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Mass inflation is a well established instability, conventionally associated to Cauchy horizons (which are
also inner trapping horizons) of stationary geometries, leading to a divergent exponential buildup of energy.
We show here that finite (but often large) exponential buildups of energy are present for dynamical
geometries describing accreting black holes with slowly evolving inner trapping horizons, even in the
absence of Cauchy horizons. The explicit evaluation of the adiabatic conditions behind these exponential
buildups shows that this phenomenon is universally present for physically reasonable accreting conditions.
This noneternal mass inflation does not require the introduction of global spacetime concepts. We also
show that various known results in the literature are recovered in the limit in which the inner trapping
horizon asymptotically approaches a Cauchy horizon. Our results imply that black hole geometries with
nonextremal inner horizons, including the Kerr geometry in general relativity, and nonextremal regular
black holes in theories beyond general relativity, can describe dynamical transients but not the long-lived
end point of gravitational collapse.
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Introduction—The mass inflation instability is an inte-
gral part of our understanding of general relativity, playing
a crucial role in destabilizing the Cauchy horizons asso-
ciated with timelike singularities [1–3], as well as desta-
bilizing the chronological horizons (a subclass of Cauchy
horizons [4]) delimiting regions with closed timelike
curves. The presence of such an exponential buildup of
energy is considered a prerequisite to save causality in
some general relativity solutions (such as the Kerr black
hole), by making singular the boundary of the region
violating causality and so, de facto, by excising the latter
from the physical spacetime [5–8]. Hence, mass inflation
plays a crucial role in the enforcement of both strong
cosmic censorship [9,10] and chronology protection. So
any possibility of evading mass inflation should be con-
sidered with deep suspicion.
Mass inflation is conventionally defined as an infinite

divergent exponential buildup of energy [5–8]. The diver-
gent behavior has been so far associated to stationary
geometries, for which inner trapping horizons are always
also Cauchy horizons. In all these cases, it is worth noticing

that the (finite) exponential buildup of energy and curvature
invariants generally leads to a breakdown of the effective
description based on general relativity before any diver-
gence is reached. Indeed, a more physical definition of
mass inflation should rely only on the existence of a
transient but large exponential buildup—until high enough
curvatures (e.g., Planckian) are reached—regardless of the
presence of any mathematical divergence. This is the novel
perspective we adopt in this Letter.
This shift in perspective is motivated by recent results

regarding mass inflation in regular black holes, in which a
tamingof the inner singularity is postulated on thebasis of the
idea that quantum gravity (regardless of the specific imple-
mentation) should provide a regular description of gravita-
tional collapse [11–25] (see also the reviews [26–28]). It is by
now well established that stationary regular black holes with
inner horizons also display an initial exponential mass
inflation phase [29–33]—at least unless the inner horizon
is extremal [34,35]—that very rapidly brings the regular
black hole into a regime where curvatures grow large (see
also [36–40]).
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In this Letter we show that (large but finite) exponential
buildups of energy are also associated with slowly evolving
inner horizons, with the results valid for Cauchy horizons
recovered in the stationary limit. This provides a more
physical realization of mass inflation implying that even
noneternal black hole spacetimes endowed with a slowly
evolving dynamical inner horizon will generically display a
large but finite exponential buildup destabilizing the
geometry in short timescales, which we call noneternal
mass inflation.
Working with two different models of perturbations with

pure radiation (also know as null dust [41]) sources, either
of distributional or continuous nature, we will show that
both models display noneternal mass inflation. The first
model can be solved analytically, while we shall present
numerical results for the second.
Adiabatic conditions—The ingredients necessary for

mass inflation (namely, inner trapping horizons that are
perturbed) can be defined also in the presence of rotation,
and there is no indication that the latter can prevent the
phenomenon [42–44]. Hence, for simplicity, we shall work
in spherical symmetry, expecting that our results apply also
for rotating geometries. Existing analytical and numerical
studies support this expectation; see for instance [45,46]
and [47,48] for rotating and charged black holes, respec-
tively. An appropriate general parametrization is provided
by generalized Eddington-Finkelstein coordinates in which
the line element reads

ds2¼−e−2Φðv;rÞFðv;rÞdv2þ2e−Φðv;rÞdrdvþ r2dΩ2; ð1Þ

where dΩ2 is the line element on the unit 2-sphere. It is
possible to recast this line element in terms of a non-null
time coordinate t, but this form is best suited for our
purposes. The Misner-Sharp mass [49,50], used below, is
given by Mðv;rÞ¼rð1−∂ar∂arÞ=2¼rð1−grrÞ=2 [50,51].
We consider black holes with both outer and inner

horizons in which the gvv component of the metric vanishes
(e.g., Reissner-Nordström or regular black holes). Without
significant loss of generality, we can focus on the case with
two horizons, the minimum number required by regularity
at the origin [52]:

Fðv; rÞ ¼ eΨðv;rÞ
�
1 −

rinðvÞ
r

��
1 −

routðvÞ
r

�
: ð2Þ

Our analysis can be straightfowardly generalized to black
holes with more than two horizons, such as the ones found
in the presence of a cosmological constant [53,54].
The two models studied below include an outgoing null-

dust thin shell. Outgoing null geodesics satisfy the equation

drðvÞ
dv

¼ e−Φðv;rÞFðv; rÞ
2

; ð3Þ

which can be expanded around the position of the inner
horizon, r ¼ rinðvÞ, to first order

drðvÞ
dv

¼ e−Φðv;rinðvÞÞ

2

�
∂F
∂r

����
ðv;rinðvÞÞ

½rðvÞ−rinðvÞ�
�
þ��� : ð4Þ

We define the time-dependent surface gravity of the inner
horizon, controlling the peeling of null rays around the
latter, as [55]

κinðvÞ ¼
e−Φðv;rinðvÞÞ

2

∂F
∂r

����
ðv;rinðvÞÞ

¼ −jκinðvÞj: ð5Þ

This definition reduces to the usual surface gravity of a
Killing horizon for stationary geometries [55].
Equation (4) can be recast as a differential equation for

the difference rðvÞ − rinðvÞ as
d½rðvÞ− rinðvÞ�

dv
¼−jκinðvÞj½rðvÞ− rinðvÞ�−

drinðvÞ
dv

þ�� � :
ð6Þ

In the stationary situation, rin is constant in time and so is
jκinj, thus simplifying the equation above as terms propor-
tional to derivatives of these quantities vanish identically.
In more general situations, the derivative terms are negli-
gible if the following adiabatic conditions are satisfied:
(i) Adiabatic condition for radius of the inner horizon:

���� drinðvÞdv

���� ≪ jκinðvÞjjrðvÞ − rinðvÞj: ð7Þ

(ii) Adiabatic condition for surface gravity of the inner
horizon:

���� dκinðvÞdv

���� ≪ jκinðvÞj2: ð8Þ

These are conditions on the first and second derivatives
of rinðvÞ and thus can be violated or satisfied independently
of each other. The first condition requires the specification
of an outgoing null geodesic rðvÞ for its evaluation. The
second condition ensures the slow changing of the inner
horizon and is equivalent to the condition for the outer
horizon in [56,57], replacing the outer surface gravity by
the inner surface gravity. Under these two conditions, we
can write

rðvÞ ≈ rinðvÞ þ ½rðv0Þ − rinðv0Þ�e−jκinðvÞjðv−v0Þ; ð9Þ

with the initial condition rðv0Þ∈ ðrinðv0Þ; routðv0ÞÞ.
Inserting Eq. (9) in the adiabatic condition for the radius
of the inner horizon, we obtain

���� drinðvÞdv

���� ≪ jκinðvÞj½rðv0Þ − rinðv0Þ�e−jκinðvÞjðv−v0Þ: ð10Þ
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This equation illustrates that, even if the adiabatic condition
is always satisfied, the condition for slow variation of the
inner horizon will always eventually cease to be valid as
long as drin=dv is nonzero. This will happen at some time
v⋆ that, given the assumed adiabatic evolution of the
surface gravity, is approximately given by the explicit
formula

v⋆ ≈ v0 þ
1

jκinðv⋆Þj
ln

�jκinðv⋆Þj½rðv0Þ − rinðv0Þ�
jdrin=dvjv⋆

�
: ð11Þ

Note that the adiabatic conditions are defined in relation to
the behavior of outgoing null shells around the inner horizon,
without any reference to mass inflation. Connecting these
conditions to mass inflation requires a separate treatment
discussed below.
Analytical results—Aside from the outgoing null-dust

thin shell, let us introduce an ingoing null-dust thin shell,
which is a standard setup to discuss mass inflation [58,59].
One of the advantages of this setup is that the change of the
metric coefficients due to the crossing of the shells can be
determined geometrically, without specifying the field
equations of the theory [29,37]. It is useful to parameterize
the metric coefficients in terms of the Misner-Sharp mass
Mfðv×; r×Þ in between the ingoing and outgoing null-dust
shells after the crossing of the two shells at r× ¼ rðv×Þ,
which is given by [29,31,37]

Mfðv×; r×Þ ¼ Miðv×; r×Þ þMinðv×; r×Þ þMoutðv×; r×Þ

−
2Minðv×; r×ÞMoutðv×; r×Þ

r×Fiðv×; r×Þ
; ð12Þ

where Miðv×; r×Þ is the mass in between the two shells
prior to the crossing at r ¼ r× while Fiðv×; r×Þ is the metric
function in between the two shells prior to the crossing
which, using Eq. (2), we can write in terms of ðv×; rðv×ÞÞ
as

F×
i ¼ eΨðv×;rðv×ÞÞ

rinðv×Þ
�
1 −

routðv×Þ
rinðv×Þ

�
½rðv×Þ − rinðv×Þ�: ð13Þ

On the other hand, Minðv×; r×Þ and Moutðv×; r×Þ measure
the jump of the mass function across the ingoing and the
outgoing shell. In the following, we simply assume that
these quantities are proportional to the energy of the shells.
The crossing time v ¼ v× can be chosen so that the
quantity rðv×Þ − rinðv×Þ can be as small as possible.
Hence, the mass Mfðv×; r×Þ in Eq. (12) will typically
grow large for generic perturbations. The exponential
behavior characteristic of stationary situations is present
whenever both of the aforementioned adiabatic conditions,
Eqs. (7)–(8) are satisfied. However, the first adiabatic
condition for the evolution of the inner horizon cannot
be maintained indefinitely, in particular because the out-
going shell must eventually cross the inner horizon (see

Fig. 1). Therefore, the minimum value of the function
Fðv×; rðv×ÞÞ that can be guaranteed to be reached
exponentially using our argument, F⋆

i ¼ Fiðv⋆; rðv⋆ÞÞ,
is given by

F⋆
i ¼ eΨðv⋆;rinðv⋆ÞÞ

rinðv⋆Þ
�
1 −

routðv⋆Þ
rinðv⋆Þ

� jdrin=dvjv⋆
jκinðv⋆Þj

; ð14Þ

where v ¼ v⋆ indicates the time approximately given
in Eq. (11).
Using Eqs. (12) and (14), the mass Mfðv⋆; r⋆Þ is

guaranteed to display an exponential behavior in v×, up
to a maximum value

Mmax ≈
rinðv⋆Þjκinðv⋆Þj
jdrin=dvjv⋆

2Minðv×; r×ÞMoutðv×; r×Þ
r×

: ð15Þ

Note that this can be factorized into the form
Mmax ≃ f1ðv⋆Þf2ðv×; r×Þ, with one function depending
on the end of exponential mass inflation and the other
only on the crossing of the null shells.
Equation (15) can be understood as the regularized

version of Mmax ¼ ∞ that is obtained in the static case,
where the regulator comes from the exponential

FIG. 1. Penrose diagram describing the formation and disap-
pearance of a black hole with both outer and inner horizons, but
not Cauchy horizons, marking the boundary of the (topologically
closed, as envisaged by Frolov and others [13]) trapped region.
The dashed line indicates the placement of an outgoing null-dust
thin shell, which approaches the inner horizon exponentially if
both adiabatic conditions are satisfied, until a certain critical point
marked by the star symbol. The three arrows indicate ingoing
perturbations, of which we have considered two different types,
either an ingoing null-dust shell or a continuous stream of null
dust. These perturbation setups are standard in the study of mass
inflation.
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approximation ceasing to be valid due to the nonzero
value of jdrin=dvjv⋆ . As a consistency check, for
jdrin=dvjv⋆ → 0 we recover the result Mmax ¼ ∞.
Numerical results—Let us introduce a slightly different

perturbation type wherein we maintain an outgoing null-
dust shell but replace the ingoing null-dust shell with a
continuous stream of null dust. This setup was originally
examined by Ori [60] to investigate the instability of
Reissner-Nordström black holes and has been applied later
to more general situations [29,32,33]. The connection
between the adiabatic conditions and mass inflation in
this setup is more convoluted and will be demonstrated
numerically.
The gluing conditions for two spherically symmetric

geometries along a null-dust shell were discussed in [61].
Following the latter reference, we define the future-directed
null normal to the shell as nμ ¼ dxμ=dr ¼ ð2eΦ=F; 1; 0; 0Þ,
choosing r as a common parameter for both geometries
along the shell. The pressureless nature of the shell implies
the continuity of Tμνnμnν. This constraint is invariant under
reparametrizations of the null normal to the shell.
For concreteness, let us consider the Hayward

metric [12],

Φ�ðv; rÞ ¼ 0; F�ðv; rÞ ¼ 1 −
2r2m�ðvÞ

r3 þ 2l2m�ðvÞ
; ð16Þ

where the þ (−) index indicates that the corresponding
quantity must be evaluated inside (outside) the outgoing
null-dust shell (see Fig. 1). This metric has two horizons, a
single extremal horizon or no horizons, depending on the
relative value of m�ðvÞ [11] and the regularization scale l.
We have checked that our results do not depend on the
specific regular black hole considered, by considering
alternatives such as the Bardeen metric [11]. This has to
be expected as noneternal mass inflation is determined by
the local geometric structure around the inner horizon,
regardless of the specific geometry being considered.
The continuity of Tμνnμnν is then equivalent to the

following constraint for the Misner-Sharp mass:

1

Fþ

∂Fþ
∂v

����
r¼RðvÞ

¼ 1

F−

∂F−

∂v

����
r¼RðvÞ

; ð17Þ

where RðvÞ denotes the radius of the outgoing shell.
The functional form of m−ðvÞ is loosely constrained to

describe the situation depicted in Fig. 1, namely a geometry
with no horizons at early and late times and an ingoing
stream of radiation:

m−ðvÞ ¼ ½M0 þ δmðvÞ�Ivi;vfðvÞ; ð18Þ

where δmðvÞ is a nondecreasing function describing
a perturbation of the mass due to accretion, M0 the
maximum mass of the background black hole, and

Ivi;vfðvÞ≤1 an interpolating function vanishing for v≪vi
and v≫vf and approximately constant for vi ≪ v ≪ vf.
Any interpolating function (possibly of compact sup-
port) satisfying these requirements can be considered
without changing our results below, and we will be
choosing a specific realization using hyperbolic tangents,
Ivi;vfðvÞ ¼ ftanh ½s1ðv− viÞ�− tanh ½s2ðv− vfÞ�g=2N, with
a normalization factor N evaluated numerically.
The mass in the interior region, Mþðv; RðvÞÞ, can be

obtained integrating Eq. (17) numerically. We perform this
integration for a finite interval of time contained within
the trapped region in which the adiabatic conditions are
satisfied, both for the background geometry and the accretion
flux. Inserting the relations rin ¼ l½1þOðl=m−Þ� and
κin ¼ −l−1½1þOðl=m−Þ�, valid for the Hayward metric
(as well asmost knownmetrics [31]), as well as Eq. (18), into
the second adiabatic condition, we obtain

���� dm−

dv

���� ≪ m2
−

l2
½1þOðl=m−Þ�: ð19Þ

This imposes constraints on the evolution of both back-
ground geometry and accretion flux. In the absence of
accretion, the leading order in Eq. (19) around the maximum
of Ivi;vf is

���� dIvi;vfdv

���� ≪ M0

l2
: ð20Þ

The parameters vi ≪ vf can always be chosen so that this
condition is satisfied for an arbitrarily long time interval. In
such an interval, we introduce perturbationswith shorter time
variations, so that the leading order in Eq. (19) becomes

���� dδmdv
���� ≪ M2

0

l2
: ð21Þ

The left-hand side contains information about the amplitude
Aδm of the perturbation and its variation timescale τδm. As
Aδm ≪ M0 by construction, the condition τδm ≳ l2=M0 is
sufficient [note that l=M0 ¼ Oð10−38Þ for a solar-mass
black hole with Planckian regulator, but this constraint is
still weak even when l=M0 ¼ Oð1Þ]. We thus conclude that
noneternal mass inflation is generically present for fluctuat-
ing accretion conditions as long as the mild adiabatic
conditions are satisfied, under which the results of the
stationary case are recovered.
The above argument accommodates specific decaying

profiles such as the Price law [62–64], ubiquitously used in
previous works [29,32,33,36–39] but is much more general
as it does not require a specific functional profile for δmðvÞ.
To simplify comparison with previous works, while also
illustrating the broader generality of our results, we show in
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Fig. 2 numerical results for a specific perturbation profile
combining oscillatory and power-law behaviors.
Conclusions—We have shown that the exponential

buildup characteristic of the mass inflation instability is
not limited to stationary black hole spacetimes but extends
to dynamical spacetimes, as long as the inner horizon is
nonextremal and the geometry is evolving sufficiently
slowly as encapsulated in two adiabatic conditions which
become exact in the stationary limit, so allowing us to
recover the standard results for Cauchy horizons.
Even if one or both adiabatic conditions eventually

cease to be valid, this generically happens after this
noneternal mass inflation has triggered a rapidly evolving
phase resulting into the exponential growth of curvature
invariants.
The analysis presented herein is restricted to spherical

symmetry; nonetheless, the ingredients leading to noneter-
nal mass inflation in our setting are present and known to
generically lead to the same phenomenon, also in the
presence of rotation (e.g., [45,46]). Hence, there is no
reason to expect that inner horizons in rotating black holes
would behave any differently.
It has been conjectured that mass inflation might lead to a

singularity of null nature in the black hole interior without
affecting the exterior geometry [65] (see also [45–48]). Note
that the mass inflation instability and its large backreaction
would still be present even close to a null singularity and that
this conjecture assumes no resolution of the singularity by
quantum gravitational effects. The latter could lead to
different scenarios [52,66], including regular black holes
with inner-extremal cores [34,35], Simpson-Visser cores

(also called hidden wormholes) [67,68], or bouncing
cores [36,69] that may result into a horizonless ultracompact
object of the same family of the initial regular black
hole [70].
The implications are striking: generic black holes with

(nonextremal) inner horizons will always keep evolving in
a timescale controlled by 1=κin and cannot be the end point
of a stellar collapse. It is generally believed that astro-
physical black holes are well described by a quasistationary
Kerr metric, possibly with a regularized Planckian core.
Our results challenge this expectation and show that
determining the end point of stellar collapse is an inevitable
open question.
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