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Abstract

In this thesis we prove three results. Firstly we apply the Grothendieck-Riemann-Roch
theorem for stacks to root stacks to rederive the formula for parabolic bundles. Next
we apply the same theorem to a quotient stack to derive a formula for equivariant Euler
characteristic. When the quotient is obtained by an action on a smooth projective
curve, we explicitly compute the Euler characteristic in terms of ramification data.
This agrees with many previous results with different levels of generalities, thereby
providing a unified way to prove the result in these settings. Lastly, we study
the stringy Chow ring structure of weighted blow-ups with regular centres. We
completely determine the ring structure and answering several questions regarding
its finite-generation.
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Chapter 0

Introduction

This thesis is a compilation of three projects of the author. The central ideas of these
projects are Grothendieck-Riemann-Roch theorem for stacks and root stacks.

0.1 Themes

Riemann-Roch theorem and its many siblings are some of the most fundamental and
important results in algebraic geometry. Proven by Riemann and his student Roch in
the 19th century, the theorem in its original form concerns the dimension of the space
of meromorphic functions with prescribed zeros and poles on a compact Riemann
surface. With the advent of modern algebraic geometry based on commutative
algebra, it was soon proven for projective algebraic curves. In the mid 20th century
Hirzebruch generalised the theorem greatly to vector bundles on smooth complex
algebraic varieties of any dimension. It is also in this formulation, named the
Hirzebruch-Riemann-Roch theorem, that the Todd class made its first appearance:

χ(X,E) =

∫
X

chE Td(X).

Another milestone was reached soon after, when Grothendieck revolutionised the field
of algebraic geometry by, among other things, introducing the relative point of view.
The Grothendieck-Riemann-Roch theorem concerns a proper morphism f : X → Y
between smooth quasi-projective schemes instead of a single variety, and relates the
pushforward in K-theory and pushforward of cycle classes:

ch(Rf∗E) Td(Y ) = f∗(chE Td(X)).
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With the introduction of stacks in algebraic geometry, it is natural to expect that
there is a Grothendieck-Riemann-Roch style theorem in this setting. However there
are serious challenges and solving the problem requires fundamentally new ideas,
even for Deligne-Mumford stacks. Vistoli [Vis89] developed an intersection theory for
stacks and in particular a Chow group with rational coefficients for Deligne-Mumford
stacks. In the same paper it is shown that the coarse moduli space maps induces an
isomorphism of Chow groups.

However, this immediately poses a problem for GRR style theorem. To wit, take
the simplest example: the classifying stack BG of a finite abelian group G. Then its
K-theory is the representation ring of G, while its Chow group is the same as that of a
point. Thus for dimension reason ch: K(BG)Q → A(BG)Q cannot be an isomorphism,
in contrast with the case of schemes where it follows from Grothendieck-Riemann-
Roch theorem. This does not directly rule out the existence of a Riemann-Roch
morphism τ : K(−) → A(−) that is covariant with respect to proper pushforward.
Unfortunately we will see with a bit more analysis that this is impossible either.
In any case, one could deduce from this simple example that the K-theory of a
Deligne-Mumford stack records automorphism data while the Chow group only knows
the coarse moduli space and is hence “too small” to be the target of a Riemann-Roch
style theorem.

The breakthrough was achieved by Toën in [Toë99], who showed that one needs
to consider the inertia stack. Roughly speaking, the inertia stack of a stack is a stack
that records the automorphisms of every object. For a scheme (or more generally,
algebraic space) the inertia stack is itself so indeed we can recover Grothendieck-
Riemann-Roch theorem. Built on previous work by Vistoli ([Vis92], [Vis91]) on
higher equivariant K-theory, Toën proved that there is a covariant Riemann-Roch
morphism τ : K(−)C → A(I(−))C. Its construction is far from obvious and makes
heavy use of K-theory. Toën’s theory of Riemann-Roch, although comprehensive and
aesthetically pleasing, is very abstract. There are very few examples illustrating its
use, except a few Hirzebruch-Riemann-Roch style computations (i.e. applications of
the theorem to the a morphism of the form X → Spec k). Our work in Chapter 2
is a novel application that exploits the full power of the theorem and computes the
Chern character instead of just the Euler characteristic.

To motivate the main result of Chapter 2 we introduce the second topic in this
thesis — root stacks and parabolic sheaves. Root stacks appeared to be first defined in
the work of Cadman [Cad07] and Abramovich, Graber and Vistoli [AGV08], although
the construction was mentioned in [AGV02] and was almost certainly known to
experts before. Given a line bundle L and a section σ on a stack X, the nth root
stack n

√
(X,L, σ) is a stack with morphism to X that parameterises the nth root

5



of (L, σ). In particular one can take an effective Cartier divisor D and consider the
root stack associated to its ideal sheaf OX(−D). Note that the pair (X,D) defines a
logarithmic structure. This observation leads Borne and Vistoli [BV12] to give a very
general definition of root stacks using the language of Deligne-Faltings structures,
allowing one to take roots along a more general logarithmic structure and replacing
the denominator n by sheaves of monoids.

In the same paper [BV12] Borne and Vistoli established a dictionary between
sheaves on root stacks and parabolic sheaves. Parabolic vector bundle was first
defined by Mehta and Seshadri [MS80] to study the correspondence between unitary
representation of the fundamental group of a Riemann surface and semi-stable vector
bundles. It was given in terms of a vector bundle on a compact Riemann surface
together with filtrations of the fibres at some given points. It was later generalised
by [MY92] to higher dimensions: given an effective Cartier divisor D on a smooth
projective variety X, a parabolic vector bundle is a vector bundle E together with a
filtration

E(−D) = Fn+1 ⊆ Fn ⊆ · · · ⊆ F1 = E

for some rational numbers 0 < a1 < · · · < an < 1 called weights. When D is not
smooth, in particular if it has multiple components, however, it is better to consider
different components separately, which was done by Mochizuki [Moc06]. This is
essentially the definition of parabolic vector bundle that we will use in this thesis,
and we note that we adopt the definition that is closest in literature to that of
[Bor09]. We think of a parabolic bundle as a diagram E : 1

n
Z → Vect(X) satisfying

the pseudoperiodicity condition Ei ⊗OX(D) ∼= Ei+1 and local freeness of quotients
coker(Ei → Ej) for i ≤ j < i+ 1. Clearly E is determined by its values at [0, 1) by
the pseudoperiodicity condition.

In the aforementioned work [BV12], Borne and Vistoli generalised parabolic
sheaves to general denominator systems of monoids, and showed that there is an
equivalence of category between the abelian categories of quasicoherent sheaves on a
root stack and the category of quasicoherent parabolic sheaves on the logarithmic
scheme. This generalises previous work of Borne ([Bor07], [Bor09]).

Combining the equivalence and the isomorphism between the rational Chow group
of a root stack and its coarse moduli space, which is given by the canonical map
n
√
X → X, it is natural to ask what the Chern character of a parabolic bundle as an

element of A∗(X)Q is. We will show that it is closely related to the contribution of
the component of the inertia stack I n

√
X corresponding to trivial stabiliser. Thus we

could extract it by applying the Toën-Riemann-Roch theorem to the map n
√
X → X

and then subtracting the contributions from other components.
In Chapter 3, we use a related but different Riemann-Roch theorem to derive
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an equivariant Riemann-Roch theorem. When restricted to a curve, the problem
is a classical one: given a curve X equipped with an action of a group G and a
G-equivariant vector bundle E, find the Euler characteristic

∑
H i(X,E) as a G-

representation. We propose a new solution by applying a K-theory valued Riemann-
Roch theorem to the structure map [X/G] → BG.

The third topic in this thesis is stringy Chow ring. Motivated by string theory, Chen
and Ruan in [CR04], [CR02] introduced a Gromov-Witten invariants for symplectic
orbifolds. The algebraic counterpart was developed by Abramovich, Graber and
Vistoli in [AGV02] and [AGV08]. The key observation was that in order to generalise
the Gromov-Witten theory to a target X with stacky structure, it is essential to
consider maps into X from families of marked stable curves which acquire stacky
structures themselves. This gives rise to the moduli space Kg,n(X ) of twisted stable
maps. In addition, the evaluation maps should not land in X , rather the inertia
stack IX (this is technically only true for g = 0, n = 3, as in general we will need to
consider the rigidified inertia stack). In summary, orbifold Gromov-Witten theory
gives associative products to A∗(IX ) using the moduli space Kg,n(X ). Unlike the
case of varieties, even the g = 0, n = 3 case gives a non-trivial product on IX , giving
rise to the stringy Chow ring, denoted A∗

st(X ). We note that in literature it is also
known as Chen-Ruan Chow ring, orbifold Chow ring as well as their variants using
cohomology.

In the last part of the thesis we focus on the stringy Chow ring of weighted blow-ups
with regular centres, in particular determining completely the ring structure and
answering several questions regarding finite-generation of stringy Chow ring. In terms
of literature, the closest previous work in this direction is by Borisov, Chen and Smith
[BCS05] and Jiang and Tseng [JT10] to compute the rational and integral stringy
Chow ring of toric stacks. However there are two major differences. Firstly although
there is a non-empty intersection between weighted blow-ups and toric stacks, neither
is contained in another and our result extends to the new setting. Secondly, while
[BCS05] (resp. [JT10]) concerns the generation of stringy Chow ring as Q-modules
(resp. Z-modules), describing the generators and relations using the combinatorial
data of stacky toric fans, we are more interested in the finite generation of A∗

st(BlY X)
as a A∗(X)-algebra. We give a necessary and sufficient condition in terms of the
Chow rings of the X and Y at the scheme level, which is not obvious at all a priori.
Even without knowing finite generation, we demonstrate that there is a subring of
ambient classes which is always finitely generated, and we give explicit generators
and relations.
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0.2 Summary of work and main theorems

In the first project we derive a formula for vector bundles on a root stack. This is a
novel application of Toën-Riemann-Roch theorem for Deligne-Mumford stacks, as
previous literature focuses either on developing the abstract theory of Riemann-Roch
theorem, or applications of Hirzebruch-Riemann-Roch style theorem, computing only
the degree of vector bundles. We use the full power of Toën-Riemann-Roch theorem
to compute the Chern character of parabolic vector bundles. The main theorem is

Theorem (Theorem 2.1). Let X be a smooth projective variety over an algebraically
closed field of characteristic 0 and let D be a smooth effective Cartier divisor on X.
Let E• be a parabolic vector bundle on (X,D) of weight n. Then

chparE• =
1− e−D/n

1− e−D

n−1∑
i=0

chEi · e−iD/n

in A∗(X)Q.

The formula was first derived by Iyer and Simpson in [IS08] by a different method:
they showed that the parabolic Chern character depends only on the (ordinary) Chern
character of the component bundles and extracted the chparE• by averaging over the
shifts E•, E•[1], . . . , E•[n− 1].

In the second project, joint with Francesco Sala, we compute the Euler charac-
teristic of an equivariant vector bundle on a smooth variety equipped with a finite
group action. In particular when the variety is a curve, we derive the formula for
the virtual representation in terms of ordinary Euler characteristic and ramification
data. The result itself is classical and has been studied by many, such as [EL80],
[Kan86], [Nak86], [Köc05], [FWK09] but as far as we know, our approach is unique
in the sense that the passage to inertia stack allows us to treat the global space and
the local ramification data on equal footing. The main results are

Theorem (Theorem 3.1). Given a G-equivariant vector bundle E on X, the Euler
characteristic of E is

χG(X, E) =
⊕
σ

⊕
i

χ(Aσ,i)

φ(|σ|)
|σ|

|C(σ)|
· IndG

σ ι(xi) ∈ K(BG)

where Aσ,i is a C(σ)-equivariant vector bundle on Xσ that will be given explicitly.
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Theorem (Theorem 3.2). Let X be a curve and Y = X/G be the quotient. For each
point x ∈ X, we denote by Gx the stabiliser of x. Let ex (resp. etx) be the ramification
index (resp. the tame ramification index). Let N∨

x be the cotangent space at x. Then
in K(BG) there is an equality

χG(X, E) =

(
χ(X, E) + rk E

2

∑
x

(etx − 1)

)
kG

n
+
∑
x∈X

ex
n

IndG
Gx

Ex
1−N∨

x

.

When the G-action is tame we may write

χG(X, E) = ((1− gY ) rk E +
1

n
deg E)kG− 1

n

∑
x∈X

ex−1∑
d=0

d · IndG
Gx
(Ex ⊗N−d

x ).

Finally, in the fourth project, joint with Yeqin Liu, Rachel Webb and Weihong Xu,
we study the stringy Chow ring of smooth Deligne-Mumford stacks which are global
quotients by abelian groups. We are particularly interested in the case of weighted
blow-ups, where additionally we give necessary and sufficient conditions under which
the stringy Chow ring is finitely generated. A key formula in the derivation uses the
main theorem from Chapter 3. The main result is

Theorem (Theorem 4.1). Let X be a smooth variety and let I• := (I1, a1) + · · · +
(im, am) be a Rees algebra such that each V (Ik) ↪→ X is a regular immersion and I•
defines a quasi-regular weighted closed immersion. Let Y ⊆ X be the closed subvariety
defined by I1. Let X = BlI• X be the weighted blow-up of X along I• and let Y be
the exceptional divisor. Then the restriction A∗(X) → A∗(Y ) is surjective if and only
if the ring A∗

st(X ) is generated as an algebra over A∗(I(1)) by the elements 1eζ. In
this case, A∗

st(X ) is a finitely generated algebra over A∗(X ) modulo explicit relations
that will be given in the main text.

0.3 Organisation of thesis

In Chapter 1 we introduce the preliminary notions, including root stacks, parabolic
sheaves, inertia stack, Grothendieck-Riemann-Roch theorem for stacks and weighted
blow-ups. To avoid cluttering the preliminary and improve the continuity of exposition,
we only introduce what we judged to be common background to all projects, and
leave background materials that are more specific to each project to be mentioned
later only when they are needed.

Each of the remaining chapters focuses on a project.
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In Chapter 2, after motivating the usage of Toën-Riemann-Roch theorem, we first
compute the inertia stack of a root stack and describe pullback of parabolic sheaves to
it. Next we describe the intersection theory on the root stack, leveraging its geometric
description as a weighted blow-up. The final crucial ingredient is the description of
the relative tangent of the structure map of a root stack, which as in the case with
ordinary Riemann-Roch mediates the interaction between proper pushforward and
Chern characters. The main theorem is then proven after a lengthy computation. In
the final part we derive the parabolic Chern character for divisors with more than
one component, using the iterated root construction. This part is also of independent
interest as it expounds on the necessity for a Toën style Riemann-Roch theorem and
relative inertia stack.

In Chapter 3, we first recall the Lefschetz-Riemann-Roch map valued in K-theory
developed by Sala. This is quite a complicated construction and involves several steps.
We do not attempt to recall the setup in full generality, instead making simplifications
that are adapted to our need. Along the way we point out the similarities with
Toën’s Riemann-Roch morphism. One difference is that the work of [Sal24] uses the
cyclotomic inertia, a variation of the inertia stack which is better behaved on tame
but not necessarily Deligne-Mumford stacks. We then embark on proving the main
theorem in Section 3.3. It involves understanding the K-theory of the inertia stack
of BG, the classifying stack of a finite abstract group, which are given by the sum
of representation rings of centralisers of dual cyclic subgroups. The computation
then boils down to understand natural maps of representations among these groups.
Finally in Section 3.4 we specialise to curves, where the key idea is to reindex the
summation over conjugacy classes to a summation over fixed points.

In Chapter 4, we first recall the definition of stringy Chow ring A∗
st(X ) of a

Deligne-Mumford stack X , which shares the same additive structure as A∗(IX ) but
has a different product. Along the way we introduce the moduli stack of twisted stable
curves, the obstruction sheaf on it and the age grading. Among these the obstruction
sheaf is the most essential one. It is defined in terms of a perfect obstruction theory on
the moduli stack of twisted stable curves. We compute it explicitly for global quotients
by reductive abelian groups, using the main theorem of Chapter 3 in the proof of
the essential Proposition 4.6. In the second half we specialise to weighted blow-ups.
By describing its twisted sectors as weighted projective bundles and combining with
results in the first half we completely determine their stringy Chow rings. Finally
we give a characterisation of when the stringy Chow ring is finitely generated as an
algebra over the (ordinary) Chow ring.
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Chapter 1

Preliminaries

1.1 Root stack

Root stacks were initially introduced by Cadman [Cad07] and Abramovich, Graber
and Vistoli [AGV08] to study enumerative problems on stacks. There are many
ways to understand root stacks, and in this section we recall its definition and basic
properties via its functor of points. We will mainly follow [Ols16, Section 10.3].
Another one via weighted blow-up will be useful for understanding its geometry, in
particular its intersection theory, and we will treat it later in Section 1.4.

A generalised effective Cartier divisor on a scheme X is a pair (L, σ) of an
invertible sheaf L and a cosection σ : L → OX . Clearly an effective Cartier divisor D
gives rise to a generalised Cartier divisor by the canonical section OX(−D) → OX . An
isomorphism between (L, σ) and (L′, σ′) is an isomorphism of line bundles λ : L′ → L
such that the diagram

L′ L

OX

λ

σ′ σ

commutes.
There is an obvious notion of tensor product of generalised effective Carter divisors.

Definition 1.1. Let X be a scheme and (L, σ) be a generalised effective Cartier
divisor. Fix a positive integer n. The nth root stack associated to the (L, σ) is
the fibred category over the category of schemes whose objects are triples (f :
T → X, (M,λ), ρ) where (M,λ) is a generalised effective Cartier divisor on T and
ρ : (M⊗n, λ⊗n) → (f ∗L, f ∗σ) is an isomorphism of generalised effective Cartier
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divisors on T . A morphism

(f ′ : T ′ → X, (M ′, λ′), σ′) → (f : T → X, (M,λ), σ)

is a pair (g, h) where g : T ′ → T is a morphism over X and h : (M ′, λ′) → (g∗M, g∗λ)
is an isomorphism of generalised effective Cartier divisors on T ′ that makes the
diagram

M ′⊗n g∗M⊗n

f ′∗L ∼= g∗f ∗L

h⊗n

λ′

g∗λ⊗n

commute. We denote the fibred category by n
√

(X,L, σ). When the generalised

effective Cartier divisor comes from a Cartier divisor D we also denote it by n
√
(X,D).

The following basic properties of root stacks are well-known:

Proposition 1.1.

1. If n is invertible on X then n
√

(X,L, σ) is a Deligne-Mumford stack.

2. Let p : n
√

(X,L, σ) → X be the morphism sending (f : T → X, (M,λ), σ) to f .
Then p is an isomorphism over the complement of the zero scheme of σ in X.

3. p is the coarse moduli space of n
√
(X,L, σ).

It is shown in [Ols16, Theorem 10.3.10] that if L = OX and σ is given by an
element f ∈ Γ(X,OX) then

n
√
(X,L, σ) is isomorphic to the quotient stack

[SpecX OX [T ]/(T
n − f)/µn]

where the action is given by (ζ, T ) 7→ ζT . From the local description it follows that

Proposition 1.2. If X is smooth and D is a smooth Cartier divisor then n
√
(X,D)

is smooth.

The root stack n
√

(X,L, σ) is equipped with a universal nth root of the generalised
effective Cartier divisor (p∗L, p∗σ). When (L, σ) is associated with a Cartier divisor
D, this defines a Cartier divisor on the root stack, which we denote by 1

n
D if there

is no risk of confusion with other notations. The corresponding ideal sheaf will be
denoted O n√X(− 1

n
D). We will see in Section 1.1.1 that the divisor 1

n
D, as a stack,

can be defined also using a variant of root stack.
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The functor of points description gives us another useful characterisation of root
stacks. Consider the Artin stack [A1/Gm], where Gm acts on A1 by multiplication. It
classifies Gm-torsors with an equivariant map to A1. By sending a Gm-torsor to the
sheaf of sections of the associated line bundle, it is clear that [A1/Gm] is equivalent
to the category whose objects are triples (X,L, σ) of generalised effective Cartier
divisors. The morphisms

A1 → A1, Gm → Gm

x 7→ xn, x 7→ xn

defines a morphism of stacks p : [A1/Gm] → [A1/Gm]. For a morphism X → [A1/Gm]
corresponding to (L, σ), we can form the fibre product X .

X [A1/Gm]

X [A1/Gm]

p

It follows from the description of functors of points that X is isomorphic to the
root stack n

√
(X,L, σ). For this reason we call the map p : [A1/Gm] → [A1/Gm] the

universal nth root stack.
In fact we use this construction to generalise the root stack construction to any

stack and multiple generalised effective Cartier divisors simultaneously:

Definition 1.2. Let X be an algebraic stack. Let {(Li, σi) : 1 ≤ i ≤ k} be a
collection of generalised effective Cartier divisors on X, corresponding to a morphism
X → [Ak/Gk

m]. Let n = (ni) be a collection of positive integers. The nth root stack
of X along {(Li, σi)} is defined to be the fibre product

X [Ak/Gk
m]

X [Ak/Gk
m]

p

where p is the map induced by raising to the nith power on the ith coordinate of
both A1 and Gm. We denote it by n

√
(X, (Li, σi)).

Lemma 1.3. Let {(Li, σi) : 1 ≤ i ≤ k} be a collection of generalised effective Cartier
divisors on X and n = (ni). Then there is a natural isomorphism

n
√

(X, (Li, σi)) ∼= n1
√

(X,L1, σ1)×X · · · ×X
nk

√
(X,Lk, σk).

13



Furthermore for each 1 ≤ i ≤ k, there is a morphism of stacks pi : Xi → Xi−1 such
that

• X0 = X,

• Xk
∼= n
√

(X, (Li, σi)),

• each pi : Xi → Xi−1 is the nith root stack along the generalised effective divisor

(Li, σi)|Xi−1
= (p∗i−1 · · · p∗1(Li), p

∗
i−1 · · · p∗1(σi)).

Informally, the second statement is saying that n
√

(X, (Li, σi)) is isomorphic to

the iterated root stack
nk
√
· · · n1

√
X.

Proof. The first claim follows from the isomorphism [An/Gn
m]

∼=
∏k

i=1[A1/Gm]. Note
also that the formation of root stack is compatible with base change, so we have a
Cartesian squares

n2

√
n1

√
(X,L1, σ1), p∗1L2, p∗1σ2

n2

√
(X,L2, σ2) [A1/Gm]

n1

√
(X,L1, σ1) X [A1/Gm]

(−)n2

p1 f2

where f2 corresponds to the generalised effective Cartier divisor (L2, σ2). The second
claim then follows from induction on k.

1.1.1 Root stack along line bundle

There is a similar construction which parameterises roots of line bundles without
section, which is closely related to the fibre of a root stack n

√
(X,D) above D.

Definition 1.3. Let X be a scheme, L a line bundle on X and n a positive integer.
The nth generic root stack of X along the line bundle is the fibred category over the
category of schemes whose objects are triples (f : T → X,M, ρ) where M is a line
bundle on T and ρ : M⊗n → L is an isomorphism. The morphisms are defined in the
obvious way. We denote it by X(L,n).

More generally,

14



Definition 1.4. Let X be an algebraic stack. Let L be a line bundle on X, corre-
sponding to a morphism X → BGm. Let n be a positive integer. The nth generic
root stack of X along the line bundle is the stack defined by the fibre product

X(L,n) BGm

X BGm

Clearly this recovers the previous definition when X is a scheme.
Locally the line bundle L is trivial so the morphism X → BGm factors through

the constant family Spec k → BGm and hence X ∼= Bµr ×X since µr is the kernel
of the homomorphism (−)n : Gm → Gm. Globally however such a trivialisation does
not exist in general so we have

Proposition 1.4. The canonical map p : X(L,n) → X is a µn-gerbe. In addition it is
the coarse moduli space of X(L,n).

Note that there is a morphism of stacksX(L,n) → n
√

(X,L, 0) induced by (T,M, σ) 7→
(T, (M, 0), σ). Locally this is given by

X ×Bµn → [(SpecX OX [T ]/T
n)/µn]

so n
√

(X,L, 0) is an infinitesimal thickening of X(L,n). If X is smooth then X(L,n) is

the reduction of n
√
(X,L, 0).

Let n
√
X be the nth root stack of (X,D). The pullback of the (generalised) Cartier

divisor D along D → X is (N ∨
D/X , 0) where N ∨

D/X is the conormal bundle, so the

fibre product D ×X
n
√
X is a non-reduced closed substack of n

√
X. By the discussion

above its reduction is the generic root stack. It is the Cartier divisor on the root
stack n

√
X corresponding to the universal nth root O( 1

n
D).

D(N∨
D/X

,n) D ×X
n
√
X n

√
X

D X

1.2 Parabolic sheaves and parabolic vector bundles

Parabolic sheaves were initially introduced by Mehta and Seshadri in [MS80] to
study moduli problem of vector bundles on algebraic curves. The definition has been
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abstracted and generalised ([MY92], [IS08], [Bor09]). Here we use a definition that is
similar to that used by Borne in [Bor09] (except a difference in the convention of the
indexing set).

Let X be a smooth projective variety over an algebraically closed field of charac-
teristic 0. Let D be a smooth irreducible divisor on X. We denote by Qcoh(X) the
abelian category of quasicoherent sheaves. Given a functor E• : Z → Qcoh(X) and
an integer i, the shift of E• is defined on objects by E•[i]j = Ei+j. There is a natural
transformation E•[i] → E•[j] for each i ≤ j.

Definition 1.5. A parabolic sheaf on (X,D) of weight n is a pair (E•, j) consisting
of a functor E• : Z → Qcoh(X) to the category of quasicoherent sheaves on X and
a natural isomorphism j : E• ⊗ OX(D) → E•[n] such that the following diagram
commutes:

E• E•[n]

E• ⊗O(D)

j

A morphism (E , j) → (E ′, j′) is a natural transformation α : E → E ′ such that the
following diagram commutes:

E ⊗ O(D) E [n]

E ′ ⊗O(D) E ′[n]

j

α⊗1 α

j′

We denote the category of parabolic sheaves on (X,D) of weight n by Qcohn(X,D).
More generally, suppose D = D1 + · · ·+Dk is a simple normal crossing divisor.

Let n = (ni) be a collection of positive integers. A parabolic sheaf on (X,D) of
weight n is a pair (E , j) consisting of a functor E : Zk → Qcoh(X) and a natural
isomorphism ji : E ⊗OX(Di) → E [niei] for each 1 ≤ i ≤ k, where ei is the tuple with
1 at ith place and 0 elsewhere, such that the following diagram commutes:

E E [niei]

E ⊗ O(Di)

ji

Let p : n
√
X → X be the canonical map. Given a vector bundle E on n

√
X, we

16



obtain a functor E : Zk → Qcoh(X) by the assignment

Em1,...,mk
= p∗

(
E ⊗O n√X

(
m1

n1

D1 + · · ·+ mk

nk

Dk

))
.

Also note that for any 1 ≤ i ≤ k, we have

E [niei]m1,...,mk
= Em1,...,mi+ni,...,mk

= p∗

(
E ⊗O n√X

(
m1

n1

D1 + · · ·+ (
mi

ni

+ 1)Di · · ·+
mk

nk

Dk

))
= p∗

(
E ⊗O n√X

(∑ mℓ

nℓ

Dℓ

)
⊗O n√X(Di)

)
= p∗

(
E ⊗O n√X

(∑ mℓ

nℓ

Dℓ

)
⊗ p∗OX(Di)

)
= p∗

(
E ⊗O n√X

(∑ mℓ

nℓ

Dℓ

)
⊗
)
⊗OX(Di)

= Em1,...,mk
⊗OX(Di)

by projection formula, so E defines a parabolic sheaf. This defines a functor Φ
from the category of quasicoherent sheaves on the root stack and the category of
parabolic sheaves on X. The main result of [BV12] is

Theorem 1.5 ([BV12, Theorem 6.1]). Let X be a smooth scheme and D = D1+ · · ·+
Dk be a simple normal crossing divisor. Fix weights n. Then Φ is an equivalence of
tensor abelian categories between Qcoh( n

√
(X,D)) and Qcohn(X,D).

In Chapter 2, we will be interested in vector bundles on root stacks. In this case
there is a refinement of the result:

Proposition 1.6 ([Bor09, Théorème 2]). Φ induces an equivalence of tensor categories
between vector bundles on n

√
(X,D) and parabolic bundles of weight n on (X,D).

1.3 Grothendieck-Riemann-Roch for stacks and

inertia stack

For a quasi-projective variety X, we write K(X) := K0(X) for the K-theory of vector
bundles on X. As X is non-singular the map K0(X) → K0(X) sending a vector
bundle to its class in the K-theory of coherent sheaves is an isomorphism so we may
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also identify K(X) with K0(X). The Chern character of X is a ring homomorphism
ch : K(X) → A∗(X)Q from the K-theory to the rational Chow ring of X. It is natural
with respect to pullbacks. Its failure to commute with pushforward is quantified
precisely by the Grothendieck-Riemann-Roch theorem: suppose f : X → Y is a
proper morphism between non-singular varieties. Define the pushforward in K-theory
to be

Rf∗ : K(X) → K(Y )

[E] 7→
∑

(−1)i[Rf i
∗E].

Then there is commutative diagram

K(X) A∗(X)Q

K(Y ) A∗(Y )Q

ch(−)TdX

Rf∗ f∗

ch(−)TdY

Given a smooth Deligne-Mumford stack X , an intersection theory can be con-
structed ([Vis89]). Moreover it is shown in the same paper that the coarse moduli
space map p : X → |X | induces an isomorphism of the rational Chow groups. It is
natural to wonder if such a theorem holds for morphisms of stacks.

Unfortunately the word-by-word transcription of Grothendieck-Riemann-Roch
theorem cannot work for stacks, due to the existence of coarse moduli spaces. Consider
the following example, adapted from [Toë99]. Let BCH be the classifying stack of
H = µn, the dual of the cyclic group of order n. Its K-theory can be identified with its
representation ring. Its moduli space p : BCH → Spec k is a point, and pushforward
along which induces a map V 7→ dimV H taking a representation to the dimension
of its invariant part on K-theories. Suppose we had a Grothendieck-Riemann-Roch
theorem for p, so there were a commutative diagram

K(BH)C A∗(BH)C

C C

ch

id

Note that since the tangent bundle of both the source and the target is trivial, the
Todd class vanishes and in particular the top horizontal arrow is multiplicative. Let
V be a non-trivial character. Then

1 = ch 1 = chV ⊗n = (chV )⊗n = 0,
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absurd.
The key insight of [Toë99] is that if one systematically records the automorphisms

then it is possible to establish a version of Grothendieck-Riemann-Roch valued in
inertia stacks.

1.3.1 Inertia stack

Definition 1.6. Let X be a Deligne-Mumford stack. Its inertia stack is defined to
be IX = X ×X×X X .

As a fibred category, its objects are pairs (x, α) where x ∈ X (T ) is an object of X
above T and α ∈ AutT (x) is an automorphism of x. A morphism f : (x, α) → (y, β)
from (x, α) ∈ IX (T ) to (y, β) ∈ IX (S) consists of an arrow f : x → y such that the
induced morphism AutT (x) → ϕ∗AutS(y) maps α to ϕ∗(β), where ϕ : T → S is the
image of f in the category of schemes.

We can make the description more explicit if X is a global quotient stack. Suppose
X = [X/G] is the quotient of a scheme X by an abelian group G. Then an easy
computation (for example [Sta18, 0373]) shows that there is a decomposition

IX =
∐
g∈G

[Xg/G]

where Xg is the fixed subscheme of g. More generally if G is not necessarily abelian
then

IX =
∐

g∈C(G)

[Xg/C(g)]

where C(G) is the set of conjugacy classes of G and C(g) is the centraliser of g.
If X is smooth then Xg is a smooth closed subscheme. Since [Xg/G] → X is a

regular embedding, it has a normal bundle N[Xg/G]/X . They assemble into a vector
bundle (of possible different rank) on IX , which we denote by N ∨

IX/X .

1.3.2 Toën-Riemann-Roch theorem

The main theorem of [Toë99] is

Theorem 1.7 ([Toë99, Théorème 4.11]). Let X be a Deligne-Mumford stack which
has a quasi-projective coarse moduli space and satisfies the resolution property. Then
there is a Riemann-Roch transformation τX : K0(X ) → A∗(X )C that is covariant with
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respect to proper morphisms. In other words, let f : X → Y be a proper morphism of
Deligne-Mumford stacks. Then there is a commutative diagram

K0(X )C A∗(IX )C

K0(Y)C A∗(IY)C

τX

f∗ f∗

τY

Remark 1.1. The resolution property says that every coherent sheaf is the quotient
of some locally free sheaf. It is shown in [Tot04] that this implies that the stack X is a
quotient stack. In addition for X a smooth separated scheme and D a smooth Cartier
divisor, the root stack n

√
(X,D) has the resolution property by [Tot04, Theorem 1.2].

Thus we may write K( n
√

(X,D)) = K0( n
√

(X,D)) = K0(
n
√

(X,D)) unambiguously.

When X is smooth, the Riemann-Roch morphism is defined to be the composition

K0(X )C
π∗
−→ K0(IX )C

·λ−1(N∨
IX/X )−1

−−−−−−−−−→ K0(IX )C
ρ−→ K0(IX )C

ch(−)·Td(IX )−−−−−−−−→ A∗(IX )C.

We now explain the notations.
Let π : IX → X be the inertia. The first map is the pullback in K-theory induced

by π.
The λ−1 appearing in the second map is defined in terms of λ-operations. For

simplicity we recall here the relevant definitions that suffice for our applications, and
interested readers are encouraged to consult the textbook [FL13] for the most general
definitions. Recall that the K-theory of a scheme or a stack is a λ-ring, meaning that
it is equipped with operations λi for each integer i ≥ 0 that satisfy certain axioms.
For a vector bundle E they are defined by

λi(E) = [∧iE].

These operations can be assembled into a power series

λt(x) =
∑
i

λi(x)ti.

Thus for a vector bundle E,

λ−1(E) =
∑
i

(−1)i[∧iE],
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which is a finite sum since E has finite sum. By assumption the conormal bundle
N ∨

IX/X is a vector bundle on the inertia stack so we have completely described the
second map.

The third map ρ is called the twist map. Informally it twists each eigenbundle
under the action of the automorphism group by its eigenvalue. Recall that an object
of IX is a pair (x, α) where x ∈ X (T ) and α is an automorphism of x. Given a vector
bundle V on X , x∗V is a vector bundle on T equipped with a ⟨α⟩-action. Since the
ground field is the complex numbers, the action is diagonalisable and hence we may
decompose

x∗V =
⊕
ζ

(x∗V )ζ

according to characters ζ of ⟨α⟩. It can be shown that the subbundle (x∗V )ζ is
compatible with morphisms in IX and thus defines a vector bundle on IX . Thus⊕

ζ ζ(x
∗V )ζ is a well-defined element of K0(IX )C, which we call ρ(V ). The above

procedure defines the linear map ρ : K0(IX )C → K0(IX )C.
The last map in the composition is the same as in Grothendieck-Riemann-Roch

for varieties. It takes the Chern character of a K-theory class and multiplies it by
the Todd class of the tangent bundle TIX , which we abbreviate to Td(IX ).

1.4 Weighted blow-ups

Blow-up is an operation in classical algebraic geometry that principalises an ideal
sheaf. Suppose I is an ideal sheaf on a scheme X, defining a closed subscheme Y .
The blow-up BlI X is defined to be ProjX OX [I], where the Rees algebra OX [I] is
a graded algebra. The inverse image of Y is the exceptional divisor, which is the
projectivised conormal cone of Y . Weighted blow-up generalises classical blow-up by
allowing an ideal sheaf I• to have “weights”, thus producing a Rees algebra which is
not necessarily generated by degree 1 elements. Subsequently the Proj construction
is replaced by the stacky version Proj, producing a stack BlI• X. In this subsection
we introduce weighted blow-ups following [QR] and interpret root stacks using this
perspective.

Definition 1.7. A Rees algebra on X is a quasicoherent, finitely generated, graded
OX-subalgebra R =

⊕
n≥0 Int

n of OX [t] such that I0 = OX and In ⊇ In+1 for all n.

Example 1.1.
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1. An ordinary Rees algebra OX [I] where I is an ideal sheaf is a Rees algebra
generated in degree 1. Conversely if I• is a Rees algebra generated by I1 then
I• = OX [I1]. We also denote this Rees algebra by (I1, 1).

2. Given an ideal I and n ≥ 1, let (I, d) denote the smallest Rees algebra containing
Itn. Explicitly (I, n)k = I⌈k/n⌉, i.e.

(I, n)k = OX ⊕ It⊕ It2 ⊕ · · · ⊕ Itn−1 ⊕ I2td+1 ⊕ I2td+2 ⊕ · · · .

3. Given a finite collection of Rees algebras Ii,•, we let
∑

i Ii,• denote the smallest
Rees algebra containing all the Ik,•. Explicitly

(I1,• + · · ·+ Ir,•)k =
∑

k=k1+···+kr

I1,k1 · · · Ir,kr .

Definition 1.8. Suppose R =
⊕

n≥0Rn be a quasicoherent graded OX-algebra. Let
R+ =

⊕
n>0Rn be the irrelevant ideal. The stack-theoretic Proj of R is the quotient

stack

ProjX(R) =

[
SpecX(R) \ V (R+)

Gm

]
where the Gm-action is induced by the grading on R.

Example 1.2.

1. Given vector bundles E1, . . . , Er on X and positive integers n1, . . . , nr, the
weighted vector bundle E =

⊕
Ei(−ni) gives the smooth stack

P(E) = ProjX(
r⊗

i=1

SymOX
(Ei(−ni))).

2. An important special case is when L is a line bundle on X. Then P(L(−n))
parameterises nth roots of the line bundle E. To see this, we note the stacky
Proj construction satisfies a similar universal property as ordinary Proj: given
a morphism f : T → X and a weighted vector bundle E =

⊕
Ei(−ni) on X, a

lift to P(E) corresponds to the data of a line bundle M on T and morphisms
φi : f

∗Ei → M⊗di such that locally on T at least one of the φi is surjective (see
[QR] Proposition 1.5.1 and Example 2.1.1). Thus for L a line bundle, P(L(−n))
parameterises a line bundle M together with an isomorphism f ∗L → M⊗n.
Thus there is an isomorphism P(L(−n)) ∼= X(L,n), the nth generic root stack
of X along L.
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Definition 1.9. Let I• be a Rees algebra on X. The weighted blow-up of X along I•
is defined as the morphism

π : BlI• X = ProjX I• → X.

Let X ′ = BlI• X. The natural inclusion I•+1 ↪→ I• corresponds to the inclusion
OX′(1) ↪→ OX′ of invertible sheaves, and defines an effective Cartier divisor E on X ′

such that OX′(1) = OX′(−E). E is called the exceptional divisor of BlI• X.

For the rest of this section we consider weighted blow-up along a regular centre:
let I1, · · · Ik be ideal sheaves on X and let a1, . . . , ak be positive integers. Let

I• = (I1, a1) + · · ·+ (Ik, ak).

We assume

• each V (Ik) ↪→ X is a regular embedding,

• I• defines a quasi-regular weighted closed immersion ([QR, Definition 5.1.3]).

Let Y = V (
∑

Ii) be the blow-up centre. Denote the blow-up and the exceptional

divisor by X̃ and Ỹ respectively. Then there is a commutative diagram

Ỹ X̃

Y X

j

g f

i

which is not Cartesian.

Example 1.3. The most important example for us is root stack. Given a generalised
effective Cartier divisor (L, σ) on X and a positive integer n, we can define a graded
OX-algebra

R =
⊕
i≥0

L⌈i/n⌉

where the multiplication is defined by σ : L → OX . It is shown in [QR, Example
2.2.2 ] that it has exactly the same universal property as the root stack, namely if
f : T → X is a morphism then a lift to ProjX R is equivalent to giving a generalised
effective Cartier divisor (M,λ) with an isomorphism r : f ∗(L, σ) → (M,λ)⊗n. Thus
ProjX R ∼= n

√
(X,L, σ). In particular when (L, σ) is derived from a Cartier divisor

D, we see R = (I, n) using the notation of Example 1.1 so n
√
(X,D) ∼= ProjX(I, n) =

Bl(I,n) X.
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Chapter 2

Parabolic Chern Character

Let X be a smooth scheme over C and D a smooth Cartier divisor. The root stack
n
√

(X,D) is a smooth Deligne-Mumford stack which admits X as a coarse moduli
space. We have seen that vector bundles on n

√
X,D are equivalent to parabolic

bundles on (X,D), which are diagrams of vector bundles on X subject to some
compatibility conditions. Since it is possible to identify the rational Chow groups of
n
√
X,D and X, given a vector bundle on n

√
X,D, its Chern character can be expressed

as an element of the rational Chow group A(X)Q. It is then natural to ask how it
is related to Chern characters of constituent bundles of the corresponding parabolic
bundles. In this paper we gave a complete, self-contained solution to this question
using Toën’s Grothendieck-Riemann-Roch theorem for stacks:

Theorem 2.1. Let X be a smooth projective variety over an algebraically closed field
of characteristic 0 and let D be a smooth effective Cartier divisor on X. Let E• be a
parabolic bundle on (X,D) of weight n. Then

chparE• =
1− e−D/n

1− e−D

n−1∑
i=0

chEi · e−iD/n

in A∗(X)Q.

This agrees with previous computations by Iyer and Simpson in [IS08], which uses
a more elementary approach.

2.1 Introduction

In this chapter we will not distinguish a vector bundle E on the root stack and the
parabolic bundle E• = Φ(E) induced by the functor in Section 1.2. We also write
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Dn := 1
n
D for the universal Cartier divisor.

Definition 2.1. Let X be a smooth projective variety and D a smooth Cartier
divisor. Given a parabolic vector bundle E• of weight n on (X,D), the parabolic
Chern character of E• is the element

p∗ ch(E) ∈ A∗(X)Q

in the rational Chow group of X where p : n
√
(X,D) → X is the canonical map. We

denote it by chparE•.

As the parabolic vector bundle E• is presented using data of vector bundles on X,
whose Chern characters is an element of the same group A∗(X)Q, it is natural to ask
what is the relationship between the two. As the comparison involves the p∗ chE•,
the pushforward of the Chern class along a proper morphism, heuristics suggests that
it should be related to ch(p∗E•) by a Grothendieck-Riemann-Roch-like theorem.

The Toën-Riemann-Roch theorem says that there is a “correction term” that
should be accounted for.

2.2 Geometry of root stack

2.2.1 Inertia of root stack

We begin by describing the inertia stack of a root stack.

Proposition 2.2. The inertia stack of n
√
(X,D) is

I n
√
(X,D) = n

√
(X,D)⨿

∐
ζ∈µn\{1}

Dn.

Proof. Let X = n
√

(X,D). Given an object (f : T → X, (M,λ), ρ) of X , the canonical
isomorphism hM : Hom(M,M) ∼= OX induces a homomorphism

AutT (f,M, λ, ρ) → µn,T

α 7→ (f ∗hM)(α).

As µr is constant over C, write µr = µr(C) and the above map induces a decom-
position IX :=

∐
ζ∈µn

I(ζ)X . Similarly IDn :=
∐

ζ∈µn
I(ζ)Dn and the morphism of

inertia stacks IDn → IX induced by the closed immersion Dn → X respects the
decomposition. Clearly I(1)X is isomorphic to the image of the diagonal section of
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IX → X so it remains to prove that for ζ ̸= 1, I(ζ)Dn → I(ζ)X is an isomorphism.
Recall from the description of the functor of points of the root stack and the generic
root stack that the morphism is given over T by

(f,M, ρ, α) 7→ (i ◦ f, (M, 0), ρ, α)

where i : D → X is the inclusion of the Cartier divisor. Clearly it is fully faithful.
To show it is essentially surjective take an object (f : T → X, (M,λ), ρ, α) of I(ζ)X
over T . Since ζ ̸= 1, 1M − α : M → M is invertible. On the other hand, both 1M
and α preserve λ so

(1M − α)(λ) = 0

which forces λ = 0. It then follows that f ∗(σD) = λ⊗n = 0, where σD : ID → OX is
the inclusion of the ideal sheaf. Thus f factors through D as required.

Remark 2.1. See also Section 4.2.2 for a general treatment of the decomposition of
the inertia stack of global quotients by reductive abelian groups.

Proposition 2.3. Let E• be a vector bundle on n
√
(X,D). Then

E•|Dn =
n−1⊕
i=0

p∗Gr−i E• ⊗N i
Dn

.

More generally, such a decomposition exists for any indexing set which forms a coset
representative of Z/nZ.

Proof. This is [IS08] Lemma 4.1 and Lemma 4.4.

2.2.2 Chow group of root stack

Proposition 2.4. The rational Chow group of Dn can be identified with that of D in
such a way that p∗ induces a ring isomorphism. Moreover under this isomorphism
the pushforward p∗ : A

∗(Dn)Q → A∗(D)Q is multiplication by 1
n
.

Proof. We will use results from [AOA23] to describe the Chow ring of a weighted
projective bundle. By Example 1.2 Dn = Proj(E) where E is the weighted line
bundle N∨

D/X(−n). By viewing X as equipped with a trivial Gm-action, E has an
equivariant Euler class

eGm(E) = nt+ e(N∨
D) ∈ A∗

Gm
(X) = A∗(X)[t]
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so rationally
A∗(Dn)Q = A∗(D)Q[t]/(nt+ e(N∨

D)) = A∗(D)Q.

To prove the second statement note that since Dn → D is a µn-gerbe, the stabiliser
of a general geometric point is µn so p has degree 1

n
. Given a cycle [V ] on D, denote

by Vn = V ×D Dn its pullback to Dn. Since the image of Vn under p is also V , we
have

p∗p
∗[V ] = p∗[V

′] = deg(p)[V ] =
1

n
[V ].

Therefore the identity

p∗p
∗(α) =

α

n

holds for any cycle class α ∈ A∗(D).

2.2.3 Relative tangent and Todd class

Lemma 2.5. Given a root stack p : n
√
X → X, the cotangent sequence

0 → p∗ΩX → Ω n√X → Ω n√X/X → 0 (2.1)

is exact. Taking its dual, there is another short exact sequence

0 → T n√X → p∗TX → Ext1(p∗ΩX ,O n√X) → 0 (2.2)

where T n√X = Ω∨
n√X

and TX = Ω∨
X .

Proof. Firstly note that ΩX and Ω n√X are both locally free due to smoothness.

The coarse moduli space n
√
X → X is a generic isomorphism so the kernel and

cokernel of p∗ΩX → Ω n√X are torsion. Thus the kernel, being a torsion subsheaf of
a locally free sheaf, must vanish and sequence (2.1) is exact on the left. Similarly
Hom(Ω n√X/X ,O n√X) = 0 so sequence (2.2) is exact on the left. Exactness on the
right follows from the local freeness of Ω n√X .

Lemma 2.6. The classifying map X → [A1/Gm] induced by a smooth Cartier divisor
is flat.

Proof. Consider the pullback of the universal family

P A1

X [A1/Gm]

f
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where P is the Gm-bundle corresponding to the line bundle (in other words the line
bundle minus the zero section). Since both P and A1 are regular we can apply miracle
flatness and it suffices to show the fibres of f have constant dimension, which is
clear.

Proposition 2.7. The relative tangent of a root stack n
√
X → X is given by the class

[O(Dn)]−O(nDn) ∈ K( n
√
X).

Proof. Recall that the relative tangent of a morphism f : X → Y is theK-theory class
[TX ]− [TY |X ]. By Lemma 2.5 the relative tangent is represented by Ext1(p∗ΩX ,O n√X).
Consider the universal root stack

n
√
X [A1/Gm]

X [A1/Gm]

g

f

We first prove the result for the universal root stack [A1/Gm] → [A1/Gm]. For
clarity we write the A1 appearing in the domain and codomain as X = Spec k[x]
and Y = Spec k[y] respectively. The morphism between the quotient stacks is then
induced by the nth power map (−)n : X → Y (and the nth power map Gm → Gm).
Take the smooth cover Y → [Y/Gm] and form the fibre product which is [X/µn].
Note that X is the cover of both [X/µn] and [X/Gm] and a sheaf on [X/Gm] is the
same as a Gm-equivariant sheaf on X, which is the same as a Z-graded k[x]-module.

X [X/µn] Y

[X/Gm] [Y/Gm]

The relative cotangent sequence reads

ΩY |X ΩX ΩX/Y → 0

which we spell out as

k[x]dy k[x]dx k[x]/nxn−1dx 0nxn−1

which happens to be exact on the left as well. Here the generator dx has degree −1
and dy has degree −n so we may write it explicitly as

k[x][n] k[x][1] k[x]/nxn−1[1] 0
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Note that as X → Y is generically étale, ΩX/Y is torsion. Dualising the above
sequence, we get

0 k[x][−1] k[x][−n] k[x]/nxn−1[−n] 0

The Z-graded module k[x][−1] corresponds to the universal root O(Dn), so it follows
that the relative tangent is O(Dn)−O(nDn).

For a general root stack n
√
X, as the classifying map X → [A1/Gm] is flat by

Lemma 2.6, the claim follows by pulling back Ext1(p∗Ω[A1/Gm],O[A1/Gm]), which
represents the relative tangent in K-theory by Lemma 2.5.

2.3 Proof of main theorem

In this section we will prove:

Theorem 2.8. Let E• be a parabolic vector bundle on (X,D). Then

chparE• =
1− e−D/n

1− e−D

n−1∑
i=0

chEi · e−iD/n

in A∗(X)Q.

It suffices to prove the equality in A∗(X)C. Apply Toën-Riemann-Roch to the
coarse moduli space p : n

√
(X,D) → X, we get the following commutative diagram

K( n
√
X) K(I n

√
X) K(I n

√
X) A∗(I n

√
X) = A∗( n

√
X)⊕A∗(Dn)

⊕µn−1

A∗(X)⊕A∗(D)⊕µn−1

K(X) A∗(X)

π∗(−)

λ−1(N∨)

p∗

ρ c

p∗

(id,i∗)

chX(−)TdX

where the superscript on each Chern character indicates the space on which it operates.
In the diagram c is the map

chI n√X(−) Td(I
n
√
X).
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It is helpful to recall that we have a (non-Cartesian) commutative square

Dn
n
√
X

D X

p p

i

Consider a vector bundle E• on n
√
X. We are going to compute its image in the

bottom right corner using the two paths in the commutative diagrams and equate
them.

The left-and-bottom composition is straightforward: p∗ takes the 0th component
in the parabolic diagram so E• is sent to

chX E0 · TdX.

For the upper-and-right composition, it is convenient to split the contributions
from the identity and non-identity sectors. On the identity sector the inclusion
I n
√
X1 → n

√
X is identity so π restricts to identity and the conormal bundle vanishes.

In addition the twisting is trivial so we get an element

ch
n√X(E•) · Td

n
√
X ∈ A∗(

n
√
X).

On the non-identity sector labelled by ξ ∈ µn−1, the upper horizontal composition
gives

chDn ρ(
E•|Dn

1−N∨
Dn

) · TdDn = chDn ρ

(
n∑

i=1

p∗Gri E• ⊗N−i
Dn

1−N∨
Dn

)
· TdDn

=
n∑

i=1

chDn
ζ−ip∗GriE• ⊗N−i

Dn

1− ζ−1N∨
Dn

· TdDn ∈ A∗(Dn),

to be followed by the right vertical composition:

n∑
i=1

i∗p∗

(
chDn

ζ−ip∗Gri E• ⊗N−i
Dn

1− ζ−1N∨
Dn

· TdDn

)
.

Summing up the contributions from all sectors and equating it with the other
composition gives the main equation

chE0·TdX = p∗(ch
n√X(E•)·Td

n
√
X)+

∑
ζ∈µn\1

n∑
i=1

i∗p∗

(
chDn

ζ−ip∗Gri E• ⊗N−i
Dn

1− ζ−1N∨
Dn

· TdDn

)
.
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Recall that by definition the parabolic Chern character is p∗ ch
n√X(E•). To extract

it from the equation it is natural to divide both sides by TdX, thereby expressing
the difference between the Todd class of n

√
X and X in terms of the Todd class of

the relative tangent.
In (2.3) we use the projection formula to combine the tangent bundles into the

relative tangent, just as one would do for Grothendieck-Riemann-Roch theorem. Then
in (2.4) we apply Proposition 2.7 to obtain its Todd class. Recall that for a line
bundle L with Chern root is given by

TdL =
x

1− e−x

and it is multiplicative in the sense that Td(L1 ⊕ L2) = TdL1TdL1. Denoting the
Todd class of the relative tangent of a morphism X → Y by Td(X/Y), we have

Td(
n
√
X/X) =

TdO(Dn)

TdO(nDn)
=

D/n

1− e−D/n
· 1− e−D

D
=

1

n

1− e−D

1− e−D/n
.

At this stage we have isolated the sought-after parabolic Chern character, so it remains
to simplify the summands due to the non-identity sectors.

As Dn → D is étale, we can identify the their tangent bundles and subsequently
Td(Dn/X) = p∗Td(D/X). Then in (2.6) we invoke Proposition 2.4 to pushforward
the classes on the gerbe Dn to D. Finally in (2.7), combining the relative tangent of
D → X with the Chern characters of Gri E•, we get an expression in terms of the
Chern character on X of

i∗GriE• = Ei/Ei−1.

chE0 = p∗(ch
n√X E• · Td(

n
√
X/X))

+
∑

ζ∈µn\1

n∑
i=1

i∗p∗

(
chDn

ζ−ip∗Gri E• ⊗N−i
Dn

1− ζ−1N∨
Dn

Td(Dn/X)

)
(2.3)

projection formula

= p∗ ch
n√X E• ·

1

n

1− e−D

1− e−D/n

+
∑

ζ∈µn\1

n∑
i=1

i∗p∗

(
chDn

ζ−ip∗GriE• ⊗N−i
Dn

1− ζ−1N∨
Dn

Td(Dn/X)

)
(2.4)
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expression for T n√X/X and projection formula for p

= p∗ ch
n√X E• ·

1

n

1− e−D

1− e−D/n

+
∑

ζ∈µn\1

n∑
i=1

i∗p∗

(
chDn

ζ−ip∗GriE• ⊗N−i
Dn

1− ζ−1N∨
Dn

· p∗Td(D/X)

)
(2.5)

Dn → D is étale

= chparE• ·
1

n

1− e−D

1− e−D/n

+
1

n

n∑
i=1

∑
ζ∈µn\1

i∗

(
chD ζ−i Gri E• ⊗N

−i/n
D

1− ζ−1N∨
D

Td(D/X)

)
(2.6)

projection formula and p∗ : A
∗(Dn) → A∗(D)

= chparE• ·
1

n

1− e−D

1− e−D/n

+
1

n

n∑
i=1

∑
ζ∈µn\1

ζ−i chX Ei/Ei−1 ⊗ e−iD/n

1− ζ−1e−D/n
(2.7)

GRR for i : D → X

= chparE• ·
1

n

1− e−D

1− e−D/n
+

n∑
i=1

chEi/Ei−1 · P (i, n). (2.8)

On the last line (2.8), we define for 1 ≤ i ≤ n

P (i, n) =
1

n

∑
ζ∈µn\1

ζ−ie−iD/n

1− ζ−1e−D/n
.

Lemma 2.9. For 1 ≤ i ≤ n, we have

P (i, n) =
e−D

1− e−D
− e−iD/n

n(1− e−D/n)
.

Proof. Let ζn = exp(2πi/n). Then for 1 ≤ i ≤ n we have

n−1∑
j=1

ζ−ij
n

1− ζ−j
n x

=
nxn−i

1− xn
− 1

1− x
.
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Lemma 2.10. Let f(x) be a rational function in x. Suppose it has Laurent series
expansion f(x) =

∑
aix

i. Then there is an equality of Laurent series∑
ζ∈µn

f(ζx) = n
∑
k

ankx
nk.

Proof. Observe that for any integer i, the sum over ith powers of roots of unity
satisfies ∑

ζ∈µn

ζ i =

{
n if n divides i

0 otherwise

which can be easily checked. The result then follows by extracting terms in the
Laurent series whose degree is divisible by n.

Corollary 2.11. For 1 ≤ i ≤ n, there is an equality of rational functions∑
ζ∈µn

ζ−i

1− ζ−1x
=

nxn−i

1− xn
.

Proof. It suffices to show that they have the same Laurent series expansions. Apply
Lemma 2.10 to f(x) = xi

1−x
= xi + xi+1 + xi+2 + · · · to obtain

∑
ζ∈µn

ζ ixi

1− ζx
= n(xn + x2n + · · · ) = nxn

1− xn
.

The result then follows.

Remark 2.2. Expressions of the form∑
ζ∈µn−1

ζ i

1− ζ

are examples of generalised Dedekind sum due to their connection with the Dedekind
η-function and are well studied by number theorists. More intriguing to us is their
frequent appearances in characteristic class, more precisely contributions from inertia
(resp. fixed point sets) on a stack (resp. manifolds with group actions). For example
as mentioned in [Zag73] the sums appear in the work by Atiyah and Singer on
equivariant signature ([AS68]). They also appeared in the work by Buckley, Reid and
Zhou on orbifold Euler characteristic ([BRZ13]). It would be an interesting question
to investigate if there are other contexts in which these sums appear.
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As a consequence of Corollary 2.11, for 1 ≤ i ≤ n we can express P (i, n) as

P (i, n) =
e−D

1− e−D
− e−iD/n

n(1− e−D/n)
.

For 1 ≤ i < n, the difference telescopes:

P (i+ 1, n)− P (i, n) =
e−iD/n

n
.

Rearranging the equation, we proceed to complete the final steps of manipulation
and conclude the proof:

chparE• ·
1

n

1− e−D

1− e−D/n
= chE0 −

n∑
i=1

chEi/Ei−1 · P (i, n)

= chE0 +
n−1∑
i=1

(P (i+ 1, n)− P (i, n)) chEi

+ P (1, n) chE0 − P (n, n) chEn

=
1

n

n−1∑
i=0

chEi · e−iD/n.

34



Chapter 3

Equivariant Euler Characteristic

In this joint work with Francesco Sala, we prove an equivariant Riemann-Roch
theorem using the theory of Lefschetz-Riemann-Roch morphism developed in [Sal24].
We first present a general formula that computes the equivariant Euler characteristic
(regarded as a virtual representation) of an equivariant sheaf on a smooth projective
scheme equipped with a faithful action by a finite group. Next we specialise to the
case of a curve where the individual terms in the formula can be made explicit. We
thus derive a new version of the equivariant Riemann-Roch theorem, which was a
classical problem studied in different context and using different approaches, such as
[EL80], [Kan86], [Nak86], [Köc05], [FWK09] etc.

Our work not only unifies the previous results and generalises the equivariant
Riemann-Roch theorem to a new setting, but also provides an intuitive approach that
explains why the formula assumes such a form. In the formula there are two types
of contributions: a global term which is determined by the non-equivariant Euler
characteristic, and local terms which are determined by ramification data. One could
either view the latter as a correction to the näıve, non-equivariant Euler characteristic,
or use the inertia stack to treat the local and global contributions on an equal footing.

3.1 Introduction

Fix a base field k which is algebraically closed. Let X be a smooth projective variety
equipped with an action of a finite group G ⊆ Aut(X) of order n. Denote the stack
quotient by X = [X/G]. Given an element g ∈ G, let σ be the cyclic subgroup
generated by g. We denote by Xσ the fixed loci by the subgroup, which inherits an
action by the centraliser C(σ).
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Theorem 3.1. Given a G-equivariant vector bundle E on X, the Euler characteristic
of E is

χG(X, E) =
⊕
σ

⊕
i

χ(Aσ,i)

φ(|σ|)
|σ|

|C(σ)|
· IndG

σ ι(xi) ∈ K(BG)

where Aσ,i is a C(σ)-equivariant vector bundle on Xσ that will be given explicitly.

Suppose furthermore X is a curve. Then the quotient Y = X/G exists and is
again a smooth curve. We can give a formula for Aσ,i in terms of the cotangent space
of the ramification points.

Theorem 3.2. Let X be a curve and Y = X/G be the quotient. For each point
x ∈ X, we denote by Gx the stabiliser of x. Let ex (resp. etx) be the ramification index
(resp. the tame ramification index). Let N∨

x be the cotangent space at x. Then in
K(BG) there is an equality

χG(X, E) =

(
χ(X, E) + rk E

2

∑
x

(etx − 1)

)
kG

n
+
∑
x∈X

ex
n

IndG
Gx

Ex
1−N∨

x

.

When the G-action is tame we may write

χG(X, E) = ((1− gY ) rk E +
1

n
deg E)kG− 1

n

∑
x∈X

ex−1∑
d=0

d · IndG
Gx
(Ex ⊗N−d

x ).

Before we give an outline of the proof, let us briefly recall the history. The problem
of equivariant Riemann-Roch theorem for curves is a classical one, dating at least to
Chevalley and Weil [CW34], who determined the G-equivariant structure on the space
of global holomorphic differentials on a compact Riemann surface. Ellingsrud and
Lønsted [EL80] found the Euler characteristic of a G-equivariant sheaf on a curve over
an algebraically closed field of characteristic zero. It is generalised by Kani [Kan86]
and Nakajima [Nak86] to tamely ramified G-cover over any algebraically closed field.
A new approach by applying character theory to the virtual G-representation χG(X, E)
is worked out by Köck [Köc05] under the assumption of tameness and algebraically
closed gound field. It is further generalised by Fischbacher-Weitz and Köck [FWK09]
to weakly ramified cover.

In our work, we compute the equivariant Euler characteristic as an element in
K(BG), the K-theory of locally free sheaves on BG. When the order of G is invertible
in k, this completely determines the isotypical decomposition of a G-representation.
However when the order is not invertible K(BG) only determines the indecomposable
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factors. However although the conclusion is weaker than the main result of [FWK09],
we do not place any restrictions on ramification of the map X → X/G.

The result is obtained by applying the Lefschetz-Riemann-Roch map to the
morphism X = [X/G] → BG:

K(X )
⊕

r,σ∈Cr
K(IσX )g ⊗Q(ζr)

K(BG)
⊕

r,σ∈Cr
K(IσBG)g ⊗Q(ζr)

LX

π∗

LBG

Since X is smooth, the upper row can be identified with the composition

K(X )
λ−1(N∨)−1·ρ∗−−−−−−−−→ K(IX )

m∗
−→ K(ĨµX )

⊕ r
ϕ(r)−−−−→ K(ĨµX ),

which by construction lands in the tautological part of the K-theory of the inertia
stack. On the other hand, L−1

BG is the composition

⊕
σ

K(BC(σ))g ⊗ R̃σ →
⊕
σ

K(BC(σ))⊗Rσ
m∗−→

⊕
σ

K(BC(σ))
IndGC(σ)−−−−→ K(BG).

We now explain the notations by recalling the work of [Sal24].

3.2 Lefschetz-Riemann-Roch morphism

In [Sal24], Sala developed a theory of covariant Riemann-Roch morphism for tame
stacks. Very briefly, given a tame stack X , there is a morphism of Q-modules called
Lefschetz-Riemann-Roch morphism

LX : K ′
∗(X ) →

⊕
r≥1

K ′
∗(IµrX )⊗Q(ζr)

which is an isomorphism onto its image (which can be very precisely characterised)
and is covariant with respect to proper morphisms. Here K ′

∗ denotes the higher
K-groups of coherent sheaves and Iµr

X is the rth cyclotomic inertia stack, which is
closely related to the inertia. One might wonder why L deserves its name despite
being valued in K-theory. It is because after post-composing it with Chern character
and multiplication by Todd class we can recover Toën-Riemann-Roch theorem for
stacks. More importantly, the target of L also appeared in [Toë99] under the name
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étale K-theory (denoted as K∗,ét in loc. cit. ) and is used as an important intermediate
step in establishing the Toën-Riemann-Roch theorem ([Toë99, Lemme 4.12]).

In this section we summarise the main results in [Sal24], making suitable simpli-
fications adapting to our application. We fix a base field k. Assume X = [X/G] is
a tame or Deligne-Mumford quotient stack where X is a separated scheme over k
and G is an affine group scheme of finite type over k. With these assumption there
is an identification K ′

∗(X ) = K∗(X ) between the higher K-theory of coherent and
locally free sheaves on X . Since only need the 0th K-group, we abbreviate it to
K(X ). Lastly whenever we work with K-groups or representation rings we mean
their tensor product with Q.

The fundamental decomposition We call a subgroup scheme σ ⊆ G dual cyclic
when it is isomorphic to µr,k for some r ≥ 1. For each r ≥ 1, denote by Cr(G) the

set of conjugacy classes of monomorphisms µr → G, and by C(G) the union over all
r ≥ 1. Given an element σ ∈ Cr(G) we choose a monomorphism µr → G representing
it and also denote it by σ : µr → G. The fixed point subscheme for the induced
action of µr on X is denoted Xσ. We also set Cr(G) to be the set of conjugacy classes
of dual cyclic groups of order r. The union over all r is denoted C(G). We note that
there is an action of Aut(µr) on Cr(G).

Given a group H we denote its representation ring by RH. In particular if H = µr

then RH = Q[x]/(xr − 1). We denote by R̃H the projection to Q[x]/Φr(x) ∼= Q(ζr)
where Φr(x) is the rth cyclotomic polynomial in x.

Given an RG-module M and a dual cyclic group σ ⊆ G, the σ-localisation Mσ

is the localisation Mmσ where mσ is the kernel of the composition RG → Rσ → R̃σ,
which depends only on the conjugacy class of σ.

For each r ≥ 1, define the multiplicative system Σr = ΣX
r ⊆ K(X ) as follows.

An element α ∈ K(X ) is in Σr if for all representable morphisms ϕ : BKµr → X
where K is an extension of k, the projection of ϕ∗α ∈ Rµr in R̃µr is non-zero. The
µr-localisation K(X )(µr) of K(X ) is the K(X )-module Σ−1

r K(X ).

Theorem 3.3 ([Sal24, Theorem 4.2]). The projections K(X ) → K(X )(µr) induce an
isomorphism

K(X ) ∼=
∏
r≥1

K(X )(µr).

In the decomposition, we call the factor corresponding to r = 1 the geometric part
of the K-theory of X and denote it by K(X )g. The product of the rest is called the
algebraic part and is denoted K(X )a. Thus we have the fundamental decomposition

K(X ) = K(X )g ⊕K(X )a.
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Proposition 3.4 ([Sal24, Proposition 4.5, Proposition 4.7]). Let f : X → Y be a
proper morphism of tame stacks.

1. If f is representable then the pushforward f∗ : K(X ) → K(Y) preserves the
fundamental decomposition.

2. There exists a homomorphism f∗ : K(X )g → K(Y)g such that the diagram

K(X )g K(X )

K(Y)g K(X )

f∗ f∗

commutes. The horizontal arrows are the inclusions coming from the fundamen-
tal decomposition.

There is a similar statement for functoriality with respect to (representable)
pullbacks, but we will not need it here.

Remark 3.1. The name geometric part is justified by the following theorem:

Theorem 3.5 ([Sal24, Theorem 4.13]). Let π : X → M be the coarse moduli space.
Then the pushforward π∗ : K(X )g → K(M)g → K(M) is an isomorphism.

In particular for a finite group G, the projection to the geometric part K(BG) →
K(BG)g = Q is the augmentation map, and it can be shown that the inclusion of
the geometric part is the section 1 7→ 1

|G| Ind
G
1 1 = kG

|G| .

Cyclotomic inertia stack and twist For a positive integer r, the rth cyclotomic
inertia stack Iµr

X is the fibred category which parameterises order r automorphisms
of objects of X . Its objects are pairs (x, α) where x ∈ X (T ) is an object of X above
T and α : µr,S → AutS(x) is a monomorphism of group schemes. A morphism
f : (x, α) → (y, β) from (x, α) ∈ Iµr

X (T ) to (y, β) ∈ Iµr
X (S) consists of an arrow

f : x → y in X such that the diagram

µr,T ϕ∗µr,S

AutT (x) ϕ∗AutS(y)

α φ∗y

commutes. Here ϕ : T → S is the image of f in the category of schemes and the
bottom row is induced by f .
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There is a morphism Iµr
X → X sending (x, α) to x. The cyclotomic inertia stack

IµX is the disjoint union of the Iµr
X for all r ≥ 1. We denote by ρ = ρX : Iµr

X → X .

Remark 3.2. Over C the canonical isomorphisms µr
∼= Z/rZ induce natural isomor-

phisms IµX ∼= IX .

Similar to the inertia stack, we can describe the cyclotomic inertia stack of the
global quotient X = [X/G] in equivariant terms as

Iµr
X =

∐
σ∈Cr(G)

[Xσ/CG(σ)]

where CG(σ) is the centraliser of σ : µr → G in G. For this reason, for a σ ∈ Cr(G)
we also write IσX for the component [Xσ/CG(σ)].

For a fixed σ, there is a multiplication map

m : CG(σ)× σ → CG(σ)

which is a homomorphism of groups. It induces a map

αX : Iµr
X ×Bµr

∼= [Xσ/CG(σ)× σ] → [Xσ/CG(σ)] ∼= Iµr
X .

We call it the twist map. It assembles into a morphism

αX : Ĩµr
X :=

∐
r≥1

Iµr
X × µr → IµX .

Remark 3.3. The twist map induces a pullback on K-theory, which we will call
the twisting operation due to its close relation with the twist map ρ in appeared in
Toën-Riemann-Roch theorem (see Section 1.3.2). It also induces a pushforward which
we will call anti-twisting that will be investigated later.

Tautological part of K-theory The tautological part of K(Ĩµr
X ) is defined to be

its localisation with respect to some multiplicative system. The actual definition is
quite complicated, but the projection to the tautological part has a natural splitting.
We describe the image of the splitting, which suffices for our purpose: for each r it is
the image of the inclusion

K(Iµr
X )g ⊗Q(ζr) ↪→ K(Iµr

X )⊗Rµr = K(Iµr
X ×Bµr) = K(Ĩµr

X )

where the first map is the splitting of the projections to the geometric part.
Finally composing the inclusion with the pushforward induced by the twist map

α∗ : K(ĨµX ) → K(IµX ) we get a map

βX :
⊕
r≥1

K(Iµr
X )g ⊗Q(ζr) → K(IµX ).
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Lefschetz-Riemann-Roch morphism We are ready to state the main theorem
of [Sal24]. Recall that ρ : IµX → X is the cyclotomic inertia stack.

Theorem 3.6 ([Sal24, Theorem 7.2]). Let X be a tame quotient stack. Let r∗ :(⊕
r K(Iµr

X )g ⊗Q(ζr)
)Autµ∞ → K(X ) be the composition ρ∗ ◦ βX . Then it is

an isomorphism. Furthermore the map L = r−1
∗ gives a Lefschetz-Riemann-Roch

isomorphism which is covariant with respect to proper morphisms of stacks

L : K(X ) →

(⊕
r

K(Iµr
X )g ⊗Q(ζr)

)Autµ∞

.

While the morphism L is valid for any stack, it is not particularly easy to calculate
in general. When X is regular, however, it is possible to express it in a different way
which is reminiscent of the Toën-Riemann-Roch morphism. Consider the map r∗

given by the composition

K(X )
λ−1(N∨

ρ )−1·ρ∗
−−−−−−−−→ K(IX )

α∗
−→ K(ĨµX ) →

(⊕
r

K(Iµr
X )g ⊗Q(ζr)

)Autµ∞

.

Theorem 3.7 ([Sal24, Theorem 7.3]). The composition r∗ ◦ r∗ is equal to the en-

domorphism that is multiplication by the rational number ϕ(r)
r

on the component
K(Iµr

X )g ⊗ Q(ζr). In particular the Lefschetz-Riemann-Roch morphism, in the
regular case, is given by

L =
⊕
d

d

ϕ(d)
· r∗.

3.3 Proof of Theorem 3.1

The goal of this section is to prove

Theorem 3.1. Given a G-equivariant vector bundle E on X, the Euler characteristic
of E is

χG(X, E) =
⊕
σ

⊕
i

χ(Aσ,i)

φ(|σ|)
|σ|

|C(σ)|
· IndG

σ ι(xi) ∈ K(BG)

where Aσ,i is a C(σ)-equivariant vector bundle on Xσ that will be given explicitly.

We will do so by computing the Euler characteristics using the composition
LBG ◦ Iπ∗ ◦ L−1

X where Iπ∗ is the map on K-theory induced by π : X → BG.
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3.3.1 Lefschetz-Riemann-Roch for BG

In this section we compute LBG, or more precisely its inverse. It is a technical
computation in representation theory. Index the components of the inertia stack of
BG by C =

∐
Cr, where Cr is the conjugacy classes of monomorphisms µr → G:

IBG =
∐
σ∈Cr

BC(σ).

We remind the readers that L−1
BG = ρ∗◦βBG is defined on the component corresponding

to σ as

K(BC(σ))g ⊗ R̃σ K(BC(σ))⊗R(σ) K(BC(σ)) K(BG).
α∗ ρ∗

Inclusion of geometric part of BH Given any groupH, the inclusionK(BH)g →
K(BH) sends the unit to kH

|H| .

Inclusion R̃σ → Rσ Suppose σ is dual cyclic of order r. Recall that by Chinese
remainder theorem there is a splitting

Rσ = Q[x]/xr − 1 ∼=
∏
d|r

Q[x]/Φd(x).

We denote by ι : Q[x]/Φr(x) → Q[x]/xr − 1 the section of the projection to the factor
Q[x]/Φr(x) ∼= R̃σ.

Anti-twist Let σ be a dual cyclic subgroup of G of order r and let H = C(σ)
be its centraliser. The twisting operation α∗ on the rth cyclotomic inertia stack
is given by the pullback induced by multiplication m : H × σ → H. The anti-
twist α∗ is given by m∗, whose effect is taking invariants relative to the subgroup
ker(m) = {(x−1, x) : x ∈ σ}. In formula, for an H-representation V and a character
χ of σ,

m∗ : RH ⊗Rσ → RH

V ⊗ χ 7→ χ-isotypical part of ResHσ V,

which inherits an H-action.
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Since H is the centraliser of σ, we have ResHσ IndH
σ χ = |H|

|σ| χ for any σ-character
χ and

ResHσ k[H] = ResHσ IndH
σ k[σ] = k[σ]⊕|H/σ| =

|H|
|σ|
⊕
χ∈σ̂

χ =
⊕
χ∈σ̂

ResHσ IndH
σ χ.

As a consequence we note that the χ-isotypic part of ResHσ k[H] is exactly IndH
σ χ,

whence

m∗(
k[H]

|H|
⊗ χ) =

1

|H|
IndH

σ χ.

In particular, the composition

R̃σ ≃ K(BH)g ⊗ R̃σ ↪→ K(BC(σ))⊗Rσ
m∗−→ K(BC(σ))

is the same as

R̃σ ≃ K(Bσ)g ⊗ R̃σ ↪→ K(Bσ)⊗Rσ
m∗−→ K(Bσ)

Ind
C(σ)
σ−−−−→ K(BC(σ)).

up to a correcting factor of r
|H| =

|σ|
|C(σ)| .

Finally, by [Sal24, proof of Theorem 7.3], the map

R̃σ ≃ K(Bσ)g ⊗ R̃σ ↪→ K(Bσ)⊗Rσ
m∗−→ K(Bσ)

is equal to 1
r
· ι : Q(ζr) → Q[x]/xr − 1.

Pushforward from inertia stack The pushforward ρ : K(BC(σ)) → K(BG) is
simply induction from the subgroup C(σ).

The composition Now we are ready to state the result. On the summand labelled
by σ ∈ Cr, L−1

BG is given by

K(BC(σ))g ⊗ R̃σ K(BC(σ))⊗Rσ K(BC(σ)) K(BG)

Q⊗Q[x]/(Φr(x)) K(BC(σ))⊗Q[x]/xr − 1

1⊗ x kC(σ)
|C(σ)| ⊗ ι(x) r

|C(σ)| ·
1
r Ind

C(σ)
σ ι(x) 1

|C(σ)| Ind
G
σ ι(x)

m∗
IndGC(σ)
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3.3.2 Lefschetz-Riemann-Roch for X
The upper composition is considerably easier, thanks to 3.7 and the fact that the
twisting map α∗ is much easier to describe (see Section 1.3 for the computation).
Write

IµX =
⊕
r,σ∈Cr

[Xσ/C(σ)].

Given a G-equivariant vector bundle E on X, let (Eσ)σ = ρ∗E be its pullback along
ρ : IX → X and let Nσ be the normal bundle of ρ on the component labelled by σ.
For each σ, we split the virtual bundle

Eσ
λ−1(N∨

σ )
:= Aσ =

⊕
i∈σ̂

Aσ,i

into isotypical components as σ-representations, obtained by restriction from C(σ).
Here σ̂ is the character group of σ, which can be identified with Z/rZ.

The Lefschetz-Riemann-Roch map for X is thus given by

E 7→
⊕

r,σ∈Cr,i∈σ̂

r · ζ ir
ϕ(r)

· Aσ,i
g

where Aσ,i
g denotes the projection to the geometric part.

3.3.3 Total composition

We have the vertical map

Iπ∗ :
⊕
r,σ∈Cr

K(IσX )g ⊗Q(ζr) −→
⊕
r,σ∈Cr

K(IσBG)g ⊗Q(ζr) ≃
⊕
r,σ∈Cr

Q(ζr)

which, since π is representable, is the identity on the Q(ζr) components and sends
Aσ,i

g to χ(Aσ,i), the non-equivariant Euler characteristic of the virtual bundle Aσ,i on
Xσ. Indeed, by Proposition 3.4, we have a commutative diagram

K(IσX ) K(IσX )g

K(IσBG) K(IσBG)g

π∗ Iπ∗
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the horizontal maps being projections to the geometric part. In particular the lower
horizontal map is the augmentation morphism which forgets the group action. The
bottom-left composition is then easily seen to be exactly the Euler characteristic map.

Combining this with the previous calculation of the lower composition, we imme-
diately get

χG(X, E) =
⊕

r,σ∈Cr

⊕
i∈σ̂

χ(Aσ,i)

ϕ(r)

r

|C(σ)|
· IndG

σ ι(ζ ir).

which completes the proof of Theorem 3.1.

3.4 Proof of Theorem 3.2

In this section we specialise to smooth projective curves and prove

Theorem 3.2. Let X be a curve and Y = X/G be the quotient. For each point
x ∈ X, we denote by Gx the stabiliser of x. Let ex (resp. etx) be the ramification index
(resp. the tame ramification index). Let N∨

x be the cotangent space at x. Then in
K(BG) there is an equality

χG(X, E) =

(
χ(X, E) + rk E

2

∑
x

(etx − 1)

)
kG

n
+
∑
x∈X

ex
n

IndG
Gx

Ex
1−N∨

x

.

When the G-action is tame we may write

χG(X, E) = ((1− gY ) rk E +
1

n
deg E)kG− 1

n

∑
x∈X

ex−1∑
d=0

d · IndG
Gx
(Ex ⊗N−d

x ).

We need to give a concrete description of χ(Aσ,i)’s. Over the identity sector
corresponding to σ = 1 it is the Euler characteristic of E . For σ ≠ 1, as the coarse
moduli space of [Xσ/C(σ)] is zero-dimensional, χ(Aσ,i) is nothing but the dimension
of the virtual representation Aσ,i. Thus

χG(X, E) = χ(X, E)kG
n

+
⊕

r>1,σ∈Cr

⊕
i∈σ̂

dimAσ,i

ϕ(r)

r

|C(σ)|
· IndG

σ ι(ζ ir).

Let us reindex the summation. We fix a representative for each σ̃ ∈ Cr, which we
also call σ. Choose also a set of representatives {x̃} for each G-orbit with non-trivial
stabilisers. The action being effective, for each 1 ̸= σ̃ the fixed locus Xσ is zero-
dimensional, so we can regroup uniquely the {σ̃}’s to the sets {σ̃ ⊆ Gx̃}x̃. For each
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x ∈ X, denote by ex (resp. etx) the ramification index (resp. the tame ramification
index). We have:

χG(X, E) = χ(X, E)kG
n

+
∑
x̃

⊕
1 ̸=σ̃⊆Gx̃

⊕
i∈σ̂

|Xσ| · dimAσ,i

ϕ(r)

r

|C(σ)|
· IndG

σ ι(ζ ir)

= χ(X, E)kG
n

+
∑
x∈X

ex
n

IndG
Gx

⊕
1̸=σ̃⊆Gx

⊕
i∈σ̂

|Xσ| · dimAσ,i

ϕ(r)

r

|C(σ)|
· IndGx

σ ι(ζ ir).

At this point we observe that making use of [Sal24, Theorem 7.3], we can rewrite
the expression ⊕

1̸=σ̃⊆Gx

⊕
i∈σ̂

dimAσ,i

ϕ(r)

r

|C(σ)|
· IndGx

σ ι(ζ ir)

Indeed, let Aσ = ResGx

C(σ) V
σ, where V σ is the Gx-virtual sheaf

Eσ
λ−1(N∨

σ )
.

Lemma 3.8. We have⊕
1̸=σ̃⊆Gx

⊕
i∈σ̂

|Xσ| · dimAσ,i

ϕ(r)

r

|C(σ)|
· IndGx

σ ι(ζ ir) = Ax − ισ=1 dimAx

Proof. This is an application of Theorem 3.7 to BGx. The composition of maps

R(Gx)
⊕
r,σ

σ̃⊆Gx

R(CGx(σ))
⊕
r,σ

σ̃⊆Gx

R(CGx(σ))g ⊗Q(ζr)

⊕
r,σ

σ̃⊆Gx

R(CGx(σ))g ⊗Q(ζr)
⊕
r,σ

σ̃⊆Gx

R(CGx(σ)) R(Gx)

Res m∗

m∗ Ind

given explicitly by

V σ
∑
r,σ

σ̃⊆Gx

ResGx

CGx (σ)
(V σ)

∑
r,σ

i∈σ̂

dim(V σ,i) · ζ ir · r
ϕ(r)

∑
r,σ

i∈σ̂

dim(V σ,i) · ζ ir · r
ϕ(r)

∑
r,σ

i∈σ̂

dim(V σ,i) · ι(ζir)
|CGx (σ)|

· r
ϕ(r)

∑
r,σ

i∈σ̂

dim(V σ,i)
ϕ(r)

r
|CGx (σ)|

· IndGx
σ (ι(ζ ir))
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is the identity. Note that we computed the map m∗ exactly as we did at the end of
Section 3.3.1.

We must have |Xσ |
|C(σ)| =

1
|CGx (σ)|

, since the connected components of the inertia

stack corresponding to 1 ̸= σ̃ ⊆ Gx are equal to those of IBGx. This allows us to
write ⊕

1̸=σ̃⊆Gx

⊕
i∈σ̂

|Xσ| · dimAσ,i

ϕ(r)

r

|C(σ)|
· IndGx

σ ι(ζ ir) = Ax − ισ=1 dimAx

since the missing term corresponding to σ = 1 corresponds exactly to the geometric
part of Ax.

What remains to do is to expand Ax = Ex
1−N∨

x
in terms of the cotangent space. We

invoke the following lemma:

Lemma 3.9. Let H be a cyclic group of order m and χ a non-trivial character. Then

1

1− χ
= − 1

m

m−1∑
d=1

χ−d.

Proof. Same as [Köc05, Lemma 1.2].

Noting that the action of Gx on N∨
x factors through the tame part, we use

Lemma 3.9 to write

dimAx = dim
Ex

1−N∨
x

=
1

etx
dim

etx−1∑
d=1

(−d)Ex ⊗N−d
x

= − 1

etx
· rk Ex

etx(e
t
x − 1)

2
= − rk E e

t
x − 1

2
.

and

Ax − ισ=1 dimAx = Ax − dimAx
kGx

ex
= Ax + rk E e

t
x − 1

2

kGx

ex
.

Putting all ingredients together,

χG(X, E) = χ(X, E)kG
n

+
∑
x∈X

ex
n

IndG
Gx
(Ax + rk E · e

t
x − 1

2

kGx

ex
)

=

(
χ(X, E) + rk E

2

∑
x

(etx − 1)

)
kG

n
+
∑
x∈X

ex
n

IndG
Gx

Ex
1−N∨

x

.
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Finally when the G-action is tame, we can use Hirzebruch-Riemann-Roch and
Riemann-Hurwitz to express χ(X, E) in terms of rank and degree of E and genus of
Y :

χ(X, E) = deg E + rk E(1− gX) = deg E + rk E

(
n(1− gY )−

1

2

∑
x∈X

(ex − 1)

)

and expand E
1−N∨

x
using Lemma 3.9.
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Chapter 4

Stringy Chow Rings and Weighted
Blow-ups

We compute the stringy chow ring of weighted blow up of a smooth variety along a
smooth center. We explore finite generation properties of this ring and of the usual
Chow ring of the weighted blowup. We also compute the obstruction classes arising
in the string chow product for general Deligne-Mumford stacks of the form [X/Gk

m]
for a smooth variety X.

4.1 Introduction

In [AGV02], Abramovich-Graber-Vistoli define the stringy chow ring A∗
st(X ) for any

smooth tame Deligne-Mumford stack X over a field k. In this article we study A∗
st(X )

when X = [X̃/G] for some smooth variety X̃ and reductive abelian group G. This
context generalizes that of [BCS05] and [JT10], which compute A∗

st(X )Q and A∗
st(X ),

respectively, when X = [(An \ Z)/Gk
m] for certain choices of closed subset Z ⊂ An.

We are particularly interested in the example of weighted blowups: if X is variety
and Y ⊂ X is a subvariety, a weighted blowup BlY X of X along Y is a certain
Deligne-Mumford stack with coarse space equal to the usual blowup BlYX (see 4.3
for a more detailed review).

4.1.1 Results

The results in this article are in two directions. The first is the problem of computing
A∗

st(X ) when X = [X̃/G] for some smooth variety X̃ and reductive abelian group G.
In Proposition 4.5 we give a formula for the obstruction class arising in the definition
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of the product on A∗
st(X ). Our formula is reminiscent of the formula in [BCS05,

Proposition 6.3] for toric Deligne-Mumford stacks. We apply this formula in Section
4.4.4 to completely describe A∗

st(X ) when X = BlY X is a weighted blowup.
The second direction is the problem of determining when A∗

st(BlY X) is finitely
generated over a more familiar ring. As a group, A∗

st(BlY X) decomposes as a direct
sum of sectors

A∗
st(BlY X) =

⊕
ζ∈Gm

A∗(I(ζ))eζ

where I(ζ) is a certain (often empty) substack of BlY X. A special example is
I(1) = BlY X. In fact A∗(I(1))e1 is a subring of A∗

st(BlY X), and a natural question
is whether A∗

st(BlY X) is generated as an algebra over A∗(I(1)) by the elements 1eζ .
It turns out that this happens exactly when A∗(X) → A∗(Y ) is surjective:

Theorem 4.1 (Theorem 4.13). The restriction A∗(X) → A∗(Y ) is surjective if and
only if the ring A∗

st(X ) is generated as an algebra over A∗(I(1)) by the elements 1eζ. In
this case, A∗

st(X ) is a finitely generated algebra over A∗(X ) modulo explicit relations
(4.19).

In the course of proving Theorem 4.1, we show in Lemma 4.11 and Corollary 4.12
that A∗(Y ) is equal to the restriction image of A∗(X) (resp. finite as a module or
finitely generated over the image) if and only if the chow group of the exceptional
divisor is equal to the restriction image of A∗(BlY X) (resp. finite or finitely generated
over the image). As far as we know, this observation is new even for ordinary blowups.

Even whenA∗(X) → A∗(Y ) is not surjective, we define the subgroupA∗
st(BlY X)amb

of A∗
st(BlY X) to be the set of all elements of the form αe1⋆eζ . We prove the following:

Proposition 4.2 (Proposition 4.10). A∗
st(BlY X)amb is a subring of A∗

st(BlY X),
equal to the A∗(BlY X)-subalgebra generated by the eζ.

4.1.2 Further questions

In Proposition 4.5 we compute the obstruction classes for X = [X̃/G] where G is a
reductive abelian group. This is a significant step towards computing the ring A∗

st(X )
and it leads to several questions, of which a sampling follows.

Let R• be a sheaf of finitely generated Zk-graded algebras on a smooth scheme
B, so SpecB(R•) has an action by Gk

m. Let X̃ ⊂ SpecB(R•) be an open subscheme

such that X := [X̃/Gk
m] is a smooth Deligne-Mumford stack.

Problem 4.1. Describe A∗
st(X ) as a graded algebra: give formulas for the twisted

sectors, age grading, and product in terms of R•.
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One could investigate Problem 1 in general, for example in terms of the degrees
of generators of R• (these degrees are the rays of the stacky fan when X is a toric
Deligne-Mumford stack). On the other hand, there are families of examples where
Problem 1 may have a particularly nice solution, for example weighted Grassmannians
or weighted blowups of arbitrary Gk

m quotients. In both these general and specific
contexts, one can also investigate finite generation properties of A∗

st(X ).

Problem 4.2. Define A∗
st(X )amb in analogy with the case when X = BlY X. Deter-

mine when A∗
st(X )amb is subring of A∗

st(X ) and when it is equal to all of A∗
st(X ).

4.1.3 Conventions and notation

If X is a variety, and I• is a sheaf of graded OX-algebras, then as explained in [Sta18,
0EKJ] the scheme SpecX(I•) naturally has a Gm action and we write

ProjX(I•) := [(SpecX (I•) \ V (I+)) /Gm] ,

where I+ is the ideal of elements of positive degree. We note that the degree of
an element x ∈ I• is the negative of its weight as a function on the Gm-scheme
SpecX(I•).

4.2 Stringy chow rings

If X is a smooth Deligne-Mumford stack, there is a moduli space K(X ) of degree-zero
stable maps to X from weighted P1 with three stacky points. If π : C → K(X ) denotes
the universal curve and f : C → X the universal stable map, then Rπ∗f

∗TX is the
virtual tangent complex of K(X ). There are moreover evaluation maps ev1, ev2, ev3 :
K(X ) → I(X ), where I(X ) is the inertia stack of X .1

Defined by Abramovich, Graber, and Vistoli in [AGV02], the stringy chow ring
of X is a graded ring structure on A∗(I(X )) defined using K(X ), its virtual tangent
complex, and evaluation maps. We now recall the definition (Section 4.2.1) and

give fairly explicit descriptions when X = [X̃/G] is a global quotient of a smooth

k-variety X̃ by a reductive abelian k-group scheme G (Sections 4.2.2 and 4.2.4).
These descriptions are similar to those in [BCS05] when X is a toric Deligne-Mumford
stack and we use many of the arguments in that paper; however, our computation of
the obstruction bundle in 4.2.4 is new at the level of generality presented here.

1The evaluation maps from Kg,n(X , β) normally land in the rigidified inertia stack, but since the
universal curve on K(X ) is locally trivial (this is special to the genus zero, n = 3 situation), one
gets the maps to I(X ). See [AGV02, Lemma 6.2.1].
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4.2.1 Stringy chow ring

The age of I(X ) at a point x ∈ I(ζ) is defined as follows. The tangent space TX ,x̃ is a
d-dimensional representation of the cyclic subgroup ⟨ζ⟩ of G generated by ζ. Let a be
the order of this group, so ⟨ζ⟩ ≃ µa, and let Z[x]/(xa−1) be the representation ring of
µa where x corresponds to the representation of weight 1. If we write TX ,x̃ =

∑d
i=1 bix

i

in the representation ring of µa, then the age at x ∈ I(ζ) is

age(x, ζ) :=
1

a

d∑
i=1

bi.

Age is a locally constant function on I(ζ), so we may speak of the age of a connected
component. The stringy chow ring has the graded Z-module

A∗
st(X ) =

⊕
i

A∗−age(I(X )i)(I(X )i)

where the summation is over all connected components of I(X ). The ring structure
on A∗

st(X ) is defined by

γ1 ⋆ γ2 = ev3,∗(ev
∗
1γ1 · ev∗2γ2 · ctop(R1π∗f

∗TX )) (4.1)

for γ1, γ2 ∈ A∗(I(X )), where ev3,∗ : K(X ) → I(X ) is the composition of ev3 with the
involution on I(X ) sending (x, ζ) to (x, ζ−1) (here x ∈ X is an object and ζ is an
automorphism of x). The sheaf R1π∗f

∗TX is called the obstruction sheaf.

4.2.2 Computation of the group A∗
st(X )

Assume X = [X̃/G] is a global quotient of a smooth k-variety X̃ by a reductive
abelian k-group scheme G. To compute the inertia stack of X , note that a point
of I(X ) can be written (x, ζ) where x ∈ X̃ and ζ ∈ G fixes x. In fact, we have a
decomposition

I(X ) =
∐
ζ∈G

I(ζ), I(ζ) := [X̃ζ/G], (4.2)

where X̃ζ is the fixed locus of ζ in X̃ (this follows from [Sta18, 06PB]]). In particular
the natural map I(ζ) → X is a closed embedding. We call the open and closed
substacks I(ζ) and II(ζ, η) sectors. The sector I(1) corresponding to the identity
element is called untwisted sector, while the other sectors of I(X ) are called twisted
sectors. Note that I(1) ∼= X .
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To compute the age on I([X̃/G]), we use the following exact sequence, dual to

the exact sequence of cotangent sheaves associated to X̃ → X :

0 → O⊕r → TX̃ → TX |X̃ → 0.

Here r is the rank of G. Since G acts trivially on O⊕r the age can be computed using
TX̃ .

4.2.3 Computation of the product on A∗
st(X )

To compute the product we describe the moduli space and universal curve C → K(X )
and evaluation maps evi : K(X ) → I(X ) explicitly.

Let II(X ) be the fiber product I(X )×X I(X ). It follows from (4.2) that we have a
decomposition

II(X ) =
∐

(ζ,η)∈G×G

II(ζ, η), II(ζ, η) := [X̃ζ ∩ X̃η/G], (4.3)

and we call the II(ζ, η) the sectors of II(X ). Recall from [FG03] the following result.

Lemma 4.3. Given a finite group H and elements ζ, η ∈ H, there is a unique
ramified H-cover Cζ,η → P1 ramified over 0, 1, and ∞, such that for any p ∈ Cζ,η in
the fiber of 0 (resp. 1, ∞) we have Hp = ⟨ζ⟩ (resp. ⟨η⟩, ⟨η−1ζ−1⟩).

Lemma 4.4. The moduli space K(X ) is isomorphic to II(X ); in particular, these
are smooth stacks. On a sector II(ζ, η), the universal curve and morphism to X are
given explicitly by

[X̃H/G]× [Cζ,η/H] [X̃/G]

[X̃H/G]

f

π

where H ⊂ G is the subgroup ⟨ζ, η⟩ and X̃H is the subvariety fixed by H. The map π is
projection to the first factor while the map f is induced by the projection and inclusion
X̃H × Cζ,η → X̃H → X̃ and the product homomorphism G×H → G. In particular,
the (twisted) evaluation maps ev1, ev2, ev3 : K(X ) → X send ((x, ζ), (x, η)) ∈ II(X )
to (x, ζ), (x, η), and (x, ζη), respectively.

Lemma 4.4 enables explicit computation of most parts of the product (4.1). What
remains is to compute the obstruction class ctop(R

1π∗f
∗TX ); we do this in the next

section.
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4.2.4 Computation of the obstruction class

Assume X = [X̃/G] is a global quotient of a smooth k-variety X̃ by a reductive
abelian k-group scheme G. If z ∈ Gm, define arg z to be the unique value of the
argument of z in [0, 2π). The following generalizes [BCS05, Proposition 6.3].

Proposition 4.5. The obstruction sheaf R1π∗f
∗TX is a vector bundle on II(X ). The

top chern class of its restriction to the sector II(ζ, η) is given by

ctop(R
1π∗f

∗TX ) =
∏

argAi(ζ)+argAi(η)>2π

cGtop((NX̃H/X̃)Ai)

where H ⊂ G is the subgroup generated by ζ and η and (NX̃H/X̃)Ai is the summand
of the normal bundle NX̃H/X̃ of weight Ai.

Remark 4.1. Since X is Deligne-Mumford ζ and η have finite order and since G is
abelian the subgroup they generate is also finite.

Proof. The first part of this proof follows the proof of [BCS05, Proposition 6.3]. The
universal diagram in Lemma 4.4 can be extended to a diagram

X̃H × C X̃H × [C/H] [X̃H/G]× [C/H] [X̃/G]

X̃H [X̃H/G]

p
π

f

where the square is fibered and we write C := Cζ,η. Recall that the map f sends

(x, z) ∈ X̃H×C to x and it sends (ζ, h) ∈ G×H to ζh. It follows that if F is a bundle

on [X̃H/G]× [C/H] corresponding to a G×H-equivariant bundle F on X̃H ×C, then

Riπ∗F corresponds to the G-equivariant bundle on X̃H equal to (Rip∗F )H , where
the superscript H means to take H-invariants.2

Now suppose F = f ∗E , where E corresponds to a G-equivariant bundle E on X̃.
Then the induced bundle F on X̃H × C is E|X̃H×C with G ×H action induced by
the product map G×H → G. From the projection formula (for the map p∗) and the
above description of the functor Riπ∗, we have that

Riπ∗f
∗E corresponds to the G-bundle (H i(C,OC)⊗ E|X̃H )

H on X̃H , (4.4)

2We are using here that H is reductive hence taking H-invariants is exact, so the derived functor
of p∗-then-take-invariants is equal to the derived functor of p∗, followed by taking invariants.
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where E|X̃H is the G ×H-equivariant bundle on X̃H induced by the product map
G×H → G.

Using this we can compute R1π∗f
∗TX as follows. From the closed embedding of

smooth stacks II(ζ, η) → X we have the short exact sequence of vector bundles

0 → T[X̃H/G] → TX |[X̃H/G] → N[X̃H/G]/X → 0.

Recall from the explicit description of f that f factors through [X̃H/G], where
this sequence is supported, so it makes sense to apply f ∗. Applying R•π∗f

∗ we get a
long exact sequence

. . . → R1π∗f
∗T[X̃H/G] → R1π∗f

∗TX |[X̃H/G] → R1π∗f
∗N[X̃H/G]/X → R2π∗f

∗T[X̃H/G] → . . . .

Using (4.4) one sees that Riπ∗f
∗T[X̃H/G] = (H i(C,OC) ⊗ TX̃H )H , but TX̃H is H-

invariant and the H-invariant part of H i(C,OC) vanishes for i > 0 by Proposition
4.6 below, so these groups vanish. Using (4.4) again it follows that

R1π∗f
∗TX = R1π∗f

∗N[X̃H/G]/X = (H1(C,OC)⊗NX̃H/X̃)
H (4.5)

is a formula for the G-equivariant bundle on X̃H corresponding to the obstruction
sheaf on II(ζ, η) = [X̃H/G].

It remains to compute H1(C,OC). Let M(H) denote the character group of H
and CAi be the one-dimensional representation corresponding to the character Ai.

Proposition 4.6. In the representation ring of H, we have

H1(C,OC) =
∑

Ai∈M(H)\{0}

f(ζ, η,−Ai)CAi,

where

f(ζ, η, Ai) := (2π)−1
(
argAi(ζ) + argAi(η) + argAi(ζη)−1

)
− 1.

Proof. The key ingredient is Theorem 3.2, the equivariant Riemann-Roch formula
valued in the K-theory of H-representations that we developed in chapter 3. We have

Ai(C,OC , H) = C[H]− 1

|H|
∑
p∈C

ep−1∑
d=0

d IndH
Hp
(T∨

C,p)
d (4.6)
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where Ai(C,OC , H) is H0(C,OC)−H1(C,OC) as a virtual H-representation, C[H] =∑
Ai∈M(H) CAi is the regular representation, Hp is the isotropy group at p ∈ C. Since

H0(C,OC) is the trivial module, we have

H1(C,OC) =
1

|H|
∑
p∈C

ep−1∑
d=0

d IndH
Hp
(T∨

C,p)
d −

∑
Ai∈M(H)\{0}

CAi. (4.7)

The first sum is in fact finite since the only nonzero contributions come from the
fibers over the three branch points of H → P1. These branch points correspond to the
elements ζ, η, and (ζη)−1 of H, respectively: for example, ζ defines the homomorphism
to H from the stabilizer µ|ζ| at the corresponding branch point in [C/H] = wP1.

We compute the contribution to (4.7) from the branch point corresponding to
ζ (the contributions of the other two branch points are analogous). The group H
acts transitively on the fiber of the branch point, with stabilizer Hp = ⟨ζ⟩, so the
cardinality of the fiber is |H|/|ζ|. Hence the contribution of this branch point to (4.7)
is

1

|ζ|

|ζ|−1∑
d=0

d IndH
⟨g⟩(T

∨
C,p)

d. (4.8)

Now to compute the coefficient of CAi in (4.8), note that IndH
⟨g⟩(T

∨
C,p)

d is equal to
CAi for some j. We will show that given Ai, there is at most one d ∈ {0, . . . , |ζ| − 1}
corresponding to this representation, and we will compute d/|ζ| which will be the
coefficient of CAi in (4.8).

It remains to compute the coefficient of CAi in (4.8). Since C is constructed from
local monodromy data associated to ζ, η and (ζη)−1, the action of ζ on TC,p is via
multiplication by exp(2πi/|ζ|). By Frobenius reciprocity, the multiplicity of CAi in
IndH

⟨g⟩(T
∨
C,p)

d is the same as that of ResH⟨g⟩ Ai in (T∨
C,p)

d, which is 1 if

Ai(ζ) = e−2πi(d/|ζ|)

and 0 otherwise. There is a unique d, characterised by 2πd/|ζ| = arg(Ai(ζ−1)),
satisfying this condition. Thus

1

|ζ|

|ζ|−1∑
d=0

d IndH
⟨g⟩(T

∨
C,p)

d =
∑
A

i
1

2π
arg(Ai(ζ−1))CAi. (4.9)

In particular the coefficient of the trivial representation in this contribution is zero.
Identical computations for the branch points corresponding to η and (ζη)−1 finish

the proof of the lemma.
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To finish the proof of Proposition 4.5, note that from (4.5) and Proposition 4.6
we get a formula

ctop(R
1π∗f

∗TX ) =
∏

Ai∈M(H), Ai ̸=0

cGtop((NX̃H/X̃)Ai)
f(ζ,η,Ai).

But when Ai is not zero the value of f(ζ, η, Ai) is either 0 or 1, and it is 1 precisely
when argAi(ζ) + argAi(η) > 2π.

Example 4.1. If G = Gm, then the group H considered above will be equal to
µN ⊂ G for some positive integer N . In this case the characters M(H) are given by
Aij(x) = xj for j = 0, . . . , N − 1, and we have

f(ζ, η, Aij) = (1/2π)
(
arg(ζ−j) + arg(η−j) + arg((ζη)j)

)
− 1.

4.3 Weighted blow-ups

In this section we recall material about weighted blow-ups and their (classical) chow
rings. Everything in this section is either stated or implicit in [QR] and [AOA23]

Let X be a smooth variety over a field of characteristic zero, let I1, . . . , Im be
ideal sheaves on X, and let a1, . . . , am be positive integers. Let I• be the smallest
Rees algebra containing Ii in degree ai (see [QR, Definition 3.1.5]). In the notation
of loc. cit. we have

I• := (I1, a1) + · · ·+ (Im, am).

In particular, I• is a sheaf of graded OX-algebras, so its relative spectrum over X
has a Gm-action. We define the stack X to be the weighted blowup of X along I•:

X := BlI•(X) = ProjX(I•).

Let Y ⊂ X be the closed subvariety defined by I1, and let Y ⊂ X be the divisor
defined by the ideal sheaf I•+1 ↪→ I•, so Y = ProjX(⊕n≥0In/In+1). Then Y is the
exceptional divisor of the blowup and we have a commuting diagram

Y X

Y X.

j

g f

i

(4.10)

We moreover make the following regularity assumption on I•:
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Assumption 4.1. Each V (Ik) → X is a regular immersion, and I• defines a quasi-
regular weighted closed immersion (see [QR, Definition 5.1.3]).

The key consequence of Assumption 4.1 is the following (both parts of the
statement are used in the proof).

Lemma 4.7. The sum ⊕m
k=1Ik/I

2
k is a graded locally free sheaf on Y where Ik/I

2
k has

degree ak. The exceptional divisor Y is isomorphic to a weighted projective bundle on
Y :

Y = ProjY

(
Sym•

OY

m⊕
k=1

Ik/I
2
k

)
.

Proof. Since V (Ik) → X is regular Ik/I
2
k is locally free on V (Ik), hence on Y .

Since Y = ProjX(⊕n≥0In/In+1), to finish the proof it is enough to demonstrate an
isomorphism of OY -algebras

Sym•
OY

m⊕
k=1

Ik/I
2
k → ⊕n≥0In/In+1. (4.11)

To define (4.11) it is enough to define a Gm-graded OY -module homomorphism
m⊕
k=1

Ik/I
2
k →

⊕
n≥0

In/In+1.

But Iak contains Ik and Iak+1 contains I2k by definition of I, so we can map Ik to its
natural image in Iak . To show that (4.11) is an isomorphism it is enough to show
that this holds locally, where (4.11) reduces to the morphism α in [QR, Section 5.1].
This is an isomorphism by Assumption 4.1 and [QR, Definition 5.1.1].

Since Y is a weighted projective bundle, from [AOA23, Theorem 3.12] we get a
formula for the chow ring of Y :

A∗(Y) = A∗(Y )[t]/P (t) (4.12)

where A∗(Y )[t] is identified with A∗
Gm

(Y ) and t is the first chern class of the topolog-
ically trivial line bundle with Gm-weight 1 (see [AOA23, Example 2.2]). Moreover
P (t) is the Gm-equivariant top chern class of the locally free sheaf ⊕(Ik/I

2
k)

∨, where
Gm acts on Y trivially and on (Ik/I

2
k)

∨ with weight ak.
3 It follows (see e.g. [QR,

Remark 3.2.4]) that
t is the first chern class of N∨

Y/X . (4.13)

3The graded sheaf ⊕Ik/I
2
k contains Ik/I

2
k in degree ak, hence as a graded sheaf ⊕(Ik/I

2
k)

∨

contains (Ik/I
2
k)

∨ in degree −ak. Since the degrees of a graded module are dual to the weights of
the associated Gm representation, we see that the weight of (Ik/I

2
k)

∨ is ak.
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From [AOA23, Theorem 6.4] we get the following formula for the chow ring of X :

A∗(X ) = A∗(Y )[t] · t⊕ A∗(X)/⟨((P (t)− P (0))α,−i∗α)⟩α∈A∗(Y ). (4.14)

Here, the ring structure on A∗(Y )[t] · t⊕ A∗(X) is given by the rule

(q1(t), β1) · (q2(t), β2) = (q1(t)q2(t) + q1(t)i
∗β2 + q2(t)i

∗β1, β1β2)

and −t is equal to the fundamental class of [Y]. The identification in (4.14) is that
(q(t), β) maps to −j∗[q1(t)] + f ∗β, where tq1(t) = q(t) and [q1(t)] is the element of
A∗(Y) defined by the polynomial q1(t) via the isomorphism (4.12).

Lemma 4.8. The restriction map j∗ : A∗(X ) → A∗(Y) sends (q(t), β) to the class
[q(t) + i∗β] in the quotient ring (4.12), where q(t) + i∗β is viewed as a polynomial in
t with coefficients in A∗(Y ).

Proof. This follows from commutativity of (4.10) and the fact that by the self
intersection formula and (4.13),

−j∗j∗[q1(t)] = −[q1(t)] · c1(NY/X ) = [tq1(t)].

Let Ỹ ⊂ X̃ be the preimage of Y ⊂ X . We point out that this computation
may equivalently be done in the Chow ring A∗

Gm
(Ỹ ), after replacing j by its lift

j̃ : Ỹ ↪→ X̃.

4.4 Stringy chow ring of a weighted blow-up

We compute each of the ingredients in Section 4.2 for the weighted blowup X .

4.4.1 Sectors

For ζ ∈ Gm, let I(ζ) (resp. II(ζ, η)) denote the corresponding sector of I(X ) (resp.
II(X )). If ζ and η are the identity then I(ζ) = II(ζ, η) = X . If ζ ̸= 1 then I(ζ) and
II(ζ, η) are isomorphic to closed substacks of Y , and it follows from Lemma 4.7 that
these sectors are also weighted projective bundles over Y :

I(ζ) = ProjY

Sym•
OY

⊕
ζ∈µak

Ik/I
2
k

 , II(ζ, η) = ProjY

(
Sym•

OY

⊕
ζ,η∈µk

Ik/I
2
k

)
.
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Here the sums are taken over k ∈ {1, . . . ,m} satisfying the displayed conditions; e.g.,
the second sum is over all k such that µk contains both ζ1 and ζ2. Notice that I(ζ)
is nonempty if and only if ζak = 1 for one of the weights ak of the Rees algebra I•.
When ζ ≠ 1 we have the following formulas for the normal bundles of the closed
embeddings I(ζ) → Y and II(ζ, η) → Y :

NI(ζ)/Y =
⊕
ζ ̸∈µak

(Ik/I
2
k)

∨, NII(ζ,η)/Y =
⊕

ζ or η ̸∈µk

(Ik/I
2
k)

∨. (4.15)

These are in fact weight decompositions of equivariant sheaves as (Ik/I
2
k)

∨ has pure
Gm-weight ak. We note that (Ik/I

2
k)

∨ is most naturally a bundle on V (Ik) ⊂ X, but
by restriction can be viewed as a bundle on Y and even on Y by pullback along
Y → Y .

We define ek to be the equivariant euler class in A∗
Gm

(Y ) ≃ A∗(Y )[t] of the bundle
(Ik/I

2
k)

∨ of pure weight ak and rank rk; i.e.,

ek := crk

((
Ik/I

2
k

)∨)
+ aktcrk−1

((
Ik/I

2
k

)∨)
+ · · ·+ arkk trk

where t ∈ A∗
Gm

(Y ) is as in [AOA23, Example 2.2]. It follows from [AOA23, Theorem
3.12] that for ζ ̸= 1 we have ring isomorphisms

A∗(I(ζ)) =
A∗(Y )[t]∏

ζ∈µak
ek

; A∗(II(ζ)) =
A∗(Y )[t]∏
ζ,η∈µak

ek
.

4.4.2 Age

The age at any point of I(1) is zero. To compute the age at a point of I(ζ) for some
ζ ̸= 1, use the short exact sequence

0 −→ TI(ζ) −→ TX |I(ζ) −→ NI(ζ)/X −→ 0.

Since the action of ζ on a fiber of TI(ζ) is trivial, it follows that it suffices to consider
the action of ζ on a fiber of NI(ζ)/X . From the inclusions I(ζ) ⊂ Y ⊂ X we have the
short exact sequence

0 −→ NI(ζ)/Y −→ NI(ζ)/X −→ NY/X |I(ζ) −→ 0.

By (4.13) the bundle NY/X |I(ζ) has Gm-weight −1. From this and the weight decom-
position (4.15) of NI(ζ)/Y it follows that the age at any point of I(ζ) is

age(ζ) =
∑
ζ ̸∈µak

arg ζak

2π
rk +

arg ζ−1

2π
, (4.16)

where for z ∈ C×, arg z is the unique value of the argument of z in the interval [0, 2π).
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4.4.3 Product

Let a0 = −1, let µa0 be the trivial group, and let e0 = −t. Then we may express the
product on A∗

st(X ) as follows.

Proposition 4.9. Let α ∈ A∗(I(ζ)) and let β ∈ A∗(I(η)). Then

αeζ ⋆ βeη = αβCζη eζη where Cζη =

 ∏
ζ or η /∈µak

arg ζak+arg ηak>2π

ek


 ∏

ζ or η ̸∈µak
ζη ∈µak

ek


and eζη is defined to be zero if I(ζη) is empty (i.e., if (ζη)ak ̸= 1 for all k = 1, . . . ,m).
In the definition of ⋆ we have used an implicit restriction of α and β to I(ζη).

Proof. The first factor in Cζη is the obstruction class ctop(R
1π∗f

∗TX ), and the second
is ctop of the normal bundle to the inclusion ev3 : II(ζ, η) → I(ζη). The proposition
holds if ζ = η = 1 because e1 is the identity for A∗

st, so from now on we assume ζ ̸= 1.

To compute the obstruction class we use Proposition 4.5. Let Ỹ ⊂ X̃ be the
preimage of Y ⊂ X . The inclusions II(ζ, η) → Y → X lift to inclusions X̃H → Ỹ → X̃
which yield a short exact sequence

0 → NX̃H/Ỹ → NX̃H/X̃ → NỸ /X̃ |X̃H → 0. (4.17)

It follows that for a character Ai(x) = xj of H, we have

ctop((NX̃H/X̃)Ai) = ctop((NX̃H/Ỹ )Ai)ctop((NỸ /X̃)Ai).

Now the formula for the obstruction class follows from the weight decomposition
(4.15) for NII(ζ,η)/X = NX̃H/X̃ and from the fact that NỸ /X̃ = NY/X has pure weight
1.

To compute ctop of the normal bundle to II(ζ, η) → I(ζη) there are two cases. If
ζη ̸= 1 then I(ζη) ⊂ Y and we have

NII(ζ,η)/I(ζη) =
⊕

ζ or η ̸∈µak
, ζη∈µk

(Ik/I
2
k)

∨.

Otherwise, I(ζη) = X and we use the short exact sequence (4.17).
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4.4.4 Summary

We have an isomorphism of Z-modules

A∗
st(X ) = A∗(X )e1 ⊕

( ⊕
ζ ̸=1, ζak=1

A∗(Y )[t]∏
ζ∈µak

ek
eζ

)

where the second sum is over all nontrivial ζ such that ζak = 1 for some k = 1, . . . ,m
and the degree of αeζ is deg(α) + age(ζ) (note deg(t) = 1, and age(ζ) is given in
(4.16)). The product ⋆ is given by the rule in Proposition 4.9.

4.5 Finite generation

The ring A∗
st(X ) is naturally an algebra over A∗(X ) via the action of the untwisted

sector, and A∗(X ) is in turn an algebra over A∗(X) via the pullback f ∗. In this
section we ask the question, when is A∗

st(X ) finitely generated over A∗(X ) or A∗(X)?
We first find a subring of A∗

st(X ) that is always finitely generated over A∗(X ).

Definition 4.1. Let A∗(I(ζ))amb denote the image of the restriction map A∗(X ) →
A∗(I(ζ)). The ambient classes of A∗

st(X ) are the elements of the subgroup

A∗
st(X )amb := ⊕ζ∈GmA

∗(I(ζ))amb.

Proposition 4.10. The group A∗
st(X )amb is a subring of A∗

st(X ) and a finitely
generated algebra over A∗(X ). Explicitly, we have

A∗
st(X )amb = A∗(X )[eζ ]ζ∈Z/I

where Z = {ζ ∈ Gm | ζak = 1 for some k = 1, . . . ,m} and I is the ideal generated by
elements of the forms:

1. eζeη − Cζηeζη for ζ, η ∈ Z;

2. αeζ for ζ ∈ Z and α ∈ ker(A∗(X ) → A∗(I(ζ)).

Proof. To show that A∗
st(X )amb is closed under multiplication, by Proposition 4.9 we

only need to show that the elements Cζη ∈ I(ζη) are restrictions of classes in A∗(X ).
The factors of Cζη are equal to e0 = −t and to ek where

ek = crk

((
Ik/I

2
k

)∨)
+ aktcrk−1

((
Ik/I

2
k

)∨)
+ · · ·+ arkk trk = crk(NV (Ik)/X |Y ) + tq(t)
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for some q(t) ∈ A∗(Y )[t], where V (Ik) is the subvariety of X defined by the ideal Ik.
By self-intersection formula,

crk(NV (Ik)/X |Y ) = crk(NV (Ik)/X)|Y = i∗[V (Ik)]

is in the image of i. It follows that ek is ambient. The class e0 = −t is clearly
ambient.

Next, the ring map
A∗(X )[eζ ]ζ∈Z → A∗

st(X )amb

sending eζ to the fundamental class of I(ζ) is clearly surjective and contains I in its
kernel. We show that the kernel is contained in I. Let α be an element of the kernel.
Write α =

∑
J∈NZ αJm

J where αJ ∈ A∗(X ) and mJ =
∏

ζ∈Z e
Jζ
ζ . Modulo I we may

write α as
∑

ζ∈Z α′
ζeζ for some α′

ζ ∈ A∗(X )—this uses that Cζη is ambient. But since

A∗
st(X )amb is a direct sum and α is zero in here, we must have that α′

ζ is in the kernel
of A∗(X ) → A∗(I(ζ)). So α is zero modulo I.

The next question is when A∗
st(X )amb is equal to A∗

st(X ). To answer this question
we will need a lemma, which may be of independent interest. Let Y ′ ⊂ X be a smooth
closed subvariety containing Y , so the normal bundle N ′ := NY ′/X is a subbundle of
NY/X . We have a natural closed immersion PY (N

′) → Y . Consider the composition
of restriction maps

A∗(X ) → A∗(Y) → A∗(PY (N
′)) (4.18)

Lemma 4.11. The composition (4.18) is surjective if and only if i∗ : A∗(X) → A∗(Y )
is surjective. In particular, taking N ′ = N , we have that j∗ : A∗(X ) → A∗(Y) is
surjective if and only if i∗ is surjective.

Proof. The chow rings and restriction maps in (4.18) may be written explicitly as

A∗(Y )[t]·t⊕A∗(X)
J

A∗(Y )[t]

cGm
top (NY/X)

A∗(Y )[t]

cGm
top (N

′)

(q(t), β) [q(t) + i∗β] [q(t) + i∗β]

where J is the ideal of relations described in (4.14). From this it is clear that if i∗

is surjective, so is (4.18). Conversely suppose (4.18) is surjective and let α ∈ A∗(Y ).
Let g′ : PY (N

′) → Y be the natural map. Then we can find β ∈ A∗(X) and
q(t) ∈ A∗(Y )[t] · t such that g′∗(α) is (4.18) applied to (q(t), β); i.e.,

g′∗(α) = [q(t) + i∗β] ∈ A∗(Y )[t]/cGm
top (N

′).
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If we write Q(t) = cGm
top (N

′), then we may write

α− i∗β − q(t) = s(t)Q(t)

for some s(t) ∈ A∗(Y )[t]. Equating constant terms, we get

α = i∗β + ctop(N
′)s(0) ∈ A∗(Y ).

We have shown that for arbitrary α ∈ A∗(Y ) we can write α = i∗β + ctop(N
′)α′ for

some β ∈ A∗(X) and α′ ∈ A∗(Y ). Note that ctop(N
′) = i∗[Y ′] is in the image of i∗.

Hence, by recursively applying this decomposition to α′, we can show for that for any
k > 0 we can write

α = γ + ctop(N
′)kα′

where γ is in the image of i∗. Since ctop(N
′) is nilpotent we have that α is in the

image of i∗.

Corollary 4.12. i∗ : A∗(X) → A∗(Y ) is finite (resp. of finite type) if and only if
j∗ : A∗(X ) → A∗(Y) is finite (resp. of finite type).

Proof. Let p1(t), . . . , pn(t) ∈ A∗(Y )[t] be finitely many polynomials such that the
[pi(t)] ∈ A∗(Y) generate A∗(Y) as a module (resp. algebra) over A∗(X ). Then
the natural extension of the proof of Lemma 4.11 shows that the constant terms
p1(0), . . . , pn(0) generate A∗(Y ) as a module (resp. algebra) over A∗(X).

Theorem 4.13. Assume at least one of the weights ak is not 1. Then the following
are equivalent:

1. i∗ : A∗(X) → A∗(Y ) is surjective

2. A∗
st(X )amb is equal to A∗

st(X )

3. A∗
st(X ) is generated as an algebra over A∗(X ) by {eζ}ζ∈Z.

In this case, A∗
st(X ) is generated as an algebra over A∗(X) by {eζ}ζ∈Z and t, and we

can write

A∗
st(X ) ∼=

A∗(X)[t, eζ ]ζ∈Z(
t · ker i∗,

∏m
k=1 ek −

∏m
k=1 crk

(
(Ik/I2k)

∨)
+ [Y ], eζ · ker i∗, eζ ·

∏
ζ∈µak

ek, eζeη − Cζηeζη

) .
(4.19)
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Proof. Let ak be a degree different from 1 and let ζ = exp(2πi/ak). Then from
Section 4.4.1 we have that I(ζ) ⊂ Y is nonempty. It follows from Lemma 4.11 that
A∗(X) → A∗(Y ) is surjective if and only if A∗(X ) → A∗(I(ζ)) is surjective, and it
follows that (1) and (2) are equivalent.

Statements (2) and (3) are equivalent by the presentation in Proposition 4.10 for
A∗

st(X )amb.
For the explicit presentation, we first apply [AOA23, Corollary 6.5] to write

A∗(X ) =
A∗(X)[t]

(t · ker i∗,
∏m

k=1 ek −
∏m

k=1 crk
(
(Ik/I2k)

∨)
+ [Y ])

,

where every α ∈ A∗(Y ) is identified with any β ∈ A∗(X) such that i∗β = α. With
this identification, the kernel of the composition

A∗(X ) → A∗(Y) → A∗(I(ζ)) (4.20)

is generated by eζ ·ker i∗ and eζ ·
∏

ζ∈µak
ek. The result follows by applying Proposition

4.10.

4.6 Examples

When the blow-up centre has a single weight, the stringy ring is particularly simple
owing to the simple geometry of the inertia stack. Let the weighted ideal be (I, d).
Then a non-identity element ζ ∈ µ∞ either fixes the exceptional divisor or has no
fixed point. Thus the inertia stack is

IX̃ = X̃ ⨿
∐
µd−1

Ỹ .

Similarly all twisted sectors of the second inertia is isomorphic to Ỹ .
The stringy Chow ring is

A∗
st(X̃) = A∗(X̃)e1 ⊕

⊕
ζ∈µd−1

A∗(Ỹ )eζ

with non-trivial multiplications given by

eζ1 ⋆ eζ2 =

{
[Ỹ ]eζ1ζ2 = (−t)eζ1ζ2 if arg(ζ1) + arg(ζ2) ≥ 2π

eζ1ζ2 otherwise
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Root stack construction along a Cartier divisor falls into this category. Ordinary
blow-up also constitutes a rather degenerate case. In fact blowing-up along a centre
with a single weight is a combination of these two: by [QR] weighted blow-up along
(I, d) is the same as performing a classical blow-up along I first, followed by taking
the root stack along the exceptional divisor. For example one may perform weighted
blow-up along the twisted cubic in P3.
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