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1 Introduction

In this paper, we prove a compactness result in GBD, which in particular provides an alternative proof of
the compactness theorem in GSBD obtained by Chambolle and Crismale in [5, Theorem 1.1]. Referring to
Section 2 for the notation used below, the theorem reads as follows.

Theorem 1.1. Let U ¢ R"™ be an open bounded subset of R" and let uy € GBD(U) be such that

sup jiy, (U) < +oo. (1.1)
kelN

Then there exists a subsequence, still denoted by uy, such that the set
A:={xeU:|ukx)| — +oo as k — oo}
has finite perimeter, i.e. uxy — u a.e. in U \ A for some function u € GBD(U) with u = 0 in A. Furthermore,
H"1(074) < lim 1i££§f9{“—1(]gk), (1.2)

where i, := {x € Jy, : [[ux(0)]l > o}.

We notice that the main difference to [5] is that we do not request equi-integrability of the approximate sym-
metric gradient e(uy) and boundedness of the measure of the jump sets J,, , but only boundedness of ji,,, (U),
which is the natural assumption for sequences in GBD(U). Hence, when passing to the limit, the absolutely
continuous and the singular parts of ji,, could interact. For this reason, it is not possible to get weak L!-
convergence of the approximate symmetric gradients or lower-semicontinuity of the measure of the jump.
Nevertheless, we are able to recover the lower-semicontinuity (1.2) for the set A where |uy| — +co. In
particular, formula (1.2) highlights that the emergence of the singular set A results from an uncontrolled
jump discontinuity along the sequence uy. Hence, an equi-boundedness of the measure of the super-level
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sets ]Zk, i.e.
for every € > 0 there exists 0, € N such that .‘H”‘l(IZk) <eforo>0.and k e N,

guarantees 0* A = 0.
The GSBD-result [5, Theorem 1.1] is recovered by replacing (1.1) with

supj¢:(|e(uk)|)dx+ﬂ-f"’1(]uk) < +00 (1.3)
kelN U

for a positive function ¢ with superlinear growth at infinity. The novelty of our proof, presented in Section 3,
concerns the compactness part of Theorem 1.1. It is based on the Fréchet-Kolmogorov criterion and makes no
use of Korn or Poincaré—Korn-type of inequalities [3] (see also [2, 7, 8]), which are instead the key tools of [5].
The remaining lower-semicontinuity results of [5, Theorem 1.1] can be obtained by standard arguments.

2 Preliminaries and notation

We briefly recall here the notation used throughout the paper. For d, k € N, we denote by £4 and H* the
Lebesgue and the k-dimensional Hausdorff measure in RY, respectively. Given F ¢ RY, we indicate with
dimg(F) the Hausdorff dimension of F. For all compact subsets F; and F, of R4, distgc(F1, F>) stands for
the Hausdorff distance between F; and F,. We denote by 1f the characteristic function of a set E ¢ R4, For
every measurable set Q ¢ R4 and every measurable function u: Q — RY, we further set J, to be the set of
approximate discontinuity points of u and

Ji={xely: W)l =0}, 0>0,

where [u](x) := u*(x) — u™(x) with u*(x) being the unilateral approximate limit of u at x.

For m, ¢ € N we denote by M™*¢ the space of m x £ matrices with real coefficients, and set M™ := IM"™™,
The symbol Mg, (resp. My ) indicates the subspace of M™ of squared symmetric (resp. skew-symmetric)
matrices of order m. We further denote by SO(m) the set of rotation matrices.

Letusnow fixn € N \ {0}. Forevery ¢ € $"~1, 71¢ stands for the projection over the subspace &* orthogonal

to £. For every measurable set V ¢ R", every ¢ € $"1, and every y € R", we set
¢ :={zeR":z-¢£ =0}, Vﬁ::{te]R:y+t¢'e v}
For V ¢ R" measurable, ¢ € $"°1, and y € R", we define
ﬂi(t) =u(y+té)-& foreveryt e V;’j.

For every open bounded subset U of R", the space GBD(U) of generalized functions of bounded defor-
mation [6] is defined as the set of measurable functions u: U — R" which admit a positive Radon measure
Ae M;(U) such that for every £ € $"1 one of the following two equivalent conditions is satisfied [6, Theo-
rem 3.5]:

« Forevery 6 € C1(R; [—%; %]) such that 0 < 0 < 1, the partial derivative D¢(0(u - &) is a Radon measure
in U and
IDg(8(u - )I(B) < A(B)

for every Borel subset B of U.
o« ForH"lae.ye II¢, the function ﬂi belongs to BV10C(U§ ) and
J |D)|(BS \ L) + 30(BS 0 T%,) do™ () < A(B) 2.1)
y y
¢

for every Borel subset B of U.
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A function u belongs to GSBD(U) if ﬁ}( € SBVlOC(U,": ) and (2.1) holds. Every function u € GBD(U) admits an

approximate symmetric gradient e(u) € LY(U; Mgy,). The jump set J, is countably (K™ 1, n - 1)-rectifiable

with approximate unit normal vector v,. We will also use measures ﬁf s Hy € M;(U) defined in [6, Defini-
tions 4.10 and 4.16] for u € GBD(U) and & € $"~1. We further refer to [6] for an exhaustive discussion on the
fine properties of functions in GBD(U).

3 Proof of Theorem 1.1

This section is devoted to the presentation of an alternative proof of Theorem 1.1, based on the Fréchet—
Kolmogorov compactness criterion. We start by giving two definitions.

Definition 3.1. Let £ = {{1, ..., &} denote an orthonormal basis of R". We define

Szo:=|JfxeR": x| =1, x e TI*}.
14E3)

Given 6 > 0, we define the §-neighborhood of Sz ¢ by
Sz,5 = {x e R": |x] = 1, dist(x, Sz,0) < 6}.

Definition 3.2. In order to simplify the notation, given a family X and a positive natural number m, we denote
by K, the set consisting of all subsets of K containing exactly m-elements of X, i.e.

Km ={2 e P(K) : #2 = m}.

In order to prove Theorem 1.1, we need the following two lemmas, which allow us to construct a suitable
orthonormal bhasis of R" that will be used to test the Fréchet-Kolmogorov compactness criterium.

Lemma 3.3. Let M € IN besuchthat M > n and consider a family X := {Z4, . .., Eyu} of orthonormal bases of R"
such that for every Z, € Ky,

(] Sz.0=0. (.1)
ZeZ
Then there exists a further orthonormal basis X = {1, . . ., &} such that for every Z € Ky_1,
Ss0N ﬂ Sz,0=0. (3.2)
ZeZ

Proof. First of all, notice that whenever Z € X, is such that
ﬂ Sg,0=0,
EeZ

then we have

J{O< ﬂ Sg,o> <+o00 foreveryX e Zn_i. (3.3)
EeX

Indeed, let us suppose by contradiction that (3.3) does not hold for some X € Z,,_1. Since for E € X we have
that each Sz ¢ is a finite union of (n - 1)-dimensional subspaces of R" intersected with $"~1, the equality

fHO< ﬂ 55,0> = +00
EeX

implies that

dimo ([ Sz0)> 1.

EeX

dimsc () [J1g4) 2 2.

EeX éeE

As a consequence, we get
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Hence, if we denote by E the basis contained in Z \ X, then, by using Grassmann’s formula,
dim(V) + dim(W) — dim(V n W) = dim(V + W) < n,

which is valid for each couple V, W of vector subspaces of R", we deduce

dimsc (1640 () UtgH) = 1.

IS EeX ek

Hence,

ﬂ SE,O + 0,
EeZ

which is a contradiction to the assumption (3.1).

Fix an orthonormal basis {eq, ..., e,} of R" and let SO(n) be the group of special orthogonal matri-
ces. It can be endowed with the structure of an (@)-dimensional submanifold of R™. We can identify an
element O € SO(n) with an (n x n)-matrix whose columns are the vectors of an orthonormal basis £ written
with respect to {eq, ..., e,} and vice versa.

In order to show the existence of ¥ satisfying (3.2), we prove the following stronger condition: given
2 € Kp_1, for H(*~m/2_3 e. choice of £ we have that

SsoN ﬂ Sz,0=0. (3.4)
EeZ
This easily implies the existence of an orthonormal basis X satisfying (3.2), as the choice of Z € X,_ is finite.
To show (3.4), for every i € {1, ..., n}let us define the smooth map

Ai: SO x{y e R" L :|y| =1} — st

by
N, Y) = ) Y&+ ) v,

j<i j>i
where ¢; denotes the j-th column vector of the matrix representing X. In order to show (3.4), we claim that it
is enough to prove that for every x € $"~! we have

HO 2 50y (AT 0OD) = 0 fori € {1, ), G5

where
Tsomy: SO(n) x {y € R"™ : |y| = 1} — SO(n)

is the canonical projection map. Indeed, if ¥ does not belong to rrso(n)({Ai‘l(x)}) for every x € (\z¢z Sz,0 and

foreveryi € {1, ..., n}, then, by using the definition of the map A;, we deduce immediately that X satisfies
SsoN ﬂ Sz,0=0.
EeZ

Therefore, if (3.5) holds, then the set (remember that [z, Sz,o is a discrete set)

n

U msom ({A7 (0}

i=1 XEnEEZ SE,O

is of 3(("*~M/2.measure zero and (3.4) holds true. Thus, H™ /2. e. T satisfies (3.2).
To prove (3.5) it is enough to show that the differential of A; has full rank at every point

z€SO(n) x{y e R : |y| = 1}.

Indeed, this implies that Ai‘l(x) is an (”Z’T”’Z)-dimensional submanifold for every x € $"1, which ensures
the validity of (3.5) since

#({M5o0m (BN N AT (0} = 1, xes",

2 -2 2
n zn P 3 n =dimg¢(SO(n)), n=x>2.
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Notice that A; is the restriction to SO(n) x {y € R"™! : |y| = 1} of the map A;: M" x R™! — R" defined by
Ai(0,y) := ZYjGj + ZYj—lej,
j<i j>i

where 0; is the j-th column vector of the matrix ® € M". To show that the differential of A; has full rank
everywhere, it is enough to check that for every z € SO(n) x {y € R*"! : |y| = 1} the differential of A; restricted
to Tan(SO(n) x {y € R*"! : |y| = 1}, 2) has rank equal to n — 1. By using the relation

Ai(M6,y) = MA;(8, y),

valid for every M € IM", we can reduce ourselves to the case z = (I, ), where I denotes the identity matrix and
y € R"lis such that |y| = 1. It is well known that

Tan(SO(n) x {{ e R"™ : |{] =1},2z) = M"  xTan({{ e R" ! : [{] = 1},7),

skw

where M, = denotes the space of skew symmetric matrices. Using that RV -1 = M x R"™L, we identify
apoint Z € R"*"1 as

Z= ((X;);‘l’jzl’ YViseoos )/n—l)-
A direct computation shows that the differential of A; at the point (I, ¥) acting on the vector Z is given by

n X .
dhi(L,Y)(Z] =Y Y (qy; + Suyjer + Y (Vi1 + Syj-1er.
I=1 j<i j>i
It is better to introduce the matrix P; € M™ -1 defined by

bim if1<m<i,

Py = {

Ok-1m ifi<m<n-1.

Roughly speaking, given X € M", the product XP; is the matrix in M™""-1) obtained by removing from X
the i-th column, while given Y € M@-DxL the product P;Y is the matrix in M™! obtained by adding a new
row made of zero entries at the i-th position. With this definition, the linear map dA;(I, y)(-) can be rewritten
more compactly as

dri(LY)[(X,y)] = XPiy + Py, X € M{,, y € Tan({{ e R : [¢] = 1}, 7).

Given O € SO(n - 1) such that 0é; =y (where {&1, ..., &,_1} denotes the reference orthonormal basis of
R™ 1), we can rewrite the system as

dAi(LY)[(X,y)] = XPi0éy + Py, X € Ml,,, y € Tan({{ e R : [{] = 1}, 7).
Hence, by the well-known relation
dim(V) - dim(Im[a]) = dim(ker[a]), (3.6)

valid for every linear map a: V — W and all finite-dimensional vector spaces V and W, if we want to prove
that dA;(1, y) has full rank, i.e.
dim(Im[(-)P;0é; + Pi(-)])=n-1,

since
n-1>dim(Im[(-)P;0&é; + Pi(-)]) > dim(Im[(-)P;0é1])

(where the first inequality comes from Im[dA;(, ¥)] c Tan(S™ 1, A;(I, ¥))), it is enough to show that
dim(Im[(-)P;0é1]) =n - 1. (3.7)
Again by relation (3.6), we can reduce ourselves to find the dimension of the kernel of the map

M > X — XP;0&;.
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But this dimension can easily be computed to be

n-2
dim(ker((-)P;02)) = Y k= MZ2MZD,

k=1

which immediately implies (3.7). O

Remark 3.4. By a standard argument from linear algebra, it is possible to construct n orthonormal bases
of R", say X = {24, ..., E,}, satisfying
ﬂ Sz0=0.

EeX
Moreover, given U ¢ SO(n) open, E; can be chosen in such a way that

ZieU, 1ief1,...,nh

Therefore, Lemma 3.3, and in particular condition (3.4), tells us that for every M € IN (M > n) we can always
find a family of orthonormal bases of R", say X = {Z1, ..., Ey}, satisfying (3.1) and

SielU, iefl,...,M}.

Lemma 3.5. Let A c R" be a measurable set with L™(A) < oo, let (Bx)}y2,; be measurable subsets of A, and
let (vik)i2, be measurable functions vi: By — S"1. Then, given a sequence €y \, 0, there exist a sequence
6 N\ O with 6, > 0, a map ¢: N — N, and an orthonormal basis E of R" such that, up to passing through
a subsequence on k,

LMV (Sg,5,)) < €n  forevery k > ¢(h).

Proof. We claim that for every natural number N > n, for every j € {0, 1, ..., n - 1}, for every € > 0, and for
every open set U ¢ SO(n) there exist § > 0 and a family of orthonormal bases X := {Z41, ..., Ey} € U such
that, up to subsequences on k, we have
L"(vf({x € ﬂ Szs:2¢€ 5(,,-,-})) <eg, k=1,2,..., (3.8)
ZeZ
EelU EeX. (3.9)

Clearly, the pair (6, K) depends on (N, j, €), but we do not emphasize this fact. We proceed by induction on j.
Thecasej = 0:given N € N, € > 0, and any open set U c y(n), we can make use of Lemma 3.3 and Remark 3.4
to find N orthonormal bases X = {Z, ..., Ey} € U such that

ﬂ Szo0=0 forZeX,.
ZeZ
Since the Sz o are closed sets, there exists § > O such that
ﬂ Szs=0 forZ e X,.
EeZ
Hence, (3.8) is satisfied with j = 0 and (3.9) holds true.
We want to prove the same for O < j < n — 1. For this purpose, we fix a natural number M > n, a parameter
€ > 0, and an open set U ¢ SO(n). By using the induction hypothesis, we may suppose that (3.8) and (3.9)

hold true for j — 1. This means that, given N > nand & > 0 (to be chosen later), we find § > 0 and orthonormal
bases X = {E1, ..., En} such that (3.8) and (3.9) hold true for j — 1. Choose Z € Kj; and consider the set

site=1J [ Sz (3.10)

qe€Zn-j E€q

which is the union of all possible (n — j)-intersections of sets of the form Sz s for & € Z.
We recall the following identity valid for any finite family of subsets of A, say (B)IL:1:

L L L L
L"( UB,) =Y "By - Y LMB, B+ + (-1)“@”( ﬂB,). (3.11)
=1 =1 =1

ll<12
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Now we partition X into Aﬂ/[ disjoint subsets (without loss of generality, we may choose N to be an integer
multiple of M) each of which belongs to K. We call this partition P. By construction, any l-intersection of
sets of the form S ;’fé with Z € P can be written as the union of (rf‘f ].)l sets each of which, thanks to the fact that
(we use that P is a partition)

Z1,Z, € P implies ZynZ, =0,

is the intersection of at least n - (j — 1) different sets of the form Sz s with E € K. Taking this last fact into
account, if we replace the sets B;j by v;l(S';’s) and L = A_]\/II in identity (3.11), we obtain

. . N/M M 1
o Uwteih)z ¥ Lot st - ), (n_j> g k=1,2,..., (3.12)
ZeP ZeP =2

where we have used the inductive hypothesis (3.8) for j — 1 to estimate the remaining terms in the right-hand
side of (3.11).
Now suppose that for every Z € Xy it holds true for some k that

LSy ) > €. (3.13)
Then inequality (3.12) implies
N MM\
(U vitSz0) > 16— X ( ) E. (3.14)
2ep =2 \1~J
Therefore, if we choose N sufficiently large in such a way that
N
Me >2LM(A),
and & > 0 such that
N/M / ar\!
Y ( ) £ < LM(A),
=2 \7J

then (3.14) implies that for every k there exists Z¥ € P for which (3.13) does not hold, i.e.
LS <e k=1,2,...,

where we have used that By, the domain of vy, is contained in A. Since P is a finite family, we may suppose
that, up to subsequences on k, we find a common Z € P for which

LS <e k=1,2,.... (3.15)

Taking into account the definition of S'{’g (see (3.10)), formula (3.15) gives our claim for j. Finally, by induc-
tion, this implies the validity of our claim for every j € {0, ..., n}.

Now we prove the lemma. For j = n — 1, the claim says in particular that we find an orthonormal basis Zq
and 8y > 0 such that, up to passing to a subsequence on k, we have

LMVl (Szy6,) < €0, k=1,2,....
Notice that, by using a continuity argument, we find a neighborhood Uy of Zg in SO(n) such that

Sz,5,/2 € Sgq,6, E € Uop.

By applying again the claim, we find an orthonormal basis £; € Uy and 8; > 0 such that, up to passing to
a further subsequence on k, we have

L'V (S, 5)) <€, k=1,2,....
Hence if we set §; := min{81, 80/2}, we obtain as well

LMV (Sz,6,)) < €1, k=1,2,...,

S5,,6, € Sg,80-
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Proceeding again by induction, we find for every h = 1, 2, ... an orthonormal basis E, 6, > 0, and a subse-
quence (k?)e such that

LV (Szpe)) <€n, €=1,2,...,
(4
SEhyéh S SEh—l;thl’
(kp)e € (kg Ve
If we denote with abuse of notation the diagonal sequence (kﬁ)h simply as k, then we can find a map
¢: N — N such that
LMV (Sg,5,) < €ns k> @(h) (3.16)
Sen,6n € Sgy1,611 - (3.17)

Since the family (Sz, 0)n is made of compact subsets of $"~1, then it is relatively compact with respect to the
Hausdorff distance. This means that, up to a subsequence on h, we find an orthonormal basis Z such that

hlim dists¢(Sz,,0, Sz,0) = 0.

By using (3.17) and the fact that Sz, s, are relatively open subsets of $"-1, this last convergence tells us that
for every h the compact inclusion Sz o € Sz, s, holds true. But this implies that, up to defining suitable 5;1 >0
with &} < 6p, we can write

55,5;[ € Sg,.6,» heN.

Finally, with abuse of notation, we set 6y, := 5;1 for every h. Then (3.16) implies
LMV} (Sz6,) < €, k= P(h), heN.
This gives the desired result. O
Remark 3.6. Given U ¢ R", u € GBD(U), and 0 > 1, we have that
HLJY) < 4nju (V).

Indeed, given € > 0, one can consider a partition of $"~! into a finite family of measurable sets {S1, ..., Sy}
such that for every m = 1, ..., M there exists an orthonormal basis E, = {£]", ..., &'} with &- & > % for
every & € S,y and for every i,j € {1,...,n} and m € {1, ..., M}. Consider then the partition of JJ given by
{B1,...,Bu}, where

By = {x € Jy : [uO)]/I[u()]l € Sm}-

We then have

n-1:y0 V- . n-1
HWID < ) Iva - §1dH

m=1 {e_mBm

I
M=

I
M=
=
NV
=
o5
2

where we have used that |[4ﬂ§](t)| > 1foreveryte], cn (Bm)f: for H" -a.e.y € II* with & € Ep,.
y
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Remark 3.7. Let U ¢ R" and u € GBD(U). Given ¢ € $""! and ¢ > 1, if we introduce the map ﬁf;: BU) - R
as
75(B) 1= [IDEFI(B) \1%) + 3C(B] 0 J7) 43¢ y), B € BU),
y y
¢

then we have ﬂg € M; (U). More precisely, for H"1.a.e.y € II we have

IDE3I(B\J7) + HOBNJ%) < IDEGI(B\JL) + HOB L) + (0 - DICBNULN\I%), B e BU)

(notice that for 3™ !-a.e. y the right-hand side is a finite measure thanks to Remark 3.6). By using the inclu-
sion J%, ¢ (]ﬁ)i, valid for every v € GBD(U) for every ¢ € $"~1, and for 1" !-a.e. y € I1¢, we deduce
Vy

15(B) < j5(B) + (0 - 1) j V- 8d3Y, B e BU). (3.18)
B}

Finally, Remark 3.6 and the definition of ji¥ (see [6, Definition 4.10]) imply that the right-hand side of (3.18)

is a finite measure, and so is pi.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let 7(t) := arctan (t). We claim that for every i € {1, ..., n} the family (7(ux - e;))x is
relatively compact in L*(U), where {ei}?:1 denotes a suitable orthonormal basis of R". Now given €, \, O,
by using Lemma 3.5, there exists 6, \, O such that if we define By := {|ug| # 0} and vi: By — S™! by
Vi := uy/|ugl, then

L"(vi'(Sz,s,) < €n forevery k > ¢(h),

for a suitable orthonormal basis E and a suitable map ¢p: N — N.
In order to simplify the notation, let us denote = = {e4, ..., ep}. Fixi € {1, ..., n} and set

f?:: \/? e; + t
T Nt+ g2 Vit + 2

ejes"!

foreveryj + iand t > 0. Notice that

& —e
|&f —e;] < V2t and I el < V2t (3.19)
! foeil

j

We define U; := {x € U : dist(0U, x) > t}. Since we want to apply the Fréchet-Kolmogorov theorem, we have
to estimate for x € Uy,
IT(ui(x + tej) - ei) — T(ur(x) - ei)l
< |T(uk(x + tej) - e;) — T(ux(x + tej) - Ef)l + T (ur(x + tej) - {jt) — T(ur(x — Vte;) - fjt)l
+ | T(u(x - Vte) - &) - T(u(x - Vtey) - )| + [T(uk(x - Viter) - er) — T(u(x) - €.

Now notice that, by the definition of Sz s, (see Definition 3.1), there exists a positive constant ¢ = c(6p)
such that for every x € U\ v;l(SE,gh/z) andeveryi,je{1,...,n},

luk(x) - ejl = c(8x)luk(x) - ej| for every k and h. (3.20)
Moreover, by taking into account (3.19), we deduce the existence of a dimensional parameter ¢ > 0 such that

&P 227Nz eil’, t<t, zeR" i,je{l,...,n} (3.21)
i
1$; — eil

llez-e,-l, t<f zeR", i,je(l,...,n). (3.22)
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Forevery t < t,ifx € Usand x ¢ v,:l(Sg,,sh/z) — tej, by using (3.19) and (3.20)—(3.22), we can write

|7 (ui(x + tej) - eq) — T(ur(x + teg) - &)

uk(x+te,-)~¢’].‘

| [ e

ur(x+tej)-e;

2t V2t & —ei
smax{ 5> tz}'uk(x+tej)-t—‘
L+ |ur(x +tej) - eil* " 1+ Jux(x + tej) - & ¢ — eil
<max{ vat vat }|u (x + tej) - sjt_ei |
- 1+ Jui(x + tej) - eil?” 1+ 27 ur(x + tej) - ;]2 k ) |§jt—e,~|
22t 2Vt
< tej) - ejl < ——. .2
< 1+2*1|uk(x+te;)-ei|2|uk(x+ ej) - ejl < B (3.23)
Analogously, if x € Uy and x ¢ vi*(Sz,s,/2) + Vte;, we have
2Vt
|T(uk(x - Vtey) - &) = T(ur(x - Vtey) - e)| < ——=—. (3.24)
c(6n)
Hence, from (3.23) and (3.24) we infer that for every t < ¢,
Jlr(uk(x + te)) - €7) = T(up(x+ tey) - )l dx < U + e
Uy
and
. 2Vt
Jlr(uk(x - Vtey) - e;) - T(ur(x - Vte;) - §)ldx < IUIC(T) + €.
h
U
Moreover, setting s; := Vt + t2, we can write
JIT(uk(x +tej) - &) — T(uk(x — Vte) - &) dx
Ut
= Jlr(uk(x - Vtei + 5¢&) - &) - T(u(x - Vtes) - &)l dx
U
= | s s -8 - a0 - i
Ui+ Vte;
t
< j ( J IDT(@)I((s, 5 + 5¢) ds) d3em1(y). (3.25)

I1,¢ &t
5 (Uerte),

By a mollification argument, we have that

[( ] |Dr(a§’t)|<(s,s+st))ds)d9f"-1(y)=j(Twr(a;’fn(wmWei)ff?)t)d/l)dﬂf"-l(y),

My 0

I, &
5 (Uie, i

so that we obtain from (3.25) that
t t ( N 5 n-1
JIT(uk(x ¥ te)) - € - Tl - Ve - ) dx < j ( JIDT(uy (e + VEe)y +A)dA) 3L (y)
U H‘y}'t 0
< J( J |Dr(a§)|(Uff)d:}c"-1(y)>d/\

0 Il
5

< Sty (U).
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Analogously,
[ Irtuec = Veen - e - wiun0 - 0l dx < 7V (U).
U;
Summarizing, we have shown that if ¢, is such that ¢, € (0, f] and
2
|U] Vin <enp and 7Sy, iy, (U) < €p,
c(6n)

then for every t < t, we have for every e; € E,

Jlr(uk(x +tej) - ;) - T(ur(x) - ;)| dx < 10ep,  for every k > ¢p(h).
Uy

As a consequence, there exists a positive constant L = L(n) such that

Jlr(uk(x +t8)-e;)) - T(u(x) - e))|dx < L(n)ep, & € S"1, k> ¢(h), t < ty.
U;

Since the index i chosen at the beginning was arbitrary, this means also that if we consider the diffeomor-
phism : R" — (-mr/2, m/2)" defined by Y(x) := (1(x1), . .., T(Xn)), then

Jlll)(uk(x +t0) - Pk dx < L'(men, £ eS™Y, k> d(h), ¢ < th.
Ut
By the Fréchet—Kolmogorov theorem, this last inequality implies that the sequence Y (uy) is relatively
compact in L1(U; R"). Hence, we can pass to another subsequence, still denoted by Y(ug), such that
Y(ux) — v as k — oo strongly in L'(U; R"). By eventually passing through another subsequence, we may
suppose Y (ux(x)) — v(x) a.e. in U as k — oo. As a consequence, there exists a measurable u: U — R such
that ux(x) — u(x) as k — oo a.e.in
T 7T\n
U\ {x ceU:v(x) e 6(—5, E) }
Moreover, |uy(x)| — +oco if and only if, for at least one index i, ug(x) - e; — +oo (clearly, 7(u - e;) = v;) or
equivalently ifand onlyif x € {x € U : v(x) € o(-F, 7)"}. Thus, we obtain that ux — ua.e.in U\ Aask — co.
To show that A := {x € U : |ug(x)| — +oo} has finite perimeter, the argument follows that in [4]. We give
a sketch of the proof.
It is easy to check that for 1" !-a.e. £ € $"1 it holds true that

x € A if and only if klim T(ur(x) - & = ig fora.e. x € U. (3.26)
—00

Now fix o > 1. First of all, using also (3.26), we can follow a standard measure theoretic argument which

shows that we can extract a subsequence, still denoted as (u)x, such that for H" t-a.e. & € " for H" -a.e.
y € II¢ it holds true that

N ¢ T(ﬂf;) on U,": \ A"(,

(W) = vyi=9 7

p in L1(U}). (3.27)
ii onAy,

Fix € > 0. By the Fatou lemma and Remarks 3.6 and 3.7, we estimate

Jliminf[ew(ak)ﬁ(u;’\]{ D) +IOUS T )] dH ()
K k—o0 (Qe)y Ty
3

¢ [ im0 7, 0 40 005 S0
g

slimsup(eﬂik(U)+e(o—l) j Ivuk-fld%"‘l)ﬂilgninf J IV - & A3
—00

k—o00
unji, UnJi,

< esup(l + 4n(o — 1)j,, (U) + liminf J [Vy, - &1 dH" < +oo0. (3.28)
keN k—o00 —
U
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For (" !-a.e. y, we can thus consider a subsequence depending on y but still denoted by (uy)x such that

sup elD@SI(US\JC )+ HO(US NJ2, ) < +oo. (3.29)

(@)

Now we study the behavior of a sequence of one-dimensional functions satisfying (3.29). Let (a, b) ¢ R
be a non-empty open interval and suppose that (fi)x is a sequence in BV, ((a, b)) satisfying

suplDfi((a, ) \J7) + HOUF) < oo (3.30)
eN
We write fi = fi + f7 for f, fZ: (a, b) — R defined by

fe® :=Dfi(a, )\ J{) and fZ(t) := fr(@) + Dfi((a, ) N J7).

We study the convergence of f,g and f,f separately.
Inequality (3.30) tells us that, up to extracting a further not relabelled subsequence,

flg - f! pointwise a.e. for some f! € BV((a, b)) as k — co. (3.31)

As for (f,f )k, by inequality (3.30) we may suppose that, up to extracting a further not relabelled subsequence,
there exists a finite set J ¢ [a, b] such that

HOU) < sup HUY), (3.32)
keN ,
Jg, —J inHausdorff distance as k — co. (3.33)

Then (3.32), (3.33) together with the fact that, by construction, f,f is a piecewise constant function allow us
to deduce that any pointwise limit function f? for (f,f) « must be of the form

M
F2 (0 =Y ailg,a.(t) forte(a,b),
=1
for a suitable M < H°(J n (a, b)) + 1, for suitable a; € R U {+oo} with a; # a;,1, and for suitable a; € J with
a; < aiy1 and ag = a, agogna,b))+2 = b. Up to extracting a further not relabelled subsequence, we may sup-
pose f7 — f? pointwise a.e. Now if a; € {xoo}, | # 1and Il # H°(J n (a, b)) + 1, we set

1
Tix:=1te]% :|t—a; < = min |t; - t]|},
Lk { ];f| 1l 2t1,tze/|1 zl}
TI+1k1={t€]z It - az+1|<lmln|t1 tzl},
’ 2 t1,t€]
while if [ = 1 we set

1
Tl,k:={l‘€]0 [t —apq] < 3 n|t1_t2|}

and if [ = M we set 1
Tix:=1te]% :|t—aj < = min |t; - t>]}.
o= {te)f s lt-al < 5 min it - b}

By (3.33), we have T, # 0 for every but sufficiently large k, and thanks to the definition of T} x any sequence
(t1,x)k with ¢ x € T is such that t;x — a; as k — co. We claim that for every I € {1, ..., M} there exists one
of such sequences (t; k) such that

Jlim [ [/ (81,011 = +oo. (3.34)

Suppose by contradiction that there exists [ and a subsequence k;j such that

sup maxl[fk (0]] < +oo.
jeN teTik

Then we are in the following situation: we choose one of the endpoints a; or a;, 1, for example a;, (in the case

1 = 1 we choose a;,1, and in the case | = M we choose a;) and the sequence

v--—sz(a min |¢ t|a+1m1n|t tl)
j =1, 1212121212612
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satisfies
vj is piecewise constant,

Jv; =T, and ]y, — a;in Hausdorff distance as j — oo,

sup HO(Tyx,) < +oo,  sup max|[v;](t)] < +oo.
jeN jeN t€ly;

It is easy to see that the previous conditions are in contradiction to the fact that

sz(a ! min |t — t5], a +1 min |t; — ¢ I)
1 > tatre] 1 210 A] P tatre] 1 21 )s

i.e. the pointwise limit of v; is such that f2 has a non-finite jump point at a;. This proves our claim. Our claim
implies in particular that, since (f,: )k is equibounded, the sequence t; k satisfying (3.34) is actually contained
for every but sufficiently large k in ]]‘Zk (roughly speaking, the jumps of f,? cannot compensate a non-bounded
sequence of jumps of f,f). Clearly, since the intervals

{t: |t —a| < l min |t; — tzl}
2 t,t€]

are pairwise disjoint for I € {2, ..., M} (we are avoiding the end points a and b), we have actually proved the
following lower semi-continuity property

HO(O*{f = +oo}) = HO({t € (a, b) N Jf : |[[f(D]] = c0}) < 1ikminf9{°(1;’k), (3.35)

where f := f1 + f,. Notice that the set J; is well defined since f is the sum of a (bounded) BV function and
a piecewise constant function, which might assume values +co, but jumps only at finitely many points.
Having this in mind, we can come back to our original problem. Fix ¢ € $"! satisfying (3.27). Given
y € I15 for which (3.27) and (3.29) hold true, we can pass through a not relabelled subsequence (depending
on y) for which
n]ggf[em(ak)ﬂ(u;‘ VAOR HO(US n 1)

is actually a limit. Passing through a further not relabelled subsequence, we may also suppose that (3.35)
holds true in each connected component of US(, ie.

5°(0"{yj = 5}) <liminf3°0°, ).
—00

@)y

Notice that |v§| < 7m/2 a.e. on Ufj \A'{, and hence {v;j =+m/2} = A;j a.e., and so a*{v;( =+m/2} = a*Af:. In
particular,
HO(3° A3) < liminf HO(7 ) (3.36)
k—00 (uk)y

Therefore, by passing through suitable subsequences, each depending on y, when computing the liminf
inside the left-hand side integral of (3.28) and by using (3.36), we infer

j HO* AY) dH™ () < esup(1 + 4n(o - 1))fiy, (U) + lim inf J [y, - & dF" . (3.37)
kelN —00
¢ unJg,

The arbitrariness of ¢ implies that (3.37) holds for H"1-a.e. £ € $"". Hence, we deduce that A has finite
perimeter in U. In addition, by taking the integral on $"~! on both sides of (3.37), we infer

anH" (0% A) < enwn(1 + 4n(0 - 1)) sup iy, (U) + ap liminf H" (7 ),
keN k—o00

where ay, := IS,H |v - &|. Moreover, the arbitrariness of € > O tells us
H"(0*A) < lim inf H"1(Jg).
—00

Finally, by the arbitrariness of o > 1 and by the fact that J°t ¢ J°2 for 07 > 0,, we conclude (1.2).
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In order to show that u can be extended to the whole of U as a function in GBD(U), we define the sequence
of GBD(U) functions by

B ur(x) ifxeU\A,
uk(x) = .
0 if x € A.
Clearly, if we define v by
ulx) ifxeU\A,
V(X) := (3.38)
0 ifxeA,

then we have i1, — v a.e.in U and

sup fg, (U) < sup fiy, (U) + H"1(0* A) < +oo.
kelN kelN

Therefore, by using the technique developed in [1, 6], we can conclude v € GBD(U). O

Remark 3.8. Under the additional assumption (1.3) with uy € GSBD(U), we can obtain the further infor-
mation e(ux)1pa — e(u) in L1(U; MR ) thanks to e(iix) — e(u) in LY(U; M%) together with the fact

sym sym
e(ux)1pna = e(ity) for every k € IN. Moreover, (3.35) can be modified in the following way:

HOUr U 0™{f = xoo}) < liminf H°),
from which it is possible to deduce that
H'(Jy U™ A) < 1ilggf9c"-l(1uk).
Condition (1.3) would also imply that in (3.28) we actually control

[ timint [ [ egaaofionde+ 300§ nJ, 0] dse1) < oo,
Mg Uy

where (i1 k)f: denotes the absolutely continuous part of D(ﬂk),{. This in turns allows us to use the well-known
compactness result for SBV functions in one variable to deduce that the pointwise limit function f* in (3.31)
belongs to SBV((a, b)). For this reason, the techniques of [1, 6] can be adapted to deduce v € GSBD(U)
(see (3.38) for the definition of v). The convergence of e(uy) to e(u) in L>(Q \ 4; Mg;,,) follows instead by the
arguments of [5, pp. 10-11].
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