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We consider possible perturbations of the black hole event horizon induced by matter with spin,
extending the derivation of the Hawking-Hartle formula (tidal heating) in the presence of torsion. When
specialized to theories with a nonvanishing (pseudo-)traceless component of the (con)torsion tensor, we
remarkably find that the tidal heating phenomenon gets modified by additional torsion-dependent terms, in
agreement with previous investigations based on Jacobson’s spacetime thermodynamics approach. These
results lead to relevant phenomenological and theoretical consequences: modifications in the Hawking-
Hartle term change the Bondi mass associated with the gravitational radiation observed at infinity, and
modify the Hawking radiation spectrum of evaporating black holes.
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I. INTRODUCTION

In statistical physics, one of the consequences ofOnsager’s
principle of reciprocity when it comes to irreversible proc-
esses is the regression hypothesis [1,2]: the evolution of
spontaneous fluctuations of a dissipative system is governed
by the macroscopic equations that determine how the same
system approaches its equilibrium state after being externally
perturbed (in a regime of linear response). This result is
universal: while the selection of forces and fluxes towhich the
Onsager relations apply can be tricky, it is nevertheless
surprisingly indifferent to the details of the thermodynamic
system once the dynamical assumptions hold. Onsager’s
regression hypothesis is a classical hypothesis, the quantum-
mechanical generalizing counterpart being the fluctuation-
dissipation theorem, initially proven by Callen and Welton
[3], and later refined by Kubo [4].
In a seminal paper by Candelas and Sciama [5], the

fluctuation-dissipation theorem has been proven to apply
also to the context of black holes irreversible and non-
equilibrium thermodynamics, according to the following
picture. The effect of the coupling between a rotating black
hole and a companion compact object becomes manifest
through the tidal heating phenomenon [6–8]: during the
inspiral phase of the binary evolution, the two bodies deform

each other through their respective tidal fields, making the
mass and angularmomentum of eachmember evolvingwith
time. Tidal heating has been the subject of intense studies up
to recent years [8–12] as it can unveil signatures associated
with alternative theories of gravity as well as with general
relativity, e.g., in the presence of black holes mimickers (for
example, the tidal heating for exotic compact objects was
studied in [12–18]). In standard (Riemannian) general
relativity, a textbook calculation (see for example [19])
relates the rate of change of the horizon areaΣ of the rotating
black hole to the changes in mass and angular momentum,
and subsequently to the first-order perturbation in the shear σ
at the horizon; the result is the well-knownHawking-Hartle
area formula, which, given the proportionality between area
and black hole entropy, provides also the rate of dissipation
of the gravitational perturbation: a rotating black hole with
σjhor ≠ 0, radiating gravitational waves, reduces the shear
and approaches a stationary state. However, according to
the fluctuations-dissipation theorem, we could promote the
shear σ to the role of quantum operator, and describe the
relaxation of the black hole to the stationary configuration as
if it were due to the Hawking phenomenon for the shear
fluctuations.
Embracing Candelas and Sciama’s reasoning, one can

then infer that any fundamental mechanism with the
capability of altering the way the black hole dissipates
the gravitational perturbations—viz. any mechanism induc-
ing a modification in the Hawking-Hartle formula—will
also in turn tweaks the corresponding black hole Hawking
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emission spectrum. In the present paper, we start our
program in this direction.
General relativity considers a priori the affine connec-

tion to be symmetric and metric compatible (Levi-Civita
connection); we will focus on a quite conservative exten-
sion of this ansatz, starting from the realization that the
symmetry condition can be relaxed, allowing for the
connection to contain also an antisymmetric part, the so-
called torsion tensor. In this work, we will calculate for the
first time, to the best of our knowledge, how tidal heating
gets modified by contributions of torsional origin in a
U4 (Riemann-Cartan) spacetime, following a completely
generic approach. In terms of geometry, the prototypical
and most natural example of modification of general
relativity allowing for nonvanishing torsion is the
Einstein-Cartan(-Sciama-Kibble) theory. Despite its sim-
plicity, there is reason to expect the Hawking-Hartle tidal
heating formula to be modified even in this setting: in a
recent derivation of Einstein-Cartan field equations [20]
(see also [21,22]) from Jacobson’s spacetime thermo-
dynamics approach [23], the analysis of the irreversible
part of the Clausius equation showed that the generalized
Hawking-Hartle formula should acquire an additional term,
proportional to the twist of the horizon congruence; this is
due to the fact that, when torsion is present, hypersurface
orthogonality of the congruence does not imply a vanishing
twist. Here, we shall explicitly verify this circumstantial
evidence by a direct calculation and discuss its theoretical
and observational implications.

II. NEWMAN-PENROSE FORMALISM AND
OPTICAL SCALARS: THE TORSIONFUL CASE

The standard calculation of the tidal heating formula relies
on the equation governing the evolution of the expansion—
the real part of the complex divergence, aka first Sachs’
optical parameter—of a null geodesics congruence. While
geodesic deviation and the associated Raychaudhuri equa-
tion in a spacetime with torsion have been extensively and
consistently studied in the literature (recent developments
can be found in [24–27]), the generalization to the full set of
optical equations, initially obtained more than forty years
ago in [28,29] with surprisingly limited success, has been
rediscovered only quite recently [30]. In order to incorporate

torsion effects, it is necessary, in the first instance, to
generalize the Newman-Penrose spin coefficients formal-
ism.1 Let flμ; nμ; mμ; m�μg be a null tetrad consisting of a
pair of real vectors (lμ and nμ) and a pair of complex-
conjugate vectors (mμ and m�μ). The two pairs are usually
constrained to satisfy normalization conditions, lμnμ ¼ 1

andmμm�
μ ¼ −1. For the sake of conciseness, we introduce

the notation

eð1Þμ ≡ lμ; eð2Þμ ≡ nμ; eð3Þμ ≡mμ; eð4Þμ ≡m�μ:

ð1Þ

In the following, numbers enclosed in parentheseswill refer to
the corresponding tetrad vector in (1); moreover, we shall
generally use Latin letters for the tetrad components
and Greek ones for the tensorial ones. Using the normaliza-
tion conditions and the fact that the norms of the four vectors
vanish, the constant symmetric matrix ηab ≡ eaμebμ—the
object lowering and raising tetrad indices—takes the form

ηab ¼ ηab ¼

0
BBB@

0 1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCCA: ð2Þ

In order to use the Newman-Penrose formalism, the
approach is to express any physical quantity in terms of
tetrad components. According to the fact that covariant
derivatives are now encoding a contribution coming from
torsion, one can show that the Ricci rotation coefficients
read γ̂abc ≡ ecνebμb∇νeaμ ¼ γabc þ Kcba, where, from now
on, hatted quantities are calculated with respect to the
generic (torsionfull) connection, whereas terms without
hat refer to the Christoffel part. The tensor Kabc on the
right-hand side is the contorsion tensor (in our notation
Tabc stays instead for the torsion tensor, see also the
Appendix). In order to deal with this generalized approach
to the Newman-Penrose formalism, we define two sets of
scalars, encompassing respectively the sole Riemannian
(those without the subscript T, which are equivalent to the
usual optical scalar of general relativity) and torsion (with
the subscript T) effects,

κ ¼ lνmμ∇νlμ; κT ¼ Kλμνlλmμlν;

ρ ¼ m�νmμ∇νlμ; ρT ¼ Kλμνm�λmμlν;

σ ¼ mνmμ∇νlμ; σT ¼ Kλμνmλmμlν;

1Throughout the paper, we consider G ¼ c ¼ 1, signature ðþ;−;−;−Þ, and indices running from 1 to 4. Note also that we follow the
conventions of [28,29], which is slightly different from the traditional textbook one [19] for what concerns the Ricci rotation
coefficients, but that agrees with the definition of the optical scalars.
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τ ¼ nνmμ∇νlμ; τT ¼ Kλμνnλmμlν;

π ¼ −lνm�μ∇νnμ; πT ¼ −Kλμνlλm�μnν;

ϵ ¼ 1

2
lνðnμ∇νlμ −m�μ∇νmμÞ; ϵT ¼ 1

2
Kλμνlλðnμlν −m�μmνÞ;

α ¼ 1

2
m�νðnμ∇νlμ −m�μ∇νmμÞ; αT ¼ 1

2
Kλμνm�λðnμlν −m�μmνÞ;

β ¼ 1

2
mνðnμ∇νlμ −m�μ∇νmμÞ; βT ¼ 1

2
Kλμνmλðnμlν −m�μmνÞ: ð3Þ

We will keep whenever possible the same notation of the
standard Riemannian case: then, for example, the quantity ρ
is split into two contributions, ρ ¼ −θ þ {ω, the first being
the expansion θ (corresponding to minus the real part of ρ)
and the second being the twist ω (the imaginary part of ρ).
Keeping in mind the definitions (3), it is possible to analyse
the properties of geodesy and hypersurface orthogonality of
a congruence of lμ vectors. In general relativity, the analysis
of the propagation of tetrad vectors along lμ proves that its
direction defines a congruence of affinely parametrized null
geodesics iff κ ¼ ℜðϵÞ ¼ 0; in addition, with a suitable
rotation, the remaining basis vectors parallelly propagate
along lμ. In the torsionfull case, the first-order change
in a basis vector ea under an infinitesimal displacement ξ
reads

δeaμ ¼ ξνb∇νeaμ ¼ ebμγ̂abcecνξν ¼ γ̂abcebμξc: ð4Þ

Using (4) together with (3) and the definition of the rotation
coefficients, we can write Dlμ—the change in lμ per unit
displacement along the direction of the first basis vector,
i.e. lμ itself—as

Dlμ ¼ ðϵþ ϵ�Þlμ þ ðϵT þ ϵ�TÞlμ − ðκ þ κTÞm�
μ

− ðκ� þ κ�TÞmμ: ð5Þ

This expression provides the requirements for the lμ
vectors to form a congruence of geodesics, which happens
when both the conditions κ ¼ lνmμ∇νlμ ¼ 0, and κT ¼
Kλμνlλmμlν ¼ 0 are fulfilled. The condition κ þ κT ¼ 0

defines a congruence of autoparallel curves. Furthermore,
if geodesics are affinely parametrized then it should also
follow ϵþ ϵ� ¼ 2ℜðϵÞ ¼ 0 and ϵT þ ϵ�T ¼ 2ℜðϵTÞ ¼ 0.
The last remark concerns the congruence property of
hypersurface orthogonality. In the presence of torsion, a
hypersurface orthogonal vector field with tangent vector
given by χα satisfies

χ½λb∇νχμ� ¼
1

3!
ð−2χλTνμ

γχγ − 2χνTμλ
γχγ − 2χμTλν

γχγÞ; ð6Þ

where the right-hand side clearly vanishes when there is no
torsion (for a useful discussion see [31]). On the other hand,

from the torsionful covariant derivative b∇νlμ ¼ ebμγ̂ð1Þbcecν,
we find2

l½λb∇νlμ� ¼ ðρ − ρ�Þm�
½μmνlλ� þ ðρT − ρ�TÞm�

½μmνlλ�: ð7Þ

If torsion is absent, the second term on the right-hand side
of (7) is trivially zero, since, using (3), ρT ¼ ρ�T ¼ 0; in the
Riemannian case, then, the condition for lα to be tangent to a
hypersurface orthogonal congruence implies

l½λ∇νlμ� ¼ 0 ¼ ðρ − ρ�Þm�
½μmνlλ�; ð8Þ

which in turn is true iff ρ ¼ ρ�, that is, comparing again with
(3), if the congruence is irrotational (no twist). However,
when torsion is switched on, the term proportional to
ρT − ρ�T ¼ 2Tμν

γm�μmνlγ, in general, does not vanish. In
this case, the hypersurface orthogonality of a congruence of
autoparallel curves does not guarantee a vanishing twist.
The equations governing the evolution of optical param-

eters may be inferred by applying the Ricci identity (see
(A6) in the Appendix) to the four tetrad vectors and taking
the tetrad components of the resulting expression. We
obtain

b∇dγ̂abc − b∇cγ̂abd ¼ γ̂qacγ̂
q
bd − γ̂qadγ̂

q
bc

− 2γ̂ab
qðγ̂q½cd� − K½dc�qÞ þ R̂cdab: ð9Þ

Here R̂abcd ¼ R̂μνρσeaμebνecρedσ are the components of the
Riemann tensor of the full connection in the tetrad basis.
Different choices of the four tetrad indices fabcdg will
correspond to different evolution equations for the various
optical scalars. Since we are interested in the equation for ρ̂,
we specialize the previous identity to the combination
fabcdg → fð1Þð3Þð4Þð1Þg. In this case, in fact, being D
and δ� the derivatives along, respectively, lμ and m�μ,
we get

2Here we are assuming lμ to define a congruence of auto
parallel curves, viz κ þ κT ¼ 0 again; otherwise, (7) would
contain the extra terms −ðκ�m½μnν þ κm�

½μnνÞlλ� − ðκ�Tm½μnνþ
κTm�

½μnνÞlλ�.
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Dρ̂ − δ�κ̂ ¼ ρ̂ðρ̂þ ϵ̂þ ϵ̂�Þ þ σ̂σ̂� − τ̂κ̂� − κ̂ð3α̂þ β̂� − π̂Þ
− ρ̂ðρT − ϵT þ ϵ�TÞ − σ̂σ�T þ τ̂κ�T
þ κ̂ð3αT þ β�T − πTÞ þ R̂ð4Þð1Þð1Þð3Þ: ð10Þ

In our notation, the hatted optical scalars are the sum of the
two homonymous Riemannian and torsion contributions
from (3) (for example, ρ̂ ¼ ρþ ρT). Written in terms of the
generalized optical scalars set (3)—once the Riemann
tensor is disentangled into its metric and contorsion
parts—the expression (10) reads

Dρ ¼ ρ2 þ 2ρℜðϵÞ þ jσj2 þΦ00 þ δ�κ

þ κðπ − 3α − β�Þ − τκ�; ð11Þ

whereΦ00 ¼ − 1
2
Rμνlμlν. We are interested in a congruence

of null autoparallel trajectories—not necessarily affinely

parametrized—generated by lμ, lνb∇νlμ ¼ klμ. In this case,
κ̂ ¼ 0 → κ ¼ −κT . We can then recast (11) as

Dρ ¼ ρ2 þ 2ρℜðϵÞ þ jσj2 þΦ00 − δ�κT
þ κTð3αþ β� − πÞ þ τκ�T; ð12Þ

which is also consistent with previous results [28,29,32].
Note that for κ ¼ 0 (that is, when autoparallel curves are
also metric geodesics), one gets consequently κT ¼ 0 and
recovers the usual V4 (Riemannian space-time of general
relativity) result

Dρ ¼ ρ2 þ 2ρℜðϵÞ þ jσj2 þΦ00: ð13Þ

A relevant question one might ask is whether all the
components of the torsion tensor democratically contribute
to the modified expression (12); as the reader should
expect, the answer is negative. In order to prove this
statement, it is customary to introduce the decomposition
of contorsion into its three irreducible parts with respect to
the Lorentz group,

Kμνρ ¼ ð1ÞKμνρ þ 2

3
gμ½ρð2ÞKν� þ εμνρσð3ÞKσ; ð14Þ

where εμνρσ ¼ −4!{l½μnνmρm�
σ� is the Levi-Civita tensor,

and we have defined a trace vector ð2ÞKν ¼ Kμ
νμ [corre-

sponding to 4-dim irreducible representation ð1
2
; 1
2
Þ], an axial

vector ð3ÞKσ ¼ 1
6
εσμνρKμνρ [also ð1

2
; 1
2
Þ], and a (pseudo-)

traceless tensor ð1ÞKμνρ which satisfies gμνð1ÞKμνρ ¼ 0 ¼
εσμνρ

ð1ÞKμνρ [corresponding to the 16-dim irreducible rep-
resentation ð3

2
; 1
2
Þ ⊕ ð1

2
; 3
2
Þ]. Using the properties of the tetrad

vectors, combined with (14), we get

κT ¼ Kμνρlμmνlρ

¼
�

ð1ÞKμνρ þ 2

3
gμ½ρð2ÞKν� þ εμνρσð3ÞKσ

�
lμmνlρ

¼ ð1ÞKμνρlμmνlρ: ð15Þ

According to (15), and in order to have a nontrivial effect on
the evolution of ρ, see (12), (con)torsion has to have a
nonzero ð1ÞKμνρ component (which usually is referred to in
the literature as the spin-2 component). This is a rather
crucial condition, ruling out several of the simplest models
on the market that contain only the vector and/or axial
components in (14). The striking example is given by
Einstein-Cartan theory with a minimally coupled Dirac
field; in this case, the contorsion (and torsion as well) is a
completely antisymmetric tensor [33], meaning that (14)
collapses to the sole axial contribution and leading to
κECT ¼ 0. Noteworthy, one could think to excite the
ð1ÞKμνρ component even in the context of Einstein-Cartan,
for example by introducing nonminimal couplings (follow-
ing the philosophy of [34,35], although the specific non-
minimal coupling taken into account there would source
only the trace part ð2ÞKμ and consequently would still result
in a vanishing κT) or, more in general, in the context of the
Standard Model Extension.

III. TIDAL HEATING WITH TORSION

Our goal is to calculate the rate of change of the horizon
area in the Hawking-Hartle basis [19], assuming for sim-
plicity a Kerr black hole as the underlying solution. This can
be surely done in the case of theories for which torsion
does not propagate extra degrees of freedom [36–38]
since Kerr black hole will be still a vacuum solution. For
theories with dynamical torsion, the following discussion
will be valid modulo the extra assumption that the chosen
solution does not step away too far from Kerr (subleading
contributions from torsion to the solution, and more spe-
cifically to ϵ).
Splitting (12) (and all the Newman-Penrose scalar

quantities therein) into its real and imaginary part, one
gets a first equation for the evolution of the expansion and a
second one for the twist, both including now extra terms
due to the torsional degrees of freedom,

Dθ ¼ −θ2 þ 2θϵR þ ω2 − jσj2 þΦ00 þ AT; ð16Þ

Dω ¼ −2θωþ 2ωϵR þ BT; ð17Þ

whereD ¼ d=dv, v is the time parameter parametrizing the
trajectories, and

AT ¼ −3αRκRT − βRκRT þ πRκRT þ 3αIκIT − βIκIT − πIκIT

− τRκRT − τIκIT þ δ�κRT ; ð18Þ
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BT ¼ 3αIκRT − βIκRT − πIκRT þ 3αRκIT þ βRκIT

− πRκIT þ τIκRT − τRκIT − δ�κIT: ð19Þ

We assume that an influx of torsion excites the horizon as
a pure gravitational perturbation. A typical physical sce-
nario culminating in this situation can be pictured as
follows: in a black hole—compact object binary, the
constituents of the inspiralling companion can be realisti-
cally thought of as particles endowed with spin, hence
generating torsion; when the compact object falls onto the
black hole, the torsion field intrinsically entangled within
matter will further affect the horizon; this is the case, for
example, of ultradense neutron stars plunging radially into
a black hole.
The first step to finding a mathematical description of

the previous picture is to describe the Kerr solution in the
Newman-Penrose formalism. For this purpose, it is
necessary to write the metric in terms of an appropriate
null tetrad (satisfying the conditions outlined at the
beginning of Sec. II) and calculate from there the optical
parameters. Kinnersley found a convenient tetrad [39] by
imposing κ ¼ σ ¼ λ ¼ ν ¼ 0 and using the remaining
gauge freedom to set ϵ ¼ 0. In general, one can pass
from one tetrad basis to another by using appropriate
transformations. We will make use of what Chandrasekhar
defines as a type III rotation, namely a transformation
lμ → A−1 · lμ; nμ → A · nμ; mμ → e{ϑ ·mμ, where A and ϑ
are scalar functions. The Hawking-Hartle basis can be
then deduced from the Kinnersley tetrad by performing a
type III rotation with A ¼ 2ðr2 þ a2Þ=ðr2 − 2Mrþ a2Þ
and ϑ ¼ 0. The Newman-Penrose scalars in the Hawking-
Hartle basis are finally found accordingly as a function of
the optical scalars in the Kinnersley tetrad and of the
scalar function A (see for example [19], p. 55; see also
[40] for an illuminating discussion on the topic of spin
coefficients and gauge fixing).
The main features of the solutions of the evolution

equations for the expansion and the twist, (16) and (17), are
well captured in perturbation theory. To proceed in this
direction, a comment is due. The advantage of using the
Hawking-Hartle basis resides in the fact that, on the horizon
and in the stationary (not perturbed) configuration of the
Kerr black hole, both ρ (and henceforth θ and ω) and σ
vanish, while ϵ ¼ ϵ0 is constant. However, that is not the
case for the whole set of optical scalars: in particular, α, β, π

and τ are neither zero nor constant on the horizon (they
explicitly depend on the polar angle, but they are constant
in the time parameter v). While it is clearly possible to try to
pursue a perturbative solution of (16) and (17) in a
completely general fashion, to present a crystal-clear
calculation we will make a further simplifying assumption
and consider κT and δ�κT to contribute only at the second
order in the perturbative expansion. In this way, it follows
that also AT and BT enter only at the second perturbative
order. Following the arguments of [19], we arrive at (apices
in parentheses denote hereafter the perturbation order)

Dθð1Þ ¼ 2θð1Þϵ0;

Dωð1Þ ¼ 2ωð1Þϵ0; ð20Þ

in a rotating black hole, θð1Þ and ωð1Þ must be periodic
along the horizon generators [7]; therefore, the only
possible solution of (20) is θð1Þ ¼ ωð1Þ ¼ 0. Perturbing
(16) at the second order, then, yields

Dθð2Þ ¼ −jσð1Þj2 þ Að2Þ
T þ 2ϵ0θ

ð2Þ; ð21Þ

whose solution can be written as

θð2Þ ¼ −
Z

∞

v
e2ϵ0ðv−v0Þð−jσð1Þðv0Þj2 þ Að2Þ

T ðv0ÞÞdv0: ð22Þ

In the final state, when perturbation relaxes, θð2Þ is expected
to vanish; this intuitive claim is corroborated by the form of
the solution above. The quantity θð2Þ is additionally a
measure of convergence of the null congruence emanating
from the surface element of the horizon dΣ,

θð2Þ ¼ 1

2dΣ
dðdΣÞ
dv

: ð23Þ

For a perturbation starting at an initial time vi, that can be
chosen to be equal to zero, and lasting till some time vf, the
previous expression can be written in integral form as

Z
vf

0

dðdΣÞ
dΣ

¼ 2

Z
vf

0

θð2ÞðvÞdv: ð24Þ

Plugging the expression (22) in the equation above, we get

log

�dΣjvf
dΣj0

�
¼ −2

Z
vf

0

dv
Z

∞

v
dv0e2ϵ0ðv−v0Þð−jσð1Þðv0Þj2 þ Að2Þ

T ðv0ÞÞ

¼ 1

ϵ0

Z
vf

0

ð1 − e−2ϵ0vÞðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞdv

þ 1

ϵ0
ðe2ϵ0vf − 1Þ

Z
∞

vf

ðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞe−2ϵ0vdv: ð25Þ
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The second term on the right-hand side of the above
expression is teleological in nature as the change in horizon
area depends on what happens after vf when the perturba-
tion is already relaxed. Thus, we consider

jσð1ÞðvÞj2 ¼ 0 ¼ Að2Þ
T ; for v > vf and vf ≫

1

2ϵ0
:

ð26Þ

Under these assumptions, Eq. (25) becomes

log

�dΣjvf
dΣj0

�
≃

1

ϵ0

Z
vf

0

ðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞdv: ð27Þ

Assuming finally that the change in dΣ during the interval
ð0; vfÞ is very small yields

δðdΣÞ ¼ dΣ
ϵ0

Z
vf

0

ðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞdv; ð28Þ

or, in differential form,

dðδðdΣÞÞ
dv

¼ dΣ
ϵ0

ðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞ: ð29Þ

For a Kerr black hole, the horizon area element is
dΣ ¼ 2MrþdΩ, where rþ is the radius of the horizon,
M is the mass of the black hole, and dΩ ¼ sin θdθdϕ is the
solid angle element. In this case, (29) reads

dðδðdΣÞÞ
dvdΩ

¼ 2Mrþ
ϵ0

ðjσð1Þðv0Þj2 − Að2Þ
T ðv0ÞÞ: ð30Þ

The expression above suggests that the net effect of a
nonzero torsion is to contribute to the rate of change in the
horizon area already associated with a nonzero shear.
However, the sign of the total contribution of the correc-

tions with origin in the torsion dynamics, Að2Þ
T , will be in

general dependent on the underlying gravitational theory
and on the gravity-matter coupling.
To close this section, it is instructive to solve the equation

for the twist at the second order. From

Dωð2Þ ¼ 2ωð2Þϵ0 þ Bð2Þ
T ; ð31Þ

one gets the solution

ωð2Þ ¼ −
Z

∞

v
e2ϵ0ðv−v0ÞBð2Þ

T ðv0Þdv0: ð32Þ

The expression above clearly shows that torsion (or better,

the spin-2 component encoded in the κT term in Bð2Þ
T )

generates twist. The twist goes to zero when torsional
perturbations die off. As a side comment, it is rather

interesting to note that, if the simplifying assumption on
κT and δ�κT is dropped, contorsion could in principle
source twist already at the first perturbative order, through

Bð1Þ
T . This case would be even more dramatic, since a

nonvanishing ðωð1ÞÞ2 term would now enter in (21),
providing a second torsion-dependent contribution to the
evolution of the expansion. This also proves our calculation
to be consistent with what has been predicted in [20]
considering the approach à la Jacobson.

IV. DISCUSSION AND CONCLUSIONS

The tidal heating phenomenon is a well-known mecha-
nism induced by the deformation of the generators of a
black hole horizon under the influence of metric perturba-
tions. The typical astrophysical setting where tidal heating
is at work is the inspiral phase of the evolution of a binary
system, when the tidal field of a compact object deforms its
companion, and the mass and angular momentum of both
members of the system evolve with time.
In this paper, we have extended the Hawking-Hartle tidal

heating formula to a U4 spacetime.
We have followed the Newman-Penrose tetrad formalism

and used optical scalars equations to describe the evolution
of a congruence of autoparallel trajectories in the presence
of torsion. It was first shown in [20] that, when torsion is
switched on, the hypersurface orthogonal congruence does
not guarantee the twist to vanish. It was conjectured therein
that the change in the horizon area due to a torsion-induced
perturbation does depend not only on the generated shear
but also on the twist. In this article, we have derived the rate
of change of the horizon area and shown explicitly that an
extra term arises due to torsion.
In Einstein-Cartan (with a nonminimal coupling

between torsion and matter fields, intended to turn on
the spin-2 component of the former), we can easily
imagine a relevant case where our scheme applies: a
high-density neutron star plunging radially into a black
hole. The neutron-rich matter in the star, having intrinsic
spin, generates torsion and excites the horizon during the
merging process. This excitation is expected to go to zero
as the flow of matter-carrying spin extinguishes. From the
macroscopic point of view, this could lead to a different
merger-related gravitational waves signal associated with
the accretion of the neutron star onto a black hole. This in
turn might lead to an observably different Bondi mass
propagated at infinity.
Furthermore, according to Onsager’s principle and fol-

lowing the arguments suggested by Candelas and Sciama,
as recalled in our introduction, one can also conclude that
the modifications to the Hawking-Hartle formula induced
by the presence of torsion will affect (net of the effect
of induced four-fermion interactions, see [41–43]) the
corresponding Hawking radiation. Explicit quantitative
predictions in this regard will be pursued elsewhere.
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Note finally that the idea suggested in [5] is the result of a
straightforward application of Onsager’s principle to black
hole thermodynamics. A covariant generalization of
Onsager’s principle, in the context of a geometric formu-
lation of statistical mechanics, see for example [44–46],
while beyond the scope of our program, would surely be of
benefit to the present discussion.
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APPENDIX: BASIC DEFINITIONS

The covariant derivative for a generic four-vector Xβ is
defined as

b∇αXβ ¼ ∂αXβ þ Γασ
βXσ: ðA1Þ

In our considerations, the connection Γασ
β has the only

constraint of being metric compatible, i.e.,

b∇αgβγ ¼ 0 ðzero nonmetricityÞ: ðA2Þ

The torsion tensor is defined as the antisymmetric part of
the generic connection

Tαβ
γ ≡ Γ½αβ�γ ¼

1

2
ðΓαβ

γ − Γβα
γÞ: ðA3Þ

The general metric compatible connection can be written as
the difference between the Christoffel symbol of the 2nd
kind f γ

αβg and the contorsion tensor Kαβ
γ,

Γαβ
γ ¼

�
γ

αβ

�
− Kαβ

γ; ðA4Þ

(following [28,29], we adopt the minus sign convention in
front of Kαβ

γ) where

Kαβ
γ ≡ −Tαβ

γ þ Tβ
γ
α − Tγ

αβ; ðA5Þ

is antisymmetric with respect to the last two indices.
The Ricci identity, finally, reads

ðb∇α
b∇β − b∇β

b∇αÞAγ ¼ −R̂αβλ
γAλ þ ðKαβ

λ − Kβα
λÞb∇λAγ;

ðA6Þ

where the Riemann curvature of the full connection is
defined by

R̂αβλ
γ ¼ −∂αΓβλ

γ þ ∂βΓαλ
γ − Γαμ

γΓβλ
μ þ Γβμ

γΓαλ
μ; ðA7Þ

which is an antisymmetric tensor with respect to the first
two and the last two indices.
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