corollaries.

Corollary A.3. For any n € Ny we have TCqt1(my 5,2v,7) C AngTl with
TCat1(m1 5, 2v, 7) as in (6.22).

Proof. When @ = 0, by definition we have TCy (2v,7) < AT’T. Let (w,v) €
TCat1(m1g,2v,7). Forany £ = 0,...,1 — 1 we have, by (A.6), [m; 5 —
my | Ssop Vi oy \p0|§§fb. Thus, recalling (6.22), for all 0 < |[¢| < N, we
have |(w —my 7)< 4| = [(w —miga)) - €] — |mia —my g]|71]¢] = 20€)"T —
CN2 ol le] = w0~ if ONJHNZ2 |poltoy,v™" < 1, which is

s0+b

satisfied by (A.3)) and (6.20). Thus, recalling (A.7), we have proved that
T

(w,7y) €AY 1 O

The composition operator 3, defined inductively by B, := By—10G,—1,
n € N, By := Id, provides the almost-straightening conjugation of the
transport vector field Xg.

Corollary A.4. For anyn € Ny and (w, ) € TCqt1(m15,2v,T) we have
the conjugation formula Xz = B2 XoBz, where Xz is given in (A4) with
n = n. Moreover, whenn > 1, foranyn = 1,...,8, each B, is the
composition operator induced by the diffeomorphism of the torus x — x +
B, x), (Baw)(p,x) = u(p,z + Pu(p,x)), where the function [3, is a
quasi-periodic traveling wave, odd (g, ), satisfying, for any so < s < S,
for some constant C(S) > 1,

— k
(A.12) |Bals™” < C(S)v™ NG [pol % -
Furthermore, for po 1,po.2 as in (S2)n, we have

|A1285]s, < C(S)v™ N§ | Arapols, +o-

Proof. We have 31 = go, and inductively 8, = Bp—1 + Bn_19n—1. Since gy
is a quasi-periodic traveling wave odd (¢, x), so is 3,. The estimates follow
by Theorem[A.2]and Lemmal[A.T] O
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Proof of Theorem The proof is inductive. In Lemma[A.5|we prove that
the norms |p,|¥** satisfy inequalities of a Nash-Moser iterative scheme,
which converges under the smallness condition (A.3).

The step n = 0. Items (S1),, (S2),, hold withm; g := 0.

The reducibility step. We show now how to transform X, in (A.4)) into
Xn+1 by conjugating with the composition operator G, induced by the dif-
feomorphism y := x + gn(p, ) of T; where g, (¢, z) is a periodic function
defined below, see (A.14). A direct computation gives (cfr. Remark[6.2])

gn—l X, G, = w-0¢+m1,né’y+{gn_1((w-dp+m1,n8x)gn+pn+pn(gn)x)}ay .

We choose g, (¢, ) as the solution of the homological equation

(A.13) (W 0p +Mm1,002)Gn (s T) + LN, Pn = Pn)ps
where (pn )., is the average of p, defined as in (3.2). So we define
A1) galp,7) = = (W Op + m1000) i (TN, P2 = (Pr)pir)

where the operator (w - 0, + an&x);(lt is introduced in (3.5)). The function
gn(¢, x) is defined for all parameters (w,~y) € R x [y1,72], it is a quasi-
periodic traveling wave, odd (¢, ), fulfills at the step n (by (3.7)), and
for any (w,) in the set AL, defined in (A7), it solves the homological

equation (A.13). By (A.8) at the step n, (A.3), (A3), a = x71 + 3 (see
(6-20)

ko, .
(A.15) |9nlogy+1 < C(s0) Ny N, |p0|250+b+1v < d(s0)

provided N is large enough. By Lemma [A.1] the diffeomorphism y =
Z + gu(¢, x) is invertible and its inverse = y + gu (¢, y) (which induces
the operator G 1) satisfies || < C(s)|ga|¥*". For any (w,7) in Ay,
the operator X, 11 = G, ' X, G, takes the form (A-4) at step n + 1 with

Min+1 = Mipn + <pn><p,x € R,
Pn+1 (80, y) = {gn_l (Hﬁnpn + pn(gn)x) }(907 y) .

This verifies at step n + 1. Note that m; , 11 € R and pny1(p,y) in
are defined for all (w,~y) € R” x [y1,72]. We first show the following
iterative estimates of Nash-Moser type.

(A.16)

Lemma A.5. The function py.1 in (A.10) satisfies, for any so < s < S,
_ k _
(A17)  [pas1[sY < Cu(s) (Vg ®lpalsSy + Nat o™ pal |palo )
k ) - k ) 5
(A.18) |pn+1’s+b < 02(57b)(‘17n|59rb + NEHU 1|pn|33-b |Pn ko, )
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where C1(s), Ca(s,b) > 0 are monotone in 59 < s < S. Moreover, (A3)-
(A%6) hold at the step n + 1.

Proof. We write poy1 in (AT6) as pyy1 = Gy ' Fy with F = Hﬁnpn +
Pn(gn)z- By Lemma we get
k ’ 5 k )
|Fn";0,v < ’Hlnpnvgo,v + C(S)|pn|§°’v|gn|58f1 + C(50)|pn ko ’U|gn|33»,i] ‘

50

Therefore (A.T7) follows by (A.2)), (A-8) at step n, Lemmal[A.T|and (A.T3).

The estimate (A.T8) follows analogously.
By (A17) and (A.35) we have, for any 59 < s < S,

— ko,
[Pas1 50 < C1(S) O(s,b) (N3P Ny_y[pol5w
+ C(s0,b)v INTHIN 22 | po |20y
_ ko,
< C(s,b)N;3[po|257

asking C1(S)N,; PN, | < %Nn_a and

k )
P0|5§fb)

— — k —
C1(S)C (50, D)™ NI N polgy < 5 NG

which both follow by (6.20), the smallness assumption (A.3) and with
Ny := Ny(S) > 0 sufficiently large. This proves the first estimate of (A.3)
at step n + 1. The second follows similarly. By (A-16) and (A.3])), we prove

(A6) at stepn + 1. O
The proof of (S1),41 is complete. The item (S2),+1 follows similarly.
The proof of Theorem [A.2]is concluded. O
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