
20 April 2024

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

Characterization of the Bose-glass phase in low-dimensional lattices / Carrasquilla, J.; Becca, F.;
Trombettoni, A.; Fabrizio, M.. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. -
ISSN 1098-0121. - 81:19(2010), pp. 195129.1-195129.5. [10.1103/PhysRevB.81.195129]

Original

Characterization of the Bose-glass phase in low-dimensional lattices

APS - American Physical Society

Publisher:

Published
DOI:10.1103/PhysRevB.81.195129

Terms of use:

Publisher copyright

This version is available for education and non-commercial purposes.

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/17437 since: 2023-08-08T11:55:57Z

note finali coverpage



ar
X

iv
:1

00
3.

12
35

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  5
 M

ar
 2

01
0

Characterization of the Bose-glass phase in low-dimensional lattices
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We study by numerical simulation a disordered Bose-Hubbard model in low-dimensional lattices.
We show that a proper characterization of the phase diagram on finite disordered clusters requires
the knowledge of probability distributions of physical quantities rather than their averages. This
holds in particular for determining the stability region of the Bose-glass phase, the compressible but
not superfluid phase that exists whenever disorder is present. This result suggests that a similar
statistical analysis should be performed also to interpret experiments on cold gases trapped in
disordered lattices, limited as they are to finite sizes.

PACS numbers: 05.30.Jp, 71.27.+a, 71.30.+h

Introduction – The impressive progresses in exper-
iments with ultra-cold gases trapped in optical lat-
tices have revived interest in old yet fundamental issues
of many-body physics. [1] In fact, these systems give
the unique opportunity to experimentally realize simple
many-body models, like the Bose or Fermi Hubbard mod-
els, which are believed to capture the essential physics
underneath important phenomena, like for example su-
perfluidity or the Mott metal-insulator transition.

One of the first successes of these experiments has been
the observation of a superfluid to Mott insulator tran-
sition in bosonic atoms trapped in optical lattices upon
varying the relative strengths of interaction and inter-well
tunneling. [2] The possibility of introducing and tuning
disorder, through speckles or additional incommensurate
lattices, also led to the observation of Anderson localiza-
tion for weakly interacting Bose gases. [3, 4] These im-
portant achievements progressively opened the way to-
wards the challenging issue of realizing and studying a
Bose-Hubbard model in the presence of disorder. Pre-
liminary attempts to measure the excitation spectrum of
interacting bosons in a disordered lattice, [5] have been
performed by using Bragg spectroscopy. [6]

The phase diagram of a disordered Bose-Hubbard
model is supposed to include three different phases. [7, 8]
When the interaction is strong and the number of bosons
is a multiple of the number of sites, the model should
describe a Mott insulator, with bosons localized in the
potential wells of the optical lattice. This phase is not
superfluid nor compressible. When both interaction and
disorder are weak, a superfluid and compressible phase
must exist. These two phases are also typical of clean
systems. In the presence of disorder a third phase arises:
the so-called Bose glass, which is compressible but not su-
perfluid. [8] Indeed, when disorder is very strong, bosons
localize in the deepest potential wells, which are ran-
domly distributed. The coherent tunneling of a boson

between these wells is suppressed just as in the usual An-
derson localization, hence the absence of superfluidity, in
spite of the fact that displacing a boson from one well
to another one may cost no energy, hence a finite com-
pressibility. Based on the same single-particle description
used for explaining Anderson localization, it was argued
that disorder prevents a direct superfluid to Mott insu-
lator transition, [8] a speculation that has been subject
to several theoretical studies. [9–16]

A simple way to justify the validity of the single-
particle arguments is to imagine that the few carriers,
which are released upon doping a Mott insulator, effec-
tively behave as bosons at low density. In this case the
single-particle Anderson localization scenario is likely to
be applicable since the few interacting bosons occupy
strongly localized states in the Lifshitz tails. The im-
plicit assumption is that the Mott-Hubbard side bands
survive in the presence of disorder and develop Lifshitz’s
tails that fill the Mott-Hubbard gap. This scenario is
quite appealing hence worth to be investigated theoret-
ically. However, a direct comparison of theory with ex-
periments has to face the problem that experiments on
cold gases are unavoidably limited to finite systems with
hundreds of sites and finite number of disorder realiza-
tions. Therefore, objects like Lifshitz’s tails, which arise
from rare disorder configurations, might not be easily ac-
cessible. This fact demands an effort to identify salient
features of the Bose glass that may distinguish the latter
from a superfluid or a Mott insulator already on finite
systems.

This is actually the scope of this Letter. Specifically,
we are going to show that the statistical distribution of
the energy gaps extracted by a numerical simulation of
finite size systems is a significant property that can dis-
criminate among different phases. The numerical simula-
tion have been carried out for a single chain, a two- and
three-leg ladder system and finally for a genuine two-
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FIG. 1: (Color on-line) Upper panel: superfluid stiffness ρs as
a function of the disorder strength ∆/t for different densities
of hard-core bosons. Lower panel: low-density phase diagram
of the hard-core bosonic model. Calculations have been done
on a 2× 50 ladder system.

dimensional lattice. The ladder systems are of interest
because they can be experimentally realized, not only
in optical lattices but also in magnetic materials. In-
deed, very recent neutron scattering data reported the
evidence of the spin-analogous of a Bose-glass phase in
a spin-ladder compound in which disorder was induced
by random chemical substitution. [17] Finally, we shall
also discuss how the probability distribution of the en-
ergy gaps could be experimentally accessed.
Model – The simplest Hamiltonian that contains the

basic ingredients of strong correlations and disorder is

H = −
t

2

∑

〈i,j〉

b†ibj+h.c.+
∑

i

(

U

2
ni(ni − 1) + ǫini

)

, (1)

where 〈. . . 〉 indicates nearest-neighbor sites, b†i (bi ) cre-

ates (destroys) a boson on site i, and ni = b†ibi is the local
density operator. The on-site interaction is parametrized
by U , whereas the local disordered potential is described
by random variables ǫi that are uniformly distributed in
[−∆,∆]. Here, we consider bosons on a one-dimensional
(1D) chain, N -leg ladders, and a two-dimensional (2D)
square lattice, and study model of Eq. (1) by Green’s
function Monte Carlo with a fixed number M of bosons
on L sites, n = M/L being the average density. In realis-
tic experimental setups, a two-leg ladder can be realized
through a double well potential along a direction (say,
x), [18] a potential creating a cigar geometry in the z-
axis, and finally a periodic potential along z. [19]
Results – Before considering the case of finite U/t,

let us briefly discuss the limit of hard-core bosons (i.e.,
U = ∞) at low densities. Fig. 1 shows the low-density
phase diagram on a two-leg ladder. We find that for
any finite disorder ∆, the low-density phase is a Bose
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FIG. 2: Distribution P (Eg) of the gap in the 1D Bose-
Hubbard model for different values of U/t and L = 60 sites.

glass that turns superfluid above a critical density. In
other words, the trivial Mott insulator with zero (or one)
bosons per site is indeed separated from the superfluid
phase by a Bose glass. We emphasize that the existence of
a superfluid phase for hard-core bosons in a two-leg lad-
der is per se remarkable. Indeed, in a single chain with
nearest-neighbor hopping, hard-core bosons are equiv-
alent to spinless fermions, which Anderson localize for
any density and in any dimension D ≤ 2. Consequently,
hard-core bosons on a single chain are never superfluid.
Already in a two-leg ladder, hard-core bosons start to
behave differently from spinless fermions. Indeed, while
the latter ones remain always localized, the former ones
show a superfluid phase. We just mention that the same
occurs also on a single chain with longer-range hopping.

We now turn to finite on-site interactions and consider
the case with n = 1. The Bose-Hubbard model has been
extensively studied in recent years, [9–16] with special
focus on the question whether a direct superfluid to Mott
insulator transition does exist or not. This issue has been
finally solved only recently. The solution is based on the
observation that, if the disorder strength ∆ is larger than
half of the energy gap of the clean Mott insulator Eclean

g ,
then the ground state must be compressible, otherwise is
incompressible. [15, 20] Therefore, the independent mea-
surements of the superfluid stiffness ρs at finite ∆ and
of the clean Mott gap Eclean

g allow a precise determina-
tion of the phase boundaries between different phases and
demonstrate unambiguously the existence of a Bose glass
in between the superfluid and Mott phases. [15, 16] The
above prescription is very effective in a numerical simula-
tion since both ρs with disorder and Eclean

g without dis-
order can be determined quite accurately. On the other
hand, it would be desirable to have simple instruments
to establish directly the nature of the phase of a given
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system in a realistic finite-size experimental setup. In a
clean system, this program can be accomplished by mea-
suring the gap, conventionally defined by Eg = µ+−µ−,
where µ+ = EM+1 − EM and µ− = EM − EM−1 (EM

being the ground-state energy with M particles). Exper-
imental estimates for the gap have been so far obtained
in ultra-cold atomic systems mainly in two ways: one
consists in applying a gradient potential that compen-
sates the Mott energy gap and allows tunneling between
neighboring sites; [2] the other method exploits a sinu-
soidal modulation of the main lattice height for stimulat-
ing resonant production of excitations. [5, 6]

In disordered systems, the Mott gap can be over-
come by transferring particles between two regions with
almost flat disorder shifting the local chemical poten-
tial upward and downward, respectively. These regions
may be far apart in space and represent rare fluctu-
ations (Lifshitz’s tail regions). Therefore, it is quite
likely that the conventional definition of the gap, Ēg =
1/N

∑

α=1,...,N (µ+
α − µ−

α ), where α denote the disorder
realizations, will miss the Lifshitz’s tails for any acces-
sible number of disorder realizations N . This fact gives
rise to a finite gap, even when the actual infinite system
would be compressible. To circumvent such a difficulty,
it is useful to imagine that a large systems is made by
several subsystems, each represented by the L-site clus-
ter under investigation, and construct the gap by using
µ+ and µ− from different disorder realizations. In other
words, one could define an alternative estimate of the gap
as Emin

g = minα,β | µ+
α − µ−

β |, with all the disorder real-
izations α and β. In the limit of very large systems where
boundary effects become negligible, Emin

g must eventu-

ally coincide with Ēg. In finite systems the two estimates
differ, nevertheless we believe that Emin

g is more represen-
tative since it can capture the phenomenon underneath
the Lifshitz’s tails, as we are going to show numerically.
Besides Emin

g , one can determine the full gap distribu-

tion, P (Eg) =
∑

αβ δ
(

Eg − µ+
α + µ−

β

)

, which we will

show has remarkable properties. We mention that, by
our definition, P (Eg < 0) could well be finite on finite
systems, although it must vanish in the thermodynamic
limit where P (Eg) becomes peaked at a single positive
(or vanishing) value, i.e., the actual gap. In experiments
with ultra-cold atoms, both Emin

g and P (Eg) could be
accessed by measuring separately µ+ and µ− for differ-
ent disorder realizations. For instance, one could mea-
sure the energy releases Erel

M of falling atoms when the
trap is turned off with the reference number of particles
M and with numbers M ± M ′. For M ′ ≪ M , indeed
Erel

M+M ′ − Erel
M ≃ M ′µ+ and Erel

M − Erel
M−M ′ ≃ M ′µ−.

Let us start from the 1D case, whose zero-temperature
phase diagram has been worked out by Density-Matrix
Renormalization Group (DMRG). [21] At finite values of
∆, the on-site interaction U turns the Bose glass into a
superfluid, which remains stable up to U = Uc1, where
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FIG. 3: (Color on-line) Upper panel: superfluid stiffness ρs
for different clusters. Two-leg (with 2 × 40 sites) and three-
leg (with 3× 50) ladders are shown; the 2D case with a 12×
12 cluster is also reported for comparison. In all cases the
disorder strength is ∆/t = 5. Lower panel: the same as in
the upper panel for the minimum gap Emin

g . Arrows indicate

the opening of the charge gap according to ∆ = Eclean

g /2.
The histograms for the gap are also reported for the three-leg
ladders (upper raw) and 2D (lower raw): U/t = 7 (a and b),
13 (c and d), and 16 (e and f).

ρs vanishes. However, the system remains gapless for
Uc1 < U < Uc2, indicating the presence of a Bose-glass
phase. At U = Uc2 the system turns into an incom-
pressible Mott insulator. For ∆/t = 2, we have that
Uc1/t ≃ 3.7. If we use Ēg as estimator of the actual gap,
we find that the Bose glass survives up to Uc2/t ≃ 5, not
far from the DMRG estimate, [21] but smaller than the
value predicted by the condition ∆ = Eclean

g /2, which
would lead to Uc2/t ≃ 6.9. As discussed before, this
discrepancy arises by the inability to catch rare disorder
configurations, which could be overcome by analyzing the
minimum gap Emin

g and the full distribution probability

P (Eg). Indeed, when using Emin
g as a detector of gapless

excitations, we obtain an estimate of Uc2/t ≃ 6.2, much
closer to the value Uc2/t ≃ 6.9. As far as P (Eg) is con-
cerned, we note that it behaves quite differently in the
three different phase, see Fig. 2. As long as the phase is
superfluid, P (Eg) is peaked at Eg = 0. In the Bose glass,
P (Eg) is instead peaked at a finite Eg > 0, yet P (0) stays
finite. In the Mott insulator, P (Eg) remains peaked at
a positive Eg but P (0) = 0. This suggests that P (Eg)
could be an efficient tool for discriminating between the
different phases.
Let us now analyze the evolution of the phase diagram

when the 2D limit is approached by increasing the num-
ber of legs. Moving from D = 1 to D = 2, the stability
region of the Bose glass is expected to shrink, [8] making
its observation in experiments more and more difficult.
In Fig. 3, we report our results for two- and three-leg
ladders, and for comparison, also the 2D limit (evaluated
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FIG. 4: (Color on-line) Upper panel: variational results for
the excitation gap for a 2×40 ladder. Lower panels: momen-
tum distribution nk for the same cluster.

for a rather small 12× 12 cluster). In this case, we take
∆/t = 5, in order to have a larger Bose-glass region in
between the superfluid and the Mott phases. In 1D, for
such large disorder strength no superfluidity is found at
all. By increasing the number of legs, we rapidly con-
verge to the 2D results: this fact is particularly clear
from the data on the gap. Both the results on the min-
imum gap and the ones that come from ∆ = Eclean

g /2
shows that the critical U for the Mott transition is al-
most the same for three legs and 2D. Also the superfluid
stiffness ρs seems to rapidly converge from below to the
2D limit. We also find that the behavior of P (Eg) is qual-
itatively similar to what found in 1D, confirming that it
can actually discriminate among the different phases. We
mention that, should we use as estimator of the gap Ēg,
we would have concluded that the Bose glass never exists
in 2D and that a direct superfluid to Mott insulator tran-
sition occurs. The use of Emin

g instead demonstrates that
the Bose glass does exist also in 2D and always intrudes
between the superfluid and the Mott insulator.

We finish by showing variational results for the mo-
mentum distribution nk = 〈b†kbk〉, obtained by the tech-
nique outlined in Ref. [22]. We just recall that this vari-
ational approach is based upon a Jastrow wave function
and is able to describe equally well superfluid, Bose-glass,
and Mott insulating states. In Fig. 4, we show the results
for a 2×40 ladder and different values of U/t (we also re-
port the results for the variational gap). Since, this is an
almost 1D system, no condensation fraction is found (i.e.,
n0/L → 0 in the thermodynamic limit). However, the su-
perfluid phase is characterized by quasi-long-range order
with a cusp in nk and a logarithmic divergent n0. On
the other hand, both the Bose-glass and the Mott phases
have a smooth momentum distribution, with n0 → const
in the thermodynamic limit.

Conclusions – We have presented a detailed study

of the ground-state properties of the disordered Bose-
Hubbard model in low-dimensional lattices, relevant for
on-going experiments with cold atomic gases trapped in
optical lattices. We have determined the distribution
probability of the gap on finite sizes and shown that it
contains useful information. In particular, we have found
that the Bose-glass is characterized by a broad distribu-
tion of the gap that is peaked at finite energy but extends
down to zero, a shape remarkably reminiscent of pre-
formed Hubbard sidebands with the Mott gap completely
filled by Lifshitz’s tails. The Mott transition occurs when
these tails terminate at finite energy. On the contrary,
the gap distribution in the superfluid phase turns out to
be strongly peaked at zero energy. These results suggest
a simple and efficient way to discriminate between dif-
ferent phases in experiments, which, being performed on
finite systems, suffer from the same size limitations as
our simulations.

We have also investigated the disordered Bose-
Hubbard model on N -leg ladder systems, emphasizing
that these geometries could be quite useful to study the
evolution from one to two spatial dimensions. Experi-
ments with both cold atomic gases and magnetic systems
are becoming now possible on ladders and our calcula-
tions represent an important benchmark in this direction.

We thank C. Castellani, L. Fallani, and C. Fort for
useful discussions. Calculations have been performed on
the cluster Matrix of CASPUR, thanks to Standard HPC
Grant 2009.
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