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Abstract

The sharp isoperimetric inequality for Riemannian manifolds having non-negative Ricci curva-

ture and Euclidean volume growth has been obtained in increasing generality in a number of

contributions [1, 46, 19, 51], culminated by Balogh and Kristály [14]. This last results covers

also the case of non-smooth metric-measure spaces verifying the non-negative Ricci curvature

condition in the synthetic sense of Sturm and Lott–Villani (the so-called CD condition) and

the proof exploits the Brunn–Minkowski inequality.

In the first part of the present thesis, we generalize the isoperimetric inequality to the

wider class of MCP(0, N) spaces having Euclidean volume growth. The inequality we prove is

sharp and the constant in the lower bound is smaller than the constant found in [14]. Since the

Brunn–Minkowski is not available in MCP spaces, our proof is a scaling limit of the localization

approach.

In the second part, we present a characterization of the isoperimetric sets in the same

generality of [14], i.e., the synthetic CD setting. Namely, we prove that the equality in the

isoperimetric inequality can be attained only by metric balls and, whenever this happens, the

space is forced, in a measure-theoretic sense, to be a cone. As a corollary, in the setting of

general RCD spaces, we derive rigidity for the metric structure, i.e., the space is a cone also in

the metric sense, generalizing a result of Antonelli et al. [10]. The proof consists in a careful

refinement of the scaling argument presented in first part.

In the third part, we generalize the isoperimetric inequality to the family of irreversible

Finsler manifold with non-negative Ricci curvature and Euclidean volume growth. Irreversible

Finsler manifolds are not covered by the theory of metric-measure spaces, for the distance

induced by the Finsler structure is not symmetric. We also prove a rigidity result analogous

to the result we obtained in the synthetic CD setting, namely a rigidity for the isoperimetric

set and for the space, in the measure-theoretic sense. The proof of the inequality is based on

the Brunn–Minkowski inequality; the rigidity is proved using the argument we developed in

the second part.

As a by-product of the rigidity results in both the CD and Finsler setting, we deduce that

optimizers in the anisotropic and weighted isoperimetric inequality for Euclidean cones are

necessarily the Wulff shapes.
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Chapter 1

Introduction

The isoperimetric problem is perhaps the most ancient problem in Calculus of Variation, as its

first mention can be found in the legendary foundation of the city of Carthage by Queen Dido.

According to the legend, Queen Dido was allowed to take possession of a portion of land that

she could enclose with a leather rope, so she built Carthage on a half-circle whose diameter was

given by the shore. More generally, the isoperimetric problem consists in finding the shape of

a fixed given volume having least perimeter; this problem can take place in different settings,

e.g., in the Euclidean space, on a sphere, on more general class of spaces, etc.

A possible modern mathematical approach to the isoperimetric problem is two-step. First,

one establishes an isoperimetric inequality, that is, a lower bound on the perimeter of a shape

given in terms of the volume of said shape; one also checks the sharpness of this lower bound,

that is, whether the lower bound is effectively attained in a certain case. Then, one checks the

rigidity of the isoperimetric inequality, by giving a complete characterization of the equality

case. (One can explore further more sophisticated properties of the isoperimetric inequality;

in the present thesis we confine our-self to these two steps).

In order to clarify, let’s state the classical isoperimetric inequality in the Euclidean space:

if E is a (sufficiently regular) subset of Rd, then it holds that

|∂E| ≥ dω
1
d
d |E|1−

1
d , (1.1)

where |∂E| and |E| are the (d − 1)-dimensional and d-dimensional measure of the boundary

of E and E itself (respectively), and ωd is the measure of the unitary ball of Rd; moreover,

the equality is attained if and only if E coincides with a ball of radius ( |E|
ωd

)
1
d . The present

inequality has been successfully extended in more general settings where the ambient space

is not the Euclidean one. Indeed, it turns out that two are the relevant properties of the

Euclidean space needed for such generalizations: 1) the fact that Rd has non-negative Ricci

1



2 Chapter 1. Introduction

curvature; 2) its Euclidean volume growth, i.e., a constraint on the growth of the measure of

large balls.

We shortly detail what we mean by “Euclidean volume growth”. If a complete Riemannian

d-manifold (X, g) has non-negative Ricci curvature, then it satisfies the so-called Bishop–

Gromov inequality, which states that the function

r 7→ Volg(Br(o))

rd
is non-increasing;

here Br(o) = {y : dg(o, y) < r} denotes the metric ball of radius r centered in the point o. The

asymptotic volume ratio (a.v.r.) of (X, g) is then naturally defined as

AVRX := lim
r→∞

Volg(Br(o))

ωdrd
∈ [0, 1],

where ωd is the measure of the unitary ball in Rd; it is immediate to verify that the definition

is not depending on the point o ∈ X. (To be pedantic, one should also specify the dependence

of the a.v.r. on the metric g; however, the context always makes clear what metric we are

considering). We say that a d-manifold has Euclidean volume growth (e.v.g.), if its a.v.r. is

positive.

Having in mind this definition, we state a theorem by Brendle [19] which generalizes in-

equality (1.1).

Theorem 1.1 ([19, Theorems 1.1 and 1.2]). Let (X, g) be a d-dimensional Riemannian man-

ifold with non-negative Ricci curvature and e.v.g. If E is a compact domain, then it holds

that

Hd−1(∂E) ≥ dω
1
d
d AVR

1
d
X Volg(E)1−

1
d . (1.2)

Moreover, if the inequality is saturated by a compact domain E with positive volume, then

X is isometric to the Euclidean space Rd and E coincides with a metric ball.

Some comments are in order. In the statement, Hd−1 denotes the (d − 1)-dimensional

Hausdorff measure. The r.h.s. of the inequality depends only on the a.v.r. and the measure

on the set E. The rigidity is two-fold: one side the equality, like in the classical isoperimetric

inequality, implies that the isoperimetric set is a ball; on the other side, also a rigidity of the

manifold itself holds true. Finally, we point out that if we specialize to the case X = Rd, we
recover the classical isoperimetric inequality.

A natural question is: can we widen the class of spaces admitting a (sharp, rigid) isoperi-

metric inequality mimicking (1.2)? In particular, does any (sharp, rigid) isoperimetric result

hold in the non-smooth setting? The present thesis will answer these questions by providing: 1)

sharp isoperimetric inequalities in the non-smooth MCP setting and in the irreversible Finsler
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setting; 2) rigidity results for the CD setting, irreversible Finsler setting, and for cones in the

Euclidean space.

In order to better present the previous literature and the novel results, we give an informal

description of the involved geometrical structures, leaving the formal definition to the next

chapters.

Description of the geometric structures. If (X, g) is a d-dimensional Riemannian man-

ifold, it naturally comes with a distance dg and volume measure Volg; however, it is natural

to consider more general measures other than Volg, by multiplying the volume by a weight

h = e−φ, with φ ∈ C2(X). Since the Ricci curvature quantifies the distortion of the volume

measure, when dealing with weighted measures, it loses its meaning. Therefore, the relevant

object to control is the N -Ricci tensor introduced by Bakry [12] (also known as generalized

Ricci curvature or Bakry–Émery tensor): if φ ∈ C2(M), the generalised N -Ricci tensor (with

N ∈ (0,∞)) is defined by

Ricg,h,N :=


Ricg +∇2

gφ− ∇gφ⊗∇gφ
N−d , if d < N,

Ricg +∇2
gφ, if d = N and dφ = 0,

−∞, otherwise.

The weighted Riemannian manifold (X, g, hVolg) is said to verify the Bakry-Emery Curvature-

Dimension condition CD(K,N) [13], if Ricg,h,N ≥ Kg. The CD(K,N) condition incorporates

information on curvature and dimension from both the geometry of (X, g) and the measure

hVolg.

In their seminal works, Lott–Villani [58] and Sturm [79, 80] introduced a synthetic definition

of CD(K,N) for complete and separable metric spaces (X, d) endowed with a (locally-finite

Borel) reference measure m (“metric-measure space”, or m.m.s.). The synthetic CD(K,N)

condition is formulated using the language of Optimal Transport and it is given by the dis-

placement convexity of a certain entropy functional. It was shown that two definitions of

CD(K,N) given by Bakry–Émery and Lott–Sturm–Villani coincide in the smooth Riemannian

setting (in both weighted and non-weighted cases). The CD(K,N) condition enjoys stablility

under measured Gromov–Hausdorff convergence of m.m.s.’s and Alexandrov spaces satisfy it.

The definition of CD(K,N) condition is contained in Section 2.1.1.

The stronger RCD(K,N) (Riemannian Curvature–Dimension) condition, was later intro-

duced [7] in order to exclude the possible non-linearity of the Laplacian and the heat-flow. It

can be defined as the CD(K,N) condition with the additional requirement that the Sobolev

space W 1,2(X) is an Hilbert space [47]. RCD(K,N) features many properties, not available for

CD(K,N) spaces, such as a splitting theorem and the Bochner inequality.
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A weaker notion of “lower bound on the curvature” is given by the measure contraction

property MCP(K,N), introduced in [80, 67]. Roughly speaking, while the CD(K,N) condition

consists in a convexity constraint on a certain entropy functional on the space of probability

measure, the MCP(K,N) condition restricts said convexity constraint only to the case when

one of the two measures of the convexity condition is a Dirac’s delta. For a d-dimensional

unweighted Riemannian manifold, the MCP(K,N) condition coincides with the CD(K, d) con-

dition, i.e., Ric ≥ K; for weighted manifolds, the MCP condition is weaker than CD, in general.

The MCP condition is interesting also because it encompasses certain spaces which are known

not to satisfy the CD(K,N); for example, the three-dimensional Heisenberg group is MCP(0, 5)

but not CD(K,N) for all K,N ∈ R [52] (see also [17]). See Section 2.1.2 for the definition of

the MCP(K,N) condition.

Spaces satisfying the MCP(0, N) condition (and a fortiori the CD(0, N) condition) admit

a Bishop–Gromov inequality; therefore, for an MCP(0, N) space (X, d,m), we can define its

a.v.r. as

AVRX := lim
r→∞

m(Br(o))

ωNrN
∈ [0,∞),

and ωN is naturally extended also for N /∈ N, using the Γ-function.

A Finsler manifold is a triple (X,F,m), such that X is a differential manifold (possibly

with boundary), m a Borel measure, and F a Finsler structure, that is a real-valued function

F : TX → [0,∞), which is convex, positively homogeneous, and F (v) = 0 if and only if v = 0

(see Section 5.1 for the precise definition). A Finsler manifold (X,F,m) is called irreversible

if F (v) ̸= F (−v); otherwise, the manifold is called reversible. When a Finsler manifold is

reversible, then it naturally comes with a (symmetric) distance, therefore the well-established

theory of m.m.s.’s apply; by extension, with the expression “reversible setting” we will include

m.m.s.’s. Our interest in irreversible Finsler structures lies in the fact that irreversible Finsler

manifolds arise in natural phenomena, e.g., the navigation with wind [16] or walking on a steep

mountain under the effect of gravity [62]. Recently, Ohta successfully extended the theory of

the Curvature-Dimension condition for possibly irreversible Finsler manifolds (see [68, 71, 74]).

Namely, a notion of N -Ricci curvature (compatible with the Riemannian one) was introduced,

the synthetic definition of CD(K,N) was adapted to the irreversible setting, and it was proven

that a Finsler manifold satisfies the CD(K,N) condition if and only if RicN ≥ K. CD(K,N)

Finsler manifolds enjoy several of the properties already known in the reversible setting, for

instance, the Bishop–Gromov inequality (see Section 5.1.2). For this reason, the definition of

a.v.r. of a CD(0, N) Finsler manifold is well-given (see Section 5.1.2). More recently, the notion

of irreversible metric measure space has been introduced [56], attempting to unify the theory

of metric-measure spaces and Finsler manifolds; in the present thesis we confine our-self to the

setting of Finsler manifolds (see Remark 1.9).
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Review of the literature. The isoperimetric problem in the reversible setting (for both

smooth and non-smooth spaces) has been extensively investigated. Perhaps one of the most

ancient isoperimetric inequality in the non-Euclidean setting is the Lévy–Gromov inequal-

ity [60] (see also [48, Appendix C]): if E is a subset of a Riemannian manifold X, whose Ricci

curvature is bounded below by K > 0, then |∂E|
|X| ≥ |∂B|

|S| , where S is a sphere with Ricci curva-

ture equal to K and B ⊂ S is a metric ball with volume |B| = |E| |S||X| . The equality is attained

if and only if X has maximal diameter in the sense of Myers’s Theorem and therefore X is

isometric to the sphere S and E is a metric ball. More recently, E. Milman [63] gave a sharp

isoperimetric inequality for weighted Riemannian manifolds satisfying the CD(K,N) condition

(for any K ∈ R, N > 1), with an additional constraint on the diameter and with unitary

measure. Namely, given K ∈ R, N > 1, D ∈ (0,∞], he gave a rather explicit description of the

so-called isoperimetric profile function ICD
K,N,D : [0, 1] → R. The isoperimetric profile function

ICD
K,N,D(v) is defined as the infimum of the perimeter among all possible sets of measure v

contained in all possible CD(K,N) manifolds with diameter at most D with unitary volume.

Milman’s result is sometimes referred as generalized Lévy–Gromov inequality.

In his celebrated monograph [82], Villani asked whether one can find an alternative proof

of Lévy–Gromov inequality, using only techniques of Optimal Transport. He motivated his

question pointing out that Optimal Transport techniques are often suitable for treating non-

smooth spaces. Cavalletti and Mondino [28] first answered Villani’s question. They extended

Milman’s result to the non-smooth setting finding the same lower bound, i.e., if (X, d,m) is a

CD(K,N) space with unitary measure, then P(E) ≥ ICD
K,N,D(m(E)), for any Borel subset E ⊂

X. Their proof makes use of the localisation method (also known as needle decomposition),

a powerful dimensional reduction tool, initially developed by Klartag [54] for Riemannian

manifolds and later extended to CD(K,N) spaces [28]. This method has proven to be very

adequate in solving isoperimetric problems and it can be considered an answer to Villani’s

question. Indeed, the localization method is the core tool used in this thesis. Cavalletti and

Santarcangelo [32], still using the localization approach, substituted the CD hypothesis with

the MCP condition; in their paper, they described the isoperimetric profile IMCP
K,N,D : [0, 1] → R,

which turns out to be strictly smaller than ICD
K,N,D.

In the setting of Finsler manifold, less is known. Following the line traced in [28], Ohta [72]

extended the localization method to Finsler manifolds and he obtained a lower bound for the

perimeter for Finsler manifolds with finite reversibility constant. The reversibility constant

(introduced in [76]) of a Finsler structure F on the manifold X is defined as the least constant

(possibly infinite) ΛF ≥ 1 such that F (−v) ≤ ΛFF (v) for all vectors v ∈ TX. Ohta proved [72]

that given a Finsler manifold (X,F,m) having finite reversibility constant and unitary measure
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satisfying the CD(K,N) condition, with diameter bounded from above by D, it holds that

P(E) ≥ Λ−1
F ICD

K,N,D(m(E)), ∀E ⊂ X,

where ICD
K,N,D is the isoperimetric profile function described by E. Milman. The presence of

the factor Λ−1
F suggests that the inequality above is not sharp. Indeed, in the case N =

D = ∞, using a different approach, this factor can be eliminated obtaining a Barky–Ledoux

isoperimetric inequality for Finsler manifolds [73].

The rigidity, in the setting of CD/MCP(K,N) spaces with diameter bounded by D ∈ (0,∞],

distinguishes two regimes: K > 0 and K ≤ 0. The regime K > 0 has been addressed in [28]

and later in [24] with a quantitative analysis. To be precise, it has been proven that if (X, d,m)

is a CD(K,N) space such that the isoperimetric inequality is saturated, then the isoperimetric

set is a ball and the diameter of X is
√

K
N−1 , i.e., it is maximal in the sense of Myers theorem.

If in addition (X, d,m) satisfies the RCD(K,N) condition, then X is isomorphic, as m.m.s., to

a spherical suspensions [28, Theorem 1.4]. For MCP(K,N) spaces with K > 0, the rigidity

problem is still open.

In the regime K ≤ 0, it has been proven [32] that if a MCP(K,N) space with K ≤ 0

and diameter at most D ∈ (0,∞) saturates the isoperimetric inequality, then the diameter

of the space is saturated to D. No analogous result for CD(K,N) with K ≤ 0 seems to be

present in the literature; however, if one inspects the isoperimetric profiles computed in [63],

one recognizes that the map D 7→ ICD
K,N,D(v) is strictly decreasing and therefore diameter

saturation of the diameter happens in CD(K,N) spaces, as well.

For irreversible Finsler manifold satisfying the CD(K,N) condition, the rigidity problem is

still open, as well.

Concerning the regime K = 0, as we have already pointed out, it is natural to couple the

lower bound on the Ricci curvature, with the e.v.g. constraint. Beside Theorem 1.1 [19], the

sharp isoperimetric inequality for Riemannian manifolds with Euclidean volume growth has

been obtained in increasing generality with different approaches in a number of contributions

[1, 46, 51]. The most general version (including as subclasses the previous contributions)

is the one obtained by Balogh and Kristály [14] and it is valid for m.m.s.’s verifying the

CD(0, N) condition. Their argument follows from a refined application of the Brunn–Minkowski

inequality given by Optimal Transport, and it can be considered a different possible answer to

Villani’s question.

Theorem 1.2 ([14, Theorem 1.1]). Let (X, d,m) be a m.m.s. satisfying the CD(0, N) condition

for some N > 1, and having Euclidean volume growth. Then for every bounded Borel subset

E ⊂ X it holds

m+(E) ≥ Nω
1
N
N AVR

1
N
Xm(E)

N−1
N . (1.3)
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Moreover, inequality (1.3) is sharp.

Here we denote by m+ the Minkowski content. See Section 2.2 and Appendix B for the

relation between the Minkowski content and the perimeter.

More challenging to prove are the rigidity properties of (1.3). So far it has been obtained

only under special assumptions on the space without matching the generality of Theorem 1.2.

Antonelli, Pasqualetto, Pozzetta and Semola [10] generalised the rigidity of 1.1 to the non-

smooth setting by considering RCD(0, N)-spaces and removes the regularity assumptions on

the boundary of E. However, the assumptions of infinitesimal hilbertianity is kept, and only

the unweighted case (i.e., the reference measure is the Hausdorff measure) is considered, as

well.

Theorem 1.3 ([10, Theorem 1.3]). Let (X, d,HN ) be an RCD(0, N) m.m.s. having Euclidean

volume growth. Then the equality (1.3) holds for some E ⊂ X with HN (E) ∈ (0,∞) if and

only if X is isometric to a Euclidean metric measure cone over an RCD(N − 2, N − 1) space

and E is isometric to a ball centered at one of the tips of X.

Regarding the family of MCP(0, N) spaces having e.v.g., no isoperimetric inequality is

known; the same can be said for irreversible Finsler manifolds satisfying CD(0, N) having

e.v.g.

The table below summarizes the literature, novel contributions, and open problems.

Inequality Rigidity

CD(K,N) spaces with diameter

bounded by D

[63, 28, 30] If K > 0, D = ∞: [28, 30, 24].

If K ≤ 0, D < ∞: it seems that there is

diameter saturation (see p. 6).

CD(0, N) spaces having e.v.g. [19, 1, 46, 51, 14] [19, 10, 9, 11] Theorem 1.5

MCP(K,N) spaces with diameter

bounded by D

[32] If K > 0, D = ∞: open.

If K ≤ 0, D <∞: diameter saturation [32].

MCP(0, N) spaces having e.v.g. Theorem 1.4 Open

CD(K,N) Finsler manifolds with

diameter bounded by D

[72] (the result is not sharp, except

for N = D = ∞, K > 0 [73])

Open

CD(0, N) Finsler manifolds hav-

ing e.v.g.

Theorem 1.7 Theorem 1.8

1.1 Contributions in the present thesis

Sharp isoperimetric inequality in MCP(0, N) spaces. The first result I present is taken

by a paper [25], written in collaboration with my advisor, Fabio Cavalletti.

The next theorem generalizes Theorem 1.2 to the wider class of MCP(0, N) spaces.

Theorem 1.4 ([25, Theorem 1.2]). Let (X, d,m) be an essentially non-branching m.m.s. sat-

isfying the MCP(0, N) condition for some N > 1 and having Euclidean volume growth. Then
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for every Borel subset E ⊂ X with m(E) <∞, it holds that

m+(E) ≥ (NωNAVRX)
1
N m(E)

N−1
N . (1.4)

Moreover, inequality (1.4) is sharp.

Some comments on Theorem 1.4 are in order. The constant of (1.4) is slightly smaller

than the constant of (1.3). Indeed, the relation between the isoperimetric profile function of

MCP(0, N) and CD(0, N) space with bounded diameter (i.e., IMCP
0,N,D < ICD

0,N,D [32]), is reflected

in different constant when considering the isoperimetric inequality for spaces with e.v.g.

The assumption of the space to be essentially non-branching prevents pathological phenom-

ena within the theory of synthetic lower bounds on the Ricci curvature (see for instance the

local-to-global property [27]). It is verified both by the class of reversible Finsler manifolds and

RCD(0, N) spaces; in particular it holds for weighted Riemannian manifolds. All the results

proved in this thesis requires this assumption.

Finally, let us mention that Theorem 1.4 will not imply a non-trivial isoperimetric inequality

in the Heisenberg group of any dimension. Indeed while for instance the first Heisenberg group

satisfies MCP(0, 5), the volume of its geodesic balls grows with the fourth power, giving zero

AVR. Therefore, the isoperimetric inequality in the Heisenberg group is still open. Please, refer

to [17, 64] for further details about the isoperimetric problem in the Heisenberg group and the

wider class of sub-Riemannian manifolds.

The proof of Theorem 1.2 was carried out by using the Brunn–Minkowski inequality, a

consequence of the CD(0, N) condition. In MCP(0, N) spaces, the Brunn–Minkowski inequality

is not available, therefore we will adopt a more sophisticated approach that relies on the

localization paradigm. Before sketching the proof, let us mention that recently a modified

Brunn-Minkowski inequality has been established [15, 17] for a large family of sub-Riemannian

manifolds also verifying the MCP(0, N) condition, for an appropriate choice of N > 1. Due

to the nonlinearity of the concavity interpolation coefficients, this modified version of Brunn-

Minkowski inequality seems not to imply a non-trivial isoperimetric inequality directly. Also

the weaker versions of the Brunn-Minkowski inequality obtained in [64], verified again by a

large family of sub-Riemannian spaces, are just not tailored to obtain an expansion of the

volume of a tubular neighbourhood of a given set.

We sketch the ideas used for proving Theorem 1.4. We can assume the set E to have

positive measure and to be bounded (if it is not bounded one proceeds by approximation). We

embed the set E in a large ball of radius R and we consider the L1-Optimal Transport of the

reference measure restricted to E and the complementary of E in the ball, respectively. The

localization technique, which takes into account the properties of Optimal Transport, produces

a family of one-dimensional MCP(0, N) spaces (called transport rays), with diameter bounded
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by R. On each transport ray one applies the isoperimetric inequality to the trace of E on the

ray, and combine them together. Finally, using a Taylor expansion of the isoperimetric profile

IMCP
0,N,R, one takes the limit as R→ ∞, and taking into account the a.v.r., one obtain the desired

inequality.

The proof is contained in Chapter 3, whereas Chapter 2 presents the notation and technical

tools employed in the proof.

Rigidity of the isoperimetric inequality in CD(0, N) spaces. The second result comes

from a preprint [26], written in collaboration with my advisor, Fabio Cavalletti.

The next theorem characterize the equality case of inequality (1.3).

Theorem 1.5 ([26, Theorem 1.4]). Let (X, d,m) be an essentially non-branching m.m.s. sat-

isfying the CD(0, N) condition for some N > 1, and having Euclidean volume growth. Let

E ⊂ X be a bounded Borel set that saturates (1.3).

Then there exists (a unique) o ∈ X such that, up to a negligible set, E = Bρ(o), with

ρ = ( m(E)
AVRXωN

)
1
N . Moreover, considering the disintegration of m with respect to d(·, o), the

measure m has the following representation

m =

∫
∂Bρ(o)

mα q(dα), q ∈ P(∂Bρ(o)), mα ∈ M+(X), (1.5)

with mα concentrated on the geodesic ray from o through α and mα can be identified (via the

unitary speed parametrisation of the ray) with NωNAVRXt
N−1L1⌞[0,∞).

In the more regular setting of RCD(0, N) spaces one can invoke [37, Theorem 1.1], the

so-called “volume cone implies metric cone”, so to improve the measure rigidity of Theorem

1.5 valid in the CD(0, N) setting to the stronger metric rigidity.

Theorem 1.6 ([26, Theorem 1.5]). Let (X, d,m) be a m.m.s. verifying the RCD(0, N) condition

for some N > 1, and having Euclidean volume growth. Then the equality (1.3) holds for some

bounded set E ⊂ X if and only if X is isometric to a Euclidean metric measure cone over an

RCD(N − 2, N − 1) space and E is isometric to the ball centered at one of the tips of X.

Thus Theorem 1.6 recovers and extends Theorem 1.3 by allowing more general measures

(other than the volume measure or the Hausdorff measure). It should be noticed that the hy-

pothesis on the boundedness of E can be dropped. Indeed, it was proven [11] (see also [9, Theo-

rem 1.3] for the unweighted case) that minimizers of the perimeter are bounded for RCD(K,N)

spaces.

We briefly sketch the line of the proof. Our approach starts from the argument used for

proving Theorem 1.4, and refines it. We consider the localisation given by the optimal transport
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between the given set E and its complement inside a large ball of radius R containing E,

producing a disjoint family of CD(0, N) transport rays. Then one can apply the isoperimetric

inequality to the traces of E along the transport rays and conclude the proof of (1.3) by taking

R→ ∞. This alternative proof is contained in Section 4.2.2.

In order to capture the equality case following this proof it is therefore necessary to deal

with this limit procedure. The intuition suggests that whenever a region E attains the equality

in (1.3) then for large values of R the one-dimensional traces have to be almost optimal. The

almost optimality has to be intended in many respects: along each geodesic ray, the diameter

has to be almost optimal, the one-dimensional conditional measures has to be almost tN−1

and the set has to be almost an interval starting from the starting point of the ray. The main

difficulty here is to perform a quantitative analysis of the right order that will not vanish when

R → ∞. This is done in Section 4.3 that culminates with Theorem 4.19 where we summarise

the crucial stability estimates for the one-dimensional densities and the geometry of the traces

of E.

Then the natural prosecution is to take the limit as R → ∞ and hopefully obtain a disin-

tegration of m on the whole space having conditional measures verifying the limit estimates.

Disintegration formulas are however typically hard to threat under a limit procedure. For

instance, the maximality of the transport rays is likely not preserved preventing any chances

to get limit estimates. Nonetheless, the almost maximality of E, and all the almost optimal

information deduced from it in Section 4.3 permits to bypass this intricate issue and obtain

a well behaved limit disintegration. The limit is analysed in Section 4.4 and summarised by

Corollary 4.33. The final part of Section 4.4 is then dedicated to the proof that the optimal

set E is a ball and the disintegration formula (1.5) (see Theorems 4.38 and 4.45).

The proof is contained in Chapter 4 (see Chapter 2 for the notation).

Isoperimetric inequality in irreversible Finsler manifolds. The third result is taken

from a preprint [61].

If a Finsler manifold (X,F,m) is reversible, then the induced distance is symmetric and

we fall into the well-established theory of m.m.s.’s, and in particular the isoperimetric inequal-

ity (1.3) holds true. The next theorem extends Theorem 1.2 to the realm of irreversible Finsler

manifolds.

Theorem 1.7 ([61, Theorem 1.3]). Let (X,F,m) be a Finsler manifold (possibly with convex

boundary) satisfying the CD(0, N) condition for some N > 1, such that all closed forward balls

are compact and having Euclidean volume growth. Then for every Borel subset E ⊂ X it holds

P(E) ≥ Nω
1
N
N AVR

1
N
Xm(E)

N−1
N (1.6)
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Moreover, inequality (1.6) is sharp.

Let us briefly comments Theorem 1.7. By “forward ball” we denotes sets of the form

B+(x, r) = {y : dF (x, y) < r}; similarly, backward balls are defined with the same condition,

swapping x and y. For irreversible Finsler manifold it is essential to specify whether a ball is

forward or backward, as the two notions do not coincide. The asymptotic volume ratio is then

defined using forward balls (see Section 5.1.2). The hypothesis that forward balls are compact,

in the light of Hopf–Rinow theorem, is needed for guaranteeing that for every couple of point

there exists a curve of minimal length connecting them.

By convex boundary of a Finsler manifold we mean that given two points in the interior,

every curve of minimal length connecting them does not touch the boundary. The possible

presence of the boundary might harm the equivalence of the definition of CD(0, N) in the

synthetic sense and in the sense of lower bound on the N -Ricci curvature. In this thesis we take

as definition of CD(0, N) for Finsler manifolds the synthetic one (see Section 5.1.2). Indeed, the

main technical tool used in this thesis, the localization or needle decomposition, was developed

using the synthetic definition of CD(0, N) [72]. We also specify that the localization theorem

was proved for Finsler manifolds without boundary; however, by inspecting the proof [72], one

notices that the presence of a convex boundary is not harmful.

Finally, we remark that, to the best of the author knowledge, besides the Barky–Ledoux

inequality [74], there is no other isoperimetric inequality for Finsler manifolds that does not

involve the reversibility constant.

The proof strategy of Theorem 1.7 is based on the Brunn–Minkowski inequality and follows

closely the proof by Balogh and Kristály [14] of Theorem 1.2. Indeed, in the light of [56], it

seems that this inequality holds true also for irreversible metric measure spaces; here we confine

our-self to the setting of Finsler manifolds.

One can try to prove the inequality using the localization paradigm. If one follows the

proof presented in Chapter 3 or in Section 4.2.2, a factor Λ−1
F ≤ 1 would appear (notice that

in this level of generality, we do not assume ΛF to be finite), and thus one would not obtain a

sharp inequality. This lack of sharpness is expected, as the isoperimetric inequality for Finsler

manifold is not sharp. However, quite surprisingly, using the localization paradigm, following

the ideas we developed for proving Theorem 1.5 we can prove the following rigidity result.

Theorem 1.8 ([61, Theorem 1.4]). Let (X,F,m) be a Finsler manifold (possibly with convex

boundary) satisfying the CD(0, N) condition for some N > 1, such that all closed forward balls

are compact and it has Euclidean volume growth and finite reversibility constant ΛF < ∞.

Assume that for all x, y /∈ ∂X and for all geodesics γ connecting x to y, it holds that γt /∈ ∂X,

for all t ∈ [0, 1]. Let E ⊂ X be a bounded Borel set that saturates (1.6).

Then there exists (a unique) o ∈ X such that, up to a negligible set, E = B+(o, ρ), with
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ρ = ( m(E)
AVRXωN

)
1
N . Moreover, considering the disintegration of m with respect to the 1-Lipschitz

function −d(o, · ), the measure m has the following representation

m =

∫
∂B+(o,ρ)

mα q(dα), q ∈ P(∂B+(o, ρ)), mα ∈ M+(X),

with mα concentrated on the geodesic ray from o through α and mα can be identified (via the

unitary speed parametrisation of the ray) with NωNAVRXt
N−1L1⌞[0,∞).

The hypothesis of the Theorem above contains the requirement that the reversibility con-

stant ΛF is finite. This assumption is quite expected since in Finsler manifolds with infinite

reversibility certain pathological behaviors may arise (e.g., the Sobolev spaces may not be

vector spaces [55, 43]).

Remark 1.9. We point out that the proof we present is not immediately applicable to the

family of irreversible metric-measure spaces [56], for two reasons. First, there is no localization

theorem for irreversible metric-measure spaces. Second, we used the differential structure of

Finsler manifolds in a few points of the proof, in particular by using Rademacher Theorem for

Lipschitz functions.

The proof is contained in Chapter 5; Appendixes A and B present a few facts about the

perimeter in Finsler manifolds which seem to be novel in this setting. The proof follows more

or less the line of the proof of the rigidity theorem for CD(0, N) spaces; therefore, we will

not presents all the details and we will focus more on the issues arising from the possible

irreversibility.

1.2 Applications in the Euclidean setting

Theorems 1.5 and 1.8 imply new results also in the Euclidean setting, namely the characteri-

sation of optimal regions for the anisotropic isoperimetric inequality for weighted cones.

The setting is the following one: let Σ ⊂ Rd be an open convex cone with vertex at

the origin, and H : Rd → [0,∞) be a gauge, that is a nonnegative, convex and positively

homogeneous of degree one function. In other words, H would be a (possibly non-smooth)

Finsler structure for Rd, which does not depend on the base-point. Moreover, we denote by w

a weight that is supposed to be continuous on Σ and positive and locally Lipschitz in Σ.

For a smooth set E ⊂ Rd, the weighted anisotropic perimeter relative to the cone Σ is given

by

Pw,H(E; Σ) =

∫
∂E
H(ν(x))w(x) dS,



1.2 Applications in the Euclidean setting 13

where ν(x) is the unit outward normal at x ∈ ∂E, and dS the surface measure. The main

result of [20] is the sharp isoperimetric inequality for the weighted anisotropic perimeter: if in

addition w is positively homogeneous of degree α > 0 and w1/α is concave in Σ, then

Pw,H(E; Σ)

w(E ∩ Σ)
N−1
N

≥
Pw,H(W ; Σ)

w(W ∩ Σ)
N−1
N

, (1.7)

where N = d+ α and W is the Wulff shape associated to H, for the details see [20, Theorem

1.3]. The expression w(A) with A ⊂ Rd is a short-hand notation for the integral of w over A.

The inequality (1.7), taking w = 1, Σ = Rd, and H = ∥ · ∥2, recovers the classical sharp

isoperimetric inequality. Taking w = 1 and H = ∥ · ∥2, (1.7) gives back the isoperimetric

inequality in convex cones originally obtained by Lions and Pacella [57]. Finally, if w = 1

Σ = Rd and H be some other gauge, (1.7) is the Wulff inequality.

As observed in [20], Wulff balls W centered at the origin intersected with Σ are always

minimizers (1.7). However in [20] a characterization of the equality case (or a proof of unique-

ness of those minimizers), is not carried over (see also [50] for a different approach). Despite

the many recent contributions (and an announcement in [20] of a the forthcoming work solving

the problem), this characterisation, in its full generality, seems to be still not present in the

literature.

We now briefly recall the known results. The characterization of the optimal sets has

been obtained in the unweighted and isotropic case (w = 1 and H = ∥ · ∥2) for smooth cones

in [57] and for general cones in [45] via a quantitative analysis. The same approach of [45]

has been recently used in [38] to characterize optimal sets in the unweighted and anisotropic

case with the gauge H assumed additionally to be a norm with strictly convex unitary ball.

Finally [35] extended [38] to the case of H being a positive gauge still uniformly elliptic. The

characterisation in weighted setting has been solved in [34] but only in the isotropic case

(H = ∥ ·∥2); in [65], the anisotropic case is treated, but the minimizer is assumed to be convex.

It has been already observed [20, 74] that the assumption that w1/α is concave has a natural

interpretation as the CD(0, N) condition, where N = d + α; when H is a norm, it has been

observed [14] that (1.7) can be obtained as a particular case of (1.3)

To be precise, let H0(v) := supw ̸=0
w·v
H(w) be the dual gauge. If H is a norm, then H0 is

a norm as well and one can associate to the triple Σ, H and w the metric measure space

(Σ, dH0 , wLd), where dH0(x, y) := H0(x − y). On the other hand, if H is not a norm, but it

is smooth and strictly convex, then the dual gauge H0 is a Finsler structure and the triple

(Σ, H0, wLd) is a Finsler manifold (with boundary when Σ is not the full space). In both cases,

the perimeter in the sense either of metric measure spaces or of Finsler manifolds, will indeed

coincide with Pw,H [33].

Moreover, in both cases, the spaces we consider satisfies the CD(0, N) condition (see for
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instance [82] and [41, Proposition 3.3] for the m.m.s.’s setting and [74, Section 10.1] for the

setting of Finsler manifolds). The homogeneity properties of H0 and w, imply that we can

compute the a.v.r., just by computing the volume of the unitary ball:

AVRΣ = lim
R→∞

∫
B+(R)∩Σw dL

d

ωNRN
=

∫
B+(1)∩Σw dL

d

ωN
> 0.

Indeed, the Lebesgue measure scales with power d, whereas w is α homogeneous, thus the

measure of a ball scales with power N = d+ α. Conversely, the perimeter of the rescaled ball

is the derivative w.r.t. the scaling factor of the measure, hence the perimeter of the ball with

radius 1 is N times its measure. Recalling that the Wulff shape W of H is the unitary ball

of the dual gauge H0, it is therefore clear that (1.7) can be seen as a particular case of (1.3)

or (1.6), when H is a norm or H is a strictly convex, smooth gauge, respectively.

We can therefore apply Theorem 1.5 and Theorem 1.8 to the triples (Σ, dH0 , wLd) and

(Σ, H0, wLd), respectively.

Theorem 1.10 ([26, Theorem 1.7] and [61, Theorem 1.5]). Let Σ ⊂ Rd be an open convex cone

with vertex at the origin, and H : Rd → [0,∞) be a gauge with strictly convex balls. Assume

that either

1. H is a norm, that is H(v) = H(−v), or

2. H is smooth.

Consider moreover the α-homogeneous weight w : Σ̄ → [0,∞) such that w1/α is concave.

Then the equality in (1.7) is attained if and only if E = W ∩ Σ, where W is a rescaled

Wulff shape.

Indeed, hypothesis 1. together with the strict convexity of the balls implies that the metric

space (Σ, dH0) is non-branching. On the other hand, hypothesis 2. implies that H0 is a smooth

Finsler manifold. Therefore, the first part of Theorem 1.5·and Theorem 1.8 says that the

isoperimetric set is a ball in the dual gauge of H, i.e., it is a rescaled Wulff shape.

To conclude we stress that assumption on w being α-homogeneous can actually be re-

moved and obtained as a consequence of the measure rigidity part of Theorems 1.5 and 1.8

if we consider the modified version of (1.7) with the asymptotic volume ratio, i.e., we assume

the r.h.s. of (1.7) to be equal to (ωn+αAVRΣ)
1/(d+α) > 0. In this case, the second part of

Theorems 1.5·and 1.8, regarding the disintegration of the measures along the rays, provides

an integration formula in polar coordinates, where the Jacobian determinant grows with ex-

ponent N − 1 = d + α − 1. Since the density of Lebesgue measure in polar coordinates is

(d− 1)-homogeneous, we deduce that w is α-homogeneous.
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1.3 Further developments

The approach developed in this thesis does not seem to have run out its potentiality and further

developments are possible in many directions. For example, one can try to refine the analysis

in order to obtain a quantitative version of the isoperimetric inequality, i.e., quantify the

distance of a given set to a candidate isoperimetric set in terms of the deficit of the inequality.

One can also investigate other functional or geometric inequalities (isocapacitive inequality,

Sobolev inequality, etc.). The hyperbolic setting is interesting, as well: one can investigate the

isoperimetric problem for CD(K,N) manifolds, with K < 0; in this case the a.v.r. should be

substituted with the hyperbolic volume growth.

Since in the special cases of RCD(0, N) spaces isoperimetric sets are bounded [11], is it pos-

sible to prove the same for general CD(0, N) spaces, and, therefore, get rid of the boundedness

hypothesis in Theorem 1.5? The same question can be asked for the irreversible setting.

Finally, it would be nice to get rid of the essentially non-branching-ness hypothesis. This is

of particular interest in the setting of Euclidean cones as it would permit to consider crystalline

norms.
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Chapter 2

Preliminaries

This chapter contains the principal objects referred in the present thesis and in particular in

Chapters 3 and 4. In Section 2.1 we review geodesics in the Wasserstein distance and the CD

and MCP conditions; in Section 2.2 the perimeter and in Section 2.3 BV functions in the metric

setting. The reader familiar with Optimal Transport and the basics of metric-measure spaces

can skip these three sections and needs only to check Section 2.4 for the needle decomposition

(localization) which is going to be used throughout the thesis.

2.1 Wasserstein distance and lower bounds on the Ricci cur-

vature

We recall a few fact about Optimal Transport that the reader can find with all the details in

any book on the topic (e.g. [81, 82, 78]). We take the opportunity to introduce a few notation

that will be used throughout this thesis.

Let X be a Polish space. By M+(X) and P(X) we denote the space of non-negative Borel

measures on X and the space of probability measures, respectively. Let µ0, µ1 ∈ P(X), and

c : X × X → [0,∞) a continuous function. The Kantorovich Optimal Transport problem

between µ0 and µ1 with cost c is the optimization problem

inf
π

∫
X×X

c(x, y)π(dxdy), (2.1)

where the infimum is taken over all π ∈ P(X ×X) with µ0 and µ1 as the first and the second

marginal, i.e., (P1)♯π = µ0, (P2)♯π = µ1. Of course Pi, i = 1, 2 is the projection on the first

(resp. second) factor and (Pi)♯ denotes the corresponding push-forward map on measures. The

infimum is always attained, provided that it is finite.

17
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The so-called dual problem (also known as Rubenstein problem) is the following

sup
ϕ,ψ

{∫
X
ϕ(x)µ0(dx) +

∫
X
ψ(x)µ1(dx)

}
,

where the supremum is taken among all functions ϕ, ψ : X → R, such that ϕ(x)+ψ(y) ≤ c(x, y),

for all x, y ∈ X. By contrast, the Kantorovich problem is also called primal problem. A

fundamental fact in Optimal Transport is that the minimum of the primal problem and the

supremum of the dual problem coincide, provided that the minimum in (2.1) is finite. Under

certain general hypotheses (see, e.g., [82, Theorem 5.10]) the supremum of the dual problem

is attained by a non-unique couple (ϕ, ψ) and ϕ is called Kantorovich potential for µ0 and µ1.

For our purposes, these hypotheses will always be satisfied.

We specialize to setting of (X, d) being a complete, separable metric space and the cost

being c = dp, p ∈ [1,∞). In this case, it is useful to restrict to the set of probability measures

of p-th finite moment, i.e., the family of measures µ ∈ P(X), such that
∫
X dp(x, o)µ(dx) <∞,

for some (hence any) o ∈ X. This family will be denoted by Pp(X). This set can be naturally

endowed with the Wasserstein distance

Wp(µ0, µ1) =

(
inf
π

∫
X×X

dp(x, y)π(dxdy)

) 1
p

, (2.2)

making (Pp(X),Wp) a complete separable metric spaces.

Denote the space of geodesics of (X, d) by

Geo(X) :=
{
γ ∈ C([0, 1], X) : d(γs, γt) = |s− t|d(γ0, γ1), for every s, t ∈ [0, 1]

}
.

Any geodesic (µt)t∈[0,1] in (P2(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), so that

(et)♯ ν = µt for all t ∈ [0, 1], where, for each t ∈ [0, 1], et is the evaluation map:

et : Geo(X) → X, et(γ) := γt.

Given µ0, µ1 ∈ P2(X), we denote by OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which

(e0 ⊗ e1)♯ ν realizes the minimum in (2.2). If (X, d) is geodesic, then the set OptGeo(µ0, µ1) is

non-empty for any µ0, µ1 ∈ P2(X) and, in particular (P2(X),W2) is geodesics, as well.

A m.m.s. (X, d,m) is a triple with (X, d) a complete and separable metric space and m

a Borel non negative measure over X. With no loss in generality for our purposes, we will

assume that X = supp(m).

A set F ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ F , it



2.1 Wasserstein distance and lower bounds on the Ricci curvature 19

holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1t = γ2t =⇒ γ1s = γ2s , ∀s ∈ [0, 1].

With this terminology, we recall from [77] the following definition.

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching if and only if

for any µ0, µ1 ∈ P2(X), with µ0, µ1 absolutely continuous with respect to m, any element of

OptGeo(µ0, µ1) is concentrated on a set of non-branching geodesics.

2.1.1 Curvature-Dimension condition

The CD(K,N) for condition for m.m.s.’s has been introduced in the seminal works of Sturm

[79, 80] and Lott–Villani [58]; here we briefly recall only the basics in the case K = 0, 1 < N <

∞ (the setting of the present thesis). For the general definition of CD(K,N) see [58, 79, 80].

To state the definition of CD(0, N) one needs to the define the N -Rényi entropy. If (X, d,m)

is a m.m.s., and µ ∈ P(X), consider the Lebesgue decomposition of µ w.r.t. the reference

measure: µ = ρm+ µs, with µs ⊥ m. The N -Rényi entropy (N ∈ [1,∞)) is then defined as

SN (µ|m) := −
∫
X
ρ1−

1
N dm.

Definition 2.2 (CD(0, N)). Let (X, d,m) be a m.m.s. We say that (X, d,m) satisfies the

CD(0, N) condition if and only if the N ′-Rényi entropy is convex along the geodesics of the

Wasserstein space ∀N ′ ≥ N , that is, for any couple of absolutely continuous curves µ0, µ1 ∈
P2(X), there exists a geodesics (µt)t∈[0,1] ∈ Geo(P2(X)) connecting µ0 to µ1, such that

SN ′(µt|m) ≤ (1− t)SN ′(µ0|m) + tSN ′(µ1|m), ∀N ′ ≥ N.

For essentially non-branching spaces, a different definition was given, which was proven to

be equivalent to the previous one [29].

Definition 2.3 (CD(0, N) for essentially non-branching spaces). An essentially non-branching

m.m.s. (X, d,m) satisfies CD(0, N) if and only if for all µ0, µ1 ∈ P2(X, d,m), there exists a

unique ν ∈ OptGeo(µ0, µ1), ν is induced by a map (i.e. ν = S♯(µ0), for some map S : X →
Geo(X)), µt := (et)#ν ≪ m for all t ∈ [0, 1], and writing µt = ρtm, we have for all t ∈ [0, 1]:

ρ
−1/N
t (γt) ≥ (1− t) ρ

−1/N
0 (γ0) + t ρ

−1/N
1 (γ1) for ν-a.e. γ ∈ Geo(X).

If (M, g) is a Riemannian manifold of dimension n and h ∈ C2(M), with h > 0, then the
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m.m.s. (M, dg, h Volg) verifies CD(0, N) with N ≥ n if and only if (see Theorem 1.7 of [80])

Ricg,h,N := Ricg −(N − n)
∇2
gh

1
N−n

h
1

N−n

≥ 0,

in other words if and only if the weighted Riemannian manifold (M, g, h Volg) has non-negative

generalized N -Ricci tensor. If N = n the generalized N -Ricci tensor Ricg,h,N = Ricg requires h

to be constant. In particular, in the case of one-dimensional manifolds, the m.m.s. (I, | · |, hL1)

(I ⊂ R is an interval) is CD(0, N), if and only if(
h

1
N−1

)′′
≤ 0, in the sense of distributions.

2.1.2 Measure Contraction Property

We now briefly describe the Measure–Contraction Property (MCP). Similarly to the CD(K,N)

condition, we confine our-self to the presentation of the case K = 0. For the details, the

reader should refer to the paper [67] where this condition was introduced and investigated (see

also [80]).

Definition 2.4 (MCP(0, N)). A m.m.s. (X, d,m) is said to satisfy MCP(0, N) if for any o ∈
supp(m) and µ0 ∈ P2(X, d,m) of the form µ0 = 1

m(A)m⌞A for some Borel set A ⊂ X with

0 < m(A) <∞, there exists ν ∈ OptGeo(µ0, δo) such that:

1

m(A)
m ≥ (et)♯

(
(1− t)Nν(dγ)

)
, ∀t ∈ [0, 1]. (2.3)

The MCP condition can be see as the limiting case of the CD(0, N) condition when µ0 =
m

m(A) and µ1 = δ0. For this reason, the MCP condition is strictly weaker than the CD condition.

If (X, d,m) is a m.m.s. verifying MCP(K,N), no matter for whichK ∈ R, then (supp(m), d)

is Polish, proper and it is a geodesic space. It should also be noticed that the MCP condition

is not local.

The MCP condition justifies its nature as lower bound on the Ricci curvature by the fol-

lowing important fact [67, Theorem 3.2]: if (M, g) is n-dimensional Riemannian manifold with

n ≥ 2, the m.m.s. (M,dg,Volg) verifies MCP(K,n) if and only if Ricg ≥ Kg, where dg is the

geodesic distance induced by g and Volg the volume measure.

If (M, g, hVolg) is a weighted manifold and we substitute Ric with the N -Ricci tensor,

the just-stated fact is not true anymore. For our purposes, it is interesting to investigate the

MCP(0, N) condition for one-dimensional manifolds, i.e., for the m.m.s. of the form (I, | · |, hL1),

where I ⊂ R is an interval and h : I → [0,∞) is a locally integrable function. It is immediate

to see that for the m.m.s. (I, | · |, hL1) the inequality (2.3) for the measure hL1 is equivalent
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to the following inequality for the density h:

h(tx1 + (1− t)x0) ≥ (1− t)N−1h(x0), ∀x0, x1 ∈ I, ∀t ∈ [0, 1], (2.4)

see for instance [18, Theorem 9.5] where also the case K ̸= 0 is discussed. We will call h an

MCP(0, N)-density.

Inequality (2.4) implies several known properties that we recall for readers’ convenience. If

we confine ourselves to the case I = (a, b) with a, b ∈ R (2.4) implies (actually is equivalent to)(
b− x1
b− x0

)N−1

≤ h(x1)

h(x0)
≤
(
x1 − a

x0 − a

)N−1

,

for x0 ≤ x1. If we consider the unbounded case I = [0,+∞), (2.4) is equivalent to

1 ≤ h(x1)

h(x0)
≤
(
x1
x0

)N−1

. (2.5)

In both cases, h is locally Lipschitz in the interior of I and continuous up to the boundary.

We also point out that if (I, | · |,m) is a MCP(0, N) space, then m is absolutely continuous

w.r.t. the Lebesgue measure and therefore the Radon-Nikodym derivative h enjoys all the useful

properties we described in the paragraphs above.

Unless otherwise stated, we shall always assume that the m.m.s. (X, d,m) is essentially non-

branching and satisfies CD(0, N), for some N > 2 with supp(m) = X. This implies directly

that (X, d) is a geodesic, complete, and locally compact metric space.

2.2 Perimeter in metric measure spaces

Having in mind classical [2, 3, 66] and more recent [5] literature, we present the definition of

perimeter and the basilar related facts. The result presented in this section work for a generic

m.m.s., non-necessarily verifying a curvature condition.

Given u ∈ Lip(X), the space of real-valued Lipschitz functions over X, its local Lipschitz

constant (also known as slope) |Du|(x) at x ∈ X is defined by

|Du|(x) := lim sup
y→x

|u(x)− u(y)|
d(x, y)

.

Given a Borel subset E ⊂ X and Ω open, the perimeter of E relative to Ω is denoted by

P(E; Ω) and is defined as follows

P(E; Ω) := inf

{
lim inf
n→∞

∫
Ω
|Dun| dm : un ∈ Lip(Ω), un → 1E in L1(Ω,m)

}
.
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We say that E ⊂ X has finite perimeter in X if P(E;X) < ∞. We recall also few properties

of the perimeter functions:

(a) (locality) P(E; Ω) = P(F ; Ω), whenever m((E∆F ) ∩ Ω) = 0;

(b) (l.s.c.) the map E 7→ P(E; Ω) is lower-semicontinuous with respect to the L1
loc(Ω) con-

vergence;

(c) (complementation) P(E; Ω) = P(X\E; Ω).

Moreover, if E is a set of finite perimeter, then the set function Ω → P(E;A) is the restriction

to open sets of a finite Borel measure P(E; ·) in X (see Lemma 5.2 of [5]), defined by

P(E;A) := inf{P(E; Ω) : Ω ⊃ A, Ω open}.

In order to simplify the notation, we will write P(E) instead of P(E;X). Finally, we recall

that the perimeter can be seen [6] as the l.s.c. envelope (in the L1 topology) of the Minkowski

content

m+(E) := lim inf
ϵ→0

m(Eϵ)−m(E)

ϵ
,

where Eϵ = {x ∈ X : dist(x,E) < ϵ}. In other words, given E ⊂ X there exists a sequence

En such that m(E △ En) → 0 and m+(En) → P(E) [6, Theorem 3.6]. We point out that,

inspecting the proof contained in [6], one can assume the sets En to be bounded.

The isoperimetric profile function of (X, d,m), denoted by I(X,d,m), is defined as the point-

wise maximal function so that P(A) ≥ I(X,d,m)(m(A)) for every Borel set A ⊂ X, that is

I(X,d,m)(v) := inf
{
P(A) : A ⊂ X Borel, m(A) = v

}
.

Given X a family of m.m.s. we can consider IX the isoperimetric profile of family X , as

the point-wise maximal function so that P(A) ≥ IX (m(A)), for A ⊂ X Borel and X ∈ X , that

is

IX (v) = inf{I(X,d,m)(v) : (X, d,m) ∈ X}.

For example, ICD
K,N,D (resp. IMCP

K,N,D) denote the isoperimetric profile for the family of normalized

(i.e., of unitary mass) CD(K,N) (resp. MCP(K,N)) spaces having diameter not larger than

D. Milman [63] (see also [28] for the non-smooth setting) and Cavalletti–Santarcangelo [32]

gave a rather explicit description of the functions ICD
K,N,D and IMCP

K,N,D, respectively.
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2.3 BV functions in metric measure spaces

The classical theory of the perimeter in Rn makes extensive use of BV function. The notion of

BV functions in the setting of m.m.s. has been first introduced in [66] and then more deeply

studied in [5]. In particular, three different definitions of BV functions has been proven to be

equivalent.

One of these three notions is given by relaxation of the energy functional. We say that

a function f ∈ L1(X) is in BV∗((X, d,m)), if there exists a sequence fn ∈ Lip(X) ∩ L1(X)

converging to f in L1, such that supn
∫
X |∇fn| dm <∞. In this case one can define the relaxed

total variation

|Df |∗(Ω) := inf

{
lim inf
n→→∞

∫
X
|Dfn| dm : fn ∈ Liploc(Ω), fn → f in L1(Ω)

}
,

where Ω ⊂ X is an open set. It has been shown [66] that the total variation extends uniquely

to a finite Borel measure.

Another definition of BV functions is given using test plans. We say that a probability

measure π ∈ P(C([0, 1];X)) is a ∞-test plan if: 1) π is concentrated on Lipschitz-continuous

curves; 2) there exists a constant C = C(π) > 0 (named compression of the test plan) such

that (et)#π ≤ Cm. A Borel subset Γ ⊂ C([0, 1];X) is said to be 1-negligible if π(Γ) = 0,

for every ∞-test plan π. We say that a function f ∈ L1(X) is of weak-bounded variation

(f ∈ w-BV ((X, d,m))), if the following two conditions holds

1. there exists a 1-negligible subset Γ such that f ◦ γ ∈ BV ((0, 1)) for all γ ∈ C([0, 1];X)\Γ
and

|f(γ0)− f(γ1)| ≤ |D(f ◦ γ)|((0, 1));

2. there exists a measure µ ∈ M+(X) such that for every ∞-test plan π, for every Borel

set B ⊂ X we have that∫
γ#|D(f ◦ γ)|(B)π(dγ) ≤ C(π)

∥∥∥ sup
t∈[0,1]

|γ̇t|
∥∥∥
L∞(π)

µ(B). (2.7)

Moreover, one can prove that there exists a least measure satisfying (2.7). Such measure is

named weak total variation and it is denoted by |Df |w.

Theorem 2.5 ([5, Theorem 1.1]). Let (X, d,m) be a complete and separable metric measure

space, with m a locally finite Borel measure (i.e. for all x ∈ X there exists r > 0 such that

m(Br(x)) < ∞). Then the spaces BV∗((X, dm)) and w-BV ((X, d,m)) coincide and for every
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function f ∈ BV∗((X, d,m)) = w-BV ((X, d,m)) it holds

|Df |∗(B) = |Df |w(B), for every Borel set B.

It is clear that a set E ⊂ X has finite perimeter whenever 1E ∈ BV∗((X, d,m)) and in this

case it holds

P(E; Ω) = |D1E |∗(Ω) = |D1E |w(Ω), ∀Ω ⊂ X open.

2.4 Localization

The localization method reduces the task of establishing various analytic and geometric in-

equalities on a full dimensional space to the one-dimensional setting.

In the Euclidean setting goes back to Payne and Weinberger [75], it has been developed

and popularised by Gromov and V. Milman [49], Lovász–Simonovits [59], and Kannan–Lovasz–

Simonovits [53]. In 2015, Klartag [54] reinterpreted the localization method as a measure

disintegration adapted to L1-Optimal-Transport, and extended it to weighted Riemannian

manifolds satisfying CD(K,N). Cavalletti and Mondino [28] have succeeded to generalise

this technique to essentially non-branching m.m.s.’s verifying the CD(K,N), condition with

N ∈ (1,∞).

Localization for MCP(K,N) was, partially and in a different form, already known in 2009,

see [18, Theorem 9.5], for non-branching m.m.s.’s. The case of essentially non-branching

m.m.s.’s and the effective reformulation after the work of Klartag [54] has been recently dis-

cussed in [31, Section 3] to which we refer for all the missing details (see in particular [31,

Theorem 3.5]).

Here we only report the case K = 0.

Theorem 2.6 (Localization on MCP(0, N) spaces [31, Theorem 3.5]). Let (X, d,m) be an

essentially non-branching m.m.s. with supp(m) = X and satisfying MCP(0, N), for some

N ∈ (1,∞).

Let f : X → R be m-integrable with
∫
X f m = 0 and

∫
X |f(x)|d(x, x0)m(dx) <∞ for some

(hence for all) x0 ∈ X. Then there exists an m-measurable subset T ⊂ X (named transport

set) and a family {Xα}α∈Q of subsets of X, such that there exists a disintegration of m⌞T on

{Xα}α∈Q:

m⌞T =
∫
Q
mα q(dα),

and for q-a.e. α ∈ Q:

1. Xα is a closed geodesic in (X, d).
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2. mα is a Radon measure supported on Xα with mα ≪ H1⌞Xα.

3. (Xα, d,mα) verifies MCP(0, N).

If the space (X, d,m) verifies CD(0, N), then also (Xα, d,mα) verifies CD(0, N).

4.
∫
f dmα = 0, and f = 0 m-a.e. on X \ T .

Moreover, the Xα are called transport rays and two distinct transport rays can only meet at

their extremal points (having measure zero for mα).

Few comments are in order.

By H1 we denote the one-dimensional Hausdorff measure on the underlying metric space.

Given {Xα}α∈Q a partition of X, a disintegration of m on {Xα}α∈Q is a measure space

structure (Q,Q, q) and a map

Q ∋ α 7→ mα ∈ M(X,X )

such that

1. For q-a.e. α ∈ Q, mα is concentrated on Xα.

2. For all B ∈ X , the map α 7→ mα(B) is q-measurable.

3. For all B ∈ X , m(B) =
∫
Qmα(B) q(dα); this is abbreviated by m =

∫
Qmα q(dα).

We point out that the disintegration is unique for fixed q. That means that, if there is a family

(m̃α)α satisfying the conditions above, then for q-a.e. α, mα = m̃α. If we change q with a

different measure q̂, such that q̂ = ρq, then the map α 7→ ρ(α)mα still satisfies the conditions

above, with q̂ in place of q.

Concerning the fact that (Xα, d,mα) verifies CD(0, N), since (Xα, d) is a geodesic, it is

isometric to a real interval and therefore the CD(0, N) condition is equivalent to have mα =

hαH1⌞Xα and h
1

N−1
α being concave (here we are identifying Xα with a real interval).

2.4.1 L1-optimal transportation

In this section we recall only some facts from the theory of L1 optimal transportation which

are of some interest for this thesis; we refer to [4, 8, 18, 23, 27, 42, 44, 54, 81] and references

therein for more details on the theory of L1 optimal transportation.

Theorem 2.6 has been proven studying the optimal transportation problem between µ0 :=

f+m and µ1 := f−m, where f± denote the positive and the negative part of f , with the

distance as cost function.
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By the summability properties of f (see the hypothesis of Theorem 2.6) one deduces the

existence of an L1-Kantorovich potential φ, solution of the dual problem. Using φ we can

construct the set

Γ := {(x, y) ∈ X ×X : φ(x)− φ(y) = d(x, y)},

inducing a partial order relation whose maximal chains produce a partition made of one di-

mensional sets of a certain subset of the space, provided the ambient space X verifies some

mild regulartiy properties.

This procedure has been already presented and used in several contributions ([8, 18, 44,

54, 81]) when the ambient space is the euclidean space, a manifold or a non-branching metric

space (see [18, 21] for extended metric spaces). The analysis in our framework started with

[23] and has been refined and extended in [27]; we will follow the notation of [27] to which we

refer for more details.

The transport relation Re and the transport set with end-points T e are defined as:

Re := Γ ∪ Γ−1 = {|φ(x)− φ(y)| = d(x, y)}, T e := P1(Re \ {x = y}),

where {x = y} denotes the diagonal {(x, y) ∈ X2 : x = y} and Γ−1 = {(x, y) ∈ X × X :

(y, x) ∈ Γ}. Since φ is 1-Lipschitz, Γ,Γ−1 and Re are closed sets and therefore, from the local

compactness of (X, d), σ-compact; consequently T e is σ-compact.

We restrict T e to a smaller set where Re is an equivalent relation. To exclude possible

branching we need to consider the following sets, introduced in [23]:

A+ := {x ∈ T e : ∃z, w ∈ Γ(x), (z, w) /∈ Re},

A− := {x ∈ T e : ∃z, w ∈ Γ−1(x), (z, w) /∈ Re};
(2.8)

where Γ(x) = {y ∈ X : (x, y) ∈ Γ} denotes the section of Γ through x in the first coordinate;

Γ−1(x) and Re(x) are defined in the same way. A± are called the sets of forward and backward

branching points, respectively. Note that both A± are σ-compact sets. Then the non-branched

transport set has been defined as

T := T e \ (A+ ∪A−),

and it is a Borel set; in the same way define the non-branched relation as R = Re ∩ (T × T ).

It was shown in [23] (cf. [18]) that R is an equivalence relation over T and that for any x ∈ T ,

R(x) ⊂ (X, d) is isometric to a closed interval in (R, | · |).
A priori the non-branched transport set T can be much smaller than T e. However, under

fairly general assumptions one can prove that the sets A± of forward and backward branching

are both m-negligible. In [23, Proposition 4.5] this was shown for a m.m.s. (X, d,m) verifying
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RCD∗(K,N) and supp(m) = X. The same proof works for an essentially non-branching m.m.s.

(X, d,m) satisfying CD(0, N) and supp(m) = X (see [29]).

One can chose Q ⊂ T a Borel section of the equivalence relation R (this choice is possible

as it was shown in [18, Proposition 4.4]). Define the quotient map Q : T → Q as Q(x) = α,

where α is the unique element of R(x) ∩ Q. Given a finite measure q ∈ M+(Q), such that

q ≪ Q#(m⌞T ), the Disintegration Theorem applied to (T ,B(T ),m⌞T ), gives an essentially

unique disintegration of m⌞T consistent with the partition of T given by the equivalence classes

{R(α)}α∈Q of R:

m⌞T =
∫
Q
mα q(dα).

In the sequel, we will use also the notation Xα to denote the equivalence class R(α). Note

that such measure q can always be build, by taking the push-forward via Q of a suitable finite

measure absolutely continuous w.r.t. mT .

The existence of a measurable section also permits to construct a measurable parametriza-

tion of the transport rays. First define the (possibly infinite) length of a transport ray

|Xα| := supx,y∈Xα
d(x, y). Then, we can define

g : Dom(g) ⊂ Q× [0,+∞) → T

that associates to (α, t) the unique x ∈ R(α) in such a way φ(g(α, t)) − φ(g(α, s)) = s − t,

provided t, s ∈ (0, |Xα|). In other words, g(α, · ) is the unit-speed, maximal parametrization of

Xα such that d
dtφ(g(α, t)) = −1. We specify that this parametrization ensures that f(g(α, 0)) ≥

0. By continuity of g w.r.t. the variable t, we extend g, in order to map also the end-points of

the rays Xα; the restriction of g to the set {(α, t) : t ∈ (0, |Xα|)} is injective.

Finally to prove that the disintegration is CD(0, N), i.e. that for q-a.e. α ∈ Q the space

(Xα, d,mα) is CD(0, N), one uses the presence of the L2-Wasserstein geodesics inside the trans-

port set T (see [22, Lemma 4.6]). We refer to [28, Theorem 4.2] for all the details.

The measure mα will be absolutely continuous w.r.t. H1⌞Xα as a consequence of the

CD(0, N) condition in one-dimensional spaces: there exists a map hα : (0, |Xα|) → R such

that

mα = (g(α, · ))#(hαL1⌞(0,|Xα|)).

The construction does not depend on the function f but only on the L1-Kantorovich potential

φ.

Theorem 2.7. Let (X, d,m) be an essentially non-branching m.m.s. with supp(m) = X and

satisfying CD(0, N), for some N ∈ (1,∞). Assume that φ : X → R is a 1-Lipschitz function,

and let T and (Xα)α∈Q be respectively the transport set and the transport rays as they were
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defined in the previous paragraphs. Let Q and Q : T → Q be the quotient set and the quotient

map, respectively, and assume that there exists a measure q ≪ Q#(mT ). Then there exists a

disintegration of m⌞T on {Xα}α∈Q

m⌞T =
∫
Q
mα q(dα),

and for q-a.e. α ∈ Q:

1. Xα is a closed geodesic in (X, d).

2. mα is a Radon measure supported on Xα with mα ≪ H1⌞Xα.

3. The metric measure space (Xα, d,mα) verifies CD(0, N).

Theorem 2.6 follows from the previous theorem, provided that we are able to localize

constraint
∫
X f dm = 0. The localization is a consequence of the properties of the L1-optimal

transport problem (see [28, Theorem 5.1]).
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Sharp isoperimetric inequality in

MCP(0, N) spaces

We present the proof of Theorem 1.4.

3.1 One dimensional reduction

To prove Theorem 1.4 we will need to consider the isoperimetric problem inside a family of

large subsets of X with diameter approaching ∞. In order to apply the classical dimension

reduction argument furnished by localization theorem (Theorem 2.6), one needs in principle

these subsets to also be convex. As the existence of an increasing family of convex subsets

recovering at the limit the whole space X is in general false, we will overcome this issue in the

following way.

Given any bounded set E ⊂ X with 0 < m(E) <∞, fix any point x0 ∈ E and then consider

R > 0 such that E ⊂ BR (hereinafter we will adopt the following notation BR := BR(x0)).

Consider then the following family of zero mean functions:

gR(x) =

(
χE − m(E)

m(BR)

)
χBR

.

Clearly gR satisfies the hypothesis of Theorem 2.6 so we obtain an m-measurable subset TR ⊂ X

and a family {Xα,R}α∈QR
of transport rays, such that there exists a disintegration of m⌞TR on

{Xα,R}α∈QR
:

m⌞TR=
∫
QR

mα,R qR(dα), qR(QR) = 1, (3.1)

with the Radon measures mα,R having an MCP(0, N) density with respect to H1⌞Xα,R
. The

29
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localization of the zero mean implies that

mα,R(E) =
m(E)

m(BR)
mα,R(BR), qR-a.e. α ∈ QR.

By using a unit speed parametrisation of the geodesic Xα,R, without loss of generality we can

assume that mα,R = hα,RL1⌞[0,ℓα,R], where ℓα,R denotes the (possibly infinite) length of the

Xα,R. Also we specify that the direction of the parametrisation of Xα,R is chosen such that

0 ∈ E. Equivalently, if uR denotes a Kantorovich potential associated to the localization of

gR, then the parametrisation is chosen in such a way that uR is decreasing along Xα,R with

slope −1.

Now we can define Tα,R to be the unique element of [0, ℓα,R] such that mα,R([0, Tα,R]) =

mα,R(BR). Notice that diam(BR ∩Xα,R) ≤ R+diam(E): if γ is a unit speed parametrization

of Xα,R, then d(γ0, γt) ≤ d(γ0, x0)+ d(γt, x0) ≤ diam(E)+R, provided γt ∈ BR ∩Xα,R. Hence

the same upper bound is valid for Tα,R, i.e. Tα,R ≤ R+ diam(E).

The plan will be to restrict mα,R to [0, Tα,R] so to have the following disintegration:

m⌞T̄R=
∫
QR

m̄α,R q̄R(dα), (3.2)

where m̄α,R := mα,R⌞[0,Tα,R]/mα,R(BR) are probability measures, q̄R = m·,R(BR)qR (in par-

ticular q̄R(QR) = m(BR), using (3.1) and the fact that BR ⊂ TR) and T̄R = ∪α∈QR
[0, Tα,R],

where we are identifying [0, Tα,R] with the geodesic segment of length Tα,R of Xα,R, that will

be denoted by X̄α,R

The disintegration (3.2) will have applications only if (E ∩Xα,R) ⊂ [0, Tα,R], implying that

m̄α,R(E) =
m(E)

m(BR)
, qR-a.e. α ∈ QR.

To prove this inclusion we will impose that E ⊂ BR/4. If we denote by γα,R : [0, ℓα,R] → Xα,R

the unit speed parametrisation, we notice that

d(γα,Rt , x0) ≤ d(γα,R0 , x0) + t ≤ diam(E) + t ≤ R

2
+ t,

where in the second inequality we have used that each starting point of the transport ray

has to be inside E, being precisely where gR > 0. Hence γα,Rt ∈ BR for all t < R/2. This

implies that (γα,R)−1(BR) ⊃ [0,min{R/2, ℓα,R}], hence “no holes” inside (γα,R)−1(BR) before

min{R/2, ℓα,R}, implying that Tα,R ≥ min{R/2, ℓα,R}.
Since diam(E) ≤ R/2, necessarily (γα,R)−1(E) ⊂ [0,min{R/2, ℓα,R}] implying that (E ∩

Xα,R) ⊂ [0, Tα,R]. We summarise this construction in the following
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Proposition 3.1. Given any bounded E ⊂ X with 0 < m(E) < ∞, fix any point x0 ∈ E and

then fix R > 0 such that E ⊂ BR/4(x0).

Then there exists a Borel set T̄R ⊂ X, with E ⊂ T̄R and a disintegration formula

m⌞T̄R=
∫
QR

m̄α,R q̄R(dα), m̄α,R(X̄α,R) = 1, q̄R(QR) = m(BR),

such that m̄α,R(E) = m(E)
m(BR) , q̄R-a.e. and the one-dimensional m.m.s. (X̄α,R, d, m̄α,R) verifies

MCP(0, N) and has diameter bounded by R+ diam(E).

3.2 One dimensional analysis

Proposition 3.1 produces a family of normalized (i.e., of mass one) one-dimensional MCP(0, N)

space, whose diameter is uniformly bounded by D = R+ diamE. For such a family of spaces

the isoperimetric profile function IMCP
0.N,D has been investigated [32]. The following theorem

summerizes the properties of IMCP
0,N,D that we need (it is stated for K ∈ R, although we are

interested only in the case K = 0).

Theorem 3.2 ([32]). Let K,N,D ∈ R with N > 1 and D > 0. Then there exists an explicit

non-negative function IMCP
K,N,D : [0, 1] → R such that the following holds.

If (X, d,m) is an essentially non-branching m.m.s. verifying MCP(K,N) with m(X) = 1

and having diameter less than D and A ⊂ X, then

m+(A) ≥ IMCP
K,N,D(m(A)). (3.3)

Moreover (3.3) is sharp, i.e. for each v ∈ [0, 1], K,N,D there exists a m.m.s. (X, d,m)

with m(X) = 1 and A ⊂ X with m(A) = v such that (3.3) is an equality.

Finally, if K = 0, D,D′ > 0, then

D′

D
IMCP
0,N,D′ = IMCP

0,N,D. (3.4)

The sharp lower bound on the isoperimetric profile function (3.3) has an explicit expression.

We report only the case K = 0: for each v ∈ [0, 1]

IMCP
0,N,D(v) = f0,N,D(a0,N,D(v)), (3.5)

where the function f0,N,D is defined in the following way

f0,N,D(x) :=

(∫
(0,x)

(
D − y

D − x

)N−1

dy +

∫
(x,D)

(y
x

)N−1
dy

)−1

,
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and the function a0,N,D is obtained as follows: define the function

v0,N,D(a) =
f0,N,D(a)

(D − a)N−1

∫
(0,a)

(D − x)N−1 dx = f0,N,D(a)
DN − (D − a)N

N(D − a)N−1
;

as proved in [32], for each N,D it is possible to define the inverse map of v:

[0, 1] ∋ v 7−→ a0,N,D(v) ∈ (0, D);

hence we have recalled the definition of each function used in (3.5) to construct the lower

bound IMCP
0,N,D.

We now look for a simple expansion of IMCP
0,N,D(v) for v close to 0.

Lemma 3.3. Fix N > 1. Then the following estimate for IMCP
0,N,D hold true for all D > 0

IMCP
0,N,D(v) =

N
1
N

D

(
v

N−1
N + o(v

N−1
N )
)
. (3.6)

Proof. We start with the case D = 1 and we recall that

f0,N,1(x) =

(∫
(0,x)

(
1− y

1− x

)N−1

dy +

∫
(x,1)

(y
x

)N−1
dy

)−1

,

obtaining

f0,N,1(x) =

(
1− (1− x)N

N(1− x)N−1
+

1− xN

NxN−1

)−1

= N

(
1

(1− x)N−1
− 1 +

1

xN−1

)−1

= NxN−1

((
x

1− x

)N−1

− xN−1 + 1

)−1

= NxN−1 + o(xN−1).

Then looking at v0,N,1(a)

v0,N,1(a) = f0,N,1(a)
1− (1− a)N

N(1− a)N−1

= f0,N,1(a)(a+ o(a)) = NaN + o(aN ),

giving that a0,N,1(v) = N− 1
N v

1
N + o(v

1
N ) and implying that

IMCP
0,N,1(v) = Na0,N,1(v)

N−1 + o(a0,N,1(v)
N−1) = N

1
N v

N−1
N + o(v

N−1
N ). (3.7)

To obtain the general case when D is arbitrary, we use (3.4). yielding IMCP
0,N,1 = DIMCP

0,N,D.

This means that (3.7) implies (3.6).
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We now deduce Theorem 1.4 from the expansion of (3.6) and Theorem 3.2 applied to a

family of one-dimensional spaces. The dimensional reduction argument is a classical application

of the localization paradigm.

Theorem 3.4. Let (X, d,m) be an essentially non-branching m.m.s. verifying MCP(0, N) and

having AVRX > 0. Let E ⊂ X be any Borel set with m(E) <∞, then

P(E) ≥ (NωNAVRX)
1
N m(E)

N−1
N . (3.8)

Proof. Assume first E to be a bounded set. Let x0 ∈ E be any point and consider R > 0 such

that E ⊂ BR/4(x0); Proposition 3.1 implies we have the following disintegration

m⌞T̄R=
∫
QR

m̄α,R q̄R(dα), m̄α,R(X̄α,R) = 1, q̄R(QR) = m(BR),

with E ⊂ T̄R and for q̄R-a.e. α ∈ QR, m̄α,R(E) = m(E)
m(BR) . At this point we can compute the

outer Minkowski content of E:

m+(E) = lim inf
ε→0

m(Eε)−m(E)

ε
≥ lim inf

ε→0

m(Eε ∩ T̄R)−m(E)

ε

≥
∫
QR

lim inf
ε→0

m̄α,R(E
ε)− m̄α,R(E)

ε
q̄R(dα) ≥

∫
QR

m̄+
α,R(E) q̄R(dα)

≥
∫
QR

IMCP
0,N,Tα,R

(m(E)/m(BR)) q̄R(dα),

where the last inequality follows from (Xα,R, d, m̄α,R) being an MCP(0, N) one-dimensional

space, and Tα,R ≤ R+ diam(E) was introduced to obtain (3.2).

Equation (3.4) yields

IMCP
0,N,Tα,R

(v) =
R+ diam(E)

Tα,R
IMCP
0,N,R+diam(E)(v) ≥ IMCP

0,N,R+diam(E)(v),

implying the following inequality:

m+(E) ≥ m(BR)IMCP
0,N,R+diam(E)

(
m(E)

m(BR)

)
.

We continue the chain of inequalities by (3.6):

m+(E) ≥ m(BR)N
1
N

R+ diam(E)

((
m(E)

m(BR)

)N−1
N

+ o

((
m(E)

m(BR)

)N−1
N

))
.

From the hypothesis of Euclidean volume growth (AVRX > 0), one infers that R ∼ m(BR)
1
N
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for large values of R, hence we can then take the limit as R→ ∞ to obtain

m+(E) ≥ (NωNAVRX)
1
N m(E)

N−1
N . (3.9)

We now drop the assumption that E is bounded. If E is a possibly unbounded set, then

there exists a sequence En of bounded sets such that m(E △ En) → 0 and m+(En) → P(E)

(see Section 2.2). We pass to the limit in (3.9) and, since m+(E) ≥ P(E), we conclude.

3.3 Sharp Inequality

As one can expect from the sharpness of the isoperimetric inequality for compact MCP(0, N)

spaces obtained in [32], also inequality (3.8) is sharp. In particular, if we fix a, v > 0, N > 1,

we can find a MCP(0, N) space (X, d,m), with AVRX = a, and a subset E ⊂ X such that

m(E) = v and m+(E) = (NωNAVRX)
1
N m(E)

N−1
N . Indeed, consider the one-dimensional space

([0,∞), | · |, hL), with

h(x) =


(NωNa)

1
N v

N−1
N if x ≤

(
v

NωNa

) 1
N

,

NωNax
N−1 if x ≥

(
v

NωNa

) 1
N

.

It is easy to check that h satisfies (2.5) with K = 0 and that AVR([0,∞),|·|,hL) = a. We take

E = [0, ( v
NωNa

)
1
N ], and we trivially have (hL)(E) = v and

(hL)+(E) = h

((
v

NωNa

) 1
N

)
= (NωNa)

1
N v

N−1
N ,

which corresponds to equality in inequality (3.8). This easy observation concludes, together

with Theorem 3.4, the proof of Theorem 1.4.



Chapter 4

Rigidity of the isoperimetric

inequality in CD(0, N) spaces

In this chapter we prove Theorem 1.5.

4.1 One dimensional reduction

In this section we proceed in a way similar to what we have done in Section 3.1, that is,

we consider the the isoperimetric problem inside a family of large subsets of X with di-

ameter approaching ∞. Then we will apply the localization theorem obtaining a family of

one-dimensional spaces and we will disintegrate the reference measure consistently with the

partition. Differently from Section 3.1, we will also provide a sort of “disintegration formula”

for the perimeter, i.e., we prove that the perimeter of E in X (considered as a measure) controls

the perimeters of E in the rays.

We proceed in the following way.

Given any bounded set E ⊂ X with 0 < m(E) <∞, fix any point x0 ∈ E and then consider

R > 0 such that E ⊂ BR (hereinafter we will adopt the following notation BR := BR(x0)).

Consider then the following family of zero mean functions:

fR(x) =

(
χE − m(E)

m(BR)

)
χBR

.

Clearly fR satisfies the hypothesis of Theorem 2.6 so we obtain an m-measurable subset TR ⊂ X

and a family {Xα,R}α∈QR
of transport rays, such that there exists a disintegration of m⌞TR on

{Xα,R}α∈QR
:

m⌞TR=
∫
QR

mα,R qR(dα), qR(QR) = m(TR), (4.1)

35
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with the probability measures mα,R having an CD(0, N) density with respect to H1⌞Xα,R
. The

localization of the zero mean implies that

mα,R(E) =
m(E)

m(BR)
mα,R(BR), qR-a.e. α ∈ QR. (4.2)

We denote by gR(α, · ) : [0, |Xα,R|] the unit speed parametrisation of the geodesic Xα,R. For

this reason, it holds

mα,R = (gR(α, · ))#(hα,RL1⌞[0,|Xα,R|]),

for some CD(0, N) density hα,R.

Also we specify that the direction of the parametrisation of Xα,R is chosen such that

gR(α, 0) ∈ E. Equivalently, if φR denotes a Kantorovich potential associated to the localization

of gR, then the parametrisation is chosen in such a way that φR is decreasing along Xα,R with

slope −1.

We then define Tα,R to be the unique element of [0, |Xα,R|] such that

mα,R(gR(α, [0, Tα,R])) = mα,R(BR) :

since mα,R is absolutely continuous with respect to H1⌞Xα,R
the existence of a unique Tα,R

follows. Moreover from the measurability in α of mα,R we deduce the same measurability for

Tα,R.

Notice that diam(BR∩Xα,R) ≤ R+diam(E): since gR(α, · ) is a unit speed parametrization

of Xα,R, then d(gR(α, 0), gR(α, t)) ≤ d(gR(α, 0), x0) + d(gR(α, t), x0) ≤ diam(E) +R, provided

gR(α, t) ∈ BR∩Xα,R. Hence the same upper bound is valid for Tα,R, i.e. Tα,R ≤ R+diam(E).

We restrict mα,R to X̂α,R := gR(α, [0, Tα,R]) so to have the following disintegration:

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), m̂α,R :=
mα,R⌞X̂α,R

mα,R(BR)
∈ P(X), q̂R = m·,R(BR)qR; (4.3)

where T̂R := ∪α∈QR
X̂α,R; in particular q̂R(QR) = m(BR), using (4.1) and the fact that BR ⊂

TR.
The disintegration (4.3) will be a localisation like (4.2) only if (E∩Xα,R) ⊂ X̂α,R, implying

that

m̂α,R(E) =
m(E)

m(BR)
, q̂R-a.e. α ∈ QR.

To prove this inclusion we will impose that E ⊂ BR/4. Since gR(α, · ) : [0, |Xα,R|] → Xα,R has

unit speed, we notice that

d(gR(α, t), x0) ≤ d(gR(α, 0), x0) + t ≤ diam(E) + t ≤ R

2
+ t,



4.1 One dimensional reduction 37

where in the second inequality we have used that each starting point of the transport ray has to

be inside E, being precisely where fR > 0. Hence gR(α, t) ∈ BR for all t < R/2. This implies

that ((gR(α, · ))−1(BR) ⊃ [0,min{R/2, |Xα,R|}], hence “no holes” inside (gR(α, · ))−1(BR) be-

fore min{R/2, |Xα,R|}, implying that |X̂α,R| ≥ min{R/2, |Xα,R|}. Since diam(E) ≤ R/2, we

deduce that (gR(α, · ))−1(E) ⊂ [0,min{R/2, |Xα,R|}] implying that (E ∩Xα,R) ⊂ X̂α,R.

We can give an explicit description of the measure q̂R in term of a push-forward via the

quotient map QR of the measure m⌞E

q̂R(A) =

∫
QR

1A(α)
m(BR)

m(E)
m̂α,R(E) q̂R(dα)

=

∫
QR

m(BR)

m(E)
m̂α,R(E ∩Q−1

R (A)) q̂R(dα) =
m(BR)

m(E)
m(E ∩Q−1

R (A)),

hence q̂R = m(BR)
m(E) (QR)#(m⌞E).

We need to study the relation between the perimeter and the disintegration of the mea-

sure (4.3). Fix Ω ⊂ X an open set and consider the relative perimeter P(E; Ω). Let un ∈
Liploc(Ω) be a sequence such that un → 1E in L1

loc(Ω) and limn→∞
∫
Ω |Dun| dm = P(E; Ω).

Using the Fatou Lemma, we can compute

P(E; Ω) = lim
n→∞

∫
Ω
|Dun| dm ≥ lim inf

n→∞

∫
Ω∩T̂R

|Dun| dm

= lim inf
n→∞

∫
QR

∫
Ω
|Dun| m̂α,R(dx) q̂R(dα)

≥
∫
QR

lim inf
n→∞

∫
Ω
|Dun| m̂α,R(dx) q̂R(dα)

≥
∫
QR

lim inf
n→∞

∫
Xα,R∩Ω

|u′n| m̂α,R(dx) q̂R(dα) ≥
∫
QR

P
X̂α,R

(E; Ω) q̂R(dα),

where u′n denotes the derivative along the curve gR(α, · ) and P
X̂α,R

the perimeter m.m.s.

(X̂α,R, d, m̂α,R).

By arbitrariness of Ω, we deduce the following disintegration inequality

P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα).

Moreover, the fact that the geodesic gR(α, · ) : [0, |X̂α,R|] → X̂α,R has unit speed, implies that

P
X̂α,R

(E; · ) = (gR(α, · ))#(Phα,R
((gR(α, · ))−1(E); · )).

We summarise this construction in the following
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Proposition 4.1. Given any bounded E ⊂ X with 0 < m(E) < ∞, fix any point x0 ∈ E and

then fix R > 0 such that E ⊂ BR/4(x0).

Then there exists a Borel set T̂R ⊂ X, with E ⊂ T̂R and a disintegration formula

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), m̂α,R(X̂α,R) = 1, q̂R(QR) = m(BR), (4.4)

such that

m̂α,R(E) =
m(E)

m(BR)
, for q̂R-a.e. α ∈ QR and q̂R =

m(BR)

m(E)
(QR)#(m⌞E), (4.5)

and the one-dimensional m.m.s. (X̂α,R, d, m̂α,R) verifies CD(0, N) and has diameter bounded

by R+ diam(E). Furthermore, the following formula holds true

P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα). (4.6)

The rescaling introduced in Proposition 4.1 will be crucially used to obtain non-trivial limit

estimates as R→ ∞.

4.2 One dimensional analysis

Proposition 4.1 is the first step to obtain from the optimality of a bounded set E an almost

optimality of E ∩ X̂α,R. We now have to analyse in details the one-dimensional isoperimetric

profile function. This analysis has the same flavor of the analysis in Section 3.2, but in this

case the investigation will be carried out in much more details. We also fix few notation and

conventions.

We will be considering the m.m.s. (I, | · |, hL1), with I ⊂ R an interval and verifying

the CD(0, N) condition; when the interval has finite diameter, we will always assume that

I = [0, D]. We will assume also that
∫ D
0 h = 1, unless otherwise specified. For consistency

with the conditional measures from Disintegration theorem, we will use the notation mh = hL1.

We also introduce the functions vh : [0, D] → [0, 1] and rh : [0, 1] → [0, D] as

vh(r) :=

∫ r

0
h(s) ds, rh(v) := (vh)

−1(v);

notice that from the CD(0, N) condition, h > 0 over I making vh invertible and in turn the

definition of rh well-posed.

We will denote by Ph the perimeter in the space ([0, D], | · |, hL1
[0,D]). If E ⊂ [0, D] is a set

of finite perimeter, then it can be decomposed (up to a negligible set) in a family of disjoint
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intervals

E =
⋃
i

(ai, bi),

and the union is at most countable. In this case we have that the perimeter is given by the

formula

Ph(E) =
∑
i:ai ̸=0

h(ai) +
∑
i:bi ̸=D

h(bi).

We shall denote by Ih the isoperimetric profile Ih(v) := infE:mh(E)=v Ph(E).

4.2.1 Properties of the isoperimetric profile function

If (I, | · |, hL1) is a CD(0, N) space with diameter at most D, then Ih(v) ≥ ICD
0,N,D(v)

E. Milman [63] gave an explicit description of the isoperimetric profile function ICD
0,N,D,

in the smooth setting, whereas Cavalletti–Mondino [28] generalized the result to the non-

smooth setting (also in the case K ̸= 0). The isoperimetric profile computed by Milman [63,

Corollary 1.4, Case 4] (see [28, Section 6.1] for the non-smooth analog) is indeed given by the

formula

ICD
0,N,D(v) :=

N

D
inf
ξ≥0

(min{v, 1− v}(ξ + 1)N +max{v, 1− v}ξN )
N−1
N

(ξ + 1)N − ξN
,

and it is obtained by optimising among a family of one-dimensional spaces. In order to keep

the notation short, we will write IN,D in place of ICD
0,N,D.

We shortly describe the optimization procedure carried out by Milman, and meanwhile we

introduce some notation that will be used in the sequel. For our purpose, we consider the

model spaces ([0, D], | · |, hN,D(ξ, · )L1⌞[0,D]), for N > 1, D > 0, and, ξ ≥ 0, where

hN,D(ξ, x) :=
N

DN

(x+ ξD)N−1

(ξ + 1)N − ξN
. (4.7)

For the model spaces, we can easily compute the two functions vN,D(ξ, · ) := vhN,D(ξ,·) and

rN,D(ξ, · ) := rhN,D(ξ,·)

vN,D(ξ, r) =
(r + ξD)N − (ξD)N

DN ((1 + ξ)N − ξN )
,

rN,D(ξ, v) = D
(
(v(1 + ξ)N + (1− v)ξN )

1
N − ξ

)
. (4.8)

We can easily deduce that if E is an isoperimetric set of measure v ∈ (0, 1) for a model space,
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then (up to a negligible set)

E =

[0, rN,D(ξ, v)], if v ≤ 1
2 ,

[rN,D(ξ, 1− v), D], if v ≥ 1
2 ,

with the convention that if v = 1
2 , both cases are possible. Indeed, if v ≤ 1

2 we can “push” all

the mass to left obtaining a new set E′ = [0, rN,D(ξ, v)]; the monotonicity of hN,D(ξ, ·) ensures
that E′ has smaller perimeter than E′. If, on the contrary, v ≥ 1

2 , then we have that the

complementary [0, D]\E is an isoperimetric set, then [0, D]\E = [0, rN,D(1 − v)]. This allows

us to explicitly compute the isoperimetric profile of the model spaces

IN,D(ξ, v) = hN,D(ξ, rN,D(min{v, 1− v}))

=
N

D

(min{v, 1− v}(ξ + 1)N +max{v, 1− v}ξN )
N−1
N

(ξ + 1)N − ξN
.

It is therefore clear that

IN,D(v) = inf
ξ≥0

IN,D(ξ, v),

We also define an auxiliary function GN as

GN (ξ, v) :=
(
(ξ + 1)N + ( 1v − 1)ξN

)N−1
N

(ξ + 1)N − ξN
. (4.9)

Notice that, if v ≤ 1
2 , then

GN (ξ, v) =
D

N

IN,D(ξ, v)
v1−

1
N

.

One advantage of this function is that it is not depending on D. This is indeed quite natural,

as the isoperimetric profile scales with D.

We obtain the following lower bound, which is the analogous for CD spaces of Lemma 3.3,

proved for MCP spaces.

Lemma 4.2. Fix N > 1. Then, we have the following estimate for IN,D

IN,D(w) ≥
N

D
w1− 1

N (1−O(w
1
N )) =

N

D
(w1− 1

N −O(w)), as w → 0.

Proof. Recalling the definition of GN , what we have to prove becomes

inf
ξ≥0

GN (ξ, w) ≥ 1−O(w
1
N ), as w → 0.

The minimum in the infimum in the expression above is attained, at least for all w small
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enough. Indeed, we have that

GN (ξ, v) =

((
1 + ξ−1

)N
+
(
1
w − 1

))N−1
N

ξ
(
(1 + ξ−1)N − 1

) =

((
1 + ξ−1

)N
+
(
1
w − 1

))N−1
N

ξ (1 +Nξ−1 − o (ξ−1)− 1)
, (4.10)

thus the limit limξ→∞ GN (ξ, w) = ( 1
w − 1)(N−1)/N/N ≥ 1 = GN (0, w) implies the coerciveness

of ξ 7→ GN (ξ, w). Define ξw ∈ argminξ∈[0,∞] GN (ξ, w); we trivially have that GN (ξw, w) ≤ 1.

First we prove that lim supw→0 ξw <∞ (we soon will improve this estimate). Suppose the

contrary, i.e., there exists some sequence wn → 0 such that ξwn → ∞. Then we have

1 ≥ lim sup
n→∞

GN (ξwn , wn) ≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N ξN−1

wn

(ξwn + 1)N − ξNwn

= lim sup
n→∞

( 1
wn

− 1)
N−1
N

ξwN (1 +Nξ−1
wn + o(ξ−1

wn)− 1)
= ∞,

(4.11)

which is a contradiction. Since lim supw→0 ξw < ∞, then we have (ξw + 1)N−1 − ξN−1
w ≤ C,

for all w small enough, for some constant C > 0. We improve the estimate above

1 ≥ lim sup
w→0

GN (ξw, w) ≥ lim sup
w→0

(( 1
w − 1)ξNw )

N−1
N

(ξw + 1)N−1 − ξNw
≥ lim sup

w→0

(( 1
w − 1)ξNw )

N−1
N

C
, (4.12)

which implies lim supw→0 ξw ≤ 0, i.e., ξw → 0 as w → 0. We can improve the estimate again

1 ≥ lim sup
w→0

GN (ξw, w) = lim sup
w→0

(
(1 + ξw)

N + ξNw
w − ξNw

)N−1
N

(ξw + 1)N−1 − ξNw
=

(
1 + lim sup

w→0

ξNw
w

)N−1
N

,

(4.13)

yielding lim supw→0 ξw/w
1
N ≤ 0, i.e., ξw = o(w

1
N ) as w → 0. Finally we can conclude noticing

that

inf
ξ≥0

GN (ξ, w) = GN (ξw, w) =
(
(ξw + 1)N +

(
1
w − 1

)
ξNw
)N−1

N

(ξw + 1)N − ξNw
=

(1 + o(1))
N−1
N

1 +O(ξw)
= 1−O(w

1
N ).

Corollary 4.3. Fix N > 1. Then for all D ≥ D′ > 0 and for all h : [0, D′] → R satisfying the

CD(0, N) condition it holds that

Ph(E) ≥ Ih(mh(E)) ≥ N

D′mh(E)1−
1
N (1−O(mh(E)

1
N ) ≥ N

D
mh(E)1−

1
N (1−O(mh(E)

1
N ),

for any Borel set E ⊂ [0, D′].
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4.2.2 Alternative proof of Theorem 1.2

We re-obtain Theorem 1.2 via localization, following the line of the proof of Theorem 3.4.

Theorem 4.4. Let (X, d,m) be an essentially non-branching CD(0, N) space having AVRX > 0.

Let E ⊂ X be any bounded Borel set then

P(E) ≥ Nω
1
N
N AVR

1
N
Xm(E)

N−1
N . (4.14)

Proof. Let x0 ∈ E be any point. We then consider R > 0 such that E ⊂ BR(x). For shortness

we will write BR = BR(x0). We use Propsition 4.1 and in particular (4.6), obtaining

P(E) ≥
∫
QR

P
X̂α,R

(E) q̂R(dα). (4.15)

Using Corollary 4.3, and the fact that each ray X̂α,R has length at most diamE+R, we deduce

P(E) ≥
∫
QR

IN,diamE+R(m̂α,R(E)) q̂R(dα) ≥ m(BR) IN,diamE+R

(
m(E)

m(BR)

)
≥ m(BR)

N

diamE +R

(
m(E)

m(BR)

)1− 1
N

(
1−O

((
m(E)

m(BR)

) 1
N

))

= N

(
m(BR)

RN

) 1
N

m(E)1−
1
N − O(1)

diamE +R
.

We conclude by taking the limit as R→ ∞ in the equation above.

4.2.3 One dimensional reduction for the optimal region

Assuming E ⊂ X to turn inequality (4.14) into an identity and following the proof of The-

orem 4.4, a natural guess is that the r.h.s. of (4.15) converges to the l.h.s. as R → ∞. The

measure q̂R(QR) = m(BR) is converging to infinity with order O(RN ), so the integrand should

converge to 0 with order O(R−N ). We now confirm this heuristic.

Definition 4.5. Let D ≥ D′ > 0 and let h : [0, D′] → R be a CD(0, N) density. If E ⊂ [0, D′]

is Borel subset, we define the D-residual of E as

ResDh (E) :=
DPh(E)

N(mh(E))1−
1
N

− 1. (4.16)

If v ∈ (0, 1/2), we define the D-residual of v as

ResDh (v) := ResDh ([0, rh(v)]) =
Dh(rh(v))

Nv1−
1
N

− 1. (4.17)
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Corollary 4.3 can be restated as

ResDh (E) ≥ −O(mh(E)
1
N ). (4.18)

We now apply the definition of residual to the disintegration rays.

In order to simplify the notation, we denote by Pα,R the perimeter measure of the one-

dimensional m.m.s. (X̂α,R, d, m̂α,R). The measure m̂α,R will be identified with the ray map g

to hα,RL1. Then

Resα,R := Res
R+diam(E)
hα,R

(g(α, ·)−1(E ∩ X̂α,R)), for α ∈ QR,

Resx,R := ResQR(x),R, for x ∈ E.

The good rays are those rays having small residual. We quantify their abundance.

Proposition 4.6. Assume that (X, d,m) is an essentially non-branching CD(0, N) space such

that AVRX > 0. If E ⊂ X is a bounded set attaining the identity in the inequality (4.14), then

lim
R→∞

∥Resα,R∥L1(QR)

m(BR)
= 0, (4.19)

where the reference measure for the Lebesgue space L1(QR) is qR.

Proof. We first check that the function α → Resα,R is integrable. To this extent, it is enough

to check that (Resα,R)
−, is integrable; indeed, this last fact derives from the isoperimetric

inequality Resα,R ≥ −O(( m(E)
m(BR))

1
N ), as stated in (4.18). We can now compute the integral

in (4.19)

1

m(BR)

∫
QR

|Resα,R| q̂R(dα) =
1

m(BR)

∫
QR

(2(Resα,R)
− +Resα,R) q̂R(dα)

≤ O

((
m(E)

m(BR)

) 1
N

)
+

1

m(BR)

∫
QR

Resα,R q̂R(dα).

The first term is infinitesimal, so we focus on the second one

∫
QR

Resα,R q̂R(dα) =

∫
QR

(
(R+ diam(E))Pα,R(E)

N

(
m(BR)

m(E)

)1− 1
N

− 1

)
q̂R(dα)

=
R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

∫
QR

Pα,R(E) q̂R(dα)−m(BR)

≤ R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

P(E)−m(BR)
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≤ m(BR)
R+ diam(E)

m(BR)
1
N

(AVRXωN )
1
N −m(BR),

yielding
1

m(BR)

∫
QR

Resα,R qR(dα) ≤ R+diam(E)

m(BR)
1
N

(AVRXωN )
1
N − 1,

and the r.h.s. goes to 0, as R→ ∞.

Corollary 4.7. Let (X, d,m) be an essentially non-branching CD(0, N) space having AVRX >

0. Let E ⊂ X be a set saturating the isoperimetric inequality (4.14), then it holds true:

lim
R→∞

∥∥ResQR(x),R

∥∥
L1(E)

= 0.

Proof. A direct computation gives

∥∥ResQR(x),R

∥∥
L1(E)

=

∫
QR

∫
E
|ResQR(x),R| m̂α,R(dx) q̂R(dα)

=

∫
QR

|Resα,R| m̂α,R(E) q̂R(dα) =
m(E)

m(BR)
∥Resα,R∥L1(QR) → 0.

4.3 Analysis along the good rays

We now use the residual to control how distant is the density h : [0, D′] → R from the model

density x ∈ [0, D] 7→ NxN−1/D as well as the one-dimensional traces of E from the optimal

ones.

The results in this section go in the direction of proving that, given D ≥ D′ > 0, h :

[0, D′] → R a CD(0, N) density, a subset E ⊂ [0, D′], if the measure mh(E) and the residual

ResDh (E) are small, then the set E is closed to the interval [0, Dmh(E)
1
N ] and the density h is

closed to the model density NxN−1/D.

Remark 4.8. We will make an extensive use of Landau’s “big-O” and “small-o” notation. If

we are in a situation where several variables appear, but only a few of them are converging,

either the “big-O” or “small-o” could depend on the non-converging variables.

In our setting, the converging variables will be w → 0 and δ → 0. The free variables will

be: 1) D, a bound from above on the diameter of the space; 2) D′ ∈ (0, D], the diameter of

the space; 3) h : [0, D′] a CD(0, N) density; 4) E ⊂ [0, D′] a set with measure mh(E) = w and

residual ResDh (E) ≤ δ.

The following estimates are infinitesimal expansions as w → 0 and δ → 0 and whenever a

“big-O” or “small-o” appears, it has to be understood that this expression can be substituted

with a function going to 0 with the same order uniformly w.r.t. the other free variables.
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Remark 4.9. Another point to remark is the fact that we focus only on the case when E is

on the left. We will sometimes assume that E is of the form [0, r] ⊂ [0, D′] and sometimes

that E ⊂ [0, L], with the tacit understanding that r ≪ D′ or L≪ D′. This is possible because

the rays come from the L1-optimal transport problem from the measure m⌞E
m(E) to the measure

m⌞BR
m(BR) , where E is our original set. Hence the rays are lines starting from E and going away,

thus the intersection of E with any ray lays at the beginning of the ray.

4.3.1 Almost rigidity of the diameter

We start our analysis focusing on the diameter of the space: the inequality D ≥ D′ tends to

be saturated if mh(E) = w → 0 and ResDh (E) ≤ δ → 0. It follows from the fact that the

isoperimetric profile IN,D scales according to D.

Proposition 4.10. Fix N > 1. The following estimates hold for w → 0 and δ → 0

D′ ≥ D(1− o(1)), (4.20)

where D ≥ D′ > 0 and h : [0, D′] → R is a CD(0, N) density such that E ⊂ [0, D′] is a subset

satisfying mh(E) = w and ResDh (E) ≤ δ.

Proof. The definition of residual (4.16) gives

N

D′w
1− 1

N (1 + ResD
′

h (E)) = Ph(E) =
N

D
w1− 1

N (1 + ResDh (E)).

Since ResDh (E) ≥ O(w
1
N ) by (4.18), if w is small enough, we can multiply by D′w

1
N
−1/(N(1+

ResDh (E)), obtaining

D′

D
=

1 + ResD
′

h (E)

1 + ResDh (E)
≥ 1−O(w

1
N )

1 + ResDh (E)
≥ 1−O(w

1
N )

1 + δ
= 1− o(1).

4.3.2 Almost rigidity of the set E: the convex case

We now prove that the set E has to be close to [0, Dmh(E)
1
N ]. We start considering the special

case when the set E of the form E = [0, r].

Proposition 4.11. Fix N > 1. The following estimates hold for w → 0 and δ → 0

rh(w) ≤ D(w
1
N (1 + o(1))), (4.21)

rh(w) ≥ D(w
1
N (1 + o(1))), (4.22)

where D ≥ D′ > 0 and h : [0, D′] → R is a CD(0, N) density such that the residual ResDh (w) =

ResDh ([0, rh(w)]) ≤ δ.
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Proof. In order to simplify the notation, we write r = rh(w).

Part 1 Inequality (4.21).

By the CD(0, N) of the function h, we have that h(x) ≤ h(r)
rN−1x

N−1, for r ≤ x ≤ D′. If we

integrate in [r,D′] we obtain

1− w ≤
∫ D′

r

h(r)

rN−1
xN−1dx =

h(r)(D′N − rN )

NrN−1
≤ h(r)D′N

NrN−1
≤ h(r)DN

NrN−1
,

yielding to

rN−1 ≤ DN

N(1− w)
h(r) =

DN

N(1− w)

N

D
w1− 1

N (1 + ResDh (w)) ≤ (Dw
1
N )N−1 1 + δ

1− w
.

Part 2 Inequality (4.22).

This second part is a bit more difficult. The first step is to show that we can lead back

ourselves to the case of model spaces, namely that we can assume h = hN,D′(ξ, ·) for some

ξ ≥ 0 (cfr. (4.7)). That is, we want to show that given h, we find ξ, such that ResDhN,D′ (ξ,·)(w) ≤
ResDh (w) ≤ δ and rhN,D′ (ξ,·)(w) ≤ r.

To this extent, consider the function s : [0,∞) → R given by

s(a) :=

∫ D′

r

(
h(r)

1
N−1 + a(x− r)

)N−1
dx.

Clearly this function is strictly increasing and it holds

s

(
h(r)

1
N−1

r

)
=

∫ D′

r

h(r)

rN−1
xN−1dx ≥

∫ D′

r
h(x)dx = 1− w,

s(0) = (D′ − r)h(r) = (D′ − r)
N

D
w1− 1

N (1 + ResDh (w)) ≤ 2Nw
1− 1

N
N < 1− wN ≤ 1− w,

where in the second line we assumed that ResDh (w) ≤ δ ≤ 1 and w ≤ wN (for some wN > 0

depending only on N), which is possible since w → 0 and δ → 0. From the two inequalities

above, it follows that there exist a unique a ∈ (0, h(r)
1

N−1 /r], such that s(a) = 1−w. We can

define the CD(0, N) density h̄(x) := (h(r)
1

N−1 + a(x− r))N−1, which satisfies∫ D′

r
h̄(x)dx =

∫ D′

r
h(x)dx = 1− w.

By mean-value theorem, there exists y ∈ (r,D′) such that h(y) = h̄(y), thus, by convexity of
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h
1

N−1 , h̄(x) ≥ h(x) for all x ∈ [0, r]. This implies that∫ r

0
h̄(x) dx ≥

∫ r

0
h(x) dx = w.

Define

V :=

∫ D′

0
h̄(x)dx =

(h(r)
1

N−1 + a(D′ − r))N − (h(r)
1

N−1 − ar)N

Na

=

∫ D′

r
h̄(x)dx+

∫ r

0
h̄(x)dx ≥ 1− w +

∫ r

0
h(x)dx = 1,

r̄ := rh̄(wV ) ≤ rh̄(V − (1− w)) = rh̄

(∫ r

0
h̄(x)dx

)
= r,

where wV ≤ V − (1 − w) follows from 1 − w ∈ [0, 1] and V ≥ 1. Finally, we renormalize h̄,

defining

ĥ(x) :=
h̄(x)

V
= Na

(h(r)
1

N−1 + a(x− r))N−1

(h(r)
1

N−1 + a(D′ − r))N − (h(r)
1

N−1 − ar)N
.

If we set ξ = h(r)
1

N−1−ar
aD′ ≥ 0, then it turns out that (cfr. (4.7))

ĥ(x) = hN,D′(ξ, x) =
N(x+D′ξ)N−1

D′N ((1 + ξ)N − ξN )
.

This function satisfies

rN,D′(ξ, w) = r̄ ≤ rh(w) and hN,D′(ξ, r̄) ≤ h̄(r̄) ≤ h̄(r) = h(r)

(the inequality h̄(r̄) ≤ h̄(r) follows from the fact that a ≥ 0, hence h̄ is non increasing). This

latter inequality can be restated as

ResDhN,D′ (ξ,·)(w) ≤ ResDh (w) ≤ δ. (4.23)

For this reason we can assume that h is of the type hN,D′(·, ξ) for some ξ ≥ 0.

Recalling Equation (4.8), we notice that

rN,D′(ξ, w) = D′
(
(w(1 + ξ)N + (1− w)ξN )

1
N − ξ

)
≥ D′(w

1
N − ξ). (4.24)

What we are going to prove is that ξ is “small” in a sense that we will soon specify. Us-

ing the definition of residual, inequality (4.23) can be restated as (we already defined GN in
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Equation (4.9))

GN (ξ, w) =
((1 + ξ)N + ( 1

w − 1)ξN )
N−1
N

(1 + ξ)N − ξN
≤ D′

D
(1 + δ) ≤ 1 + δ.

Define the set

Lδ(w) := {ξ : GN (η, w) > 1 + δ : ∀η > ξ}.

We have already proved in (4.10) that limξ→∞ GN (ξ, w) = N−1w
1−N
N , hence the set Lδ(w) is

non-empty.

At this point define the function ξδ(w) := inf Lδ(w). By the definition of ξδ and the

continuity of GN , it clearly holds that

GN (ξ, w) ≤ 1 + δ =⇒ ξ ≤ ξδ(w),

GN (ξδ(w), w) = 1 + δ.

Now we follow the line of the proof of Proposition 4.2. First, like in (4.11), we can see that

ξδ(w) is bounded as w → 0 and δ → 0. Indeed, suppose the contrary, i.e., that there exists

two sequences wn → 0 and δn → 0 such that ξδn(wn) → ∞. Then we have

1 ≥ lim sup
n→∞

GN (ξδn(wn), wn) ≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N ξδn(wn)

N−1

(ξδn(wn) + 1)N − ξδn(wn)
N

≥ lim sup
n→∞

( 1
wn

− 1)
N−1
N

ξδn(wn)

((
1

ξδn (wn)
+ 1
)N

− 1

) = ∞,

which is a contradiction. Like in (4.12) we can prove that ξδ(w) → 0, as w → 0 and δ → 0:

1 ≥ lim sup
w→0
δ→0

GN (ξδ(w), w) ≥ lim sup
w→0
δ→0

(( 1
w − 1)ξδ(w)

N )
N−1
N

(ξδ(w) + 1)N − ξδ(w)N
≥ lim sup

w→0
δ→0

(( 1
w − 1)ξδ(w)

N )
N−1
N

C
.

Finally, like in (4.13), we have that

1 = lim
w→0
δ→0

GN (ξδ, (w), w) = lim
w→0
δ→0

((1 + ξδ(w))
N + ( 1

w − 1)ξδ(w)
N )

N−1
N

(1 + ξδ(w))N − ξδ(w)N

= lim
w→0
δ→0

(
1 +

ξδ(w)
N

w

)N−1
N

,
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yielding

lim
w→0
δ→0

ξδ(w)
N

w
= 1.

Using Landau’s notation, the above becomes ξδ(w) = o(w
1
N ), as w → 0 and δ → 0.

At this point we can recall (4.24), obtaining

rN,D′(ξδ(w), w) ≥ D′(w
1
N − ξδ(w)) ≥ D′(w

1
N − o(w

1
N )).

If we use the estimate (4.20), we can continue the chain on inequalities and conclude:

rN,D′(ξδ(w), w)

D
≥ D′

D
(w

1
N − o(w

1
N )) ≥ (1− o(1))(w

1
N − o(w

1
N )) = w

1
N (1− o(1)).

4.3.3 Almost rigidity of the set E: the general case

We now drop the assumption E = [0, r]. Up to a negligible set, E =
⋃
i∈N(ai, bi) where the

intervals (ai, bi) are far away from each other (i.e. bi < aj or bj < ai, for i ̸= j). By boundedness

of the original set of our isoperimetric problem, we can also assume that E is included in the

interval [0, L], for some L > 0. Define b(E) := ess supE ≤ L.

In the next proposition we exclude the existence of a sequence such that (ain , bin) goes to

b(E).

Lemma 4.12. Fix N > 1 and L > 0. Then there exists two constants w̄ > 0 and δ̄ > 0

(depending only on N and L) such that the following happens. For all D ≥ D′ > 0 with

D ≥ 3L, for all h : [0, D′] → R satisfying the CD(0, N) condition, and for all E ⊂ [0, L], such

that mh(E) ≤ w̄ and ResDh (E) ≤ δ̄, there exists a ∈ [0, b(E)) and an at most countable family

of intervals ((ai, bi))i such that, up to a negligible set,

E =
⋃
i

(ai, bi) ∪ (a, b(E)),

with ai, bi < a, ∀i.
Moreover, h is strictly increasing on [0, b(E)].

Proof. By Proposition 4.10, we have that, if mh(E) and ResDh (E) are small enough, then D′

is closed to D ≥ 3L and in particular D′ ≥ 2L. We already know that the set E is of the

form E =
⋃
i(ai, bi) (up to a negligible set); our aim is to prove that there exists j such that

ai, bi < aj , for all i ̸= j. In this case a = aj . Suppose the contrary, i.e., ∀j, ∃i ̸= j such that

ai > aj . With this assumption, we can build a sequence (jn)n, so that (ajn)n is increasing,

thus converging to some y ∈ (0, L]. By continuity of h, we have that h(ajn) → h(y) > 0. We
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can compute the perimeter

∞ =
∑
n∈N

h(ajn) ≤ Ph(E) =
N

D
(mh(E))1−

1
N (1 + ResDh (E)) <∞,

which is a contradiction.

It remains to prove that h is increasing on [0, b(E)]. In order to simplify the notation, let

b := b(E). Denote by t := limz↘0(h(b + z)
1

N−1 − h(b)
1

N−1 )/z the right-derivative of h
1

N−1 in

b, which must exists because h
1

N−1 is concave. We want to prove that t > 0; from this and

the fact that h
1

N−1 is concave it will follow that h is strictly increasing in [0, b]. Suppose the

contrary, i.e., t ≤ 0. Then, by concavity of h
1

N−1 , we have that

h(x) ≤ h(b)

(
D′ − x

D′ − b

)N−1

, ∀x ∈ [0, b], and h(x) ≤ h(b), ∀x ∈ [b,D′].

If we integrate we obtain

1 ≤
∫ b

0
h(b)

(
D′ − x

D′ − b

)N−1

dx+

∫ D′

b
h(b) dx

=
h(b)

N

(
D′N − (D′ − b)N

(D′ − b)N−1
+N(D′ − b)

)
≤ Ph(E)

N

(
D′N

(D′ − b)N−1
+ND′

)
=

Ph(E)D′

N

((
1− b

D′

)1−N
+N

)
=

Ph(E)D′

N

(
1 + (N − 1)

b

D′ + o

(
b

D′

)
+N

)
.

(4.25)

Consider the two factors in the r.h.s. of the estimate above. The former is controlled just using

the definition of residual

Ph(E)D′

N
≤ Ph(E)D

N
= mh(E)1−

1
N (1 + ResDh (E)),

and, if mh(E) → 0 and ResDh (E) is bounded, then the term above goes to 0. Regarding the

latter factor, we just need to prove that b
D′ is bounded:

b

D′ ≤
L

D′ ≤
L

2L
=

1

2
.

If we put together this last two estimates, we obtain that the r.h.s. of (4.25) converges to 0 as

mh(E) → 0 and ResDh (E) → 0, whereas the l.h.s. is equal to 1, obtaining a contradiction.

Remark 4.13. What we have just proven is that there exists a right-extremal connected com-

ponent for the set E and this component is precisely the interval (a, b(E)). We will denote

by a(E) the number a given by the just-proven proposition. Since our estimates are infinites-
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imal expansions in the limit as mh(E) → 0 and ResDh (E) → 0, we will always assume that

mh(E) ≤ w̄ and ResDh (E) ≤ δ̄, so that the expression a(E) makes sense. We will make an ex-

tensive use of the fact that h is increasing in the interval [0, b(E)]: since, again, our estimates

are in the limit as mh(E) → 0 and ResDh (E) → 0, the fact that h is increasing in [0, b(E)] will

be taken into account, without explicitly referring to the previous Lemma.

We now prove that the component (a(E), b(E)) tends to fill the set E and that b(E)

converges as expected to Dmh(E)
1
N .

Proposition 4.14. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0

b(E) ≤ Dw
1
N +Do(w

1
N ) (4.26)

b(E) ≥ Dw
1
N −Do(w

1
N ) (4.27)

a(E) ≤ Do(w
1
N ), (4.28)

where D ≥ 3L, D′ ∈ (0, D], h : [0, D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]

satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof.

Part 1 Inequality (4.27).

Since the density h is strictly increasing on [0, b(E)] and E ⊂ [0, b(E)] (up to a null measure

set), we have that rh(w) ≤ b(E) and

ResDh (w) =
Dh(rh(w))

Nw1− 1
N

− 1 ≤ Dh(b(E))

Nw1− 1
N

− 1 ≤ DPh(E)

Nw1− 1
N

− 1 = ResDh (E) ≤ δ.

We now exploit Proposition 4.11 (in particular the estimate (4.22)), yielding

D(w
1
N − o(w

1
N )) ≤ rh(w) ≤ b(E),

and we have concluded the proof of (4.27).

Part 2 Inequality (4.28).

First we prove that a(E) < rh(w) for w and δ small enough. Suppose the contrary, i.e., that

a(E) ≥ rh(w). This implies that h(a(E)) ≥ h(rh(w)), hence Ph(E) ≥ 2h(rh(w)). We deduce

that

−O(w
1
N ) ≤ ResDh (w) =

Dh(rh(w))

Nw1− 1
N

− 1 ≤ DPh(E)

2Nw1− 1
N

− 1 =
1

2
(ResDh (E)− 1) ≥ δ − 1

2
.

If we take the limit as w → 0 and δ → 0 we obtain a contradiction.
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We exploit the Bishop–Gromov inequality and the isoperimetric inequality (respectively)

to obtain

h(a(E)) ≥ h(rh(w))

(
a(E)

rh(w)

)N−1

h(b(E)) ≥ h(rh(w)) ≥
N

D
w1− 1

N (1−O(w
1
N )),

Putting together the inequalities above and using the definition of residual we obtain

N

D
w1− 1

N (1 + ResDh (E)) = Ph(E) ≥ h(b(E)) + h(a(E)) ≥ h(rh(w)) + h(a(E))

≥ h(rh(w))

(
1 +

(
a(E)

rh(w)

)N−1
)

≥ N

D
w1− 1

N (1−O(w
1
N ))

(
1 +

(
a(E)

rh(w)

)N−1
)
,

yielding

a(E) ≤ rh(w)

(
1 + ResDh (E)

1 +O(w
1
N )

− 1

) 1
N−1

≤ rh(w)
(
(1 + δ)(1−O(w

1
N ))− 1

) 1
N−1 ≤ rh(w) o(1)

≤ Dw
1
N (1 + o(1))o(1) = Do(w

1
N ),

where the estimate (4.21) was taken into account. This concludes the proof of (4.28).

Part 3 Inequality (4.26).

Since ∫
E
h =

∫ rh(w)

0
h,

we can deduce (together with the fact that a(E) ≤ rh(w) ≤ b(E))∫
E∩[0,rh(w)]

h+

∫ b(E)

rh(w)
h =

∫
E∩[0,rh(w)]

h+

∫
[0,rh(w)]\E

h =

∫
E∩[0,rh(w)]

h+

∫
[0,a(E)]\E

h,

hence

(b(E)− rh(w))h(rh(w)) ≤
∫ b(E)

rh(w)
h =

∫
[0,a(E)]\E

h ≤
∫ a(E)

0
h ≤ a(E)h(a(E)),

yielding

b(E)− rh(w) ≤ a(E)
h(a(E))

h(rh(w))
≤ a(E).
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We conclude by combining the inequality above with the already-proven estimate (4.27) and

the estimate (4.21) from Proposition 4.11.

4.3.4 Almost rigidity of the density h

We now prove that the density h converges to the density of the model space NxN−1/DN .

Relying on the Bishop–Gromov inequality, we obtain an estimate of h from below.

Proposition 4.15. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0

h(x) ≥ N

DN
xN−1(1− o(1)), uniformly w.r.t. x ∈ [0, b(E)], (4.29)

where D ≥ 3L, D′ ∈ (0, D], h : [0, D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]

satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix x ∈ [0, b(E)]. We can compute, using the Bishop–Gromov inequality

h(x) ≥ h(b(E))
xN−1

b(E)N−1
≥ h(rh(w))

xN−1

b(E)N−1
.

The first factor is controlled using the isoperimetric inequality

h(rh(w)) ≥
N

D
w1− 1

N (1−O(w
1
N )) =

N

D
w1− 1

N (1− o(1)).

For the term b(E) we use the estimate (4.26)

b(E) ≤ Dw
1
N (1 + o(1)).

The thesis follows from the combination of these last two inequalities.

Before going on we prove the following, purely technical lemma.

Lemma 4.16. Fix N > 1 and consider the function f : [0, 1)× [0,∞] → R given by

f(t, η) =
1 + η − tN

1− t
.

Define the function g by

g(η) = sup{t− s : f(t, 0) ≤ f(s, η)}. (4.30)

Then limη→0 g(η) = 0.

Proof. The proof is by contradiction. Suppose that there exists ϵ > 0 and three sequences in

(ηn)n, (tn)n, and (sn)n, such that ηn → 0, f(tn, 0) ≤ f(sn, ηn), and tn− sn > ϵ. Up to a taking
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a sub-sequence, we can assume that tn → t and sn → s, hence 1 ≥ t ≥ s + ϵ. The functions

f(·, ηn) converge to f(·, 0), uniformly in the interval [0, 1− ϵ
2 ]. This implies f(sn, ηn) → f(s, 0),

yielding f(t, 0) ≤ f(s, 0). Since t 7→ f(t, 0) is strictly increasing, we obtain t ≤ s ≤ t− ϵ, which
is a contradiction.

We now obtain an estimate of h from above in the interval [a(E), b(E)] going in the opposite

direction of the Bishop–Gromov inequality.

Proposition 4.17. Fix N > 1, L > 0. Fix N > 1 and L > 0. The following estimates hold

for w → 0 and δ → 0

h(x) ≤ h(b(E))

(
x

b(E)
+ o(1)

)N−1

, uniformly w.r.t. x ∈ [a(E), b(E)], (4.31)

where D ≥ 3L, D′ ∈ (0, D], h : [0, D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]

satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix x ∈ [a(E), b(E)] and, in order to simplify the notation, define

a := a(E), b := b(E), k := h(x)
1

N−1 , l := h(b(E))
1

N−1 .

By concavity of h
1

N−1 , it holds true that

h(y) ≥
(y
x

)N−1
kN−1, ∀y ∈ [a, x],

h(y) ≥
(
l + (k − l)

b− y

b− x

)N−1

, ∀y ∈ [x, b].

We can integrate these two inequalities, obtaining

w ≥
∫ x

a

yN−1

xN−1
kN−1 dy +

∫ b

x

(
l + (k − l)

b− y

b− x

)N−1

dy

=
kN−1 (xN − aN )

NxN−1
+
b− x

N

lN − kN

l − k
,

yielding

1−
(
k
l

)N
1− k

l

≤
Nw − kN−1(xN−aN )

xN−1

lN−1(b− x)
=

Nw
blN−1 − kN−1(xN−aN )

b(lx)N−1

1− x
b

≤
Nw
blN−1 − xN−aN

bN

1− x
b

=
Nw
blN−1 + aN

bN
− xN

bN

1− x
b

,

where in the last inequality we used the Bishop–Gromov inequality written in the form kN−1

lN−1 ≥
xN−1

bN−1 . At this point, we estimate the terms Nw
blN−1 and aN

bN
. Regarding the former, taking into
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account (4.27) and the isoperimetric inequality, we notice

Nw

blN−1
=

Nw

b(E)h(b(E))
≤ Nw

b(E)h(rh(w))
≤ Nw

Dw
1
N (1− o(1)) N

Dw
1− 1

N (1−O(w
1
N )

= 1 + o(1).

The latter term is even more simple (recall (4.26) and (4.28))

aN

bN
=
a(E)N

b(E)N
≤ DNo(w)

DNw(1− o(1))N
= o(1).

We can put all the pieces together obtaining

f

(
k

l
, 0

)
=

1−
(
k
l

)N
1− k

l

≤
Nw
blN−1 + aN

bN
− xN

bN

1− x
b

≤
1 + o(1)− xN

bN

1− x
b

= f
(x
b
, o(1)

)
,

where f is the function of Lemma 4.16. We can apply said Lemma (and in particular (4.30))

and we get
k

l
− x

b
≤ g(o(1)) = o(1).

If we explicit the definitions of k, l, and b, it turns out that the inequality above is precisely

the thesis.

4.3.5 Rescaling the diameter and renormalizing the measure

We now obtain a first limit estimate of the densities h. The presence of factor 1
DN in the

estimate (4.29) suggests the need of a rescaling to get a non-trivial limit estimate. We will

rescale by 1
b(E) and renormalise the measure by mh(E).

Fix k > 0 and define the rescaling transformation Sk(x) = x/k. If h : [0, D′] → R is a

density and E ⊂ [0, L], we can define

νh,E = (Sb(E))#

(
mh⌞E
mh(E)

)
∈ P([0, 1]).

The probability measure νh,E is absolutely continuous w.r.t. L1. Denote by h̃E : [0, 1] → R the

Radon–Nikodym derivative
dνh,e
dL1 . The density h̃E can be computed explicitly

h̃E(t) = 1E(b(E)t)
b(E)

mh(E)
h(b(E)t). (4.32)

Since E could be disconnected, the indicator function in (4.32) prevents h̃
1

N−1

E from being

concave and therefore ([0, 1], | · |, νh,E) from satisfing the CD(0, N) condition.
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Proposition 4.18. Fix N > 1 and L > 0. The following estimates hold for w → 0 and δ → 0∥∥∥h̃E −NtN−1
∥∥∥
L∞(0,1)

≤ o(1)

where D ≥ 3L, D′ ∈ (0, D], h : [0, D′] → R is a CD(0, N) density, and the set E ⊂ [0, L]

satisfies mh(E) = w and ResDh (E) ≤ δ.

Proof. Fix t ∈ [0, 1]. The proof is divided in four parts.

Part 1 Estimate from below and t > a(E)
b(E) .

Since t > a(E)
b(E) , then t b(E) ∈ E (for a.e. t). By a direct computation, we have

h̃E(t) =
b(E)

w
h(tb(E)) ≥ Nb(E)N

DNw
tN−1(1− o(1))

≥ NDNw(1 + o(1))N

DNw
tN−1(1− o(1)) = NtN−1 −NtN−1o(1),

where we have used the estimate (4.29), with x = tb(E), in the first inequality and (4.27) in

the first and second inequalities, respectively. Since t ∈ [0, 1], then −tN−1o(1) ≥ o(1) and we

conclude this first part.

Part 2 Estimate from below and t ≤ a(E)
b(E) .

In this case it may happen that t b(E) /∈ E, so the best we can say about h̃E is that it is

non-negative in t. The point here is to exploit the fact that the interval [0, a(E)
b(E) ] is “short” and

that t ≤ a(E)
b(E) . By a direct computation (we recall (4.27) and (4.28)) we have

h̃E(t) ≥ 0 ≥ NtN−1 −NtN−1 ≥ NtN−1 −N
a(E)N−1

b(E)N−1

≥ NtN−1 −N
DN−1o(w1− 1

N )

DN−1w1− 1
N (1 + o(1))N−1

≥ NtN−1 − o(1).

Part 3 Estimate from above and t > a(E)
b(E) .

We take into account the estimate (4.31), with x = tb(E) and compute

h̃E(t) =
b(E)

w
h(tb(E)) ≤ b(E)

w
h(b(E))(t+ o(1))N−1 ≤ b(E)

w
h(b(E))(tN−1 + o(1))

≤ Dw
1
N (1 + o(1))

w
Ph(E)(tN−1 + o(1))

=
Dw

1
N (1 + o(1))

w

N

D
w1− 1

N (1 + ResDh (E))(tN−1 + o(1))

≤ N(1 + o(1))(1 + δ)(tN−1 + o(1)) = NtN−1 + o(1)
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(in the second inequality we exploited the uniform continuity of t ∈ [0, 1] 7→ tN−1; in the third

one, estimate (4.26)).

Part 4 Estimate from above and t ≤ a(E)
b(E) .

Fix ϵ > 0 and compute

h̃E(t) = b(E)
1E(tb(E))

mh(E)
h(b(E)t) ≤ b(E)

mh(E)
h(b(E)t)

≤ b(E)

mh(E)
h

(
b(E)

(
a(E)

b(E)
+ ϵ

))
= h̃E

(
a(E)

b(E)
+ ϵ

)
,

and the last equality holds true for a.e. ϵ small enough. At this point we can take into account

the previous part and continue

h̃E(t) ≤ h̃E

(
a(E)

b(E)
+ ϵ

)
≤ N

(
a(E)

b(E)
+ ϵ

)N−1

+ o(1).

If we take the limit as ϵ→ 0 we can conclude

h̃E(t) ≤ N

(
a(E)

b(E)

)N−1

+ o(1) ≤ o(1) ≤ NtN−1 + o(1).

The following theorem summerizes the content of this section.

Theorem 4.19. Fix N > 1 and L > 0. Then there exists a function ω : Dom(ω) ⊂ (0,∞)×
R → R, infinitesimal in 0, such that the following holds. For all D ≥ 3L, D′ ∈ (0, D), for all

h : [0, D′] → R a CD(0, N) density, and for all E ⊂ [0, L], it holds∣∣∣b(E)−Dmh(E)
1
N

∣∣∣ ≤ Dmh(E)
1
N ω(mh(E),ResDh (E)), (4.33)∥∥∥h̃E −NtN−1

∥∥∥
L∞

≤ ω(mh(E),ResDh (E)), (4.34)

where b(E) = ess supE and h̃E is the Radon-Nikodym derivative of mh(E)−1(Sb(E))#mh⌞E,

with Sb(E)(x) = x/b(E).

4.4 Passage to the limit as R → ∞

We now go back to the studying the identity case of the isoperimetric inequality: E is a

bounded Borel such that

P(E) = N(ωNAVRX)
1
N m(E)1−

1
N ,

where (X, d,m) is an essentially non-branching CD(0, N) space having AVRX > 0 and
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We make use of the notation of Section 4.1; denote by φR the Kantorovich potential

associated to fR and (4.1). Since the construction does not change if we add a constant

to φR, we can assume that φR are equibounded on every bounded set. Using the Ascoli–

Arzelà theorem and a diagonal argument we deduce that, up to subsequences, φR converges

to a certain 1-Lipschitz function φ∞, uniformly on every bounded set.

We recall the disintegration given by Proposition 4.1,

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), and P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα). (4.35)

We would like to take the limit in the disintegration formula (4.35). To the knowledge of

the author there is no easy way to take such limit. For this reason, the effort of this section

goes in the direction to understand how the properties of the disintegration behave at the limit.

4.4.1 Passage to the limit of the radius

We start by defining the radius function rR : Ē → [0,diamE]. Fix x ∈ E ∩ T̂R and let

Ex,R := (gR(QR(x), ·))−1(E) ⊂ [0, |X̂QR(x),R|]. Define

rR(x) :=

ess supEx,R, if x ∈ E ∩ T̂R,

0, otherwise.
(4.36)

Notice that rR(x) = b(Ex,E), where the notation b(E) was introduced in 4.3.3.

The function rR is defined on Ē for two motivations: we require a common domain not

depending on R and the domain must be a compact metric spaces.

Remark 4.20. The set E ∩ T̂R has full m⌞E-measure in Ē. This means that it does not really

matter how rR is defined outside E∩T̂R. This fact is particularly relevant, because we will only

take limits in the m⌞E-a.e. sense or in senses which are weaker than the pointwise convergence.

The next proposition ensures that, in limit as R → ∞, the function rR converges to the

constant ( mh(E)
ωNAVRX

)
1
N , which is precisely the radius that we expect.

Proposition 4.21. Up to subsequences it holds true

lim
R→∞

rR =

(
m(E)

ωNAVRX

) 1
N

, m⌞E−a.e..

Proof. By Corollary 4.7 we have that
∥∥ResR,QR(x)

∥∥
L1(Ē;m⌞E)

→ 0, as R → ∞, hence there

exists a negligible subset N ⊂ E and a sequence Rn → ∞, such that limn→∞Resx,Rn = 0, for

all x ∈ E\N .
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Define G :=
⋂
n T̂Rn\N and notice that m(E\G) = 0. Now fix n ∈ N and x ∈ G and let

α := QRn(x) ∈ QRn . By triangular inequality, it holds∣∣∣∣rRn(x)−
(

m(E)
ωNAVRX

) 1
N

∣∣∣∣ ≤ ∣∣∣∣rRn(x)− (Rn + diamE)
(

m(E)
m(BRn )

) 1
N

∣∣∣∣
+

∣∣∣∣(Rn + diamE)
(

m(E)
m(BRn )

) 1
N −

(
m(E)

ωNAVRX

) 1
N

∣∣∣∣ ,
and the second term goes to 0 by definition of AVR.

Let’s focus on the first term. Consider the ray (X̂α,Rn , d, m̂α,Rn). By definition, we have

that

ResRn+diamE
hα,Rn

(Ex,Rn) = Resα,Rn

We are in position to use Theorem 4.19 and, in particular, estimate (4.33) implies∣∣∣∣rRn(x)− (Rn + diamE)
(

m(E)
m(BRn )

) 1
N

∣∣∣∣ = ∣∣∣rRn(x)− (Rn + diamE)(mhα,Rn
(Ex,Rn))

1
N

∣∣∣
≤ (Rn + diamE)mhα,Rn

(E)
1
N ω(mhα,Rn

(E),ResRn+diamE
hα,Rn

(Ex,Rn))

= (Rn + diamE)

(
m(E)

m(BRn)

) 1
N

ω

(
m(E)

m(BRn)
,ResQR(x),Rn

)
.

Since the r.h.s. in the inequality above is infinitesimal, we can take the limit as n → ∞ and

conclude.

Hence in the limit the length of the rays converge to a well defined constant; this will turn

out to be the radius of E. From now on we will write ρ := ( m(E)
ωNAVRX

)
1
N .

4.4.2 Passage to the limit of the rays

Consider now a constant-speed parametrization of the rays inside E:

γx,Rs :=

gR(QR(x), s rR(x)), if x ∈ E ∩ T̂R,

x, otherwise,

where x ∈ Ē and s ∈ [0, 1]. Remark 4.20 applies also to the map x 7→ γx,R. A direct

consequence of the definition of γx,R is

d(γx,Rt , γx,Rs ) = φR(γ
x,R
t )− φR(γ

x,R
s ), ∀ 0 ≤ t ≤ s ≤ 1, for m-a.e. x ∈ E, (4.37)

d(γx,R0 , γx,R1 ) = rR(x), for m-a.e. x ∈ E, (4.38)

x ∈ γx,R, for m-a.e. x ∈ E. (4.39)
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We stress out the order of the quantifiers in (4.37): said equation has to be understood in the

sense that ∃N ⊂ E such that m(N) = 0 and ∀t ≤ s, ∀x ∈ E\N , (4.37) holds true. Regarding

(4.39), we point out that the expression x ∈ γx,R means that ∃t ∈ [0, 1] such that x = γx,Rt ,

or, equivalently, mint∈[0,1] d(x, γ
x,R
t ) = 0.

In order to capture the limit behaviour of γx,R as R → ∞ we proceed as follows. First

define K := {γ ∈ Geo(X) : γ0, γ1 ∈ Ē}. Since a CD(K,N) space is locally compact and E is

bounded, Ē is compact and so is K. Then define the measure

τR := (Id× γ · ,R)#m⌞E ∈ M(Ē ×K).

The measures τR have mass m(E) and enjoy the following immediate properties

(P1)#τR = m⌞E , and γ = γx,R, for τR-a.e. (x, γ) ∈ Ē ×K.

We can restate the properties (4.37)–(4.39) using a more measure-theoretic language

d(et(γ), es(γ))− φR(et(γ)) + φR(es(γ)) = 0, ∀ 0 ≤ t ≤ s ≤ 1, for τR-a.e. (x, γ) ∈ Ē ×K,(4.40)

d(e0(γ), e1(γ))− rR(x) = 0, for τR-a.e. (x, γ) ∈ Ē ×K, (4.41)

x ∈ γ, for τR-a.e. (x, γ) ∈ Ē ×K (4.42)

Since the measures τR have the same mass and Ē × K is compact, the family of measures

(τR)R>0 is tight, thus we can extract a sub-sequence (which we do not relabel) such that

τR ⇀ τ weakly, i.e.,
∫
Ē×K ψ dτR →

∫
Ē×K ψ dτ , for all ψ ∈ Cb(Ē ×K).

The next proposition affirms that the properties (4.40)–(4.42) pass to the limit as R→ ∞.

Proposition 4.22. For τ -a.e. (x, γ) ∈ Ē ×K, it holds thas

d(et(γ), es(γ)) = φ∞(et(γ))− φ∞(es(γ)), ∀ 0 ≤ t ≤ s ≤ 1, (4.43)

d(e0(γ), e1(γ)) = ρ, (4.44)

x ∈ γ. (4.45)

Proof. Fix t ≤ s and integrate (4.40) in Ē ×K, obtaining

0 =

∫
Ē×K

(d(et(γ), es(γ))− φR(et(γ)) + φR(es(γ))) τR(dx dγ) =

∫
Ē×K

Lt,sφR
(γ) τR(dx dγ),

where we have set Lt,sψ (γ) := d(et(γ), es(γ)) − ψ(et(γ)) + ψ(es(γ)). The map Lt,sφR : K → R is

clearly continuous and converges uniformly (recall that φR → φ∞ uniformly on every compact)
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to Lt,sφ∞ . For this reason we can take the limit in the equation above obtaining

0 =

∫
Ē×K

Lt,sφ∞(γ) τ(dx dγ) =

∫
Ē×K

(d(et(γ), es(γ))− φ∞(et(γ)) + φ∞(es(γ))) τ(dx dγ).

The 1-lipschitzianity of φ∞, yields Lt,sφ∞(γ) ≥ 0, ∀γ ∈ K, hence

d(et(γ), es(γ)) = φ∞(et(γ))− φ∞(es(γ)) for τ -a.e. (x, γ) ∈ Ē ×K.

In order to conclude, fix P ⊂ [0, 1] a countable dense subset, and find a τ -negligible set

N ⊂ Ē ×K such that

d(et(γ), es(γ)) = φ∞(et(γ))− φ∞(es(γ)), ∀t, s ∈ P, with t ≤ s, ∀(x, γ) ∈ (Ē ×K)\N.

If we have 0 ≤ t ≤ s ≤ 1, we approximate t and s with two sequences in P and we can pass to

the limit in the equation above concluding the proof of (4.43).

Now we prove (4.44). The idea is similar, but in this case we need to be more careful,

because the function rR fails to be continuous. Like before, we can integrate Equation (4.41)

obtaining

0 =

∫
Ē×X

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ).

If the functions rR were continuous and converged uniformly to ρ, then we could pass to the

limit and conclude. Unfortunately Proposition 4.21, provides a limit only the a.e. sense. We

overcome this issue using Lusin’s and Egorov’s theorems. Fix ϵ > 0 and find a compact set

L ⊂ E, such that: 1) the restrictions rR|L are continuous; 2) the restricted maps rR|L converge

uniformly to ρ; 3) m(E\L) ≤ ϵ. We can now compute the limit

0 = lim
R→∞

∫
Ē×K

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥ lim inf
R→∞

∫
L×K

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥
∫
L×K

|d(e0(γ), e1(γ))− ρ| τ(dx dγ) ≥ 0,

hence

d(e0(γ), e1(γ)) = ρ, for τ -a.e. (x, γ) ∈ L×K.

This means that the equation above holds true except for a set of measure at most ϵ. By

arbitrariness of ϵ, we conclude the proof of (4.44). Finally we prove (4.45). Consider the
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continuous, non-negative function L(x, γ) := inft∈[0,1] d(x, et(γ)). Equation (4.42) implies

0 =

∫
Ē×K

L(x, γ) τR(dx dγ).

The equation above passes to the limit as R → ∞, hence we deduce L(x, γ) = 0 for τ -a.e.

(x, γ) ∈ Ē ×K, which is precisely (4.42).

4.4.3 Disintegration of the measure and the perimeter

Recalling the disintegration formula (4.35), we define the map Ē ∋ x 7→ µx,R ∈ P(Ē) as

µx,R :=


m(BR)
m(E) (m̂QR(x),R)⌞E , if x ∈ E ∩ T̂R,

δx, otherwise.

This new family of measures satisfies the disintegration formula

m⌞E=
∫
Ē
µx,Rm⌞E(dx). (4.46)

Indeed, by a direct computation (recall (4.4)–(4.5))

m(A ∩ E) =

∫
QR

m̂α,R(A ∩ E) q̂R(dα) =
m(BR)

m(E)

∫
QR

m̂α,R(A ∩ E) (QR)#(m⌞E)(dα)

=
m(BR)

m(E)

∫
X
m̂QR(x),R(A ∩ E)m⌞E(dx) =

∫
X
µx,R(A)m⌞E(dx).

Remark 4.23. We give a few details regarding the measurablity of the integrand function

in Equation (4.46). Said equation should be interpreted in the following sense: the map

x 7→ µx,R(A) is measurable and the formula (4.46) holds. Indeed, the map x 7→ µx,R(A) is (up

to excluding the negligible set Ē\(E ∩ T̂R)) the composition of QR ∋ α 7→ m(BR)
m(E) m̂α,R(A ∩ E)

and the projection QR. The former map is q̂R-measurable, while the map QR is m-measurable,

with respect to the σ-algebra of QR, thus the composition is measurable.

Since m̂α,R = (gR(α, ·))#(hα,RL1⌞
[0,|X̂α,R|]), we can explicitly compute the measure µx,R

(recall that by (4.36) rR(x) = ess supEx,R, for m⌞E-a.e. x)

µx,R =
m(BR)

m(E)
(gR(QR(x), ·))#

(
(gR(QR(x), ·))−1(E)hQR(x),RL1⌞[0,rR(r)]

)
= (gR(QR(x), ·))#

(
1Ex,R

m(BR)

m(E)
hQR(x),RL1⌞[0,rR(x)]

)
= (γx,R)#(h̃

x,R
E L1⌞[0,1]), for m⌞E-a.e. x ∈ Ē
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where

h̃x,RE (t) = 1Ex,R
(rR(x)t) rR(x)

m(BR)

m(E)
hQR(x),R(rR(x)t).

Thanks to (4.6), we can perform a similar operation for the perimeter. Having in mind

that hR,QR(x)(rR(x))δrR(x) ≤ PhR,QR(x)
(Ex,R; · ), we define the map

px,R : =

min
{

m(BR)
m(E) hR,QR(x)(rR(x)),

N
ρ

}
δgR(QR(x),rR(x)), if x ∈ E ∩ T̂R,

N
ρ δx, if x ∈ Ē\(E ∩ TR).

Using the maps γx,R and h̃x,R, we can rewrite px,R as

px,R =


min

{
h̃x,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

., if x ∈ E ∩ T̂R,

N

ρ
δx, if x ∈ Ē\(E ∩ TR).

The definition of px,R immediately yields

px,R ≤ m(BR)

m(E)
PXR,QR(x)

(E; · ), for m⌞E-a.e. x ∈ Ē,

hence we deduce the following “disintegration” formula (equations (4.6) and (4.5) are taken

into account)

P(E;A) ≥
∫
QR

PXα,R
(E;A) q̂R(dα) =

m(BR)

m(E)

∫
Ē
PXR,QR(x)

(E;A)m⌞E(dx)

≥
∫
Ē
px,R(A)m(dx), ∀A ⊂ Ē Borel.

(4.47)

Let F := e(0,1)(K) = {γt : γ ∈ K, t ∈ [0, 1]} and let S ⊂ M+(F ) be the subset of the

non-negative measures on F with mass at most N/ρ. We endow the sets P(F ) and S with the

weak topology of measures. Since K and F are compact Hausdorff spaces, by Riesz–Markov

Representation Theorem, the weak topology on P(F ) and S, coincides with the weak* topology

induced by the duality against continuous functions C(F ). It is well-known that the weak*

convergence can be metrized on bounded sets, if the primal space is separable. For instance, a

possible suitable metric is given by

d(µ, ν) =

∞∑
k=1

1

2k ∥fk∥∞

∣∣∣∣∫
X
fk dµ−

∫
X
fk dν

∣∣∣∣ , (4.48)

where {fk}k is dense set in C(X). We endow the spaces P(F ) and S with the distance defined
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in (4.48).

Define the map GR : Ē ×K → P(F )× S, as

GR(x, γ) :=

(
γ#(h̃

x,R
E L1⌞[0,1]),min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
.

The function GR is measurable w.r.t. the variable x and continuous w.r.t. the variable γ. At

this point we can define the measure

σR := (Id×GR)#τR ∈ M+(Ē ×K × P(F )× S).

Notice that the mass of σR is m(E) for all R > 0. In order to simplify the notation, set

Z = Ē ×K × P(F )× S.

Proposition 4.24. The measure σR satisfies the following properties∫
E
ψ dm =

∫
Z

∫
E
ψ(y)µ(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (Ē), (4.49)∫
Ē
ψ(y)P(E, dy) ≥

∫
Z

∫
Ē
ψ(y) p(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (Ē), ψ ≥ 0. (4.50)

Proof. Fix a test function ψ ∈ C0
b (Ē). First we notice that for σR-a.e. (x, γ, µ, p) ∈ Z, we have

that µ = µx,R. Indeed, it holds that

µ = γ#(h̃
x,R
E L1⌞[0,1]) = (γx,R)#(h̃

x,R
E L1⌞[0,1]) = µx,R, for σR-a.e. (x, γ, µ, p) ∈ Z,

and we used the fact that γ = γx,R for τR-a.e. (x, γ) ∈ Ē ×K. We conclude this first part by

a direct computation∫
E
ψ dm =

∫
E

∫
E
ψ(y)µx,Rm(dx) =

∫
Z

∫
E
ψ(y)µx,R(dy)σR(dx dγ dµ dp)

=

∫
Z

∫
E
ψ(y)µ(dy)σR(dx dγ dµ dp),

we conclude the proof of inequality (4.49).

Now fix an open set Ω ⊂ X and compute using (4.47)

P(E; Ω) ≥
∫
E
min

{
h̃Ex,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

(Ω) dm(dx)

=

∫
Z
min

{
h̃Ex,R(1)

d(e0(γx,R), e1(γx,R))
,
N

ρ

}
δe1(γx,R)(Ω) dσR(dx dγ dµ dp)
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=

∫
Z
min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)(Ω) dσR(dx dγ dµ dp).

If we use the fact that

p = min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N(ωNAVRX)

1
N

m(E)
1
N

}
δe1(γ)(Ω), for σR-a.e. (x, γ, µ, p) ∈ Z,

we continue the chain of inequalities obtaining

P(E; Ω) ≥
∫
Z
min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)(Ω) dσR(dx dγ dµ dp)

=

∫
Z
p(Ω) dσR(dx dγ dµ dp).

Since the perimeter is outer-regular, i.e., P(E;A) = inf{P(E; Ω) : Ω ⊃ A is open}, we can

conclude.

At this point we are in position to take the limit as R → ∞, as the properties we have

proven pass to the limit, but before proceeding we prove the following technical Lemma.

Lemma 4.25. Let X be a Polish space, let Y , Z be two compact Polish spaces, and let m

be a finite Radon measure on X. Consider a sequence of functions fn : X × Y → Z and

f : X × Y → Z, such that f and fn are Borel-measurable in the first variable and continuous

in the second. Assume that for m-a.e. x ∈ X the sequence fn(x, ·) converges uniformly to

f(x, ·). Consider a sequence of measures µn ∈ M+(X × Y ) such that µn ⇀ µ weakly in

M+(X × Y ) and (πX)#µn = m.

Then it holds

(Id× fn)#µn ⇀ (Id× f)#µ, weakly in M(X × Y × Z).

Proof. In order to simplify the notation, set νn = (Id×fn)#µn and ν = (Id×f)#µ. Fix ϵ > 0.

We would like to use an extension of the Egorov’s and Lusin’s Theorems for functions

taking values in separable metric spaces. The reader can find a proof these theorems in [40,

Theorem 7.5.1] (for the Egorov’s Theorem) and [39, Appendix D] (for the Lusin’s Theorem).

In this setting, we deal with maps taking value in C(Y,Z), the space of continuous functions

between the compact spaces Y and Z, which turns out to be separable.

Using said Theorems, we can find a compact K ⊂ X such that: 1) the maps x ∈ K 7→
fn(x, ·) ∈ C(Y,Z) are continuous (and the same holds for f in place of fn); 2) the restricted

maps x ∈ K 7→ fn(x, ·) converge to x ∈ K 7→ f(x, ·), uniformly in the space C(K,C(Y, Z));
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3) m(X\K) ≤ ϵ. Regarding point 2), this immediately implies that the restriction fn|K×Y →
f |K×Y converges uniformly in K × Y .

We test the convergence of νn against φ ∈ C0
b (X × Y × Z)∣∣∣∣∫

X×Y×Z
φdνn −

∫
X×Y×Z

φdν

∣∣∣∣ ≤ ∥φ∥C0 (νn((X\K)× Y × Z)

+ ν((X\K)× Y × Z))

+

∣∣∣∣∫
K×Y×Z

φdνn −
∫
K×Y×Z

φdν

∣∣∣∣
= ∥φ∥C0 (m(X\K) +m(X\K))

+

∣∣∣∣∫
K×Y×Z

φdνn −
∫
K×Y×Z

φdν

∣∣∣∣
≤ 2ϵ ∥φ∥C0 +

∣∣∣∣∫
K×Y×Z

φdνn −
∫
K×Y×Z

φdν

∣∣∣∣ .
We focus on the second term and we compute the integral∫

K×Y×Z
φdνn =

∫
K×Y

φ(x, y, fn(x, y))µn(dx dy).

The function φ|K×Y×Z is uniformly continuous (because it is continuous and defined on a

compact space), hence φ(x, y, fn(x, y)) converges to φ(x, y, f(x, y)) uniformly in K × Y . For

this reason, together with the fact that µn ⇀ µ weakly we can take the limit in the equation

above obtaining

lim
n→∞

∫
K×Y

φ(x, y, fn(x, y))µn(dx dy) =

∫
K×Y

φ(x, y, f(x, y))µ(dx dy) =

∫
K×Y×Z

φdν,

and this concludes the proof.

Corollary 4.26. Consider the function G : Ē ×K → P(F )× S defined as

G(x, γ) =

(
γ#(Nt

N−1L1⌞[0,1]),max

{
N

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
,

and let σ := (Id×G)#τ . Then we have that σR ⇀ σ in the weak topology of measures.

Proof. We just need to check the hypotheses of the previous Lemma. The set Ē is compact,

hence complete and separable. The set K is compact and so is P(F ) × S (w.r.t. the weak

topology). As we have already pointed out, the maps GR are measurable in the first variable

and continuous in the second variable. Finally, we need to see that for a.e. x, the limit
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GR(x, γ) → G(x, γ) holds uniformly w.r.t. γ. Fix x and γ and pick ψ ∈ Cb(F ) a test function.

Compute ∣∣∣∣∫
F
ψ(y) γ#(h̃

x,R
E L1⌞[0,1])(dy)−

∫
F
ψ(y) γ#(Nt

N−1L1⌞[0,1])(dy)

∣∣∣∣
=

∣∣∣∣∫ 1

0
ψ(γt)(h̃

x,R
E −NtN−1) dt

∣∣∣∣ ≤ ∥ψ∥C(F )

∥∥∥h̃x,RE −NtN−1
∥∥∥
L∞

.

The r.h.s. of the inequality above does not depend on γ (but only on x and ψ) and converges

to 0 by Theorem 4.19, in particular (4.34). This means that the first component of GR(x, γ)

converges (in the weak topology of P(F )), uniformly w.r.t. γ (see (4.48)). For the other

component the proof is analogous, so we omit it.

The next proposition reports all the relevant properties of the limit measure σ.

Proposition 4.27. The measure σ satisfies the following disintegration formulae∫
E
ψ(y)m(dy) =

∫
Z

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp), ∀ψ ∈ L1(E;m⌞E), (4.51)∫
Ē
ψ(y)P(E; dy) =

N

ρ

∫
Z
ψ(e1(γ))ψ σ(dx dγ dµ dp), ∀ψ ∈ L1(Ē;P(E; · )). (4.52)

Furthermore, for σ-a.e. (x, γ, µ, p) ∈ Z it holds

d(et(γ), es(γ)) = φ∞(et(γ))− φ∞(es(γ)), ∀0 ≤ t ≤ s ≤ 1, (4.53)

d(e0(γ), e1(γ)) = ρ, (4.54)

x ∈ γ, (4.55)

µ = γ#(Nt
N−1L1⌞[0,1]), (4.56)

p =
N

ρ
δe1(γ). (4.57)

Proof. Equations (4.53)–(4.55) are just a restatement of (4.43)–(4.45), respectively. Equa-

tion (4.56) is an immediate consequence of the definition of G. Similarly, taking into ac-

count (4.54), we can deduce (4.57)

p = min

{
N

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ) =

N

ρ
δe1(γ).

In order to prove (4.51), fix ψ ∈ C0
b (F ) = C0

b (e(0,1)(K)) and define the function Lψ :

P(F ) → R as Lψ(µ) =
∫
F ψ dµ. This function is bounded and continuous w.r.t. the weak

topology of P(F ). Hence, we take into account the definition of weak convergence of measures
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and we compute the limit using (4.49) and (4.56)∫
E
ψ dm = lim

R→∞

∫
Z

∫
F
ψ(y)µ(dy)σR(dx dγ dµ dp) = lim

R→∞

∫
Z
Lψ(µ)σR(dx dγ dµ dp)

=

∫
Z

∫
F
ψ(y)µ(dy)σ(dx dγ dµ dp) =

∫
Z

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp).

Using standard approximation arguments, we see that the equation above holds true also for

any ψ ∈ L1(E;m⌞E).

Regarding (4.52), using the same argument we can deduce that∫
Ē
ψ(y)P(E; dy) ≥ N

ρ

∫
Z
ψ(e1(γ))σ(dx dγ dµ dp), ∀ψ ∈ L1(Ē;P(E; · )), ψ ≥ 0.

If we test the inequality above with ψ = 1, the inequality is saturated meaning that the two

measures have the same mass, so the inequality improves to an equality.

4.4.4 Back to the classical localization notation

We are now in position to re-obtain a “classical” disintegration formula for both the measure

m and the perimeter of E.

We recall the definition of some of the objects that were introduced in Subsection 2.4.1. For

instance, let Γ∞ = {(x, y) : φ∞(x)− φ∞(y) = d(x, y)} and Re
∞ = Γ∞ ∪ Γ−1

∞ be the transport

relation. The transport set with endpoints is T e
∞ := P1(Re

∞\{x = y}); clearly E ⊂ T e
∞, up to

a negligible set. The sets of forward and backward branching points are defined as

A+
∞ := {x ∈ T e

∞ : ∃z, w ∈ Γ∞(x), (z, w) /∈ Re
∞},

A−
∞ := {x ∈ T e

∞ : ∃z, w ∈ Γ−1
∞ (x), (z, w) /∈ Re

∞}.

The transport set is defined as T∞ := T e
∞\(A+

∞∪A−
∞); since the sets A+

∞ and A−
∞ are negligible,

then T∞ has full measure in T e
∞. Let Q∞ be the quotient set and let Q∞ : T∞ → Q∞ be the

quotient map; denote by Xα,∞ := Q−1(α) the disintegration rays and let g∞ : Dom(g∞) ⊂
R × Q∞ → X be the parametrization of the rays such that d

dtφ∞(g∞(t, α)) = −1. For every

α ∈ Q∞, let tα : Xα,∞ → [0,∞) be the function tα(x) := (g(α, · ))−1 = d(x, g∞(Q∞(x), 0));

the function tα measures how much a point is translates from the starting point of the ray

Xα,∞.

The following proposition guarantees that the geodesics on which the measure σ is sup-

ported lay on the transport set T∞.

Proposition 4.28. For σ-a.e. (x, γ, µ, p) ∈ Z, it holds that et(γ) /∈ A+
∞∪A−

∞, for all t ∈ (0, 1).
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Proof. Fix ϵ > 0 and let

P := {(x, γ, µ, p) ∈ Z : eϵ(γ) ∈ A+
∞ and conditions (4.51)–(4.57) holds}

Notice that by definition of A+
∞, if (x, γ, µ, p) ∈ P , then γt ∈ A+

∞, for all t ∈ [0, ϵ], thus we can

compute

0 = m(A+
∞) =

∫
Z

∫ 1

0
1A+

∞
(et(γ))Nt

N−1 dt σ(dx dγ dµ dp)

≥
∫
P

∫ ϵ

0
1A+

∞
(et(γ))Nt

N−1 dt σ(dx dγ dµ dp) ≥ ϵNσ(P ),

so P is negligible. Fix now (x, γ, µ, p) /∈ P . By definition of A+
∞ and P , we have that γt ̸∈ A+

∞,

for all t ∈ [ϵ, 1]. By arbitrariness of ϵ, we deduce that for σ-a.e (x, γ, µ, p) ∈ Z, it holds that

et(γ) /∈ A+
∞, for all t ∈ (0, 1]. The proof for the set A−

∞ is analogous.

Corollary 4.29. For σ-a.e. (x, γ, µ, p) ∈ Z, it holds that et(γ) ∈ XQ(x),∞ and

et(γ) = g(Q(x), tQ(x)(e0(γ)) + ρt). (4.58)

Define q̂ := 1
m(E)(Q∞)#(m⌞E) ≪ (Q∞)#m⌞T∞ and let q̃ be a probability measure such that

(Q∞)#m⌞T∞≪ q̃. The disintegration theorem gives the following two formulae

m⌞E=
∫
Q∞

m̂α,∞ q̂(dα), and m⌞T∞=

∫
Q∞

m̃α,∞ q̃(dα), (4.59)

where the measures m̂α,∞ and m̃α,∞ are supported on Xα,∞. By comparing the two expres-

sions above, it turns out that dq̂
dq̃(α) m̂α,∞ = 1Em̃α,∞. Theorem 2.7, ensures that the space

(Xα,∞, d, m̃α,∞) satisfies the CD(0, N) condition. Note that the disintegration α 7→ m̂α,∞ does

not fall under the hypothesis of Theorem 2.7: indeed, in this case we are disintegrating a

measure concentrated on E and not on the transport set T∞. Define the functions ĥα and h̃α

as the functions such that

m̂α,∞ = (g(α, · ))#(ĥαL1
(0,|Xα,∞|)), and m̃α,∞ = (g(α, · ))#(h̃αL1

(0,|Xα,∞|)).

Clearly, it holds that dq̂
dq̃(α)ĥα(t) = 1E(g(α, t))h̃α(t), thus we can derive a somehow weaker

concavity condition for the function ĥ
1

N−1
α : for all x0, x1 ∈ (0, |Xα,∞|) and for all t ∈ [0, 1], it

holds that

ĥα((1− t)x0 + tx1)
1

N−1 ≥ (1− t)ĥα(x0)
1

N−1 + tĥα(x1)
1

N−1 , if ĥα((1− t)x0 + tx1) > 0.
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The inequality above implies that

the map r 7→ ĥα(r)

rN−1
is decreasing on the set {r ∈ (0, |Xα,∞|) : ĥα(r) > 0}. (4.60)

Define the set Ẑ ⊂ Z as

Ẑ := {(x, γ, µ, p) ∈ Z : x ∈ E ∩ T∞, and the properties given by

Equations (4.51)–(4.52) and (4.58) holds}.

Clearly Ẑ has full σ-measure in Z. We give a partition for Ẑ

Ẑα := {(x, γ, µ, p) ∈ Ẑ : Q∞(x) = α},

and we disintegrate the measure σ according to the partition (Ẑα)α∈Q∞

σ =

∫
Q∞

σα q(dα), (4.61)

where the measures σα are supported on Ẑα. Moreover, let να ∈ P([0,∞)) be the measure

given by

να :=
1

m(E)
(tα ◦ e0 ◦ πK)#(σα)

(we recall that tα = (g(α, · ))−1 and πK(x, γ, µ, p) = γ).

The following proposition states that the density ĥα is given by the convolution of the

model density and the measure να.

Proposition 4.30. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX

∫
[0,∞)

(r − t)N−11(t,t+ρ)(r) να(dt), ∀r ∈ (0, |Xα,∞|).

Proof. Fix ψ ∈ L1(m⌞E) and compute its integral using Equations (4.51) and (4.61)∫
E
ψ(x)m(dx) =

∫
Ẑ

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp)

=

∫
Q∞

∫
Ẑα

∫ 1

0
ψ(et(γ))Nt

N−1 dt σα(dx dγ dµ dp) q(dα).

Fix now α ∈ Q∞ and compute (recall (4.58) and the definition of Ẑ)∫
Ẑα

∫ 1

0
ψ(et(γ))Nt

N−1 dt σα(dx dγ dµ dp) =

∫
Ẑα

∫ ρ

0
ψ(es/ρ(γ))N

sN−1

ρN
ds σα(dx dγ dµ dp)
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=

∫
Ẑα

∫ ρ

0
ψ(g∞(Q(x), t(α, γ0) + s))N

sN−1

ρN
ds σα(dx dγ dµ dp)

=

∫
Ẑα

∫ |Xα,∞|

0
ψ(g∞(α, r))N

(r − t(α, γ0))
N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r) dr σα(dx dγ dµ dp)

=

∫ |Xα,∞|

0
ψ(g∞(α, r))

∫
Ẑα

N
(r − t(α, γ0))

N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r)σα(dx dγ dµ dp) dr,

hence, by the uniqueness of the disintegration, we deduce that

ĥα(r) =

∫
Ẑα

N
(r − t(α, γ0))

N−1

ρN
1(t(α,γ0),t(α,γ0)+ρ)(r)σα(dx dγ dµ dp)

= NωNAVRX

∫
[0,∞)

(r − t)N−11(t,t+ρ)(r) να(dt).

Proposition 4.31. For q̂-a.e. α ∈ Q∞, it holds that να = δ0.

Proof. Let T := inf supp να. If we set r ∈ (T, T + ρ), we can compute

ĥα,∞(r)

NωNAVRX
=

∫
[0,∞)

(r − t)N−11(t,t+ρ)(r) να(dt) =

∫
[T,r)

(r − t)N−1 να(dt)

≥
∫
[T,r)

(
r − T

2
1[T,(r+T )/2](t)

)N−1

να(dt) =
(r − T )N−1

2N−1
να([T,

r+T
2 ]).

(4.62)

By definition of T , we have that να([T,
r+T
2 ]) > 0, hence ĥα(r) > 0, for all r ∈ (T, T + ρ). On

the other hand

ĥα,∞(r) = NωNAVRX

∫
[T,r)

(r − t)N−1 να(dt)

≤ NωNAVRX(r − T )N−1 να([T, r)) → 0. as r → T+.

(4.63)

We claim that T = 0. Indeed, if T > 0, then limr→T+ ĥα(r)/r
N−1 = 0 contradicting (4.60).

We now derive the non-increasing function

(0, ρ) ∋ r 7→ ĥα(r)

rN−1
=
NωNAVRX

rN−1

∫
[0,r)

(r − t)N−1 να(dt),

obtaining

0 ≥ NωNAVRX

(
1−N

rN

∫
[0,r)

(r − t)N−1 να(dt) +
1

rN−1

d

dr

∫
[0,r)

(r − t)N−1 να(dt)

)
.
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The second term can be computed as

d

dr

∫
[0,r)

(r − t)N−1 να(dt)

= lim
h→0

∫
[r,r+h)

(r + h− t)N−1

h
να(dt) + lim

h→0

∫
[0,r)

(r + h− t)N−1 − (r − t)N−1

h
να(dt)

≥ 0 +

∫
[0,r)

lim
h→0

(r + h− t)N−1 − (r − t)N−1

h
να(dt) = (N − 1)

∫
[0,r)

(r − t)N−2 να(dt),

yielding

0 ≥ (1−N)

∫
[0,r)

(r − t)N−1 να(dt) + r
d

dr

∫
[0,r)

(r − t)N−1 να(dt)

≥ (N − 1)

∫
[0,r)

(r(r − t)N−2 − (r − t)N−1) να(dt) = (N − 1)

∫
[0,r)

t(r − t)N−2 να(dt).

The inequality above implies that να((0, r)) = 0, for all r ∈ (0, ρ), hence να(0, ρ) = 0. We

deduce that

ĥα(r) = NωNAVRX

∫
[0,r)

(r − t)N−1 να(dt) = NωNAVRX r
N−1να({0}), ∀r ∈ (0, ρ).

If να([ρ,∞)) = 0, then να = δ0 (because να has mass 1) completing the proof. Assume

on the contrary that να([ρ,∞)) > 0, and let S := inf supp(να⌞[ρ,∞)) ≥ ρ. In this case we

follow the computations (4.62) and (4.63), with S in place of T , deducing limr→S+ ĥα(r) = 0,

contradicting (4.60).

Corollary 4.32. For q̂-a.e. α ∈ Q∞, for σα-a.e. (x, γ, µ, p) ∈ Zα, it holds that et(γ) =

g(α, ρt), ∀t ∈ [0, 1].

Proof. The fact that να = δ0, implies tα(γ0) = 0 for σα-a.e. (x, γ µ, p) ∈ Ẑα, hence, recall-

ing (4.58) and the definition of Ẑ, we have that et(γ) = g(α, tα(e0) + ρt) = g(α, ρt) .

The next corollary concludes the discussion of the limiting procedures of the localization.

Corollary 4.33. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX1(0,ρ)(r)r
N−1.
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Moreover, the following disintegration formulae hold

m = NωNAVRX

∫
Q∞

(g(α, · ))#(rN−1 L1⌞(0,ρ)) q̂(dα), (4.64)

P(E; · ) = P(E)

∫
Q∞

δg(α,ρ) q̂(dα). (4.65)

Proof. The only non-trivial part is Equation (4.65). Using (4.52) and Corollary 4.32, we can

deduce that ∀ψ ∈ L1(Ē;P(E; · ))∫
Ē
ψ(x)P(E; dx) =

N

ρ

∫
Ẑ
ψ(e1(γ))ψ σ(dx dγ dµ dp)

=
N

ρ

∫
Q∞

∫
Ẑα

ψ(e1(γ))σα(dx dγ dµ dp) q̂(dα)

=
N

ρ

∫
Q∞

ψ(g(α, ρ))

∫
Ẑα

σα(dx dγ dµ dp) q̂(dα).

4.5 E is a ball

The aim of this section is to prove that E coincides with a ball of radius ρ. Before starting

the proof, we give a few technical lemmas. The first Lemma states that a BV function with

null differential on an open connected set is constant. This fact is already known for Sobolev

functions and it follows from either the Sobolev-to-Lipschitz property or the local Poincaré

inequality.

Lemma 4.34. Let (X, d,m) be an essentially non-branching CD(K,N) space with X = suppm

and let Ω ⊂ X be an open connected set. If v ∈ w-BV((Ω, d,m)) and |Du| = 0, then u is

constant in Ω (i.e., there exists C ∈ R such that v(x) = C for m-a.e. x ∈ Ω).

Proof. The proof in given only for the case K = 0. We refer to Section 2.3 for the notation.

Fix x ∈ Ω and let r > 0 such that B3r(x) ⊂ Ω. Assume by contradiction that there are two

constants a < b such that the sets

A := {y ∈ Br(x) : v(y) ≤ a} and B := {y ∈ Br(x) : v(y) ≥ b}

have strictly positive measure. Consider the probability measures µ0 = m⌞A
m(A) and µ1 = m⌞B

m(B) .

Let π ∈ OptGeo(µ0, µ1) and µt = (et)#π. The CD(K,N) condition (as stated in Definition 2.3)

reads

ρt(γt) ≤
(
(1− t)ρ

−1/N
0 (γ0) + tρ

−1/N
1 (γ1)

)−N
≤ (1− t)ρ0(γ0) + tρ1(γ1)

= m(A)−1 +m(B)−1, for π-a.e. γ,
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and this proves that there exists a constant C > 0 such that (et)#π ≤ Cm. What we have

proven and the fact that Lip(γ) = d(γ0, γ1) ≤ 2r, for π-a.e. γ, implies that π is an ∞-test plan.

For π-a.e. γ, we have that |D(v ◦ γ)|([0, 1]) ≥ b− a, because γ is a curve from A to B, thus

b− a ≤
∫
γ#|D(v ◦ γ)|(X)π(dγ) ≤ C ∥Lip(γ)∥L∞(π) µ(X) ≤ 2rCµ(X),

where µ is any weak upper gradient for v. Since we can chose the null measure as weak upper

gradient we obtain a contradiction. Thus there exists a constant cx such that v = cx a.e. in

Br(x). Taking into account the connectedness of Ω, we deduce that v is globally constant.

The following Lemma is topological. It can be seen as a weak formulation of the following

statement: let Ω be an open connected subset of a topological space X and let E ⊂ X be any

set; if Ω ∩ E ̸= ∅ and Ω\E ̸= ∅, then ∂E ∩ Ω ̸= ∅.

Lemma 4.35. Let (X, d,m) be an essentially non-branching CD(K,N) space with X = suppm.

Let E ⊂ X be a Borel set and let Ω ⊂ X be an open connected set. If m(E ∩ Ω) > 0 and

m(Ω\E) > 0, then P(E; Ω) > 0.

Proof. The proof is by contradiction. Assume that P(E; Ω) = 0. Then there exists a sequence

un ∈ Liploc(Ω) such that un → 1E in L1
loc and

∫
Ω | lip un| dm → 0. This immediately implies

that un → v in the space BV∗((Ω, d,m)) for some v ∈ BV∗((Ω, d,m)) such that |Dv| = 0. By

uniqueness of the limit, 1E = v a.e. in Ω, whereas Lemma 4.34 implies that v is constant,

which is a contradiction.

The next Lemma ensures that if two balls coincide, then they must share their center.

Lemma 4.36. Assume that (X, d,m) is an essentially non-branching, CD(K,N) space with

X = suppm and let x, y ∈ X and r > 0. If Br(x) = Br(y) and m(X\Br(x)) > 0, then x = y.

Proof. Assume by contradiction x ̸= y. Since (X, d) is a geodesic space (Br(x))
t = Br+t(x) =

Br+t(y), hence if z ∈ X is such that d(z, x) = r + t, then z ∈ Br+t+ϵ(x) = Br+t+ϵ(y), for

all ϵ > 0, thus d(z, y) ≤ r + t = d(z, x). We deduce d(z, y) = d(z, x), for all z ∈ X\Br(x).
Consider now two disjoint sets A,B ⊂ X\Br(x), such that m(A) = m(B). Consider the maps

T (z) =

x, if z ∈ A,

y, if z ∈ B,
S(z) =

y, if z ∈ A,

x, if z ∈ B.

Since d(S(z), x) = d(S(z), y) = d(T (z), x) = d(T, x), ∀z ∈ A ∪ B, these maps are two different

solutions of the Monge problem infR
∫
A∪B d2(z,R(z))m(dz), among all possible maps R : X →

X such that R#(m⌞A∪B) = m(A)(δx + δy). Since said problem admits a unique solution [29,

Theorem 5.1], we have found a contradiction.
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Proposition 4.37. For q̂-a.e. α ∈ Q∞, it holds that

φ∞(g∞(α, 0)) ≤ ess sup
E

φ∞, and φ∞(g∞(α, ρ)) ≥ ess inf
E

φ∞.

Proof. We prove only the former inequality, for the latter has the same proof. In order to

simplify the notation defineM := ess supE φ∞. Let H := {α ∈ Q∞ : φ∞(g∞(α, 0)) ≥M +2ϵ}.
Define the following measure on E

n(T ) = NωNAVRX

∫
H

∫ ϵ

0
1T (g∞(α, r))rN−1 dr q̂(dα), ∀T ⊂ E Borel.

Clearly, n ≪ m (compare with (4.64)), so φ∞(x) ≤ M , for n-a.e. x ∈ E. We can compute the

integral

0 ≥
∫
E
(φ∞(x)−M) n(dx) = NωNAVRX

∫
H

∫ ϵ

0
(φ∞(g∞(α, t))−M) tN−1 dt q̂(dα)

= NωNAVRX

∫
H

∫ ϵ

0
(φ∞(g∞(α, 0))− t−M) tN−1 dt q̂(dα)

≥ NωNAVRX

∫
H

∫ ϵ

0
ϵtN−1 dt q̂(dα) = ϵN q̂(H).

We deduce that q̂(H) = 0 and, by arbitrariness of ϵ, we can conclude.

Theorem 4.38. There exists a unique point o ∈ X, such that, up to a negligible set, E = Bρ(o),

where ρ = ( m(E)
ωNAVRX

)
1
N . Moreover, it holds that

φ∞(o) = ess sup
E

φ∞ = max
Bρ(o)

φ∞. (4.66)

Proof. Define Ẽ := supp1E . Recall that by definition of support, Ẽ =
⋃
C C, where the inter-

section is taken among all closed sets C such that m(E\C) = 0; and in particular m(E\Ẽ) = 0.

Let o ∈ argmaxẼ φ∞. The uniqueness will follow from Lemma 4.36.

First we prove the first equality of (4.66). Let N := {x ∈ E : φ∞(x) > φ∞(o) = maxẼ φ∞}.
By definition of maximum, N∩Ẽ = ∅, so N ⊂ E\Ẽ, hence m(N) = 0, thusM = ess supE φ∞ ≤
φ∞(o). On the other side, consider the open set P := {x : φ(x) > M}. By definition of essential

supremum, we have that m(E ∩ P ) = 0, hence Ẽ ⊂ X\P , thus φ∞(o) ≤M . the other eqiality

in (4.66) will follow from the fact E = Bρ(o) (up to a negligible set).

It is sufficient to prove only that Bρ(o) ⊂ E, for the other inclusion is a consequence.

Indeed, the Bishop–Gromov inequality, together with the definition of a.v.r. yields

m(E) ≥ m(Bρ(o)) ≥ ωNAVRXρ
N = m(E),
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and the equality of measures improves to an equality of sets.

Fix now ϵ > 0 and define A = Bρ−ϵ(o). If m(E\A) = 0, then we deduce that Bρ−ϵ(o) ⊂ E

and, by arbitrariness of ϵ, we can conclude.

Suppose the contrary, i.e., that m(E\A) > 0. Clearly A is connected and m(A ∩ E) > 0

(otherwise o /∈ Ẽ), so we exploit Lemma 4.35 obtaining P(E;A) > 0. Define H = {α ∈ Q∞ :

g∞(α, ρ) ∈ A}. A simple computation shows that the set H is non-negligible (recall (4.65))

0 <
P(E;A)

P(E)
=

∫
Q∞

1A(g∞(α, ρ)) q̂(dα) =

∫
H
1A(g∞(α, ρ)) q̂(dα) = q̂(H).

The lipschitz-continuity of φ∞ yields

φ∞(x) ≥ φ∞(o)− ρ+ ϵ ≥M − ρ+ ϵ, ∀x ∈ A = Bρ−ϵ(o)

hence

φ∞(g∞(α, ρ)) ≥M − ρ+ ϵ, ∀α ∈ H.

We continue the chain of inequalities, obtaining

φ∞(g∞(α, 0)) ≥ φ∞(g∞(α, ρ)) + ρ ≥M + ϵ, ∀α ∈ H.

The line above, together with the fact that q̂(H) > 0, contradicts Proposition 4.37.

4.5.1 φ∞(x) coincides with −d(x, o)

The present section is devoted in proving that, φ∞(x) = −d(x, o) + φ∞(o).

Proposition 4.39. For q̂-a.e. α ∈ Q∞, it holds that

d(o, g(α, t)) = t, ∀t ∈ [0, ρ]. (4.67)

Proof. The 1-lipschitzianity of φ∞, and the fact that E = Bρ(o) (up to a negligible set)

implies that, φ∞(x) ≥ φ∞(o) − ρ, for m-a.e. x ∈ E. Thus we deduce, using Proposition 4.37

and Equation (4.66), that

φ∞(g∞(α, 0)) ≤ φ∞(o), and φ∞(g∞(α, ρ)) ≥ φ∞(o)− ρ.

Since d
dtφ∞(g∞(α, t)) = −1, t ∈ (o, ρ), the inequalities above are saturated and

φ∞(g∞(α, t)) = φ∞(o)− t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞.
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The 1-lipschitzianity of φ∞, together with the Equation above, yields

d(o, g∞(α, t)) ≥ φ∞(o)− φ∞(g∞(α, t)) = t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞. (4.68)

Fix ϵ > 0 and let C = {α ∈ Q∞ : d(o, g∞(α, 0)) > 2ϵ}. The function f(t) := inf{d(o, g∞(α, t)) :

α ∈ C} is 1-Lipschitz and satisfies f(0) ≥ 2ϵ, hence f(t) ≥ 2ϵ− t, yielding (cfr. (4.68))

f(t) ≥ max{(2ϵ− t), t} ≥ ϵ.

The inequality above implies that g∞(α, t) /∈ Bϵ(o) for all t ∈ [0, 1], for all α ∈ C. We compute

the measure of Bϵ(o) using the disintegration formula (4.64)

m(Bϵ(o))

NωNAVRX
=

∫
Q∞

∫ ρ

0
1Bϵ(o)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫
Q∞\C

∫ ρ

0
1Bϵ(o)(g∞(α, t)) tN−1 dt q̂(dα).

If 1Bϵ(o)(g∞(α, t)) = 1, then inequality (4.68) yields t ≤ ϵ, so we continue the computation

m(Bϵ(o))

NωNAVRX
=

∫
Q∞\C

∫ ρ

0
1Bϵ(o)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫
Q∞\C

∫ ϵ

0
1Bϵ(o)(g∞(α, t)) tN−1 dt q̂(dα)

≤
∫
Q∞\C

∫ ϵ

0
tN−1 dt q̂(dα) = (q̂(Q∞)− q̂(C))

ϵN

N
.

On the other hand, the Bishop–Gromov inequality states that

m(Bϵ(o)) ≥
ϵN

ρN
m(Bρ(o)) =

ϵN

ρN
m(E) = ϵNωNAVRX ,

thus, comparing with the previous inequality, we obtain q̂(C) = 0. By arbitrariness of ϵ, we

deduce that g∞(α, 0) = o for q̂-a.e. α ∈ Q∞.

Finally, using again (4.68), we can conclude

t ≤ d(o, g∞(α, t)) ≤ d(o, g∞(α, 0)) + d(g∞(α, 0), g∞(α, t)) = t, ∀t ∈ [0, ρ], for q̂-a.e α ∈ Q∞.

Corollary 4.40. It holds that for all x ∈ Bρ(o), φ∞(x) = φ∞(o) = −d(x, o).

Proof. If x ∈ E∩T∞, then x = g(α, t) for some t, with α = Q∞(x). By the previous proposition
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we may assume that g∞(α, 0) = o, hence we have that

φ∞(x)− φ∞(o) = φ∞(g∞(α, t))− φ∞(g∞(α, 0)) = −d(g∞(α, t), g∞(α, 0)) = −d(x, o).

Since T∞ ∩ E has full measure in Bρ(o) and suppm = X, we conclude.

4.5.2 Localization of the whole space

At this point, we are in position to extend the localization given in Section 4.4.4 to the whole

space X. Since we do not know the behaviour of φ∞ outside Bρ(o), we take as reference

function −d(o, · ), which coincides with φ∞ on Bρ(o).

In this section we will use some of the concept introduced in Subsection 2.4.1. In particular

we will refer to transport relation Re; the transport set T turns out to have full m-measure.

We will denote by Q the quotient set and Q : T → Q be the quotient map; let Xα := Q−1(α)

be the disintegration rays and let g : Dom(g) ⊂ R×Q→ X be the standard parametrization.

Define q := 1
m(E)Q#(m⌞E) (note that for the moment we still do not know if Q#(m⌞E) ≪ q).

Proposition 4.41. For q-a.e. α ∈ Q, it holds that d(o, g(α, t)) = t, for all t ∈ [0, |Xα|].

Proof. Let q̃ ∈ P(Q) be a measure such that q̃ ≪ Q#(m) ≪ q̃. The maximality of the

rays (see [27, Theorem 7.10]) guarantees that R̊e(α) ⊂ Xα, for q̃-a.e. α ∈ Q, where R̊e(α)

denotes the relative interior of Re(α). By definition of distance o ∈ Rb(α), for all α ∈ Q, thus

g(α, 0) = o for q̃-a.e. α ∈ Q. Since q ≪ Q#m ≪ q̃, the thesis follows.

Proposition 4.42. It holds true that Q#m ≪ q.

Proof. Let q̃ ∈ P(Q) be a measure such that Q#(m) ≪ q̃. Using the Localization Theorem,

we get that m =
∫
Q m̃α q̃(dα), where the measures m̃α are supported on Xα and satisfy the

CD(0, N) condition. Let A ⊂ Q be a set such that q(A) = 0, that is 0 = m(Bρ(0)∩Q−1(A)) =∫
Am(Bρ(o)) q̃(dα), thus m̃α(Bρ) = 0, for q̃-a.e. α ∈ A Since d(o, g(α, t)) = t, for q̃-a.e. α ∈ A

(compare with the previous proof), the CD(0, N) condition applied to every m̃α yields m̃α = 0

for q̃-a.e. α ∈ Q. It follows that m(Q−1(A)) = 0.

The previous proposition allows us to use the Theorem 2.7, hence there exists a unique

disintegration for the measure m

m =

∫
Q
mα q(dα), (4.69)

such that: 1) the measures mα are supported on Xα; 2) the space (Xα, d,mα) satisfy the

CD(0, N) condition. We denote by hα : (0, |Xα|) → R the density function such that mα =

(g(α, ·))#(hαL⌞
(0,|Xα|)).
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The next two propositions bound together the localization obtained in section 4.4.4 (in par-

ticular Corollary (4.33)) with the localization using −d(o, · ) as 1-Lipschitz reference function.

Proposition 4.43. There exists a unique measurable map L : Dom(L) ⊂ Q∞ → Q such that

the domain of L has full q̂ in Q∞ and it holds

L(Q∞(x)) = Q(x), ∀x ∈ Bρ(o) ∩ T∞ ∩ T , and q = L#q̂.

Proof. Since φ∞ = φ∞(o) − d(o, · ) on Bρ(o), the partitions (Xα,∞)α∈Q∞ and (Xα)α∈Q agree

on the set Bρ(o) ∩ T∞ ∩ T , that is, given x, y ∈ Bρ(o) ∩ T∞ ∩ T , we have that (x, y) ∈ R∞ if

and only if (x, y) ∈ R. Consider the set

H := {(x, α, β) ∈ (Bρ(o) ∩ T∞ ∩ T )×Q∞ ×Q : Q∞(x) = α and Q(x) = β},

and let G := πQ∞×Q(H) be the projection of H on the second and third variable. For what

we have said G is the graph of a map L : Dom(L) ⊂ Q∞ → Q. The other properties easily

follow.

Proposition 4.44. For q-a.e. α ∈ Q, it holds that |Xα| ≥ ρ and

hα(r) = NωNAVRXr
N−1, ∀r ∈ [0, ρ].

Proof. Comparing Equation (4.67) with Proposition 4.41 we deduce that for q̂-a.e. α ∈ Q∞, it

holds that

g∞(α, t) = g∞(L(α), t), ∀t ∈ (0,min{ρ, |Xα|}).

Comparing the disintegration formulas (4.59) and (4.69), we deduce

m⌞E=
∫
Q
m̂α,∞ q̂(dα) =

∫
Q
mα⌞E q(dα) =

∫
Q∞

(mL(α))⌞E q̂(dα),

hence m̂α,∞ = (mL(α))⌞E , thus, recalling (4.64), we deduce that

hα(r) = NωNAVRXr
N−1, ∀r ∈ (0,min{ρ, |Xα|}).

The fact that |Xα| ≥ ρ follows from the expression above.

Theorem 4.45. For q-a.e. α ∈ Q, it holds that |Xα| = ∞ and

hα(r) = NωNAVRXr
N−1, ∀r > 0.
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Proof. Fix ϵ > 0 and let

C :=

{
α ∈ Q : lim

R→∞

∫ R

0
hα/R

N < ωNAVRX(1− ϵ)

}
,

with the convention that the limit above is 0 if |Xα| < ∞ (notice that the limit always exists

and it is not larger than ωNAVRX by the Bishop–Gromov inequality applied to each density

hα). We compute the a.v.r. using the disintegration

AVRXωN = lim
R→∞

m(BR)

RN
= lim

R→∞

∫
Q

∫ R

0

hα(t)

RN
dt q(dα) =

∫
Q

lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα)

=

∫
C

lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα) +

∫
Q\C

lim
R→∞

∫ R

0

hα(t)

RN
dt q(dα)

≤
∫
C
ωNAVRX(1− ϵ) q(dα) +

∫
Q\C

ωNAVRX q(dα) = ωNAVRX(1− ϵq(C)),

thus q(C) = 0. By arbitrariness of ϵ we deduce that limR→∞
∫ R
0 hα/R

N = ωNAVRX , hence

hα(t) = NωNAVRXt
N−1, for q-a.e. α ∈ Q̃.

The proof of Theorem 1.5 is therefore concluded.



Chapter 5

Isoperimetric inequality in

irreversible Finsler manifolds

This chapter contains the proofs of the isoperimetric inequality for Finsler manifolds and its

rigidity. Section 5.1 contains a few facts on Finsler geometry. Section 5.2 is devoted to the

proof of Theorem 1.7, whereas the remaining sections contain the proof of Theorem 1.8

5.1 Finsler geometry

We quickly recall the basic notions regarding Finsler manifolds. The reader should refer to

the monograph [74] for more details. We adopt the convention that a manifold may have a

boundary, unless otherwise stated. We require the boundary to be Lipschitz.

Definition 5.1. Let X be a connected n-dimensional manifold. We say that a function

F : TX → [0,∞) is a Finsler structure on X if

1. (Regularity) F is C∞ on TX\0, where 0 denotes the null section;

2. (Positive 1-homogeneity) For all c > 0, v ∈ TX, it holds that F (cv) = cF (v);

3. (Strong convexity) On each tangent space TxX, the function F 2 is strictly convex.

The reader should notice that in general F (v) ̸= F (−v). This feature, known as irreversibil-

ity, is what precludes us from applying the theory of m.m.s.’s. We define the reversibility

constant of a Finsler structure as

ΛX,F := sup
v∈TX:v ̸=0

F (v)

F (−v)
∈ [1,∞],

81
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or, in other words, ΛX,F ∈ [1,∞] is the least constant such that F (v) ≤ ΛX,FF (−v), for all

v ∈ TX. Later we will restrict ourself to the family of Finsler structures with finite reversibility.

If no confusion arises, we shall write ΛF = ΛX,F . If X is compact, then ΛX,F <∞.

We define the speed of a C1 curve η as F (η̇). The notion of speed naturally induces a

length functional

Length(η) :=

∫ 1

0
F (η̇) dt,

and thus we have a natural notion of distance between two points given by

dX,F (x, y) := inf
η
{Length(η) : η0 = x, and η1 = y}.

Whenever no confusion arises, we shall write d = dX,F . The distance d satisfies the usual

properties of a distance, with the exception of the symmetry

d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈M, and d(x, y) = 0 ⇔ x = y.

Remark 5.2. We reassure the reader on the fact that the lack of symmetry of the distance

does not harm most of the classical theory of metric spaces. Indeed, one can build g1 and g2,

two Riemannian metric on TX, such that√
g1(v, v) ≤ F (v) ≤

√
g2(v, v), ∀v ∈ TX.

Such metrics can be built on local charts and then glued together using a partition of the

unity. Furthermore, such metrics can be chosen so that g2 ≤ fg1, for some continuous function

f : X → [1,∞).

Using these metrics one can reobtain many classical results for free. In particular, we will

make use of the Ascoli–Arzelà theorem, the fact that locally Lipschitz functions (as will be

later introduced) are differentiable almost everywhere, and that locally Lipschitz functions

with compact support are globally Lipschitz.

We define the forward and backward balls, respectively, as

B+(x, r) := {y ∈M : d(x, y) < r}, B−(x, r) := {y ∈M : d(y, x) < r}.

If A ⊂M , we define its (forward) ϵ-enlargement as B+(A, ϵ) :=
⋃
x∈AB

+(x, ϵ). The topology

induced by forward and backward balls coincides an it is indeed the topology of the manifold;

therefore the distance function is continuous in the product topology. We say that a set A is

forward (resp. backward) bounded, if for some (hence any) x0 ∈ X, there exists r > 0 such

that A ⊂ B+(x0, r) (resp. A ⊂ B−(x0, r)). We say that a set is bounded if it both backward
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and forward bounded. We denote by diamA := supx,y∈A d(x, y) the diameter of a set; a set

has finite diameter if and only if it is bounded.

Later we will impose some compactness on the manifold we deal with. Namely, we will

require that closed, forward bounded sets are compact, or, equivalently that closed forward

balls are compact. This condition implies that given two points there exists a geodesics (as

defined in the next paragraph) joining these two points.

A curve γ : [0, l] →M is called geodesics if it minimizes the length and its speed is constant.

We point out that, if γ : [0, l] → M is a geodesics, in general the reverse curve t 7→ γl−t may

fail to be a geodesics due to the possible irreversibility of the manifold. We will denote by

Geo(X) the set of geodesics with domain the interval [0, 1]. Like in the reversible setting, if

γ ∈ Geo(X) is a geodesics, it holds that

d(γt, γs) = (s− t) d(γ0, γ1), ∀0 ≤ t ≤ s ≤ 1;

in this case the condition t ≤ s cannot be lifted. In the case when the boundary is not empty,

we will require some convexity, namely, that for all points x, y ∈ X\∂X, and for all geodesics

γ connecting x to y, we have that γ does not touch the boundary.

Given a submanifold Y ⊂ X, we can identify the tangent bundle TY as a subset of TX via

the standard immersion. With this notation, we can restrict the Finsler structure F to TY ;

clearly, F |TY satisfies Definition 5.1. Regarding the reversibility constant and the distance,

one immediately sees that

ΛY,F ≤ ΛX,F , and dX,F (x, y) ≤ dY,F (x, y), ∀x, y ∈ Y.

We define the dual function F ∗ : T ∗X → [0,∞) as

F ∗(ω) := sup{ω(v) : v ∈ TxX, and F (v) ≤ 1}, if ω ∈ T ∗
xM.

Notice that, while we have that ω(v) ≤ F ∗(ω)F (v), the “reverse” inequality may not hold:

ω(v) ≱ −F ∗(ω)F (v). We define the Legendre transform L : T ∗
xX → TxX as L(ω) = v, where

v ∈ TxM is the unique vector such that F (v) = F ∗(ω) and ω(v) = F (v)2 (the uniqueness

follows from the fact that F 2 is smooth and strictly convex). Given a differentiable function

f :M → R, we define its gradient as ∇f(x) := L(df(x)). Please note that in general ∇(−f) ̸=
−∇f .
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We say that a function f : X → R is L-Lipschitz (with L ≥ 0), if 1

−Ld(y, x) ≤ f(x)− f(y) ≤ Ld(x, y), ∀x, y ∈M. (5.1)

We point out that the first inequality in (5.1) follows from the second by swapping x with y.

The family of L-Lipschitz functions is stable by pointwise limits; the infimum or the supremum

of L-Lipschitz functions is still L-Lipschitz. Moreover, by Ascoli–Arzelà theorem, the family

of L-Lipschitz functions forms a compact set in the topology of local uniform convergence. If

f is L-Lipschitz, then −f is (ΛFL)-Lipschitz. Two examples of 1-Lipschitz functions are given

by f(x) = −d(o, x) and g(x) = d(x, o), for some fixed point o.

We define the (descending) slope of a locally Lipschitz function f as

|∂f |(x) := lim sup
y→x

(f(x)− f(y))+

d(x, y)
.

Obviously, if f is L-Lipschitz, then |∂f | ≤ L. If Y ⊂ X is a submanifold, and f : X → R, then
|∂Y f | ≤ |∂Xf | in Y , where these two expressions have the meaning of the slope of f as seen

as a function defined in Y and X, respectively. If f is differentiable at x ∈ X, the slope can

be computed as |∂f |(x) = F ∗(−df(x)) = F (∇(−f)(x)), hence for locally Lipschitz functions

|∂f | = F (∇(−f)) almost everywhere.

Finally, we would like to endow a manifold with a measure. Differently from the Riemannian

case, there is no canonical measure induced from the Finsler structure. On the other hand

the theory of m.m.s.’s does not require any strong assumption on the reference measure and,

a priori, this measure might have nothing to do with the Hausdorff measure. For this reason

we will only require for the reference measure to have a smooth density when expressed in

coordinates. We conclude this section with the definition of Finsler manifold.

Definition 5.3. A triple (X,F,m) is called Finsler manifold, provided that X is a connected

differential manifold (possibly with boundary) F is a Finsler structure on X and m is a positive

smooth measure, i.e., given x1, . . . , xn local coordinates, we have that

m = f dx1 . . . dxn, with f > 0 and f ∈ C∞.

5.1.1 Perimeter

We summarize the topic of the perimeter in Finsler manifolds; the reader check Section 2.2 for

more details.

1Please note that we have chosen a sign convention different from [72, 74] (a function f is L-lipschitz in our
sense, if −f is L-Lipschitz in the sense of the cited papers). However, this sign convention is consistent with
the Kantorovich potential decreases along the transport rays.
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The definition of perimeter is given analogously to how is given for m.m.s., this time using

the descending slope. Given a Borel subset E ⊂ X and Ω open, the perimeter of E relative to

Ω is denoted by P(E; Ω) and is defined as follows

P(E; Ω) := inf

{
lim inf
n→∞

∫
Ω
|∂un| dm;un ∈ Liploc(Ω), un → 1E in L1

loc(Ω)

}
.

The perimeter for Finsler manifolds enjoys the properties reported in Section 2.2, such as the

locality and the lower semicontinuity, but, due to the possible irreversibility of the Finsler

structure, the complementation property does not hold in general.

Like for the metric-measure setting, if E is a set of finite perimeter, then the set function

A → P(E;A) is the restriction to open sets of a finite Borel measure P(E; ·) in X. This fact

seems to be novel and it is proven in details in Appendix A.

Finally, given a subset E ⊂M , we define its (forward) Minkowski content as

m+(E) := lim inf
ϵ→0+

m(B+(E, ϵ))−m(E)

ϵ
.

It can be shown that the perimeter is the l.s.c. relaxation of the Minkowski content w.r.t. the

L1 distance of sets. The proof of this fact can be found in Appendix B.

5.1.2 Wasserstein distance and the Curvature-Dimension condition

In this section, first we shortly present the Wasserstein (irreversible) distance over Finsler

manifolds, then the CD condition is presented. The ideas are more or less the same of Section 2.1

(which we refer for more details).

Let (X,F,m) be a Finsler manifold, such that all closed forward balls are compact. We say

that a measure µ ∈ P(X) has finite p-moment if∫
X
(d(o, x) + d(x, o))p µ(dx), for some (hence any) o ∈ X.

The set of measures having finite p-th moment is denoted by Pp(X). The p-Wasserstein

(irreversible) distance Wp(µ0, µ1), for µ0, µ1 ∈ Pp(X), is then defined as

Wp(µ0, µ1) :=

(
min
π

∫
X×X

dp(x, y)π(dxdy)

) 1
p

<∞.

A geodesic in the Wasserstein space (Pp(X),Wp) is a curve µ : [0, 1] → Pp such that

Wp(µt, µs) = (s− t)Wp(µ0, µ1), ∀0 ≤ t ≤ s ≤ 1.
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It can be shown that if µ0 and µ1 are absolutely continuous, there exists a unique geodesics

connecting µ0 to µ1.

The CD(K,N) for condition for Finsler manifolds has been introduced in [69] (see also the

survey [70]). Here we report only the case K = 0.

Definition 5.4 (CD(0, N) for Finsler manifolds). Let (X,F,m) be a Finsler manifold, such

that closed forward balls are compact and let N ∈ [dimX,∞). We say that (X,F,m) satisfies

the CD(0, N) condition if and only if the N ′-Rényi entropy is convex along the geodesics

of the Wasserstein space ∀N ′ ≥ N , that is, for any couple of absolutely continuous curves

µ0, µ1 ∈ P2(X), it holds that

SN ′(µt|m) ≤ (1− t)SN ′(µ0|m) + tSN ′(µ1|m), ∀N ′ ≥ N,

where (µt)t∈[0,1] is the unique geodesic connecting µ0 to µ1.

Similarly to the Riemannian case, a notion of weighted N -Ricci curvature, still denoted by

RicN , has been introduced. Here we do not give the definition of RicN , for it is quite lenghty and

useless for our purposes. Ohta [68] proved that a Finsler manifold without boundary satisfies

the CD(0, N) condition if and only if RicN ≥ 0. The possible presence of the boundary in

the manifolds does not harm the results of this thesis; indeed, we rely only on the curvature

dimension condition given by Definition 5.4 and never on RicN .

Among many consequences of the CD(0, N) condition, two are of our interest. One is the

Brunn–Minkowski inequality (see, e.g., [74, Theorem 18.8]). Given two measurable subsets A

and B of a CD(0, N) Finsler manifold (X,F,m), we define

Zt(A,B) :={γt : γ is a geodesics such that γ0 ∈ A and γ1 ∈ B}

={z : ∃x ∈ A, y ∈ B : d(x, z) = td(x, y) and d(z, y) = (1− t)d(x, y)}.

With this notation, we have the Brunn–Minkowski inequality

m(Zt(A,B))
1
N ≥ (1− t)m(A)

1
N + tm(B)

1
N , t ∈ [0, 1].

The other property we are interested in is the Bishop–Gromov inequality that states

m(B+(x, r))

rN
≥ m(B+(x,R))

RN
, ∀0 < r ≤ R,

for any fixed point x ∈ X. This inequality guarantees that the definition of asymptotic volume
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ratio given below is well posed

AVRX := lim
R→∞

m(B+(x,R))

ωNRN
.

5.1.3 Localization

This section presents the localization technique as developed by Ohta [72]. The localization

paradigm for Finsler manifolds is quite similar with the localization for m.m.s.’s. In this section,

we only recall the main points of the localization in Finsler manifolds, with more emphasis to

the differences with the metric-measure setting.

In his work, Ohta considered manifolds without boundary. However, his proof also work

for manifolds with boundary satisfying the following convexity assumption: for all points x, y

in the interior and for all geodesics γ connecting x to y, it holds that γ does not touch the

boundary.

Consider a CD(0, N) Finsler manifold (X,F,m) and a function f ∈ L1(m) with finite first

moment such that ∫
X
f dm = 0.

The function f induces two absolutely continuous measures µ0 = f+m and µ1 = f−m. Let ϕ

be a 1-Lipschitz Kantorovich potential for µ0 and µ1. We can construct the set

Γ := {(x, y) ∈ X ×X : ϕ(x)− ϕ(y) = d(x, y)}, 2

inducing a partial order relation.

We now slightly depart from the approach of Section 2.4.1. The maximal chains of this

order relation turns out to be the image of curves of maximal slope for ϕ with unitary speed.

To be more precise, we say that a unitary speed geodesics γ : Dom(γ) ⊂ R → X is a non-

degenerate transport curve, if its domain has at least two points, d
dtϕ(γ(t)) = −1, and γ cannot

be extended to a larger domain.

Given a point x ∈ X, three possible cases are possible.

� There is no non-degenerate transport curve passing through x. We denote by D the set

of such points. The set D is generally large.

� There is exactly 1 non-degenerate transport curve passing through x. Such points form

the transport set that will be denoted by T . A fundamental property of T is that the f

is constantly 0 a.e. in X\T .

2Plese, notice that we use a different sign convention from [72, 74]. However, this convention is consistent
with Section 2.4.1.
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� There are 2 or more non-degenerate transport curves passing through x. Such points

are called branching points and the set that they form will be denoted by A. The set A
turns out to be negligible.

We will also refer to the sets of forward (resp. backward) branching points A+ (resp. A−),

defined in the same way as in (2.8).

On the transport set, we define the equivalence relation R as R = (Γ∪Γ−1)∩ (T ×T ), and

the equivalence classes turns out to be precisely the images of the transport curves. Similarly

to the metric-measure setting, one chooses Q ⊂ T a measurable section of the equivalence

relation R and define the quotient map Q : T → Q. The transport rays are the equivalence

classes and are denoted by (Xα)α∈Q.

We still denote by g : Dom(g) ⊂ Q× [0,+∞) → T , the measurable parametrization of the

transport rays, such that inf Dom(g(α, · )) = 0. The map g enjoys all the properties described

in Section 2.4.1. Define also |Xα| := supDom(g(α, · )) = 0. We stress out that due to the

possible irreversibility of the manifold, |Xα| is not the diameter of Xα, in general. Indeed, on

one hand we have that |Xα| = d(g(α, 0), g(α, |Xα|)); on the other, the irreversibility of d might

cause the diameter be larger than |Xα|.

The transport rays naturally come with the structure of one-dimensional oriented manifold,

with the orientation given by ∂tg(α, t), the velocity of the parametrization. We endow Xα with

the Finsler structure given by the restriction of F to Xα; notice that F (∂tg(α, t)) = 1. As we

already pointed out, it holds that

dX,F (x, y) ≤ dXα,F (x, y), ∀x, y ∈ Xα;

if (x, y) ∈ Γ, the inequality above is saturated, hence

d(g(α, t), g(α, s)) = s− t, ∀0 ≤ t ≤ s ≤ |Xα|.

We are in position to apply the Disintegration Theorem to (T ,B(T ),m⌞T ), obtaining a

disintegration

m⌞T =
∫
Q
mα q(dα),

for some suitable probability measure q and for a family of measures (mα)α∈Q, each of them is

supported on Xα. The transport ray Xα is endowed with the measure mα, making (Xα, F,mα)

a one-dimensional oriented Finsler manifold.

Differently from the reversible case, it might happen that the transport rays fail to satisfy

the CD(0, N) condition. However, a bound from below on the Ricci curvature can be given in

a certain sense than now we specify. It can be proved that mα = (g(α, · ))#(hαL1
(0,|Xα|)), for a
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certain non-negative function hα. The function hα satisfies (h
1

N−1
α )′′ ≤ 0 in the distributional

sense, i.e., the function h
1

N−1
α is concave. Here we can recognize the CD(0, N) for weighted

Riemannian manifolds, namely that the space ([0, |Xα|], | · |, hαL1
[0,|Xα|]) satisfies the CD(0, N)

condition. This fact leads us to the following definition.

Definition 5.5. Let (X,F,m) be a Finsler manifold diffeomorphic to an interval, endowed

with an orientation given by a vector field v, such that F (v) = 1. We say that (X,F,m)

satisfies the oriented CD(0, N) condition (N > 1), if the following happens. There exists g :

Dom(g) ⊂ R → X a parametrization of X such that ∂tg(t) = v(g(t)) and h : Dom(g) → [0,∞),

a function such that g#(hL1) = m and h
1

N−1 is concave.

With this definition, clearly holds that the transport rays satisfy the oriented CD(0, N)

condition. For the reader used with the notion of N -Ricci curvature, we point out that the

oriented CD(0, N) condition is equivalent to the fact RicN (∂tg(α, t)) ≥ 0.

Finally, we point out that, as a consequence of the properties of the optimal transport, we

can localize the constraint
∫
X f dm = 0, i.e. it holds that

∫
X f dmα = 0, for q-a.e. α ∈ Q.

We summarize this section in the following theorem.

Theorem 5.6. Let (X,F,m) be a Finsler manifold satisfying CD(0, N), for some N ∈ (1,∞).

Let f ∈ L1(m) with
∫
X f m = 0 and∫

X
(d(o, x) + d(x, o))|f(x)|m(dx) <∞, for some (hence any) o ∈ X.

Then there exists a measurable subset T ⊂ X (named transport set), a family {(Xα, F,mα)}α∈Q
of oriented one-dimensional submanifolds of X (named transport rays), and a measurable func-

tion g : Dom(g) ⊂ Q× [0,∞) such that the following happens.

The function f is zero m-a.e. in X\T and m⌞T can be disintegrated in the following way

m⌞T =
∫
Q
mα q(dα).

Moreover, for q-a.e. α ∈ Q, the transport ray (Xα, F,mα) is parametrized by the unitary speed

geodesics g(α, · ), it satisfies the oriented CD(0, N) condition, and it holds that∫
f dmα = 0, (5.2)

Furthermore, two distinct transport rays can only meet at their extremal points (having measure

zero for mα).
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5.2 Proof of Theorem 1.7

We devout this section in proving Theorem 1.7.

Proof of Theorem 1.7. We will first prove that

m+(E) ≥ N(ωNAVRX)
1
N m(E)1−

1
N , ∀E ⊂ X bounded.

From the inequality above the thesis will immediately follow by Theorem B.5.

Fix E ⊂ X bounded and x0 ∈ E; set d = diamE. Fix R > 0 so that E ⊂ B+(x0, R). We

claim that Zt(E,B
+(x0, R)) ⊂ B+(E, t(d+R)). Indeed, let z ∈ Zt(E,B

+(x0, R)), hence there

exist x ∈ E and y ∈ B+(x0, R) so that d(x, z) = td(x, y). By triangular inequality we deduce

that

d(x, z) = td(x, y) ≤ t(d(x, x0) + d(x0, y)) ≤ t(d+R),

thus z ∈ B+(E, t(d + R)), proving the claim. We are in position to compute the Minkowski

content, using the Brunn–Minkowski inequality

m+(E) = lim inf
ϵ→0

m(B+(E, ϵ))−m(E)

ϵ
= lim inf

t→0

m(B+(E, t(d+R)))−m(E)

t(d+R)

≥ lim inf
t→0

m(Zt(E,B
+(x0, R))−m(E)

t(d+R)

≥ lim inf
t→0

((1− t)m(E)
1
N + tm(B+(x0, R))

1
N )N −m(E)

t(d+R)

≥ lim inf
t→0

m(E) +Nm(E)1−
1
N t(m(B+(x0, R))

1
N −m(E)

1
N ) + o(t)−m(E)

t(d+R)

= Nm(E)1−
1
N
m(B+(x0, R))

1
N −m(E)

1
N

d+R
.

By taking the limit as R→ ∞, recalling the definition of AVRX , we conclude.

5.3 Localization of the measure and the perimeter

From now on we assume that every Finsler manifold has finite reversibility constant, that

every closed forward ball is compact, and the following convexity hypothesis: for all x, y in the

interior of a manifold and for all geodesics γ connecting them, we have that γ does not touch

the boundary. To prove Theorem 1.8 we consider the isoperimetric problem inside a ball with

larger and larger radius. In order to apply the needle decomposition given by the Localization

Theorem 2.6, one also needs in principle the balls to be convex. As in general balls fail to be

convex, we will overcome this issue in the following way.
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Given a bounded set E ⊂ X with 0 < m(E) < ∞, fix a point x0 ∈ E and then consider

R > 0 such that E ⊂ BR (hereinafter we will adopt the following notation BR := B+(x0, R)).

Consider then the following family of null-average functions:

fR(x) = χE − m(E)

m(BR)
χBR

.

Clearly, fR falls in the hypothesis of Theorem 2.6. Thus we obtain a measurable subset TR ⊂ X

(the transport set) and a family {(Xα,R, F,mα,R)}α∈QR
of transport rays, so that the measure

m⌞TR can be disintegrated:

m⌞TR=
∫
QR

mα,R qR(dα), qR(QR) = m(TR), (5.3)

where mα,R are probability densities supported on Xα,R. We denote by gR(α, · ) : [0, |Xα,R|] →
Xα,R the unit speed parametrisation of the transport ray Xα,R, in the direction given by the

natural orientation of the disintegration ray Xα,R. With this notation, it holds

mα,R = (gR(α, · ))#(hα,RL1⌞[0,|Xα,R|]),

for some CD(0, N) density hα,R. The localization of the zero mean implies that (see (5.2))

mα,R(E) =
m(E)

m(BR)
mα,R(BR), qR-a.e. α ∈ QR.

Unfortunately, the presence of the factor mα,R(BR) in the r.h.s. of the equation does make the

quantity mα,R independent of α, harming the localization approach. To get rid of this factor

we proceed as follows.

We define Tα,R to be the unique element of [0, |Xα,R|] such that

mα,R(gR(α, [0, Tα,R])) =

∫ Tα,R

0
hα,R(x) dx = mα,R(BR)

The measurability in α of mα,R implies the same measurability for Tα,R.

Notice that |Xα,R| ≤ R + diam(E): since gR(α, · ) is the unit speed parametrization of

Xα,R, then

d(gR(α, 0), gR(α, |Xα,R|)) ≤ d(gR(α, 0), x0) + d(x0, gR(α, |Xα,R|)) ≤ diam(E) +R,

and consequently we deduce Tα,R ≤ R+diam(E). We restrict mα,R to X̂α,R := gR(α, [0, Tα,R]),
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having the following disintegration formula:

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), m̂α,R :=
mα,R⌞X̂α,R

mα,R(BR)
∈ P(X), q̂R = m·,R(BR) qR; (5.4)

where T̂R := ∪α∈QR
X̂α,R. Using (5.3) and the fact that BR ⊂ TR, we get q̂R(QR) = m(BR),

The disintegration (5.4) will be a useful localisation only if (E ∩Xα,R) ⊂ X̂α,R; in this case

we have

m̂α,R(E) =
m(E)

m(BR)
, q̂R-a.e. α ∈ QR,

obtaining a localization constraint independent of α. To prove this inclusion we will impose

that E ⊂ BR/(4ΛF ). Since gR(α, · ) : [0, |Xα,R|] → Xα,R has unitary speed, we notice that

d(x0, gR(α, t)) ≤ d(x0, gR(α, 0)) + d(gR(α, 0), gR(α, t)) ≤
R

4ΛF
+ t ≤ R

2
+ t,

where in the second inequality we have used that each starting point of the transport ray has to

be inside E ⊂ BR/(4ΛF ), being precisely where fR > 0. The inequality above yields gR(α, t) ∈
BR for all t < R/2, hence ((gR(α, · ))−1(BR) ⊃ [0,min{R/2, |Xα,R|}], thus there are no “holes”

inside (gR(α, · ))−1(BR) before min{R/2, |Xα,R|}, implying that |X̂α,R| ≥ min{R/2, |Xα,R|}.
Fix x ∈ E ∩Xα,R and let t ∈ [0, |Xα,R|] be such that x = gR(α, t). It holds that

t = d(gR(α, 0), x) ≤ d(gR(α, 0), x0) + d(x0, x) ≤ (Λ + 1)
R

4Λ
≤ R

2
,

where in the second inequality we used that gR(α, 0), x ∈ E ⊂ BR/(4Λ). The inequality im-

mediately implies (gR(α, · ))−1(E) ⊂ [0,min{R/2, |Xα,R|}], hence E ∩ XR,α ⊂ X̂α,R, as we

desired.

We describe explicitly the measure q̂R in term of a push-forward via the quotient map QR

of the measure m⌞E

q̂R(A) =

∫
QR

1A(α)
m(BR)

m(E)
m̂α,R(E) q̂R(dα)

=

∫
QR

m(BR)

m(E)
m̂α,R(E ∩Q−1

R (A)) q̂R(dα) =
m(BR)

m(E)
m(E ∩Q−1

R (A)),

hence q̂R = m(BR)
m(E) (QR)#(m⌞E).

We study now the relation between the perimeter and the disintegration of the mea-

sure (5.4). Let Ω ⊂ X be an open set and consider the relative perimeter P(E; Ω). Let

un ∈ Liploc(Ω) be a sequence such that un → 1E in L1
loc(Ω) and limn→∞

∫
Ω |∂un| dm = P(E; Ω).
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Using the Fatou Lemma, we can compute

P(E; Ω) = lim
n→∞

∫
Ω
|∂un| dm ≥ lim inf

n→∞

∫
Ω∩T̂R

|∂un| dm

= lim inf
n→∞

∫
QR

∫
Ω
|∂un| m̂α,R(dx) q̂R(dα) ≥

∫
QR

lim inf
n→∞

∫
Ω
|∂un| m̂α,R(dx) q̂R(dα)

≥
∫
QR

lim inf
n→∞

∫
Xα,R∩Ω

|∂XR,α
un| m̂α,R(dx) q̂R(dα) ≥

∫
QR

P
X̂α,R

(E; Ω) q̂R(dα),

where |∂Xα,R
u| denotes the slope of the restriction of u to the transport ray X̂α,R and P

X̂α,R

the perimeter in the submanifold (X̂α,R, F, m̂α,R).

By arbitrariness of Ω, we deduce the following disintegration inequality

P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα).

We summarise this construction in the following

Proposition 5.7. Let (X,F,m) be a CD(0, N) Finsler manifold with finite reversibility ΛF <

∞. Given any bounded set E ⊂ X with 0 < m(E) < ∞, fix any point x0 ∈ E and then fix

R > 0 such that E ⊂ BR/(4ΛF )(x0).

Then there exists a Borel set T̂R ⊂ X, with E ⊂ T̂R and a disintegration formula

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), m̂α,R(X̂α,R) = 1, q̂R(QR) = m(BR), (5.5)

such that

m̂α,R(E) =
m(E)

m(BR)
, for q̂R-a.e. α ∈ QR and q̂R =

m(BR)

m(E)
(QR)#(m⌞E), (5.6)

Moreover, the transport ray (X̂α,R, F, m̂α,R) satisfies the oriented CD(0, N) condition and it

holds that |Xα| ≤ R+ diam(E). Furthermore, the following formula holds true

P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα). (5.7)

The rescaling introduced in Proposition 5.7 will be crucially used to obtain non-trivial limit

estimates as R→ ∞.
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5.4 One dimensional analysis

Proposition 5.7 is the first step to obtain from the optimality of a bounded set E an almost

optimality of E ∩ X̂α,R. We now have to analyse in details the behaviour of the perimeter in

one-dimensional oriented Finsler manifolds.

We fix few notation and conventions. A one dimensional oriented Finsler manifold can be

identified with the manifold (I, F,m), where I ⊂ R is an interval. Without loss of generality

we assume that the orientation is given by the coordinated vector field ∂t on I. Since we are

studying manifolds arising from the localization, we shall consider only Finsler structures that

satisfy F (∂t) = 1. Thus, it is clear that the Finsler structure is completely determined by

F (−∂t); for this reason, with a slight abuse of notation, we will denote by F , the real-valued

function given by F (−∂t). With this convention, the reversibility constant turns out to be

ΛI,F = sup
x∈I

{
max

{
F (x),

1

F (x)

}}
.

When the interval has finite diameter, we will always assume that I = [0, D]. Notice that D in

general is not the diameter, for it may happen that d(D, 0) > d(0, D) = D; however, it holds

that diam(I, F ) ≤ ΛI,FD.

If (I, F,m) satisfies the oriented CD(0, N) condition, then it happens that m is absolutely

continuous w.r.t. the Lebesgue measure L1 and

(h
1

N−1 )′′ ≤ 0, in the sense of distributions, where h =
dm

dL1
.

We stress out that if (I, F, hL1⌞I) satisfies the oriented CD(0, N) condition, then the reversible

manifold (I, | · |, hL1⌞I) satisfies the CD(0, N) condition.

We make use of the notation introduced in Section 4.2; in particular, we recall a few

definitions:

mh := hL1⌞I , vh(r) :=

∫ r

0
h(s) ds, rh(v) := (vh)

−1(v),

We will denote by PF,h the perimeter in the Finsler manifold (I, F, hL1⌞I). If the Finsler

structure is the Euclidean one, in order to simplify the notation, we shall write Ph = P| · |,h;

this notation is compatible with the notation we used in the Finsler setting. As we have

already pointed out, if E ⊂ [0, D] is a set of finite perimeter, then it can be decomposed as

E =
⋃
i(ai, bi). In this case, we have that the perimeter is given by the formula

PF,h(E) =
∑
i:ai ̸=0

F (ai)h(ai) +
∑
i:bi ̸=D

h(bi),
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which takes into account the Finsler structure F . It should be noticed, that the Finsler

structure is seen only by the left-pointing part of the boundary. Therefore, if E is of the form

[0, b], then PF,h(E) = Ph(E). From the equation above, we immediately deduce a lower bound

on the irreversible perimeter in terms of the reversible perimeter

PF,h(E) ≥ Λ−1
I,FPh(E).

We can continue this chain on inequalities with the isoperimetric inequality for the reversible

setting (see Section 4.2.1), obtaining

PF,h(E) ≥ Λ−1
I,F IN,D(mh(E)),

provided that h is defined on an interval [0, D′], with D′ ≤ D. Once again, we notice that D

is not an upper bound on the diameter of the space, in general, due to the irreversibility. We

can now obtain an expansion of the inequality above as a corollary of Lemma 4.2.

Corollary 5.8. Fix N > 1. Then for all D ≥ D′ > 0 and for all one-dimensional oriented

Finsler manifolds ([0, D′], F, hL1) satisfying the oriented CD(0, N) condition, it holds that

PF,h(E) ≥
IN,D(mh(E))

ΛF
≥ N

ΛFD′mh(E)1−
1
N (1−O(mh(E)

1
N )

≥ N

ΛFD
mh(E)1−

1
N (1−O(mh(E)

1
N ),

(5.8)

for any Borel set E ⊂ [0, D′].

Remark 5.9. The lower bound in (5.8) is very rough for our purposes. If one attempted to

prove the isoperimetric inequality (1.6), by adapting the proof contained in Section 4.2.2, the

inverse of the reversibility constant would appear in the lower bound.

The only reason why the factor Λ−1
F appears in (5.8), is that the part of the boundary

where the external normal vector “points to the left” might be non-empty. Indeed, if E is of

the form [0, b], then PF,h(E) = P| · |,h(E). We will see that the part of the boundary “pointing

to the left” contributes little to the perimeter.

5.4.1 One dimensional reduction for the optimal region

We give the definition of the residual of a set in a irreversible setting.

Definition 5.10. Let D ≥ D′ > 0 and let ([0, D′], F, hL1) be a one-dimensional Finsler

manifold satisfying the oriented CD(0, N) condition. If E ⊂ [0, D′] is Borel set, we define its

D-residual as

ResDF,h(E) :=
DPF,h(E)

N(mh(E))1−
1
N

− 1.
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If v ∈ (0, 1/2), then we easily see that

ResDh (v) = ResDF,h([0, rh(v)]) =
Dh(rh(v))

Nv1−
1
N

− 1,

where ResDh (v) is the residual defined in (4.17).

Using the residual, Inequality 5.8 can be restated as

ResDF,h(E) ≥ Λ−1
F − 1−O(mh(E)

1
N ). (5.9)

We are ready to apply the definition of residual to the disintegration rays. In order to ease

the notation, we let Pα,R = P
(X̂α,R,F,m̂α,R)

. The measure m̂α,R will be identified with the ray

map gR(α, ·) to hα,RL1, thus we define

Resα,R := Res
R+diam(E)
F,hα,R

(g(α, ·)−1(E ∩ X̂α,R)), for α ∈ QR,

Resx,R := ResQR(x),R, for x ∈ E.

The good rays are those rays having small residual. We quantify their abundance in the

following proposition, which is the irreversible analogous of Proposition 4.6.

Proposition 5.11. Assume that (X,F,m) is a CD(0, N) Finsler manifold, such that AVRX >

0. If E ⊂ X is a bounded set attaining the identity in the inequality (1.6), then

lim sup
R→∞

1

m(BR)

∫
QR

Resα,R qR(dα) ≤ 0. (5.10)

Proof. In order to check that the function α → Resα,R is integrable, it is enough to check

that (Resα,R)
−, is integrable. This last fact derives from the isoperimetric inequality Resα,R ≥

Λ−1
F − 1−O(( m(E)

m(BR))
1
N ), as stated in (5.9). We can now compute the integral in (5.10)

∫
QR

Resα,R q̂R(dα) =

∫
QR

(
(R+ diam(E))Pα,R(E)

N

(
m(BR)

m(E)

)1− 1
N

− 1

)
q̂R(dα)

=
R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

∫
QR

Pα,R(E) q̂R(dα)−m(BR)

≤ R+ diam(E)

m(BR)
1
N
−1Nm(E)1−

1
N

P(E)−m(BR)

≤ m(BR)
R+ diam(E)

m(BR)
1
N

(AVRXωN )
1
N −m(BR),
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yielding
1

m(BR)

∫
QR

Resα,R qR(dα) ≤
R+ diam(E)

m(BR)
1
N

(AVRXωN )
1
N − 1,

and the r.h.s. goes to 0, as R→ ∞.

Corollary 5.12. Let (X,F,m) be a CD(0, N) Finsler manifold, having AVRX > 0. Let E ⊂ X

be a set saturating the isoperimetric inequality (1.6), then it holds true that

lim sup
R→∞

∫
E
ResQR(x),Rm(dx) ≤ 0.

Proof. A direct computation gives∫
E
ResQR(x),Rm(dx) =

∫
QR

∫
E
ResQR(x),R m̂α,R(dx) q̂R(dα)

=

∫
QR

Resα,R m̂α,R(E) q̂R(dα)

=
m(E)

m(BR)

∫
QR

Resα,R qR(dα),

and one concludes by taking the superior limit.

Remark 5.13. At first sight, it looks like that Proposition 5.11 is much weaker than its

reversible correspondent Proposition 4.6 (an similarly Corollary 5.12 seems weaker to Corol-

lary 4.7. To be precise, it seems that an infinitesimal lower bound on the residual seems

missing. Nonetheless, we will see that the missing lower bound will appear as a by-product of

the almost rigidity of the rays.

5.5 Analysis along the good rays

Like in the reversible setting, we now deduce a few one-dimensional almost-rigidity estimates.

Most of these estimates are carried out in Section 4.3

5.5.1 Almost rigidity of the set E and of the length of the ray

Like in the reversible setting, up to a negligible set, it holds that E =
⋃
i∈N(ai, bi). The

boundedness of the original set of our isoperimetric problem, implies that E ⊂ [0, L], for some

L > 0. Define b(E) := ess supE ≤ L.

In the next lemma we prove that b(E) is in the essential boundary of E; this lemma is the

non-reversible equivalent of Lemma 4.12.
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Lemma 5.14. Fix N > 1, L > 0, and Λ ≥ 1. Then there exists two constants w̄ > 0 and

δ̄ > 0 (depending only on N , L, and Λ) such that the following happens. For all D ≥ D′ >

0 with D ≥ 4LΛ, for all ([0, D′], F, hL1) a one-dimensional Finsler manifold satisfying the

oriented CD(0, N) condition with ΛF ≤ Λ, and for all E ⊂ [0, L], such that mh(E) ≤ w̄ and

ResDF,h(E) ≤ δ̄, there exists a ∈ [0, b(E)) and an at-most-countable family of intervals ((ai, bi))i

such that, up to a negligible set,

E =
⋃
i

(ai, bi) ∪ (a, b(E)), (5.11)

with ai, bi < a, ∀i.
Moreover, h is strictly increasing on [0, b(E)].

Proof. Taking into account the definition of residual and the isoperimetric inequality (5.9),

choosing δ̄ ≤ 1, we can deduce that

D′

D
≥

1 + ResD
′

F,h(E)

1 + ResDF,h(E)
≥

1 + Λ−1
F − 1−O(w

1
N )

1 + δ̄
≥ Λ−1

2
−O(w

1
N )).

If we choose w̄ small enough, taking into account the hypothesis D ≥ 4LΛ, we deduce D′ ≥ 2L.

At this point one can follow the proof of Lemma 4.12 to conclude that E takes the form of

equation (5.11).

Finally, we prove that h increases on [0, b(E)]. Let b := b(E). Following the reasoning as

in the proof of Lemma 4.12, one obtain an inequality similar to (4.25) (using the fact that

h(b) ≤ PF,h(E))

1 ≤
PF,h(E)D′

N

(
1 + (N − 1)

b

D′ + o

(
b

D′

)
+N

)
. (5.12)

The first factor in the r.h.s. of the estimate above is controlled just using the definition of

residual
PF,h(E)D′

N
≤

PF,h(E)D

N
= mh(E)1−

1
N (1 + ResDF,h(E)),

and, if mh(E) → 0 and ResDF,h(E) is bounded, then the term above goes to 0. The second

factor, is bounded (see the proof of Lemma 4.12). If we put together this last two estimates,

we deduce that the r.h.s. of (5.12) is infinitesimal as mh(E) → 0 and ResDF,h(E) → 0, obtaining

a contradiction.

Like in the reversible case, we will denote by a(E) the number a given by Proposition 5.14;

Remark 4.13 still hold.

Remark 5.15. Since rh(mh(E)) ≤ b(E) and h is increasing, we have that ResDh (mh(E)) ≤
ResDF,h(E). Therefore, the estimates contained in Proposition 4.11 still hold true for the Finsler
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setting.

Proposition 5.16. Fix N > 1, L > 0, and Λ ≥ 1. The following estimates hold for w → 0

and δ → 0

D′ ≥ D(1− o(1)) (5.13)

b(E) ≤ Dw
1
N +Do(w

1
N ) (5.14)

b(E) ≥ Dw
1
N −Do(w

1
N ) (5.15)

a(E) ≤ Do(w
1
N ), (5.16)

where D ≥ 4LΛ, D′ ∈ (0, D], ([0, D′], F, hL1) is a one-dimensional Finsler manifold satisfying

the oriented CD(0, N) condition with ΛF ≤ Λ, and the set E ⊂ [0, L] satisfies mh(E) = w and

ResDF,h(E) ≤ δ.

Proof.

Part 1 Inequalities (5.13) and (5.15).

Since h is decreasing on [0, b(E)], we have that rh(w) ≤ b(E), thus h(rh(w)) ≤ h(b(E)) ≤
PF,h(E), hence ResDh (w) ≤ ResDF,h(E). Estimate (5.13) follows from estimate (4.20), whereas

estimate (5.15) is a consequence of (4.22).

Part 2 Inequality (5.16).

First we prove that a(E) < rh(w), for w and δ small enough. Suppose on the contrary that

a(E) ≥ rh(w), implying that h(a(E)) ≥ h(rh(w)), hence PF,h(E) ≥ Λ−1h(a(E)) + h(b(E)) ≥
(1 + Λ−1)h(rh(w)). We deduce that (compare with (5.9))

−O(w
1
N ) ≤ ResDh (w) =

Dh(rh(w))

Nw1− 1
N

− 1 ≤
DPF,h(E)

(1 + Λ−1)Nw1− 1
N

− 1

=
1

1 + Λ−1
(ResDF,h(E)− Λ−1) ≤ δ − Λ−1

1 + Λ−1
.

If we take the limit as w → 0 and δ → 0 we obtain a contradiction.

Using the Bishop–Gromov inequality and the isoperimetric inequality (respectively), we

get

h(a(E)) ≥ h(rh(w))

(
a(E)

rh(w)

)N−1

h(b(E)) ≥ h(rh(w)) ≥
N

D
w1− 1

N (1−O(w
1
N )).
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We put together the inequalities above obtaining

N

D
w1− 1

N (1 + ResDF,h(E)) = PF,h(E) ≥ h(b(E)) + Λ−1h(a(E)) ≥ h(rh(w)) + Λ−1h(a(E))

≥ h(rh(w))

(
1 + Λ−1

(
a(E)

rh(w)

)N−1
)

≥ N

D
w1− 1

N (1−O(w
1
N ))

(
1 + Λ−1

(
a(E)

rh(w)

)N−1
)
,

hence

a(E) ≤ rh(w)Λ
1

N−1

(
1 + ResDF,h(E)

1 +O(w
1
N )

− 1

) 1
N−1

≤ rh(w)Λ
1

N−1

(
(1 + δ)(1−O(w

1
N ))− 1

) 1
N−1 ≤ rh(w) o(1)

≤ Dw
1
N (1 + o(1))o(1) = Do(w

1
N ),

where the estimate (4.21) was taken into account.

Part 3 Inequality (5.14).

Following exactly the same steps of Part 3 of the proof of Proposition 4.14, we arrive at

b(E)− rh(w) ≤ a(E)
h(a(E))

h(rh(w))
≤ a(E).

Combining the inequality above, the already-proven estimate (5.15), and the estimate (4.21),

we reach the conclusion.

5.5.2 Almost rigidity of the density h

In this section we prove that the density h converges to the model density NxN−1/DN . The

bound from below is easy and the proof is not different form the proof Proposition 4.15.

Proposition 5.17. Fix N > 1, L > 0, and Λ ≥ 1. The following estimates hold for w → 0

and δ → 0

h(x) ≥ N

DN
xN−1(1− o(1)), uniformly w.r.t. x ∈ [0, b(E)], (5.17)

where D ≥ 4LΛ, D′ ∈ (0, D], ([0, D′], F, hL1) is a one dimensional Finsler manifold satisfy-

ing the CD(0, N) condition, with ΛF ≤ Λ, and the set E ⊂ [0, L] satisfies mh(E) = w and

ResDF,h(E) ≤ δ.
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Proof. Fix x ∈ [0, b(E)]. The Bishop–Gromov inequality yields

h(x) ≥ h(b(E))
xN−1

b(E)N−1
≥ h(rh(w))

xN−1

b(E)N−1
.

The first factor h(rh(w)) is controlled using the isoperimetric inequality (compare with Corol-

lary 4.3), whereas the term b(E) is controlled using estimate (5.14).

The following corollary gives a lower boundary for the residual, under the hypothesis that

the (positive part of the) residual is bounded from above, improving inequality (5.9). This

surprising self-improving estimate, states that if the residual is small, i.e., it is bounded by

above by a positive small constant, than it cannot be too small, i.e., it is bounded by below

by a small negative constant.

Corollary 5.18. Fix N > 1, L > 0, and Λ ≥ 1. The following estimates hold for w → 0 and

δ → 0

ResDF,h(E) ≥ −o(1)

where D ≥ 4LΛ, D′ ∈ (0, D], ([0, D′], F, hL1) is a one-dimensional Finsler manifold satisfy-

ing the CD(0, N) condition, with ΛF ≤ Λ, and the set E ⊂ [0, L] satisfies mh(E) = w and

ResDF,h(E) ≤ δ.

Proof. By a direct computation, recalling estimates (5.17) and (5.15), we obtain

ResDF,h(E) ≥ Dh(b(E))

Nw1− 1
N

− 1 ≥ b(E)N−1(1− o(1))

DN−1w1− 1
N

− 1 ≥ (w
1
N (1− o(1)))N−1

w1− 1
N

− 1 ≥ o(1).

We now obtain an upper bound for h in the interval [a(E), b(E)] going in the opposite

direction of the Bishop–Gromov inequality.

Proposition 5.19. Fix N > 1, L > 0, and Λ ≥ 1. The following estimates hold for w → 0

and δ → 0

h(x) ≤ h(b(E))

(
x

b(E)
+ o(1)

)N−1

, uniformly w.r.t. x ∈ [0, b(E)], (5.18)

where D ≥ 4LΛ, D′ ∈ (0, D], ([0, D′], F, hL1) is a one-dimensional Finsler manifold satisfying

the oriented CD(0, N) condition, with ΛF ≤ Λ, and the set E ⊂ [0, L] satisfies mh(E) = w and

ResDF,h(E) ≤ δ.

Proof. Fix x ∈ [a(E), b(E)].
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Case 1 x ∈ [0, rh(w)].

Since ResDh (w) ≤ ResDF,h(E), Estimate 4.31 yields

h(x) ≤ h(rh(w))

(
x

rh(w)
+ o(1)

)N−1

≤ h(b(E))

(
x

rh(w)
+ o(1)

)N−1

. (5.19)

Estimates (5.14) and (4.22) yield

b(E)

rh(w)
≤ Dw

1
N +Do(w

1
N )

Dw
1
N −Do(w

1
N )

= 1 + o(1). (5.20)

Plugging the inequality above in (5.19) gives

h(x) ≤ h(b(E))

(
x

b(E)
(1 + o(1)) + o(1)

)N−1

≤ h(b(E))

(
x

b(E)
+ o(1)

)N−1

,

which is precisely the thesis.

Case 2 x ∈ [rh(w), b(E)].

The Bishop–Gromov inequality yields

h(x) ≤ h(rh(w))

(
x

rh(w)

)N−1

≤ h(b(E))

(
x

b(E)
+ o(1)

)N−1

,

where in the last inequality we used (5.20).

5.5.3 Rescaling the diameter and renormalizing the measure

In this last section, as we did in Section 4.3.5, we rescale the density h and the set E by a

factor 1
b(E) and renormalize the measure by a factor mh(E).

Given a density h : [0, D′] → R and E ⊂ [0, L], we define

νh,E = (Sb(E))#

(
mh⌞E
mh(E)

)
∈ P([0, 1]).

Let h̃E : [0, 1] → R be the density of νh,e, that is

h̃E(t) = 1E(b(E)t)
b(E)

mh(E)
h(b(E)t).

We now estimate the density h̃E .

Proposition 5.20. Fix N > 1, L > 0, and Λ ≥ 1. The following estimates hold for w → 0
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and δ → 0 ∥∥∥h̃E −NtN−1
∥∥∥
L∞(0,1)

≤ o(1)

where D ≥ 4LΛ, D′ ∈ (0, D], ([0, D′], F, hL1) is a one-dimensional Finsler manifold satisfy-

ing the CD(0, N) condition, with ΛF ≤ Λ, and the set E ⊂ [0, L] satisfies mh(E) = w and

ResDF,h(E) ≤ δ.

Proof. Fix t ∈ [0, 1]. The proof is divided in three parts.

Part 1 Estimate from below and t > a(E)
b(E) .

Since t > a(E)
b(E) , then t b(E) ∈ E (for a.e. t). A direct computation, gives

h̃E(t) =
b(E)

w
h(tb(E)) ≥ Nb(E)N

DNw
tN−1(1− o(1))

≥ NDNw(1 + o(1))N

DNw
tN−1(1− o(1)) = NtN−1 − o(1),

having used the estimate (5.17), with x = tb(E), in the first inequality and (5.15) in the second

inequality.

Part 2 Estimate from below and t ≤ a(E)
b(E) .

In this case it may happen that t b(E) /∈ E, so the best estimate from below is the non-

negativity. For this reason, here we exploit the fact that the interval [0, a(E)
b(E) ] is “short” and

that t ≤ a(E)
b(E) . A direct computation gives (recall (5.15) and (5.16))

h̃E(t) ≥ 0 ≥ NtN−1 −NtN−1 ≥ NtN−1 −N
a(E)N−1

b(E)N−1

≥ NtN−1 −N
DN−1o(w1− 1

N )

DN−1w1− 1
N (1 + o(1))N−1

≥ NtN−1 − o(1).

Part 3 Estimate from above.

We use estimate (5.18), with x = tb(E), deducing

h̃E(t) =
b(E)

w
h(tb(E)) ≤ b(E)

w
h(b(E))(t+ o(1))N−1 ≤ b(E)

w
h(b(E))(tN−1 + o(1))

≤ Dw
1
N (1 + o(1))

w
PF,h(E)(tN−1 + o(1))

=
Dw

1
N (1 + o(1))

w

N

D
w1− 1

N (1 + ResDF,h(E))(tN−1 + o(1))

≤ N(1 + o(1))(1 + δ)(tN−1 + o(1)) = NtN−1 + o(1)

(in the second inequality we used the uniform continuity of t ∈ [0, 1] 7→ tN−1; in the third one,



104 Chapter 5. Isoperimetric inequality in irreversible Finsler manifolds

estimate (5.14)).

The following theorem summerizes the contents of this section. This theorem is the irre-

versible version of Theorem 4.19. Notice that the function ω takes as argument the positive

part of the residual and not the residual itself.

Theorem 5.21. Fix N > 1, L > 0, and Λ ≥ 1. Then there exists a function ω : (0,∞) ×
[0,∞) → R, infinitesimal in 0, such that the following holds. For all D ≥ 4LΛ, D′ ∈ (0, D), for

all ([0, D′], F, hL1) one-dimensional Finsler manifold satisfying the oriented CD(0, N) condition

with ΛF ≤ Λ, and for all E ⊂ [0, L], it holds that∣∣∣b(E)−Dmh(E)
1
N

∣∣∣ ≤ Dmh(E)
1
N ω(mh(E), (ResDF,h(E))+), (5.21)∥∥∥h̃E −NtN−1

∥∥∥
L∞

≤ ω(mh(E), (ResDF,h(E))+),

ResDF,h(E) ≥ −ω(mh(E), (ResDF,h(E))+), (5.22)

where b(E) = ess supE and h̃E is the Radon–Nikodym derivative of mh(E)−1(Sb(E))#mh⌞E,

with Sb(E)(x) = x/b(E).

5.6 Passage to the limit as R → ∞

We now go back to the studying the identity case of the isoperimetric inequality. Fix E ⊂ X

a bounded isoperimetric Borel set with positive measure. We quickly recall the notation

introduced in Section 5.3. Denote by ϕR the 1-Lipschitz Kantorovich potential associated to

fR = 1E − m(E)
m(BR)1BR

. Without loss of generality we assume that ϕR is equibounded on every

bounded set. The Ascoli–Arzelà theorem implies that that, up to subsequences, ϕR converges

to a certain 1-Lipschitz function ϕ∞, uniformly on every compact set.

We recall the disintegration given by Proposition 5.7

m⌞T̂R=
∫
QR

m̂α,R q̂R(dα), and P(E; · ) ≥
∫
QR

P
X̂α,R

(E; · ) q̂R(dα). (5.23)

We are now in position to improve Corollary 5.12, recovering the same strength of Corol-

lary 4.7.

Proposition 5.22. Up to taking subsequences, it holds that

lim
R→∞

ResQR(x),R = 0, m⌞E-a.e.. (5.24)
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Proof. Corollary 5.12 guarantees that

lim sup
R→∞

∫
E
ResQR(x),Rm(dx) ≤ 0,

Using estimate (5.22), we estimate the negative part of the residual

(ResQR(x),R)
− ≤ ω

(
m(E)

m(BR)
, (ResQR(x),R)

+

)
= ω

(
m(E)

m(BR)
, 0

)
,

where ω is a function, infinitesimal in (0, 0). The L1-norm of the residual is given by

∥∥ResQR(x),R

∥∥
L1(E;m)

= 2

∫
E
(ResQR(x),R)

− dm+

∫
E
ResQR(x),R dm.

Taking into account the previous inequality and, again, Corollary 5.12, we deduce that the

residual ResQR(x),R, converges to 0 in L1. By taking a subsequence, we obtain (5.24).

At this point, the proof proceeds more or less in the same way as in the reversible setting.

For this reason, we will be a bit sloppy, letting the reader to check Chapter 4 for the details.

Throughout this section, we set ρ = ( m(E)
ωNAVRX

)
1
N .

5.6.1 Passage to the limit of the radius

The radius function rR : E → [0, diamE] is defined as follows. Fix x ∈ E ∩ T̂R and let

Ex,R := (gR(QR(x), ·))−1(E) ⊂ [0, |X̂QR(x),R|]. Define

rR(x) := ess supEx,R, if x ∈ E ∩ T̂R.

Notice that rR(x) = b(Ex,E), where the notation b(E) was introduced in Section 5.5.1.

The next proposition ensures that, in limit as R → ∞, the function rR converges to ρ,

which is precisely the radius that we expect.

Proposition 5.23. Up to subsequences it holds true

lim
R→∞

rR = ρ, m⌞E−a.e..

Proof. By Proposition 5.22, there exists a sequence Rn and a negligible subset N ⊂ E, such

that limn→∞ResQRn (x),Rn
= 0, for all x ∈ E\N .

Define G :=
⋂
n T̂Rn\N and notice that m(E\G) = 0. Fix n ∈ N and x ∈ G and let
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α := QRn(x) ∈ QRn . Clearly, it holds

|rRn(x)− ρ| ≤
∣∣∣∣rRn(x)− (Rn + diamE)

(
m(E)

m(BRn )

) 1
N

∣∣∣∣+ ∣∣∣∣(Rn + diamE)
(

m(E)
m(BRn )

) 1
N − ρ

∣∣∣∣ .
The second term goes to 0 by definition of AVR, so we focus on the first term. Consider

the ray (X̂α,Rn , F, m̂α,Rn). By definition, we have that

ResRn+diamE
hα,Rn

(Ex,Rn) = Resα,Rn

We can now use Theorem 5.21 (in particular estimate (5.21)), obtaining∣∣∣∣∣rRn(x)− (Rn + diamE)

(
m(E)

m(BRn)

) 1
N

∣∣∣∣∣ = ∣∣∣rRn(x)− (Rn + diamE)(mhα,Rn
(Ex,Rn))

1
N

∣∣∣
≤ (Rn + diamE)

(
m(E)

m(BRn)

) 1
N

ω

(
m(E)

m(BRn)
, (ResQR(x),Rn

)+
)
.

5.6.2 Passage to the limit of the rays

Consider now a constant-speed parametrization of the rays inside the set E:

γx,Rs := gR(QR(x), s rR(x)), if x ∈ E ∩ T̂R.

A direct consequence of the definition of γx,R and the properties of the disintegration are

d(γx,Rt , γx,Rs ) = ϕR(γ
x,R
t )− ϕR(γ

x,R
s ), ∀ 0 ≤ t ≤ s ≤ 1, for m-a.e. x ∈ E, (5.25)

d(γx,R0 , γx,R1 ) = rR(x), for m-a.e. x ∈ E, (5.26)

x ∈ γx,R, for m-a.e. x ∈ E. (5.27)

In order to compute the limit as R → ∞ we proceed as follows. Define the compact set

K := {γ ∈ Geo(X) : γ0, γ1 ∈ E}. Define the measure (having mass m(E))

τR := (Id× γ · ,R)#m⌞E ∈ M(E ×K),

with the property that (P1)#τR = m⌞E and γ = γx,R, for τR-a.e. (x, γ) ∈ E × K. Proper-

ties (5.25)–(5.27) can be restated using a more measure-theoretic language

d(et(γ), es(γ))− ϕR(et(γ)) + ϕR(es(γ)) = 0, (5.28)

d(e0(γ), e1(γ))− rR(x) = 0, , (5.29)

x ∈ γ, (5.30)
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for τR-a.e. (x, γ) ∈ E × K. By tightness, we can extract a sub-sequence such that τR ⇀ τ

weakly. The next proposition guarantees that the properties (5.28)–(5.30) pass to the limit as

R→ ∞.

Proposition 5.24. For τ -a.e. (x, γ) ∈ E ×K, it holds that

d(et(γ), es(γ)) = ϕ∞(et(γ))− ϕ∞(es(γ)), ∀ 0 ≤ t ≤ s ≤ 1, (5.31)

d(e0(γ), e1(γ)) = ρ, (5.32)

x ∈ γ. (5.33)

Proof. Fix t ≤ s and integrate (5.28) in E ×K, obtaining

0 =

∫
E×K

(d(et(γ), es(γ))− ϕR(et(γ)) + ϕR(es(γ))) τR(dx dγ) =

∫
E×K

Lt,sϕR(γ) τR(dx dγ),

having set Lt,sψ (γ) := d(et(γ), es(γ)) − ψ(et(γ)) + ψ(es(γ)). The map Lt,sϕR : K → R is clearly

continuous and converges uniformly to Lt,sϕ∞ . Therefore, we can take the limit in the equation

above obtaining

0 =

∫
E×K

Lt,sϕ∞(γ) τ(dx dγ) =

∫
E×K

(d(et(γ), es(γ))− ϕ∞(et(γ)) + ϕ∞(es(γ))) τ(dx dγ).

The 1-lipschitzianity of ϕ∞, yields Lt,sϕ∞(γ) ≥ 0, ∀γ ∈ K, hence

d(et(γ), es(γ)) = ϕ∞(et(γ))− ϕ∞(es(γ)) for τ -a.e. (x, γ) ∈ E ×K.

We conclude by an approximation argument for t and s in obtaining (5.31).

Now we prove (5.32). We integrate Equation (5.29) obtaining

0 =

∫
E×X

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ).

By Lusin’s and Egorov’s theorems there exists a compactM ⊂ E, such that: 1) the restrictions

rR|M are continuous; 2) the restricted maps rR|M converge uniformly to ρ; 3) m(E\M) ≤ ϵ,

for ϵ > 0 sufficiently small. We now compute the limit

0 = lim
R→∞

∫
E×K

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥ lim inf
R→∞

∫
M×K

|d(e0(γ), e1(γ))− rR(x)| τR(dx dγ)

≥
∫
M×K

|d(e0(γ), e1(γ))− ρ| τ(dx dγ) ≥ 0,



108 Chapter 5. Isoperimetric inequality in irreversible Finsler manifolds

d(e0(γ), e1(γ)) = ρ , for τ -a.e. (x, γ) ∈M ×K . By arbitrariness of ϵ > 0 one concludes.

Finally we prove (5.33). This is done by testing the weak convergence against the function

L(x, γ) := inft∈[0,1] d(x, et(γ)).

5.6.3 Disintegration of the measure and the perimeter

Having in mind the disintegration formula (5.23), we define the map E ∋ x 7→ µx,R ∈ P(E) as

µx,R :=
m(BR)

m(E)
(m̂QR(x),R)⌞E , if x ∈ E ∩ T̂R,

A direct computation (recall (5.5)–(5.6)) gives

m(A ∩ E) =
m(BR)

m(E)

∫
QR

m̂α,R(A ∩ E) (QR)#(m⌞E)(dα) =
∫
X
µx,R(A)m⌞E(dx),

therefore

m⌞E=
∫
E
µx,Rm⌞E(dx).

The measure µx,R is given by

µx,R = (γx,R)#(h̃
x,R
E L1⌞[0,1]), for m⌞E-a.e. x ∈ E

where

h̃x,RE (t) = 1Ex,R
(rR(x)t) rR(x)

m(BR)

m(E)
hQR(x),R(rR(x)t).

Having in mind (5.7), we can perform a similar operation for the perimeter. Indeed, in the

natural parametrization of the rays, if we consider only the “right extremal” of Ex,R and the

fact that F (∂t) = 1, it holds that

hR,QR(x)(rR(x))δrR(x) ≤ PF,hR,QR(x)
(Ex,R; · ).

This observation, naturally leads to the definition

px,R : = min

{
m(BR)

m(E)
hR,QR(x)(rR(x)),

N

ρ

}
δgR(QR(x),rR(x)), if x ∈ E ∩ T̂R,

Using the maps γx,R and h̃x,R, we rewrite px,R

px,R = min

{
h̃x,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

, if x ∈ E ∩ T̂R.
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By definition of px,R we have that

px,R ≤ m(BR)

m(E)
PXR,QR(x)

(E; · ), for m⌞E-a.e. x ∈ E,

deducing the following “disintegration” formula (equations (5.7) and (5.6) are taken into ac-

count)

P(E;A) ≥
∫
QR

PXα,R
(E;A) q̂R(dα) ≥

∫
E
px,R(A)m⌞E(dx), ∀A ⊂ E Borel. (5.34)

Define now the compact set F := e(0,1)(K) = {γt : γ ∈ K, t ∈ [0, 1]} and let S ⊂ M+(F )

be the subset of the non-negative measures on F with mass at most N/ρ. The sets P(F ) and

S are naturally endowed with the weak topology of measures. Like in the reversible setting,

we metrize these two compact spaces with a metric constructed like in Equation (4.48). Define

now the map GR : E ×K → P(F )× S, as

GR(x, γ) :=

(
γ#(h̃

x,R
E L1⌞[0,1]),min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
.

Clearly, the function GR is measurable and continuous w.r.t. the variable x and γ, respectively.

Define the measure (having mass m(E))

σR := (Id×GR)#τR ∈ M+(E ×K × P(F )× S).

In order to ease the notation, we set Z = E ×K × P(F )× S.

Proposition 5.25. The measure σR enjoys the following properties∫
E
ψ dm =

∫
Z

∫
E
ψ(y)µ(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (E), (5.35)∫
E
ψ(y)P(E, dy) ≥

∫
Z

∫
E
ψ(y) p(dy)σR(dx dγ dµ dp), ∀ψ ∈ C0

b (E), ψ ≥ 0. (5.36)

Proof. Fix a test function ψ ∈ C0
b (E). Notice that for σR-a.e. (x, γ, µ, p) ∈ Z, we have that

µ = µx,R, because

µ = γ#(h̃
x,R
E L1⌞[0,1]) = (γx,R)#(h̃

x,R
E L1⌞[0,1]) = µx,R, for σR-a.e. (x, γ, µ, p) ∈ Z.

A direct computation gives∫
E
ψ dm =

∫
E

∫
E
ψ(y)µx,Rm(dx) =

∫
Z

∫
E
ψ(y)µx,R(dy)σR(dx dγ dµ dp)
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=

∫
Z

∫
E
ψ(y)µ(dy)σR(dx dγ dµ dp).

Now fix an open set Ω ⊂ X. Since

p = min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N(ωNAVRX)

1
N

m(E)
1
N

}
δe1(γ)(Ω), for σR-a.e. (x, γ, µ, p) ∈ Z,

we can compute (recall (5.34))

P(E; Ω) ≥
∫
E
min

{
h̃Ex,R(1)

d(γx,R0 , γx,R1 )
,
N

ρ

}
δ
γx,R1

(Ω) dm(dx)

=

∫
Z
min

{
h̃Ex,R(1)

d(e0(γx,R), e1(γx,R))
,
N

ρ

}
δe1(γx,R)(Ω) dσR(dx dγ dµ dp)

=

∫
Z
min

{
h̃Ex,R(1)

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)(Ω) dσR(dx dγ dµ dp).

=

∫
Z
p(Ω) dσR(dx dγ dµ dp).

Since P(E;A) = inf{P(E; Ω) : Ω ⊃ A is open}, for any Borel set A, we can conclude.

Proposition 5.26. Consider the function G : E ×K → P(F )× S defined as

G(x, γ) =

(
γ#(Nt

N−1L1⌞[0,1]),max

{
N

d(e0(γ), e1(γ))
,
N

ρ

}
δe1(γ)

)
,

and let σ := (Id×G)#τ . Then it holds that σR ⇀ σ in the weak topology of measures.

Proof. The thesis is an immediate consequence of Lemma 4.25. Therefore, one only needs to

check the hypotheses of said Lemma, and this is done like in the reversible setting (see the

proof of Corollary 4.26).

We conclude this section with a proposition reporting all the relevant properties of the limit

measure σ, whose proof is carried out like in the reversible setting (see Proposition 4.27.

Proposition 5.27. The measure σ satisfies the following disintegration formulae∫
E
ψ(y)m(dy) =

∫
Z

∫ 1

0
ψ(et(γ))Nt

N−1 dt σ(dx dγ dµ dp), ∀ψ ∈ L1(E;m⌞E), (5.37)∫
E
ψ(y)P(E; dy) =

N

ρ

∫
Z
ψ(e1(γ))ψ σ(dx dγ dµ dp), ∀ψ ∈ L1(E;P(E; · )). (5.38)
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Furthermore, for σ-a.e. (x, γ, µ, p) ∈ Z it holds

d(et(γ), es(γ)) = ϕ∞(et(γ))− ϕ∞(es(γ)), ∀0 ≤ t ≤ s ≤ 1, (5.39)

d(e0(γ), e1(γ)) = ρ, (5.40)

x ∈ γ, (5.41)

µ = γ#(Nt
N−1L1⌞[0,1]), (5.42)

p =
N

ρ
δe1(γ). (5.43)

5.6.4 Back to the classical localization notation

We are now in position to re-obtain a “classical” disintegration formula for the measure m, as

well as for the relative perimeter of E.

We recall the definition of some of the objects that were introduced in Section 5.1.3. For

instance, let Γ∞ := {(x, y) : ϕ∞(x) − ϕ∞(y) = d(x, y)} and let T∞ be the transport set, i.e.,

the family of points passing through only one non-degenerate transport curve. Let A∞ the set

of branching points (i.e. points where two of more non-degenerate transport curves pass). The

sets of forward and backward branching points are defined as

A+
∞ := {x ∈ A∞ : ∃y ̸= x such that (x, y) ∈ Γ∞},

A−
∞ := {x ∈ A∞ : ∃y ̸= x such that (y, x) ∈ Γ∞}.

We recall that A∞ = A+
∞ ∪ A−

∞ and that A∞ is negligible. Let Q∞ be the quotient set and

let Q∞ : T∞ → Q∞ be the quotient map; denote by Xα,∞ := Q−1(α) the disintegration rays

and let g∞ : Dom(g∞) ⊂ Q∞ × [0,∞) → X be the standard parametrization of the rays.

We introduce the function tα : Xα,∞ → [0,∞) defined as

tα(x) := (g∞(α, · ))−1 = d(g∞(Q∞(x), 0), x);

the function tα measures how much a point is translates from the starting point of the ray

Xα,∞.

The following proposition guarantees that the geodesics on which the measure σ is sup-

ported lay on the transport set T∞.

Proposition 5.28. For σ-a.e. (x, γ, µ, p) ∈ Z, it holds that et(γ) ∈ T∞, for all t ∈ (0, 1).

Proof. Clearly, for σ-a.e. (x, γ, µ, p) ∈ Z, γ is non-degenerate, hence et(γ) /∈ D, where D is

the set where no non-degenerate transport curve pass. Therefore we need only to check that

et(γ) ̸∈ A∞. We will prove only that et(γ) ̸= A+
∞, for the case et(γ) ̸= A−

∞ is analogous. Fix



112 Chapter 5. Isoperimetric inequality in irreversible Finsler manifolds

ϵ > 0 and let

P := {(x, γ, µ, p) ∈ Z : eϵ(γ) ∈ A+
∞ and conditions (5.37)–(5.43) holds}

Notice that by definition of A+
∞, if (x, γ, µ, p) ∈ P , then γt ∈ A+

∞, for all t ∈ [0, ϵ], thus we can

compute

0 = m(A+
∞) =

∫
Z

∫ 1

0
1A+

∞
(et(γ))Nt

N−1 dt σ(dx dγ dµ dp)

≥
∫
P

∫ ϵ

0
1A+

∞
(et(γ))Nt

N−1 dt σ(dx dγ dµ dp) ≥ ϵNσ(P ),

thus P is negligible. Fix now (x, γ, µ, p) /∈ P . By definition of A+
∞ and P , we have that

γt ̸∈ A+
∞, for all t ∈ [ϵ, 1]. By arbitrariness of ϵ, we deduce that for σ-a.e (x, γ, µ, p) ∈ Z, it

holds that et(γ) /∈ A+
∞, for all t ∈ (0, 1].

Corollary 5.29. It holds that E ⊂ T∞ and for σ-a.e. (x, γ, µ, p) ∈ Z, we have that et(γ) ∈
XQ(x),∞ and

et(γ) = g∞(Q(x), tQ(x)(e0(γ)) + ρt). (5.44)

Define q̂ := 1
m(E)(Q∞)#(m⌞E) ≪ (Q∞)#m⌞T∞ and let q̃ be a probability measure such that

(Q∞)#m⌞T∞≪ q̃. The disintegration theorem gives the following two formulae

m⌞E=
∫
Q∞

m̂α,∞ q̂(dα), and m⌞T∞=

∫
Q∞

m̃α,∞ q̃(dα),

where the measures m̂α,∞ and m̃α,∞ are supported on Xα,∞. By comparing the two expressions

above, it turns out that dq̂dq̃(α) m̂α,∞ = 1Em̃α,∞. The Localization Theorem 2.6, ensures that the

transport rays (Xα,∞, F, m̃α,∞) satisfies the oriented CD(0, N) condition. On the contrary, we

cannot deduce the same condition for the other disintegration, because the reference measure

is restricted to the set E and not the transport set. Consider the densities ĥα and h̃α given by

m̂α,∞ = (g∞(α, · ))#(ĥαL1
(0,|Xα,∞|)), and m̃α,∞ = (g∞(α, · ))#(h̃αL1

(0,|Xα,∞|)).

Clearly, it holds that dq̂
dq̃(α)ĥα(t) = 1E(g(α, t))h̃α(t), thus we can derive a somehow weaker

concavity condition for the function ĥ
1

N−1
α : for all x0, x1 ∈ (0, |Xα,∞|) and for all t ∈ [0, 1], it

holds that

ĥα((1− t)x0 + tx1)
1

N−1 ≥ (1− t)ĥα(x0)
1

N−1 + tĥα(x1)
1

N−1 , if ĥα((1− t)x0 + tx1) > 0.
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A natural consequence is the following “Bishop–Gromov inequality”

the map r 7→ ĥα(r)

rN−1
is decreasing on the set {r ∈ (0, |Xα,∞|) : ĥα(r) > 0}.

Define the full-measure set Ẑ ⊂ Z as

Ẑ := {(x, γ, µ, p) ∈ Z : x ∈ E ∩ T∞, and the properties given by

Equations (5.37)–(5.38) and (5.44) holds}.

We partitionate Ẑ in the following way

Ẑα := {(x, γ, µ, p) ∈ Ẑ : Q∞(x) = α},

and we disintegrate the measure σ according to the partition (Ẑα)α∈Q∞

σ =

∫
Q∞

σα q(dα),

where the probability measures σα are supported on Ẑα. Moreover, let να ∈ P([0,∞)) be the

measure given by

να :=
1

m(E)
(tα ◦ e0 ◦ πK)#(σα)

(we recall that tα = (g∞(α, · ))−1 and πK(x, γ, µ, p) = γ).

The following two propositions have exactly the same proof of Proposition 4.30 and 4.31,

therefore the proofs are omitted.

Proposition 5.30. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX

∫
[0,∞)

(r − t)N−11(t,t+ρ)(r) να(dt), ∀r ∈ (0, |Xα,∞|).

Proposition 5.31. For q̂-a.e. α ∈ Q∞, it holds that να = δ0.

Corollary 5.32. For q̂-a.e. α ∈ Q∞, for σα-a.e. (x, γ, µ, p) ∈ Zα, it holds that et(γ) =

g(α, ρt), ∀t ∈ [0, 1].

Proof. The fact that να = δ0, implies tα(γ0) = 0 for σα-a.e. (x, γ µ, p) ∈ Ẑα, hence, recalling the

disintegration formula (5.44) and the definition of Ẑ, we deduce that et(γ) = g(α, tα(e0)+ρt) =

g(α, ρt).

The next corollary concludes the discussion of the limiting procedures of the disintegration.
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Corollary 5.33. For q̂-a.e. α ∈ Q∞, it holds that

ĥα(r) = NωNAVRX1(0,ρ)(r)r
N−1.

Moreover, the following disintegration formulae hold true

m⌞E= NωNAVRX

∫
Q∞

(g∞(α, · ))#(rN−1 L1⌞(0,ρ)) q̂(dα), (5.45)

P(E; · ) = P(E)

∫
Q∞

δg∞(α,ρ) q̂(dα). (5.46)

Proof. We need only to prove Equation (5.46). Equation (5.38) and Corollary 5.32 yield∫
E
ψ(x)P(E; dx) =

N

ρ

∫
Ẑ
ψ(e1(γ))ψ σ(dx dγ dµ dp)

=
N

ρ

∫
Q∞

∫
Ẑα

ψ(e1(γ))σα(dx dγ dµ dp) q̂(dα)

=
N

ρ

∫
Q∞

ψ(g∞(α, ρ))

∫
Ẑα

σα(dx dγ dµ dp) q̂(dα), ∀ψ ∈ L1(E;P(E; · )).

5.7 E is a ball

Next lemma is the Finsler version of Lemma 4.35.

Lemma 5.34. Let (X,F,m) be Finsler manifold (with possible infinite reversibility). Let

E ⊂ X be a Borel set and let Ω ⊂ X be an open connected set with finite measure. If

m(E ∩ Ω) > 0 and m(Ω\E) > 0, then P(E; Ω) > 0.

Proof. If the manifold is reversible, then one can just apply Lemma 4.35, and therefore we

can assume that the manifold is irreversible. As we stressed out (see Remark 5.2), there exists

a Riemannian metric g, such that its dual metric g−1 in T ∗X satisfies
√
g−1(ω, ω) ≤ F ∗(ω),

for all ω ∈ T ∗X. By definition of perimeter, there exists a sequence un ∈ Liploc(Ω) such that

un → 1E in L1
loc and

∫
Ω |∂un| dm → P(X,F,m)(E; Ω). Since g−1(dun, dun) ≤ F ∗(−dun) = |∂un|

a.e. in Ω, we conclude that P(X,g,m)(E; Ω) ≤ P(X,F,m)(E; Ω).

Proposition 5.35. For q̂-a.e. α ∈ Q∞, it holds that

ϕ∞(g∞(α, 0)) ≤ ess sup
E

ϕ∞, and ϕ∞(g∞(α, ρ)) ≥ ess inf
E

ϕ∞.

Proof. We prove only the former inequality; the latter has the same proof. Define M :=

ess supE ϕ∞ and H := {α ∈ Q∞ : ϕ∞(g∞(α, 0)) ≥ M + 2ϵ}. Consider the following measure
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on E

n(T ) := NωNAVRX

∫
H

∫ ϵ

0
1T (g∞(α, r))rN−1 dr q̂(dα), ∀T ⊂ E Borel.

Clearly, n ≪ m, thus ϕ∞(x) ≤M , for n-a.e. x ∈ E. If we compute the integral

0 ≥
∫
E
(ϕ∞(x)−M) n(dx) = NωNAVRX

∫
H

∫ ϵ

0
(ϕ∞(g∞(α, t))−M) tN−1 dt q̂(dα)

= NωNAVRX

∫
H

∫ ϵ

0
(ϕ∞(g∞(α, 0))− t−M) tN−1 dt q̂(dα)

≥ NωNAVRX

∫
H

∫ ϵ

0
ϵtN−1 dt q̂(dα) = ϵN q̂(H).

we can deduce that q̂(H) = 0 and, by arbitrariness of ϵ, we conclude.

Theorem 5.36. There exists a (unique) point o ∈ X, such that, up to a negligible set, E =

B+(o, ρ), where ρ = ( m(E)
ωNAVRX

)
1
N . Moreover, it holds that

ϕ∞(o) = ess sup
E

ϕ∞ = max
B+(o,ρ)

ϕ∞. (5.47)

Proof. Define Ẽ := supp1E . Recall that by definition of support, Ẽ =
⋃
C C, where the inter-

section is taken among all closed sets C such that m(E\C) = 0; and in particular m(E\Ẽ) = 0.

Let o ∈ argmaxẼ ϕ∞. By definition of Ẽ, we have that maxẼ ϕ∞ = ess supE ϕ∞, deducing the

first equality of (5.47). The other equality in (5.47) will follow from the fact E = B+(o, ρ) (up

to a negligible set).

It is sufficient to prove only that B+(o, ρ) ⊂ E, for the other inclusion is automatic Indeed,

the Bishop–Gromov inequality, together with the definition of a.v.r. yields

m(E) ≥ m(B+(o, ρ)) ≥ ωNAVRXρ
N = m(E),

and the equality of measures improves to an equality of sets.

Fix now ϵ > 0 and define A = B+(o, ρ − ϵ). If m(A\E) = 0, then we deduce that

B+(o, ρ− ϵ) ⊂ E and, by arbitrariness of ϵ, we can conclude.

Suppose on the contrary that m(A\E) > 0. Clearly A is connected and m(A ∩ E) > 0

(otherwise o /∈ Ẽ), so we can apply Lemma 5.34 obtaining P(E;A) > 0. Define H = {α ∈
Q∞ : g∞(α, ρ) ∈ A}. The set H is non-negligible because (recall (5.46))

0 <
P(E;A)

P(E)
=

∫
Q∞

1A(g∞(α, ρ)) q̂(dα) =

∫
H
1A(g∞(α, ρ)) q̂(dα) = q̂(H).
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By lipschitz-continuity of ϕ∞ we deduce

ϕ∞(x) ≥ ϕ∞(o)− ρ+ ϵ ≥M − ρ+ ϵ, ∀x ∈ A = B+(o, ρ− ϵ)

hence

ϕ∞(g∞(α, ρ)) ≥M − ρ+ ϵ, ∀α ∈ H.

Continuing the chain of inequalities, we arrive at

ϕ∞(g∞(α, 0)) = ϕ∞(g∞(α, ρ)) + ρ ≥M + ϵ, ∀α ∈ H.

The line above, together with the fact that q̂(H) > 0, contradicts Proposition 5.35.

5.7.1 ϕ∞(x) coincides with −d(o, x)

The present section is devoted in proving that, ϕ∞(x) = −d(o, x) + ϕ∞(o). Please notice

that here there are some differences with the reversible setting and in particular the fact that

ΛF <∞ is taken into account.

Proposition 5.37. For q̂-a.e. α ∈ Q∞, it holds that

d(o, g∞(α, t)) = t, ∀t ∈ [0, ρ]. (5.48)

Proof. By the 1-lipschitzianity of ϕ∞ and the fact that E = B+(o, ρ) (up to a negligible set)

we deduce that ϕ∞(x) ≥ ϕ∞(o) − ρ, for m-a.e. x ∈ E. Henceforth, Proposition 5.35 and

Equation (5.47) yield

ϕ∞(g∞(α, 0)) ≤ ϕ∞(o), and ϕ∞(g∞(α, ρ)) ≥ ϕ∞(o)− ρ.

Since d
dtϕ∞(g∞(α, t)) = −1, t ∈ (o, ρ), the inequalities above are saturated, i.e., it holds that

ϕ∞(g∞(α, t)) = ϕ∞(o)− t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞.

Using again the 1-lipschitzianity of ϕ∞, we arrive at

d(o, g∞(α, t)) ≥ ϕ∞(o)− ϕ∞(g∞(α, t)) = t, ∀t ∈ [0, ρ], for q̂-a.e. α ∈ Q∞. (5.49)

Now fix ϵ > 0 and let C = {α ∈ Q∞ : d(o, g∞(α, 0)) > (1+ΛF )ϵ}, where ΛF is the reversibility

constant. Define the function f(t) := inf{d(o, g∞(α, t)) : α ∈ C}. Clearly, f is ΛF -Lipschitz
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and satisfies f(0) ≥ (1 + ΛF )ϵ, hence f(t) ≥ (1 + ΛF )ϵ− ΛF t, yielding (cfr. (5.49))

f(t) ≥ max{((1 + ΛF )ϵ− ΛF t), t} ≥ ϵ.

The inequality above implies that g∞(α, t) /∈ B+(o, ϵ) for all t ∈ [0, 1], for all α ∈ C. We

compute m(B+(0, ϵ)) using the disintegration formula (5.45)

m(B+(o, ϵ))

NωNAVRX
=

∫
Q∞

∫ ρ

0
1B+(o,ϵ)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫
Q∞\C

∫ ρ

0
1B+(o,ϵ)(g∞(α, t)) tN−1 dt q̂(dα).

If 1B+(o,ϵ)(g∞(α, t)) = 1, then inequality (5.49) yields t ≤ ϵ, so we continue the computation

m(B+(o, ϵ))

NωNAVRX
=

∫
Q∞\C

∫ ρ

0
1B+(o,ϵ)(g∞(α, t)) tN−1 dt q̂(dα)

=

∫
Q∞\C

∫ ϵ

0
1B+(o,ϵ)(g∞(α, t)) tN−1 dt q̂(dα)

≤
∫
Q∞\C

∫ ϵ

0
tN−1 dt q̂(dα)

= (q̂(Q∞)− q̂(C))
ϵN

N
.

On the other hand, the Bishop–Gromov inequality yields

m(B+(o, ϵ)) ≥ ϵN

ρN
m(B+(o, ρ)) =

ϵN

ρN
m(E) = ϵNωNAVRX .

The comparison of the two previous inequality gives q̂(C) = 0. By arbitrariness of ϵ, we deduce

that g∞(α, 0) = o for q̂-a.e. α ∈ Q∞.

Finally, using again (5.49), we conclude

t ≤ d(o, g∞(α, t)) ≤ d(o, g∞(α, 0)) + d(g∞(α, 0), g∞(α, t)) = t, ∀t ∈ [0, ρ], for q̂-a.e α ∈ Q∞.

Corollary 5.38. It holds that for all x ∈ B+(o, ρ), ϕ∞(x) = ϕ∞(o)− d(o, x).

Proof. If x ∈ E ∩ T∞, then x = g(α, t), for some t, with α = Q∞(x). By the previous

proposition we may assume that g∞(α, 0) = o, hence we have that

ϕ∞(x)− ϕ∞(o) = ϕ∞(g∞(α, t))− ϕ∞(g∞(α, 0)) = −d(g∞(α, 0), g∞(α, t)) = −d(o, x).

Since T∞ ∩ E has full measure in B+(o, ρ), we conclude.
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5.7.2 Localization of the whole space

We can now extend the localization given in Section 5.6.4 to the whole space X. Since we

do not know the behaviour of ϕ∞ outside B+(o, ρ), we take as reference 1-Lipschitz function

−d(o, · ), which coincides with ϕ∞ on B+(o, ρ): we disintegrate using −d(o, · ) and we see that

this disintegration coincides with the one given Section 5.6.4 in the set E. From this fact, and

the geometric properties of the space, we will conclude.

We recall some of the concepts introduced in Subsection 5.1.3, applied to the 1-Lipschitz

function −d(o, · ). The set D where no non degenerate transport curve pass is empty, for we

can connect o to any point with a geodesic. The set of branching points, A, contains only o and

elements of the boundary of the manifolds; this follows from the uniqueness of the geodesics.

For this reason, the transport set T coincides with X\{o}. Let Q ⊂ T be a measurable section

and let Q : T → Q be the quotient map; let Xα := Q−1(α) be the disintegration rays and let

g : Dom(g) ⊂ Q×R → X be the standard parametrization. The map t 7→ g(α, t) is the unitary

speed parametrization of the geodesic connecting o to α and then maximally extended. Define

q := 1
m(E)Q#(m⌞E). Using the CD(0, N) condition, one immediately sees that Q#(m) ≪ q.

We are in position to use Theorem 2.6, hence there exists a unique disintegration for the

measure m

m =

∫
Q
mα q(dα), (5.50)

where the measures mα are supported on Xα and the transport ray (Xα, F,mα) satisfy the

oriented CD(0, N) condition. We denote by hα : (0, |Xα|) → R the density function satisfying

mα = (g(α, ·))#(hαL1⌞(0,|Xα|)).

The disintegration obtained in Section 5.6.4 (in particular Corollary (5.33)) and the disin-

tegration given by (5.50) are bounded by the fact that there exists a (unique) measurable map

L : Dom(L) ⊂ Q∞ → Q such that D(L) has full q̂-measure in Q∞ and it holds

L(Q∞(x)) = Q(x), ∀x ∈ B+(o, ρ) ∩ T∞ ∩ T , and q = L#q̂.

The presence of this maps permits to prove the following Proposition.

Proposition 5.39. For q-a.e. α ∈ Q, it holds that |Xα| ≥ ρ and

hα(r) = NωNAVRXr
N−1, ∀r ∈ [0, ρ].

Proof. Using Equation (5.48), we deduce that for q̂-a.e. α ∈ Q∞, it holds that g∞(α, t) =

g(L(α), t) , ∀t ∈ (0,min{ρ, |Xα|}). Since in the disintegration (5.45), all rays have length ρ, we

deduce that |Xα| ≥ ρ. Moreover, we obtain m̂α,∞ = (mL(α))⌞E , concluding.
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Theorem 5.40. For q-a.e. α ∈ Q, it holds that |Xα| = ∞ and

hα(r) = NωNAVRXr
N−1, ∀r > 0.

The proof of the theorem above is the same as for Theorem 4.45, and thus it is omitted.

The proof of Theorem 1.8 is therefore concluded.
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Appendix A

The relative perimeter as a Borel

measure

This appendix is devoted in proving that the relative perimeter can be extended uniquely to a

Borel measure. Notice that in the result that follow, it is not needed the fact that ΛF <∞, the

compactness of closed balls, and any convexity hypothesis. We follow the line traced in [66].

We recall the definition of relative perimeter: fixed a Borel set E ⊂ Ω of a Finsler manifold

(X,F,m), and fixed Ω ⊂ X, we define the perimeter of E relative to Ω as

P(E; Ω) := inf{lim inf
n→∞

∫
Ω
|∂un| dm : un ∈ Liploc(Ω) and un → 1E in L1

loc(Ω)}.

The infimum is clearly realized by a certain sequence un. Using a truncation argument we

may assume that un takes values in [0, 1]; moreover, by passing to subsequences, we may also

assume that un converges also in the m-a.e. sense. If, in addition, Ω has finite measure, we may

also assume (by dominated convergence theorem) that un → 1E in L1(Ω). These assumptions

will always be assumed tacitly, when dealing with a sequence realizing the minimum in the

definition of perimeter.

The slope satisfies the following calculus rules, in the m-a.e. sense

|∂(f + g)| ≤ |∂f |+ |∂g|, |∂(−f)| ≤ ΛF |∂f |,

|∂(fg)| ≤ f |∂g|+ g|∂f |, if f, g ≥ 0,

|∂(fg)| ≤ ΛF (|f ||∂g|+ |g||∂f |).

The proof is straightforward, once we know that |∂f |(x) = F ∗(−df(x)), for m-a.e. x ∈ X.

The next lemma permits us to join two Lipschitz functions defined on overlapping domains.

Lemma A.1. Let (X,F,m) be a Finsler manifold. Let N,M ⊂ X be two open sets such that

121
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∂M ∩ ∂N = ∅ and ΛF,M∩N < ∞. Then there exist an open set H such that H ⊂ N ∩M and

a constant c = c(M,N) such that the following happen. For all u ∈ Liploc(M), v ∈ Liploc(N),

for all ϵ > 0, there exists a function w ∈ Liploc(M ∪N), such that

w = u in M\N, w = v in N\M, min{u, v} ≤ w ≤ max{u, v} in M ∩N,

and it holds that∫
M∪N

|∂w| dm ≤
∫
M

|∂u| dm+

∫
N
|∂v| dm+ c

∫
H
|v − w| dm+ ϵ. (A.1)

Proof. The hypothesis ∂M ∩ ∂N = ∅ yields M\N ∩ N\M = ∅. Define d := inf{d(x, y), x ∈
M\N, y ∈ N\M}. and consider the function ϕ :M ∪N → R defined as

ϕ(x) := max

{
1− 3

d
sup

y∈B+(M\N,d/3)
d(y, x), 0

}
.

The function ϕ is (3/d)-Lipschitz and attains the values 1 and 0 in a neighborhood of M\N
and N\M , respectively. Define H = ϕ−1((0, 1)). Clearly it holds H ⊂M ∩N . Fix now ϵ > 0

and find k ∈ N such that ∫
H
(|∂u|+ |∂v|) dm ≤ Λ−2

F,M∩N ϵk.

Define Hi and ψi (i = 1 . . . k) as

Hi = ϕ−1

((
i− 1

k
,
i

k

))
, ψi = min

{
3

(
kϕ− i+

2

3

)+

, 1

}
.

Clearly, ψi is (9k/d)-Lipschitz and it is locally constant outside Hi. Define wi = ψiu+(1−ψi)v.
We compute the slope of wi in Hi using the calculus rules for the slope

|∂wi| = |∂(v + ψi(u− v))| ≤ |∂v|+ |∂(ψi(u− v))|

≤ |∂v|+ ΛF,M∩N |∂ψi||u− v|+ ΛF,M∩N |∂(u− v)|ψi

≤ |∂v|+ 9k

d
ΛF,M∩N |u− v|+ Λ2

F,M∩N (|∂u|+ |∂v|).

Outside Hi the slope of wi is either |∂u| or |∂v|. Integrating over M ∪N , we obtain∫
M∪N

|∂wi| dm ≤
∫
M

|∂u| dm+

∫
N
|∂v| dm+

9kΛF,M∩N
d

∫
Hi

|u− v| dm

+ Λ2
F,M∩N

∫
Hi

(|∂u|+ |∂v|) dm.
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Summing over i and dividing by k, we deduce that

1

k

k∑
i=1

∫
M∪N

|∂wi| dm ≤
∫
M

|∂u| dm+

∫
N
|∂v| dm+

9ΛF,M∩N
d

∫
H
|u− v| dm+ ϵ,

hence there exists an index i0 such that w = wi0 satisfies (A.1), with c = 9ΛF,M∩N/d.

Theorem A.2. Let (X,F,m) be a Finsler manifold, and let E ⊂ X be a Borel set. Then it

holds that

1. (Monotonicity) P(E;A) ≤ P(E;B), if A ⊂ B,

2. (Superadditivity) P(E;A ∪B) ≥ P(E;A) + P(E;B), if A ∩B = ∅,

3. (Inner regularity) P(E;A) = sup{P(E;B) : B ⊂ A is open with compact closure in A},

4. (Subadditivity) P(E;A ∪B) ≤ P(E;A) + P(E;B),

for all open sets A, B.

Moreover, if for any Borel set A we define P(E;A) := inf{P(E;B) : B ⊃ A is open}, then
the map A 7→ P(E;A) is a Borel measure.

Proof. The monotonicity and superadditivity are immediate consequences of the definition of

perimeter. Let’s consider the inner regularity. Fix an open set A, such that sup{P(E;B) :

B ⊂ A} < ∞ (otherwise the proof is trivial). Find (Aj)j a sequence of open sets with

compact closure such that Aj ⊂ Aj+1, and
⋃
j Aj = A, and define Cj = A2j\A2j−3. Since

C2j ∩ C2k = ∅, if j ̸= k, by superadditivity, we have that
∑

j P(E;C2j) < ∞, and analogously∑
j P(E;C2j+1) <∞. Fix ϵ > 0; there exists J , such that

∞∑
j=J

P(E;Cj) ≤ ϵ2−4.

Let A := CJ+2, B
′ := AJ+1, Fh := CJ+h−1, and Gh :=

⋃h
i=1 Fi; all these sets have compact

closure, thus the irreversibility constant is finite on these sets.

By definition of perimeter, there exists a sequence ψm,h ∈ Liploc(Fh) such that ψm,h → 1E

in L1(Fh) and ∫
Fh

|∂ψm,h| dm ≤ P(E;Fh) + 2−2−m−h.

Notice that Gh has compact closure, hence ΛF,Gn∩Fh+1
< ∞, thus we are in position to use

Lemma A.1 applied to the sets Gh and Fh+1. Said Lemma gives a set Hh ⊂ Gh ∩ Fh+1 and
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a constant ch, that will be used soon. Clearly, up to passing to subsequences, we can assume

that

ch

∫
Hh

|ψm,h+1 − ψm,h| dm ≤ ϵ2−10−h.

We define inductively on h a sequence of functions um,h : Gh → R as follows. For the initial

step, take um,1 = ψm,1. For the inductive step, apply Lemma A.1 to the functions um,h and

ψm,h+1 obtaining a function um,h+1 such that∫
Gh+1

|∂um,h+1| dm ≤
∫
Gh

|∂um,h| dm+

∫
Fh+1

|∂ψm,h+1| dm

+ ch

∫
Hh

|um,h − ψm,h+1| dm+ ϵ2−10−h.

Since um,h+1 = ψm,h+1 on Fh+1\Gh and um,h+1 = um,h on Gh\Fh+1, we can deduce by

induction that∫
Gh+1

|∂um,h+1| dm ≤
h+1∑
i=1

∫
Fi

|∂ψm,i| dm+
h∑
i=1

(
ci

∫
Hi

|ψm,i − ψm,i+1| dm+ ϵ2−10−i
)

≤
h+1∑
i=1

∫
Fi

|∂ψm,i| dm+ ϵ2−8 ≤
h+1∑
i=1

P(E;Fi) + 2−m + ϵ2−8.

We define um(x) = um,h(x), whenever x ∈ Gh−1 (the definition is well-posed) and we integrate

its slope ∫
A\B′

|∂um| dm ≤ lim
h→∞

∫
Gh

|∂um,h−1| dm ≤
∞∑
h=1

P(E;Fh) + 2−m + ϵ2−8

=
∞∑
h=1

P(E;CJ+h−1) + 2−m + ϵ2−8 ≤ ϵ2−3 + 2−m.

The sequence um converges to 1E in L1(Gh) for all h, hence it converges in L1
loc(A\B′).

We take now vm ∈ Liploc(B) converging to 1E in L1(B) such that

P(E;B) ≤
∫
B
|∂vm| dm+ 2−m.

We are in position to use Lemma A.1 again with the sets A\B′ and B and find an open set H

and a constant c, such that for all m there exists a function wm : A→ R such that∫
A
|∂wm| dm ≤

∫
A\B′

|∂um| dm+

∫
B
|∂vm| dm+

∫
H
|um − vm| dm+ ϵ2−3
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≤ 2−m + ϵ2−3 + 2−m +

∫
H
|um − 1E | dm+

∫
H
|1E − vm| dm+ ϵ2−3

≤ 21−m + ϵ+

∫
G3

|um − 1E | dm+

∫
B
|1E − vm| dm.

By taking the limit as m → ∞, we deduce that P(E;A) ≤ P(E;B) + ϵ, concluding the proof

of the inner regularity.

We prove now the subadditivity. Fix A and B two open sets and let A′ and B′ compactly

included in A and B, respectively. We will prove that P(E;A′ ∪ B′) ≤ P(E;A′) + P(E;B′).

From this fact and the inner regularity, the subadditivity will follow. Consider un ∈ Liploc(A
′)

and vn ∈ Liploc(B
′) converging in L1 to 1E , such that∫

A′
|∂un| dm ≤ P(E;A′) +

1

n
, and

∫
B′

|∂vn| dm ≤ P(E;B′) +
1

n
.

Apply Lemma A.1 to the sets A′ and B′, and find H ⊂ A′ ∩ B′ and c > 0 such that, for all

n > 0, there exists a function wn satisfying∫
A′∪B′

|∂nwn| dm ≤
∫
A′

|∂nun| dm+

∫
B′

|∂nvn| dm+ c

∫
H
|un − vn| dm+

1

n
.

We conclude by taking the limit as n→ ∞.

The fact that the relative perimeter can be extended to a Borel measure, is a consequence

of a well-known Theorem of De Giorgi and Letta [36], that states that the conditions we have

just proven are sufficient to obtain such a measure.
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Appendix B

Relaxation of the Minkowski content

In this appendix we give a proof of the fact that the perimeter can be seen as the l.s.c. relaxation

on the Minkowski content. The proof follows the line of [6], with some extra attention to the

irreversibility of the space. In the case X = Rd, this was already proven in [33], with a different

technique.

Proposition B.1. Let (X,F,m) be a Finsler manifold and E ⊂ X be a Borel set. Then it

holds that

m+(E) ≥ P(E).

Proof. We consider the case m+(E) <∞ (the other is trivial). This implies that m(E\E) = 0,

hence, without loss of generality, we may assume that E is closed. Consider the ϵ−1-Lipschitz

function

fϵ(x) := max

{
1− 1

ϵ
sup

y∈B+(E,ϵ2)

d(y, x), 0

}
.

Clearly fϵ → 1E in L1(m). In B+(E, ϵ2) it is equal to 1, hence |∂fϵ|(x) = 0, for all x ∈
E. Conversely, in X\B+(E, ϵ + ϵ2) it attains its minimum, hence |∂fϵ|(x) = 0 for all x ∈
X\B+(E, ϵ+ ϵ2). We compute the integral∫

X
|∂fϵ|(x)m(dx) =

∫
B+(E,ϵ+ϵ2)\E

|∂fϵ|(x)m(dx) ≤
∫
B+(E,ϵ+ϵ2)\E

1

ϵ
m(dx)

=
m(B+(E, ϵ+ ϵ2)\E)

ϵ
= (1 + ϵ)

m(B+(E, ϵ+ ϵ2))−m(E)

ϵ+ ϵ2
.

By taking the inferior limit as ϵ→ 0, we conclude.

The previous proposition guarantees that the l.s.c. envelope of the Minkowski content is

not smaller than the perimeter. The reverse is a bit more difficult and, at a certain point, we

will require that closed forward balls are compact.
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We consider the “semigroup” (Tt)t≥0 given by the formula

Ttf(x) := sup
y∈B−(x,t)

f(y), T0f = f.

Note that the ball in the supremum is backward. The semigroup Tt enjoys the following

immediate property.

Lemma B.2. It holds that Tt+sf ≥ Tt(Tsf) and, if f is locally Lipschitz

lim sup
t→0+

Ttf − f

t
≤ |∂f |, m-a.e. in X.

Proof. Regarding the first part, fix x ∈ X, and ϵ > 0. By definition there exists y such that

d(y, x) < t and (Tt(Tsf))(x) ≤ (Tsf)(y) + ϵ. Similarly, there exists z such that d(z, y) < s and

(Tsf)(y) ≤ f(z) + ϵ. By triangular inequality, we have that d(z, x) < t+ s, thus

(Tt+sf)(x) ≥ f(z) ≥ (Tsf)(y)− ϵ ≥ (Tt(Tsf))(x)− 2ϵ.

By arbitrariness of ϵ, we conclude the first part.

Regarding the second part, fix x ∈ X. By a direct computation we deduce

lim sup
t→0+

(Ttf)(x)− f(x)

t
= inf

r>0
sup
t∈(0,r)

supy∈B−(x,t) f(y)− f(x)

t

= inf
r>0

sup
t∈(0,r)

sup
y∈B−(x,t)

(f(y)− f(x))+

t

≤ inf
r>0

sup
t∈(0,r)

sup
y∈B−(x,t)

(f(y)− f(x))+

d(y, x)

= lim sup
y→x

(f(y)− f(x))+

d(y, x)
.

If x is a point where f is differentiable, then the last term of the inequality above is equal to

F ∗(−df) = |∂f |(x), concluding the proof.

We prove now a sort of coarea formula.

Lemma B.3. Consider (X,F,m) a Finsler manifold. If f : X → [0,R) is a Lipschitz function

with compact support, it holds that∫ ∞

0
m+({f ≥ t}) dt ≤

∫
X
|∂f |(x)m(dx).

Proof. In the first place, we notice that
∫∞
0 1{f≥t}(x) dt = f(x). Fix t ≥ 0 and h > 0. If
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x ∈ B+({f ≥ t}, h), then (Thf)(x) ≥ t, or in other words 1B+({f≥t},h) ≤ 1{(Thf)≥t}. By

integrating over t we obtain∫ ∞

0
1B+({f≥t},h)(x) dt ≤

∫ ∞

0
1{(Thf)≥t}(x) dt ≤ (Thf)(x).

By subtracting the first equation to the inequality above, integrating over x and using Fubini’s

theorem, we obtain∫ ∞

0

m(B+({f ≥ t}, h))−m({f ≥ t})
h

dt ≤
∫
X

(Thf)(x)− f(x)

h
m(dx).

The set {f ≥ 0} is compact, hence for h > 0 sufficiently small B+({f ≥ 0}, h) is compact.

Moreover, Thf−fh is smaller than the Lipschitz constant of f , hence the integrand in the r.h.s.

is dominated by an L1 function. We take the inferior and superior limit in the l.h.s. and r.h.s.

(respectively) of the inequality above; the Fatou’s Lemma brings us to the conclusion.

We now prove that we can, without loss of generality, assume that the functions of a

sequence attaining the minimum in the definition of the perimeter have compact support.

Proposition B.4. Let (X,F,m) be a Finsler manifold, such that all closed forward balls are

compact and let E ⊂ X be a Borel set with finite measure. Then there exists a sequence

of Lipschitz functions with compact support, (wn)n, such that wn → 1E in L1 and P(E) =

limn→∞
∫
X |∂wn| dm.

Proof. Fix E ⊂ X with finite measure, such that P(E) < ∞ (otherwise the proof is trivial).

Let An := B+(o, n) for some o, fixed once and for all. Up to taking subsequences, we can

assume that m(E\An) ≤ 2−n. Let ϕn be the 3-Lipschitz function given by

ϕn(x) :=

(
1− 3 inf

y∈B+(An,
1
3
)
d(y, x)

)+

.

This function takes value 1 and 0 in a neighborhood of An and X\An+1, respectively. By

definition of perimeter, there exist a sequence un : An → [0, 1] of locally Lipschitz function

such that

P(An) ≥
∫
An

|∂un| dm− 2−n, and ∥un − 1E∥L1(An)
≤ 2−n.

Define the function wn := ϕnun+1. This function is Lipschitz with compact support. We
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compute its distance to 1E∫
X
|wn − 1E | dm ≤

∫
An

|un+1 − 1E | dm+ 2m(E ∩An+1\An) +m(E\An+1) ≤ 23−n,

thus wn → 1E in L1(X). Using the fact |∂wn| ≤ ϕn|∂un+1|+ |∂ϕn|un+1, we deduce∫
X
|∂wn| dm ≤

∫
An

|∂un+1| dm+

∫
An+1\An

ϕn|∂un+1| dm+

∫
An+1\An

un+1 dm

≤
∫
An+1

|∂un+1| dm+ 2−1−n ≤ P(E;An) + 2−n ≤ P(E) + 2−n.

Theorem B.5. Consider (X,F,m) a Finsler manifold, such that all closed forward balls are

compact. Let E ⊂ X be a Borel set with finite measure. Then there exists (En)n, a sequence

of compact sets, such that m(En △ E) → 0 and

P(E) ≥ lim sup
n→∞

m+(En).

Proof. Proposition B.4 guarantees the existence of a sequence (fn)n of Lipschitz functions with

compact support, such that fn → 1E in L1(m) and

P(E) = lim
n→∞

∫
X
|∂fn|(x)m(dx).

Clearly we may assume that 0 ≤ fn ≤ 1. Fix ϵ ∈ (0, 12). By Lemma B.3, there exists

tϵn ∈ (ϵ, 1− ϵ) such that

m+({fn ≥ tϵn}) ≤
1

1− 2ϵ

∫
X
|∂fn|(x)m(dx).

Define Eϵn := {fn ≥ tϵn}. Since m(Eϵn △ E) → 0, by taking an appropriate choice of ϵ = ϵn, we

conclude.
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