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Abstract. If the Peccei-Quinn symmetry associated to an axion has ever been restored
after inflation, axion strings inevitably produce a contribution to the stochastic gravitational
wave background. Combining effective field theory analysis with numerical simulations, we
show that the resulting gravitational wave spectrum has logarithmic deviations from a scale
invariant form with an amplitude that is significantly enhanced at low frequencies. As a
result, a single ultralight axion-like particle with a decay constant larger than 1014 GeV
and any mass between 10−18 eV and 10−28 eV leads to an observable gravitational wave
spectrum and is compatible with constraints on the post-inflationary scenario from dark
matter overproduction, isocurvature and dark radiation. Since the spectrum extends over
a wide range of frequencies, the resulting signal could be detected by multiple experiments.
We describe straightforward ways in which the Peccei-Quinn symmetry can be restored after
inflation for such decay constants. We also comment on the recent possible NANOgrav signal
in light of our results.
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1 Introduction

The discovery of gravitational waves (GWs) from binary mergers by the Ligo/Virgo collab-
oration [1] has opened a new window through which our Universe can be observed. This
has already led to discoveries in astrophysics [2, 3] and many others will inevitably follow.
Moreover, GWs also have the potential to provide invaluable insights into fundamental par-
ticle physics. This is a particularly promising avenue since there are plans for numerous new
detectors, which will have access to a much wider range of frequencies and much greater
sensitivity than the current generation. It is therefore worth understanding whether the sim-
plest and most motivated models of new physics predict GW backgrounds left over from the
early Universe, and, if they do, whether these are in reach of future detectors.

In this regard, many extensions of the Standard Model (SM) predict the existence of ad-
ditional U(1) (global or local) symmetry factors that are spontaneously broken. For instance,
local U(1)s appear in grand unified theories, and theories of leptogenesis and neutrino masses.
On the other hand, the QCD axion, introduced to solve the strong CP problem, is the pseudo
Nambu-Goldstone boson (PNGB) of a spontaneously broken global U(1) Peccei-Quinn (PQ)
symmetry [4–6]. Similarly, axion-like-particles are PNGBs of new global U(1) symmetries,
are common in well motivated phenomenological models and appear ubiquitous in typical
string theory constructions [7–11].1 Additionally, the QCD axion and axion-like-particles
(both of which we refer to just as axions) are compelling candidates to comprise some or all
of the dark matter (DM), since they are automatically produced in the early Universe and are
usually cosmologically stable [13–15]. Nevertheless, over large parts of their parameter space
the detection of axions is challenging due to their extremely weak (or possibly vanishing)
couplings to the SM, see e.g. [16].

If it has ever been restored in the early Universe, a spontaneously broken U(1) symmetry
leads to the formation of cosmic strings. Thanks to their topological nature, after they
form, a network of such objects typically persists as the Universe expands. They therefore
provide a sustained, possibly substantial, contribution to the (transverse-traceless component
of the) energy momentum tensor of the Universe, sourcing GWs for an extended period of
time. The resulting GW spectrum could span a wide range of frequencies, so is potentially
relevant to numerous proposed detectors, including pulsar timing arrays such as SKA [17];
space based laser interferometers such as LISA [18] as well as terrestrial laser interferometers
including LIGO [19] and ET [20, 21]; and searches utilising novel approaches including atom
interferometery such as AEDGE [22].

In this paper we study the GWs produced by cosmic strings in a generic axion model
in which the U(1) global symmetry has been restored after inflation, known as the post-
inflationary scenario. Our analysis includes the QCD axion and axion-like particles as it
only relies on the universal coupling to gravity. The signals are also independent of possible
couplings of these particles to the SM and they do not depend on the possible local DM

1Particularly relevant for our present work are axions from the closed string sector [12], for which global
string defects can form due to symmetry restoration in the early Universe.
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axion abundance, unlike many other detection strategies.2 Consequently our results apply
to a remarkably wide class of models, most of which are otherwise not presently under
experimental scrutiny.

After a network of axion strings first forms (e.g. when the temperature of the Universe
drops sufficiently that the PQ symmetry spontaneously breaks) it evolves towards an attrac-
tor solution that is independent of the initial conditions [23]. Such a regime — known as
scaling — is the result of the competing effects of string recombination and Hubble expan-
sion. As we discuss in section 2, during scaling the network’s statistical properties drastically
simplify and their time-dependence is fixed only by one scale, the Hubble parameter, up
to crucial corrections that are logarithmic in the UV physics scale. For instance, since the
strings arise from a global symmetry their tension manifestly has such a dependence.3 In
particular, in this regime the number of strings per Hubble volume is driven to a critical
value (also subject to logarithmic corrections [23, 25, 26]) and to maintain this the network
releases energy, dominantly in the form of axions.

The motion and recombination of strings during scaling also sources GWs, which prop-
agate freely until today and therefore contribute to the stochastic background. The crucial
ingredients needed to determine the resulting spectrum are: 1) the energy emitted instan-
taneously from the string network in GWs as a function of time, and 2) the momentum
distribution with which this energy is emitted. In fact, we will be able to derive these quanti-
ties (up to order one coefficients) analytically from energy conservation and the Nambu-Goto
effective theory with the Kalb-Ramond term, which describes strings coupled to the axion
field in the limit of small string thickness (and captures the logarithmic dependence of the
tension mentioned above). We will then see that these predictions are reproduced remark-
ably well by first principles numerical simulations of the physical system, which confirm the
validity of the theoretical assumptions and allow us to extract the unknown coefficients. As
will be clear in what follows, numerical simulations can only access a relatively small time
range, and it is impossible to directly extract the GW energy and its momentum distribution
at the physically relevant time, so a careful extrapolation is essential. However, the existence
of the scaling solution, in combination with our analytic understanding on the GW emission,
makes this extrapolation reliable.

We will show that the energy emitted in GWs at later times during the scaling regime
is logarithmically enhanced, primarily as a result of the logarithmic increase of the string
tension, and the energy is always produced with a momentum distribution localised at fre-
quencies of order the Hubble scale. When the emission from the entire scaling regime is taken
into account, this leads to logarithmic deviations from a scale invariant GW spectrum, which
increase the amplitude of the spectrum at low frequencies (indeed, these frequencies are emit-
ted the latest, when the enhancement is largest). As we will show in section 3, the deviation
can be approximated by a spectrum dΩgw/d log f ∝ log4(fa/Hf ), where fa is the axion de-
cay constant and Hf ∝ f2 is the Hubble parameter at the time when GWs of present day
frequency f are emitted. Given the large value of this logarithm (up to 102 for the relevant
axion masses), the deviation from scale invariance is substantial and means that axions with
fa & 1014 GeV lead to GW spectra that are observable in multiple upcoming experiments.

2We will see that, regardless of the axion’s couplings, friction from the thermal bath does not affect the
string dynamics at the times when GWs with observable frequencies are emitted for axion decay constants
that lead to an amplitude that could be detected.

3Such corrections to naive scaling laws are common in a wide range of physical systems whenever a UV
cutoff is present [24].
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To better understand the range of decay constants and masses that could be discovered
via GW observations, in section 4 we study additional properties of the post-inflationary
scenario, which give constraints on the axion parameter space. In particular, we derive a
lower bound on the relic abundance of axions from strings. We also calculate the spectrum of
density perturbations in the axion field, which leads to isocurvature perturbations measurable
for instance in the cosmic microwave background (CMB) that are potentially in conflict
with observations. Finally, we discuss how the axions emitted during the scaling regime
contribute to dark radiation, which is constrained by big bang nucleosynthesis (BBN) and
CMB measurements.

We will see there is a significant region of allowed and observable masses and decay
constants for ultralight axions, i.e. with a mass . 10−17 eV. However, the GWs from QCD
axion strings are not observable due to the bound fa . 1010 GeV from DM overproduction
in this case [27]. GW searches are particularly useful since they are complementary to
other approaches, such as astrophysical observations and DM direct detection experiments,
with their sensitivity strongest for large decay constants for which the axion couplings are
typically suppressed. Our work will enable limits from GW observations, or even possible
future discoveries, to be related to physics at energy scales far beyond any that could be
explored directly. It will also allow complementary progress (e.g. potential improvements in
searches for isocurvature perturbations and of the measurement of Neff) to be interpreted in
terms of the post-inflationary scenario.

The paper is structured as follows. After reviewing the properties of global strings in
section 2, we begin our new work in section 3 by calculating the GW emission from the
string network. In section 4 we analyse additional properties and constraints on axions in
the post-inflationary scenario. Following this, in section 5 we study ways in which the U(1)
symmetry can be restored in the early universe for large fa. Finally, we conclude and discuss
directions for future work in section 6. Further details and supporting analysis is given in
appendices where we also compare our work to the previous literature.

2 Properties of axion string networks

We consider a single axion, i.e. a PNGB of a spontaneously broken global U(1) symmetry,
softly broken by the axion potential V , which is a periodic function of period 2πfa and leads
to an axion mass ma. We remain agnostic about the origin of the potential (either by UV
or IR physics) and its particular form. The QCD axion is a particular case, with a mass
that arises due to an anomalous coupling to the gluon field strength and which is related to
the axion decay constant by mafa ' mπfπ (where mπ and fπ are the pion mass and decay
constant) [5]. A prototypical axion model comprises a complex scalar field φ with Lagrangian

L = |∂µφ|2 −
m2
r

2v2

(
|φ|2 − v2

2

)2

, (2.1)

leading to the spontaneous U(1) symmetry breaking at the scale v. The axion a(x) is associ-
ated to the phase of φ as φ(x) = v+r(x)√

2 eia(x)/v, while the radial mode r(x) is a heavy field of
mass mr. The equations of motion of the Lagrangian in eq. (2.1) admit solitonic string-like
solutions, called axion strings [28–31], which are topologically non-trivial configurations that
contain loops in space around which the axion field wraps the fundamental domain [−πv, πv]
with non-zero winding number. At the string centre, r(x) acquires a value of the order v
over a distance of order m−1

r , which sets the string core thickness.
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A network of axion strings forms after the U(1) symmetry is broken, and this sub-
sequently approaches the attractor solution. We assume that the Universe is in radiation
domination with metric ds2 = dt2 − R2(t)dx2, where R(t) ∝ t1/2, and Hubble parameter
H ≡ Ṙ/R = 1/(2t). Extensive evidence for the attractor was given in [23, 27], where more
details can be found. The attractor is independent of the network’s initial properties, allow-
ing us to make predictions that do not depend on the details of the breaking of the U(1)
symmetry and of the very early history of the Universe, i.e. at times when H � ma.4 The ex-
istence of the attractor can be understood as resulting from a balance between two opposing
effects: the expansion of the Universe continually increases the number of strings per Hubble
patch, but if the critical density is exceeded string interactions and recombinations become
efficient enough that the number of strings decreases. Consequently, the system is held at a
critical point at which the number of strings per Hubble patch is approximately constant.

As mentioned, on the attractor solution the statistical properties of the string network
follow fixed scaling laws that are (approximately) determined only by the one evolving scale:
the Hubble parameter. For instance, the average energy density of the string network can be
written as

ρs(t) = ξ
µeff
t2
≡ 4ξµeffH

2 , (2.2)

where ξ is the number of strings per Hubble patch, which measures the total length ` of the
strings inside a Hubble volume in units of Hubble length, namely ξ ≡ limL→∞ `(L) t2/L3,
while µeff is the effective tension of the strings, i.e. their energy per unit length. For local
strings the string tension is constant as the energy density is localised on their cores, and
the explicit factor of H2 in eq. (2.2) might capture the full time dependence of ρs. However,
the situation is different for the global strings that we study. In this case, owing to a
logarithmic divergence, the tension of a single long straight string in one Hubble patch is
µ = πv2 log(mr/H). Consequently, during the scaling regime µeff is expected to take the form

µth = πv2 log
(
mr

H

η√
ξ

)
, (2.3)

where η is a dimensionless quantity that parametrises the typical shape of the strings in the
scaling regime.5 Given the self-similarity of the network during scaling, η is expected to
have, at most, a weak time-dependence, so µeff increases logarithmically with time. In axion
theories that are more general than eq. (2.1), eq. (2.3) still holds with mr a UV-dependent
parameter representing the typical mass of the heavy degrees of freedom associated with the
U(1) breaking. In appendix C.1 we will show that numerical simulations of eq. (2.1) confirm
the validity of eq. (2.3) with a fixed η.

The linear dependence of the string tension on log(mr/H) also implies that the effective
coupling of the axion field to the string is proportional to 1/ log(mr/H) (see e.g. the discussion
around eq. (3.2) below). It is therefore plausible that other properties of network might also
depend on the same factor (in the following we define log ≡ log(mr/H)). Indeed, there is
clear evidence from numerical simulation of eq. (2.1) that such violations are present in a
number of the network’s properties. For example, ξ itself grows linearly with log during the
scaling regime, namely (up to 1/ log terms that depend on the initial conditions)

ξ = c1 log +c0 , (2.4)
4We will see that the GW spectrum at the observationally relevant frequencies is also independent of the

very early evolution.
5In eq. (2.3), the argument of the logarithm should capture the main time dependence on t since the

logarithm is cut-off by the average distance between strings ∝ t/
√
ξ.
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where the coefficient c1 = 0.24(2) can be extracted numerically. Although numerical simu-
lations can so far only simulate string networks, and hence confirm eq. (2.4), at small scale
separations (with log . 8), the growth is likely to be an intrinsic property of the scaling
solution and persist also at larger logs [23].6 The logarithmic dependence of µeff and ξ on
mr/H is referred to as ‘scaling violation’, as it introduces an explicit dependence on the
additional scale mr in the properties of the scaling regime and in eq. (2.2).

Since the energy density in eq. (2.2) diminishes faster than the energy of a system
of (long) free strings (ρfree

s ∝ R−2), energy must be continuously emitted from strings to
maintain scaling. Conservation of energy and eq. (2.2) imply the energy density emission
rate Γ = ρ̇free

s − ρ̇s is given by [23]

Γ = ρs

[
2H − ξ̇

ξ
− πv2

µeff

(
H + η̇

η
− 1

2
ξ̇

ξ

)]
log�1−→ 2Hρs = ξµeff

t3
, (2.5)

where we assumed that µeff defined by eq. (2.2) is indeed reproduced by µth in eq. (2.3)
once the parameter η is fixed appropriately. The equality on the right hand side of eq. (2.5)
holds in the large log limit, which as we will see is the regime relevant to the emission
of observable GWs. In appendix C.1 we will show that numerical simulations confirm the
validity of eq. (2.5) (and we also give additional insights into the subtlety that eq. (2.5)
applies only to the 80% of the string length that is in long strings and the interplay of these
with small loops). Additionally, we note that eqs. (2.3) and (2.5) hold for nonrelativistic
strings. Instead, for relativistic strings an additional term proportional to the string velocity
would be present in eq. (2.5), encoding additional energy lost by the network via redshifting,
see e.g. [32]. Since long strings are close to non-relativistic [27] we neglect this effect, which
leads to changes safely smaller than the uncertainties we subsequently quote.

The energy lost by the network is radiated into the degrees of freedom coupled to the
string, which are axions, radial modes and GWs. We therefore split

Γ = Γa + Γr + Γg , (2.6)

to account for the respective emissions. At large enough value of log (but not too large), Γ
is dominated by Γa. Indeed, numerical simulations of eq. (2.1) show that the radial mode
decouples from the string, but only logarithmically with the ratio mr/H, i.e. Γr/Γa decreases
as inverse powers of log [27]. In particular, although some small fraction of the energy
(about 10%) is emitted into radial modes at log . 8, this is seen to reduce logarithmically
and is expected to vanish in the large log limit. Meanwhile, as we will show in the next
section, Γg/Γa ' Gµ2

eff/v
2 = π/8(v log /MP)2, where MP = 1/

√
8πG is the reduced Planck

Mass. Consequently the GW emission is suppressed with respect to that into axions until
log ∼ MP/v. As a result, Γ ' Γa for 1 � log � MP/v. In this range of log eq. (2.5) fully
fixes Γa in terms of ξ and µeff .

The string network and the scaling regime persist as the Universe expands until approx-
imately H = ma ≡ H?, when the axion potential V becomes cosmologically relevant (ma

may either be temperature dependent or independent). At this time log(mr/H?) = 60÷ 70
for the QCD axion and can be ' 100 for ultralight axions. At H = H? a network of domain
walls forms, bounded by the strings. If the axion potential does not preserve any discrete
subgroup of the U(1) symmetry, in which case v = fa, the domain walls are unstable and

6For instance, the logarithmic growth affects long strings at exactly the same rate as sub-horizon loops
(which make up respectively 80% and 20% of the string network length).
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decay destroying the string network in the process. Meanwhile, soon after H = H?, most of
the axions emitted during the scaling regime turn nonrelativistic and contribute to the DM
abundance. Additional axions are expected to be emitted as the domain walls annihilate,
supplementing the relic abundance from axions produced during the scaling regime. In the
following we will set v = fa, as is the case for unstable domain walls. However, as discussed
in more detail in section 4.5, our derivation of the GW spectrum from strings can be easily
generalised to axions with v = Nfa by replacing fa → v throughout (for the QCD axion
N is set by the anomaly coefficient between the PQ symmetry and QCD). Note that for
N > 1 additional explicit breaking of the remaining discrete symmetry is necessary to avoid
the domain walls over-closing the Universe.

3 Gravitational waves from strings

During the scaling regime the motion and interactions of the strings act as a continual source
of GWs. In this section we study the resulting spectrum by combining the effective theory of
global strings, and field theory simulations of the physical system in eq. (2.1). In particular,
in section 3.1 we use the Nambu-Goto effective theory coupled to the axion field via the
Kalb-Ramond term, which captures the dynamics of the parts of the network with small
curvature. Both the effective theory and numerical simulations will show that the GWs can
be self-consistently treated as a perturbation of the string network if Gµ2/f2

a � 1, which
will be satisfied for all fa and ma of interest. In this case, the fact that GWs are produced
does not significantly influence the evolution of the network, which follows the previously
described attractor.7

As mentioned, for Gµ2/f2
a � 1 energy conservation and the scaling regime fix the time

dependence of Γa, via eq. (2.5). However, this cannot be directly used to infer Γg, which
accounts for only a small fraction of the energy released. Nevertheless, in this section we will
show that we can still make use of eq. (2.5) thanks to a convenient relation between the rate of
energy emission into GWs and that into axions. We will argue for this relation theoretically
using the Nambu-Goto effective theory, and confirm it with numerical simulations of the
physical system in the scaling regime. This will allow us to have analytic control of Γg at all
times, except for an order one coefficient that will be directly extracted from the simulations.
In combination with the momentum distribution of the instantaneous GW emission, whose
general form can be easily guessed and will be confirmed in simulations, this will allow us
to determine the total GW spectrum produced by the network up to H = H? when it
is destroyed. After being produced the GWs propagate freely, redshifting as the universe
expands, so today they make up an irreducible contribution to the stochastic background.
As we will see in section 3.4, during the scaling regime the GWs at the observable frequencies
are emitted when log � 1, and therefore in the following we will often refer to the large
log limit.

3.1 Theoretical derivation of GW emission

The required relation between Γg and Γa can be argued for via the low energy limit of
eq. (2.1), which is the effective theory of Nambu-Goto strings coupled to the axion field [33]
by the Kalb-Ramond action [34]. In particular, this effective theory can be obtained from
eq. (2.1) on the background of a string and at energies smaller than mr (i.e. integrating out

7If instead Gµ2/f2
a & 1 gravity dramatically changes the evolution of the system, and affects the scaling

regime in a way that is not known.

– 6 –



J
C
A
P
0
6
(
2
0
2
1
)
0
3
4

the radial mode, see [35] for the explicit derivation). It describes the evolution of an infinitely
thin string, with a trajectory identified by the space-time coordinate Xµ(τ, σ), where τ, σ are
worldsheet coordinates. The string is coupled to the axion field, described by its (dual)
antisymmetric tensor Aµν . The corresponding action is

S = −µ
∫
dτdσ

√
−γ − 1

6

∫
d4xFµνρFµνρ − g

∫
dτdσεab∂aX

µ∂bX
νAµν(X) , (3.1)

where Fµνρ = ∂µAνρ + ∂νAρµ + ∂ρAµν and γ is the determinant of the induced metric on
the worldsheet γab = ∂aX

µ∂bXµ, with a, b = τ, σ. The coupling g defines the axion-string
interaction, while µ is the string energy per unit length (this is easily seen from the first
component of the energy momentum tensor, see eq. (3.4)). As we will see in the following,
µ accounts for the energy in the axion gradients, as well as that localised in the core. The
axion is related to the only degree of freedom of Aµν by Fµνρ = εµνρσ∂σa/

√
2.8

Since a changes by multiples of 2πfa around a string, the coupling g is quantised in terms
of fa as g = 2πnfa/

√
2, with n integer.9 The gauge invariance Aµν → Aµν + ∂µΛν + ∂νΛµ

and worldsheet reparametrization invariance of eq. (3.1) can be fixed by choosing the gauge
∂µA

µν = 0 and Ẋ ·X ′ = Ẋ2 + X ′2 = 0 where Ẋµ ≡ ∂τX
µ and X ′µ ≡ ∂σX

µ. In the frame
τ = t, the equations of motion for a string with winding n = 1 are

µ(Ẍµ −X ′′µ) = 2
√

2πfaFµνρẊνX
′
ρ , (3.2)

∂α∂
αAµν =

√
2πfa

∫
dσ
(
ẊµX ′ν − ẊνX ′µ

)
δ3(~x− ~X) . (3.3)

This system of coupled equations determines the evolution of the string and the axion field.
The axion is sourced from a moving string via eq. (3.3), whose motion is itself influenced by
the axion via eq. (3.2).

Before proceeding, let us clarify a subtlety of this theory. As discussed in [33, 36] the
action in eq. (3.1) is strictly speaking ill defined, since the solution of the equations of motion
for Aµν in eq. (3.3) is divergent as xµ approaches Xµ. This makes the interaction term in
eq. (3.1) (logarithmically) divergent when evaluated on such solutions. This UV divergence
can be regularized and completely reabsorbed in the redefinition of the (bare) string tension
µ. After reabsorbing the divergence, the equations of motion will have the same form as
eqs. (3.2) and (3.3), but (just like in the renormalization of quantum field theories) with finite
µ(∆) and Aµν(∆) depending on a new (unphysical) length scale ∆, which can be interpreted
as the length at which one probes the string core. In particular, under the change of this
scale to ∆′, µ(∆′) = µ(∆) + (g2/2π) log(∆′/∆) = µ(∆) + πf2

a log(∆′/∆).10 As this scale is
not physical, it can be chosen arbitrarily. If ∆ is chosen as m−1

r � ∆ . L, where L is the
IR cutoff (' H−1 for long strings), the interpretation of µ(∆) will be that of an effective
tension that includes the energy in the axiostatic gradient (up to the IR cutoff ∆), while

8The normalisation is fixed by equating the energy momentum tensor of the second term in eq. (3.1) to
that of a free axion.

9This is a consequence of the fact that the commutator [∂i, ∂j ]a is non-zero (and quantized) around a
string [35] and is easily seen by imposing 2πnfa =

∮
C
dxµ∂µa where C is a loop surrounding the string,

and evaluating the right hand side of this equation via Gauss’ theorem and using the equations of motion
∂µF

µνρ = −g
∫
dτdσεab∂aX

ν∂bX
ρδ4(x−X).

10The same running has been studied in a generalisation of the theory we consider in the context of the
effective string description of vortices in superfluids [37].
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Aµν(∆) will include mostly the axion radiation.11 In the following we will tacitly assume
that the preceding regularization and subtraction has been performed, and that ∆ has been
always chosen in this way, so that µ(∆) (which we will call µ for simplicity) corresponds to
the total energy per unit length, including the gradient energy (see [36] for a more complete
treatment). From eq. (3.2) it follows that, as anticipated in section 2, the effective coupling
of the axion to the string is determined by f2

a/µ ∝ 1/ log.
Notice that the preceding discussion does not hold when the inverse core-size m−1

r is of
the order of the IR cutoff L. Consequently, this effective theory describes the dynamics of the
physical system in the parts of the network where the finite string thickness is smaller than
the inverse string curvature, but it will break down when strings intersect and reconnect, or
when loops shrink (such processes are sensitive to the details of the structure of the potential
of the field φ and will therefore need the full theory in eq. (2.1)).

In the presence of gravity a moving string sources gravitational radiation, which can
be determined by linearising Einstein’s equations giving e.g. in the harmonic gauge ∂µhµν =
1
2∂

µh

∂α∂
αhµν = 16πG

(
Tµνs −

1
2η

µνT λs λ

)
, Tµνs = µ

∫
dσ
(
ẊµẊν −X ′µX ′ν

)
δ3(~x− ~X) , (3.4)

where gµν = ηµν + hµν is the metric, h ≡ hµµ and Tµνs is the energy momentum tensor of the
string from the first term of eq. (3.1). It is straightforward to show that the energies radiated
at infinity per unit time in axions and GWs from a string trajectory Xµ are respectively

dEa
dt

= ra[X] f2
a ,

dEg
dt

= rg[X]Gµ2 , (3.5)

where ra[X] and rg[X] are dimensionless functionals of the shape of the string trajectory
(but independent of the string length). In more detail, for any string trajectory Xµ that
is a solution of eqs. (3.2) and (3.3), the axion and GW fields are determined by eqs. (3.3)
and (3.4). These are wave-like equations of the form ∂α∂

αB = j, with solution B =
∫
d3yj(t−

|~x − ~y|, ~y)/(4π|~x − ~y|), and therefore Aµν ∝ fa and hµν ∝ Gµ. The emitted energy is
dE/dt ≡ −

∫
d3xṪ 00, where for the axion Tµνa ∼ (∂A)2 and for the GWs Tµνg ∼ G−1(∂h)2.

This fixes the dependence on f2
a and Gµ2 of eq. (3.5), while the remaining factors (called ra

and rg) must be dimensionless functionals of the string trajectory only.
The main conclusion from eq. (3.5) is that GWs are emitted proportionally to the (square

of) the string tension, since they are sourced by the energy momentum tensor. Conversely,
the axion coupling to the string is fixed by fa and the axion energy is proportional to f2

a only.
We stress that eq. (3.5) is valid for any trajectory that is a solution of eqs. (3.2) and (3.3),
irrespective of the ratio f2

a/µ, i.e. regardless of the magnitude of the axion-string coupling.
Therefore eq. (3.5) is expected to capture the energy emission from the pieces of the string
network for which the string thickness can be neglected at all values of the log, including
those accessible in simulations (related previous analysis in the literature has been carried
out in the limit of zero coupling [38, 39]).

Since we will not need the functional form of ra[X] and rg[X], we give their expressions in
appendix A.1, where we also give further details of the derivation of eq. (3.5). From eqs. (A.6)
in appendix A.1 it can be seen explicitly that (as expected given that they are dimensionless)

11The fact that changing ∆ does not change the equations of motion implies that, as far as the dynamics
of the string at small curvature is concerned, it does not matter whether the energy is localised in the string
core or in the axion gradient.
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ra[X] and rg[X] are invariant under the rescaling of the length of the trajectory and of time,
and therefore depend only on the shape of the trajectory. We note that the coefficients ra[X]
and rg[X] have been calculated in [39] for particular trajectories in the limit of zero coupling.

Finally, we observe that, as mentioned, this effective field theory predicts that the GWs
do not significantly influence the motion of the strings provided Gµ2/f2

a � 1. Indeed, the
inclusion of gravitational backreaction modifies eq. (3.2) by introducing, on the right hand
side, the term −µΓµνρ(ẊνX ′ρ + ẊρX ′ν), where Γµνρ are the Christoffel symbols (this was first
studied in [40, 41]). Since Γµνρ ∼ ∂h, and h is of order Gµ, this term is suppressed by Gµ2/f2

a

with respect to the one already present in eq. (3.2). Similarly, the energy emitted in GWs
from eq. (3.5) is suppressed with respect to that into axions by the same factor.

3.2 GW spectrum during the scaling regime

We now combine the results of sections 2 and 3.1 to extract information on the emission
of GWs during the scaling regime. As outlined, we use an approach that avoids having to
calculate the GW emission directly from eq. (3.5), which would require understanding the
form of the trajectories Xµ

s of long strings and loops during scaling.
Given that eq. (3.5) holds for a generic string trajectory, the energy densities Γa and

Γg emitted per unit time during the scaling regime are related by rGµ2
eff/f

2
a , where r ≡

rg[Xs]/ra[Xs]. We can therefore use our knowledge of Γa from energy conservation (i.e.
eq. (2.5)) to infer the energy density emitted per unit time in GWs during the scaling regime.
This reads

Γg = r
Gµ2

eff
f2
a

Γa
log�1−→ 8ξrH3Gµ

3
eff

f2
a

, (3.6)

where the second relation holds in the large log limit, and in that case Γg ' 8π3rGf4
aH

3ξ log3.
In eq. (3.6) the dimensionless coefficient r is a functional of the average shape of the string
network (and expected to be of order 1). The average shape of the strings is preserved
throughout the scaling regime, and therefore we expect r to be time-independent, or at most
have a weak log dependence. The coefficient r can be interpreted as a form factor of the
string network that encodes how efficiently the string trajectories during scaling emit GWs
compared to axions. In particular it parametrises the string dynamics that are responsible
for the GW emission (long strings, small loops, string reconnection, etc.).

The validity of eq. (3.6) with a constant r relies solely on energy conservation during the
scaling regime and on the Nambu-Goto effective theory. While the latter must break down
when strings reconnect and loops shrink, it is possible that most of the axion and GW energy
is emitted in the regime where the effective theory is valid. Indeed, we will see in section 3.3
that eq. (3.6) is reproduced remarkably well with a constant r in first principles field theory
simulations, which will allow us to also directly extract its value (instead of calculating it
from its definition). We will also see that µeff , which we defined in terms of the string energy,
is well matched by the theoretical form eq. (2.3). Given this, we will assume that eq. (3.6)
holds in the remainder of our present analysis.12 In particular, assuming the growth of ξ as
in eq. (2.4), this implies that Γg is proportional to H3 log4 at large log.

Since GWs redshift freely, we can straightforwardly obtain the GW energy density ρg at
a generic time during the scaling regime from ρ̇g +4Hρg = Γg + . . . , where the dots stand for
possible additional GW sources, which we subsequently neglect. It immediately follows that

12As mentioned in section 2, eq. (3.6) must break down when log ∼ MP/fa. In section 4 we will see that
the values of fa allowed by existing constraints are always small enough for this to be true (for all ma). With
an abuse of language, we will therefore use the phrasing ‘large log’ to indicate log .MP/fa.
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ρg(t) =
∫ t
t1
dt′(R(t′)/R(t))4Γg(t′), where t1 is the time when the scaling regime starts. The

remaining ingredient required to calculate the GW spectrum is the momentum distribution
of Γg. It is convenient to write Γg as a function of the differential emission rate ∂Γg/∂k and
to further express this in terms of the instantaneous emission spectrum Fg, i.e.

Γg(t) =
∫
dk
∂Γg
∂k

[k, t] , ∂Γg
∂k

[k, t] = Γg(t)
H(t)Fg

[
k

H
,
mr

H

]
. (3.7)

The function Fg[x, y] fully captures the momentum dependence of the instantaneous emission
via the variable x = k/H and its possible time dependence via the variable mr/H, and is
normalised to one by definition,

∫
dxFg[x, y] = 1. Plugging eq. (3.7) into ρg(t) we obtain the

total GW energy density spectrum, defined by ρg =
∫
dk∂ρg/∂k,

∂ρg
∂k

[k, t] =
∫ t

t1
dt′

Γ′g
H ′

(
R′

R

)3
Fg

[
k′

H ′
,
mr

H ′

]
, (3.8)

where k′ = kR/R′ is the redshifted momentum and all other the primed quantities are
evaluated at t′. Eq. (3.8) is just the superposition of all the spectra emitted from t1 to t,
properly redshifted.

Given the existence of a scaling solution, we have some theoretical expectations for the
form of the instantaneous GW spectrum Fg, which closely resembles the analogous axion
spectrum studied in [27]. First, since strings typically have a curvature of order Hubble, the
spectrum of GWs emitted at each instant should be peaked at momenta of order the Hubble
parameter at that time. Meanwhile, production of GWs with momentum below Hubble or
above the string core scale is expected to be strongly suppressed. The absence of any scale
between H andmr suggests that between these two (IR and UV) cutoffs the spectrum follows
a single power law Fg ∝ 1/xq. It is also expected from the Nambu-Goto description that
most of the GW energy Γg is contained in (IR) momenta of order Hubble, as opposed to
(UV) momenta of order mr (see [36]), which corresponds to q > 1.

We will show in the next section that all of the properties above are verified in numerical
simulations of the scaling regime, where we will provide the exact form of Fg. To get a general
picture of the resulting total GW spectrum, it is sufficient to approximate the instantaneous
emission with sharp IR and UV cutoffs at momenta x0H and mr, i.e. Fg[x, y] ∝ 1/xq for
x ∈ [x0, y], and zero elsewhere. Inserting this Fg into eq. (3.8) we obtain the GW spectrum.
At a generic time during the scaling regime with log� 1, in the momentum range k & x0H
but k . x0

√
HH1 (where H1 = 1/2t1 is the Hubble parameter at the start of the scaling

regime) this is given by

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2 log4
[
mr

H

(
x0H

k

)2
]
, for x0H . k . x0

√
HH1 , (3.9)

where c1 defined in eq. (2.4) determines the growth rate of ξ, and we omitted terms propor-
tional to additional inverse powers of log, which are negligible in the regime we are consider-
ing. The full expression for the spectrum is given in appendix A.2.

We observe that the spectrum is (approximately) scale invariant between the IR and UV
momenta x0H and x0

√
HH1, so the total GW energy is spread over a wide range of frequen-

cies. This is because the rate at which energy in previously emitted GWs redshifts and the
main decrease in Γg ∝ H3 in a radiation dominated universe combine to give ∂ρg/∂k ∝ 1/k.
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Such a spectrum accumulates only between the two extremes x0H and x0
√
HH1, which cor-

respond to the peaks of the instantaneous emission at H and at H1 respectively (redshifted
until H).

However, as time progresses the GW emission is enhanced due to the (increasing) log4

factor in Γg. This leads to a violation of the spectrum’s scale invariance, which consequently
has larger values at smaller k. This is captured by the logarithmic factor in eq. (3.9), which
ranges from log4(mr/H) = log4 at k ' x0H to log4(mr/H1) at k ' x0

√
HH1. One log2

factor is due to the increase in the energy stored in the network (from ξ and µeff), and
the additional log2 factor to the efficiency at which this energy can be emitted in GWs,
proportional to coupling of the GWs to the string Gµ2. Although a single power of log relies
on the extrapolation of the log growth of ξ observed in simulations, the other three powers are
inevitable. Since at the end of the scaling regime log ' 100, the violation of scale invariance
is substantial and — as we discuss in section 3.4 — it could make the low frequencies of an
otherwise invisible signal detectable. It is also clear that it is essential to extrapolate to large
log to make any sensible physical predictions, and results directly extracted from simulations,
which can reach only log . 8, are guaranteed to be off by many orders of magnitude.

There are several other features of the GW spectrum from scaling that are worth not-
ing. First, the dependence of the spectrum in eq. (3.9) on x0 is only logarithmic, and the
dependence on q only comes in (neglected) terms proportional to (q−1)−1 log−1 (i.e. together
with inverse powers of log, see eq. (A.11) in appendix A.2). Thus, as long as q−1 is definitely
larger than 1/ log the dependence on q is negligible for modes with k > x0H. This means
that even an approximate determination of x0 and q from simulations will be sufficient to
understand the spectrum in the momentum region of eq. (3.9). Moreover, a possible depen-
dence of x0 and q on log — as long as it keeps q > 1 — would not significantly change the
spectrum.

Second, if the effective number of degrees of freedom in thermal equilibrium g is not
constant, the scale factor away from particle thresholds is R ∝ t1/2g−1/12 where g is evaluated
at the temperature corresponding to the time t. The spectrum in eq. (3.9) at time t gets
the (k-dependent) multiplicative correction (g(t)/g(tk))1/3. Here, tk is defined by x0H(tk) ≡
kR(t)/R(tk), and is the time when most of the GWs that have momentum k at time t are
emitted. We refer to appendix A.2 for the explicit derivation. As we will see in more detail
in section 3.4, the change in g distorts the log4 dependence at the momenta corresponding
to the temperature when the degrees of freedom decouple from the thermal bath.

Finally, as explained in appendix A.2, at UV momenta k & x0
√
HH1 the spectrum

∂ρa/∂ log k is suppressed as 1/kq−1 and rapidly falls. The critical Hubble
√
HH1 is model

dependent, since it depends on when the scaling regime began (and so when and how the
string network forms). Meanwhile, at IR momenta k . x0H the spectrum is also power law
suppressed and follows the same behaviour as Fg for x . x0. Contrary to the simplified case
discussed above, we will see that Fg[x, y] ∝ x3 for x . x0 and this implies ∂ρg/∂k ∝ k3 at
k . x0H. This last part of the spectrum is produced at the time when domain walls form,
so will also get a contribution from domain walls, which is expected to change it by at least
an order one amount (we discuss this contribution briefly in appendix D).

We also note that in the large log limit the total energy in GWs emitted from t1 to t,
i.e. ρg =

∫ t
t1
dt′Γ′g(R′/R)4, is ρg = (4/5)H2Gµ3

thξ log /f2
a ∝ H2 log5. The additional log factor

is related to the fact that this energy gets equal contributions from all the times from t1 to
t on a logarithmic scale. It is straightforward to see that the approximately scale invariant
spectrum in eq. (3.9) reproduces this formula.
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3.3 Comparison with numerical simulations

We now show that results from numerical simulations match the preceding analysis extremely
well. This confirms our theoretical assumptions (i.e. that the Nambu-Goto EFT is valid at
least for determining the relative emission into axions and GWs, and the general shape of
the instantaneous emission spectrum) and allows us to extract the values of the parameters
r, x0 and q.

In the simulations we evolve the complex scalar φ by numerically integrating the equa-
tions of motion that follow from eq. (2.1) on a discrete lattice. Starting from suitable initial
conditions, a network of strings forms and evolves, and is driven to the attractor. Due to the
competing requirements that the grid must contain a least a few Hubble patches (to capture
the infinite-volume properties of the network), and must have at least a few lattice points per
string core (to reproduce the string interactions correctly), such simulations can only access
values of log . 8.13 This is the origin of the previously mentioned required extrapolations
(in our approach, we need to extrapolate r, x0 and q, as well as ξ).

As well as the physical system of eq. (2.1), we also simulate the so-called ‘fat’ string
system, which is defined by the same Lagrangian as eq. (2.1) but with mr ∝ R−1 decreasing
with time. In this way the string core size remains constant in comoving coordinates. In this
system the same hierarchy in log corresponds to a larger ratio between final and initial cosmic
times, and the string network therefore flows to the attractor faster, leading to cleaner results.
Although the qualitative features are expected to be reproduced, the quantitative parameters
of the scaling solution could differ from those of the physical string system (which we therefore
use to extract the numerical values). For both systems we set the initial conditions as close
as possible to the scaling solution, on which ξ grows logarithmically (the evolution of ξ is
plotted in figure 6 in appendix C.1, where we give more details). It is straightforward to
evaluate the energy in axions and radial modes in simulations, and therefore the emission
rates Γa and Γr.

The GWs produced during the evolution are obtained by numerically solving the lin-
earised Einstein equations

ḧij + 3Hḣij −R−2∇2hij = 16πGTTT
φ,ij , (3.10)

where TTT
φ,µν is the transverse-traceless part of the energy momentum tensor of eq. (2.1).14 At a

generic time the energy density in GWs is ρg ≡ T 00
g , where Tµνg = (32πGR2)−1〈∂µhαβ∂νhαβ〉

is their energy momentum tensor and the brackets stand for the spatial average. From ρg the
emission rate of GWs can be calculated using Γg = R−4 d

dt(R4ρg). Further details concerning
our numerical implementation can be found in appendix B. In appendix C.3 we analyse the
systematic uncertainties in simulations, e.g. from the finite lattice spacing, and the results
we show are with parameter choices such that these are negligible.

The gravitational backreaction (in the weak gravity regime) is represented in the equa-
tions of motion of the Lagrangian in eq. (2.1) by the term R−2hij∂i∂jφ. By carrying out
simulations with this term included, in appendix C.2 we show that — as expected — the
(evolving) effective parameter that controls the gravitational backreaction during the scaling

13In more detail, the maximum log is limited to ∼ logN , where N is the number of gridpoints in the box
side. In this paper we used grids of size to N3 ∼ 25003 (as opposed to 45003 in previous work) given the
additional computational cost in the evolution of the GWs. The resulting maximum log ∼ 7.5 is still sufficient
for the properties and trends in the attractor solution to be reliably identified.

14Here h is in the transverse-traceless gauge, which is convenient in the FRW background.
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regime is Gµ2
eff/f

2
a . This is shown in figure 14 of appendix C.2, where the deviations in ξ and

ρa due to the backreaction depend only on Gµ2
eff/f

2
a for different choices of fa/MP. In partic-

ular, provided Gµ2
eff/f

2
a . 0.5, corresponding to log .MP/fa: (1) gravity is self-consistently

in the weak regime and (2) it does not alter the dynamics of the string network.15 The decay
constants (and logs) of interest, studied in section 3.4, are all safely within this limit, so we
do not include backreaction in the remainder of our simulations.

We now turn to our main results from simulations. We first observe that the total energy
emitted per unit time from the network (Γa + Γr) in simulations matches the theoretical
formula for Γ in eq. (2.5) with the theoretically expected form of the tension µth given by
eq. (2.3). In more detail, although eq. (2.3) determines uniquely µth at large log, at the
small log relevant in the simulations µth (and consequently Γ) is sensitive to the (only)
free parameter η. We extract the value of η by requiring Γ = Γa + Γr (with (Γa + Γr)
measured in simulations) in the range log > 4.5. For the fat string system, this determines
ηfat ' 0.27 quite precisely, while for the physical system ηphys ' 0.20 with a larger (about
50%) uncertainty. The fact that the ratio (Γa + Γr)/Γ is close to unity at all times for
such time-independent choice of η (this is shown in figure 7 of appendix C.1) is a non-trivial
check that eq. (2.5) captures the emission rate at the logs accessible in simulations.16 This
also (indirectly) shows that µeff is well reproduced by the theoretical expectation µth of
eq. (2.3) and is growing logarithmically as expected, so we can use the latter expression
in the analysis that follows. Although this check can be performed only at the small logs
available in simulations, given the theoretical discussion of section 2, eqs. (2.3) and (2.5) will
hold also at large log.17

Having confirmed the validity of Γ and µth, we are ready to study the GW emission
Γg and extract the coefficient r. As discussed, we do so using r’s relation to Γg and Γa of
eq. (3.6), i.e. r = f2

aΓg/(ΓaGµ2
eff). This leads to a small ambiguity in determination of r at

small log, because the small (and decreasing) proportion of energy emitted into radial modes
is by construction not captured by the Nambu-Goto description, and could be included along
with Γa in eq. (3.6). Since the radial modes take a proportion of the energy that would
otherwise go into axions, it is natural to expect that the inclusion of Γr leads to the quantity
conserved during scaling. In the following we therefore consider rsim ≡ f2

aΓg/(ΓGµ2
th), where

Γ and µth are calculated from eqs. (2.3) and (2.5) with the same constant value of η mentioned
before (indeed Γ reproduces Γa + Γr measured in simulations), while Γg is evaluate in the
simulations. Note that using the theoretical Γ in the extraction of r instead of the result of
Γa + Γr from simulations reduces possible systematic uncertainties related to fluctuations of
the last two quantities, which especially at small logs are affected by parametric resonance
effects between axion and radial modes especially for the physical system.18

In figure 1 we plot the time evolution of rsim for the fat and the physical systems. The
uncertainties on the data points represent the statistical error over a set of 30 simulations
with initial conditions with the same initial string density ξ. In both cases rsim is of order
one and its time-independence is manifest over more than three e-foldings. This corresponds

15This is expected, since the backreaction term is negligible with respect to the gradient term −R−2∇2φ
for such fa, as h ∼ Gf2

a from the linearised Einstein equations.
16In fact, the expression for Γ in eq. (2.5) applies only to long nonrelativistic strings, which make up at any

time a constant 80% fraction of the string network [23]. As explained in appendix C.1, the ratio (Γa + Γr)/Γ
reproduces this percentage remarkably well.

17As also explained in appendix C.1, eq. (2.3) strictly speaking holds for nonrelativistic strings (since there
is no boost factor), but any corrections from this are absorbed in the definition of r.

18On the other hand Γg fluctuates far less since the coupling of the GWs to the radial modes is much weaker.
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Figure 1. The evolution of energy density Γg emitted in GWs per unit time during the scaling
regime normalised to ΓGµ2

th/f
2
a , where Γ is the total energy emission rate and µth is the theoretical

expectation for the string tension, for the fat string system (left) and the physical system (right).
Error bars on the data points represent the statistical error over a set of 30 simulations. The constant
value of this ratio is in agreement with the theoretical expectation of section 3.1, and indicates that
the relative emission to GWs grows as Γg/Γa ∝ log2(mr/H) at large log. The red bands indicate the
uncertainty we assign to the value of the ratio extracted from the data.

to a verification of eq. (3.6) and provides a remarkably consistent picture of the dynamics of
the string system. First, it confirms the validity of the effective Nambu-Goto description at
least for the emission of GWs, which therefore also allows analytic control of Γg beyond the
range that can be simulated. The constant form of rsim even holds well from log = 4 when
there is only a mild hierarchy between the string core scale and the Hubble parameter. In
fact it is not unreasonable that r is constant even at such early times, since the theoretical
expectation in eq. (3.6) does not rely on the string system being in the pure Nambu-Goto
limit (namely it should hold even at small log when the strings are strongly coupled to the
axion). Moreover, as anticipated in section 3.2, the constant value of rsim is strong evidence
that the string configuration is self-similar. This in turn confirms that the scaling regime
has been achieved in the simulation and that the logarithmic increase in ξ is a part of it.19

Although we cannot exclude a qualitative change in the evolution of rsim after log = 7.5, both
theory and simulations suggest that such a change is unlikely. The extrapolation of r after
log = 7.5 therefore seems robust despite the difference in log between the simulations and the
physically relevant system. On the other hand, simulations can never exclude the possibility
that there is a small logarithmic running of r but only bound its value, and we comment on
this when discussing the uncertainties on our predictions of GW spectra in section 3.4.

In figure 1 we also show the fit of this observable with a constant function. For the
physical system we start the fit at log > 4.5, since the first few data points at small log seem
to deviate slightly, as the system has not yet fully reached the scaling regime at such early
times (see also the not completely linear behaviour of ξ at those log in figure 6).20

We now estimate the uncertainty on r = f2
aΓg/(ΓaGµ2

eff) for physical string network.
A first source of uncertainty comes from the precise value of the string tension µeff at small
log (for which, as mentioned, the value of η is relevant), which feeds into the value of r
extracted from Γg measured in simulations. As mentioned, µeff is well reproduced by µth for
ηphys ' 0.20. However, given the large fluctuations of Γa+Γr in the physical system, values of

19If the logarithmic increase were a transient, we would expect the configuration not to be self-similar. This
is also consistent with the observation that the fraction of ξ in strings of different lengths remains constant [23].

20The small disagreement of the last two data points of the fat system is due to a statistical fluctuation.
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Figure 2. The evolution of the total energy density in GWs ρg (black points, with statistical errors
smaller than the plotted data points), and the theoretical prediction for this quantity with the range
of r extracted from figure 1 (red bands). The data are in full agreement with the predictions. We
also plot ρg ∝ H2 log5, which is valid at log� 1, and which the prediction and data asymptote to.

ηphys = 0.1÷0.3 still reproduce Γ = Γa+Γr acceptably well (this range is obtained by varying
η such that (Γa + Γr)/Γ remains approximately constant, see figure 8 and appendix C.1).
This translates into an uncertainty on rsim in the range 0.17÷ 0.34 (estimated by evaluating
rsim at the final time for ηphys in the range 0.1 ÷ 0.3, see appendix C.1 and figure 9 for
more details). Moreover, the previously mentioned ambiguity in using Γ or Γa introduces a
theoretical uncertainty in the value of r (although rsim seems to be the conserved quantity).
We can conservatively quantify the associated error as about 10%, corresponding to the
contribution that Γr provides provide to Γ at the largest simulated log of figure 1. The
actual statistical uncertainty on data of Γg is negligible with respect to the mentioned ones.
As a result, we obtain a value for r with a conservative error estimate of

r = 0.26(11) . (3.11)

Since r is of order one, as expected for fa �MP only a small fraction of energy is emitted in
GWs. Moreover, as well as qualitative agreement, in appendix C.2 we show that our value
of r is quantitatively consistent with the decrease in axion energy, for a fixed fa/MP, when
backreaction is included.

In figure 2 we also show the evolution of the total GW energy density ρg measured in
the simulations (black points). In the same plot we show the theoretical prediction for this
quantity, i.e. ρg =

∫ t
t1
dt′Γ′g(R′/R)4, with Γg = rGµ2

thΓ/f2
a where the constant r (together

with its error) is extracted from figure 1 and Γ is as in eq. (2.5) and is evaluated as before (in
doing the integration we take t1 such that log(mr/H1) = 3.5). As expected given figure 1,
the agreement between the prediction and the data is excellent. We also note that the data
approach the expected large log behaviour ρg ∝ H2 log5, discussed in section 3.2.

The remaining input required to calculate the GW spectrum is the momentum dis-
tribution of the instantaneous GW emission Fg. It is straightforward to extract this from
simulations, and results for Fg[x, y] are plotted for the physical system in figure 3 (left) at
different times, i.e. different y = mr/H (labelled by log(mr/H)). As expected, the distribu-
tion has an IR cutoff corresponding to x0 ∼ 2π and a UV cutoff at around the string core
scale, corresponding to x ∼ mr/(2H), which are the same as for the axion spectrum.21 The

21The value k/H ' 2π is also motivated since for such momentum the wavelength equals the Hubble
distance.
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Figure 3. Left: the momentum distribution Fg[x, y] of the GWs emitted instantaneously from the
string network, as a function of their physical momentum normalised to Hubble, x = k/H. Different
lines indicate different times i.e. changing y = mr/H, which are labelled by log(mr/H). At all times
the distribution is dominated by (IR) momenta of order Hubble, and decays as x−2 at higher momenta.
Right: the evolution of total spectrum of GWs produced by the network, plotted at different times.
We factor out the expected time dependence of the amplitude ∝ H2 log4.

spectrum has a somewhat broad peak around the IR cutoff, from x ' 5 to 20. Above this, an
intermediate power law is visible and compatible with q = 2, which implies an IR dominated
emission. Thus, the numerical results fully confirm (at least at small log) our assumptions
of section 3.2.

The parameters x0 and q appear to be time-independent in the range of log accessible
to simulations. This can be seen from the fact that the Fg overlap for all y (we carry out a
more detailed analysis in appendix C). It is interesting to note that, although the IR and UV
cutoffs of Fg are similar to those of the corresponding axion instantaneous emission spectrum
Fa, the spectral indices of the two, q and qa respectively, are dramatically different. For
the axion qa increases with log (from qa = 0.75 to 0.95 between log = 6 and 8 indicating
a UV dominated spectrum that is gradually becoming IR dominated).22 We also note that
an emission with q = 2 is characteristic of kink-kink collisions [42], as opposed to cusps and
kinks which instead provide q = 4/3 and q = 5/3 respectively. Although this could be an
indication that kink-kink collisions are the dominant source of the emission, our results do
not rely on the modelling of the particular process sourcing the GWs, as the evolution of the
field equations captures the full dynamics of the system.

Despite these results, we cannot exclude a slow logarithmic running of x0 and q. How-
ever, as discussed in section 3.2, a slow increase in q would have little effect on the integrated
GW spectrum (and a decrease in q until q < 1 would be extremely surprising). Likewise, a
slow change in x0 would only have a very minor effect, so we do not analyse this possibility in
detail. Consequently, we can safely assume that the form of Fg is preserved also at large log.

In figure 3 (right) we also show the total GW spectrum ∂ρg/∂ log k at different times
as a function of the physical momentum normalised to Hubble. The general features de-
rived in section 3.2 are reproduced. However, due to the small final log, the approxi-
mately scale invariant region x0H . k . x0

√
HH1 of eq. (3.9) corresponds only to a

22This could be due to the fact that the coupling of the radial modes to axions is much larger than the
coupling of radial modes to GWs. Therefore the radial modes which are partly emitted by the strings at small
log could produce energetic axions [27], contributing to the UV part of the axion spectrum (but not to the
GW one). The emission of radial modes diminishes logarithmically, and the spectrum therefore decreases in
the UV.
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small portion of the spectrum. Indeed, the first nontrivial emission in the scaling regime
happens around log (mr/H1) ∼ 4 and therefore eq. (3.9) holds in the restricted range
x0 . k/H . x0

√
HH1/H ∼ 40 ÷ 50 at the final time log = 7.4.23 Nevertheless, the key

result from eq. (3.9) that at fixed k/H ∼ x0 the spectrum (once the leading H2 is factored
out) grows proportionally to log4(mr/H) is matched well in figure 3 (right), which is of
course consistent with the extrapolation to large log being essential (a version of the plot
without the log4 factored out is given in figure 12 of appendix C).24 Finally we observe that
∂ρg/∂k ∝ k3 for k . x0H (this is the same behaviour as Fg at small x), while ∂ρg/∂k ∝ kq−1

at momenta higher than x0
√
HH1. In appendix B we show the results for Fg and the total

spectrum for the fat string system, which are qualitatively, and even quantitatively, similar
to those of the physical system.

3.4 The GW spectrum today
The present day remnant of the GW spectrum from the scaling regime can be straightfor-
wardly computed by combining the theoretical discussion of section 3.2 and the results of
section 3.3. For the sake of definiteness for now we assume a temperature-independent axion
mass, and we discuss the temperature-dependent case later.

As mentioned, the scaling regime ends (approximately) when H = ma, at which time
the network is destroyed and GWs stop being produced at the rate in eq. (3.6). The GW
spectrum at H = ma follows from eq. (3.8). From H = ma on the GWs redshift freely
until today, and their contribution to the present day total energy density of the Universe is
Ωgw ≡ ρg/ρc, where ρc is the critical density.

In figure 4 we plot the GW spectrum dΩgw/d log f (from a numerical integration of
eq. (3.8)), where f is the frequency. We use the value of r from eq. (3.11) to evaluate Γg
in eq. (3.6), and a functional form of Fg that fits figure 3 (left) (see appendix A.2 for more
details). Results are shown for different choices of axion decay constant and mass that are
not excluded by other cosmological constraints (derived in section 4). For an axion that
produces GWs in the detectable frequency range, these constraints require fa . 1015 GeV
and 10−28 eV . ma . 10−17 eV (and as a result the network is destroyed before matter-
radiation equality).25 We also show fa = 3× 1015 GeV, which is likely to be in tension with
dark radiation bounds, see section 4.2.

In this plot we assume that the Hubble parameter H1 when the scaling regime starts
is sufficiently large that the GW spectrum is in the approximately scale invariant region for
the entire range of frequencies shown. Later in this section we show that this assumption is
highly plausible. We also assume a standard cosmological history with radiation domination
up to high temperatures and only the particle content of the SM plus the axion, and that
mr = fa. We describe the errors that we include on the GW spectra and other sources of
uncertainty in detail at the end of this section.

A useful (and for most purposes accurate) analytic approximation for Ωgw in the log� 1
limit is derived from eq. (3.9) in appendix C.1 (see eq. (A.13)) and reads

dΩgwh
2

d logf '0.80×10−15
( c1

0.24

)( r

0.26

)( fa

1014GeV

)4(10
gf

) 1
3
{

1+0.12log
[( mr

1014GeV

)(10−8Hz
f

)2]}4

,

(3.12)
23H1 corresponds to when the UV and IR cutoffs of the spectrum x0H and mr/2 coincide.
24At small log, ∂ρa/∂ log k actually grows faster than log4 due to the subleading log corrections of Γg in

eq. (3.6), and indeed at k/H ∼ x0 the spectrum in figure 3 (right) shows a slight increase.
25This confirms that the condition for gravitational backreaction to be negligible Gµeff/f

2
a � 1 is satisfied.
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Figure 4. The contribution to the energy density of the Universe today from the GWs emitted by
axion strings during the scaling regime, as a function of their present day frequency f . Different lines
correspond to different values of the axion decay constant fa and mass ma. We plot values of ma that
are compatible with current constraints on the post-inflationary scenario. Values of fa . 1015 GeV
are possible, while larger values are in tension with isocurvature and dark radiation bounds. GWs
with higher frequencies are produced at earlier times, and we indicate the temperature of the Universe
when GWs of a particular frequency are dominantly produced, Tf , as well as the corresponding value
of the log at this time log(mr/Hf ). All the GWs are emitted in radiation domination and the network
decays before matter-radiation equality.

where gf is the effective number of degrees of freedom in thermal equilibrium at the temper-
ature Tf , when most of the GWs with today’s frequency f are emitted.26 Eq. (3.12) holds
in the frequency range 3 × 10−12(ma/10−20eV)1/2 . f/Hz . 103(H1/GeV)1/2. This corre-
sponds to the extremes in eq. (3.9) evaluated at H = ma, redshifted to today. As stressed
in section 3.2, at lower and higher frequencies than these IR and UV cutoffs, dΩgw/d log k is
suppressed as f3 and f q−1 respectively.27

Several comments are in order. First, we observe that fa controls the overall amplitude of
the spectrum, since it ultimately determines both the energy density of the string network and
also the efficiency at which this is emitted into GWs. Conversely, ma only affects the position
of the IR-cutoff ∝ m

1/2
a of the approximately scale-invariant part of Ωgw (which is ma inde-

pendent). This is not surprising given thatma is unimportant during scaling, and its only role
is in determining when the network is destroyed. The resulting IR cutoff is visible in figure 4.

The log4 dependence of the frequency is evident in figure 4 and eq. (3.12). In figure 4,
we indicated the value of the log when most of the GWs with frequency f are emitted,
logf ≡ log(mr/Hf ). Since this varies by more than a factor of 2 over the frequencies of
observational interest (in the range logf = 30÷90), there is a substantial effect on the spectral
shape as well as the amplitude. We also note that the GWs in most of the observable range

26More precisely, this temperature is defined by x0H(Tf ) ≡ fR(T0)/R(Tf ).
27The dependence on f3 of the super-horizon modes is fixed by causality after such modes starts oscillat-

ing [43].
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are emitted when ξ = 10÷20 from eq. (2.4). As expected, the spectral shape is also modified
by the changes in number of relativistic degrees of freedom in the Universe. In particular,
this has an effect at frequencies that are dominantly emitted at temperatures Tf (shown
on the upper axis) at which such changes occur (the largest effect is around T ' 100 MeV
when a large number of the degrees of freedom decouple). As a result the spectrum at higher
frequencies is suppressed by more that the log4 factor, since these are emitted at earlier times
when gf is larger leading to increased expansion of the Universe. However, such effects are
fairly weak, as Ωgw depends only on g1/3

f .
In figure 4 we also show the projected sensitivity curves for ongoing and proposed GW

searches (EPTA [44], PPT [45], SKA [17], LISA [18], DECIGO/BBO [46], AEDGE [22],
AION [47], LIGO [19], and ET [20, 21]), as well as an extremely tentative possible signal by
NANOgrav [48], which we comment on in the Conclusions. In particular, we plot the power-
law-integrated sensitivity curves [49–51] as derived in [52]. Partly due to the enhancement
of the signal at low frequencies, the near future detection prospects are best at Pulsar-
Timing Arrays such as SKA, which scan the lowest frequencies and could be sensitive to all
fa & 1014 GeV. Detection is also possible at space-based interferometers: although LISA
could be sensitive only to fa & 5 × 1014 GeV, its proposed successors could explore lower
values of fa. The wide range of axion masses and decay constants that lead to a measurable
GW signal motivates the effort to develop such experiments.

As mentioned, complementary constraints require ma . 10−17 eV, and therefore in case
of a detection the actual value ofma will not be inferred. This is because, for this mass range,
all the detectable frequencies are emitted deep inside the scaling regime, so the IR cutoff of
Ωgw is unobservable. Additionally, any temperature-dependence of the mass — as long as
is monotonically decreasing — does not affect the detectable GWs, as it can only modify
lower frequencies, emitted when the mass is relevant. We note that if the string network is
destroyed before T ' 106 GeV (e.g. for a heavy axion mass, ma &MeV, which is still allowed
by the observational constraints in section 4), the IR cutoff frequency is so large that the
spectrum does not extend down to observable frequencies.

Although neglected in this discussion, after H = ma additional GWs will be emitted
by domain walls, which will supplement those from the scaling regime. As discussed in
appendix D, one calculable contribution to these GWs has frequencies (and amplitude) of
the same order as that from the last e-folding of the scaling regime. Therefore, although
it will modify the shape of the IR-cutoff of the GW spectrum from the scaling regime, this
contribution at least will not be observationally relevant.

Uncertainties on the spectrum. Given its experimental importance, an understanding
of the possible sources of uncertainty on the GW prediction is crucial. The error bands on the
GW spectra plotted in figure 4 are obtained by combining the uncertainties on the coefficient
of the growth of ξ (i.e. c1 of eq. (2.4)), on r, and by varying x0 in the range 5 ÷ 10 (which
only has a visible effect on the location of the IR cutoff). We do not think it would be fair
to associate a sharp numerical uncertainty to the extrapolations necessary to reconstruct the
scaling regime at large log. Instead, we now summarise the assumptions needed to obtain
eq. (3.12) and figure 4, and the corresponding possible uncertainties. In all cases we have
made the most conservative extrapolations possible, and taken together a deviation of more
than a factor of 2÷ 4 from our predictions would be surprising.

• We assumed that ξ continues to grow logarithmically as in eq. (2.4) during the scaling
regime beyond the range of simulations. While such an increase has not yet found a
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mathematical proof, it has been numerically demonstrated in simulations at log . 8,
providing the best fit of the data (which disfavours any function that saturates soon
after log = 8, as observed in [23, 27] and evident in figure 6 of appendix C).28 Such
a growth is theoretically plausible given the logarithmic sensitivity of the system to
mr/H, and given the excellent fit over the range of logs that can be simulated it is the
most conservative assumption for the late time behaviour of ξ. The resulting string
densities at the times relevant to the emission of observable GWs are ξ = 10÷ 20. This
is a factor of 10 larger than is reached in simulations, correspondingly increasing the
energy emitted into GWs, on top of the (much larger) enhancement from µeff .
Nevertheless, we cannot exclude the possibility that ξ saturates (or its growth acceler-
ates) at log far beyond the reach of simulations. In these cases, the emission would be
damped (or increased) proportionally to the value of ξ. In particular, a different value of
ξ would modify the amplitude in figure 4 at the frequency f by the factor ∼ ξ/(c1 logf ).
Therefore, as long as ξ does not saturate at a value smaller than 5 (which seems highly
unlikely given that such values are obtained in simulations that partly reproduce the
dynamics of the system at large log by boosting the string tension [60]), in the case
of a saturation the amplitude of Ωgw would only decrease by a factor of two at LISA
frequencies and a factor of four at SKA frequencies. Consequently the uncertainty on
ξ does not qualitative change the prospects of detection, strengthening the robustness
of our results (e.g. fa & 1014 GeV remains just about detectable by SKA).

• We assumed that the energy emission rate into GWs continues to follow the prediction in
eq. (3.6) based on the Nambu-Goto strings effective theory, with r constant, throughout
the scaling regime. Numerical simulations confirmed this result for log . 7.5 with fixed
r = 0.26(11), as in eq. (3.11). As mentioned, we cannot exclude a small logarithmic
dependence in r (for instance, due to a change in the average shape of the string
trajectories). However such a running is bounded by figure 1 and (if present) would
most likely give Γg a log dependence that is subleading to that from ξ. This possibility
therefore only makes a small contribution to the overall uncertainty on Ωgw.

• We assumed that the form of the instantaneous emission spectrum of GWs Fg of figure 3
is preserved during the whole scaling regime, also after log ' 7.5. This assumption is
motivated by the existence of the scaling regime (and Fg is seen to be preserved during
the whole simulation range). As noted in section 3.2, as long as the IR cutoff x0 does
not change exponentially and q does not decreased below 1 (both of which are unlikely),
the uncertainties on Ωgw from these quantities are negligible.

As well as those from our reconstruction of the scaling regime, there are also uncertain-
ties on Ωgw due to unknown features of the early Universe.

• In obtaining figure 4 we have taken the Hubble parameter H1 when the scaling regime
starts sufficiently large that the GWs in the observable frequency range are in the
approximately scale invariant part of the spectrum. This is actually a mild assumption

28This behaviour has been confirmed independently [25, 53–55]. An enhanced value of ξ is also suggested
by Nambu-Goto string simulations [56–58], and in a system where the tension of the strings is increased via
additional degrees of freedom, [59, 60]. Meanwhile [61] claims that simulation results indicate ξ approaches a
constant value ∼ 1, however their results are fully consistent with a logarithmic increase and are not well fit
by the saturating function the authors propose (in particular, the function suggested by the authors fits for
less than a single e-folding, an interval over which practically any function can be fit).
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requiring just that H1 & keV (corresponding to a temperature of the order of 100TeV),
so the UV cutoff of the spectrum is at frequencies f & Hz. Values of H1 much larger
than this are expected in all of the models that lead to symmetry restoration at the
relevant fa, which we discuss in section 5. It is also expected that there is sufficient
time for the string network to reach the attractor prior to the Universe dropping to
the temperature 107 GeV when the first GWs in the observable frequency range are
emitted. Moreover, friction on the string due to interactions with the thermal bath,
which is relevant at high temperatures if the axion couples to standard model particles
(but we do not include in our analysis of the scaling regime), will be negligible by
this point for axion decay constants that lead to observable signals. In particular, the
friction is expected to be irrelevant for temperatures . 1011 GeV(fa/1014 GeV)2 [62],
which is safely far above those corresponding to observable frequencies (further analysis
would be required to determine the temperature at which friction becomes irrelevant
precisely, see also [63–66]).

In contrast, the UV part of the spectrum f & (H1/ keV)1/2 Hz depends on how (and
when) the network formed and reached the scaling regime, and possibly gets additional
contributions e.g. from the U(1) phase transition. However, in practice this is not
detectable in any motivated model.

• In our derivation we also assumed that the Universe is in radiation domination up to
high temperatures (say, 108 GeV, as show in figure 4). Different cosmological scenarios,
e.g. matter domination or kination, would drastically modify the spectrum’s shape.
Indeed, it is easy to show from eq. (3.8) that, if R ∝ tα, ∂ρg/∂ log k is proportional to
a negative (positive) power of k depending on α > 1/2 (α < 1/2) [67–70]. An accurate
determination of the spectrum in such scenarios would require recalculating ξ and r
from simulations with such α.

• Finally, we assumed only SM degrees of freedom. If additional degrees of freedom are
present the prediction will be modified as in eq. (3.12). Indeed, as pointed out in [71],
a precise measurement of the spectrum could in principle provide information about g
at high temperatures (it is plausible that a significant number of beyond SM degrees of
freedom could enter at energies & TeV, and the possibility this could be detected by
analysing the GW spectrum from strings has been considered in [69]). However, given
the uncertainties discussed above and the weak dependence of Ωgw on gf , extracting
the number of degrees of freedom would appear to be very challenging.29

4 Constraints on the axion mass and decay constant

Having shown that post-inflationary axions lead to GWs with amplitude and frequency that
could be accessible to proposed experiments, we now analyse some other phenomenological
features of this scenario. These provide direct and indirect constraints on fa and ma, com-
pleting our understanding of the axions that could be discovered via GWs, and also giving
complementary observational signatures.

29Strictly speaking, our results for ξ and r have been obtained from numerical simulations with R ∝ t1/2,
that do not account for the change in the number of degrees of freedom. We expect however a very minimal
change in such observables when one takes into account the time-dependence on R from g.
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Figure 5. Constraints on axion mass and decay constant in the post-inflationary scenario, with a
temperature independent axion mass. Limits from dark matter overproduction and dark radiation
are shown in red and blue respectively. The bound from isocurvature perturbations is conservative
but is still particularly uncertain (see the main text for details). Direct CMB observations rule out
extremely light axions with large fa (in purple), since strings persist at the time of decoupling causing
anisotropies. We also identify the parts of parameter space in which axion strings produce a GW
spectrum that is detectable by SKA and LISA, and the fraction of DM that axions from the scaling
regime comprise.

In the following we will consider a single axion with a temperature-independent mass
ma.30 Axions with fa & 1014 and ma . MeV are cosmologically stable regardless of the
details of their couplings to the SM [72]. In section 4.1 we will see that, given this stability,
only ultralight axions are not ruled out by dark matter overproduction for the relevant values
of fa, so we focus on this mass range (as described in appendix G, axions with ma &MeV
can decay, but, as mentioned, for such values the scaling regime ends before observable GWs
are produced). In appendix G we show that only the ultra-light mass range is allowed for
large fa also in the case of a temperature-dependent axion mass.

In figure 5 we summarise the constraints, which we detail in the remainder of this section.
Given their stability, axions form a component of dark matter (potentially overproducing the
observed abundance) and those that are relativistic at the time of BBN or decoupling act
as dark radiation. The resulting limits are shown in red and blue respectively. DM axions
from strings and domain walls have isocurvature perturbations, which are constrained by
CMB and Lyman-α observations. As explained in section 4.3, it is challenging to determine
the resulting limits precisely, however we will derive reasonable conservative bounds (which
should still be treated with caution), shown in purple. We also show bounds on the fraction
of dark matter that can be ultralight from Lyman-α observations (Lα). Finally, if ma is
small enough, axion strings persist at the epoch of CMB decoupling, and are constrained by
CMB observations. In appendix E we summarise other constraints that are less strong than
those shown, e.g. from black hole superradiance.

Even though these limits are fairly restrictive and become stronger for larger fa (exactly
when the GWs become detectable), there is about one order of magnitude of allowed values of

30Although we remain agnostic on how the mass is generated, we observe that this mass could arise from
explicit breaking of the axion’s shift symmetry in the ultra-violet (UV) theory.
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fa and many orders of magnitude ofma that provide observable GW signals from strings. We
note that these constraints do not depend on the possible axion couplings to the SM (which we
did not specify). Moreover, although we considered a model with a single axion, the bounds
are not expected to significantly change if additional light fields are included and coupled to
the axion, so our conclusions apply to generic axion models in the post-inflationary scenario.31

4.1 Dark matter

As discussed in section 2, during the scaling regime energy is continuously radiated into
axions at the rate Γa. Such axions are relativistic during the scaling regime (since ma � H),
and the majority of them become nonrelativistic soon after the axion potential V becomes
relevant, when H ' ma. Since these axions are stable they form a component of dark matter.

The number density of axions during the scaling regime can be obtained following a
similar approach as for GWs in section 3.2. As mentioned, the momentum distribution of
Γa has the same form as that of Γg in figure 3. However, the spectral index qa for the axion
emission changes in time and, although qa < 1 for log . 8, its extrapolation indicates that
qa > 1 at log & 9, which we will assume in the following (see [23, 27] for more details).
Once qa > 1, the axion number density during the scaling regime nst

a ≡
∫
dk/ωk∂ρa/∂k

is approximately 8Hξµeff/x0,a (here ω2
k ≡ k2 + m2

a; ∂ρa/∂k is the axion energy density
spectrum, defined in the same way as the GW one in eq. (3.8); and x0,a is the IR cutoff of the
instantaneous axion emission spectrum). Consequently, the number density nst

a,? at H = H?

is enhanced by a factor of ξ? log? � 1 with respect to that in the pre-inflationary scenario,
which is of order θ2

0H?f
2
a at this time [15] (the subscript ‘?’ refers to quantities evaluated at

H = H? ≡ ma).
We can obtain a conservative lower bound on the final axion abundance by considering

only the axion waves emitted during the scaling regime up to H? (i.e. nst
a,? only), which can

be reliably determined (following the logic applied to QCD axion strings in [27]). Additional
axions will be produced during the destruction of the string network, however a reliable
calculation of this component appears challenging as the system of strings and domain walls
cannot be simulated at the physical value of ma/mr.32

As shown in [27], the waves emitted during the scaling regime redshift relativistically for
some time even after H?, since their kinetic energy a factor of ξ? log? � 1 larger than their
potential energy (bounded by V . m2

af
2
a ), which is therefore negligible.33 The relativistic

redshift ends when the potential and kinetic energies become comparable. At this time,
the waves experience a nonlinear transient (the main features of which can be understood
analytically, up to order 1 coefficients that need to be obtained from numerical simulations).
Soon after this the majority of the axions from the scaling regime become nonrelativistic and
their number density per comoving volume is conserved. The net effect of the relativistic
redshift and the nonlinear transient is a non-conservation of the comoving axion number
density between H? and the end of the transient. However, unlike the case of a temperature
dependent mass, this only amounts to an up to O(20%) effect for a temperature-independent
mass with ξ? log? = 3×103 or smaller (see appendix C.4 for the derivation). Given the much
larger uncertainties involved, in what follows we will therefore make the approximation that
nst
a is conserved.
31Some models with unusual features (such as the clockwork mechanism) might avoid these constraints.
32The final number density of axions arising from the axions emitted by the scaling regime is not expected

to be affected by more than an order one factor by the presence of domain walls connected to strings [27].
33The relevant kinetic energy is the one is IR modes, approximately given by 8πξ? log?H2

?f
2
a � m2

af
2
a at H?.
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Number density conservation from H? leads to the (nonrelativistic) axion energy density
today ρ0

a = ma(R?/R0)3nst
a,?, and the relic abundance of axions from strings during the scaling

regime Ωst
a ≡ ρ0

a/ρc is

Ωst
a ' 0.1

(
ξ? log?
3× 103

)(
fa

1014 GeV

)2 ( ma

10−18 eV

) 1
2
(

10
x0,a

)( 3.5
g?(T?)

) 1
4
, (4.1)

for ξ? log? . 103. For larger values of ξ? log?, eq. (4.1) must be changed to take into account
the non-conservation of the number density. For a temperature independent axion mass, this
results in Ωst

a ∝ (ξ? log?)3/4 up to logarithmic corrections (see appendix C.4). Note that,
unlike the QCD axion, in eq. (4.1) fa and ma can vary independently and, for a fixed fa,
smaller values of ma give smaller Ωst

a .
As expected, for ξ? log? small enough that the transient is negligible, the relic density

of axions from strings is a factor of ξ? log? larger than that from misalignment in the pre-
inflationary scenario (with O(1) misalignment angle) [73], with the same leading parametric
dependence on fa and ma. For ultralight axions log? = log(mr/ma) ' 102 and, as discussed
in section 3.4, the extrapolation of ξ suggests that ξ? = c1 log? ' 25. Therefore, the relic
density leads to severe constraints for fa & 1014 GeV, forcing ma . 10−17 eV. We show the
bound Ωst

a < ΩDM in figure 5 assuming that the IR cutoff of the spectrum is x0,a = 10 also
at large log, and that the growth of ξ in eq. (2.4) continues (we also fix that the network
persists until 3H = ma, as suggested by simulation results for a temperature independent
axion mass in appendix C.4, which leads to a constraint that is stronger by a factor of

√
3).

Eq. (4.1) is expected to hold at best up to an order one coefficient that encodes the effect
of the system of strings and domain walls on the axion waves produced during the scaling
regime. We finally note that eq. (4.1) only provides a lower bound on the axion dark matter
abundance, as it misses the unknown part from string-domain wall collapse. In any case, as
shown in figure 5, even if this contribution to the axion relic abundance is a few orders of
magnitude larger than Ωst

a , a wide range of axion masses are still allowed for fa & 1014 GeV
(thanks to the dependence of Ωst

a on ma and fa).
As mentioned, we obtained eq. (4.1) by assuming that at large log the axion spectrum

becomes IR dominated, with qa > 1, as suggested by extrapolations of simulation results [27].
If this is not the case the number density of axions from strings will be negligible with respect
to that predicted by the misalignment mechanism with an effective initial misalignment angle
〈θ2

0〉 ' 2.152. The resulting relic abundance is a factor of ξ? log? smaller than eq. (4.1), and
the correspondingly weakened bound from dark matter in figure 5 can be straightforwardly
obtained. We also note that Lyman-α observations limit the fraction of the dark matter that
can have a mass below ∼ 10−20 eV [74, 75]. We plot the resulting constraints in figure 5,
labelled Lα. Even though they are weaker than those from isocurvature that we study later,
these bounds have the advantage of not depending on the (uncertain) details of the axion
density power spectrum.34

4.2 Dark radiation
For the ultra-light axion masses allowed by the relic abundance constraint in eq. (4.1) (plot-
ted in figure 5), the scaling regime ends when the Universe’s temperature is less than an MeV

34There is an additional constraint from Lyman-α [76] observations, not plotted, which requires ma >
2× 10−22 eV in the case the axion makes up the entirety of the dark matter. While this excludes some values
of ma and fa such that the axion makes up the whole DM abundance, the extension of this bound to the case
of an axion that makes up a fraction of the total DM is currently unknown.
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(see also the upper axis of figure 4). Consequently all the axions emitted during the scaling
regime up to that point are relativistic at the time of BBN. Additionally, due to the ap-
proximately scale-invariant form of the axion energy density spectrum ∂ρa/∂k (see eq. (C.6)
in appendix C.4), an order one fraction of the axion energy is in modes that are relativistic
at CMB decoupling even if the string network is destroyed prior to this. Constraints from
current limits on dark radiation at these times, usually expressed in terms of the effective
number of neutrinos Neff , are therefore potentially relevant.35

Similarly to gravitational waves, during the scaling regime the energy density in axions
is ρa(t) =

∫ t
t1
dt′(R′/R)4Γ′a, where Γa takes the form in eq. (2.5). As a result, up to 1/ log

corrections and neglecting changes in the number of relativistic degrees of freedom g, and
assuming ξ = c1 log as in eq. (2.4),

ρa = 4
3H

2c1πf
2
a

(
log3− log3

1

)
, (4.2)

where log1 ≡ log(mr/H1) is the value of the log when the scaling regime starts. From eq. (4.2)
we see that the energy in axions could be sizeable as it is enhanced by a log3 factor, which
ultimately comes from the fact that the axion spectrum deviates from scale invariance by a
log2 correction. Moreover, the dependence on the initial condition, which sets log1, is not
important as long as log1 � log (in the following we therefore neglect log1, and the resulting
bound is barely affected by varying this in its plausible range).

The axion energy corresponds to an effective number of neutrinos ∆Neff≡ (8/7)(11/4)4/3

ρa/ργ where ργ is the energy density in photons.36 At a temperature of 1 MeV eq. (4.2) leads
to

∆Neff = 0.6
(
c1

0.24

)(
fa

1015 GeV

)2 ( log
90

)3
, (4.3)

where log(mr/HBBN) ' 90 if mr = 1014 ÷ 1015 GeV. To determine the overall coefficient in
eq. (4.3) precisely, we improved the calculation of ρa in eq. (4.2) by numerically integrating
Γa to account for the changing number of relativistic degrees of freedom. Owing to the
increased expansion of the Universe this suppresses the result by about 30%.37

Although bounds that we will study in section 4.4 require that the string network is
destroyed prior to the formation of the CMB for the fa & 1014 GeV, limits on dark radiation
from the CMB are still potentially relevant. In this case, the energy in relativistic axions
at the time of decoupling is simply obtained by redshifting the value of eq. (4.2) from the
time of the network destruction, accounting for the proportion of the axions that become
non-relativistic.

We use the 95% limits from [77], which correspond to ∆Neff < 0.46 and 0.28 at BBN
and CMB times respectively (imposing constraints derived from different analyses or the 68%
limits, e.g. [78] only changes the constraint on fa relatively mildly). As can be seen from
eq. (4.3), the limits from BBN constrain fa . 1015 GeV as shown in figure 5. Those from the
CMB lead to a comparable bound, although the maximum allowed ∆Neff is more uncertain
given tensions between different determinations of the Hubble parameter. As we will see

35For larger axion masses a fraction of ρa is in modes that are relativistic at BBN, but constraints from
dark matter overproduction are stronger in this case.

36The effective number of neutrinos is defined by Neff ≡ (8/7)(11/4)4/3(ρν+ρX)/ρa. In principle the energy
density in strings and gravitational waves also contributes to ρX , however this energy is much smaller than ρa.

37In particular, the contribution to ρa from earlier times, already suppressed by log3, is further suppressed
by g1/3.
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shortly, all such values of fa are in tension with limits from isocurvature. However, the
constraints from dark radiation are still useful since they are subject to fewer uncertainties.

We finally note that the detection of GWs from strings would predict a non-vanishing
∆Neff . Conversely, given the quadratic dependence on fa, a plausible improvement in the
measurement of ∆Neff to an uncertainty of σ(∆Neff) ' 0.02 [79] could rule out fa & 2×1014,
which is a large part of the range that gives GWs that could be observed in the near future.38

4.3 Isocurvature perturbations

During the scaling regime, and after domain walls form and annihilate, the axion field con-
tains inhomogeneities. Since these involve only the axion energy density, they correspond to
isocurvature perturbations [81], which are potentially in conflict with cosmological observa-
tions, even if the axion makes up only a fraction of the total dark matter. An analysis of such
perturbation has previously been carried out for the QCD axion [82] and axion-like particles
in [83, 84], and we comment in appendix F on the differences with our approach.

The perturbations in the axion energy density ρa are most easily studied using the
overdensity field δa(x) ≡ (ρa(x)−〈ρa〉)/〈ρa〉, where the brackets indicate the spatial average.
It is useful to express δa in terms of the (dimensionless) power spectrum ∆2

a(k), defined by

〈δ̃a(k)δ̃a(k′)〉 = 2π2

k3 ∆2
a(k)δ3(k− k′) , (4.4)

where δ̃a is the Fourier transform of δa and we assumed statistical homogeneity and isotropy.
It is straightforward to show that 〈δ2

a〉 =
∫

∆2
a(k)/k dk.

After the string network is destroyed, ∆2
a is expected to have a non-zero (and order

one) value at momenta k ' H?, since H? sets the typical size of fluctuations, and therefore
the typical correlations between momentum modes. At these scales, the precise shape of ∆2

a

depends on the dynamics of the string network at H ' H?. Conversely, fluctuations at scales
larger than the horizon at that time, i.e. k � H?, are expected to be uncorrelated. From
eq. (4.4), this fixes the form of ∆2

a ∝ k3, which is the prediction from a white noise spectrum,
so ∆2

a is suppressed at large scales. We therefore parametrise ∆2
a(k) = C(kcom/H?)3 at

comoving momenta kcom ≡ kR/R? . H?, where C is a dimensionless coefficient. Finally, the
power spectrum at k & H? depends on the details of the destruction of strings and domain
walls, and it could be affected by oscillons [55], and is beyond the scope of our present work.

During the scaling regime, and as the string network is destroyed, ∆2
a changes. However,

once all the strings and domain walls have vanished and the axion field has mostly settled
down to have amplitude� fa, and the axion energy density is redshifting non-relativistically,
the k3 part of ∆2

a is constant leading to a time-independent C.39

CMB observations dominantly constrain ∆2
a at momenta that are of order the Hubble

parameter at decoupling. For ma & 10−28 eV, the network decays before decoupling, and
such scales lie in the IR k3 tail, on which we will therefore focus (for smaller ma, strings
are present at decoupling, and gravitational effects lead to more stringent bounds, discussed
in section 4.4). As we discuss shortly the situation is more complicated for isocurvature
constraints from Lyman α observations.

Given the highly nonlinear dynamics of the scaling regime and the destruction of the
string network, the only way to determine ∆2

a accurately would be to numerically simulate
38Additionally, the possibility that the background of relativistic axions left over today could be directly

detected (for axion-to-photon coupling gaγγ larger than f−1
a ) has recently been studied [80].

39We neglect the effect of gravity, which is expected to not affect the far IR-momenta [84].
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the system until the strings and domain walls have all vanished. Unfortunately, as discussed,
it is extremely hard to study the network’s destruction reliably. Despite this, similarly to the
dark matter abundance, we can obtain a conservative isocurvature constraint by considering
only the axion waves produced during the scaling regime up to H?. Provided the presence
of domain walls does not affect these waves by more than an order one amount, the axions
from the scaling regime can be approximated as a separate component of DM (distinct from
that produced by domain walls) with its own power spectrum and a relic abundance given
by eq. (4.1). Neglecting the effects of domain walls, we will be able to determine the power
spectrum for this component and in doing so obtain an isocurvature bound. The DM axions
from domain walls will also have density perturbations so are expected to only strengthen
the constraint.40

To determine ∆2
a, we solve the equations of motion ä + 3Hȧ − R−2∇2a + V ′(a) = 0

(with V = m2
af

2
a (1− cos(a/fa)) and ma temperature independent as before) numerically. As

discussed in appendix C.5 we expect very similar results from any other potential bounded
to be . m2

af
2
a . We start at H = H? with initial conditions given by a superposition of waves

with the energy density spectrum ∂ρa/∂k predicted by the scaling regime at ξ? log? = 103 (see
appendix C.5 and [27] for more details). As mentioned in section 4.1, the field undergoes a
period of relativistic redshift and a nonlinear transient, after which the nonrelativistic regime
is rapidly reached with (at least the IR part of) ∆2

a constant.41

In figure 19 (left) of appendix C.5 we plot the resulting ∆2
a, defined as in eq. (4.4), as a

function of the momentum and time. As expected, the spectrum reaches an order one value
at momenta corresponding to the scale H?. The peak is somewhat above H? since x0,a ' 10
and correlations at smaller scales are likely since the average axion momentum is larger than
x0 (see [27]). At smaller momenta the expected k3 behaviour is reproduced, with a constant
coefficient C ≈ 2 × 10−5 (the nonlinearities turn out to be important, as this coefficient
is about a factor of 4 smaller than if the evolution of these waves were linear, i.e. with
V = 1/2m2

aa
2, see the green line in figure 19 (left) of appendix C.5). In the following we will

derive constraints assuming ∆2
a and Ωst

a as described above. To get a feel for how much the
DM axions from domain walls might potentially strengthen the constraint, in appendix C.5
we also plot and discuss results for the power spectrum obtained after the destruction of the
full string-domain wall network at the unphysical value log? = 5.

Isocurvature constraints from the CMB and Lyman-α. The CMB is the longest
standing source of constraints on isocurvature perturbations, with the best currently available
data coming from Planck [85], from modes close to the pivot scale kCMB = 0.05 MPc−1. Such
observations bound the fraction of isocurvature fluctuations fiso relative to the curvature
perturbations at this scale, defined by f2

iso ≡ ∆2
iso(k)/∆2

R(k), where ∆2
iso is the spectrum

of isocurvature perturbations and ∆2
R(k) = As(k/kCMB)ns−1 is the (almost scale invariant)

spectrum of curvature perturbations.
For ma & 10−28 eV, kCMB is inside the k3 part of ∆2

a(k) and we can directly apply
the limit fiso < 0.64 obtained in [84].42 In general the axions from scaling only comprise a

40A large weakening of the bound would require that the domain walls absorb a large fraction of low
momentum axion waves emitted during scaling and homogeneously remit them as high momentum modes.

41Unlike simulations of the string network, the axion only simulations do not need to probe length scales
f−1
a (since it is the IR part of the axion spectrum that contains the majority of the axion number density so
is relevant to the constraint), therefore the physical dynamics are reproduced directly.

42The precise numerical bound depends on the cosmological data that is combined. Interestingly the analysis
in [84] shows a mild preference for a non-zero isocurvature component.
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fraction of the total dark matter, so there is a factor of Ωst
a /ΩDM in their contribution to fiso.

Consequently, assuming there are no isocurvature fluctuations in the remainder of the DM,
at k = kCMB

fiso = Ωst
a

ΩDM

√
C k3

CMB
Ask3

?

' 0.2
(
ξ? log?
3× 103

)(
fa

5× 1014 GeV

)2 ( ma

10−28 eV

)−1/4 ( C

2× 10−5

)1/2
,

(4.5)

where As = 2.2× 10−9, and k? ≡ H?R?/R0 is the comoving momentum corresponding to H
at H = H? = ma redshifted to today. As discussed, we expect eq. (4.5) to give a lower bound
on fiso, and to be valid up to an order one factor. We note that the isocurvature constraint is
potentially important even when the axions produced by the scaling regime make up a small
fraction of the abundance. This is because, for sufficiently light axions, the relative density
fluctuations reach values close to one at the observationally constrained scales.

In addition to CMB bounds, it has recently been shown that isocurvature fluctuations at
smaller scales are constrained by Lyman-α observations [86], and that these can be important
in post-inflationary axion dark matter models [87]. We use the constraint from [86], which
assumes a k3 power spectrum. Expressed in terms of the isocurvature fraction at the Planck
pivot scale, this requires fiso < 0.004. For axion masses such that the observed modes
are in the k3 part of ∆2

a, this can be immediately converted into a bound on fa similarly
to eq. (4.5). However, the dominant scales in Lyman-α studies correspond to momenta of
order kLα ∼ 10 Mpc−1 much larger than those relevant to CMB observations [87] (and more
sophisticated analyses are potentially sensitive to even smaller scales). For sufficiently small
masses, ma . 10−22 eV, such modes are not in the k3 region. Consequently the results of [86]
cannot be applied and instead a complete reanalysis is needed. We do not attempt in our
present work. However, we note that given the density power spectrum remains of order
1 up to k/H ∼ 100 and drops relatively slowly above this, there are likely to be relevant
constraints in this mass range as well.

Impact on the allowed axion masses and decay constants. The bounds on the axion
mass and decay constant from CMB and Lyman-α isocurvature constraints are plotted in
figure 5. The limits at higher axion masses come from Lyman-α observations, while those at
lower masses are due to the CMB observations. As discussed, we do not give bounds from
Lyman-α for axion masses smaller than about 10−22 eV.

Although we expect the domain walls not to affect the power spectrum associated to
pre-existing axions waves by more than an order one factor, we blur the resulting constraints
in figure 5 to reflect this uncertainty. Moreover, the constraints from isocurvature would
strengthen if the axions from domain walls have large density perturbations, i.e. if their
density power spectrum corresponds to a larger coefficient C, if their relic abundance is
comparable to that of the axions from scaling (though the bound on fa would increase only
proportionally to C1/4). The bounds would also strengthen if the domain walls produced
more DM axions than the scaling regime, even if they have the same density power spectrum
as those from scaling, because fiso includes a factor of Ωa/ΩDM, as in eq. (4.5). We also
note that there are other possible constraints on isocurvature from spatial scales between
the CMB and Lyman-α observations (e.g. from structure formation and galaxy clusters [87]),
which could matter for intermediate axion masses ∼ 10−25 eV. However, these are more
sensitive to astrophysical details, and would require a dedicated analysis.
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We note that it is clear from eq. (4.5) that the isocurvature constraints are not relevant
for the QCD axion in the post-inflationary scenario. Indeed, for the QCD axion H? cor-
responds to the Hubble parameter shortly before the QCD crossover, which is much larger
than that for ultralight axions, and so k? is larger and fiso more suppressed. Finally, for both
the QCD axion and ultralight axions, isocurvature perturbations sourced during inflation (if
the axion was present at this point) are averaged out by the dynamics of the strings and are
simply incorporated into the coefficient C of the white noise spectrum.

4.4 Strings and CMB anisotropies

If strings are present at the time of decoupling their gravitational interactions introduce ad-
ditional anisotropies in the CMB [88, 89]. In particular, a long string induces a ‘deficit angle’
δ = 8πGµ in the locally flat metric around it, giving the metric a global conical structure.
As a result, two particles moving towards the string in parallel acquire a nonzero relative
velocity as they pass the string, and eventually collide.43 If this is applied to an observer
and a source of photons, the observer will see a discontinuous Doppler shift of the photons
as the string is passed. Consequently, strings lead to discontinuous temperature fluctuations,
of order δT/T ∝ Gµ, in the CMB photons around them [90]. Moreover, a string that moves
in the primordial plasma produces a wake behind it by pure gravitational interactions, and
therefore additional density perturbations, which are again potentially measurable in the
CMB. Since the strings act as a random source, such perturbations are not coherent and do
not result in the observed acoustic oscillations [91–93]. Consequently they can contribute, at
most, a relatively small fraction of the total anisotropy (see e.g. [94–97]).

A statistical analysis comparing the effects mentioned above with CMB observations
gives an upper limit on the string tension µ and consequently on the allowed fa for an axion
network that is not destroyed prior to decoupling. These constraints are therefore relevant
for axion masses ma . 10−28 eV. As for the GW spectrum and axion DM abundance, it is
challenging to determine the string induced anisotropy spectrum at the relevant time, which
cannot be studied directly in simulations. Reliable constraints can only be obtained by fully
accounting for the effects of scaling violations on the string induced anisotropy spectrum, and
we do not attempt this in our present work.44 Instead, we simply note that, based on the previ-
ous literature (e.g. [98–100] for local strings and [101] for global strings), a bound very roughly
in the range of Gµ . 10−7 is plausible, corresponding to fa . 2×1014 GeV. This is in possible
tension with any axion withma . 10−28 eV and fa large enough for observable GWs. We how-
ever stress that there is significant uncertainty remaining and blur the bound in figure 5 to indi-
cate this. In particular, if the bound onGµ turns out to be significantly weaker than the quoted
limit, observable GWs from axion strings would be allowed for arbitrarily small axion masses.

4.5 The case N > 1

In the previous sections we have performed our analysis assuming that the U(1) breaking
scale v equals the axion decay constant fa. Our results are however easily generalised when
N = v/fa > 1. In this case additional explicit breaking of the remaining discrete symmetry
must be present to avoid the domain walls over-closing the Universe [102], and this breaking

43On the other hand, loops are expected to oscillate many times before disappearing and at large distances
the gravitational field averaged over one oscillation is the usual Newtonian potential, which affects the motion
of bodies like conventional matter.

44It would be particularly challenging to accurately determine constraints around ma ∼ 10−28 eV, given
that the string network is being destroyed by domain walls around the time of decoupling in this case.
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must be sufficiently large that axion emission from domain walls does not produce a too
large dark matter abundance (as previously, our constraints from the dark matter abundance
considering emission from the string network are conservative).

First we observe that the calculation of the axion and GW emission from the strings
depends on v, which enters in eq. (2.1) and therefore determines the string tension in eq. (2.3)
and the emission rates Γa and Γg. Thus, the GW spectrum in eq. (3.12) and figure 4 is valid
for a generic v with the substitution fa → v. Similarly, the bounds from dark radiation and
CMB anisotropies in sections 4.2 and 4.4 and figure 5 apply to v.

On the other hand, since the decay constant fa determines the axion potential V ∝
m2
af

2
a , a v 6= fa affects the dark matter abundance and isocurvature perturbations discussed

in sections 4.1 and 4.3. In all our calculations in those sections the scale v enters only through
the inputted axion energy density spectrum from the scaling regime, and it appears together
with ξ? log? (in particular, ∂ρa/∂k ∝ v2ξ? log?). The dark matter abundance in eq. (4.1) is
therefore easily generalised by substituting ξ? log? → N2ξ? log?. However, as discussed in
section 4.1, if N � 1 one needs to account for the number density non-conservation. This
is done by multiplying eq. (4.1) by the suppression factor in eq. (C.3), which makes Ωst

a ∝
(N2ξ? log?)3/4 (instead of a quadratic dependence on N). A similar change occurs in eq. (4.5)
via the DM abundance (notice that C depends on ξ? log?, and needs to be recomputed).

The overall effect of N > 1 can therefore be summarised by substituting fa → v in
figures 4 and 5, but with a stronger constraint from dark matter overproduction (by a factor
O(N3/2) on the vertical axis of figure 5).

5 Peccei-Quinn restoration in the early universe

The post-inflationary scenario occurs if the U(1) symmetry has ever been restored after infla-
tion. In this section we first review two standard mechanisms that lead to such a restoration,
as well as another well known possibility (albeit more dependent on the details of the inflaton
couplings and the axion sector). Then we discuss other ways that symmetry restoration can
occur for axion decay constants fa & 1014 GeV.

• Quantum fluctuations during inflation induce perturbations in any effectively massless
scalar field present at this time. These have amplitude of order HI/2π, where HI

is the Hubble parameter during inflation, so restore the PQ symmetry if HI/2π &
fa [103, 104]. However, the current bound on HI from the non-observation of tensor
modes is [105]

HI

2π < 9.6× 1012 GeV . (5.1)

Consequently such fluctuations do not lead to the post-inflationary scenario for values
of fa that give observable GWs.

• The PQ symmetry can be restored if the (maximum) temperature Tmax during reheating
is greater than fa. In particular, if the sector that gives rise to the axion is sufficiently
close to thermal equilibrium at this time, finite temperature corrections drive the min-
imum of the scalar potential to the PQ-preserving vacuum for many choices of matter
content and potentials (including eq. (2.1)) [106–108].45 In this case, the PQ symmetry
spontaneously breaks when the temperature subsequently drops [110–112].

45High temperature does not restore symmetries in all theories, and the relevance of this to the formation
of topological defects has been studied in [109].
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If the inflaton decays relatively fast, Tmax is parametrically larger than HI . Conse-
quently, the PQ symmetry is restored even for decay constants such that fluctuations
during inflation are not sufficient. To illustrate this we parametrise the inflaton ϕ’s
decay rate Γϕ = εHI . The Universe enters radiation domination at a temperature TRH
such that Γϕ = H(TRH), so

TRH '
(

ε

0.001

)1/2 ( HI

Hmax

)1/2
3× 1014 GeV , (5.2)

where Hmax is the maximum value of Hubble during inflation allowed by eq. (5.1).46

For instance, suppose the inflaton’s potential is of the form V (ϕ) = 1
2m

2
ϕϕ

2 in the part
of field space where reheating occurs, and that

〈
ϕ2〉 'M2

P at the start of reheating so
mϕ ' HI . Then, if the inflaton decays to fermions ψ though a coupling L ⊃ gϕψψ, we
have ε ' 0.03g2 and TRH ' g 1015 GeV for HI = Hmax.
Moreover, the energy density in radiation is even larger at the start of perturbative
reheating, while the inflaton still dominates the energy density of the Universe. If the
system is sufficiently close to thermal equilibrium that it can be assigned a temperature
at this point, the largest temperature it reaches is Tmax ∼ M

1/4
P H

1/4
I T

1/2
RH [113].47 In

particular, parametrising the inflaton decay rate as before,

Tmax =
(

ε

0.001

)1/4 ( HI

Hmax

)1/2
1015 GeV . (5.3)

Efficient thermalisation indeed occurs for some couplings and matter content (e.g. if
this happens through interactions with massless gauge bosons, see [114, 115]). In this
case temperatures close to Tmax are achieved and if fa ' 1014 GeV the PQ symmetry
is restored even for ε� 1, i.e. for inflaton decay rates Γϕ � HI .

• Additionally, for many types of interaction, the inflaton expectation value during in-
flaton restores the PQ symmetry if it couples to the PQ sector, provided the coupling
is large enough [116–119]. Depending on the details of the theory, the PQ symmetry
might then break during inflation (as the inflaton evolves towards its final expectation
value), or during reheating (once the inflaton is settling down e.g. to 〈ϕ〉 = 0). In many
theories the inflaton expectation value is large compared to other scales, so this restores
a PQ symmetry with large fa even if the inflaton only has relatively weak couplings.
As an example, suppose the axion comes from a complex scalar φ with the potential of
eq. (2.1) that has an interaction with the inflaton

Vint = 1
2gϕ

2|φ|2 , (5.4)

and the inflaton has a non-zero expectation value 〈ϕ〉 during inflaton and evolves to-
wards the minimum of its potential at ϕ = 0 (similar potentials and interactions have
been widely considered, see e.g. [116, 120–122]). The interaction eq. (5.4) brings the
expectation value of φ to zero if, during inflaton, the inflaton satisfies

g
〈
ϕ2
〉
> m2

r . (5.5)
46In determining the numerical prefactors in these expressions we assume that the number of degrees of

freedom that are thermalised is approximately similar to the standard model high temperature value gs ∼ 100.
47The analysis of the inflaton’s decay via perturbative processes is only consistent if Γϕ � mϕ . HI so

ε� 1 and Tmax � TRH as expected.
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Consequently, if 〈ϕ〉 ∼ MP the PQ symmetry is restored by couplings g ' m2
r/M

2
P,

which is tiny, ∼ 10−6, even for mr ∼ fa ∼ 1015 GeV. If all of the inflaton’s couplings
are of this size the temperature of the Universe after inflation is never close to fa (as
can be seen from eqs. (5.2) and (5.3), e.g. with ε ' 0.03g2 in the previously discussed
example model).48

Summarising, (perturbative) reheating restores the PQ symmetry by thermal correc-
tions to the PQ potential even for large fa provided HI is fairly close to Hmax and the
inflaton decay rate and thermalisation are fast. In particular, from eq. (5.3), inflaton decay
rates corresponding to ε ∼ 10−3 restore the PQ symmetry provided fa . 1015 GeV (this
would require e.g. g = O(1) in the interaction with fermions).49 However, if the inflaton
has interactions with the axion sector of this size then in many theories the PQ symmetry
is restored directly during inflation regardless of reheating, and this also happens for much
smaller couplings for which perturbative reheating is not enough to restore the symmetry.
Moreover, as we will see in the following, if the inflaton has interactions with couplings
& 10−5 non-perturbative processes are often important during reheating. This sometimes
restores the PQ symmetry for couplings of a size that do not lead to restoration during the
subsequent perturbative reheating.

In the remainder of this section we discuss how couplings between the inflaton and the
axion sector that restore the PQ symmetry during inflation can be accommodated in complete
theories of inflation; and also how non-perturbative reheating, known as ‘preheating’ leads
to symmetry restoration (both these possibilities have previously been considered in various
contexts). We finally show that, in some axion models such as the KSVZ model, the PQ
symmetry is restored at temperatures much less than fa if the mass of the radial mode is
much smaller than fa.

5.1 Symmetry restoration during inflation

Interactions between the inflaton and the sector that gives rise to the axion might simply
be present without playing a role in inflation. In appendix H.1 we show that symmetry
restoration via eq. (5.5) indeed occurs without disrupting the slow roll conditions in an
example model. Another possibility is that the axion sector plays a role in inflation. For
instance, the complex scalar φ with the potential in eq. (2.1) could be the additional field
needed in the so-called ‘hybrid’ inflation scenario. As reviewed in appendix H.1, in hybrid
inflation the inflaton expectation value causes symmetry restoration in another sector, e.g.
via the interaction in eq. (5.5). The parameters of the theory are fixed so that vacuum energy
due to this symmetry restoration (e.g. ∼ f4

a ) dominates the energy density of the Universe.
This relaxes the slow roll constraint on the inflaton potential, V ′MPl/V � 1, by giving a
large contribution to V . Inflation is therefore possible with sub-Planckian field values (and
smallHI) [124, 125].50 Inflation ends when the inflaton expectation value evolves enough that
the (e.g. PQ) symmetry breaks, which naturally leads to topological defects. The fact that
cosmic strings form in many models of hybrid inflation has previously been analysed [128–
134], focusing on gauged (i.e. local) strings, and axion strings similarly form in some theories.

48Strings might also form in the case that interactions with the radial mode displaced φ to large field values
� fa during inflation, as small initial fluctuations are amplified as the field subsequently oscillates around the
φ = 0 [123], but we do not study this possibility in detail.

49We note that large inflaton couplings may lead to contributions to the inflaton potential, either directly
or through radiative corrections, that necessitate fine tuning.

50This avoids the substantial fine tuning characteristic of many other small field models (see e.g. [126, 127]).
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In appendix H.1 we analyse a hybrid model in which φ has the potential in eq. (2.1) and
the interaction in eq. (5.4) and show that for any inflaton expectation value that satisfies
fa < 〈ϕ〉 . MP there is an allowed range of g ∈ [f2

a/ 〈ϕ〉
2 , 1] such that hybrid inflation

occurs. Although the range of g that leads to symmetry restoration is no larger than when φ
plays no role in inflation, in these theories the restoration of PQ symmetry enables inflation
in the first place rather than this being an ad hoc feature of the model.

5.2 Parametric resonances

For some inflaton couplings and potentials, non-perturbative processes transfer an order
one fraction of the inflaton’s energy to other fields within O(10) oscillations around the
minimum of its potential. These effects are known as preheating, and they stem from a Bose
enhancement of the inflaton decay rate due to the growing occupation number of the modes
it decays into. A detailed analysis shows that modes that have frequencies inside particular
resonance bands are amplified exponentially fast (until either backreaction or scattering cuts
off the growth or the expansion of the Universe moves the mode out of the resonance band),
and the resulting energy densities are far higher than are ever reached during perturbative
reheating. Depending on the inflaton couplings, there are two different regimes, known as the
broad and narrow resonance. Preheating and the resulting effective temperature have been
considered analytically in the broad resonance [135, 136] and narrow resonance cases [137],
and through lattice simulations in the broad resonance case [138, 139].

We review preheating in more detail in appendix H.2, and determine in which theories
it restores a PQ symmetry with a large fa. One possibility is that preheating occurs to the
radial mode directly, e.g. through the interaction in eq. (5.4) leading to fluctuations that are
of order fa. However, we show that for values of fa relevant for GW searches, preheating
is only efficient enough for couplings such that the inflaton expectation value restores the
symmetry during inflation anyway. This is because the large radial mass reduces the width of
the resonance band preventing efficient energy transfer unless g is large. On the other hand,
we also show that preheating leads to the PQ symmetry being restored (in models in which
this would otherwise not occur) if the preheating is to some other, effectively massless, scalar.
In particular, in some models a PQ symmetry with fa = 1015 GeV is restored for inflaton
couplings that give a maximum temperature during perturbative reheating Tmax . 1012 GeV.

5.3 Symmetry restoration with a light radial mode

Finally, we show that if the radial mode (and additional PQ quarks) are light, the PQ phase
transition happens at temperatures that are lower than fa. Consequently, PQ symmetry
restoration happens for reheating temperatures lower than if the mass of the radial mode is
around fa (which as discussed, typically requires temperatures & fa).

As an example, we consider the Lagrangian in eq. (2.1), with a quartic λ = m2
r/f

2
a � 1,

with the radial mode coupled to fermions ψ through a term of the form V ⊃ gφψψ (such inter-
actions are present e.g. in the KSVZ QCD axion model) with g � 1. The thermal contribution
to the finite temperature potential VT of φ from such fermions is VT ' T 2m2

ψ(φ) = g2T 2φ2,
and this produces a minimum at φ = 0 if g2T 2φ2 & m2

rφ
2. Moreover, we demand that

T & gfa, which ensures that the fermions (which have mass g 〈φ〉) are present in the thermal
bath at 〈φ〉 = fa. This guarantees that the finite temperature potential has no symme-
try breaking minimum, so the PQ symmetry is restored regardless of the initial field values
(which depend on e.g. the dynamics during inflation). In appendix H.3 we show that these
parametric expectations are confirmed in a full analysis of φ’s thermal potential (results
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are shown in figure 22). Additionally, the condition g4 . (16π2)m2
r/f

2
a required for the

stability of g under perturbative corrections is automatically satisfied given the inequalities
above. Consequently the minimum temperature required to restore the PQ symmetry Tmin
is approximately given by

Tmin ' Max
(
mr

g
, gfa

)
. (5.6)

Depending on the value of g, this means that Tmin can be as small as
√
famr. For example,

taking fa ∼ 1014 GeV and mr ∼ 108 GeV the PQ symmetry could be restored at a tempera-
ture of 1011 GeV, which is reached during perturbative reheating even for inflaton couplings
that are much less than 1.51 Importantly for this scenario, the energy that an axion string
network emits to GWs is dominantly set by the value of fa rather than mr (having mr � fa
only affects the logarithm entering the string tension). Consequently, the GW predictions
in section 3 are suppressed only by a factor of log4(mr/H(Tf ))/ log4(fa/H(Tf )), and remain
observable for fa & 1014 GeV provided mr is not extremely small.

6 Summary and conclusions

Gravitational wave observations can only be used to learn about physics beyond the Standard
Model if we understand the spectrum expected in motivated theories. In this paper we have
made a step towards such a goal by studying the GWs emitted by the network of global
strings that forms in the early Universe in a generic axion model if the U(1) symmetry has
been ever restored after inflation.

During the subsequent scaling regime GWs are produced by the motion and interactions
of strings. Calculating the resulting spectrum directly from numerical simulations is impossi-
ble, as these only have access to a small range of early times. However, in section 3.1 we have
shown that the Nambu-Goto effective theory with the Kalb-Ramond term — which describes
the parts of the string network for which the string thickness can be neglected — gives us
analytic control of the GW emission Γg at all times, up to an (order one) constant coefficient
r related to shape of the string trajectories during scaling. In particular, Γg/Γa = rGµ2/f2

a ,
where Γa is the emission rate into axions and is fixed by energy conservation. As shown in
section 3.3, this result is reproduced spectacularly well by first principles numerical simu-
lations of the string network (at the accessible small values of log(mr/H)), from which we
have extracted the value of r together with the momentum distribution of Γg (this is peaked
at momenta of order Hubble and falls off at higher momenta as ∝ 1/k2). The existence
of the attractor solution then allowed us to reconstruct the GW spectrum from the entire
scaling regime, and our results are shown in section 3.4. Due to the logarithmic increase of µ
(and of ξ), the spectrum has substantial deviations from scale invariance. This enhances its
amplitude at low frequencies, and makes it observable by multiple planned experiments for
fa & 1014 GeV. Importantly, the detection prospects are not significantly altered by the re-
maining uncertainties. We note that similar scaling violations have previously been predicted
in the GW spectrum from global strings, using models aiming to capture the emission from
small loops, and we discuss the relation of our work to the existing literature in appendix F.

In passing, we noted the remarkably self-consistent picture of the scaling regime arising
from numerical simulations. In particular, the logarithmic scaling violations of many of the
observables seem to be a part of the scaling regime (for instance ξ and the power law qa of

51The price of this is that small mass radial mode mass may necessitate fine tuning, although this could be
evaded e.g. if this sector is supersymmetric with a breaking scale . mr.
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the instantaneous emission spectrum of axions ∝ 1/kqa both increase logarithmically with
time). This is particularly convincing because the energy emitted in axions and radial modes
in the simulations is reproduced precisely by the energy emission rate in eq. (2.5) with the ξ
in eq. (2.4) and string tension in eq. (2.3), see appendix 3.3. Moreover, the theoretical expec-
tation that Γg/Γa ∝ Gµ2/f2

a (for trajectories with a fixed shape) is matched in the numerical
simulations of the scaling regime, which suggests that the scaling solution in which ξ increases
logarithmically is self-similar (showing that this increase is not a transient). Additionally,
the GW spectrum shows the similar features as the axion spectrum, but with q > 1. This
suggests that indeed our extrapolation of the axion spectrum is correct and that qa > 1 at
large log (when the axion will be more weakly coupled to the string cores, like the GWs are).52

In section 4 we studied other general properties of axions in the post-inflationary scenario
(including their dark matter abundance, contribution to dark radiation, and isocurvature per-
turbations), which led to complementary constraint on the axion mass and decay constant.
This analysis shows that for all masses in the range 10−28 eV . ma . 10−17 eV ultralight
axions can have decay constants large enough (fa & 1014 GeV) to lead to observable GWs.
The upper limit on ma comes from dark matter overproduction, while the lower limit comes
from CMB observations (see figure 5). As discussed in section 4.4, this last limit is particu-
larly uncertain and a revised analysis of Gµ from CMB anisotropies could make it irrelevant
by weakening the lower bound on fa for ma . 10−28 eV. In particular, our results exclude the
possibility that GWs from QCD axion strings during scaling are observable, assuming a stan-
dard cosmological history, since the dark matter bound in this case requires fa . 1010 GeV.53

As well as constraints, the phenomenological features discussed in section 4 also lead
to complementary observational signals of ultralight axions in the post-inflationary scenario,
including ∆Neff and isocurvature perturbations. For values of fa that lead to observable GWs
these are close to current bounds, and within reach of future improvements. Moreover, a PQ
symmetry with large fa is most easily restored in the early Universe for large Hubble during
inflation, so tensor modes with an amplitude close to the current observational upper bound
might be present if GWs from strings are discovered. We also see that any interpretation
of the recent possible GW signal by the pulsar timing experiment NANOgrav as being from
global strings of an ultralight axion is in tension with cosmological observations. Although
we do not attempt a detailed analysis of the possible signal, from figure 4 a GW signal of
the observed magnitude (with a standard cosmology) requires fa & 1015 GeV, which from
figure 5 is in conflict with bounds on ∆Neff from BBN.54

We also note that the small axion masses mentioned above are theoretically plausible,
see e.g. [142] and references therein. It appears inevitable that quantum gravity will explicitly
break all global symmetries [143–145], including the PQ one. The resulting breaking is often
exponentially suppressed (e.g. in the ratio fa/MP [146, 147]) and could therefore lead to the
required ultra-light masses.

Finally we consider the remaining open questions and directions for future work. From
a theoretical direction, it would be valuable to understand further which classes of axion

52It would be useful to reach large enough log to directly see qa > 1, possibly employing adaptive mesh
refinement approaches such as the one used in [140].

53We cannot exclude signals from the subsequent dynamics of domain walls.
54The power law of the spectrum extracted by NANOgrav might also suggest that the signal is not ap-

proximately scale invariant as is predicted by global strings. GWs from QCD axion strings in non-standard
cosmologies has been recently considered in [70], which modelled the GW emission from loops and suggested
that the NANOgrav result could be interpreted as the emission from QCD axion strings if the equation of
state is w < 1/3 [141].
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models cosmic strings can form in. In particular, we have focused on axions that arise as
the PNBG of a symmetry that is realised in four dimensional Lagrangian (e.g. from a scalar
with a symmetry breaking potential or a new sector that runs into strong coupling, i.e. a
composite axion model). Such axions can appear in string theory models from the closed
string sector [12]. However, in string theory compactifications axions often come from the
open string sector. Although the conventional picture is that cosmic strings cannot form in
this case, given the uncertainties surrounding early Universe cosmology and de Sitter vacua
in string theory we believe this merits further study.

It would be also useful to explore the boundary between the pre- and post-inflationary
scenarios (as a function of the masses of the radial mode and PQ fermions) in the QCD axion
case in more detail. For instance, in the KSVZ QCD axion model [148, 149] the extra fermions
required to induce the PQ anomaly can lead to PQ symmetry restoration at temperatures
parametrically below fa if the radial mode is light, in the same way as in the example theory
we studied in section 5.3 and appendix H.3.

Another direction in which to extend our work is the study of local strings, which arise
from a spontaneously broken gauged U(1) symmetry. In a system of local stings all the
degrees of freedom are massive, and, when the Hubble parameter is much smaller than the
UV physics scale, the energy might be radiated only in GWs. However, the emission of heavy
modes is efficient at small values of log(mr/H) (where mr is the mass of the heavy modes).
Consequently, extrapolation will be essential to determine the GW spectrum at observable
frequencies.55

We also note that the GW signals from axion strings are fairly close to the maxi-
mum reach of proposed detectors. Consequently, continued detailed analysis of astrophysical
foregrounds will be essential if such signals are to be identified.56 Although challenging,
subtraction of e.g. the foreground from neutron star and black hole binaries in the BBO
frequency range appears feasible [152]. A careful study of the impact of the foregrounds on
the prospects of the detecting GW signals from strings in different frequency ranges would
be worthwhile in the future.
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A More details on GWs from strings

In this appendix we give more details on the analytic derivations of section 3. In particular,
we will discuss the GW emission from Nambu-Goto strings in appendix A.1 and from the
whole scaling regime in appendix A.2.

A.1 Axions and gravitational waves from Nambu-Goto strings

In this appendix we derive eq. (3.5) in detail and compute the coefficients ra[X] and rg[X],
showing that they are invariant under rescaling of the string trajectory.

Eq. (3.5) can be rewritten in terms of the transverse metric fluctuation Hµν ≡ hµν −
1
2η

µνh and reads ∂α∂αHµν = 16πGTµνs . At large distance r ≡ |~x| from the region where the
trajectory ~X is localised, eq. (3.3) and this last equation provide the axion and gravitational
wave field

Aµν = fa

2
√

2r

∫
dσ
(
ẊµX ′

ν −X ′µẊν
)
, (A.1)

Hµν =4Gµ
r

∫
dσ
(
ẊµẊν −X ′µX ′ν

)
, (A.2)

where we neglected terms that decay faster than 1/r. The right hand sides of eqs. (A.1)
and (A.2) are evaluated at the retarded time t′ = t − |~x − ~X|, which at this order in 1/r
reads t′ = t− r + ~X · ~n with ~n ≡ ~x/r. Clearly eqs. (A.1) and (A.2) verify the wave relations
∂αH

µν = nαḢ
µν with n0 ≡ 1 (so that n2 = 0) up to 1/r2 terms. The harmonic gauge

condition is rewritten as ∂µHµν = 0 which implies the relation nµḢµν = 0 for the solutions
of eqs. (A.1) and (A.2).

The axion and gravitational wave energy radiated per unit time at infinity is given by
dE/dt ≡ −

∫
d3xṪ 00, where Tµν is the energy momentum tensor of the axion (from the

second term in eq. (3.1)) or the gravitational waves, which are respectively

Tµνa =FµαβF ναβ −
1
6η

µνFαβγFαβγ , (A.3)

Tµνg = 1
32πG

(
∂µH

αβ∂νHαβ −
1
2η

µν∂αH∂
αH

)
, (A.4)

with H = Hα
α . We can use the conservation of Tµν and Gauss theorem to rewrite dE/dt =∫

d3x∂jT
j0 =

∫
dΣjT j0 where the last integral is done on the sphere at spatial infinity. So,

dE

dt
= lim

r→∞
r2
∫
dΩnjT j0 . (A.5)

Plugging eqs. (A.1) and (A.2) into eqs. (A.3) and (A.4), and then plugging these in eq. (A.5),
the whole (neglected) subleading dependence on 1/r vanishes in the limit and we obtain
eq. (3.5). For instance, the coefficient for the gravitational wave emission is

rg[X] =
∫
dΩ
2π

{[∫
dσ∂t(ẊµẊν −X ′µX ′ν)

]2
−
[1

2

∫
dσ∂t(Ẋ2 −X ′2)

]2
}
, (A.6)

where again the right hand side is evaluated in t′ = t − r + ~X · ~n. A similar equation holds
for the axion emission. The parameter σ can be taken to parametrise the string trajectory
at a fixed time, and in this case it runs in the interval [0, L] where L is the length of the
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string trajectory. As initially claimed, eq. (A.6) is invariant under the rescaling t → αt and
L → αL (and ~x → ~x). This can be easily seen by noticing that57 Xµ(αt, σ) = αXµ(t, σ/α)
and making the change of variable σ → ασ.

Note that in the nonrelativistic limit the dependence on ~n in t′ is subleading and one can
perform the angular integral in eq. (A.6) exactly. The result is the well known quadrupole
approximation

ra[X] =2π
3

[∫
dσ∂t(ẊiX ′

j − ẊjX ′
i)
]2
, (A.7)

rg[X] =1
5

{[∫
dσ∂3

t (ẊiẊj)
]2
− 1

3

[∫
dσ∂3

t (ẊiẊi)
]2
}
. (A.8)

A.2 GW spectrum during the scaling regime

In this appendix we give more details on the derivation of the GW spectrum in eqs. (3.9)
and (3.12). We perform in eq. (3.8) the change of variable x = k′/H(t′) with k′ ≡ kR/R′,
and use eqs. (3.6) and (2.4). As a result, for R ∝ t1/2 and in the large log limit

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2
∫ k/H

max
[
x0,

k√
HH1

] dxFg [x, y] log4
(
x2mrH

k2

)
, (A.9)

where y ≡ mrk
2/(Hx2) and, as mentioned in section 3.2, we approximated the momentum

distribution to be Fg[x, y] = 0 for x < x0. For k < x0
√
HH1, the lower extreme of the

integral in eq. (A.9) is just x0. Approximating the momentum distribution with a single
power law, i.e.

Fg[x, y] =
{

(q−1)xq−1
0

xq x ∈ [x0, y]
0 x /∈ [x0, y]

, (A.10)

eq. (A.9) for k < x0
√
HH1 leads to

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2 log4
(
mr

H

){(
1− 2log(k/k0)

log

)4
−
(
k0
k

)q−1
+

+ 8
(q − 1) log

[(
1− 2log(k/k0)

log

)3
−
(
k0
k

)q−1]
+

+ 48
(q − 1)2 log2

[(
1− 2log(k/k0)

log

)2
−
(
k0
k

)q−1]
+ · · ·

}
,

(A.11)

where k0 ≡ x0H and the dots stand for terms proportional to further inverse powers of
(q − 1) log (up to (q − 1)−4 log−4). In the large log limit and as long as q − 1 remains
definitely larger than 1/ log, only the first two terms in eq. (A.11) survive (see also the
discussion in section 3.2). The second term in eq. (A.11) is negligible for k & x0H,58 and the

57This is because, by dimensional analysis, Xµ(t, σ) must be proportional to σ times a dimensionless function
of all the other parameters on which Xµ depends, i.e. t/σ, L/σ and t/L, etc. . Such a function is therefore
left invariant by the mentioned rescaling.

58This term encodes the IR profile of ∂ρg/∂ log k, and as visible in figure 3 is not well resembled by the
simple assumption of a hard IR cutoff for Fg[x, y].
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first terms indeed corresponds to the full eq. (3.9). For higher momenta, k > x0
√
HH1, the

lower extreme in eq. (A.9) is k/
√
HH1 and the integration gives

∂ρg
∂ log k [k, t] = 8π3c1rGf

4
aH

2 log4
(
mr

H

)[
x0
√
HH1
k

]q−1 [
1−

(
H

H1

) q−1
2

+ · · ·
]
, (A.12)

which gives the dependence on 1/kq−1 mentioned in section 3.2 (the dots stand again for
subdominant (q − 1)−1 log−1 corrections).

Note that if the effective number of degrees of freedom in thermal equilibrium g is
not constant, entropy conservation (gR3T 3 = const) and the Friedmann equations (H2 =
1/(2t)2 ∝ gT 4, valid away from particle thresholds) imply R ∝ g−1/12t1/2. In this case,
neglecting time derivatives of g, the same change of variable as before provides the overall
factor (g(tk)/g(t))1/3 in eqs. (A.9), (A.11) and (A.12), plus a change in the argument of the
logarithms of a factor (g(tk)/g(t))1/6, which is extremely negligible. Finally, we observe that
the spectrum in eq. (A.11) is has a very similar form as the axion spectrum in appendix E.1
of [27], with however two more powers of log since Γg/Γa ∝ log2 at large log.

From the end of the scaling regime (when H = H?) to today the GWs redshifts freely,
i.e. dρg

d log k [t0, k] = (R?/R0)4 dρg
d log k [t?, kR?/R0]. From eq. (3.9) and conservation of entropy

density, we get the spectrum today in the log� 1 limit

dΩgw
d log k = c1π

4rf4
a

90M4
P

g0T
4
0

ρc

(
g0
gk

)1/3
log4

[
3
√

10g1/6
? MPk

2

πx2
0g

2/3
0 mrT 2

0

]
, (A.13)

where T0 and g0 are the temperature of photons and the effective number of relativistic
degrees of freedom today. Eq. (3.12) is the numerical evaluation of eq. (A.13) and is valid
in the momentum range x0H?(R?/R0) < k < x0

√
H?H1(R?/R0). Although eq. (A.13) is a

very good approximation of the spectrum at large log, as mentioned in section 3.4 to obtain
the lines in figure 4 we integrated numerically eq. (3.8), accounting for the smooth change
in g and using a double power-law form for Fg[x] (this resembles well the simulation results
of figure 3). In particular we used Fg[x] ∝ x3 for x . x0 and Fg[x] ∝ 1/x2 for x & x0, as in
eq. (38) of [23] with x2 →∞.

B Details of simulations

In our numerical simulations of the scaling regime we evolve the equations of motion of
eq. (2.1),

φ̈+ 3Hφ̇− ∇
2φ

R2 + φ
m2
r

f2
a

(
|φ|2 − f2

a

2

)
= 0 , (B.1)

on a discrete lattice. The details of our implementation are as in [23, 27] where extensive
further discussion may be found. In this appendix we simply summarise some key aspects,
and describe the extra features in our present work.

As mentioned in the main text, we study both the fat and physical string systems. The
latter has two advantages: 1) it takes a longer physical time for the maximum log to be
reached, and 2) the string core scale changes with time at the same rate as the momentum
redshifts, which means that axion waves emitted at the string core scale remain in the UV
part of the spectrum (this leads to a cleaner spectrum in the physically relevant region
k < mr/2, as discussed in [27]). In all cases we start from initial conditions that are close
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to the attractor solution identified in [23], with corresponding number of strings per Hubble
volume ξ represented in figure 6. This maximises the interval in log over which the properties
and changes in the attractor solution can be extracted. Such initial conditions are obtained
as in [27] by a procedure that gives strings with the correct core size, which avoids a large
amount of energy being emitted as axions and radial modes as the strings relax (and would
contaminate the subsequent axion spectrum, especially for the physical string system).

We calculate the GWs emission following the method developed in [153], to which we
refer for the details. In this approach, six independent fields uij , with uij = uji, are evolved
according to eq. (3.10), but sourced by the total energy momentum tensor (rather than its TT
part). The Fourier Transform (FT) of the GW field, hij(t,~k), is then obtained by projecting
the FT of uij as

hij(t,~k) =
(
Pil(k̂)Pjm(k̂)− 1

2Pij(k̂)Plm(k̂)
)
ulm(t,~k) , (B.2)

where Plm(k̂) ≡ δij − kikj/|~k|2 (it is indeed easy to see that hij solves eq. (3.10) if and
only if uij solves the same equation sourced by the total energy momentum tensor).59 This
procedure avoids the need to obtain the TT part of the energy momentum tensor at every
simulation timestep, which greatly reduces the computational cost. Instead FTs are only
required at particular timeshots when the hij are needed to evaluate the GW energy and
spectrum. We use the same approach when evaluating the GW emission at the time of
the axion mass turn on in axion only simulations, as studied in appendix D, simply by
substituting the appropriate energy momentum tensor.

As mentioned in section 3.3, numerical simulations including the GW backreaction
(analysed in appendix C.2) require that eq. (B.1) is evolved with the additional term
R−2hij∂i∂jφ on the left hand side, and thus the expression of hij needs to be known at
every timestep. For such simulations we calculate hij from uij via eq. (B.2) at all time steps
(by carrying out all of the required FTs and anti-FTs). Given the computational cost, we
limit ourselves to grids of size 8003 for this analysis, which allows log ' 6 to be reached. Such
a log is sufficient for the system to be in scaling and emitting axions with a momentum dis-
tribution with a gap between the IR peak and UV scale for an interval ∆ log ' 2, enough to
extract the time-dependence of the relevant physical observables. For our main simulations,
which are much less computationally demanding, we use larger grids, with 25003 ÷ 30003

lattice points.

C Further results from simulations

In this appendix we provide further results from the numerical simulations of the string
system. In particular, in appendix C.1 we give more details on the scaling regime and
the emission of radiation from long stings. In appendix C.2 we discuss the effect of the
backreaction of the GWs on the string network. Finally, in appendix C.4 and C.5 we describe
the end of the scaling regime for a temperature-independent mass and the power spectrum
of axion overdensities after the string network is destroyed.
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Figure 6. The number of strings per Hubble volume ξ for the fat (left) and physical (right) string
systems. The initial conditions that we use for the GW analysis, starting close to the attractor, are
plotted in black. The evolution of the system starting from other initial conditions (studied in [23, 27])
is shown for comparison.

C.1 The scaling regime

In figure 6 we show the evolution of the number of strings per Hubble volume ξ, where the
logarithmic increase mentioned in section 2 is evident. The black points correspond to the
simulations used in this work, while for comparison we also show data from [23, 27] starting
from different initial conditions and reaching larger log.60 As discussed in [23, 27], the data
clearly rules out any behaviour that saturates soon after log = 8. Moreover, for the most
overdense initial conditions, ξ first drops and then starts rising again, suggesting that the
logarithmic growth is not a transient but a part of the attractor solution.

As shown in [23], the logarithmic growth affects both long strings (defined to be the
strings with length much larger than H−1) and loops (which are all the other strings). In
particular, ξ restricted only to long strings — which we call ξL — is at any time during the
scaling regime a fixed fraction of ξ, i.e. ξL = fLξ with fL ' 0.814 for the fat string system
(this can be extracted from the jump of the cumulative distribution of ξ in figure 3 of [27]; this
jump makes the distinction between long strings and loops sharp). As a result, the fraction
of strings in loops is also constant. The fact that the proportion of length in long strings and
loops remains the same provides another convincing evidence that the logarithmic growth is
a property of the scaling solution.

Energy emission rate and long strings. As mentioned in section 2, in order to maintain
the scaling regime the energy that needs to be released from the string system is Γ = ρ̇free

s −ρ̇s.
We derived such a quantity in eq. (2.5) assuming that ρfree

s ∝ R−2 (see [23] for the details).
However, this derivation, strictly speaking, applies only to the part of the string network
whose energy decreases proportionally to R−2 in the free limit, which are only the long
strings.61 For the sake of a completely consistent treatment, we therefore split the energy
density in strings as ρs = ρLs + ρloops

s , where ρLs = ξLµL/t
2 is the energy in long strings and

ρloops
s the energy in loops. The tension of long strings µL is expected to take the form µth in
59See [154] for an analysis demonstrating that the lattice version of the projector does not introduce sys-

tematic errors.
60As mentioned, in our present simulations, evolving the fields uij adds to the computational cost, so to

gain sufficient statistics we use slightly smaller grids.
61Sub-horizon loops redshift as nonrelativistic matter in the free limit.
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eq. (2.3) during the scaling regime. The total energy lost by long strings, Γ = ρ̇free − ρ̇Ls , is
then correctly given by eq. (2.5) but with ξ substituted with ξL, i.e.

Γ = ξLµth
t2

[
2H − ξ̇

ξ
− πf2

a

µth

(
H + η̇

η
− 1

2
ξ̇

ξ

)]
, (C.1)

where for convention we evaluate µth with ξ (rather than ξL: the difference is a constant
reabsorbed in η) and in the square bracket we can use ξ instead of ξL given that they are
proportional.

The energy Γ lost by long strings is either directly converted into axion and radial mode
radiation (Γrad), or lost by the formation of string loops (Γloops), which continually arise from
the intersection of long strings and then decay into radiation. Therefore Γ = Γrad + Γloops.
The total emission rate into axions and radial modes Γa + Γr from the network is the sum of
the energy emitted into radiation directly from long strings (Γrad) and the one from loops. If
such loops decay into radiation efficiently, this last quantity also equals the energy lost by long
strings by the formation of loops, Γloops. As a result, we expect Γ = Γa+Γr. In the following
we will show that numerical simulations reproduce this expectation remarkably well.

We stress that in this picture the energy emitted into radiation Γa+Γr originally comes
from long strings. However a part of it comes directly from long strings (Γrad), and the other
via loops that decay (Γloops), which thus act as an efficient mean dissipation of the energy that
is originally in long strings. So, although fixed by Γ in eq. (C.1), the eventual emission into
axions happens through both long strings and loops, which is why in section 3.1 we studied
a generic trajectory, which includes long strings and loops. Similarly, the total emission into
GWs, which for a trajectory with a fixed shape is proportional to the one into axions (see
section 3.1), depends on both long strings and loops, but we will refer to Γg as the sum of the
two (Γg will have a contribution from long strings and another from loops, which we will not
distinguish, as we cannot distinguish them in simulations). In the following, by proving that
Γ = Γa + Γr, we will see that this picture agrees with the evolution of the physical system at
least at small log. We will comment on the possible changes of this picture if the energy is
not emitted efficiently from the decay of loops at large log.

Similarly to [23, 27], during the evolution of the field we extract the energy densities in
axions ρa and radial modes ρr (that are present at a generic time) from the kinetic energies
〈ȧ2〉 and 〈ṙ2〉, where the averages are done over spatial points away from the string cores (to
avoid the contribution from the strings). The emission rates are then calculated as the time
variation of these energies, namely Γa = R−4 d

dt(R4ρa) and Γr = R−z ddt(Rzρr) where z = 4 for
the fat strings.62 For the physical system the redshift factor is 3 < z < 4, and can be calcu-
lated as

∫
dkz[k/mr]∂ρr/∂k where z[k/mr] ≡ 3+(k/mr)2/((k/mr)2 +1) is the redshift factor

of one mode with momentum k (the spectrum of radial modes ∂ρr/∂k can be found in [27]).63

In figure 7 we show the numerical results for Γa and Γa + Γr for the fat and physical
systems (we use the data from the 45003 grids of [27], reaching log = 7.9). To allow the direct
comparison with the previous discussion, the results are normalised to the theoretical expec-
tation in eq. (C.1) for the total emission rate Γ. In this last equation the (only) free constant

62Irrespectively of whether they are relativistic or not, free radial modes in the fat string system have
energy

√
k2 +m2 that redshifts as R−1, given that mr ∝ R−1 (so the energy density redshift as R−4 assuming

comoving number density conservation).
63This is easily seen by calculating d logE/d logR where the energy E is E = ncom(R0/R)3 ·√
m2
r + k2

com(R0/R)2 and assuming comoving number density conservation dncom/dR = 0 and using
dkcom/dR = 0.
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Figure 7. The energy density emitted in axions and radial modes, Γa and Γr, during the scaling
regime calculated in the simulation, normalised to the theoretical expectation of the total emission
rate from (long) strings Γ in eq. (2.5) after fitting the (constant) value η, defined in eq. (2.3). The fact
that Γa + Γr coincides with the theoretical expectation Γ is a confirmation that the emission rate is
described by eq. (2.5) and that the string tension is reproduced by µth in eq. (2.3) for a fixed value of η.
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Figure 8. The dependence of the ratio (Γa + Γr)/Γ on the choice of the parameter η. Values of η
outside the intervals 0.8 ÷ 1.1 and 0.4 ÷ 1.5 for the fat and physical strings respectively (shown in
light gray) do not lead to a constant ratio, signalling that they are not able to reproduce the emission
and therefore the sting tension.

parameter η has been fitted in such a way that (Γa + Γr) /Γ equals unity. The fact that Γ re-
produces Γa+Γr over more than four e-foldings in time (especially clearly for the fat system) is
a remarkable confirmation of the theoretical picture described above. In particular this shows
that the form eq. (2.5) captures the total emission rate during scaling when ξ is restricted
to the only long strings, that such emission happens either directly or via loops, and that
eq. (2.3) reproduces the effective string tension µL even at small log for a fixed choice of η.64

We now discuss the details for fat and physical strings separately. For the fat string
system, shown in figure 7 (left), the agreement between Γ and Γa + Γr is excellent and η is
fixed precisely. The value of η selected by the fit (in which we consider only log > 4 data
and, as mentioned, we evaluate Γ using fL = 0.84), is

√
4πη ' 0.95. This is close to 1/

√
4π,

which is the value this parameter would get if all the long strings were straight and parallel
to each other.65 Although such η reproduces the emission, we assign to it a conservative 15%

64Another approach to measure the string tension would be by subtracting the energy in waves, as was done
in [27], which leads to compatible results.

65This is seen requiring that the argument of the log in eq. (2.3) equals the inter-string distance in units
of m−1

r .
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uncertainty, i.e
√

4πηfat = 0.95(15). This uncertainty is estimated by looking at how much
the ratio (Γa + Γr)/Γ varies with log for different choices of η: as shown in figure 8, if

√
4πη

is outside the range 0.8 ÷ 1.1 the ratio is not constant, suggesting that the choice of this
parameter outside this range is not appropriate to describe the emission.6667 Notice that the
agreement between Γ and Γa + Γr for the value of fL = 0.84 extracted from the jump of loop
distribution is remarkable, and is a particularly convincing confirmation of the theoretical
discussion above. Even more remarkably, leaving both η and fL as free parameters in the
fit (Γa + Γr)/Γ = 1 provides a similar value of η and a value of fL that differs by less than
1% from the one extracted from the loop distribution. Notice also that, as mentioned in
section 2, and shown more in detail in [27], radial modes are still produced (i.e. Γr 6= 0),
though increasingly less with respect to axions (i.e. Γr/Γa diminishes), and it is indeed the
sum Γa + Γr that reproduces Γ.

The results for the physical system are shown in figure 7 (right), where we calculate the
derivative averaging over ∆ log = 0.1 (shaded lines) and over ∆ log = 0.4 (solid lines). For
such a system some fluctuations are visible, and are particularly evident at early times and
with the smaller time averaging. As already noted in [27], these are related to parametric
resonance effects between the axion and radial modes, and possibly to the emission from
excited string cores due to imperfect initial conditions.68 As the value of fL is not known for
physical strings, in the fit (Γa + Γr)/Γ = 1 (done for log > 4.5) both the parameters η and
fL are allowed to vary. The best fit values correspond to fL ' 0.9 and

√
4πη ' 0.7, which

are those for which we evaluate Γ in figure 7 (right). As expected, the fit selects fL < 1,
and the parameters fL and η turn out to be remarkably very close to the fat string values.
As shown in figure 7 (right), despite the fluctuations, for such values of η and fL the ratio
(Γa + Γr)/Γ is in average close to unity at all times. The large fluctuations however lead to
a greater uncertainty on the actual value of η that reproduces the emission. Similarly to the
fat string system, we estimate this uncertainty by varying η and looking at the impact on
Γ. As is clear from figure 8 (right), all the η’s in the range 0.4 ÷ 1.5 give an approximately
constant ratio, while if they are outside this range the ratio starts tilting. We can take this
range as a conservative estimate for ηphys.

As in the fat system, the production of radial modes is non-negligible. However the
fluctuations make the time evolution of Γr/Γa more unclear than in the fat string system.
Notice that such radial modes are mildly relativistic (in particular, z ' 3.3 in the whole time
range; this turns out to be an essential information for getting a Γr 6= 0 from R−z ddt(Rzρr)).

Let us now discuss the GW emission Γg and r, defined in eq. (3.6). As mentioned in
section 3.3, the uncertainty on η translates into an uncertainty on the string tension µeff
(more precisely on µL; we discuss later the contribution of ρloops

s to ρs). This uncertainty
also affects the value of µth to be used in the calculation of rsim ≡ f2

aΓg/(Gµ2
thΓ) defined in

section 3.3.69 In figure 8 we show the value of rsim from different η’s chosen in the ranges
mentioned above (note that η enters both in µth and in Γ). Remarkably, the best fit value of
η selected by the above discussion leads a constant rsim. As described in the main text, this
matches the expectation from the Nambu-Goto effective theory, further confirms that the

66Note that indeed the definition of long strings is not completely fixed (and so fL), so in principle one can
just require the ratio to be a constant close to one rather than exactly one.

67For the fat string time derivatives are done averaging over ∆ log = 0.2.
68These effects are clearly visible in the axion instantaneous emission spectrum as studied in [27], which

has large oscillations at around the string core scale.
69As in the main text, Γg is calculated by averaging the time derivative of ρg over ∆ log = 0.2, which is

already consistent with the continuum limit.
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Figure 9. The dependence of f2
a Γg/(Gµ2

thΓ) on the parameter η, which enters the string tension µth
for the fat (left) and physical (right) string systems. We plot results for the range of η compatible with
the measured instantaneous energy emitted to axions and radial modes of figure 8. For the value of η
Across this range, the plotted ratio approaches a constant value, as is expected from the theoretical
analysis in section 3.1.

value of η reproduces the string tension and ensures the energy emitted into GWs can safely
be extrapolated to large log. As expected, larger (smaller) values of η lead to an increasing
(decreasing) rsim, which however tends asymptotically to the same constant. Although the
best fit values of η lead to a constant rsim, we conservatively estimate the uncertainty on
r from the one on η by varying ηfat and ηphys in the intervals mentioned before for which
(Γa+Γr)/Γ is constant, and considering the range in which rsim varies at the largest available
log = 7.4 for such η’s. For instance, rphys ranges in the interval 0.17÷ 0.34.70

The discussion above confirms that the tension of long strings µL is reproduced by µth,
i.e. ρLs = ξLµth/t

2, with the η fixed as before. As mentioned at the beginning, the energy
density in strings ρs = ρLs + ρloops

s however contains also the contribution from loops ρloops
s .

This in principle changes ρs and therefore could make the effective string tension µeff not
match µth anymore for the same value of η (note that µeff — and not µL — is the one
determining the GW emission, as GWs are emitted both from long strings and from loops,
and therefore should be the one that leads to a constant r = f2

aΓg/(Gµ2Γa), since Γg is the
total GW emission rate).

First, we expect a possible overall (constant, see [27]) factor on the total string tension
µeff due to the non-trivial boost factor of loops but, as mentioned in footnote 17 in section 3.3,
this gives an overall correction to µth and could be simply reabsorbed in the definition of r.
In particular, Γg defined in eq. (3.6) with r extracted from figure 1 still provides the correct
large log behaviour of the emission.

Moreover, the fact that η predicted by long strings works well in providing a constant
r suggests that even the time dependence of µeff is close to that of µth with the same value
of η (or that, alternatively, most of the GW emission is from long strings).7172

70Notice that strictly speaking Γa = ξLµth/t
3 at large log (rather than Γa = ξµth/t

3). This makes the
extraction of the numerical value of r from rsim a factor of f−1

L larger and Γa a factor of fL smaller than what
mentioned in the main text, leaving in any case the GW emission rate Γg in eq. (3.6) invariant.

71The fact that the effective tension of the strings is close to µth with η ≈ 1/
√

4π is also suggested by the
direct measurement of the string tension in [27].

72During the scaling regime, the loop distribution is scale invariant, i.e. contains a fixed number of loops
per decade of loop length, for lengths between the IR and UV cutoffs ' H−1 and ' m−1

r (see [27] for more
details). For such a distribution the energy takes the form (ξ−ξL)πf2

a log(mr/Hη
′)/t2, where η′ is a (possibly

time-dependent) parameter that depends on the precise location of the cut-offs in units of H−1 and m−1
r .
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Figure 10. The normalised instantaneous emission spectrum (left) and the total spectrum of GWs
in simulations (right) for the fat string system. The key features match those of the physical system
plotted in figure 3.
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Figure 11. The time-evolution of the power-law q of the instantaneous GW spectrum Fg[x, y] ∝ 1/xq

for the fat (left) and physical (right) string systems. In both cases after log = 5 the values are
approximately constant (and compatible with 2). For smaller times the GW spectrum fluctuates and
has no definite power law.

We finally comment on the validity of this picture at larger values of log. If the loops
become very long lived, the energy could be radiated less efficiently from loops into radiation,
therefore the total emission rate will be enhanced with respect to the energy lost by long
strings in eq. (C.1) (i.e. Γa + Γr > Γ). Indeed, in the limit of infinite oscillations the loop
energy density will redshift as R−3, which diminishes slower than R−4, which is the rate at
which the energy would decrease if it were immediately radiated into axions. Although we
do not see a sign of this in the simulation between log = 4 and log = 8, we cannot exclude
this possibility at very large log. If this is the case, this would enhance most likely the axion
and GW emission, and our predictions would still be reliable lower bounds.

[To show this, notice that for such a distribution the number of loops per unit length and unit volume is
dn`/d` = 4H3(ξ − ξL)/` and the energy of a loop of length ` is E` = πf2

a log(mr`). The mentioned energy
density follows from

∫ H−1

m−1
r

d`E` dn`/d` in the limit mr � H.] This formula implies ρloops
s ≈ (ξ − ξL)µth/t

2

(except for the value of η′), which justifies why µeff in eq. (2.2) is approximated by µth, at least at large log.
We stress in any case that the precise form of ρloops

s is still uncertain as we do not have complete control of the
cutoffs of the loop distribution and of the boost factors of the loops, which could change the formula above.
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Figure 12. The total GW spectrum for the fat (left) and physical (right) string networks. The
results are identical to those in figures 3 and 10 except without the log4 normalisation. The growth
of the spectrum is clear in both cases.

The GW spectrum. Finally, we give more details on the GW spectrum ∂ρg/∂k. To
extract ∂ρg/∂k in the simulation we used its explicit expression in terms of u̇ij(~k) defined in
eq. (B.2), easily derived from its definition

∫
dk∂ρg/∂k ≡ T 00

g = (32πG)−1〈ḣij ḣij〉, see e.g.
eq. (29) in [153]. From ∂ρg/∂k we calculate the instantaneous emission spectrum Fg defined
in eq. (3.7) as (we calculate the time derivatives numerically considering ∆ log = 0.2)

Fg

[
k

H
,
mr

H

]
= H/Γg

R3
∂

∂t

(
R3∂ρg

∂k

)
. (C.2)

In figure 10 we plot ∂ρg/∂k and Fg[x, y] for the fat string system. Both these observables
have similar features to the physical system, shown in figure 3. In particular, the approximate
power law q ' 2 is reproduced and is time-independent. As a further study, in figure 11 we
show the best fit value for the slope of Fg in the momentum range 30H < k < mr/4. As
mentioned in section 3.3, given that q is safely above 1 (and appears constant), we do not
analyse further its time-dependence and the possible dependence of the fitted value of the
slope on the momentum range.73 Although already clear from the previous plots, to show
explicitly the time-dependence of the spectrum we also plot the total GW spectrum without
the log4 normalisation in figure 12 for the fat and physical system.

C.2 GW backreaction on the strings

In this appendix we discuss the GW backreaction on the string network in the physical
system of eq. (2.1) by solving the coupled eqs. (3.10) and (B.1) (including the backreaction
term R−2hij∂i∂jφ in the left hand side of this last equation). As mentioned in appendix B,
this is numerically expensive as requires to perform FT and anti-FT every time step, and we
therefore limit ourselves to small 8003 grids that can explore values of log < 6.74

The theoretical discussion of section 3 suggests that the (evolving) effective parameter
controlling the relevance of the GW backreaction on the string network during scaling is
Gµ2/f2

a = π/8(fa log /MP)2 (as in the main text, MP = 1/
√

8πG). Numerical simulations
will confirm this expectation. In particular we will see that, as long as Gµ2/f2

a . 0.5
(corresponding to fa . MP/ log), (a) gravity is always in the perturbative regime and (b)

73Such detail is more important for the power law of the axion instantaneous spectrum since it changes
with the log.

74Similarly to the simulations in the main text, this corresponds at the time when HL = 1.5 for mr∆ = 1.
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Figure 13. The evolution of the average square value of the GW field 〈h〉 ≡ 〈hijhij〉1/2 for different
values of fa/MP, and in the limit fa/MP → 0 normalised to the theoretical expectation for the string
tension squared µ2

th (left). We also show the relative deviation of 〈h〉 for different non-zero fa/MP

from its value for fa/MP → 0 (right). On the x-axis we plot Gξ1/2µ
3/2
th /fa, which is the parameter

expected to control the deviation of 〈h〉.

the effects of the GWs on the properties of the string network (e.g. ξ and ρa) is smaller
than few percent. Therefore the backreaction is relevant only for fa & MP/ log which is
well beyond the region allowed by the bounds in figure 5. A detailed analysis of the impact
of the backreaction is therefore not necessary (and, as mentioned, we did not include the
backreaction in the simulations presented the main text).

First, notice that the equations of motion (3.10) and (B.1) depend only on the di-
mensionless ratio fa/MP.75 We evolve these equations for fat strings and different values
of fa/MP = 0.05, 0.1, 0.2, 0.3, 0.4, for the same set of initial conditions (similar to those in
figure 6), as well as in the limit fa/MP → 0, i.e. not taking into account the backreaction
term in eq. (B.1). In figure 13 (left) we show the evolution of the average square value of
the GW field 〈h〉 ≡ 〈hijhij〉1/2 in the limit fa/MP → 0. As expected from the form of the
instantaneous GW emission in eq. (3.6) and of the energy density in GWs, 〈h〉 is of order
f2
a/M

2
P for log = O(1) and increases proportionally to log2 (up to subleading corrections).
Figure 13 (right) and figure 14 show the effect of a finite value of fa/MP on 〈h〉, ξ and ρa

by plotting the time evolution of these observables for different values of fa/MP, normalised
to their value in the absence of backreaction. To make the role of the effective parameter
Gµ2/f2

a manifest, we trade log(mr/H) with Gµ2
th/f

2
a = π/8f2

a/M
2
P log(mr/Hη/

√
ξ) in the

x-axis.76 For a non-zero value of fa/MP, the quantities 〈h〉/(f2
a/M

2
P) and ξ increase with

respect to their value in the limit fa/MP → 0, while ρa decreases. Indeed, as expected,
more energy is transferred to GWs rather than to axions, making hij larger and ρa smaller.
Crucially, the deviation of these observables from their value at fa/MP → 0 is controlled
by the combination Gµ2

th/f
2
a , rather than by log and fa/MP separately. Indeed, simulations

with different value of fa/MP present the same deviation at a different value of log but at
the same Gµ2

th/f
2
a , as suggested by the fact that the lines overlap in figure 14.

When Gµ2
th/f

2
a ' 0.5 the numerical evolution of the equations of motion breaks down for

all fa/MP,77 signalling that the linear approximation of the Einstein equations is not valid,
and the full general relativity description should be used. We therefore show the results
for 〈h〉, ξ and ρa until the evolution makes sense, with a filled circle at the time when the

75This can be seen by redefining φ→ φfa and hij → hijf
2
a/M

2
P in such equations.

76We fix the same value of η as in the main text.
77This is seen by the non-convergence of the numerical algorithm that integrates eqs. (3.10) and (B.1).
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Figure 14. The evolution of ξ and ρa for different values of fa/MP, normalised to their value in
the limit fa/MP → 0 (i.e. without GW backreaction, as in the main sections). We plot Gµ2

th/f
2
a

rather than log(mr/H) on the x-axis to highlight that the deviations of these observables from GW
backreaction depend on the effective (evolving) parameter Gµ2

eff/f
2
a . The filled circles correspond to

the time when the numerical evolution of the linear approximation of the Einstein equations breaks
down, and at this point Gµ2

eff/f
2
a ' 0.5. For smaller values of this parameter, the linear approximation

is valid and the observables deviate by less than few percent from their value in the fa/MP → 0 limit.

numerical evolution breaks. From figure 13, it is easy to see that this value of Gµ2
th/f

2
a corre-

sponds to 〈h〉 ' 0.1 (the local value of hij will be larger than this). Moreover, at this value of
Gµ2

th/f
2
a , the observables ξ and ρa have changed only of a few percent with respect to their

value in the absence of backreaction. This suggests that a dramatic change of the evolution
of the network can be only captured by the full general relativity description of the system.

The decrease in energy in axions seen for non-zero fa/MP in figure 14 left is quantita-
tively consistent with the energy that is found to be in gravitational waves, and therefore the
value of r obtained in section 3.3 (there is a small increase in the sum of the energy in all
components as fa increases, which is expected since the effect of backreaction is to slightly
increase ξ, as seen in figure 14, right).

We observe that, while the dependence on the parameter Gµ2
th/f

2
a has only been tested

for small logs and relatively large values of fa/MP, the theoretical discussion in section 3
allows to extrapolate the results of figure 13 and 14 also at large logs (and smaller fa/MP),
in particular ensuring that the GW backreaction is negligible for all fa in figure 5, despite the
large log. Finally notice that, as the evolution of the system is not known for fa &MP/ log,
there are in principle two orders of magnitude of fa belowMP for which the bounds in figure 5
do not apply, and a complete general relativity reanalysis would be needed.

C.3 Analysis of systematics

It is essential that systematic uncertainties from simulations are under control if their results
are to be reliable. The most important sources of systematic errors come from the lattice
spacing ∆ and the number of Hubble lengths in a box HL, where L is the physical box
length. In [23, 27] it was shown that HL ≥ 1.5 and mr∆ ≥ 1 are accurate for ξ and most
observables relevant to the axion emission. Here we will show that the same values of HL
and ∆ are accurate for the GW observables of interest as well, and we therefore use these for
our main simulations. We fix the time step to be aτ = ac/3 where aτ , ac are the comoving
time and space steps respectively, which is small enough to introduce a negligible error in all
quantities [23].
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Figure 15. The dependence on the lattice spacing mr∆ of the energy emission rate into GWs (left),
and of the GW instantaneous emission spectrum, plotted at log = 6.6 (right). Data is shown for
mr∆ = 1 and also for a finer lattice with mr∆ = 0.67. The agreement between the two data sets
indicates that mr∆ = 1 does not introduce significant systematic uncertainties (in particular, they
are smaller than the statistical fluctuations in our main data set).

In particular, we analyse the effect of mr∆ and HL on two of the most important
observables: the fraction of energy going into GWs, defined by rsim, and the instantaneous
GW emission spectrum, Fg. The latter is more sensitive to finite box size systematics than
the total GW spectrum, which, even at the end of simulations when HL is small, includes
emission from earlier times when HL was larger. In combination with the analysis of the
effects on the axion observables described in [27], this assures us that the effects of systematics
on the results in the main text are negligible.

In figure 15 we plot rsim ≡ f2
aΓg/(Gµ2

thΓ) and Fg for mr∆ = 1 and for the finer
lattice spacing mr∆ = 2/3, both for the fat string system (the results is an average over
10 simulations; the grid sizes were taken equal in both cases so the finer lattice spacing
simulations finish sooner). The only deviations between rsim the two data sets are small
statistical fluctuations at late times (when the number of independent Hubble patches is
indeed smallest), and the form of Fg is consistent in both cases (as for the axion instantaneous
spectrum Fa, a finer lattice spacing reduces the energy going into modes with momentum
k > mr, however it has no effect on the part of Fg from which we extract the spectral index q).

Similarly, in figure 16 we study the HL systematics. To do so we carried out a set
of simulations on small grids, of size 8003, with smaller value of HL (but with otherwise
identical properties as the main simulations, e.g. identical initial string density and also with
mr∆ = 1). At a log such that HL ' 1 on the small grids, HL is safely � 1 on the large
grid, enabling the finite volume effects to be easily identified. From figure 16 it is clear that
HL & 1.5 has no visible effect on the result for rsim. For smaller values of HL, the IR part
of Fg starts being distorted, but the momentum range of interest for extracting the spectral
index q (i.e. k/H & 10) is unchanged.

C.4 The end of the scaling regime and nonlinear transient

In this appendix we give more details on the end of the scaling regime for a temperature-
independent axion mass. We will also study in more depth the non-conservation of the
comoving number density of axons at H ' H?. Most of the discussion of this appendix
builds on the material of section 3 of [27] and appendices D and E of the same reference, to
which we refer for a more pedagogical presentation.
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Figure 16. The effect of the finite box size L on the fraction of energy going into GWs, left, and
the normalised GW instantaneous emission spectrum (plotted at log = 6.2), right. The two data sets
are from simulations on different sized grids. The smaller grids reach HL ' 1 earlier, when there are
many Hubble patches left in the larger simulations. The agreement between these two data sets up
to when the smaller grid has HL = 1.5 indicates that HL ≥ 1.5 does not lead to large systematic
uncertainties in these quantities.
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Figure 17. Left: the evolution of ξ for a non-zero constant axion mass at different log? ≡ log (mr/ma)
(solid lines), and for ma = 0 throughout with the same initial condition (dashed lines). Independently
of log?, ξ is unaffected by the mass before H = Hcrit ≡ H?/3. Right: the axion spectrum in the
presence of the axion mass with log? = 5 (upper lines) at different times labelled by H?/H, and for
vanishing axion mass (lower lines, dashed). Before H = Hcrit the effect of the non-zero axion mass
has on the spectrum is negligible.

End of the scaling regime. As mentioned in section 2, the axion potential becomes
relevant in the evolution of the string system only for H . H? ≡ ma, at which time a
network of domain walls forms and destroys the string system. To determine precisely the
critical value of H (which we call Hcrit) when the scaling regime starts getting affected by
the axion potential, we evolve eq. (B.1) with the same initial conditions as in the main text
for the fat string system, but with the additional term −m2

af
2
a/
√

2, which corresponds to
including the axion potential V = m2

af
2
a (1 − cos(a/fa)) in the Lagrangian of eq. (2.1) (see

appendix D of [27]). Notice that the dependence on ma of the equations of motion enters
only through the ratio ma/mr, and we therefore refer to different axion masses via the value
of log(mr/ma) = log(mr/H?) ≡ log?.

In figure 17 (left) we show the time-evolution of ξ for different values of log?, plotted
as a function of H?/H, together with the evolution of the equations for ma = 0 (dashed
lines). In figure 17 (right) we also show the time-evolution of the axion spectrum ∂ρa/∂k for
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log? = 5. It can be easily seen that for values of H larger than Hcrit ≡ H?/3 both ξ and the
axion spectrum are not significantly affected by the axion potential, as they closely follow
the evolution for ma = 0. For smaller values of H, ξ diminishes (as the network starts being
destroyed) and the spectrum gets affected, starting from its IR part. Although the value of
Hcrit can be numerically studied only at small values of log?, it is reasonable to expect that
it will not change at larger log?.

Nonlinear evolution of the axions waves. As mentioned in section 4.1, and explained
in detail section 3 of [27], the axion waves produced up until H? have kinetic energy much
larger than the potential energy at H = H? (we momentarily assume that Hcrit = H?, and
discuss to the modification to a generic Hcrit later).78 This results in a period of relativistic
redshift and a nonlinear transient, which implies a partial non-conservation of the comoving
number density. However we now show that the number density non-conservation is small
for the value of ξ? log? discussed in section 4.1 for a temperature-independent mass.

The number density after the nonlinear transient follows the analytic description and
eq. (36) of [27] (evaluated for a constant axion mass, i.e. α = 0). The corresponding number
density non-conservation reads

nst
a

nst
a |linear

= cncV
8πξ? log?
x0,a

W−1

(
− cV

2πξ? log?

(
x0,a
cm

)4
)

− cV
2πξ? log?


3
4

(C.3)

= cncV
8πξ? log?
x0,a

2πξ? log? log

2πξ? log?
cV

(
cm
x0,a

)4
 3

4

, (C.4)

where Wk is the Lambert W -function evaluated on the k-th Riemann sheet and in the sec-
ond equality we expanded W−1 for large negative values of its argument. The coefficients
cm, cV , cn have been extracted in [27] by fitting eq. (C.3) with the number density obtained
from the numerical evolution of

ä+ 3Hȧ−R−2∇2a+m2
afa sin(a/fa) = 0 , (C.5)

with ma = H?(H?/H)α/4 and α = 4, 6, 8, with initial conditions (at H = H?) given by a
superposition of axion waves with energy density spectrum ∂ρa/∂k from the (reconstructed)
scaling regime at H = H? (see [27] and the following eq. (C.6) for the explicit expression
of the initial conditions). Note that such simulations (that include only the axion field)
can study directly the physical point (i.e. without extrapolation, unlike simulations of the
physical system in (2.1), which must include modes with k ' mr).79

Let us now discuss what changes if Hcrit < H?. In this case the number density at
H = Hcrit is approximately na = 8πξ? log?Hcritf

2
a/x0,a.80 If this number density is thought as

78Recently it has been claimed that this cannot be true because the compactness of the axion field bounds
the energy that can be stored in low momentum modes [155]. In fact, the periodicity of the axion only affects
the zero-mode: all the other modes can be populated by arbitrarily large amplitudes.

79The coefficients read cm = 2.40, cV = 0.12, cn = 1.20 and cm = 2.08, cV = 0.13, cn = 1.35, respectively
for an initial axion energy density spectrum given by the convolution of Fa sharp IR cutoff at x = x0,a and a
more physical form as described in [27] (in both cases with qa = 5).

80As defined in section 4.1, the number density is nst
a ≡

∫
dk∂ρa/∂k, and can be approximated with

ρIR/(x0,aH) during the scaling regime (up until Hcrit), where ρIR = 8πf2
aξ logH2 is the energy density in IR

modes. The difference ξ? log? from ξcrit logcrit is insignificant with respect to the change in H.
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Figure 18. The evolution of the comoving number density of the axions (produced during the scaling
regime) through the nonlinear transient that occurs when the axion potential becomes cosmologically
relevant. The initial conditions are set at H = Hcrit = H?/3 to be a superposition of axion waves
with the energy density spectrum ∂ρa/∂k from the (reconstructed) scaling regime at H = Hcrit
(see [27]). For ξ? log? . 3000 (which are the relevant values for ultralight axions) the number density
non-conservation is at most 20%, and was therefore neglected in the derivation of Ωst

a of section 4.1.

coming from an axion field at H = H? (which redshifts relativistically from H? to Hcrit), such
a field has the same energy density spectrum ∂ρa/∂k|? but with x0,a → x0,a(Hcrit/H?)1/2 =
x0,a/

√
3 (i.e. an IR cutoff smaller by

√
3).81 To evaluate the suppression of the number

density for Hcrit < H? we can therefore use eq. (C.3) with x0,a → x0,a/
√

3, which gives a
20% non-conservation of the comoving number density for ξ? log? = 3000 (and x0,a = 10).82

In support of this, in figure 18 we also show the evolution of the comoving number density
for different values of ξ? log? from the numerical evolution of the equation of motion (C.5).
The set up of the simulations is explained in [27], to which we refer for the details. As in [27],
we start from H = Hcrit = H?/3 with initial conditions given by an axion field made of a
random superposition of waves with the energy density spectrum of the scaling regime at
H = Hcrit, i.e. (for k > k0 ≡ x0,aHcrit)

∂ρa
∂k

(tcrit, k) =8ξ?µ?H2
crit

k

[(
1− 2log(k/k0)

log?

)2
−
(
k0
k

)qa−1

+4
1− 2 log(k/k0)

log?
−
(
k0
k

)qa−1

(qa − 1) log?
+ 8

1−
(
k0
k

)qa−1

(qa − 1)2 log2
?

 , (C.6)

which follows from eq. (3.8) with Γg replaced with Γa and Fg with Fa, and we assume
Fa ∝ 1/xqa for x > x0,a and qa > 1 (and Fa = 0 for x < x0,a).83 Notice from figure 18
that for values of ξ? log? = O(103) the suppression is the predicted one, and for smaller
values the conservation of the number density is even more accurate (and eq. (C.3) breaks).

81In particular, at H = H? its (relativistic) number density will be enhanced by a factor
√

3 with respect
to 8πξ? log?H?f2

a/x0,a.
82In doing this estimate we used a cV that is (1 − 1/qa)−1 = 5/4 larger than what mentioned before, in

order to account for the fact that the coefficients have been extracted for qa = 5 instead of q →∞ (which is
the limit in which na = 8πξ log /x0,af

2
aH is valid.)

83We used qa = 5 and as mentioned x0,a = 10.
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Finally, for larger (not relevant, unless N > 1, see section 4.5) values of ξ? log? the non-
conservation of the number density becomes substantial, and the relic density in eq. (4.1)
must be multiplied by the suppression factor in eq. (C.3). In particular, as mentioned in the
main text, Ωst

a ∝ (ξ? log?)3/4.

C.5 The density power spectrum

In this appendix we give more details on the determination of the power spectrum of axion
overdensities ∆2

a(k) defined in eq. (4.4), and discuss the uncertainties on this.
As described in section 4.3 and appendix C.4, we consider only the axion radiation

emitted during the scaling regime up to H = Hcrit = H?/3. In particular, we neglect the
strings and the domain walls that are present in the field at this time. The evolution of
such radiation follows the axion equations of motion (C.5). Similarly to appendix C.4, we
start at H = Hcrit with initial conditions given by a superposition of waves with the axion
spectrum ∂ρa/∂k from the extrapolated scaling solution (with ξ? log? = 2000) in eq. (C.6).84

As discussed in appendix C.4, the axion number density (and in general the dynamics of
the IR part of this radiation) can be directly studied at the physical value of log? in these
simulations without the need of extrapolations (thanks to the absence of strings).

Such simulations capture the dynamics of axion field up the momentum mode kUV '
NH?/(H?L?) at H?, where N is the number of lattice points and H?L? is the number of
Hubble lengths in the box at this time. While most of the energy density of the field is
not included in the simulations due to the almost scale invariant form of the energy density
spectrum ∂ρa/∂k (see eq. (C.6)), the axion number density na =

∫
dk/ωk∂ρa/∂k dominantly

comes from IR modes, which are included (at k > ma the contribution to the number
density from the mode k is proportional to k−2). Consequently, the IR modes of the field
also dominantly determine the axion dark matter power spectrum ∆2

a(k) at least at IR
momenta.85

Since we are primarily interested in the coefficient of the k3 IR part of the density power
spectrum, the simulations are carried out starting with HL = 20 at Hcrit so that modes with
momentum down to k/H? ' 0.2 are included, giving a large enough momentum range for the
k3 slope to be present and C to be fit. Moreover, we set N = 1300, which is large enough that
modes with k/H? ' 200 are included, corresponding to 95% of the number density. During
the evolution of the field, we calculate the (discretized version of the) power spectrum as
∆2
a(k) = k3/(2π2L3)〈δ̃2(~k)〉||~k|=k where δ̃(k) is the Fourier Transform of δ(x) and 〈·〉||~k|=k

stands for the average over the momenta with modulus ~k.
In figure 19 left we show the results for ∆2

a(k) at increasing times during the evolution of
the system at H < Hcrit (as the mass becomes relevant), for the input spectrum in eq. (C.6)
with x0,a = 10. As expected, ∆2

a(k) changes, in particular growing at scales kcom/H? ' 10.
Thanks to the relatively large N used, the transient has finished and the axion energy in

84Although this spectrum derives from a simplified form of fa, we have confirmed that starting with a more
realistic Fa (discussed in [27]) with the same x0,a but with an IR tail F (x) ∼ x3 for x < x0,a changes the
fit of the constant C to the IR of ∆2

k by less than 20%, which is much smaller than the uncertainties we
subsequently discuss.

85In particular, the UV modes evolve freely without affecting the dynamics of the IR modes at any point
including during the previously discussed non-linear transient [27]. Subsequently, the energy in the UV modes
simply redshifts away leaving a negligible contribution to the DM abundance. The fact that simulations do
not include the (large fraction of the total axion) energy that is such UV modes therefore does not introduce
uncertainty in the power spectrum that we extract.
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Figure 19. Left: the power spectrum ∆2
a, as a function of comoving momentum kcom ≡ k(R/R?),

during the evolution of the axion waves (produced during the scaling regime) when the axion mass
becomes cosmologically relevant (blue), and at the final simulation time (black), after the nonlinear
transient and once it has reached an approximately constant form. The simulation starts at H =
Hcrit = H?/3 with waves with the energy density spectrum ∂ρa/∂k predicted from the scaling regime
in eq. (C.6) at ξ? log? = 2000 and x0,a = 10. The green line is the result at the final time for a purely
linear evolution. Right: the result of ∆2

a at the final time for different values of the IR cutoff of Fa,
i.e. the parameter x0,a, in the initial energy density spectrum.
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Figure 20. The evolution of the power spectrum ∆2
a during the destruction of the string network at

the unphysical value of log(mr/H?) = 5. See figure 17 for the corresponding evolution of ξ and the
axion energy density spectrum at these times.

the simulation is redshifting non-relativistically by the end of the simulation.86 As it is clear
in figure 19, at this time the IR part of ∆2

a(k) has reached a time-independent form. The
UV part of ∆2

a(k) is not fully constant, due to the presence of high momentum modes and
oscillons (these contain only a small fraction of the total energy and will eventually decay
into high momentum modes so will not alter the IR of the density power spectrum), and as
mentioned in section 4.3 its understanding is beyond the scope of this paper.

The IR part of ∆2
a(k) approaches the expected k3 dependence, with coefficient C '

2 × 105 (defined in section 4.3). Note that even with a linear evolution (i.e. with potential
86As discussed, in reality soon after H? a large fraction of the axion energy is in UV modes that are not

captured by simulations. However, these continue to redshift until the energy they contain is negligible so the
true power spectrum will eventually reach the form measured in simulations.
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V = 1/2m2
aa

2), ∆2
a(k) would evolve simply due to modes turning non-relativistic. However

the results we obtain differ from those with a linear potential due to the, previously discussed,
relativistic redshift and the small non-linear transient. To understand the importance of
these two effects, in figure 19 we also plot the ∆2

a that is obtained at the final simulation
time evolving with a linear potential. From this is can be seen that the non-linear effects
decrease ∆2

a(k) by a factor of 4 in the IR. This is reasonable since the transient moves energy
to higher momentum modes, and it is also not surprising that the effect is relatively small
given that the transient only has a minor effect on the axion number density. Although we
have fixed a potential of the form V (a) = m2

af
2
a (1− cos(a/fa)) we expect any other bounded

potential to lead to a similar ∆2
a(k) (since the main effect of the non-linear potential on ∆2

a(k)
comes from the extra era of relativistic redshifting).

Let us discuss the possible uncertainties in C. One uncertainty comes from the value
of the IR cutoff x0,a of Fa. As mentioned, at log ' 7 ÷ 8 the value of x0,a = 10 (as we
have used) fits well the simulation results [27], with no evidence for a strong log dependence.
Nevertheless, we cannot exclude that x0,a has a log dependence that is smaller than would
be visible with current simulations (for instance the growth of ξ might increase x0,a). In
figure 19 (right) we plot ∆2

a(k) with x0,a between 5 and 50, from which it can be seen that
x0,a > 10 decreases ∆2

a(k) in the IR leading to a smaller C and a weaker limit via eq. (4.5).
Decreasing x0,a below 10 actually barely affected the fitted C, since the non-linear transient
has a greater effect in this case, removing energy from IR modes. For x0,a between 5 and
30, which we take as a plausible range, C varies by a factor of 20. For a fixed fiso, the
bound on fa ∼ C1/4, so this leads to a 100% uncertainty on the limit on fa. In figure 5,
we correspondingly blur the limit above a lower edge corresponding to the constraint for
x0,a = 10 to reflect this uncertainty. Together these uncertainties mean that the isocurvature
bounds that we plot should be treated with substantial caution as discussed in the main text.

Finally, as discussed in section 4.3, our analysis of density perturbations in DM axions
from the scaling regime gives a conservative isocurvature bound, since it misses the DM
axions produced by the network of strings and domain walls formed when the mass becomes
cosmologically relevant. To get an idea of how much these could strengthen the bound, we
also calculate ∆2

a from simulations of the string network through the mass turn on until its
destruction at a small (unphysical) value of log?, by numerically solving eq. (2.1) with an
additional mass term, as in appendix C.4. Of course, such simulations are at small scale
separations (i.e. small tension) and have no hope of accurately reproducing the dynamics of
the system at the physical point, and our results are solely to give an indication of the possible
magnitudes of effects. The various competing requirements in such simulations discussed in
appendix F of [27] dramatically limit the value of log?, and the results we show are for
log? = 5.87

The results for ∆2
a are shown in figure 20 at increasing times until the network is

destroyed (see figure 17 for the behaviour of ξ and the axion energy density spectrum at
the corresponding times). Given the more challenging simulations, the minimum values of
kcom/H? (where kcom = k(R/R?) = k(H?/H)1/2 is the comoving momentum) are larger than
in simulations in which only the axion field is evolved. Nevertheless, the expected k3 IR
power law is reproduced and in this momentum region ∆2

a is time independent after the
network disappears. The coefficient C ' 5 × 10−2 is much larger than in the axion only

87These requirements include, in particular, the lattice spacing . m−1
r , a large enough hierarchy between

axion and radial model mass, and that HL is sufficiently large that the k3 IR part of the density power
spectrum can be fit once ∆2

a has reached a constant form in the IR part.
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simulations (this is perhaps not surprising, since at H = Hcrit most of the string length
is in long strings, which are expected to lead to fluctuations on Hubble scales).88 Similar
results have been observed in analogous simulations where the axion mass has nontrivial
temperature-dependence. This has been studied for the first time in [55], where a detailed
analysis of the power spectrum (at all momenta) has been carried out at small log? for the
QCD axion.89

It is plausible that the slope of the k3 tail may be similar at large values of log?, and if
the relic abundance of axions from the destruction of the network is comparable to (or larger
than) that from scaling, the isocurvature constraint would be significantly strengthened. For
instance, assuming equal DM abundance from the waves produced during the scaling regime
and from the destruction of the network, and C ' 5×10−2, using eq. (4.5) for a fixed ma the
bound on fa figure 5 would strengthen by a factor of 7, ruling out large parts of the ranges of
fa and ma that could be detected at SKA. As mentioned in the main text, even if the true C
from the destruction of the network at large tension is small, if the DM abundance is larger
than that produced during scaling the isocurvature limit can also strengthen, owing to the
DM abundance factor in eq. (4.5).

D GWs from the nonlinear transient and oscillons

As mentioned, we refrain from attempting to calculate the contribution to the GW back-
ground from the collapse of the system of strings and domain walls at H ' ma, since the
dynamics of this system is yet not fully understood. One contribution to the GW spectrum
from this collapse is expected to lie at frequencies and amplitudes of the same order as the
last e-folding of the scaling regime, as already pointed out in [102] (where numerical simu-
lations at small scale separations have been carried out). As described in section 3.4, such
a contribution has a too low frequency for ultralight axions (for the masses that are not
excluded by DM overproduction) and a too small amplitude for the QCD axion, for which
fa . 1010 GeV (but in principle at frequencies that are under investigation) to be observed.

As we will now explain, there could be an additional source of observable GWs in this
system. As discussed in section 4.1 and in more detail in [27], the axion waves (accumulated
during the scaling regime) experience a period of relativistic redshift after at H ' ma and a
small nonlinear transient. During the nonlinear transient, the field is a superposition of waves
containing (topologically trivial) domain walls that decay rapidly into axions. After the tran-
sient, the axion field is mostly in the linear regime (settling down to a = 0), except in small
regions called oscillons where it oscillates with an amplitude of order fa. If the evolution of
the axion waves were purely linear, the axion waves would not produce GWs [156]. However,
the existence of a small nonlinear regime provides a possible source of GWs. Unfortunately,
this contribution is again in amplitude and frequency of the same order as the last e-folding
of the scaling regime, and therefore not observationally relevant both for ultralight axions
and for the QCD axion.

This conclusion can be easily drawn by estimating the parametric dependence on fa and
H? of this contribution via quadrupole formula (valid in the nonrelativistic limit) applied to
the topologically trivial domain walls. In any case, in figure 21 we show the full spectrum of
GWs from the numerical evolution of the axion waves during the nonlinear regime, discussed

88The UV part of ∆2
a is still evolving at the final simulation time, but the overall energy density is mostly

in IR modes so the IR part of the density power spectrum will not change dramatically.
89In particular, the power spectrum is also characterized by a peak related to the presence of oscillons.
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Figure 21. The evolution of the GW spectrum generated during the nonlinear transient that the
axion waves (emitted during the scaling regime) experience at the time H . H?, as a function of the
(comoving) momentum. Increasing times are labelled by different values of H?/H. We show with a
gray point the momentum corresponding to the axion mass. The overall redshift of the waves has
been factored out in the plot by dividing the spectrum by H2.

in appendix E of [27]. We start with a configuration of waves with the energy density
spectrum from the scaling regime with for log? = 65, and we assume ma = Rα/2 with α = 8,
which is the case for the QCD axion (see section 3.2 in [27] for more details on the details
of the evolution of these waves). It is immediate to see that the spectrum in figure 21 is
peaked at momenta a few times larger than k ' x0H? and is of the same order as the
spectrum in eq. (3.9) evaluated at H = H? (and k = x0H?). Moreover, most of the GWs are
produced around the time H/H` ' 6, when the potential energy equals the kinetic energy
and the system becomes completely nonlinear (see [27]). At the final times the field is in the
linear regime except for the presence of oscillons. Being spherical, oscillons do not contribute
significantly to the GWs. Indeed, the GWs stop being produced after the nonlinear regime
ends (at around H?/H ' 10), and are not produced during the subsequent times when
oscillons are present.

Finally notice that the for a temperature-independent mass, the nonlinear regime is
much milder, and the contribution to the GW spectrum is smaller (and, as mentioned,
outside the detectable frequency range). Given the experimental irrelevance of the GWs
from the nonlinear transient, we refrain from a more detailed analytical study.

E Other bounds

Black hole superradiance. Weakly interacting light particles can spontaneously draw
energy out of black holes through the phenomenon of superradiance. The observation of
spinning black hole that have not had their angular momentum removed by superradiance
therefore constrains the axion parameter space [157–159]. Currently, axions in the mass range
10−16÷10−18 eV are in tension with observations, however sufficiently large self-interactions
prevent superradiance so the constraints only apply to fa & 1015 GeV, see [160] for a detailed
analysis. In the post-inflationary scenario that we consider these limits are less important
than that from the axion relic abundance.
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Other CMB bounds. Dark matter axions with masses ∼ 10−25 eV are constrained by
their effect on CMB observables independently of the presence of strings [161] (we note that
the sensitivity of these observations could increase substantially in the future [162]). In
the post-inflationary scenario these bounds are subdominant to the isocurvature constraints
even with our most conservative assumption for the power spectrum of density perturbations.
Additionally, a new approach to detecting strings that exist beyond the time of decoupling
and are associated to an axion that interacts with photons has recently been proposed [163].
This is probably not relevant for strings that give the observable GW signals, since such long
lived strings are likely to be in conflict with CMB anisotropy constraints for fa & 1014 GeV.

F Comparison to the literature

In this appendix we first comment on the difference between our approach and previous works
on GWs from global strings from the scaling regime.90

• Refs. [166] and [52, 167] utilise a particular model of the string evolution (also known
as one-scale velocity-dependent model) and the expressions for the rate of energy emis-
sion to GWs and axions (in the zero coupling limit, derived in [38, 39]) to calculate the
GW spectrum from the loops produced during the scaling regime. Such references cor-
rectly reproduce the logarithmic deviation of the GW spectrum due to the logarithmic
time-dependence of the tension. In particular, the resulting log3 dependence on the
momentum (and the corresponding enhancement of the spectrum) has been already
pointed out in [52]. However, as such a model does not seem to always reproduce
the logarithmic increase in ξ, the corresponding increase in the GW spectrum has not
been captured.

• Refs. [168, 169] extract the GW spectrum directly from numerical simulations of phys-
ical systems similar to that in eq. (2.1) at small log, without any extrapolation. These
references claim that the GW spectrum asymptotes to an exactly scale invariant form.
However, as is clear from section 3, this is in contradiction with conservation of energy
and effective field theory, and also with our simulation results. Indeed, the spectrum
results in [169] appear to show a residual time increase (and not an exactly scale in-
variant form).

We also observe that the original analysis of isocurvature perturbation of section 4.3 has
been developed for the QCD axion [82] and axion-like particles in [83, 84]. However, compared
to these works we differ in our expression for the relic abundance, in the power spectrum
that we use (which we obtain from simulations of the string network rather than motivated
by misalignment production) and in allowing the axion to comprise a subdominant fraction
of the dark matter. We also apply constraints on isocurvature from Lyman-α observations.
These were derived in the context of primordial black hole dark matter models and extended
to axion string scenario in [87] (our analysis differs from this work again in our calculation
of the relic abundance and in the density power spectrum that we use).

90There has also been some work on GW signals from axions in the pre-inflationary scenario [164, 165],
which can arise if there the an axion is coupled to a light hidden sector gauge boson.
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G Cosmological stability of the axions and temperature dependent masses

In this appendix we show that all generic axions that lead to observable GW signals and
are not ruled out by the constraints of section 4 are cosmologically stable, and that also a
temperature-dependent mass forces the axions to be ultralight.

As discussed in section 3.4 and visible in figure 4, for a temperature-independent axion
mass GWs in the observable frequency range are only possible for fa & 1014 GeV and ma .
100 keV so that the string network is not destroyed before T? ' 107 GeV. In this case the
axion is always stable on cosmological timescales regardless of its interactions. For example,
the axion might have an interaction with photons of the form [72]

L ⊃ −C αEM
8πfa

aFµνF̃
µν , (G.1)

which allows decays, where Fµν is the electromagnetic field strength with associated coupling
constant αEM, and the coefficient C is model-dependent and expected to be not much larger
than order one for the theory to be perturbative. However, denoting the temperature of the
universe when H = ma by T? the corresponding lifetime

Γ−1
a→γγ = 1

C2

( MeV
ma

)3 ( fa
1014 GeV

)2
1021 s (G.2)

= 1
C2

(
6× 107 GeV

T?

)6 (
fa

1014 GeV

)2
1021 s , (G.3)

exceeds the age of the Universe for all the decay constants of interest and for axion masses
ma . MeV, and in particular ma . 100 keV. If the axion is sufficiently heavy and has
suitable interactions it could also decay to leptons or hadrons, or hidden sector particles.
However, these channels (or similar decays into hidden sector states) are not expected to
significantly shorten the axion lifetime compared to that corresponding to the only photon
coupling and do not change the conclusion.

As mentioned in section 4, a temperature-dependent mass does not relax the constraints
in figure 3.4 on fa and ma(0) that lead to observable GWs, and still force the axion to
be ultralight. To see this, we assume for simplicity that the axion mass dependence on
temperature is ma(T ) ' Λ2/fa ≡ ma(0) for T < Λ and ma(T ) ≤ ma(0) for T > Λ, where Λ
is the strong coupling scale of a new sector, which happens in typical models (for T � Λ the
dependence is a power law but not relevant for our present argument).

As mentioned above, the conditions for the GWs to be observable are fa & 1014 GeV
and T? . 107 GeV. If T? < Λ, then as far as the cosmological evolution of the string network
and axions are concerned the axion mass is constant and the bounds on dark matter, dark
radiation and isocurvature perturbations are those discussed in section 4. On the other
hand, T? > Λ means that Λ . 107 GeV, which for fa & 1014 GeV requires ma(0) .GeV. If
MeV . ma(0) .GeV, such values of the axion mass and decay constant are actually ruled
out as the axions decay after BBN (from eq. (G.2)) and dominate the energy density of the
Universe at the time of BBN (which can be easily seen redshifting back today’s would be
DM abundance from eq. (4.1) to T =MeV). If instead ma(0) . MeV the axion is stable
and only ultralight axions do not overproduce DM (T? in this case is always smaller than the
corresponding T? if ma did not depend on the temperature, implying in general a larger DM
abundance despite the nonlinear evolution leading to a larger suppression in this case).
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We finally note that in such models there are new constraints on the effective number of
degrees of freedom in the hidden sector, since Λ is far below the scale of BBN for the viable
masses. These require the hidden sector is cold relative to the visible sector.

H Symmetry restoration

In this appendix we give more details on the ways in which a PQ symmetry with large fa
can be restored in the early Universe described in section 5.

H.1 Symmetry restoration during inflation

First we further analyse the scenario in which a coupling between the inflaton ϕ and (the
radial mode part of) φ leads to symmetry restoration. In particular, we discuss the effect
that a coupling of the form eq. (5.4) has on inflation. Such a coupling gives no contribution
to ∂V/∂ϕ (where V is the full potential of the theory) as long as 〈φ〉 = 0. Therefore it
has no effect on the inflaton’s slow-roll evolution provided that the radial mode’s potential
energy at this point is small compared to that of the inflaton, i.e. H2

IM
2
P � f4

a (which, e.g.
for an inflaton with a quadratic potential requires 4m2

ϕ

〈
ϕ2〉 � f4

a ). This is satisfied in the
example theory described in section 5, which has mϕ ' Hmax = 6 × 1013 GeV, 〈ϕ〉 ∼ MP,
and fa . 1015 GeV. Otherwise, if H2

IM
2
P ∼ f4

a the potential of the radial mode actually
makes slow-roll easier to achieve, which is the hybrid scenario discussed in section 5.1 and
below.

Once the PQ symmetry is broken (which if a string network is to form must happen
close to the end of inflation or during reheating), there is a contribution to the inflaton’s mass
of δm2

ϕ ' gf2
a . For large enough g and fa this exceeds the inflaton’s bare mass, changing the

dynamics in a way that we have not analysed. However, for fa ∼ 1015 GeV and values of
g ∈ (10−6, 10−2) with 〈ϕ〉 ∼ MP the PQ symmetry is restored during inflation without this
contribution being relevant, assuming that a not too small fraction of the inflaton’s potential
energy at this time comes from its mass term (i.e. m2

ϕ

〈
ϕ2〉 ' H2

IM
2
P).

Additionally, interactions between the axion sector and the inflation typically lead to
radiative corrections in the absence of extra symmetries (e.g. softly broken supersymme-
try) or further new physics. Depending on their size, these could require that the infla-
ton’s potential is fine tuned so that the slow roll conditions for inflaton are satisfied. The
most dangerous radiative correction is the expected quadratically divergent correction to
the mass of the inflaton that is cutoff by a UV scale ΛUV, which is expected to be of the
form δm2

ϕ = gΛ2
UV/(32π2) [170]. For this not to violate the slow roll condition requires

g/(48π2)Λ2 〈ϕ〉MP < H2
IM

2
P, which for Λ ∼ MP requires

√
g 〈ϕ〉MP/(48π2) < HI . How-

ever, for the interaction to restore the PQ symmetry (with 〈ϕ〉 .MP) we needm2
r < g

〈
ϕ2〉 <

g 〈ϕ〉MP. Combining these bounds with the observational limit on HI eq. (5.1), the condition
that the radiative corrections do not disrupt slow roll is

mr√
48π2

< HI < 6× 1013 GeV . (H.1)

These inequalities can be simultaneously satisfied for values mr < 1.3× 1015 GeV provided
HI is close to its maximum allowed value. For other mr, g, and HI either some tuning of
the inflaton’s potential is required, or the UV cutoff Λ must be below the Planck scale.
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Hybrid inflation. Here we give more details about the hybrid inflation scenario. In partic-
ular, we show that hybrid inflation that is compatible with observations of the CMB occurs
with a coupling between the radial mode and the inflaton of the form eq. (5.4) for a wide
range of g, when fa is large enough for observable GW signals.

As an example, we consider a theory with a potential of the form

V = Vϕ + Vφ + Vint , (H.2)

where Vφ is the axion sector potential (which by itself would spontaneously break the PQ
symmetry), Vϕ is the inflaton’s potential, and Vint is an interaction between the two sectors.
We take Vφ and Vint to be given by eqs. (2.1), (5.4) respectively, and for the following we
assume Vϕ to be quadratic, although this is not essential (and we no longer fix 〈ϕ〉 ∼ MP
and mϕ ∼ HI). We also assume fa ≈ mr. In combination, the model we consider is a minor
modification of the original hybrid inflation theory [124, 125], with the change that φ is a
complex scalar with a U(1) global symmetry rather than either a real scalar or a complex
scalar with a gauge symmetry.

As described in the main text, φ is kept at 〈φ〉 = 0 during inflation by its interaction
with the inflaton, and its potential energy at this point exceeds that of the inflaton. This
scenario occurs provided

g
〈
ϕ2
〉
& m2

r , (H.3)

for symmetry restoration, and

m2
ϕ

〈
ϕ2
〉
� f4

a

4 , (H.4)

for the potential energy of φ to dominate.
Because of Vφ’s large contribution to the total energy density, the slow roll condition

for inflation is V ′MPl/Vφ � 1, where V ′ = dV/dϕ, whereas in the absence of φ it would
be V ′MP/Vϕ � 1. Thus in the hybrid scenario, inflation can occur with significantly lower
values of the inflaton expectation value and mass, and consequently smaller HI , than would
otherwise be possible. For the particular realisation of hybrid inflation that we consider, by
substituting for the potentials in eq. (H.2), the slow-roll condition is

8m2
ϕ 〈ϕ〉MP � f4

a . (H.5)

As long as the PQ symmetry remains restored the slow-roll condition above continues
to be satisfied and the inflaton expectation value slowly changes (evolving towards 0 with the
potential we consider). Eventually the inflaton expectation value falls below ϕc = mr/g

1/2

and the PQ symmetry is broken. The potential energy of the Universe then decreases faster
(corresponding to the slow roll parameter V ′/(V (φ) + Vint)MPl increasing) and inflation will
subsequently end at 〈ϕ〉 < ϕc. In fact, following [125, 128] it can be shown that inflation
ends within one e-fold of symmetry breaking (and thus the axion string network that forms
is not diluted by further inflation) provided

f3
a � mϕM

2
P , (H.6)
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which is satisfied if the mass of the inflaton is not too small mϕ � f3
a/M

2
P ' 109 GeV for

fa ' 1015 GeV.91

The final constraint on the hybrid scenario comes from the COBE normalisation con-
dition, which fixes the amplitude of density perturbations using observations of CMB aniso-
tropies. This requires

V 3/2

M3
PV
′ = 5× 10−4 , (H.8)

where the left hand side is evaluated when modes corresponding to the pivot scale kCMB =
0.05 Mpc−1 leave the horizon (see [171] for a review). In the model we consider, eq. (H.8)
translates into a relation between mϕ and g [125]

mϕ = 9
√
g1/2f5

a

M3
P

. (H.9)

Imposing this condition means that (for 〈ϕ〉 , fa < MP) the slow roll condition and eq. (H.6)
are automatically satisfied, so inflation will continue for as long as the PQ symmetry is
restored and will end immediately after symmetry breaking. Moreover, for fa . MP and
g . 1, if eq. (H.9) is satisfied the potential of the radial mode dominates the total energy
density while 〈φ〉 = 0, so our calculation of the slow roll condition in eq. (H.5) is self-
consistent.

In summary, the are two relevant conditions that remain in our example model: one from
requiring PQ symmetry restoration, and one from the COBE normalisation. For any inflaton
expectation value that satisfies fa < 〈ϕ〉 . MP there is an allowed range of perturbative
g ∈ (f2

a/ 〈ϕ〉
2 , 1) such that hybrid inflation occurs, with the corresponding inflaton mass

fixed by eq. (H.9).

H.2 Preheating

Here we give more details of how non-perturbative energy transfer from the inflaton to other
states, i.e. preheating, can lead to far higher temperatures after inflation than occur during
perturbative reheating. We show that the relatively large mass of the radial mode renders
direct preheating to this inefficient (for mr ' fa and fa & 1014 GeV relevant for observable
GWs), but that preheating to another, light, particle can still restore the PQ symmetry.

We consider a general real scalar χ that interacts with the inflaton through Vint =
1
2gϕ

2χ2, and we assume that the inflaton potential is quadratic in the part of field space that
91In more detail, eq. (H.6) can be derived by considering the change in the system in the first e-fold that

follows PQ symmetry breaking. During this time the inflaton’s expectation value shifts by ∆ϕ = ˙〈ϕ〉/H =
8M2

Pm
2
ϕϕc/f

4
a . Meanwhile, the complex scalar φ now has a symmetry breaking minimum at |φ|2 = (m2

r −
g
〈
ϕ2〉)/2, which is away from the origin but not yet at fa/

√
2 since the inflaton expectation value is still

non-zero. The position of this minimum continues to move away towards fa/
√

2 as the inflaton rolls toward
0. As a result, one e-fold after symmetry breaking the radial mode part of φ has an effective mass m2

φ =
m2
r−g

〈
ϕ2〉 ≈ 2gϕc∆ϕ. If (H.6) holds, thenmφ � H and the radial mode tracks the minimum of its potential.

The resulting change in the energy density of the Universe is ∆V = 32M4
Pm

4
ϕ/f

4
a +O(∆ϕ3), so the slow roll

parameter becomes ∣∣∣∣V ′′M2
P

V

∣∣∣∣ = 4M2
P

ϕ2
c

> 1 . (H.7)

Therefore, for ϕc .MP, slow roll inflation indeed ends less than one e-fold after symmetry breaking, provided
eq. (H.6) holds.
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reheating occurs in, Vϕ = 1
2m

2
ϕϕ

2. Following the analysis in [135], the momentum modes χk
of χ evolve according to

χ̈k + 3Hχ̇k +
(

k2

R(t)2 +m2
χ + gϕ̃2 sin2(mϕt)

)
χk = 0 , (H.10)

where ϕ̃ denotes the amplitude of the inflaton oscillations. Neglecting the expansion of the
Universe, eq. (H.10) can be reexpressed as the Mathieu equation

χ′′k + [Ak − 2q cos(2z)]χk = 0 , (H.11)

where q = gϕ̃2/(4m2
ϕ); Ak = ((k/R)2 + m2

χ)/m2
ϕ + 2q; z = mϕt and differentiation is with

respect to z.
The family of solutions of the Mathieu equation has resonant bands at particular mo-

mentum k, which depend on q, Ak [172]. The solutions with k inside these bands grow
exponentially, as χk ∼ eαz where α has a real part <(α) > 0. Meanwhile, the solutions for
k outside these bands oscillate (corresponding to <(α) = 0). Preheating happens when a
mode χk has momentum inside one of the resonance bands. The resulting amplification cor-
responds to an exponentially fast increase in the mode’s occupation number, i.e. an extremely
fast transfer of energy from the inflaton to χ.

However, a particular mode is only exponentially amplified for a limited time. One
reason for this is that the expansion of the Universe redshifts a mode’s momentum, which
results in it moving out of a resonance bands.92 It is shown in [135] that this results in
the resonance bands being effectively ‘blurred’: modes are mostly amplified inside a broad
resonance band at low frequency ω ∈ (0, ωmax), where ω2 ≡ k2/R2 + m2

χ, and ωmax =√
g1/2ϕ̃mϕ/2. Outside this broad resonance, the resonance bands are very narrow and modes

are quickly moved out of them by the expansion of the Universe, resulting in little energy
being transferred. Additionally, if the resonance is efficient enough that a substantial amount
of energy has been transferred into χ, the amplitude of the inflaton oscillations will decrease
significantly faster than just due to redshifting. The interaction between the inflaton and χ
also causes a contribution to the mass of the inflaton m2

eff ' m2
ϕ + g

〈
χ2〉 which can end up

dominating. Thus the backreaction of the created particles further modifies (in particular, it
decreases) the values of q,Ak, which changes the structure of the resonance bands. Overall,
these effects mean preheating generally does not transfer all of the inflaton’s energy to χ.
Indeed, it is shown in [135] that inflation lasts until half of the (redshifted) inflaton energy has
been transferred to χ for g > 10−6, and this takes roughly 20 inflaton oscillations, meaning
the energy density in χ at this time is a factor 10−4 lower than the original energy density at
the end of inflation. For lower values of g the fraction of energy transferred decreases very
quickly (roughly exponentially with g1/2).

From the discussion above, we see that if the mass of χ is large enough then efficient
preheating does not occur. This is simply because the energy of χ modes is ωk ≥ mχ, so if
mχ > ωmax no modes are in the broad band (and the remaining narrow resonances are highly
inefficient). In the intermediate case 0 < mχ < ωmax fewer modes satisfy the condition to
be in broad resonance, ωk < ωmax. This is expected to reduce the efficiency of preheating,
although we do not investigate such a scenario in detail.

We now apply these results to analyse the possibility that the PQ symmetry is restored
by preheating directly to the radial mode of a complex scalar that gives rise to the axion, i.e.

92The exception to this is if the inflaton’s potential has a pure quartic form.
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we identify χ with the radial part of φ of eq. (2.1), via the interaction eq. (5.4). The condition
for broad resonance mχ � ωmax requires gϕ̃2 � 4m4

r/m
2
ϕ. However, for the mr & 1014 GeV

as is relevant for GWs m4
r/m

2
ϕ > m2

r (for the inflaton masses that are permitted by the slow
roll constraints in typical theories [173]). Consequently, from eq. (5.5) efficient preheating
requires that the coupling g is large enough that the symmetry is restored directly during
inflation anyway, as mentioned in section 5.2 (or, depending on the sign of the interaction,
the complex scalar is displaced to large field values, which might also lead to strings although
we do not study this scenario in detail).

We also note that our analysis is consistent with results from simulations of preheating
carried out in [138], which consider preheating to a real scalar field and include the case
that this is massive compared to the inflaton. They consider a quadratic inflaton potential
with starting inflaton amplitude ϕ̃ ∼MP and inflaton mass mϕ ∼ 1013 GeV of same order of
magnitude to our case. These papers find that formr & 2mϕ, which is the case relevant to the
scenario that we are interested in with mr & 1014 GeV, q > 105 is required for fluctuations
created during preheating to be large enough to restore the symmetry. This translates to
requiring g > 10−4 and ωmax & 1015 GeV� mr.

Intermediate preheating. Alternatively, as mentioned, the PQ symmetry could be re-
stored if a new, light, scalar is preheated and this then transfers energy to the sector that
gives rise to the axion. As an example in which this happens we consider a theory where the
energy transfer to the axion sector happens through an interaction of the form gχφχ

2|φ|2,
where χ is a real scalar that is preheated as before. Since the intermediate field χ could
be effectively massless and a large coupling g does not lead to symmetry restoration during
inflation, we will see that in this theory the PQ symmetry can be restored solely thanks to
efficient preheating.

Calculating the effective temperatures χ and φ reach after this process is complex due
to the non-perturbative and out of equilibrium nature of the dynamics. We therefore take a
simplified approach in which we analyse the distribution of energy in χ after preheating and
use this to approximate the scattering rate Γ of χ+ χ→ φ+ φ. We will compare this to the
Hubble parameter H at the time when the energy density transferred into χ and the energy
density remaining in the inflaton are equal. Earlier than this, the energy density in χ will
be significantly lower, leading to a lower effective temperature in the axion sector. However,
if preheating lasts beyond this time then backreaction will play an important role in the
evolution, which makes the dynamics more complicated and is expected to slow down energy
transfer from the inflaton to χ. Assuming preheating ends when half the energy is transferred
is enough for an order of magnitude estimate of the maximum effective temperature achievable
(indeed, even if the entire energy density of the inflaton is subsequently transferred into χ,
this will be at most a factor of 2 higher than that at the moment of equality). The condition
that preheating lasts until this point, and thus that a substantial fraction of the inflaton
energy is transferred into χ, is that the coupling g & 10−6 [135, 138].

We denote the amplitude of the inflaton oscillations at the point where the energy
density of the inflaton and of χ are equal by ϕ̃eq. To estimate the typical occupation numbers
nk of χk modes that are inside the resonance band k ∈ (0, ωmax) we equate the energy density
in χ at this moment

ρχ ≈
2π
3 nkω

4
max = π

6nkgϕ̃
2
eqm

2
ϕ , (H.12)

to the energy density in the inflaton 1
2 ϕ̃

2
eqm

2
ϕ, so nk ' 3/(πg) inside the resonance band.
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Meanwhile, modes outside the resonance band k > ωmax have not been exponentially ampli-
fied, so their occupation numbers are negligible.

To transfer energy to φ efficiently there must be χ modes that are energetic enough for
χ+ χ→ φ+ φ to occur, which requires ωmax � mr. This leads to a condition g � 10−5 for
mr ' 1015 GeV.93 Given the momentum distribution described above, the scattering rate
Γ = n 〈σv〉 can be calculated, where σ is the interaction cross section

σ =
g2
χφ

√
k2 −m2

r

128πk3 , (H.13)

leading to

Γ =
3g2
χφm

1/2
ϕ ϕ̃

1/2
eq

32
√

2πg3/4 . (H.14)

If this scattering rate is larger than the Hubble at that time preheating ends Γ & H then
χ and φ will reach equilibrium at an effective temperature T ∼

√
HMP. As discussed

above, preheating lasts for approximately 20 inflaton oscillations until a significant fraction
of the inflaton energy has been transferred [135], so we can estimate the Hubble at the
end of preheating H ' 0.025HI . 1.5 × 1012 GeV , leading to an effective temperature
T ' 2 × 1015 GeV , which is high enough to restore the PQ symmetry for axion decay
constants that lead to observable GWs. Meanwhile, if Γ � H immediately after preheating
the energy transferred to the axion sector through this process is not sufficient to restore the
PQ symmetry, since the rate of energy transfer by χ + χ → φ + φ will decrease faster than
the Hubble parameter drops.

In summary, the conditions for symmetry restoration in this scenario are that preheating
is sufficiently efficient and χ energetic enough to allow scattering, which occur provided
g � 10−5, that the scattering rate is large enough for thermalisation to be efficient, which
requires g2

χφ > 10−2g3/4 > 10−6, and that there is sufficient energy at the end of inflation,
and subsequently at the end of preheating, HI > 3 × 1013 GeV. For comparison, couplings
g, gχφ of such order would lead to a maximum temperature via perturbative reheating Tmax ∼
1012 GeV from eq. (5.3) (and a far lower final reheating temperature).

H.3 Symmetry restoration with a light radial mode
Here we give more details on the scenario where the symmetry is restored at temperatures
T � fa because the radial mode is light. In particular, we justify the parametric dependence
for the minimum temperature that leads to symmetry restoration given in eq. (5.6) and we
show that this expression is accurate taking into account the full finite temperature potential.

As in the main text we consider a potential

V (φ) = m2
r

2f2
a

(
|φ|2 − f2

a

2

)2

. (H.15)

Although it will turn out not to restore the PQ symmetry for T � fa it is useful to first
consider the finite temperature contribution from φ to its own thermal potential. In the high
temperature limit T � mr this is given by

VT '
1
24m

2
r (φ)T 2 ' 1

16
m2
r

f2
a

|φ|2T 2 , (H.16)

93For the lowest value of interest mr ' 1014 GeV the condition would be g � 10−9, i.e. weaker than the
condition required for efficient preheating.
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wheremr (φ)2 ∼ λ|φ|2 is the mass of the radial mode on the background of its own expectation
value (and in the second equality we have dropped a φ independent term). Comparing
eqs. (H.15) and (H.16), we immediately see that eq. (H.16) can only restore the symmetry
for T & fa (i.e. T & mr is not sufficient). It is straightforward to show that the conclusion
is unchanged if the full thermal potential is used rather than eq. (H.16).

However, the complex scalar could also couple to new fermions. In a QCD axion model
these might be the fermions that generate the QCD-PQ anomaly in KSVZ models, but more
generally the new fermions need not be charged under the SM gauge group.94 We consider
an interaction of the form

L ⊃ gφψcψ + h.c. , (H.17)

where ψ and ψc are Weyl fermions that are massless in the absence of a φ expectation value
(and h.c. denotes the Hermitian conjugate).95 The dependence of the mass of ψ on φ’s
expectation value leads to finite temperature contribution to φ’s potential

VT = −nfT
4

2π2

∫ ∞
0

q2 log
(

1 + e−
√
q2+g2|φ|2/T 2

)
dq , (H.18)

where nf = 4 if there are a single pair of fermions. In the high temperature limit T � mψ =
g 〈φ〉 eq. (H.18) is approximately

VT '
1
24g

2φ2T 2 . (H.19)

Consequently 〈φ〉 = 0 is a local minimum of the potential for any temperature T & mr/g.
However, we impose a stronger condition, which is that the thermal potential ensures that
the system reaches 〈φ〉 = 0 regardless of the initial conditions.96 This is not automatic given
eq. (H.19), because this is only valid for T � g 〈φ〉, which is not satisfied around 〈φ〉 ∼ fa if
T . gfa. Instead, for T � gfa the thermal potential of eq. (H.18) is exponentially suppressed
at 〈φ〉 ∼ fa. Physically, this happens because ψ decouples from the thermal bath when its
mass is greater than the temperature. Therefore, there is a local minimum close to the zero
temperature minimum for temperatures in this range.

Combining the preceding conditions, the lowest temperature at which the PQ symmetry
is restored regardless of the initial condition is parametrically given by eq. (5.6). Precise
results for the minimum temperature for a given model can easily be obtained by evaluating
eq. (H.18) numerically. In figure 22 we plot the results for the simple model of eq. (2.1)
with a single pair of fermions ψ ψc as a function of mr/fa and the coupling g. It can be
seen that eq. (5.6) is quite accurate (although the condition T > gfa is slightly too strong
since the fermions do not decouple from the thermal bath immediately when this condition is
violated). If an axion arises from a more complex theory the minimum temperature required
will change by order 1 factors, but the main parametric dependence will remain fixed.

We finish our analysis of these models with two additional comments. First, we note
that the values of g in our parameter space of interest are small but not tiny, so the fermions

94Indeed to avoid a too large axion mass for the parameter space that we are interested in, they must not
lead to a QCD induced axion mass.

95Unless g is tiny radiative corrections induced by this term typically require that φ’s mass is fine tuned.
We do not worry about this issue, which could be avoided for example if the axion and new fermion sector is
supersymmetric.

96We could e.g. consider models of inflation such that 〈φ〉 = 0 initially, in which case T & mr/g would keep
the system at this point. However, in such a theory strings will form anyway, so the thermal potential is not
required for this.
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Figure 22. The minimum reheating temperature required to restore the axion PQ symmetry (re-
gardless of the system’s initial conditions) in theories such that the radial mode of the complex scalar
φ that gives rise to the axion has a mass mr that is significantly smaller than the axion decay constant
fa, and φ has an interaction with fermions with coupling constant g as in eq. (H.17).

ψ are easily in thermal equilibrium (since their typical interaction rate with the thermal bath
is g2T � H(T ) where H(T ) is the Hubble parameter) and our analysis using the thermal
potential is valid. Second, as mentioned in the main text, the GW signal emitted by such
a network will be largely unaffected by the small mr, i.e. it will approximately match the
predictions of section 3. This is because the GW energy depends on the string tension, which
is set by fa not mr, and the GW spectrum is IR dominated so it is unaffected by the UV
cutoff at mr being much smaller than fa. The only effect on the GW spectrum will be
through the value of the log log(mr/H) being slightly reduced.97 This will feed into ξ and
the ratio ΓGW/Γa as well as the tension. However, the change is not too dramatic as long
as mr is not tiny. For example, taking mr = 5× 108 GeV and fa = 5× 1014 GeV (so that,
from figure 22, the symmetry can be restored for temperatures ∼ 5 × 1011 GeV), the value
of the log when the GW emission is relevant to SKA is log ∼ 60, as opposed to log ∼ 75 if
mr ∼ fa. The amplitude of the resulting GW signal is reduced by roughly 50% relative to
that plotted in figure 4, but it remains detectable by SKA.
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