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ABSTRACT 
Perceptual memories are the storage of our experiences; they are the basis for 

understanding the external world and guiding our decisions. Despite fast-paced research in 

the field, behavioural and cognitive constructs tend to be custom built around the 

investigators’ preferred task, and general principles across tasks seem to be missing.  

To address these issues, alongside psychophysical experiments, I aimed to build a 

computational model comprised of interconnected functional units, each performing a 

specific task-independent operation; the interaction between units and the readout of the 

system is controlled in a top-down mechanism, depending on goal-oriented requirements. I 

also aimed to relate this model to neuronal activity in two cortical regions, which are believed 

to be part of a network involved in perceptual decision making.  

Two groups of subjects, rats and humans, performed each of two different tasks requiring 

the elaboration of vibrotactile stimuli: (I) a categorization task, where a single stimulus must 

be judged (“strong” or “weak”) according to an implicit boundary, and (II) a delayed 

comparison task, where two stimuli are delivered in each trial, the first of which must be 

stored in short-term memory to be compared to the second.  

The results show that several aspects of trial history, such as recent stimuli and recent 

choice outcomes, factor into the choice of the current trial. Neuronal recordings from 

prefrontal and posterior parietal cortices, performed in rats executing both tasks, revealed 

that cortical activity accounted for decisional variables and past trials’ stimuli and choices, 

correlating with task performance and trial history, as emerged from behavioural results. 

These finding extend a previous model, thus helping to account for perceptual memory in a 

task-general manner.  
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GENERAL 
INTRODUCTION 

The perception of stimuli is far from a passive report of the firing of sensory neurons: it is an 

active process, that includes prediction as well as faithful representation (Bubic et al., 2010; 

Summerfield et al., 2006; Weilnhammer et al., 2017). The capacity for predictive coding 

allows the brain to take advantage of the environment statistical regularities, both to reduce 

the computational load on perception, and to reduce the noisiness of stimuli and memories. 

The past is a reasonable prediction of the future. In sensory environments, statistics may 

change in the order of seconds or minutes. Therefore, an intuitively sound idea is that, for 

sensory systems, the recent past provides a context against within which information must 

be culled from ongoing events. Typical hallmarks of how the environment statistics affect 

perception are the stimulus history effects: the perception of current stimuli is influenced by 

the stimuli received in the past. For instance, receiving the same stimulus twice can lead to 

a different percept, depending on the events that led up to that stimulus instance (Cicchini 

et al., 2018; Jou et al., 2004; Kiyonaga et al., 2017). These effects can be either attractive, 

making the current percept more similar to past ones, or repulsive, magnifying the distance 

between current and past percept. Whether these effects are sensory, perceptual, 

decisional, or a combination of all is still a hotly debated topic in the scientific community. 

The aim of the present study is to investigate general principles of the traces of past stimuli 

stored in the brain – what we call perceptual memory – and to provide a framework that is, 

as much as possible, task- and species-independent. To do so, I explored the behaviour of 

rats and humans in two task designs previously established in the Tactile Perception and 

Learning Lab. I combined the working memory (WM) task developed in (Fassihi et al., 2014) 

and the reference memory (RM) task developed in (Hachen et al., 2021) by having rats learn 

to perform both tasks. The two tasks are operationally similar, are performed in the same 

apparatus, and require the elaboration of the same vibrotactile stimuli, delivered to the 

whiskers. However, the tasks involve different cognitive resources: crucially, the delayed 

comparison task (working memory task, WM) requires the mnemonic retention of the first 
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stimulus of each trial, until the second is delivered, to allow the comparison of the two stimuli; 

the categorisation task (reference memory task, RM), instead, requires the immediate 

categorisation of a stimulus against an implicit boundary, with no explicit retention required.  

Having subjects learn and perform both tasks allowed me to investigate whether and how 

stimulus history effects are modulated by the different cognitive resources required; also, I 

investigated whether the magnitude of such effects in one task predicted the magnitude in 

the other, hinting at shared, perhaps hardwired, physiological mechanisms.  

To test the species-specific component of the process, I also had human subjects perform 

the same tasks, and assessed whether their behaviour mirrored that of rodents. Both rats 

and humans showed remarkable similarity in WM, with stimulus history affecting them with 

the same dynamics and temporal profile, the main difference being that rats showed greater 

magnitude of effect. In other words, human participants were better able to “isolate” the 

current trial. In RM, rats and humans also performed the task in the same way; differently 

from WM, though, stimulus history was masked by choice history, which acted in the 

direction opposite to stimulus history. Thus, while determining whether stimulus history 

correlated between the two tasks proved inconclusive, a case can be made about the 

interaction of stimulus and choice history as task- and modality-dependent. 

In order to examine the neuronal correlates of these effects, I implanted five rats with 

microelectrode arrays in two cortical areas, prefrontal cortex (PFC) and posterior parietal 

cortex (PPC), areas that have been implied in literature to be involved in the mediation of 

attention, stimulus memory and trial history in tasks with similar design to the ones described 

in this work. I recorded the neuronal activity from PFC and PPC during the execution of WM 

and RM tasks and examined how the activity related to both current stimuli and trial history, 

in order to find shared mechanisms between tasks and individuals. Both PFC and PPC 

appeared to be involved in WM and RM. PFC was more involved than PPC in encoding the 

tasks’ decision variables, and its activity was predictive of subjects’ performance. At the 

same time, both PFC and PPC were involved in coding for stimulus and choice history, 

correlating with the magnitude of the effects during different sessions. 

Finally, I further developed the behavioural model first presented in Hachen et al., 2021, 

originally conceived to produce a computational framework for RM, to account for the WM 

task as well, in both rats and humans. Extending the model allowed to explain the contraction 

bias observed in WM within the same framework established previously for RM. Thus, my 
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extension of the model, was able to reconcile two apparently opposite stimulus history 

effects through task-independent interactions, in both rats and humans. 

Overall, these results show that stimulus history in a delayed comparison task, both in a 

short and long timescale, act in the same fashion in rats and humans, hinting at a conserved 

mechanism. Neuronal correlates of decision variables and both stimulus and choice history 

are distributed across PFC and PPC, providing further evidence that these cortical areas act 

as part of a single network mediating present and past behaviour-relevant variables. 

Moreover, the effects described were merged seamlessly in the previous model, thus 

providing a single, task-independent framework to account for stimulus history in tactile 

perception modality. 
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CHAPTER 1 
BEHAVIOURAL ANALYSIS OF STIMULUS 

AND CHOICE HISTORY AND THEIR 
NEURAL CORRELATES 

 

INTRODUCTION  

In rats, tactile perception is a well-studied sensory modality, with very clear anatomical 

pathways from sensory receptor neurons to primary somatosensory cortex (S1) (Diamond 

& Toso, 2023). In rats, vibrissal touch is a critical modality for actively exploring the world; 

as such, a large portion of the cerebral cortex involves sensorimotor processing, and within 

the primary somatosensory cortex (S1), a large portion devoted to vibrissal inputs (vibrissal 

somatosensory cortex, vS1) (Diamond & Toso, 2023). 

In previous publications from the Tactile Perception and Learning Lab, rats have been 

shown to be able to perform well in both a delayed comparison design (in this thesis referred 

to as Working Memory, WM) (Fassihi et al., 2014) and a single stimulus categorisation 

design (in this thesis referred as Reference Memory, RM) (Hachen et al., 2021), on a par 

with human subjects. Building upon the expertise in shaping behaviour through operant 

conditioning, we trained them to perform both RM and WM, in separated sessions, to 

compare the extent of history effects, in the same subject, across tasks.  

History effects include the influence of recent stimuli and choices on current decisions, even 

when those stimuli and choices no longer carry information about what choice should be 

made next. Often called serial dependence, this effect has been widely studied in different 

modalities (Barbosa & Stein, 2020; Fischer & Whitney, 2014; Fritsche et al., 2017; Hachen 

et al., 2021; Liberman et al., 2014). History has been reported to act either in an attractive 

or repulsive way, depending on the modality, task, and time-scale involved (Bliss et al., 

2017; Fornaciai & Park, 2018; Hachen et al., 2021; Manassi et al., 2018); it still widely 

debated whether serial dependence acts at the sensory, perceptual, or decisional level, or 
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a combination of the three (Bosch et al., 2020; Cicchini et al., 2017; Fornaciai & Park, 2018; 

Fritsche et al., 2017; Kiyonaga et al., 2017). Overall, a cohesive description of serial 

dependence is still missing, especially one that transcends a single task design. 

Together with serial dependence, the phenomenon of contraction bias, first described in 

(Hollingworth, 1910), is also in the library of known history effects: differently from serial 

dependence, it is described as an over- or underestimation of stimuli, depending on the 

magnitude of the stimulus relative to the range employed during the experiment; also, it 

accounts for how the distribution of past stimuli affects current decisions, instead of the 

single stimuli delivered in the recent past. This effect is always studied in delayed 

comparison designs (Akrami et al., 2018; Ashourian & Loewenstein, 2011; Fassihi et al., 

2017; Tal-Perry & Yuval-Greenberg, 2022), and is often described as a regression of 

memory traces towards the mean of previously presented stimuli. While there have been 

many attempts at modelling contraction bias (Ashourian & Loewenstein, 2011; Jou et al., 

2004), integrating a Bayesian statistical approach, there is still much to be understood. 

Moreover, a shared framework encompassing both serial dependence and contraction bias 

is still missing. 

By assessing both qualitatively and quantitatively serial dependence and contraction bias in 

WM and RM, with each requiring different cognitive resources in processing the same 

physical features, we aimed at building a coherent description of the effects of stimulus 

history across two different experimental paradigms.  

Besides the phenomenological description, a cohesive neurophysiological underpinning of 

history effects is also lacking. While many cortical areas and networks have been implied in 

stimulus memory and history processing, we chose to focus on two reciprocally connected 

areas in the rat cortex: prefrontal cortex (PFC) and posterior parietal cortex (PPC). PFC is 

loosely defined in rodents (Barthas & Kwan, 2017), as it is associated with many functions, 

among which sensory integration, motor planning and execution and attention, which are 

more segregated in primate cortex; PFC recordings presented in this thesis include 

populations from secondary motor (M2), anterior cingulate (ACC) and infralimbic (IL) 

cortices.  

PFC has been implicated in adaptation to visual stimuli distribution (Wang et al., 2020), 

short-term memory retention of vibrotactile stimuli (Brody et al., 2003; Fassihi et al., 2017; 

Romo et al., 1999), serial dependence and contraction bias (Barbosa & Stein, 2020; 



10 
 

Benozzo et al., 2023; Serrano-Fernández et al., 2023). We aimed at uncovering both a 

stimulus representation and an activity modulation dependent on stimulus history that would 

be conserved across WM and RM.  

PPC activity during task execution has been correlated before with multimodal sensory 

integration (Whitlock, 2017), behavioural flexibility, together with PFC, (Sohn et al., 2000), 

and trial history representation (Akrami et al., 2018). By recording PPC, together with PFC, 

I aimed at testing the hypothesis that these two cortical areas are part of a shared network 

responsible for present and past trials representation, and that this representation is 

predictive of stimulus history observed in behaviour. 

The driving motivation behind our search for a single coherent framework arises from 

notions of efficiency. The sensory inputs involved in many memory tasks may be essentially 

equivalent. Thus, in the present case, RM and WM tactile stimuli are drawn from the same 

set. Yet, when the tasks are broken down into a sequence of operations, they may seem 

quite different. Our intuition was that the nervous system could not contain sufficient 

processing machinery (neuronal populations) to devote one distinct network to each 

possible perceptual memory task. If the brain uses some set of networks to construct and 

store a long-term boundary (RM) and to store the most recent stimulus in a short-term buffer 

(WM) there might be some dynamics characterizing the set of networks across tasks. It 

seemed conceivable that what distinguishes one task from another is not so much the 

networks’ dynamics, but which representation is “read out” in order to solve the problem at 

hand. Our overall goal, then, is to determine whether general dynamic properties concerning 

the representation of the current and past stimuli, and choices, could be identified as a 

common property of different behaviours. 
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RESULTS 

Task design 

Each subject, rat or human, performed two different tasks, involving the processing of 

vibrotactile stimuli and the reporting of a decision. The first task, called Working Memory 

(WM), is schematically represented in Figure 1-A; it involved receiving a sequence of two 

stimuli in each trial, a base and a comparison, and comparing the two stimuli in order to 

judge which was stronger. This design allowed us to measure how the memory trace of the 

base stimulus was affected by stimulus history effects while being retained by the subject. 

The second task, called Refence Memory (RM), is schematically represented in Figure 1-B; 

it involved receiving a single stimulus in each trial, which the subject must then categorise 

as weak or strong, in relation to a fixed, absolute boundary. This design allowed us to assess 

how the stimulus percept was immediately affected by stimulus history. The memory of 

interest here is not the base stimulus, but the boundary itself. In WM, the relevant memory 

is ”local”, i.e.: ideally, it is within the current trial. In RM, the relevant memory is ”non-local”, 

i.e.: ideally, it is unaffected by the current trial. By having each subject perform sessions for 

both tasks, we measured whether the magnitude and direction of stimulus history effects in 

one task predicted this stimulus history effects in the other task, thus testing the hypothesis 

of a task-independent, and possibly species-independent, cognitive and physiological 

mechanism.  
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Figure 1: WM and RM designs. (A) Working memory trial design. Each trial begins with the subject contacting 
a dedicated sensor (nose poking for rats, finger poking for humans). After a pre-stimulus delay of 500 ms, the 
base stimulus is delivered, lasting 334 ms. Then, after a variable inter-stimulus interval (ISI), the comparison 
stimulus is delivered, lasting 334 ms. After a post-stimulus delay of 500 ms, an auditory go cue signals the 
subject that they can break contact and report their choice. After the outcome of that choice is revealed, the 
subject can initiate a new trial at any time. (B) Reference memory trial design. As in A, except there is no ISI 
and no comparison stimulus. (C) Rat setup schematic design. 

Contraction bias 

First, we examined how subjects performed in WM, and looked for hallmarks of stimulus 

history effects. One such effect, crucial to our modeling, is the contraction bias, first 

described in (Hollingworth, 1910). In general, when affected by contraction bias, subjects 

consistently underestimate large stimuli, and consistently overestimate small stimuli; large 
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and small, in this context, are relative to the distribution of stimuli presented to the subjects. 

The posited explanation is that the working memory of the stimulus, even as the subject 

prepares the response, shifts (or “contracts”) towards the center of the stimulus distribution. 

As such, contraction bias could be called a global effect, meaning that it becomes apparent 

even without examining any specific sequence of recent stimuli. A second effect, often called 

serial dependence, describes how stimuli received by the subject in the recent past affect 

the perception of, and the choices made upon, subsequent stimuli. This effect can act in two 

ways: either attractive, making stimulus percepts more similar to the past ones, or repulsive, 

with opposite effect. 

We designed the stimuli pair sets to highlight contraction bias. Rats performed the WM task 

on the stimulus set depicted in Figure 2-A, in which each circle represents a pair, in 

base/comparison coordinates, along with the percentage of correct trials for each stimuli 

pair (the circled numbers). Each pair is characterised by a Normalised Speed Difference 

(NSD) value, as described in Equation 1, which assumes the Weber’s fraction as the 

correlate of difficulty in comparing each stimuli pair. The larger a pair’s NSD, the easier the 

comparison between the two stimuli, and vice versa. The pairs in the upper half of the plot, 

above the dashed line, share a positive NSD, as all of them are characterised by a 

comparison stimulus stronger than base. Conversely, pairs in the lower half plot, below the 

dashed line, share a negative NSD, and are characterised by base stimuli stronger than 

comparison. Pairs closer to the dashed line have a smaller NSD value, irrespective of its 

sign, and thus are harder to discriminate, as the relative difference between their comparison 

and base stimuli is smaller. Of the pairs composing the set, some share the same nominal 

difference (NSD=±0.3), and are, in theory, equally discriminable. Those are the pairs 

arranged in two diagonals of five pairs each, one above and one below the dashed diagonal. 

Supplementary Figure 1-A shows the performance for these 10 pairs, divided according to 

the average stimulus speed in each pair, irrespective of order. While performance was well 

above chance for all speeds, there was a small positive trend between speed and 

performance. However, this trend is too weak to account for the results shown in the 

behavioural section of this chapter. 

The 10 diagonal pairs are arranged to ensure that the subjects attend to both stimuli, as 

neither contains enough information by itself to solve the task. In addition, three different 

sets of 7 psychometric pairs each, arranged vertically and indicated by the coloured arrows 

(red, orange, and yellow). The vertically arranged sets of stimulus pairs are characterized 
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by a different, fixed base speed in each set, while the comparison speed changes from pair 

to pair. In this way, each of the three sets allowed us to compute a psychometric curve over 

the NSD range.  

The corresponding psychometric curves, computed according to equation 2 (Methods), are 

depicted in Figure 2-B, showing the probability of judging the comparison stimulus as 

stronger than base against the NSD value (N=10 rats, pooled). In the red set (base=58 

mm/s, red arrow in Figure 2-A), the probability of judging the comparison as stronger was 

higher for all pairs, compared to the other two sets. Conversely, for the yellow set (base=108 

mm/s, yellow arrow in Figure 2-A), the comparison-stronger-than-base probability was lower 

for all pairs. The orange set (base=80 mm/s, orange arrow in Figure 2-A) assumed an 

intermediate position. Figure 2-C shows that, while sensory acuity (given by curve slope, 

1/σ, where σ is the standard deviation of the normal distribution underlying the psychometric 

function) was not significantly different across the set, the difference between the curves 

was captured by the psychometric function inflection point (μ), which represents the NSD 

value at which acuity is maximised, and by lapses (γ and λ, Figure 2-D), which are classically 

interpreted to represent the rate of non-sensory errors committed when the NSD is very low 

or very high, respectively. The curves’ shift described can be explained in the framework of 

contraction bias by considering the base stimulus intensity, relative to the centre of the 

stimuli distribution (Supplementary Figure 2-A). When the base was weaker than the 

average stimulus (red), rats were more likely to judge the base as stronger than the 

comparison; when the base was stronger than the average (yellow), rats were more likely 

to judge the base as weaker than the comparison. As such, the base stimulus memory was 

attracted, or contracted, towards the centre of the stimulus distribution; subjects then 

remembered the base stimulus as stronger (in the red set) or weaker (in the yellow set) than 

its real-time percept, biasing choices in opposite directions. The base stimulus in the orange 

set was close to the average, and produced the least biased psychometric curve; was 

remembered more faithfully, resulting in an intermediate effect. 
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Figure 2: Working Memory, psychometric curves, rats. (A) Stimuli pairs set employed for rats, where each 
circle represents a base-comparison pair. Axes are stimuli nominal speeds in mm/s, in log scale. Base stimulus 
on x axis, comparison stimulus on y axis. The numbers within circles are the percentage of correct choices for 
each stimulus pair. Coloured arrows (red, orange, and yellow) indicate the three vertical psychometric sets (B) 
psychometric curves for the three sets indicated in A, with NSD on x axis and probability of reporting 
comparison stimulus as stronger than base on y axis. (C) Scatter plot of inflection point (μ) against reciprocal 
of acuity (σ). Each dot represents the parameters recovered from one bootstrapped iteration, separated 
according to the psychometric set as in B. (D) Scatter plot of lower lapse (γ) against upper lapse (λ). Each dot 
represents the parameters recovered from one bootstrapped iteration, separated according to the 
psychometric set as in B. N=10 rats. 

For human subjects, there is no need to design the stimuli pairs set to force them to solve 

the task as designed, as they can be directly instructed to do so (i.e.: “hold the memory of 

the first stimulus on each trial”); therefore, we designed the stimulus set for the human 

version of WM to test contraction bias differently from that of rats. For human subjects, the 

stimulus set, in Figure 3-A, was comprised of two psychometric sets: a vertical one, similar 

to rats, in which the base stimulus had a fixed value for all pairs (80 mm/s), and a horizontal 

one, in which the comparison stimulus had a fixed value (also 80 mm/s). Figure 3-B shows 

the psychometric curves obtained from the vertical (dark green) and horizontal (light green) 
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sets (N=16). Interestingly, human subject exhibited results qualitatively similar to rats. In 

Figure 3-C and D, the light green psychometric, pertaining to the horizontal set, was 

characterized by the lowest acuity (largest σ) and greatest lapses (γ and λ); symmetrically, 

the dark green psychometric, pertaining to the vertical set, showed higher acuity and almost 

zero lapses.  

Here, contraction bias affected performance in opposite ways in the two sets. In the 

horizontal set, performance was always hindered by the bias, as the memory trace of the 

base stimulus was always contracted towards the centre of the distribution (Supplementary 

figure 2-B), that is, towards the fixed comparison intensity. In this way, the contraction bias 

reduced the difference between base stimulus memory trace and comparison stimulus, 

impairing performance and leading to lower acuity. At the same time, the increased lapses 

are harder to describe: usually, lapses are interpreted as non-sensory errors, for example 

due to inattention or motor execution errors. However, the lapses shown here (Figure 2-D 

and 3-D) are due to a systematic contraction of memory in a specific direction, leading to 

errors that are not explainable via psychometric curve fitting alone. In the second chapter of 

this thesis, this point will be raised again, showing that a simulated lapse-less subject will 

produce finite lapses in a psychometric fitting, when under the effect of memory contraction. 

In the vertical set, the memory trace was contracted towards the centre of the distribution 

(Supplementary figure 2-B), which was very close to the base stimulus of the vertical set: 

thus, contraction reduced the noisiness in the base stimulus memory trace, stabilising 

memory and improving performance. 
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Figure 3: Working Memory in humans. (A) Stimuli pairs set employed. Each circle represents a base-
comparison pair. Axes are stimuli nominal speeds in mm/s, in log scale; base stimulus on x axis, comparison 
stimulus on y axis. The numbers within circles are the percentage of correct choices for each stimulus pair. 
Coloured arrows (light green, dark green) indicate the horizontal and vertical psychometric sets, respectively 
(B) psychometric curves for the two sets indicated in A, with NSD on x axis and probability of reporting 
comparison stimulus as stronger than base on y axis. (C) Scatter plot of inflection point (μ) against reciprocal 
of sensitivity (σ). Each dot represents the parameters recovered from one bootstrapped iteration, separated 
according to the psychometric set as in B. (D) Scatter plot of lower lapse (γ) against upper lapse (λ). Each dot 
represents the parameters recovered from one bootstrapped iteration, separated according to the 
psychometric set as in B. N=16 humans. 

Stimulus serial dependence in WM 

We have shown that contraction bias is a global stimulus history effect, emerging from all 

trials taken together, in both rats and human subjects. We then searched for local effects, 

which would depend on the stimuli delivered in the recent past. We investigated whether 

and how the choice in the current trial (n) was modulated by the intensity of stimuli delivered 

in the preceding trial (n-1), even though those are non-informative for the current trial. First 

we considered the effect of the average speed (speeds of base plus comparison divided by 
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two) of trial n-1 (Figure 4-A); the effect of the single stimuli within trial n-1, taken separately, 

is more complex to interpret and will be discussed later. In rats, the slope of the linear 

regression is consistently negative across subjects (k = -7.9E-4, p = 6.9E-4). This means 

that, as the stimulus intensity in trial n-1 increases, the probability of judging comparison as 

stronger than base in trial n decreases. In Figure 5-A, human subjects showed the same 

trend (k=-2.7E-3, p-value=4.2E-6). Similarly, to the description of contraction bias above, 

these results can be interpreted as follows: the base stimulus memory of trial n is attracted 

to the average intensity delivered in trial n-1. Thus, if the average intensity in trial n-1 was 

weak, the base stimulus memory trace of trial n would become weaker as the subject awaits 

the comparison stimulus, and the comparison stimulus would be more likely to be judged as 

stronger than the base (vice versa when the average intensity in trial n-1 was strong). 

Next, we examined trials further in the past. In rats (Figure 4-B), trial n-2 showed the same 

direction in stimulus history effect, although to a lesser degree (k = -3.5E-4, p = 1E-3). The 

same was true for humans (Figure 5-B) (k = -1.5E-3, p = 1.1E-3). Combining the results of 

n-1 and n-2, we surmised that extending the analysis to trials further in the past would show 

a decaying effect of past trials’ stimuli. As a test of this prediction, Figure 4-C shows the 

linear regression coefficients for slope obtained from rats from trial n-1 to trial n-9, while 

Figure 5-C shows the same coefficients obtained from humans. Both groups show overall 

negative coefficients for all trials considered, further confirming the coherency of the effect 

across subjects and species. As expected, the magnitude of the effect decayed as we 

considered trials further in the past, until becoming insignificant. This proves a recency 

component in the attraction of base stimulus to stimuli presented in the past. Rats and 

humans, however, differed in the extent to which past stimuli affected the current trial: while 

rats showed significant coefficients up to trial n-7, humans retained a measurable effect only 

up to trial n-3. This result allows us to refine the interpretation of what the base stimulus is 

attracted to: in each current trial, n, the base stimulus memory trace is attracted to the 

intensity of stimuli presented in the most recent trial n-1, which carries the largest portion of 

the effect, and is also attracted, to a lesser and lesser extent, to the intensity of stimuli 

presented in trials n-2, n-3 etc. Because human subjects usually completed more trials per 

unit of time than did rats, the more restricted history effect in humans cannot be explained 

by positing some constant time interval (rather than some number of trials) as the 

determinant of past-trial effects. 
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Taking into account the global (contraction bias) and local (serial dependence) effects, we 

hypothesized that the base stimulus memory trace is attracted to a weighted, dynamically 

updated average of past stimuli. This dynamic intensity attractor would, on average, remain 

close to the centre of the overall stimulus distribution (Supplementary figure 2-A and B) and 

would explain the contraction bias which emerges when pooling all trials together (Figures 

2 and 3). Also, how far in the past the attraction extends might vary across species and even 

across individuals, as shown by serial dependence results (Figures 4 and 5). In the second 

chapter of the thesis, we will develop these hypotheses to explain stimulus history effects 

within one conceptual framework, building upon recent literature (Hachen et al., 2021).  

 

Figure 4: Working Memory history effects in rats. (A) Effect of stimuli in trial n-1 on trial n decision. Average 
nominal speed of base and comparison stimuli in trial n-1, in mm/s, on x axis, against probability of reporting 
comparison stimulus as stronger than base during trial n, on y axis. Grey lines are linear regression curves for 
each subject, black line is linear regression for pooled subjects. (B) as in A, for trial n-2, in mm/s, on x axis. (C) 
Linear regression slope coefficients. Past trials on x axis, regression slope coefficient, as in A, for past trials 
on y axis (Student’s t-test). N=10 rats. 
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Figure 5: Working Memory history effects in humans. (A) Effect of stimuli in trial n-1 on trial n decision. 
Average nominal speed of base and comparison stimuli in trial n-1, in mm/s, on x axis, against probability of 
reporting comparison stimulus as stronger than base during trial n, on y axis. Grey lines are linear regression 
curves for each subject, black line is linear regression for pooled subjects. (B) as in A, for trial n-2, in mm/s, on 
x axis. (C) Linear regression slope coefficients. Past trials on x axis, regression slope coefficient, as in A, for 
past trials on y axis (Student’s t-test). N=16 humans. 

Choice serial dependence in WM 

Until now, we only considered stimulus history. However, subjects can be affected by choice 

history as well, which would constitute a non-sensory bias associated with either repeating 

or switching choice from one trial to the next. As this effect can further interact with the 

outcome (rewarded or unrewarded) of previous choices, it can interact with stimulus history 

in a non-trivial manner, as will become apparent when discussing the RM results in the next 

section. To account simultaneously for stimulus and choice history, we extended the results 

shown in Figure 4-C and Figure 5-C, employing a Generalised Linear Model (GLM). Figure 

6-A and Figure 7-A, left, show the β recovered, for rats and humans respectively, for trials 

from n backwards. To determine how far back the model needed to go, we measured the 



21 
 

progressive prediction improvement, adding one trial at a time, via Akaike Information 

Criterion (AIC), in Figure 6-B and Figure 7-B, for rats and humans respectively. The predictor 

employed for trial n was the NSD of the pair presented in the current trial; the predictors 

employed for past trials were the average intensity of stimuli presented in that trial. The first 

predictor, extracted from trial n, had a positive weight, and the largest magnitude. This 

means that the current-trial NSD is the most important predictor, a result that confirms that 

subjects were carrying out the task as expected. The coefficient for past stimuli confirmed 

what was shown and discussed above: past trials having significant weights, up to trial n-5 

for rats and n-2 for humans. The negative weights mean that the stronger the average 

intensity was in a given past trial, the less likely the subject was to judge the comparison as 

stronger than the base in the current trial – trial n base stimulus memory was attracted 

towards trial n-p, where p denotes the past trial. Humans had a larger β for trial n, which is 

in line with the fact that they showed less contraction bias. Figure 6-A, right, shows the β 

pertaining to past choices, separated according to the outcome of that choice, on trial n. In 

rats, only the most recent trials generated a significant effect, and the effect direction was 

reversed depending on the outcome (rewarded, unrewarded). Correct choice in trial n-1 had 

positive weight, meaning that it exerted an attractive effect: rats were more likely to repeat 

a choice that led to a positive outcome. Conversely, an incorrect choice in trial n-1 had a 

larger negative weight, meaning that it exerted a repulsive effect: rats were more likely to 

make a choice opposite to the one that led to an unrewarded outcome. Humans (Figure 7-

A, right), on the other hand, show a repulsive effect towards choice n-1 irrespectively of the 

outcome of that choice. 
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Figure 6: Working Memory Generalised Linear Model for rats. (A) Standardised weights for stimuli (left) 
and choices (right), rewarded choices in green, unrewarded in red. Trials on x axis. Filled diamonds denote 
weights for trials deemed significant in B. (B) Akaike’s Information Criterion difference between consecutive 
model iterations. X axis denotes up to which trial is included in that model iteration; Y axis represents the ΔAIC 
between the preceding iteration and the one denoted on x axis. For n-1, the preceding iteration included only 
trial n (Student’s t-test). N=10 rats. 
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Figure 7: Working Memory Generalised Linear Model for humans. (A) Standardised weights for stimuli 
(left) and choices (right), rewarded choices in green, unrewarded in red. Trials on x axis. Filled diamonds 
denote weights for trials deemed significant in B. (B) Akaike’s Information Criterion difference between 
consecutive model iterations. X axis denotes up to which trial is included in that model iteration; Y axis 
represents the ΔAIC between the preceding iteration and the one denoted on x axis. For n-1, the preceding 
iteration included only trial n (Student’s t-test). N=16 humans. 

Base and comparison prevalence in serial dependence 

So far, we simplified the stimulus history effect by characterising each trial by the average 

intensity of the two stimuli presented in that trial. The n-1 stimulus effect can be further 

dissected and analysed as potentially having distinct base and comparison effects. Figure 

8-A shows that, in rats (red), both stimuli shared negative coefficients, thus exerting the 

same sign of effect – attraction – on the base stimulus of trial n, as discussed above. 

However, the base stimulus effect was both larger and more consistent across subjects. 



24 
 

This is in contrast with the recency exhibited by the effect of past trials: the base stimulus in 

trial n-1 is delivered before the comparison in the same trial, so the comparison is more 

recent and might be expected to show the larger coefficient. In fact, this was the case in 

humans (green): the comparison in trial n-1 carried the larger and more consistent effect. 

This hints at a difference in how the two species process the stimulus history. While humans 

exhibit recency, wherein the comparison in trial n-1 is closer in time to trial n and exerts a 

stronger attraction, rats are more affected by the base stimulus – that is, the stimulus 

required to be held in memory. This difference might be due to the cortical networks involved. 

We speculate that the neuronal populations responsible in the rat brain for retaining base 

stimulus memory, and those responsible for causing the attraction of such memory to past 

stimuli, are partially or largely overlapping, possibly employing a form of multiplex coding. 

When the base stimulus is loaded into memory, its trace becomes the representation to 

which the next base stimulus is attracted. In humans, these populations might be more 

separated. Possibly, the encoding of stimulus history and working memory traces are 

anatomically segregated in humans; thus, stimulus history would not be disproportionately 

affected by base stimulus n-1 and, instead, the most recent stimulus (i.e.: comparison n-1) 

would retain prevalence in the stimulus history. If this could be proven, it would explain why 

rats are more affected by base stimulus than comparison in trial n-1, and vice versa for 

humans. 

 

Figure 8: Regression slope coefficients for base and comparison in WM. (A) Regression slope 
coefficients for probability of reporting comparison stimulus as stronger than base during trial n, computed on 
either base or comparison in trial n-1. Rats in red, humans in green. N=10 rats, N=16 humans (Student’s t-
test) 
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Stimulus serial dependence in RM 

Having established a framework for history effects in WM task, we then analysed whether 

history effects are comparable in the RM task. While categorisation tasks are not usually 

analysed in a way that might reveal contraction bias, as there is no explicit comparison and 

no memorisation required, stimuli must nonetheless be compared to a threshold – a 

boundary between categories. In such a design, the boundary is implicit and must be 

discovered by subjects during sessions. The human subject, in our experiments, is never 

given instructions like “You are about to receive the stimulus whose intensity constitutes the 

category boundary.”  Humans, like rats, must form a boundary by generating and 

maintaining a “phantom” perceptual memory which, by trial and error, works as the boundary 

for comparison on each trial. In Hachen et al., 2021, my colleagues studied in depth how 

past stimuli affect choices in the RM task. To summarise: past trials’ stimulus intensity values 

exerted a repulsive effect on current choices, meaning that subjects were more likely to 

categorise trial n stimulus as weak after strong (n-1, and earlier) stimuli, and vice versa. This 

effect decayed for trials further in the past, exhibiting the same recency we showed above 

in the WM task. This repulsive effect was also modelled by positing that the subject’s internal 

boundary, or criterion, is attracted towards the most recent stimulus. Since the trial n-1 

stimulus exerted a greater effect when the intertrial time from n-1 to n was longer, the 

investigators included that the attraction of the criterion towards stimulus n-1 followed a 

decay function defined by a time constant, . We will describe this model more in depth, and 

further develop it, in the second chapter. In this chapter, I will describe how rat and human 

subjects performed the RM task and how stimulus history affected them. 

The stimulus dynamic ranges employed for the two groups (rats, humans) were the same 

as those employed in their respective WM designs, to avoid task differences due to stimulus 

representation nonlinearity. Thus, the human stimulus range was narrower than the rats’ 

range, as the dynamical range in WM was different between the two species. In both groups, 

the category boundary between strong and weak lay in the middle, in a linear scale, of the 

respective ranges. Figures 9-A and 10-A show psychometric curves for rats and humans, 

respectively. Human subjects performed better than rats as measured both by lower lapse 

rates (as was the case in WM), and by better acuity. Based on these characteristics, we 

expected rats to be more susceptible to stimulus history effects than humans, as a stronger 

serial dependence would lead to more misjudgements in the task design employed for RM. 

To our surprise, neither group showed a significant stimulus n-1 effect, contrary to what was 
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seen in WM. Figures 9-B and 10-B show nine psychometric curves, again for rats and 

humans, each computed according to the trial n-1 stimulus: neither rats nor humans showed 

a systematic separation due to stimulus n-1, as visible from the μ and σ distribution in 

Figures 9-C and 10-C. This result deviates from what has been described in Hachen et al., 

2021. Figure 11-A shows stimulus history curves for rats, and Figure 12-A for humans, as 

linear regression curves, comparable to those given for WM in Figures 4-A and 5-A. In RM, 

however, there is only one stimulus per trial, and no within-trial stimulus averaging was 

needed. A negative slope in the history curve means that, after a weak stimulus in trial n-1, 

the subjects were more likely to judge stimulus n as strong, and vice versa. In the case of a 

negative slope, stimulus n-1 exerts a repulsive effect on the judgement of trial n; in the case 

of a positive slope, stimulus n-1 exerts an attractive effect on the judgement of trial n. 

Confirming the psychometric result shown in Figures 9-C and 10-C, and differently from WM, 

the effect was inconsistent across subjects: while all subjects showed the same direction of 

effect (i.e.: slope sign) in WM curves, here subjects exhibited either repulsive or attractive 

stimulus n-1 effect, leading to no consistent effect, in either species. Only when considering 

trials beyond n-1, a significant negative coefficient could be recovered, in Figures 11-C and 

12-C, for rats and humans, respectively. We surmise that this could be due to a choice 

attraction effect, which could partially or completely obscure the past stimuli repulsion.  
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Figure 9: Reference Memory psychometric curves in rats. (A) psychometric curve for the stimulus set, with 
nominal stimulus speed on x axis and probability of reporting the stimulus as strong on y axis. (B) psychometric 
curves, as in A, conditioned on the stimulus presented in trial n-1. (C) Scatter plot of inflection point (μ) against 
reciprocal of sensitivity (σ). Each dot represents the parameters recovered from one bootstrapped iteration, 
separated according to stimulus n-1, as in B. (D) Scatter plot of lower lapse (γ) against upper lapse (λ). Each 
dot represents the parameters recovered from one bootstrapped iteration, separated according to stimulus n-
1, as in B. N=10 rats. 
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Figure 10: Reference Memory psychometric curves in humans. (A) psychometric curve for the stimulus 
set, with nominal stimulus speed on x axis and probability of reporting the stimulus as strong on y axis. (B) 
psychometric curves, as in A, conditioned on the stimulus presented in trial n-1 (C) Scatter plot of inflection 
point (μ) against reciprocal of sensitivity (σ). Each dot represents the parameters recovered from one 
bootstrapped iteration, separated according to stimulus n-1, as in B. (D) Scatter plot of lower lapse (γ) against 
upper lapse (λ). Each dot represents the parameters recovered from one bootstrapped iteration, separated 
according to stimulus n-1, as in B. N=16 humans. 
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Figure 11: Reference Memory history effects in rats. (A) Effect of stimuli in trial n-1 on trial n decision. 
Nominal speed of stimulus in trial n-1, in mm/s, on x axis, against probability of reporting the stimulus as strong 
during trial n, on y axis. Grey lines are linear regression curves for each subject, black line is linear regression 
for pooled subjects. (B) as in A, for trial n-2, in mm/s, on x axis. (C) Linear regression slope coefficients. Past 
trials on x axis, regression slope coefficient, as in A, for past trials on y axis (Student’s t-test). N=10 rats. 
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Figure 12: Reference Memory history effects in humans. (A) Effect of stimuli in trial n-1 on trial n decision. 
Nominal speed of stimulus in trial n-1, in mm/s, on x axis, against probability of reporting the stimulus as strong 
during trial n, on y axis. Grey lines are linear regression curves for each subject, black line is linear regression 
for pooled subjects. (B) as in A, for trial n-2, in mm/s, on x axis. (C) Linear regression slope coefficients. Past 
trials on x axis, regression slope coefficient, as in A, for past trials on y axis (Student’s t-test). N=16 humans. 

Choice serial dependence in RM 

In RM, differently from WM, stimulus intensity on trial n was fully correlated to the correct 

choice to be made (except for trials that presented the category boundary stimulus). Thus, 

an attractive effect to the previous choices would run counter to the repulsion from the 

previous stimuli. To test for the possibility that two opposing forces largely cancelled each 

other, we performed a GLM analysis again, including both past stimuli and choices, as 

described for WM. Figures 13-A, left, and 14-A, left, for rats and humans, respectively, show 

the β recovered when, as predictor for trial n, we employed the stimulus intensity delivered 

in for selected trials. As in WM, trial n β is large and positive: this was expected, as the 

subjects are performing the task as intended, and thus correctly map the current trial 

stimulus to current trial choice. As in WM, the overall β of past stimuli are negative, meaning 
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they exert a repulsive effect: after a strong stimulus, subjects, whether rat or human, are 

more likely to report the current stimulus as weak, and vice versa. Humans show a significant 

effect up to trial n-3, with a profile of magnitude decay, in time, similar to that shown in WM 

(Figure 7-A). Rats, on the other hand, show a much shallower profile for past stimuli β, with 

little discernible decay; also, there is no clear progression towards non significance: Figure 

13-B shows, instead, a noisy sequence of significant and non-significant trial history, 

differently from WM (Figure 6).   

Figure 13-A, right, shows the β for past choices, separated according to the outcome. Rats 

showed the same opposite effects that were seen in WM: in particular, the positive β for 

correct choices in trial n-1 opposes the negative β for stimulus n-1, effectively cancelling 

each other. Humans (Figure 14-A, right), on the other hand, behaved differently than they 

did in WM, producing a positive β for correct choices in trial n-1, instead of negative β for 

both outcomes; thus, humans exhibited a strong choice repetition after a rewarded trial, 

masking the stimulus repulsion effect, as happened in rats. 
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Figure 13 Reference Memory Generalised Linear Model for rats. (A) Standardised weights for stimuli (left) 
and choices (right), rewarded choices in green, unrewarded in red. Trials on x axis. Filled diamonds denote 
weights for trials deemed significant in B. (B) Akaike’s Information Criterion difference between consecutive 
model iterations. X axis denotes up to which trial is included in that model iteration; y axis represents the ΔAIC 
between the preceding iteration and the one denoted on x axis. For n-1, the preceding iteration included only 
trial n (Student’s t-test). N=10 rats. 
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Figure 14: Reference Memory Generalised Linear Model for humans. (A) Standardised weights for stimuli 
(left) and choices (right), rewarded choices in green, unrewarded in red. Trials on x-axis. Filled diamonds 
denote weights for trials deemed significant in B. (B) Akaike’s Information Criterion difference between 
consecutive model iterations. X axis denotes up to which trial is included in that model iteration; y axis 
represents the ΔAIC between the preceding iteration and the one denoted on x axis. For n-1, the preceding 
iteration included only trial n (Student’s t-test). N=16 humans. 
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Neuronal recordings 

5 rats underwent chronic electrode implant surgery to provide to allow the extracellular 

recording of neuronal activity, after they had successfully completed training in both tasks 

and their performance had been stably above 75%, in both tasks, for at least 2 months. 

These implants consisted of two microelectrode arrays, composed of 12 electrodes each, 

arranged in a 4 by 3 grid. One array was placed in prefrontal cortex (PFC) and one in 

posterior parietal cortex (PPC). The electrodes’ tips were positioned inside the Vth cortical 

layer. The implants also contained a mechanism to allow the electrodes to be moved 

perpendicularly to the cortex surface for several hundred micrometres, allowing us to explore 

the span of the Vth layer. All rats were recorded during the execution of both WM and RM 

tasks: each session yielded one ensemble of simultaneously recorded units. 

For each ensemble, we computed the firing rate of each unit in non-overlapping bins of 

20ms, then smoothed across bins with a gaussian kernel with σ=100ms and a window of 

500ms. The firing rates were then aligned to the beginning of each trial, identified by the 

nose-poking. Figure 15-A and B show the firing rate obtained from two different sample 

units, one each from PFC and PPC, averaging over trials where the subject reported 

different choices (A) or trials following different stimulus category (B). 

Decoding procedure 

Having detected that at least some units were sensitive to behaviour-relevant variables, we 

then attempted to decode those same variables, one recording session at a time. To do so, 

we sorted the spikes recorded during each session into single units, and grouped together 

the units recorded simultaneously. We will refer to these groups as ensembles: each 

recorded session then yielded one PFC ensemble and one PPC ensemble, whose units we 

analysed together. WM recordings produced 54 ensembles for PFC across all rats (units 

per ensemble: 8.8 ± 6) and 43 ensembles for PPC across all rats (units per ensemble: 6.3 

± 3.2). When separated according to the rats’ behavioural task, RM recordings produced 37 

ensembles for PFC (units per ensemble: 7.3 ± 5.1) and 29 ensembles for PPC (units per 

ensemble: 4.4 ± 3.7). All unit-count values are mean ± standard deviation. 

Figure 15-C shows an example of decoding from one PFC ensemble during the RM task. 

The curves represent the decoding accuracy, expressed as distance between the decoder 

accuracy and the shuffled decoder accuracy, in units of standard deviation (see equation 7 
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and Methods). The shuffled data was produced by shuffling the trials’ labels, such as 

stimulus, choice, etc., thus disrupting the correlation between neuronal activity and trial 

events. This shuffled decoder allowed us to measure the accuracy expected from “chance” 

decoding. The horizontal dashed line represents the threshold for statistical significance 

(distance = 1.96 x SD): the higher the curve extends above the dashed line, the better the 

decoder performed, compared to the decoder operating on shuffled data. The decoding 

window began one second before nose-poking, and ended one second after the go cue 

(which signalled to the subjects to withdraw and proceed towards their chosen reward spout; 

see Figure 1). As the shortest inter trial interval (ITI) duration possible was 2s, controlled via 

software, the portions of ITI before and after each trial never overlap. 

 

Figure 15: Sample units and decoding from recordings during RM. (A) Firing rate (Hz, y axis) of a sample 
unit from PFC, during RM execution. x axis is timeline, from 1s before nose-poking to 1s after the go cue. Red 
curve represents trials in which the rat chose strong, blue curve, weak. Shading represents the 95% c.i. for the 
median. (B) Firing rate (Hz, y axis) of a sample unit from PPC, during RM execution. x axis is timeline, identical 
to (A). Red curve represents trials in which stimulus n-1 belonged to strong category, blue curve represents 
trials in which stimulus n-1 belonged to weak category. Shading represents the 95% c.i. for the median. (C) 
Sample RM sessions decoding, from PFC, for stimulus n. x axis is timeline, as in A, y axis is distance of 
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decoder accuracy from shuffled decoder accuracy (see methods). Solid curve represents a high decoding 
session, dashed line represents a low decoding session. 

Stimulus decoding in RM 

Figure 16 shows how PFC (A) and PPC (B) are involved in the coding of stimuli during the 

RM task. A first difference between the cortical areas was the decoding of stimulus n, the 

stimulus of the current trial. The stimulus presentation occurred between the two dashed 

lines denoted by On and Off, represented by the black vibration. In PFC, it was possible to 

decode stimulus n already during and after stimulus presentation, with the decoder 

performance becoming even better after the go cue, while the subject is reporting its 

decision. PFC engagement during stimulus presentation and afterwards is in line with 

previous reports in the literature for similar task designs involving the visual modality (Wang 

et al., 2020). As PFC comprises a series of cortical areas whose attributed functions include 

motor preparation and execution, as described in the Introduction, the stronger engagement 

during the choice action was to be expected. In PPC, the decoder was able to identify 

stimulus n later in the trial, after the go cue, and with lower accuracy compared to PFC.  

To explore whether such representations might have a causal role in the rats’ behaviour, we 

proceeded to investigate whether the stimulus n decoding performance correlated with the 

subjects’ task performance. We divided the ensembles on the basis of decoder 

performance: high-decoding ensembles corresponded to decoder performance in the top 

third of all ensembles, and low-decoding ensembles corresponded to decoder performance 

in the lowest third of all ensembles. As shown in Figure 16-C, high-decoding ensembles 

from PFC were recorded during sessions with better behavioural performance. The fact that 

subjects’ engagement in the task correlated positively with the degree of population 

encoding of the stimulus is consistent with a possible causal role of PFC in the execution of 

this type of categorisation task (also see Wang et al., 2020.) At the same time, in panel 

Figure 16-E, no difference emerged from the separation according to decoding quality in 

PPC. Thus, we concluded that PFC might be more causally involved than was PPC in the 

execution of the current trial.  

If not in the execution of the current trial in real time, what alternative roles might PPC 

participate in? PPC showed a taller and wider peak of decoding for stimulus n-1 at the 

beginning of trial n (Figure 16B), compared to that seen for PFC (Figure 16-A). This stimulus 

n-1 “reactivation” right before the beginning of the next trial (trial n) is akin to the one 
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described in Barbosa & Stein, 2020 in macaque spatial working memory behaviour. In this 

earlier work, the magnitude of reactivation, measured in decoder performance, was shown 

to correlate with the magnitude of stimulus after effect. We next investigated whether the 

magnitude of this reactivation would correlate with history effects. To do so, we divided 

ensembles in high- or low-decoding, according to the decoding performance for stimulus n-

1, for both areas separately. Once sorted, we computed stimulus history curves for the two 

groups of sessions, as described for Figure 11-A in the behavioural section. The results are 

shown in Figure 16-G and H, for PFC and PPC, respectively. We expected that, once so 

divided, high-decoding sessions would show a larger stimulus history effect than the low-

decoding sessions. Surprisingly, the magnitude of reactivation of stimulus n-1 in PFC yielded 

flat curves for both high- and low-decoding ensemble. In PPC, the high decoding sessions 

revealed a slight trend in the direction we expected: a negative slope in the stimulus n-1 

regression curve, which arises from a stimulus repulsion. However, this trend too was non-

significant.  
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Figure 16: Stimulus decoding in RM. (A) Stimulus decoding, from PFC, for stimulus n (solid) and stimulus 
n-1 (dashed). Curves represent median from high decoding sessions. x axis is timeline, from 1s before nose-
poking to 1s after the go cue. y axis is distance of decoder accuracy from shuffled decoder accuracy (see 
methods). (B) Same as A, for PPC. (C) Subjects’ performance for sessions belonging to high or low stimulus 
n decoding ensembles, for PFC. (D) Subjects’ choice repetition probability for sessions belonging to high or 
low stimulus n-1 decoding ensembles, for PFC. (E) Same as C, for PPC. (F) Same as D, for PPC. (G) History 
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curves for sessions belonging to high decoding (black) and low decoding (grey) ensembles for stimulus n-1, 
for PFC. x axis is stimulus n-1 nominal speed, y axis is probability of judging stimulus as strong in trial n. (H) 
Same as G, for PPC. 

Choice decoding in RM 

As shown in the behavioural section (Figure 13-A, left), rats exhibited a strong choice 

attraction after a rewarded trial. To search for a possible neural correlate of choice attraction 

in RM, we applied the same analysis to choices, instead of stimuli. Figure 17 shows the 

decoding curves for choice in PFC (A) and PPC (B). Here, the decoding performance for 

choice n was larger than that of stimulus n in both areas, and especially in PPC. The earliest 

moment at which choice n became decodable, however, still appeared in PFC, in the same 

window when stimulus became decodable. This is consistent with the fact that subjects were 

employing stimulus information to solve the task, and, in RM, each trial’s stimulus 

determined the correct choice to be made, except when the boundary stimulus was 

presented. However, as seen in panel C, dividing sessions according to decoder 

performance for choice did not produce any difference in subjects’ performance. As PFC’s 

peak for stimulus decoding close to stimulus presentation was larger than that of choice, 

and vice versa for the peaks after the go cue, it is conceivable that there are either two 

interspersed populations in PFC, one for early stimulus coding, and one for late choice 

coding, or that the same population shifts from coding one to the other in different trials 

epochs, akin to the description given in Romo et al., 1999 for macaque vibration frequency 

delayed comparison. Further analysis would be required to distinguish between these, or 

other alternative hypotheses.  

As for PPC, when sessions were divided between high- and low-decoding for choice n, high-

decoding sessions show better behavioural performance. Since choice coding in PPC 

emerged later than in PFC, and so a causal link between PPC encoding and subjects’ 

performance is unlikely, it is possible that the better encoding of choice found in PPC was 

due to the subjects’ higher engagement with the task in those sessions.  

As choice n-1 was proven to have a significant effect on the current trial, we also separated 

sessions according to the reactivation of choice n-1 decoding in both areas. However, this 

separation did not highlight difference in choice repetition (Figure 17-D for PFC, Figure 17-

F for PPC). Also, the history curves obtained via the same separation between high-coding 

and low-coding for choice n-1 resemble those described for the separation according to 

stimulus n-1 coding: no effect in PFC, and only a trend for high coding sessions in PPC. 
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Figure 17: Choice decoding in RM. (A) Choice decoding, from PFC, for choice n (solid) and choice n-1 
(dashed). Curves represent median from high decoding sessions. x axis is timeline, from 1s before nose-
poking to 1s after the go cue. y axis is distance of decoder accuracy from shuffled decoder accuracy (see 
methods). (B) Same as A, for PPC. (C) Subjects’ performance for sessions belonging to high or low choice n 
decoding ensembles, for PFC. (D) Subjects’ choice repetition probability for sessions belonging to high or low 
choice n-1 decoding ensembles, for PFC. (E) Same as C, for PPC. (F) Same as D, for PPC. (G) History curves 
for sessions belonging to high decoding (black) and low decoding (grey) ensembles for choice n-1, for PFC. x 
axis is stimulus n-1 nominal speed, y axis is probability of judging stimulus as strong in trial n. (H) Same as G, 
for PPC. 
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Stimulus decoding in WM 

We performed the same library of analyses on WM ensembles. First, we examined the 

decoding performance for base and comparison stimuli in both cortical areas, trying to draw 

a comparison with the decoding time course of the RM stimulus. We expected that PFC 

would display a robust decoding for both stimuli, possibly with better representation of the 

comparison stimulus, as it is the stimulus closer in time to choice execution. We also 

expected PPC to be lesser involved in the stimuli in trial n than PFC. The results are shown 

in Supplementary Figure 3-A and B, for PFC and PPC, respectively. PPC, indeed, proved 

to hold very little information about individual stimuli in trial n. At the same time, PFC too, 

surprisingly, resulted in a very poor decoding profile for base stimulus n, and the decoding 

for comparison n proved inferior to that of stimulus n in RM. 

NSD decoding in WM 

From the unexpectedly weak encoding of the individual stimuli of trial n, we hypothesized 

that the PFC-PPC network might be more involved with the tasks’ decision variables, rather 

than the stimuli per se. The distinction would not be apparent in RM sessions, during which 

stimulus and decision variable coincide, but would become immediately evident in WM 

sessions, where an individual stimulus intensity cannot determine the correct decision. 

Indeed, the decoding of the NSD value defining each trial proved to be robust (Figure 18-A 

and B, for PFC and PPC, respectively), though to a lesser extent than that of stimulus n in 

RM (Figure 16-A and B). When separating ensembles according to decoder performance 

for NSD, high-decoding ensembles from PFC proved to come from higher performance 

sessions, compared to low-decoding (C). PPC, on the other hand, demonstrated no such 

difference (E). This result replicated that of the analogous analysis for RM (Figure 16-C and 

E), further reinforcing the hypothesis that PFC is actively engaged in the encoding of task-

oriented decision variables, while PPC is downstream of PFC with regard to the current 

trial’s information flow. PPC might be more involved with building a register of past-trial 

history. 

When we computed history curves for high- and low-decoding ensembles for stimulus n-1 

in RM, no differences emerged (Figure 16-G and H). For comparison n-1 coding in WM, 

however, both PFC and PPC presented a difference: low-decoding ensembles showed 

significant linear regression coefficients, similar to those shown in the behavioural results 
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(Figure 4-A), while the high-decoding ensembles did not. As described above in the RM 

results, we expected the opposite, based on literature. 

 

Figure 18: NSD and comparison decoding in RM. (A) Decoding, from PFC, for NSD n (solid) and 
comparison n-1 (dashed). Curves represent median from high decoding sessions. x axis is timeline, from 1s 
before nose-poking to 1s after the go cue. y axis is distance of decoder accuracy from shuffled decoder 
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accuracy (see methods). (B) Same as A, for PPC. (C) Subjects’ performance for sessions belonging to high or 
low NSD n decoding ensembles, for PFC. (D) Subjects’ choice repetition probability for sessions belonging to 
high or low comparison n-1 decoding ensembles, for PFC. (E) Same as C, for PPC. (F) Same as D, for PPC. 
(G) History curves for sessions belonging to high decoding (black) and low decoding (grey) ensembles for 
stimulus n-1, for PFC. x axis is average nominal speed of stimuli in trial n-1, y axis is probability of judging 
comparison as stronger than base in trial n. (H) Same as G, for PPC. 

Choice decoding in WM 

Like for RM, we extended the analysis to the decoding of choice n and choice n-1. As was 

the case for RM, the decoder’s performance for choice n was better than that of NSD n in 

both cortical areas. Neither areas’ decoder performance correlated with subject 

performance. On one hand, this result further establishes the role of PFC as encoding a 

pure decisional variable in the time window of choice reporting; on the other hand, PPC’s 

encoding of choice did correlate with subjects’ performance in RM (Figure 17-E), but not in 

WM. It is conceivable that this is due to the strong correlation between stimulus and correct 

choice in RM, a correlation that is absent in WM. As an alternative explanation, it is possible 

that PPC deals with longer scale history, which is more relevant for the execution of RM, 

where the categorical boundary is long history, than of WM. 

Finally, the division between high- and low-decoding for choice n-1 revealed a distinction 

between PFC and PPC when it came to stimulus history curves: while PFC demonstrated 

significant curve slope (Figure 19-G) in low-decoding sessions only, as had been the case 

for comparison n-1 decoding, PPC’s low-decoding sessions are just above the threshold for 

statistical significance (Figure 19-H); PPC’s high-decoding sessions, instead, demonstrated 

significant stimulus history effect. 
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Figure 19: Choice decoding in WM. (A) Choice decoding, from PFC, for choice n (solid) and choice n-1 
(dashed). Curves represent median from high decoding sessions. x axis is timeline, from 1s before nose-
poking to 1s after the go cue. y axis is distance of decoder accuracy from shuffled decoder accuracy (see 
methods). (B) Same as A, for PPC. (C) Subjects’ performance for sessions belonging to high or low choice n 
decoding ensembles, for PFC. (D) Subjects’ choice repetition probability for sessions belonging to high or low 
choice n-1 decoding ensembles, for PFC. (E) Same as C, for PPC. (F) Same as D, for PPC. (G) History curves 
for sessions belonging to high decoding (black) and low decoding (grey) ensembles for choice n-1, for PFC. x 
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axis is stimulus n-1 nominal speed, y axis is probability of judging comparison as stronger than base in trial n. 
(H) Same as G, for PPC. 
 

DISCUSSION 

In the behavioural results, we showed how stimulus history acted in the context of the WM 

task in rats and humans. Figure 1 (rats) and Figure 4 (humans) illustrate how contraction 

bias acted differently according to task and experimental designs. In rats, three 

psychometric sets shared the same NSD values, but had different base stimuli; in this 

design, the psychometric curves derived from each set shifted horizontally, in a direction 

that would be expected if the remembered base stimulus moves towards the centre of the 

stimuli distribution. In other words, the memory traces of the base stimuli showed a 

regression to the mean of all stimuli. In humans, two psychometric sets had either fixed base 

(vertical set, analogous to the central rats set) or fixed comparison (horizontal). In the 

horizontal set, the memory traces of base stimuli, which varied from pair to pair, were 

contracted towards the centre of the distribution; the contraction lead to smaller effective 

NSDs, as base stimulus trace became more similar to comparison stimulus, thus impairing 

performance. In the vertical set, on the contrary, the base stimulus was already very close 

to the centre, so the memory traces were presumably reinforced by contraction bias. 

Contraction bias “anchored” the memory close to its actual perceived value, thus improving 

performance. These results are coherent with past descriptions of contraction bias both in 

the tactile (Fassihi et al., 2014, 2017; Serrano-Fernández et al., 2023) and auditory 

modalities (Akrami et al., 2018), and in time estimation (Tal-Perry & Yuval-Greenberg, 

2022). 

Rats and humans were affected by serial dependence in a similar way, as well. Figure 2 

(rats) and 5 (humans) show how the effects of past stimuli extends beyond the most recent 

trial, n-1. While humans showed a steeper decay of regression slope coefficients, compared 

to rats, both species showed a reduction in slope when considering trials further in the past, 

similar to that shown in (Hachen et al., 2021) for the RM design. The GLM analysis of Figures 

3 (rats) and 6 (humans) confirmed this temporal profile. The GLM also began to highlight 

the role of choice history. For both species, choice n-1 carried by far the largest weight. 

Humans, though, showed a repulsive effect for choice n-1 regardless of that choice’s 

outcome, while rats showed opposite effects, depending on the outcome. As seen in other 
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experimental paradigms with rodents, rats exhibited a tendency to win-stick, and lose-

switch, i.e.: repeat a choice that led to a reward, and reverse a choice that led to no reward. 

These results reveal a remarkable similarity in how stimulus history affects current WM 

choices in both rats and humans. Namely, both species exhibited contraction bias, with base 

stimulus memory contracting towards the centre of the stimuli distribution; in both species 

past stimuli exert the same effect, although to a lesser degree in humans, and the magnitude 

of their effect reduces according to recency. Moreover, all these hallmarks of stimulus history 

effect were consistent across subjects, regardless of species. Two main differences emerge 

between rats and humans, beyond the effect magnitude: the first is the extent to which 

stimulus history extends to past trials, with rats being affected by trials much further in the 

past, compared to humans, who showed a shorter-lived trial history. The second is the 

choice outcome dependency; rats showed a tendency to repeat choices that had been 

rewarded, and not to repeat choices that went unrewarded, while humans showed a 

tendency to alternate choices from one trial to the next, irrespective of outcomes. 

The results for the second task, RM, proved again similar across rats and humans, but 

different from both WM and previous RM literature. Figures 5 (rats) and 8 (humans) show 

that stimulus serial dependence in RM was much more heterogeneous across subject than 

it was in WM. Subjects showed no overall trend. A possible reason for this absence is shown 

in Figures 9 (rats) and 12 (humans): disentangling stimulus and choice serial dependence, 

it is possible to show that a small stimulus effect is present. However, in both groups, a 

strong choice n-1 attractive effect, when choice n-1 had been rewarded, opposed stimulus 

n-1 repulsive effect, masking it. 

We formulated two hypotheses that might explain this discrepancy. The first has to do with 

the task design: in the present work, we employed the same dynamic stimulus range for 

both tasks, anchoring the RM one to WM, which we established first. It is possible that such 

a range was simply too large, compared to the one employed in earlier work. The large 

range might have masked the stimulus serial dependence to emerge: a larger range makes 

the task easier, with stimuli getting farther from the categorical boundary; as each stimulus 

became easier to categorise, choices would become less susceptible to stimulus history. 

 Thus, the choice attraction effect is not unexpected in the current results: it is, however, 

comparatively larger than the serial stimulus dependence. It is possible that, employing a 

narrower, and thus more difficult, stimulus range, the stimulus effect would prevail over 
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choice attraction. The second hypothesis is applicable to rats only. We trained rats in WM 

first, as it is the harder task to learn. It is possible that they then approached the RM task 

differently from rats who learned only the RM task. As stimulus history mostly affects 

performance negatively in WM (each trial is, ideally, independent and contraction bias tends 

to have a net harmful outcome), rats might have learnt to minimise its influence through the 

course of long training. The routine of treating each trial in isolation rather than as a 

continuous string might have allowed them to suppress stimulus history influences once 

presented with a task, RM, without an explicit memory component. However, humans 

surprisingly showed the same result as rats, even though half of the subjects experienced 

the RM task first. Moreover, the task structure provided no incentive to employ choice n-1 in 

solving the task, as shown in Supplementary figure 4: the structural probability of the same 

correct side being repeated from one trial to the next deviated slightly for 0.5 for all tasks 

and species; also, the deviation is mostly in the direction opposite to how the subjects 

employed choice n-1. For example, human subjects performing WM showed choice 

repulsion (Figure 7-A, left), but the actual probability of the same correct side repeating 

resulted slightly above 0.5, and, thus, choice attraction would have been preferable. Due to 

this, we would favour the first explanation. 

Our strategy of having subjects perform both tasks was based on the idea that stimulus 

history effect magnitude in one task would predict the effect in the other task, thus providing 

evidence for a single phenomenological and physiological mechanism for both contraction 

bias and stimulus history effects, that would then be declined according to the cognitive 

demands of each task. Clearly, non-sensory history components need to be accounted for, 

too: while stimulus serial dependence and contraction bias in WM show a remarkable 

similarity between rats and humans, the results in RM do not clearly follow from the stimulus 

history effect as in WM. While rats and humans still behaved similarly in the RM task, this 

was due mostly to serial choice dependence. We cannot exclude that the stimulus history 

effect would have been similar in RM; the subjects’ tendency to repeat choices, after 

rewarded trials, masked the stimulus repulsion effect, thus providing inconclusive evidence 

regarding the development of stimulus history effects in different tasks within each subject.  

As for the neuronal recordings, the results show that both PFC and PPC are part of a 

network involved in the processing of task relevant information. Figures 15 and 17 show that 

PFC is more involved in the representation of current trial’s decisional variables, with a direct 

correlation to subjects’ performance. PPC, on the other hand, turned out to be more involved 
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in representing past trials, both with respect to stimulus and choice. This finding agrees with 

PPC data in an auditory delayed comparison task (Akrami et al., 2018). Due to this, and the 

time course of decoding curves, it is plausible that PPC is located downstream to PFC in 

the flow of information. However, the encoding of past stimuli and choices, in both cortical 

areas considered, failed to correlate systematically with either stimulus history or choice 

history behavioural effects, differently from what was reported in (Barbosa & Stein, 2020), 

where the magnitude of reactivation in macaque PFC directly correlated with serial 

dependence in a saccade-to-target task. While it is entirely possible that the failure to 

uncover this correlation depends on the task design differences, or species differences, it is 

also plausible that this information is encoded, in these cortical areas, with variable precision 

from session to session. Whether to employ it or not would then be gated by a different part 

of the same network, not recorded in the present work, which would act in a top-down 

manner on either or both PFC or PPC. Indeed, in a recent publication (Cazettes et al., 2023), 

the authors showed that rodent secondary motor cortex (M2), which is part of the prefrontal 

rodent network, can act as a reservoir of information to be employed in different viable 

strategies, regardless of whether that specific strategy is actively employed or not. It is not 

far-fetched to hypothesize the same for history effects, although they are not necessarily 

part of an explicit strategy employed by the animals. 

While both areas showed a reactivation of past stimuli and choices, in WM the magnitude 

of reactivation proved to be correlated with stimulus effects. Possibly, this happened 

because, in RM, stimulus serial dependence was hard to detect directly, without more 

elaborate analysis, from the behavioural point of view. This correlation, however, proved 

counterintuitive, as the sessions characterized by a larger reactivation also proved to be less 

affected by stimulus history, and vice versa. We propose two potential hypotheses to explain 

this result: the first is that the reactivation is actually a counterbalancing signal, intended to 

reduce the bias caused by the stimulus history, and not the stimulus history signal per se. 

The second possibility is that the stimulus history effects are due to a flow of information 

from the PFC-PPC network examined here: when the magnitude of reactivation is low, the 

information has already been processed and delivered to another, hidden, portion of the 

network, responsible for the enactment of the bias due to the stimulus history; when the 

magnitude of reactivation is high, it means that the information is still retained in the visible 

portion of the network, and thus is yet to be processed, leading to no measurable stimulus 

history effect. 
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METHODS 

Rat Subjects 

10 Wistar male rats (Envigo) were housed in quartets and examined periodically by a 

veterinarian. When they reached around 400-500g they were split in pairs, due to cage 

dimension limits. The rats began the training protocol at the age of 8 weeks. They were 

motivated by water deprivation and rewarded during trials with tap water. The deprivation 

schedule gave access to water for 1 hour during training and for around 30 hours during 

weekends. 

All rats were trained for intensity discrimination in two different tasks: first, they were trained 

to perform the delayed comparison task (WM); once proficient in it, they were introduced to 

the categorisation task (RM) and then alternated from one to the other on a weekly basis. 

Protocols conformed to international norms and approved by the Italian Health Ministry and 

Committee of the International School for Advanced Studies (SISSA). 

Rat Setup 

The experimental setup consisted of a T-shaped Plexiglas box, measuring 25 × 25 × 38 cm. 

In the front wall, a hole allowed the rat to extend its head into the stimulus delivery port; 

here, a nose poke detected the snout by an infrared detector, while a blue LED light signalled 

to the rat that a new trial could begin. The setup was positioned into a Faraday cage and 

the experiments were run in the dark; the only light provided was a red LED and was used 

by the experimenter to monitor the rats during the task, using a webcam (Logitech HD 

Webcam C310). During the trial a shaker motor (type 4808; Bruel and Kjaer), with 12.7 mm 

peak-to-peak displacement, was used to generate stimuli. The motor was placed on its flank 

to produce motion in the horizontal dimension through a 20 × 30 mm plastic plate attached 

to its diaphragm. We applied a strip of double-sided adhesive tape to this plate to keep the 

rat’s whiskers in contact and allow them to better follow the plate’s movement. Two reward 

spouts, on 8 cm high pedestals, were place to the right and left of the nose poke; two custom-

made infrared sensors, one for each spout, detected the rat’s position and activated reward 

delivery accordingly. The water was delivered by two syringe-pumps, one for each side, 

controlled by a AVR32 board (National Instruments, Austin, TX). Three audio speakers were 

placed on three walls of the setup, one above each spout and one at the back: the central 
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one delivered the go cue, while the lateral ones gave a reward delivery cue, upon correct 

response, to act as reinforcement. 

Experiments were controlled using LabVIEW software (National Instruments). 

Stimulus generation 

Each stimulus was a noisy vibration, obtained by stringing together randomly sampled 

velocities. Velocities were obtained by sampling a normal distribution with 0 mean and 

defined by the standard deviation σ, ranging from 3 to 20: a stimulus with low σ will feel 

weak, because values of velocity will be close to the mean, while a stimulus with high σ will 

feel strong because values of velocity will be farther from the mean; in fact, the mean 

stimulus speed is directly proportional to σ, and the motor amplifier gain was set so that the 

average stimulus speed would be 10 times the value of σ, measured in mm/s. The sequence 

of velocities formed one seed. There were 50 different seeds for each vibration mean speed, 

making the signature of a given vibration hard to recognize and making the mean speed a 

more salient feature. 

Experimental design: delayed comparison (WM) task 

Before every trial, the blue light turned on, signalling to the rat that a new trial could begin. 

Then, the rat had to insert its head in the hole and keep its nose in the nose poke, triggering 

the delivery of the stimuli. The rat had to remain in the nose poke for the entire trial, 

comprising: pre-stimulus delay (500ms), base stimulus (334ms), inter-stimulus delay (either 

1, 2 or 4s), comparison stimulus (334ms), post-stimulus delay (500ms); after this sequence 

elapsed, the go cue signalled to the rat to make a choice. If the rat moved away from the 

nose poke before the go cue sounded, the sequence would abort, and the rat would have 

to wait 2s before starting a new trial. After the go cue, the rat reported its judgement based 

on the rule that was reinforced during training: half of the rats, randomly chosen when they 

arrived in the lab, were trained to go to the left spout if the base stimulus was stronger than 

the comparison and to the right spout if the comparison was stronger than the base, while 

the other half had the rule reversed. 

The delayed comparison paradigm allowed the distinction of different phases and different 

cognitive functions and, importantly, allowed us to separate in time the perception of the 
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base stimulus from the decision making, involving working memory. The sequence of 

perceptual and decision making operations can be envisioned as: 

1) Encoding the first stimulus and extracting the relevant parameter (intensity) 

2) Storing the parameter value in memory and maintaining it 

3) Encoding the second stimulus and extracting the relevant parameter 

4) Comparing the second parameter value to the memory of the first 

5) On the basis of the comparison, applying the decision rule (go right if base > 

comparison or, for different rats, base < comparison) 

Nominal base and comparison pair difficulty does not depend on the value of the stimuli, but 

on the difference between them: the closer they were, the more difficult the discrimination. 

We expressed this difficulty using an index, the Normalized Speed Difference (NSD), 

computed according to Weber’s Law: 

(1)  𝑁𝑆𝐷 =  
𝜎𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 − 𝜎𝑏𝑎𝑠𝑒

𝜎𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 + 𝜎𝑏𝑎𝑠𝑒
 

The value of the index expresses the relative difference between the stimuli features, and 

the sign expresses which one is stronger. 

To generate the different stimuli pairs used to train and test rats, we used the Stimulus 

Generalization Matrix (SGM). In this way, in every trial, neither of the two stimuli, taken 

alone, contained enough information to solve the task. If either the base or the comparison 

was fixed across trials, the rat could solve the task by applying a threshold to the other. 

Instead, both stimuli varied in a similar range in the SGM, forcing the rat to compare the two 

to solve the task and be rewarded. 

In Figure 2-A, each circle represents a stimuli pair, using the σ of the two stimuli as 

coordinates, in a logarithmic scale. The diagonal line, where the two stimuli are identical, 

represents a discrimination line: in the upper side, comparison is larger than base for all 

trials, and vice versa in the lower side. Moreover, the distance of each couple from the 

diagonal represents the NTD or NSD: the closer to the diagonal, the more difficult the trial. 

In the SGM, all trials are the same distance from the diagonal, so all are equally difficult. 
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In order to measure acuity, we added three other sets of stimuli pairs on top of the SGM. 

The new pairs have different grades of difficulty, meaning different NSD values, including 

the 0 case, when base and comparison have the same σ. Each of the new sets had fixed 

base σ (either 5.8, 8 or 10.8), so they appear vertically arranged on the SGM; the 

comparison σ varied, producing a set of 7 NSD, from -0.3 to 0.3. To avoid the rats setting a 

threshold on the comparison, which would happen if always presented with the same base, 

both SGM set and one of the vertical sets were presented during each session. To maintain 

the centre of the stimulus distribution fixed in the different set combinations, we manipulated 

the presentation probability of each pair. 

Experimental design: categorisation (RM) task 

The task was operated by the subject in the same manner as described for the WM task. 

The trial structured differed from WM, being comprised of: pre-stimulus delay (500ms), 

stimulus (334ms), post-stimulus delay (500ms); after this sequence elapsed, the go cue 

would signal the rat to make a choice. The choice reports if the animal categorised the 

stimulus as strong or weak, compared to an implicit boundary. The stimulus set included 9 

linearly and equally spaced stimuli, employing the dynamical range set for the WM task. The 

5th stimulus lied on the implicit boundary and the associated subject choice was rewarded 

as correct with a 50% probability, regardless of the choice. 

Training stages 

All rats underwent an 8-stage training protocol in order to learn to perform discrimination on 

both tasks.  

• 1st stage: Handling. After arriving to the facility, the rats were sorted into cages, two 

for each cage. They had a couple of days to adjust to the new environment, then the 

experimenter would hold them and pet them for an hour every day, while they got 

used to human handling; during the last days of this stage, the water restriction 

schedule began and water was available only during the handling hour, so the rats 

would begin to associate water availability with human handling. 

• 2nd stage: Nose Poking and Reward Collection. In this stage, the rat would explore 

the experimental apparatus and learn the basic mechanism of reward collection. The 

vibrating plate was present but immobile. During exploration, the rat would discover 

the head hole and, when the snout was detected by the nose poke sensor, an 
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immediate go cue would play, followed by the delivery of a small amount of water by 

a randomly chosen spout; at the same time, a clicking sound would be played by the 

corresponding speaker. After this, the blue light would turn on again and a new “trial” 

could begin. Rats learn quickly to poke their nose to receive a reward. At this point, 

the experimenter would gradually raise the waiting time before the go cue would 

sound: if the rat left the nose poke before the time had elapsed, no reward would be 

granted. When the rat was capable of waiting for two seconds, the next stage would 

begin. 

• 3rd stage: Passive Task. In this stage, the rat would get used to the delivery of the 

stimuli and start learning the correlation between stimuli features and reward side. 

During this stage, only the relevant feature would be involved, while the other 

(duration for intensity rats and intensity for duration rats) would remain fixed 

throughout all stimuli. Now, instead of just waiting for the delay before the go cue, the 

rat had to attend to both the stimuli before the go cue played. Again, early withdrawal 

would yield no reward. After the go cue, the rat could go to either spouts, though only 

the correct one, according to the rat’s rule, would deliver a reward; however, during 

this stage, if the rat’s first choice proved wrong, it could still go to the other spout and 

be rewarded. The correct response depended on the comparison between the stimuli 

and the rule (e.g.: comparison>base go right, or vice versa) was assigned randomly 

to the rats and kept the same from here on. During this stage, the experimenter would 

manually and gradually increase the gain of the motor, until reaching the level used 

for the actual experimental sessions: this was done to avoid scaring the rat with too 

strong a stimulus, and to get them used to the vibrations. 

• 4th stage: Active Task. At this stage, reward collection for the second choice was no 

longer allowed. The rat had to learn to actively compare the stimuli and find the 

correct response. We began measuring rat performance. When it was stable and 

solid enough, the rat would move to the next stage. 

• 5th stage: Introduction of Acuity Task. At this point, we added the acuity pairs, as 

described above, to the SGM. 

• 6th stage: Introduction of RM task. At the beginning of the working week, rats would 

unknowingly start a RM session instead than WM. No cue of the change was 

provided, except for the fact that now a single stimulus was delivered in each trial, 

instead of two. The side rule was kept consistent with the one taught in WM, e.g.: a 

rat that had been taught that if comparison is stronger than base, he should go to the 
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left spout, now was taught that if the stimulus is strong, he should go to the left spout. 

At the beginning of the first session, only the strongest and weakest stimuli would be 

delivered, in order to simplify the task; then, as the number of correctly categorized 

trials increased, the other stimuli were introduced gradually, in increasing difficulty. 

After a period of confusion, which usually lasted at most 3 sessions, the rats became 

proficient with the task. 

• 7th stage: Return to WM. At the beginning of the next work week, the rats would get 

back to the usual WM task. Again, no cue as to the nature of the task was delivered: 

only the number of stimuli that were delivered per trial. We carefully monitored that 

rats’ performance was not negatively impacted by learning the RM task. Once we 

were satisfied that the rats were performing at least as well as before, we moved to 

the last stage. 

• 8th stage: Alternating tasks. At this stage, the rats alternated between one task and 

the other on a weekly basis. 

Human subjects 

16 subjects participated in both WM and RM tasks. All subjects performed two experimental 

sessions, with each session lasting approximately one and a half hour. The order in which 

each subject performed the task was randomized across subjects. All subjects were 

volunteers and were paid after the participation, on the basis of how well they performed. 

The study protocol conformed to international norms and was approved by the Ethics 

Committee of the International School for Advanced Studies (SISSA). 

Human Setup 

All experiments took place in the Tactile Perception and Learning Lab, at SISSA. The setup 

was identical for both experiments. The subjects sat in front of a PC screen with their right 

arm resting on a pillow upon the desk, with their right index fingertip triggering an identical 

sensor to the rats’ setup to begin a trial: when doing so, their fingertip would be in contact 

with a plastic probe. The probe was attached to a shaker motor (type 4808; Bruel and Kjaer), 

producing vibrations in the horizontal direction, perpendicular to the fingertip. Subjects’ 

responses were reported by pressing one of two buttons with the same hand. The 

experiment was automatized via LabVIEW (National Instruments). 
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Stimulus generation 

In both experiments, vibrations were produced in the same manner as described in the rats’ 

section. 

Experimental design: delayed comparison (WM) task 

The task was designed in the way described for rats, save for the construction of the stimuli 

pairs set, shown in Figure 3-A. The stimuli pairs were arranged in two sets: a vertical set, in 

which the base stimulus σ was fixed at 8, and a horizontal set, in which the comparison 

stimulus σ was fixed at 8. For both sets, NSD values ranged from -0.25 to 0.25. Stimuli pairs 

from both sets were randomly presented during the WM sessions. 

Experimental design: categorization (RM) task 

The task was designed in the way described for rats, save for the specific values of the 

stimulus set. The stimulus set employed the entire dynamical range established in the 

human version of the WM task, and was comprised of 9 linearly and equally spaced stimuli. 

As for rats, the 5th stimulus lied on the implicit boundary between the strong and weak 

category, and was rewarded randomly 50% of the time. 

Surgery protocol 

To implant electrodes into left PFC and left PPC, both contralateral to the right-side vibrissal 

stimulation (n = 5 rats), rats were anesthetized with Isoflurane through a plastic snout mask. 

The Isoflurane anesthetic was administered via a veterinary apparatus (V-1 Tabletop, 

VetEquip Inc.). The concentration of the agent was variable, based on the depth of 

anesthesia needed and subject differences. To prepare for the operation, the rat was 

anesthetized with Isoflurane at 2%–2.5% mixed with oxygen (O2 98%) as calculated 

according to the MAC value (Minimum Alveolar Concentration: 1.35% ± 0.10%). Atropine 

was administered (2 mg/kg) to maintain a sustained heart rhythm and avoid mucous 

secretions in the respiratory tract. Once immobile, a mask was positioned on the rat’s snout 

to provide a constant administration of Isoflurane with concentration of 2.5% and a flow rate 

of 1 l/min. This established a state characterized by analgesia, muscle relaxation and loss 

of reflexes (absence of reaction to tail and hind paw pinches and corneal air puff) and was 

maintained across the entire surgical procedure (opening of skin and bone). Blood oxygen 
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saturation was at least 98% and cardiac frequency was 350 ± 25 BPM. Once the craniotomy 

was completed, provided that the rat continued to show no reflexes or signs of discomfort, 

Isoflurane concentration was decreased to about 1.5% in 1 l/min of oxygen to prevent gas 

accumulation and allow a more rapid postoperative awakening. This same flow rate was 

maintained during the electrophysiological recordings used to verify electrode positions. At 

the end of the surgical procedure the isoflurane vaporizer was turned off and the rat was 

allowed to recover while breathing 1 l/min of oxygen. Although all inhalant anesthetics are 

maintained with 1.2 to 1.5 times MAC, factors that affect MAC have to be considered during 

the maintenance of the general anesthesia. For this reason, during the entire procedure and 

until the rat completely recovered from the anesthesia, its body temperature, blood 

oxygenation, breathing frequency and heart rate were continuously monitored. The absence 

of reflexes to tail and paw pinches and corneal air puff was regularly tested. In addition to 

the signals of the intraoperative monitoring machines, it is essential to observe physiological 

signs such as the color of the mucous membranes and the pupil diameter. In case of 

bleeding, fluids were reintroduced by subcutaneous injection to ensure proper hydration. 

The target cortical regions were accessed by craniotomy, using X Atlas and standard 

stereotaxic technique. Dura mater was removed over the entire craniotomy with a small 

needle. The electrodes were configured as 2 arrays of 12 electrodes (custom built, 4 rows 

of 3, with 200m spacing in both directions). Electrodes were sharply tapered, and shaft 

diameter was 75μm. Electrode impedances were between 0.5 and 1 MΩ). The electrode 

arrays were inserted by slowly advancing a Narishige automatic micromanipulator. After 

inserting the array, the remaining exposed cortex was covered with biocompatible silicone 

(KwikSil; World Precision Instruments). In all rats, 5 small screws were fixed in the skull as 

support for dental cement. All screws served as ground and reference electrodes. Before 

the conclusion of the operation, animals were given antibiotic (Baytril; 5 mg/kg; i.p.) and 

analgesic (Rimadyl; 2.5 mg/kg; i.m.). After surgery, a local antibiotic (Isaderm) was applied 

around the wound to help the healing. In addition, both the antibiotic and the analgesic were 

delivered through a water bottle for 24 h after completion of surgery. During this recovery 

time, rats had unlimited access to water and food. 

Behavioural Analysis 

The analysis described in this section was performed in the same way for rats and humans. 

Only sessions with a percentage of correct choices above 70% were considered. All 

analyses were performed using custom functions and scripts in MATLAB. 
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Psychometrics 

The choices performed on stimuli pairs belonging to psychometric sets were fitted to 

Equation 2 for WM and Equation 3 for RM, 

(2) 𝑃(𝑆2 > 𝑆1) =  𝛾 + (1 − 𝛾 − 𝜆)
1

2
erf (

𝑁𝑆𝐷 − 𝜇

√2𝜎2
) 

 

(3) 𝑃(𝑆𝑡𝑟𝑜𝑛𝑔) =  𝛾 + (1 − 𝛾 − 𝜆)
1

2
erf (

𝑆𝑝𝑒𝑒𝑑 − 𝜇

√2𝜎2
) 

where γ and λ are the lower and upper asymptotes, respectively, μ is the inflection point and 

σ is the sensitivity. The fit was performed employing Maximum Likelihood Estimation 

method. The parameters were estimated via 100 bootstrapped iterations, on a subject-by-

subject basis. 

History curves 

History curves were estimated by fitting a linear regression on the choices in the current 

trials using the stimuli intensities presented in past trials as predictors. The linear regression 

coefficients were estimated via 100 bootstrapped iterations, employing the Least Squares 

method via MATLAB function fitlm.  

GLM 

The choices performed on each trial were fitted to  

(4) 𝑃𝑘(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒) =  𝛾 + (1 − 𝛾 − 𝜆)
1

𝑒−𝑋𝑘
 

where γ and λ are the lower and upper asymptotes, respectively and k=0,1,2… denotes how 

many trials before the current trial (N) are considered. In WM Response stands for S2>S1, 

and in RM Response stands for Strong, as in the psychometric fit. When considering only 

stimulus history, we employed: 



58 
 

(5) 𝑋𝑘 =  𝛽0 + ∑ 𝛽𝑛𝑆𝑛

𝑁−𝑘

𝑛=𝑁

 

where the predictor for trial N is either the NSD of the presented pair (WM) or the intensity 

of the presented stimulus (RM); the predictors for all other trials are either the average of 

stimuli intensities in that trial (WM) or the stimulus intensity in that trial (RM). When 

considering both stimuli and choices, we employed: 

(6) 𝑋𝑘 =  𝛽0 + ∑ 𝛽𝑛𝑆𝑛 + ∑(𝑅𝑛𝐶𝑛
𝑅 + 𝑈𝑛𝐶𝑛

𝑈)

𝑁−𝑘

𝑛=𝑁

𝑁−𝑘

𝑛=𝑁

 

where 𝐶𝑛
𝑅 represents rewarded choices trial n and could assume values of 1 (S2>S1 in WM, 

Strong in RM), -1 (S1>S2 in WM, Weak in RM) or 0 (choice unrewarded); 𝐶𝑛
𝑈 represents 

unrewarded choices trial n and could assume values of 1 (S2>S1 in WM, Strong in RM), -1 

(S1>S2 in WM, Weak in RM) or 0 (choice rewarded); for n=N, both were always set to 0. All 

predictors were z-scored to make coefficients directly comparable. 

The GLM analysis was repeated with increasing values of k, and the significance of 

coefficients for trial N-k was assessed by AIC, computed at each kth step. All coefficients 

and AIC were estimated via 100 bootstrapped iterations, on a subject-by-subject basis. 

Neuronal recording preprocessing 

Neuronal recordings were spike-sorted manually via Wave Clus (Chaure et al., 2018). Single 

units were selected according to spike shape consistency and inter-spike interval. Two 

criteria had to be met for a unit to be included in the analyses. First, overall firing rate within 

the session had to be at least 2 Hz. Second, overall firing rate per trial for the entire session, 

with many different stimulus conditions intermixed across trials, did not show a significant 

non-zero linear correlation (p < 0.05) over time. The second criterion was aimed at excluding 

unstable recordings. 

Firing rate 

Firing rate was computed by binning spikes in non-overlapping 50ms time-bins, then 

applying a gaussian smoothing over a 500ms window with a standard deviation of 100ms 



59 
 

Decoding 

Each recording session yielded a neuronal ensemble of simultaneously recorded units, 

which were analysed together. Decoding was performed by Support Vector Machine 

analysis, independently at each time-bin. Decoder accuracy was evaluated by partitioning 

the dataset according to repeated hold out cross-validation (80% training, 20% testing) for 

20 iterations. For the shuffled accuracy, 20 iterations of trial labels shuffling were performed. 

Decoder performance was then assessed, similarly to (Barbosa & Stein, 2020), as 

(7) 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡) =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝑒𝑎𝑙(𝑡) − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝑡)

𝜎𝑆ℎ𝑢𝑓𝑓𝑙𝑒(𝑡)
 

where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑅𝑒𝑎𝑙  is the average accuracy over all iterations of cross-validation for 

correctly ordered labels, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑆ℎ𝑢𝑓𝑓𝑙𝑒 is the average accuracy over iterations for shuffled 

labels, and 𝜎𝑆ℎ𝑢𝑓𝑓𝑙𝑒 is the standard deviation over all iterations for shuffled labels. 
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CHAPTER 2 
UNIFIED MODEL FOR TACTILE 

STIMULUS HISTORY IN RATS AND 
HUMANS 

 

INTRODUCTION 

Behavioural modelling has been a productive field of study in the last decades. These 

models often start as purely phenomenological, such as the reinforcement learning model 

(Kaelbling et al., 1995). For example, a particularly successful model, the drift diffusion 

model (Pedersen et al., 2017; Tavares et al., 2017) describes how evidence is integrated 

over time to reach a decision about a noisy stimulus.  

Many theoretical models have been proven successful in predicting behaviour, and have 

been integrated with other descriptions of the statistical brain (Bitzer et al., 2014; Shahar et 

al., 2019). Even if many models dealt with abstracting behaviour through a mathematical 

description, their theoretical underpinnings have often provided insight into the physiological 

mechanisms driving behaviour. In the case of the drift diffusion model, for example, recent 

publications (Nunez et al., 2017; Steinemann et al., 2023) showed how the decisional 

variables’ time course predicted by the model correlated with the activity of neuronal 

populations, recorded during the task.  

Despite this, even very successful models are seldom extended beyond the experimental 

scope they are first designed for. 

First presented in Hachen et al., 2021, my colleagues devised a phenomenological model, 

describing how, in the RM task, the history-dependent decision criterion shift they observed 

can be explained with a single-parameter, time-continuous model.  

In the present work, we will first recount that model, and explain how we extended it to 

include the stimulus history effects observed in WM, in both rats and humans. We simulated 
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a subject acting according to the model’s description, aiming to replicate the behavioural 

features of stimulus history observed in WM and RM. We also fitted the extended model to 

the behavioural data discussed in Chapter 1, and tested it against competing models in 

predicting the real subject’s behaviour. 

A neural networks model for WM and RM has also been developed in collaboration with 

Francesca Schönsberg, currently submitted to Cosyne 2024. This approach is different as 

it focuses on synaptic plasticity dynamics, and extracts the task responses without 

performing any explicit training on the network. Though the PhD candidate is a co-author of 

this second modelling project, it is not presented as part of the thesis. One long-term goal 

of ours is to unify the synaptic plasticity approach with the work presented below, which can 

be considered as belonging to mean-field approaches.  
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RESULTS 

Model description 

First, we will describe the model we further developed, starting from the description in 

Hachen et al., 2021, and show how tuning model parameters can reproduce the effects of 

stimulus history described in the behavioural results, by simulating subjects performing the 

two tasks under the model’s assumptions. 

The model structure and flow are depicted in Figure 20-A: a stimulus is delivered (either to 

whiskers or fingertips) and its neuronal representation is relayed to primary somatosensory 

cortex (S1), where the representation becomes part of a conscious percept (Diamond & 

Toso, 2023). As the percept is formed, it leaves a memory trace into the Short-term Buffer 

(STB), which acts as a temporary storage. While the trace is held in the STB, it starts to be 

attracted toward the representation held in the Long-term Buffer (LTB). The LTB 

representation, we will argue, may be approximated a sensory prior. At the same time, the 

sensory prior contained in the LTB is attracted, reciprocally, to the trace in the STB: each 

new percept provides a dynamical update to the LTB content; in this way, the LTB content 

is similar to a running average of past stimuli, giving more weight to recent stimuli over stimuli 

in the more distant past. Their reciprocal attraction is described by the Equations 8 and 9, 

whose solution is described in the Methods section. The model is characterized by two time 

constants, Long and Short, which describe the reciprocal decay of the buffers towards each 

other.  

Figure 21-A shows the buffers’ behaviour for two equal, or symmetrical, τ values: regardless 

of the two buffers’ starting point at time zero, their content races converge asymptotically to 

the average of the two starting values, and do so with a symmetrical decay dictated by the 

(de facto only) time constant.  

On the other hand, asymmetrical τ values lead to a qualitatively different dynamic (Figure 

21-B and C): the larger Long becomes compared to Short, the closer the asymptote moves 

towards the LTB starting value, and the more similar the effective time constant becomes to 

Short, as described by Equation 13. As the equations are symmetrical, the reverse is true if 

Short becomes larger than Long.  
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Figure 20: Schematic description of the model. (A) General description. The short-term buffer (STB) is 
loaded with the integrated percept of the latest delivered stimulus. Then, the STB and the long-term buffer 
(LTB) begin attracting each other, until a new stimulus is delivered. Then, the STB content is deleted and is 
ready to be loaded with the percept of the newly delivered stimulus. (B) Model applied to WM. The black line 
connects the STB to the comparison’s percept, which are then compared to solve the task. (C) Model applied 
to RM. The purple line connects the LTB to the stimulus percept, which are then compared to solve the task. 
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Figure 21: Short-term and long-term buffers dynamics. (A) Buffers’ attraction for symmetrical time 
constants. x axis is time in seconds, y axis is buffer speed content. (B) Same as A, for asymmetrical time 
constants. (C) Same as A, for asymmetrical time constants.  

The model describes how memory traces and the prior evolve over time according to the 

stimuli presented within the behavioural context. The STB and LTB can then be employed 

to describe stimulus history effects emerging in the paradigms described in the behavioural 
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section. In WM (Figure 20-B), the STB holds the base stimulus trace during the delay, acting 

as the sensory short-term memory. During the ISI, the percept trace held in the STB will be 

attracted to the LTB content, providing the basis for contraction bias. As the comparison 

stimulus is delivered and integrated into a percept, it is compared to the trace held in the 

STB, to make the judgment; afterwards, the comparison’s percept is loaded into the STB, 

overwriting the previous trace, and attracts the LTB during the inter-trial interval (ITI).  

Figure 22-A depicts a simulation of LTB and STB representations over some WM trials. A 

stimulus pair negatively affected by contraction bias is outlined in yellow; during the ISI, the 

STB trace (black) approaches the LTB trace (purple), moving closer to the intensity of its 

comparison stimulus (second black dot) and then becoming even stronger (black diamond) 

at comparison delivery: thus, the pair would be likely to be misjudged. The pair outlined in 

green, conversely, is positively affected: as the STB trace is attracted by the LTB, it is pulled 

further away from its comparison, magnifying the difference between them, and making the 

judgment easier or more likely to be correct. Last, outlined in blue, a pair in which the base 

stimulus is already so close to the LTB that its trace is stabilized by the buffers’ interaction: 

thus, the base stimulus is remembered very faithfully.  

In RM (Figure 20-C), each stimulus percept is compared with the LTB, which acts as the 

internal boundary between the weak and strong category. Then, as each percept is loaded 

in the STB, it attracts the LTB during the ITI, thus slowly shifting the categorical boundary 

and potentially leading some stimuli to shift from one category to the next. Figure 22-B 

depicts a simulation of LTB and STB during a RM session: in each trial, contained within 

two grey lines, a single stimulus is delivered, and must be categorised as either weaker or 

stronger than the boundary, represented by the horizontal dashed line. According to the 

model’s description, however, each stimulus is compared, instead, to the LTB at the time of 

stimulus delivery. As the LTB wanders around the centre of the stimulus distribution, which 

is the same as the boundary, by design, most trials are categorised correctly, regardless. 

Sometimes, as in the trial highlighted in yellow, the LTB might wander far enough from the 

boundary, leading the subject to mis-categorise it. As described above, the longer Long is, 

the less the LTB strays from the centre of the distribution, making this occurrence rarer. 

Note that, qualitatively, in this model the STB exerts a progressive influence on the LTB 

through the attraction dynamics. If this attraction occurs during the intertrial interval, then the 

n-1 history effect – the effect of the STB on the category boundary stored in the LTB – will 
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increase as the ITI increases. Exactly this dynamic was shown, experimentally, in Hachen 

et al., 2021, lending experimental confirmation to this aspect of the model. 

 

Figure 22: Buffers’ timeline simulation. (A) Buffers’ timeline simulation for WM. X axis is time in seconds, y 
axis is stimulus speed. Each trial is contained within vertical grey lines. Black dots are stimuli delivered; 
diamonds are buffers’ contents at stimulus delivery. Solid black line is base stimulus trace in STB, dashed grey 
line is comparison stimulus trace in STB, dashed purple line is LTB. (B) Same as A, for RM. 

RM simulation 

To show how the model can reproduce the stimulus history effects described in the first 

chapter, we simulated subjects employing Equations 2 and 3 as generative models, for RM 
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and WM, respectively. As described in Methods, these subjects were unbiased and lapse-

less, meaning that they always acted upon the decision variable (i.e.: NSD) and never chose 

randomly; employing the different time constants combinations, we produced different base 

stimulus traces at decision time to adjust the effective NSD, when simulating WM, and 

different internal boundaries for RM. Then, we computed history curves and fitted GLM and 

psychometric models on the simulated choices, in the same manner employed on the 

behavioural data, and analysed how different time constants affected GLM and 

psychometric parameters, and if our model could reproduce stimulus history effects 

observed in real subjects. 

Figure 23 shows the simulation results applied to RM. To be as close to the description in 

Hachen et al., 2021, we first employed the symmetrical version of the model, where Long = 

Short. Figure 23-B shows the effect of the model on the psychometric curve computed over 

all trials together: μ, the inflection point and measure for bias, is unaffected by Long, as the 

shift of the internal boundary in one direction on some trials, due to recent stimuli, is 

compensated by other trials in which the shift happened in the opposite direction; σ, the 

slope and measure for sensitivity, on the other hand, is negatively impacted: as Long 

decreases, the sensitivity decreases as well, as the choice on each trial becomes more and 

more impacted by recent stimuli. Figure 24-A and B show how the same parameters, μ and 

σ, are affected by Long when computing psychometrics conditioned on the stimulus delivered 

in trial n-1. Here, μ was more strongly affected by stimulus n-1 for shorter Long, as the subject 

became more repulsed by stimulus n-1: with weaker stimuli n-1, μ would reduce, shifting the 

psychometric curve towards the left and increasing the overall probability of judging stimulus 

n as strong. On the other hand, σ was largely unaffected by stimulus n-1, depending only 

on Long. Subject performance (Figure 23-C) also increase with Long, since the negative 

effects described reduced as the LTB became more stable. 

Figure 24-C shows stimulus history linear regression coefficients, on the left, analogous to 

those in Figure 11-C. The coefficients for n-1 are larger for shorter Long, as the LTB is 

updated faster by the latest stimulus received. At the same time, the coefficients decay faster 

towards 0 for shorter Long, as the LTB also “forgets” faster: for longer Long, stimuli from trials 

further in the past still exert an effect during trial n. In Figure 24-D, the distribution of LTB 

values during the simulated sessions shows how longer Long stabilises the LTB around the 
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centre of the stimulus range, producing a narrow distribution which reflects the smaller effect 

of recent stimuli, compared to shorter Long. 

 

Figure 23: Psychometrics simulation, RM. (A) Psychometric curves from simulated subjects with different 

Long. x axis is stimulus nominal speed, y axis is probability of judging stimulus as strong. (B) Inflection point 

(μ) and reciprocal of slope at inflection point (σ), left and right respectively. x axis is Long. (C) Subject 

performance. x axis is Long, y axis is percentage of correct responses. 
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Figure 24: Stimulus history simulation, RM. (A) Inflection point (μ) for psychometric curves separated 
according to stimulus n-1, as in figure 7-B. x axis is stimulus n-1 nominal speed, y axis is μ. (B) Same as A, 
for σ. (C) Regression slope coefficients for past trials, as in figure 8-C. (D) LTB content distribution, for different 

Long. x axis is buffer content, y axis is trial count. 

WM simulation 

For WM, we employed various combinations of time constants, all characterised by Short <= 

Long, as we expected the STB to be more volatile than the LTB. The justification for 

expecting more volatility is that the STB is reloaded and, ideally, wiped clean of memory on 

each trial. The functional attributes of fast reloading and scrubbing struck us, intuitively, as 

being properties associated with higher volatility.  

Figure 25 shows the parameters recovered for the psychometric model, for various 

combinations of time constants values: the lapse parameters (Figure 25-D) increase rapidly 
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with Long before reaching a plateau, which is higher at shorter Short; for Short above 5s they 

remain close to zero (which is the lapses values set for the generative model) for any value 

of Long. The most dramatic increase is in the upper asymptote, λ, meaning that pairs for 

which NSD is positive (i.e.: comparison is stronger than base) are more affected: this is due 

to how the stimuli pairs are arranged. In the SGM, stimuli intensities are chosen to maintain 

NSD constant, either positive or negative, for each pair: so, the stimuli intensities become 

spaced exponentially, as described in Methods. In this way, while the NSD is constant, the 

absolute difference between stimuli in a pair is not: it is smaller for weaker pairs, and larger 

for stronger pairs. Thus, when the STB holds weaker stimuli traces, it needs to shift less 

towards the LTB to exert a noticeable effect on the NSD, since the absolute difference is 

smaller, compared to when the STB holds stronger stimuli traces. 

The psychometric inflection point (μ) and slope (σ) are both affected as well (Figure 25-C): 

as the time constants increase, the slope increases (smaller σ) until it approaches the 

generative model value (0.1). For Short below 5s, the slope even increases beyond the 

generative value: however, as already shown, this is coupled with larger lapses and a larger 

prediction error, so the increased slope should not be taken at face value. The effects of 

short time constants are overall decreasing performance, as shown in Figure 25-B, so that 

is not surprising: a lower slope means lower acuity, which in this case comes from 

misremembering the base stimulus, thus altering the decision variable NSD. Interestingly, 

though, even the worst possible combination, performance-wise, leads to an overall 

performance still above chance, meaning that, with the stimuli pair set employed, there might 

not be a very strong incentive to improve base stimulus retention even for subjects with a 

very unstable STB. As for μ, it stabilizes on slightly positive values: this reflects the fact that 

the centre of the stimuli distribution is slightly stronger than the median of all stimuli, due to 

the fact that stimuli are exponentially spaced; in this way, the STB base stimulus trace is, on 

average, attracted to stronger values: as a consequence, the comparison stimulus needs to 

be slightly stronger than the base nominal values to achieve an effective NSD that is equal 

to zero, thus leading to fitting positive values for μ.  

Figure 26, left panels, shows regression coefficients for past trials, computed on the stimuli 

average for that trial, as shown previously in the behavioural results (Figure 4-C). Each 

panels shows curves computed from different values of Short. As was the case in RM, Figure 

24-C, shorter Short produces larger coefficients for the most recent trials, which decay 

towards zero for trials further in the past. In the same way, longer Long extend this effect 
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further in the past, as the LTB becomes more resistant to updating, both due to Long itself, 

which stabilises the LTB value, and the asymmetrical dynamics shown in Figure 21-B and 

C, making the LTB asymptote closer to its initial value the shorter Short is. 

Figure 26, right panels, shows the distribution for STB and LTB, computed for the same Short 

values employed for the regression coefficients. As in RM, longer Long produces narrower 

distributions for the LTB, and for the STB too. However, longer short produces STB 

distributions with clearer peaks centred on the values employed for the base stimuli, showing 

how the STB retains a more stable memory trace. 
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Figure 25: Psychometrics simulation, WM. (A) Psychometric curves from simulated subjects with different 

Short. x axis is NSD, y axis is probability of judging comparison as stronger than base. (B) Subject performance 

as a function of time constants. x axis is Long, y axis is percentage of correct responses. Colour denotes 
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different Short (C) Same as figure 20-B, Colour denotes different Short. (D) Same as C, for lower (γ) and upper 

(λ) lapses. 

 

Figure 26: Stimulus history simulation, WM. (A) Left, regression slope coefficients, as in figure 2-C, for 

Short=0.5s. Colour denotes Long. Right, LTB and STB distributions for Short=0.5s. x axis is buffer content, y 

axis is trial counts. Colour denotes Long. (B) Same as A, for Short=2s. (C) Same as A, for Short=5s. (D) Same 

as A, for Short=10s. 
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Model fitting in WM 

Having established how the model behaves when applied to an ideal, simulated subject, we 

proceeded to fit it to the collected data. We fitted our model, to which we will refer as T (Tau), 

for shortness, on a subject by subject basis, recovering the fitted time constants and the 

predicted choices trial by trial. We then compared how well this model predicted the reals 

subjects’ choices against the psychometric model discussed in the behavioural section and 

a variety of GLM models with an increasing number of predictors. These GLM models 

include only past trials that have been shown to be predictive in the behavioural section. 

The S model includes only past stimuli for RM, or the average of stimuli for WM. The C 

model includes only past choices. The RW model includes only past choices, separate by 

correct and incorrect. The SC and SRW models are the combination of the S model with 

either of the other two. The TC and TRW models combine, via GLM, the decision variables 

produced by the T model, as described above, with choice n-1 or choice n-1 separated by 

correct and incorrect, respectively. 

For WM, Figure 27 shows the Brier Score difference between the model with lowest error, 

identified with a red cross, and all other models, for rats (A) and humans (B). For both 

groups, the T model provided the lowest prediction error, on a par with SC and SRW for 

humans. The middle row of Figure 27, in the same task order, shows the ΔAIC for all models, 

against the model with lowest AIC, again identified by a red circle: the T model was 

confirmed as the most economic model, combining the best predictive power with the least 

number of parameters needed. The bottom row of Figure 27 shows the median of time 

constants recovered for each subject (E, rats and F, humans). All, save one human subjects, 

showed a shorter Short compared to Long, reflecting the fact that the LTB is less volatile than 

the STB, which in turn tends to decay faster towards the LTB. However, the time constants 

values recovered from rats are far shorter than human ones, reflecting the fact that rats 

exhibited a much stronger dependency on past stimuli than humans.  
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Figure 27: Model results for WM. (A) Brier Score difference for tested model, for rats, against lowest Brier 
Score model, marked by red circle. (B) Same as A, for humans. (C) AIC difference for tested model, for rats, 
against lowest AIC model, marked by red circle. (D) Same as C, for humans. (E) Time constants recovered, 
subject by subject, for rats. (F) Same as E, for humans. N=10 rats, N=16 humans (Student’s t-test). 
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Model fitting in RM 

For RM, Figure 28 shows the Brier Score difference between the model with lowest error, 

identified with a blue circle, and all other models, for rats (A) and humans (B). For rats, as 

described in the behavioural section (Figure 13-A, right), there was a more prevalent choice 

history effect, leading to the SRW model as the most predictive model and the T model and 

its variations as the least predictive. The stimulus history effect proved very weak in these 

subjects, overlayed with a strong choice attraction or repulsion towards previous correct or 

incorrect choices, respectively. For humans, the SC model provided the lowest prediction 

error; as described in the behavioural section (Figure 14-A, right), the stimulus history effect 

was overlayed with a strong choice attraction effect towards previous correct choices: as 

correct choices made up most of the trials, the contribution of previous incorrect choices 

was negligible, making them largely irrelevant for prediction purposes. 

The bottom row of Figure 28, in the same group order, shows the ΔAIC for all models, 

against the model with lowest AIC, again identified by a blue circle: unsurprisingly, for both 

rats and humans the T model and its variation proved the models with largest AIC, as the 

subjects mostly did not conform to the model assumptions. For rats, the C model proved the 

most conservative model, on par with other GLM models, while the T model and its variations 

were significantly worse. For humans, the P model proved better than all other models, 

possibly in force of the human subjects performing closer to the design as intended, 

compared to rats. 

Due to the unexpected results for the RM task, the model failed to capture the subjects’ 

behaviour, contrarily to the success it had in a previous publication. It is my hypothesis that 

the choice to employ the same dynamical range established in the WM task, instead of 

tailoring it to RM, while reasoned, had the unforeseen consequence of inducing an 

unprecedented choice history effect, which effectively masked the smaller stimulus history 

effect. On top of that, it is possible that rats, being thoroughly trained in WM first, as it is the 

hardest task of the two to teach, had the unintended consequence of altering their strategy 

in RM, compared to naïve rats that are taught RM directly. 
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Figure 28: Model results for RM. (A) Brier Score difference for tested model, for rats, against lowest Brier 
Score model, marked by red circle. (B) Same as A, for humans. (C) AIC difference for tested model, for rats, 
against lowest AIC model, marked by red circle. (D) Same as C, for humans. (E) Time constants recovered, 
subject by subject, for rats. N=10 rats, N=16 humans (Student’s t-test). 
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DISCUSSION 

The simulations show how the extended version of the model in (Hachen et al., 2021) 

replicates the serial dependence observed in that work, for RM, and can adapt to account 

for both contraction bias and stimulus serial dependence. However, the psychometrics 

simulations, especially in WM, deserve some deeper discussion. 

While the simulated subject always employed the same generative parameters (see 

Methods), regardless of time constants, the psychometric fitting (Figure 4 for RM, Figure 6 

for WM) did not recover those parameters exactly. In fact, it led to much misestimation, 

especially in WM. For both RM and WM, σ was always overestimated. As a measure of 

sensitivity, σ is employed as a measure of the underlying response distribution: however, 

this simulation shows how it can be easily misestimated, without accounting for stimulus 

history.  

But the WM lapses show the grossest misestimation. While the generative lapses were set 

to zero, the fitted lapses could be far from it, depending on the time constants combination. 

The lapses are classically interpreted as non-sensory mistakes: those could be due to 

momentary lack of attention or choices already made before stimuli presentation, for 

example. However, in this simulation, there are no non-sensory mistakes: the simulated 

subject always employs the sensory information to the best of their ability. In this sense, the 

simulated subject’s lapses should be interpreted as history-induced, not non-sensory, 

lapses. If the presented model’s underlying hypothesis hold, without awareness of the extent 

of contraction bias and stimulus history, the lapses would be interpreted as non-sensory, 

perhaps underestimating the subject’s attention or understanding of the task’s instructions. 

That observation is valid only if the model described is adequately applicable. Figure 24 

shows that both rats’ and humans’ WM stimulus history, as contraction bias and serial 

dependence, can be accounted for by the interaction between LTB and STB. Not only this 

model, once fitted, provided the best predictive power of both species’ choices, but it did so 

with the least amount of parameters to achieve that explanatory power. The tau recovered 

for rats (Figure 24-E) are very short, compared to those of humans (Figure 24-F), especially 

with Short < 2s, which explains how rats are always strongly affected by contraction bias, 

with base stimulus memory traces decaying fast towards the LTB. At the same time, humans 

also showed values of Short that are always shorter than Long, except for one subject. This 
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reinforces the hypothesis that the information about the stimuli distribution, for which the 

LTB acts as a proxy, is actually more stable than the memory traces held consciously. 

In RM, as was expected, the model failed to provide adequate explanatory power. As 

already discussed in Chapter 1, stimulus serial dependence effects were masked, in both 

rats and humans, by choice serial dependence, providing different results from (Hachen et 

al., 2021), from which the model originated. Possible explanations for this unexpected result 

have been discussed in Chapter 1. 

Despite this, the novel extension on the previous model proved successful in capturing both 

contraction bias and stimulus serial dependence in WM. When applying the model to the 

task that most exhibited stimulus history effects, which was WM, it provided a successful 

fitting and captured the decision variables that the subjects employed on trial-by-trial basis, 

providing a dynamical description of perceptual memory. The model construction provides 

a phenomenological account of the reciprocal interaction between the LTB, a dynamically 

updated repository for the distribution of prior stimuli, and the STB, an unstable repository 

for working memory, which compensated for noise employing the information contained in 

the LTB. The model accounted for these phenomena employ only two time constants, 

providing time-continuous estimates of STB and LTB, ready to be employed by classical 

behavioural models. 

Considering the results presented in (Hachen et al., 2021) and here, the interaction between 

LTB and STB provides adequate explanation to both stimulus serial dependence and 

contraction bias, in the context of two different experimental paradigms, requiring different 

cognitive resources, within the tactile modality. Moreover, the model was successfully 

applied to both rats and humans, providing evidence for conserved mechanisms underlying 

the aforementioned phenomena. Perhaps even more appealing, this model assumes a task-

independent network of cognitive buffers, the read-out of which can be selected in a top-

down, goal-directed manner: the LTB is read-out in the case of RM, the STB in the case of 

WM. However, both LTB and STB are present in both task designs, and interact in the same 

way. More research will be required to validate this model in different modalities and with 

different task designs.  
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METHODS 

Model equations 

We model the buffer interaction using the differential equation system: 

{
(8) 𝜏𝑙𝑜𝑛𝑔

𝑑

𝑑𝑡
𝐿𝑇𝐵(𝑡) = 𝑆𝑇𝐵(𝑡) − 𝐿𝑇𝐵(𝑡)

(9) 𝜏𝑠ℎ𝑜𝑟𝑡

𝑑

𝑑𝑡
𝑆𝑇𝐵(𝑡) = 𝐿𝑇𝐵(𝑡) − 𝑆𝑇𝐵(𝑡)

 

 

which solves for 𝐿𝑇𝐵 and 𝑆𝑇𝐵 as:  

(10)  𝐿𝑇𝐵(𝑡) =
𝐿𝑇𝐵0 + 𝑆𝑇𝐵0

2
−

𝐿𝑇𝐵0 − 𝑆𝑇𝐵0

2

∆−

∆+
+

𝐿𝑇𝐵0 − 𝑆𝑇𝐵0

2
(
∆−

∆+
+ 1)𝑒−∆+𝑡  

(11) 𝑆𝑇𝐵(𝑡) =
𝐿𝑇𝐵0 + 𝑆𝑇𝐵0

2
−

𝐿𝑇𝐵0 −  𝑆𝑇𝐵0

2

∆−

∆+
+

𝐿𝑇𝐵0 − 𝑆𝑇𝐵0

2
(
∆−

∆+
− 1)𝑒−∆+𝑡 

Where 𝐿𝑇𝐵0 and 𝑆𝑇𝐵0 are the respective values at t=0 and 

(12) ∆−=  
1

𝜏𝐿𝑜𝑛𝑔
−

1

𝜏𝑆ℎ𝑜𝑟𝑡
 

(13) ∆+=  
1

𝜏𝐿𝑜𝑛𝑔
+

1

𝜏𝑆ℎ𝑜𝑟𝑡
 

Simulations 

STB and LTB content were computed continuously during simulated sessions for each task, 

with different 𝜏𝐿𝑜𝑛𝑔  and 𝜏𝑆ℎ𝑜𝑟𝑡  couples; their value at decision time were employed to 

produce simulated decisions. In WM, each trial NSD was corrected as: 

(14) 𝑁𝑆𝐷𝑛 =
𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑛 − 𝑆𝑇𝐵𝑛

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑛 + 𝑆𝑇𝐵𝑛
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Which was then employed in equation 2. In RM, equation 3 was modified as 

(15) 𝑃(𝑆𝑡𝑟𝑜𝑛𝑔)𝑛 =  𝛾 + (1 − 𝛾 − 𝜆)
1

2
erf (

𝑆𝑝𝑒𝑒𝑑𝑛 − 𝐿𝑇𝐵𝑛

√2𝜎2
) 

The simulations were performed with the same fixed generative parameters for both 

equations (μ=0, σ=0.1, γ and λ=0). The simulated choices were then fitted in the same way 

described in the behavioural methods to show how different time constants affect those 

models’ parameters. 

Model fitting 

The computed STB and LTB were applied to psychometric equations 2 and 3 as described 

in the simulation results. The time constants 𝜏𝐿𝑜𝑛𝑔  and 𝜏𝑆ℎ𝑜𝑟𝑡  were fit via Maximum 

Likelihood Estimation method; the model’s error and likelihood were estimated via Repeated 

Hold Out cross validation, using 80% of the dataset as training data and the remaining 20% 

as testing data. The model was fitted on a subject by subject basis for both tasks. 
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CONCLUSIONS 
Throughout the present work, we examined how stimulus history affected judgment in two 

distinct perceptual memory decision-making paradigms: a categorisation (RM) and a 

delayed comparison (WM) task, involving vibrotactile stimuli. From the behavioural point of 

view, we examined two species, rats and humans, finding that they were affected by trial 

history in an analogous manner, exhibiting the same temporal dynamics, albeit with greater 

magnitude in rats.  

The delayed comparison results aligned with those found in literature. On the other hand, 

the results in the categorisation task diverged from many works in the literature, due to 

choice serial dependence obfuscating stimulus serial dependence; in this condition, it was 

impossible to conclude whether the stimulus history effects, for each subject, correlated 

across tasks. 

We presented an extended version of the behavioural model of the Tactile Perception and 

Learning Lab that succeeded in accounting for stimulus history in the delayed comparison 

task. Together with the original presentation of the model, we provide a single task-

independent framework to describe the effects of stimulus history and account for subject 

variability in timescales. This framework proved successful both in rats and humans, 

providing evidence for a conserved physiological mechanism, despite minor species-

specific differences.  

The cortical activity recorded from rats showed how both PFC and PPC are part of a network 

responsible for coding task relevant information. Current, trial-relevant information, such as 

stimuli and choices are encoded along with trial history information. The encoding of the 

former, in PFC, correlated with subjects’ attention to the task; the latter, despite not being 

relevant to solving the task, was proved to correlate with stimulus history in both PFC and 

PPC, during WM. During RM, the encoding was still present, despite no stimulus history was 

detectable in the subjects’ behaviour. This result led us to hypothesise that a different, non-

recorded region is part of the same network and acts as a gated system for the trial history 

information.  
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The results reinforce the idea of a single network of interconnected units, accounting for 

stimulus history in a task-independent manner, with just the read-out unit being selected in 

a top-down, goal-directed manner. This encourages the further study of a supra-modal 

perceptual network, independent of goal-directed attention and behavioural strategy.  

In the future, we would extend both the phenomenological model and the extension of 

cortical areas involved. New task paradigms can be designed to further support the task-

independency of the description presented here, and to possibly include a more organic 

choice history description.  
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SUPPLEMENTARY 
FIGURES 

 

 

Supplementary figure 1: Performance as a function of stimulus intensity in WM. (A) Rats’ performance 
on SGM pairs only, as a function of average stimulus intensity in each pair. x axis is average stimulus intensity 
in mm/s, y axis is performance as percentage of correct trials. Error bars are standard error of the mean. N=10. 
(B) Humans’ performance, as a function of average stimulus intensity in each pair. x axis is average stimulus 
intensity in mm/s, y axis is performance as percentage of correct trials. Error bars are standard error of the 
mean. N=16. 
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Supplementary figure 2: Stimulus distribution. (A) Stimulus distribution for WM task in rats. X axis is 

stimulus speed in mm/s, y axis is frequency. (B) As A, for humans. (C) As A, for RM task. (D) As C, for humans. 
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Supplementary figure 3: Base and comparison n decoding in WM. (A) Decoding, from PFC, for base 
stimulus n (solid) and comparison stimulus n (dashed). Curves represent median from high decoding sessions. 
x axis is timeline, from 1s before nose-poking to 1s after the go cue. y axis is distance of decoder accuracy 
from shuffled decoder accuracy (see methods). (B) Same as A, for PPC. 

 

 

 

 

 

 

Supplementary figure 4: Rewarded side repetition. (A) Probability of the same rewarded side repeating 

from one trial to next, on y axis, for rats and humans and both tasks, on x axis. Dashed line marks 0.5 

probability. N=10 rats, N=16 humans. (Student’s t-test) 
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