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Foreword

The fact that field theory provides the natural framework for the study and determination
of universal properties of statistical systems is very well known. However, the universal
quantities that are most often discussed arise in a regime in which the correlation length ξ
– which in the study of universality is in any case much larger than the microscopic scales
– is the only relevant scale. In particular, the critical exponents can be traced back to
properties of the critical point, where the correlation length diverges and the mass 1/ξ of
the collective excitation modes (particles) of the statistical system tends to zero. From the
field theoretical point of view, this is an ultrarelativistic, and then high-energy, regime.

On the other hand, in statistical physics there are problems which naturally involve an
additional scale much larger than ξ, so that the relevant physics occurs at low energies.
In this case the framework able to provide exact universal results – in the limit of interest
in which the additional scale is large – is that of the particle description of field theory
in which the matrix elements of fields on particle states and their low-energy properties
play the key role. In this thesis we will illustrate the power of this theoretical framework
through original applications to a number of important and diverse problems in statistical
physics.

The first problem we will consider is that of interfaces separating coexisting phases in
classical three-dimensional systems at equilibrium, the Ising model providing the reference
example. The separation of phases is a macroscopic phenomenon that can only be observed
on scales much larger than the bulk correlation length, and then in this case the additional
scale responsible for low-energy physics is the linear size R of the interface. We will
show how, in the field theoretical formalism, the interface – a surface in three-dimensional
systems – is generated by the propagation in imaginary time of a string made of particles
(the elementary excitation modes of the bulk theory) and how this leads, among other
things, to exact universal results for the order parameter profile.

We will then turn to the problem of systems with boundary conditions inducing the
presence of a topological defect line, which we will investigate through the example of
the O(n) model in n + 1 dimensions. Here, the scale R ≫ ξ is the length of the defect
line, which is produced by the propagation in imaginary time of a topological excitation
of the underlying quantum field theory: a kink for the 2D Ising model, a vortex for the
3D XY model, a hedgehog for the 4D Heisenberg model, and so on. We will derive,
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in particular, the order parameter profile and, also comparing with the results of recent
numerical simulations, we will draw conclusions about the mass of the topological quantum
particle.

After these applications to classical spin systems in which the field theoretical time is
taken imaginary, we will finally consider a situation in which it is kept real, namely that of
non-equilibrium quantum dynamics in isolated systems. In this case the most interesting
question is about the fate of the non-equilibrium evolution at large times, and it is this
limit that makes low-energy excitations dominant. We will formulate the theory of quantum
quenches – both homogeneous and inhomogeneous – in generic space dimensionality and
will show under which conditions one-point functions of local operators (e.g. the order
parameter) can exhibit oscillations that remain undamped at large times. We will also
more generally study the dependence of the dynamics on the initial conditions and will
exhibit the mechanisms allowing universal properties to emerge at late times.

The thesis is mainly based on the results obtained in the following research articles:

• G. Delfino, M. Sorba, and A. Squarcini, “Interface in presence of a wall. Results from
field theory”, Nuclear Physics B, vol. 967, p. 115396, 2021.

• G. Delfino and M. Sorba, “Persistent oscillations after quantum quenches in d di-
mensions,” Nuclear Physics B, vol. 974, p. 115643, 2022.

• G. Delfino and M. Sorba, “Space of initial conditions and universality in nonequilib-
rium quantum dynamics”, Nuclear Physics B, vol. 983, p. 115910, 2022.

• G. Delfino and M. Sorba, “Quantum quenches from an excited state”, Nuclear Physics
B, vol. 994, p. 116312, 2023.

• G. Delfino and M. Sorba, “Mass of quantum topological excitations and order pa-
rameter finite size dependence”, Journal of Physics A: Mathematical and Theoretical,
vol. 57, no. 8, p. 085003, 2024.

• G. Delfino and M. Sorba, “On unitary time evolution out of equilibrium”, Nuclear
Physics B, vol. 1005, p. 116587, 2024.



Chapter 1

Preliminary notions

The aim of this preliminary chapter is to concisely recall general concepts of statistical
mechanics and field theory, in order to set the stage for the applications of the following
chapters.

1.1 Symmetry and universality

In classical statistical mechanics at equilibrium [1], a system is described by the Hamil-
tonian H whose value is determined by the configuration of the system. The expectation
value of a physical observable O is expressed by the statistical average on all possible
configurations, with weights given by the Boltzmann law1

⟨O⟩ = 1

Z

∑
configurations

O e−H/T , (1.1)

where T ≥ 0 is the temperature of the system and the normalization factor Z is the
partition function

Z =
∑

configurations

e−H/T . (1.2)

We focus on systems exhibiting different phases by varying the temperature, namely sys-
tems undergoing a phase transition for some critical value Tc of the temperature. To
characterize a phase transition we typically use a quantity (order parameter) whose expec-
tation value vanishes above Tc while it is a non-vanishing function of T below Tc. In a first
order phase transition the order parameter has a discontinuity at Tc, which does not occur
in a second order (or continuous) phase transition.

The order parameter of the system is closely related to the symmetry properties of
its Hamiltonian. We say that the system possesses a symmetry specified by a group G

1We adopt natural units in which kB = 1.
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8 CHAPTER 1. PRELIMINARY NOTIONS

(a) (b) (c)

Figure 1.1: Bidimensional Ising model defined by the Hamiltonian (1.3) for different values
of temperature: (a) T < Tc, (b) T = Tc, (c) T > Tc. Spins up σi = +1 are shown in
black, spins down σi = −1 are in white. At criticality the system is scale invariant, in the
sense that spin configurations cannot be distinguished under a scale transformation (the
magnetic structure is fractal).

if H is left invariant by the action of G. At a temperature T < Tc, the order parameter
can take different values related by the symmetry, and this is the manifestation of the
spontaneous symmetry breaking below Tc. The simplest statistical model that exhibits a
phase transition, associated to the spontaneous breaking of the symmetry G = Z2, is the
Ising model (see figure 1.1). It is characterized by the Hamiltonian

HIsing = −J
∑
⟨i,j⟩

σiσj , σi = ±1 , (1.3)

where σi is a spin variable associated to the i-th site of a regular lattice and the sum is per-
formed over pairs of nearest neighboring sites. We generally refer to the ferromagnetic case
for which the coupling constant J > 0 and the two lowest energy configurations are those
with all spins pointing in the same direction. The Z2 symmetry of the system corresponds
to the reversal of all spins σi → −σi leaving (1.3) invariant. The order parameter ⟨σi⟩
yields the average magnetization of the system. It vanishes above Tc (disordered phase)
and can be positive or negative below Tc depending on which of the two ordered phases
is selected by spontaneous symmetry breaking. The two-point correlation function ⟨σiσj⟩
measures the degree of relative alignment between two spins separated by a distance |i−j|.
The two-point connected correlation function, defined as ⟨σiσj⟩c ≡ ⟨σiσj⟩ − ⟨σi⟩2, decays
as the distance between the two spins increases according to

⟨σiσj⟩c ∼ e−|i−j|/ξ , |i− j| → ∞. (1.4)

This asymptotic behavior defines the correlation length ξ of the system. At the critical
point T = Tc of a second order phase transition, the correlation function instead decays
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with the distance between spins according to a power law, corresponding to a divergence
of the correlation length as

ξ ∼

{
ξ+0 |T − Tc|−ν , T → T+

c ,

ξ−0 |T − Tc|−ν , T → T−
c ,

(1.5)

where ν is a critical exponent. The divergence of the correlation length at criticality implies
that the system turns out to be scale invariant, its microscopic details become irrelevant
and a universal behavior emerges. It follows that different statistical systems close to a
second order phase transition point exhibit the same universal properties, if they share the
symmetry group G of the Hamiltonian and the space dimensionality. We say that these
systems belong to the same universality class. Critical exponents – of which the correlation
length exponent ν is one example – are basic universal quantities. Renormalization group
theory [2, 3] has clarified how the divergence of the correlation length at the critical point
is responsible for the emergence of universality and how field theory describes critical
phenomena.

1.2 Field theoretical formalism

Statistical models are conveniently defined on a lattice, which provides a microscopic length
scale given by the lattice spacing a. As previously mentioned, when the system is close to a
critical point, its correlation length diverges and, in particular, becomes much larger than
the lattice spacing (ξ ≫ a). Consequently, the universal properties exhibited at criticality
are naturally described by means of variables that are smooth on many lattice spacings,
in other words, continuous variables. The study of universality classes is thus captured by
field theory, which provides such a continuous description (see e.g. [4, 5]).

We consider a d-dimensional statistical system and replace the lattice site i by a point
x = (x1, ..., xd) in the Euclidean space Rd. It follows that the site-dependent lattice ob-
servables become x-dependent fields ϕ(x), so we pass from discrete to continuous variables.
In particular, in the Ising model (1.3), we substitute the spin variable σi with a spin (or
order) field σ(x) and the energy density

∑
j n.n. of i σiσj with an energy density field ε(x).

The theory is specified in terms of an Euclidean action A, that is a functional of the fields
and it is invariant under the operation of the symmetry group G of the system. The ac-
tion defines the Boltzmann weight of a field configuration needed to compute statistical
averages as

⟨O⟩ = 1

Z

∑
field

configurations

O e−A ∼ 1

Z

∫
DϕO e−A[ϕ] , (1.6)
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where the partition function now reads

Z =
∑
field

configurations

e−A ∼
∫

Dϕ e−A[ϕ] . (1.7)

Notice that the formalism allows to replace sums over lattice variables by functional inte-
grals on fields. As already anticipated, the divergence of the correlation length at a second
order phase transition point results into a scale invariant critical point field theory. In
the language of renormalization group theory [2, 3], such a theory left invariant by scale
transformations is also called fixed point theory and its action will be denoted by AFP . In
the vicinity of the fixed point the off-critical action is written as

A = AFP +
∑
i

λi

∫
ddxϕi(x) , (1.8)

where ϕi(x) are all G-invariant fields admitted by the theory and λi are their conjugated
coupling constants measuring the deviations from the fixed point. Since the action is
dimensionless, the couplings λi scale close to criticality as

λi ∼ ξ−(d−Xϕi
) , (1.9)

where Xϕi
is called scaling dimension of the field ϕi and is defined by the behavior of the

two-point correlation function of the fields ϕi(x) at the fixed point as

⟨ϕi(x)ϕi(y)⟩FP =
constant

|x− y|2Xϕi

. (1.10)

The field theory described by (1.8) contains infinitely many G-invariant fields with grow-
ing scaling dimension. The fields having Xϕi

> d are called “irrelevant” because their
conjugated coupling constants have the dimension of a length to a positive power, so they
become negligible when the system is observed over distances much larger than the ref-
erence length ξ. Since this is the limit in which the system exhibits universal properties,
the action (1.8) with all irrelevant fields omitted is called scaling action and characterizes
the universality class. On the other hand, the fields having scaling dimension Xϕi

< d are
named “relevant” as the correspondent coupling constants increase their value at larger
distances. A theory may contain several relevant fields, with the result that more than one
parameter must be tuned to reach the fixed point. This is the case, for instance, of the
Ising field theory specified by the scaling action

AIsing = AFP + h

∫
ddxσ(x) + τ

∫
ddx ε(x) , (1.11)

where h is a magnetic field and τ measures the displacement from the critical tempera-
ture, while their conjugate relevant fields are the spin field and the energy density field
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respectively. Lastly, the fields of a theory having scaling dimension Xϕi
= d, which causes

the coupling constants to be dimensionless, are said to be “marginal”. In this case, if
no logarithmic corrections arise, the addition of such a marginal field contribution to the
scaling action preserves scale invariance, generating a line of fixed points parameterized by
the coupling λi.

1.3 Particle description

In the usual cases we refer to, statistical systems become isotropic in the scaling limit. By
means of a Wick rotation [6], one of the real Euclidean coordinates can be made purely
imaginary (xd = it) so that the Euclidean field theory in d spatial dimensions becomes a
relativistically invariant quantum field theory in (d−1) spatial and one time dimensions. We
pass in this way from the Euclidean space with coordinates x1, ..., xd to the Minkowski space
with coordinates x1, ..., xd−1, t, but the theory keeps the same field content and correlation
functions in the two cases are linked by analytic continuation from real to imaginary time.
In the quantum field theory formalism, the collective excitation modes of the system above
the state of minimal energy (vacuum) correspond to relativistic particles2 [7]. If M is the
mass of a particle, its energy E and momentum p are related by the dispersion relation
E =

√
M2 + p2. An initial state at t = −∞ made of n particles |p1, ...,pn⟩in evolves into

a final state at t = +∞ made of m particles |q1, ...,qm⟩out. Since we are assuming short
range interactions, the initial and final states in which the particles are widely separated
in space can be considered asymptotic states made of free particles. The asymptotic states
are eigenstates of the Hamiltonian H and momentum P operators of the quantum system
with eigenvalues

∑n
i=1Epi and

∑n
i=1 pi respectively for the incoming state and

∑m
j=1Eqj

and
∑m

j=1 qj for the outgoing state. The H and P operators act as generators of time and
space translations, so that for a generic local operator we have

O(x, t) = eiP·x+iHtO(0, 0) e−iP·x−iHt . (1.12)

The two-point correlation function of a local field can be expanded on the complete basis
of asymptotic particles states as3

⟨O(x, t)O(0, 0)⟩ = ⟨0|O(x, t)O(0, 0)|0⟩

=

∞∑
n=0

1

n!

∫ ∞

−∞

n∏
i=1

dpi

(2π)d−1Epi

|FO
n (p1, ...,pn)|2 e

−i

(
n∑

i=1
Epi t+

n∑
i=1

pi·x
)
,

(1.13)

2They are sometimes referred to as “quasiparticles” in order to emphasize their character of collective
excitations for the statistical system.

3We adopt the following normalization of asymptotic particle states ⟨q|p⟩ = (2π)d−1Epδ(p− q).
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Figure 1.2: Graphical representation of
the form factor defined in (1.14). Figure 1.3: Two-particle elastic scatter-

ing process in (1 + 1) dimensions. The
indices a, b, c, d denote particle species.

where |0⟩ is the vacuum state and the functions

FO
n (p1, ...,pn) = ⟨0|O(0, 0)|p1, ...,pn⟩ (1.14)

are called form factors. These are, by definition, matrix elements of an operator placed
at the origin of the system between an asymptotic particle state and the vacuum state
(see figure 1.2). If FO

1 (p) = ⟨0|O(0, 0)|p⟩ ≠ 0 we say that the operator O creates the
particle. In the large spacetime distance limit, (1.13) is dominated by the contribution of
the excitation with lowest energy (a single particle at rest). Going in Euclidean space and
recalling the definition (1.4) of the correlation length, this leads to the identification

M = 1/ξ . (1.15)

1.3.1 Analytic scattering theory

The probability amplitude that an incoming particle state at t = −∞, defined by a set of
energies {Epi}, momenta {pi} and internal quantum numbers {ai} (i = 1, ..., n), evolves
into an outgoing state at t = +∞, characterized by {Eqj}, {qj} and {bj} (j = 1, ...,m), is
given by the matrix element

Sb1,...,bm
a1,...,an (q1, ...,qm|p1, ...,pn) = b1,...,bm⟨q1, ...,qm|S|p1, ...,pn⟩a1,...,an . (1.16)

The operator S is named scattering operator and the matrix element (1.16) is an element
of the so called S-matrix. Since the square modulus of the amplitude (1.16) describes the
probability to pass from an initial state |i⟩ to a final state |f⟩ and

∑
f |Si→f |2 = 1, it

follows that the S-matrix is unitary ; in operator form, it means

SS† = 1 . (1.17)
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Figure 1.4: Analytic structure of the elastic two-particle scattering amplitude in the com-
plex s-plane. Its singularities are shown on the real axis: branch cuts (the ones relative to
unitarity are on the right, those relative to crossing are on the left) and simple poles.

The particle description of a quantum field theory is conveyed by the S-matrix theory
[8], which represents the relativistic generalization of the scattering theory in quantum
mechanics. In a generic relativistic scattering process, total energy and momentum are
conserved, but the number of particles may change after their interaction (n ̸= m). A
scattering process is called “elastic” if it preserves the number of particles and their masses.

We will now illustrate the properties of the S-matrix focusing on the case of scattering
theories in (1+1) dimensions, where the analytic structure of the S-matrix becomes simpler.
Let us consider, in particular, the two-particle elastic scattering process depicted in figure
1.3, which is the simplest possible scattering event. We consider for simplicity that the two
colliding particles have the same massM . The conservation of total energy and momentum
forces the momenta p1 and p2 to be individually conserved by the scattering, while any total
internal quantum number (such as the total charge) may be redistributed. The scattering
amplitude (1.16) is relativistically invariant, so it will be an analytic function of the single
relativistic invariant quantity that can be built out of the two energies and momenta, which
is the Mandelstam variable

s = (Ep1 + Ep2)
2 − (p1 + p2)

2 . (1.18)

In the reference frame of the center of mass, p1+p2 = 0 so that s corresponds to the square
of the total energy of the system. The scattering amplitude of the process in fig. 1.3 is
denoted Scd

ab(s) and satisfies the following properties [8]:

• The amplitude Scd
ab(s) is an analytic function of the – formally complex – variable

s, up to singularities that have a physical meaning. Indeed, in the complex s-plane,
there are branch cuts4 corresponding to the opening of scattering channels and simple
poles identifying particle bound states. The branch cuts start at s = (kM)2 with
k = 2, 3, ..., which are branch points associated to the threshold energy needed for

4The branch cuts ultimately originate from the unitarity condition of the S-matrix.
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the production of a final state made of k particles with massM . These cuts originate
a nested structure along the real axis of the s-plane (see figure 1.4) and the physical
values of the amplitude correspond to the limit

Scd
ab(s+ iϵ) s real , ϵ→ 0+ . (1.19)

These paths lie on the “physical” sheet of the Riemann surface associated to the s-
plane, while the other “non-physical” sheets are defined by the crossing of one or more
cuts. Any simple pole s = M̃2 located in the interval 0 < s < (2M)2 corresponds
instead to a particle of mass M̃ appearing as a stable bound state of the two particles
in the process of figure 1.3.

• A relativistic scattering process satisfies the property of crossing invariance. It states
that exchanging the role of space and time in figure 1.3, which is possible for a rela-
tivistic theory, corresponds to an analytic continuation of the scattering amplitude.
More specifically, when passing from the “direct” channel (time running upwards in
fig. 1.3) to the “crossed” channel (time running from left to right in fig. 1.3), the par-
ticles labeled by b, d become antiparticles b̄, d̄ with energy and momentum reversed
(−Ep2 ,−p2). Therefore the variable s becomes 4M2 − s and the crossing relation
reads

Scd
ab(s+ iϵ) = S b̄c

d̄a(4M
2 − s− iϵ) s real , ϵ→ 0+ . (1.20)

As a consequence of the crossing symmetry, the scattering amplitude acquires on the
negative real axis of the s-plane images of the branch cuts and bound state poles
already present along the positive real axis.

• The unitarity condition of the S-matrix coming from probability conservation (1.17)
translates, in particular, into the following relation for the amplitude of the two-
particle elastic scattering∑

e,f

Sef
ab (s+ iϵ)[Scd

ef (s+ iϵ)]∗ = δacδbd (2M)2 < s < (3M)2 . (1.21)

Since the values of the scattering amplitude on the upper and lower edge of a branch
cut are related by complex conjugation Scd

ab(s+ iϵ) = [Scd
ab(s− iϵ)]∗ (a property called

real analyticity), the unitarity condition can be rewritten as∑
e,f

Sef
ab (s+ iϵ)Scd

ef (s− iϵ) = δacδbd (2M)2 < s < (3M)2 . (1.22)

From the real analyticity of the scattering amplitude we conclude, in particular, that
the amplitude must be real along the uncut segment of the real axis.
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Chapter 2

Interfaces in three dimensions

In this chapter we show how low-energy methods of field theory allow to determine universal
properties of interfaces in three-dimensional systems, focusing on the paradigmatic example
of the Ising model.

2.1 Interface in the Ising model

2.1.1 Introduction

The concept of interface is crucial in different areas of physics. In statistical systems,
the spatial separation of different phases is characterized through the formation of an
interface. In particle physics, confinement is described in terms of a flux tube (a string)
that connects quarks inside hadrons and whose time propagation spans an interface. Lattice
discretization directly links these two problems through duality, which relates a spin model
to a lattice gauge theory, with the Ising model serving as a fundamental example [9].
Effective descriptions that use interfacial fluctuations as the main degrees of freedom lead
to capillary wave theory [10] on one side, and effective string actions [11,12] on the other.

An important problem in the theory of statistical systems close to criticality is that of
providing a fundamental treatment of phenomena involving different length scales. The
divergence of the correlation length ξ as the critical temperature Tc is approached is at the
origin of universality, namely the existence of quantities such as critical exponents whose
values only depend on global properties (internal symmetries and space dimensionality).
Field theory then emerges as the natural framework for the quantitative study of univer-
sality classes (see e.g. [4, 9]). In particular, the scaling dimensions of the fields, which
determine the critical exponents, are related to the behavior of correlation functions at
distances much smaller than ξ. On the other hand, below Tc, in a system with discrete
internal symmetry, suitable boundary conditions lead to the presence of an interface sepa-
rating two coexisting phases. The phenomenon requires a length scale R – the linear size
of the interface – which is much larger than ξ, since on shorter scales bulk fluctuations do

17
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not allow the emergence of the two distinct phases. There is no doubt that slightly below
Tc the full description of the system with the interface should be obtained supplementing
with the required boundary conditions the field theory of the bulk (i.e. homogeneous)
system. In practice, however, it is far from obvious how to derive analytical results that
simultaneously encode scaling and interfacial properties, which are related to short and
large distance effects, respectively. It was shown in [13, 14] how the problem can be dealt
with in three dimensions within the particle description of field theory.

2.1.2 General setting and interfacial tension

The reduced Hamiltonian of the three-dimensional Ising model is

H = − 1

T

∑
⟨i,j⟩

sisj , (2.1)

where the spin variable located at site i of a cubic lattice takes the values si = ±1, and
⟨i, j⟩ means that the sum is performed over all pairs of nearest-neighbor sites. We consider
values of the temperature T below the critical value Tc, namely in the regime in which
the spin reversal Z2 symmetry of the Hamiltonian (2.1) is spontaneously broken and the
absolute value of the magnetization is |⟨si⟩| = M > 0, where ⟨· · · ⟩ denotes the average
over all spin configurations weighted by e−H. More precisely, we consider temperatures
only slightly below Tc, in such a way that the large correlation length (it diverges as
ξ ≃ |T − Tc|−ν as T → Tc) allows to take the continuum limit. The latter defines an
Euclidean (translationally and rotationally invariant in the three dimensions) field theory
that we call the bulk field theory [4, 9]. This Euclidean field theory can also be seen as
the analytic continuation to imaginary time of a quantum field theory defined in two space
and one time dimensions. Denoting by r = (x, y, z) a point in Euclidean space, we will
identify z as the imaginary time direction. In the continuum, the discrete spin variables si
are replaced by the spin field s(r).

We consider the case in which the system is finite in the z direction, with |z| < R/2 and
R is much larger than the bulk correlation length ξ, while the size in the x and y directions
is infinite in the theoretical analysis. The spin variables at z = ±R/2 are fixed to the values
si = 1 for x < 0 and si = −1 for x > 0, whereas they are left unconstrained for x = 0.
Denoting by ⟨· · · ⟩+− configurational averages with these boundary conditions, it follows
that for z = 0 and R large we have limx→−∞⟨s(r)⟩+− =M and limx→+∞⟨s(r)⟩+− = −M ,
being M the bulk magnetization. The two pure phases for x → −∞ and x → +∞ are
then separated at x = 0 by a region spanned by the fluctuations of an interface running
between the pinning lines z = ±R/2 and x = 0 (figure 2.1).

In order to study the interface, we will exploit the fact that, as we recalled in the
introductory chapter, the bulk field theory admits a particle description [7,15]. The parti-
cles correspond to the excitations modes with respect to the ground state (vacuum) of the
quantum field theory, and should not be confused with the molecules of a fluid. Since the



2.1. INTERFACE IN THE ISING MODEL 19

Figure 2.1: Geometry considered in the theoretical derivation, with L → ∞ and R much
larger than the bulk correlation length ξ. Boundary spins at z = ±R/2 are fixed to 1
(green) for x < 0, −1 (blue) for x > 0 and left free for x = 0. This induces the presence
of an interface (one configuration is shown here) between the axes x = 0 on the top and
bottom surfaces.

rotational invariance of the bulk Euclidean theory is mapped into relativistic invariance of
the quantum theory in (2 + 1) dimensions, the energy Ep of a particle mode with mass m

and momentum p = (px, py) obeys the relativistic dispersion relation Ep =
√
p2 +m2. A

complete basis onto which generic excitations can be expanded is provided by the asymp-
totic n-particle states |p1,p2, . . . ,pn⟩ of the bulk theory. These states are eigenstates of
the energy and momentum operators H and P of the quantum theory, with eigenvalues∑n

i=1Epi and
∑n

i=1 pi, respectively. The operators H and P also act as generators of
spacetime translations, and for a generic field Φ(r) we have

Φ(r) = eixPx+iyPy+zH Φ(0) e−ixPx−iyPy−zH . (2.2)

In field theory, interfaces are produced by the propagation of particles between the pinning
points [16–18], in the present case the lines z = ±R/2 at x = 0. Translation invariance
in the y direction implies that the number N of propagating particles is extensive in that
direction, and is therefore infinite. In order to regulate our expressions, we will denote
by L the size of the system in the y direction, always understanding that N ∝ L → ∞.
The interface is then spanned by the propagation in the imaginary time direction z of an
excitation (a string) containing N/L particles per unit length. The propagation occurs

between the states |B(±R/2)⟩ = e±
R
2
H |B(0)⟩, called boundary states and corresponding
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in the field theory to the boundary conditions that we have imposed at z = ±R/2. They
can be expanded over the basis of particle states of the bulk theory in the form [13]

|B(±R/2)⟩ = 1√
N !

∫ N∏
i=1

dpi

(2π)2Epi

f(p1, ...,pN ) e
±R

2

N∑
i=1

Epi
δ

(
N∑
i=1

py,i

)
|p1, ...,pN ⟩+ ... ,

(2.3)
where f(p1, ...,pN ) is an amplitude, the delta function enforces translation invariance in the
y direction and the state normalization ⟨p|q⟩ = (2π)2Ep δ(p− q) is adopted. For reasons
that will become clear in a moment, the contribution that we write explicitly in (2.3) is
that of the particles with the lowest mass. The latter is denoted by m and determines
the large distance decay of the bulk spin-spin correlation function as ⟨s(r)s(0)⟩ ∼ e−m|r|,
a relation that implies

ξ = 1/m . (2.4)

States involving heavier particles enter the expansion (2.3) in the part that we do not
write explicitly and, as we will discuss later, they produce only subleading corrections in
the large R limit we are interested in.

The partition function Z+− corresponding to our boundary conditions is related to the
sum over all configurations of particles propagating between the bottom and top surfaces.
It is hence given by the overlap between the two boundary states, namely

Z+− = ⟨B(R/2)|B(−R/2)⟩ = ⟨B(0)|e−RH |B(0)⟩

∼ L

2π

∫ N∏
i=1

dpi

(2π)2m
|f(p1, ...,pN )|2 δ

(
N∑
i=1

py,i

)
e
−R

(
Nm+

N∑
i=1

p2
i

2m

)
, (2.5)

where in the last line we exploited the fact that the limit of large R forces all momenta to
be small, and used the regularization δ(0) = L/2π following from 2πδ(p) =

∫
eipydy. Here

and in the following the symbol ∼ indicates omission of terms subleading for large R. In
this limit, the amplitude f(p1, ...,pN ) is projected to a constant defined as

f(p1, ...,pN ) ≃ f(0, ..., 0) ≡ f0 , pi, . . . ,pN → 0 . (2.6)

Therefore we obtain for the partition function (2.5) the expression

Z+− ∼ L |f0|2 e−RNm

(2π)2(N+1)

(
2π

R

)N
√

2πR

Nm
. (2.7)

This result shows, in particular, how a state with a particle of mass m replaced by one of
mass m′ > m contributes to the large R expansion a term further suppressed by a factor
e−(m′−m)R.
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The interfacial tension σ is the free energy per unit area contributed by the interface
− lnZ+−/LR, for both L and R going to infinity. Since the limit L → ∞ is understood,
we have

σ = − lim
R→∞

1

LR
lnZ+− = κm2 =

κ

ξ2
, (2.8)

where

κ =
Nξ

L
(2.9)

is dimensionless, and then universal, meaning that near criticality it is the same number
for different lattice realizations. Notice that our regulators to infinity N and L can enter
the measurable quantity (2.9) only in the form of a finite ratio. The number of particles
per unit length along the string can be written as N/L = σξ = κ/ξ. It follows that
there are κ particles per correlation length in the y direction of the string. Since, due
to (2.6), in the large R limit required for phase separation, the partition function (2.5)
retains no information about the interaction among the particles, we deduce that the large
R limit selects weakly interacting and then, in average, widely separated particles. This
conclusion perfectly matches with the Monte Carlo determination σξ2 = κ = 0.1084(11)
[19] corresponding to an average interparticle distance L/N = ξ/κ in the y direction of
about 10 correlation lengths, which means that the interparticle interaction is negligible.
It is remarkable that the particle description is able to provide insight on a measurable and
universal quantity like κ.

2.1.3 Order parameter profile

The expectation value of a field Φ(r) at z = 0 is given by

GΦ(x) ≡ ⟨Φ(x, y, 0)⟩+− =
1

Z+−
⟨B(R/2)|Φ(x, y, 0)|B(−R/2)⟩

∼ |f0|2

Z+−N !

∫ N∏
i=1

(
dpi

(2π)2m

dqi

(2π)2m

)
δ

(
N∑
i=1

py,i

)
δ

(
N∑
i=1

qy,i

)

× e
−R

2

(
2Nm+

N∑
i=1

(
p2
i

2m
+

q2i
2m

))
+ix

N∑
i=1

(px,i−qx,i)

FΦ(p1, ...,pN |q1, ...,qN ) , (2.10)

where we used (2.2) to extract the coordinate dependence, the large R limit has again been
taken, and the matrix element

FΦ(p1, . . . ,pN |q1, . . . ,qN ) = ⟨p1, . . . ,pN |Φ(0)|q1, . . . ,qN ⟩
= ⟨p1, . . . ,pN |Φ(0)|q1, . . . ,qN ⟩c + (2π)2mδ(p1 − q1)⟨p2, . . . ,pN |Φ(0)|q2, . . . ,qN ⟩c
+ . . . (2.11)

is evaluated for small momenta. The second equality in (2.11) expresses the decomposition
of the matrix elements into connected (subscript c) and disconnected parts produced by
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annihilations of particles on the left with particles on the right [15]; the dots indicate that
one has to take into account all possible annihilations. Since the form of (2.10) implies
that each power of momentum contributes a factor R−1/2, and each annihilation in (2.11)
yields a delta function δ(pi − qj), and then a factor R, the leading contribution to (2.10)
for large R is produced by the maximal number of annihilations. On the other hand, N
annihilations just leave a constant CΦ, so that the leading x-dependence is obtained from
N − 1 annihilations, which can be performed in N !N ways. Taking all this into account,
we arrive at the expression [13]

GΦ(x) ∼ CΦ +
κR

(2π)2m

∫
dp dq δ(py − qy)F

c
Φ(p|q) e−

R
4m

(p2+q2)+ix (px−qx) , (2.12)

where F c
Φ(p|q) ≡ ⟨p|Φ(0)|q⟩c. In particular, we see that, if F c

Φ(p|q) behaves for small
momenta as a momentum to the power αΦ, the x-dependent part of (2.12) i.e. GΦ(x)−CΦ

will behave as R−(1+αΦ)/2. Notice also that the integral term in (2.12) is even (respectively
odd) in x when F c

Φ(p|q)|py=qy is even (resp. odd) under exchange of px and qx.

For the spin field s(r) the functional form

F c
s (p|q)|py=qy =

cs
px − qx

, px, qx → 0 (2.13)

was deduced in [13]. When inserting this expression in (2.12) it is convenient to get rid
of the pole by differentiating with respect to x. Performing the momentum integrations
and integrating back in x with the boundary conditions lim

x→±∞
Gs(x) = ∓M then gives the

order parameter (or magnetization) profile

Gs(x) ∼ −Merf(η) , (2.14)

with

η =

√
2

Rξ
x (2.15)

and cs = −2iM/κ. Using (2.2) the calculation can be straightforwardly extended to a
generic z ∈ (−R/2, R/2). The effect is that in (2.14) η is replaced by χ = η/

√
1− (2z/R)2.

The error function in (2.14) already appears in the exact result of the magnetization profile
in two dimensions (i.e. in absence of the y axis in figure 2.1), which was obtained from the
lattice solution of the Ising model in [20,21] and more recently in field theory in [16]. Despite
the overall similarity between the magnetization profiles in two and three dimensions, it
must be noted that the factor

√
2 in (2.15) is absent in the two-dimensional result. This

is due to the fact that in two dimensions the elementary excitations of the Ising model
below Tc are kinks [15] and therefore have a topological nature. Since the spin field is
topologically neutral, the lightest state to which it couples is a two-particle one (kink-
antikink state [22, 23]) having mass equal to 2m. It follows that in two dimensions the
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Figure 2.2: Geometry considered for the Ising model below Tc, with L→ ∞ in the theoret-
ical analysis and R ≫ ξ. Spins on the wall x = 0 are fixed to 1 (green) for |z| < R/2, −1
(blue) for |z| > R/2 and left free for |z| = R/2. One configuration of the interface running
between the boundary condition changing axes z = ±R/2 is shown.

relation (2.4) has to be replaced by ξ = 1/2m and this difference propagates in the results
expressed in terms of the correlation length.

The theoretical prediction of the magnetization profile (2.14) was perfectly confirmed
by comparison with Monte Carlo data in Ref. [13], in absence of any adjustable parameter.
The numerical values of the magnetization were obtained from simulations of the Ising
model on a cubic lattice for different values of T and R, while L was taken sufficiently
larger than R so to reproduce the infinite L analytical results.

2.2 Interface in presence of a wall

2.2.1 Order parameter profile

We now turn to the case in which the interface can only fluctuate in the half-volume due
to the presence of an impenetrable wall. More precisely, we consider the Ising model of
the previous section in the half-volume x ≥ 0, with the spins on the wall x = 0 fixed to
the values si = 1 for |z| < R/2 and si = −1 for |z| > R/2, where R ≫ ξ with ξ being
the bulk correlation length defined by (2.4). Denoting by ⟨· · · ⟩+− configurational averages
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with these boundary conditions, it is clear that lim
x→+∞

⟨s(x, y, 0)⟩+− is −M for R finite

and M for R infinite. Hence, one expects the presence of an interface pinned along the
boundary-condition-changing lines z = ±R/2 on the wall (figure 2.2), separating an inner
phase with positive magnetization from an outer phase with negative magnetization, and
whose average distance from the wall at z = 0 diverges with R. In the following we will
show how this result indeed emerges within the field theoretical description of the problem.

It is our goal to determine the expectation value ⟨Φ(x, y, 0)⟩+− of a field Φ(r) in this
geometry. As in the previous section, we write the configurational sums in momentum
space and interpret the interface and its fluctuations as due to the propagation of particle
modes distributed along a string with a density related to the interfacial tension. The string
extending for all values of y and whose propagation in the z direction spans the interface
corresponds in the field theory to the boundary states (2.3). Correlation functions of fields
located in the region |z| < R/2 of the system with the interface will be computed between
the states |B(−R/2)⟩ and |B(R/2)⟩. It follows that the partition function is given by (2.5),
where the required condition R≫ ξ has projected the calculation to a low-energy limit.

So far we took into account that the interface runs between the pinning axes, but not
the presence at x = 0 of a wall that the interface cannot cross. This information has
to be carried by the function f(p1, ...,pN ), which plays the role of emission/absorption
amplitude of the particles at the pinning axes. We then impose that none of the particles
stays at x = 0, namely that f(p1, ...,pN ) vanishes when at least one of the momentum
components px,i vanishes. Taking into account that the particles in (2.3) play a symmetric
role, and that f(p1, ...,pN ) should be analytic in the limit of small momenta required for
the calculations at large R, we write

f(p1, ...,pN ) ≃ f0

N∏
i=1

px,i , pi, . . . ,pN → 0 , (2.16)

where f0 is a constant. Plugging this expression in (2.5) we obtain

Z+− ∼ L |f0|2 e−RNm

(2π)2(N+1)

(
2πm

R2

)N
√

2πR

Nm
. (2.17)

As it was in (2.7), it again appears from (2.17) how the contribution of a state in which a
particle of mass m is replaced by one of larger mass m′ > m is suppressed at large R by a
factor e−(m′−m)R.

The interfacial tension σ is again defined as the free energy per unit area provided by
an interface whose size is infinite in both the y and the z directions. Having understood
the limit L→ ∞, we have

σ = − lim
R→∞

1

LR
lnZ+− = κm2 =

κ

ξ2
, (2.18)
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where κ is the universal number (2.9). We notice that the presence of the wall does not
affect the interfacial tension since we obtained the same result as (2.8). As we will show
in the next section, this is due to the fact that the average distance of the interface from
the wall increases with R. Hence, the Monte Carlo determination obtained for the three-
dimensional Ising model in absence of the wall [19] continues to hold, resulting in a weak
interparticle interaction. This is nicely consistent with our finding that in the large R limit
the particle propagation between the pinning axes is only subject to translation invariance
in the y direction (delta function in (2.3)) and to the presence of the wall (expression
(2.16)).

The one-point functions at z = 0 are given by

GΦ(x) ≡ ⟨Φ(x, y, 0)⟩+− =
1

Z+−
⟨B(R/2)|Φ(x, y, 0)|B(−R/2)⟩

∼ |f0|2 e−RNm

Z+−N !

∫ N∏
i=1

(
dpi

(2π)2m

dqi

(2π)2m
px,i qx,i

)
δ

(
N∑
i=1

py,i

)
δ

(
N∑
i=1

qy,i

)

× e
− R

4m

N∑
i=1

(p2
i+q2

i )+ix
N∑
i=1

(px,i−qx,i)
FΦ(p1, ...,pN |q1, ...,qN ) , (2.19)

where we again consider the large R limit and the matrix elements (2.11) is evaluated for
small momenta. It is worth stressing that the matrix element (2.11) refers to the bulk
field theory and therefore does not depend on the geometry considered for the interfacial
problem. It follows that the observations made in section 2.1 still apply, giving the result

GΦ(x) ∼ CΦ +
κR2

(2π)2m2

∫
dp dq px qx δ(py − qy)F

c
Φ(p|q) e−

R
4m

(p2+q2)+ix (px−qx) , (2.20)

where F c
Φ(p|q) ≡ ⟨p|Φ(0)|q⟩c. Using for the spin field the expression (2.13), we again

conveniently cancel the pole in px − qx by differentiation with respect to x. Performing
then the momentum integrations and integrating back in x with the boundary conditions
lim

x→+∞
Gs(x) = −M and Gs(0) =M we obtain

Gs(x) ∼M + 2M

[
2√
π
η e−η2 − erf(η)

]
, (2.21)

with (2.15) and cs = 4iM/κ.

2.2.2 Probabilistic interpretation

The result (2.21) admits a simple probabilistic interpretation once we look at this leading
contribution in the large R expansion as due to an interface that sharply separates two
pure phases. Then the magnetization at a point r = (x, 0, 0) within a configuration in
which the interface intersects the x-axis at a point u can be written as

s(x|u) =M θ(u− x)−M θ(x− u) , (2.22)
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1 2 3
η

-1

1

Figure 2.3: Order parameter profile Gs(x)/M (eq. (2.21), continuous blue curve) and
passage probability p(x)/p(

√
Rξ/2) (eq. (2.24), dashed green curve).

where θ(x) is the step function that vanishes for x < 0 and equals 1 for x > 0. If p(u) du is
the probability that the interface intersects the x-axis in the interval (u, u+ du), then the
average magnetization can be written as

s(x) =

∫ +∞

0
du p(u) s(x|u) =M

∫ +∞

x
du p(u)−M

∫ x

0
du p(u) . (2.23)

This expression coincides with (2.21) for a passage probability density

p(x) = 4

√
2

πRξ
η2 e−η2 , (2.24)

which correctly satisfies p(x) ≥ 0 and
∫ +∞
0 dx p(x) = 1. p(x) is maximal at η = 1 (figure

2.3), showing that the average distance of the interface from the wall increases as
√
R. In

addition, p(0) = 0 verifies in real space the impenetrability of the wall that we imposed in
momentum space through the condition (2.16).

The probabilistic interpretation also illustrates that the fluctuations of the interface in
the y direction do not affect the leading term of the local magnetization in the large R
expansion. Then it is not surprising that the profile (2.21) is analogous to that known in
two dimensions [21, 24, 25], i.e. in absence of the y direction1. Once again, however, the
factor

√
2 in (2.15) is absent in two dimensions for the reason explained in the case of the

full volume.
It must also be observed that the impenetrability of the wall is the only boundary

effect that we took into account in our theoretical derivation. In actual measurements (in
particular in simulations on the lattice) the value of the order parameter close enough to

1The fluctuations in the y direction should show up at leading order in the large R expansion of the
spin-spin correlation function, which in two dimensions was obtained in [26].
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the wall will be affected by the specific nature of the interaction between the wall and the
bulk degrees of freedom. Hence, the results (2.21) and (2.24) hold for x larger than few
correlation lengths. Since the main interfacial effects occur around x ∝

√
R, and R ≫ ξ,

they are not affected by boundary details, unless we consider the generalization of the next
section.

2.2.3 Binding transition

The system setting considered so far leads to an interface whose average distance from
the wall diverges as

√
R. On the other hand, the introduction of a tunable boundary

field can lead to a wall-interface interaction sufficiently attractive to determine a binding
of the interface to the wall. Conversely, the passage from the binding to the fluctuating
regime corresponds to a transition that is most often referred to as “wetting” transition
(see [27–29] for reviews). This terminology refers to a liquid-vapor interface, the liquid
phase being that internal to the interface.

As we now explain, the particle formalism naturally accounts also for the binding
transition. We saw that in the limit relevant for phase separation (linear size of the interface
much larger than the bulk correlation length ξ) the interfacial properties are determined
by low-energy particle modes whose mutual interaction is negligible due to a large average
separation. The interaction of a particle with the wall can be characterized within the
scattering framework, in which an incoming particle has momentum p = (px < 0, py).
At low energy the interaction with the wall is elastic and the particle bounces back with
momentum p = (−px, py), the component py being conserved due to translation invariance
in the y direction. The relation E2 = p2 +m2 defines the parameter β such that

E = m coshβ , (2.25)

|p| = m sinhβ . (2.26)

If the particle-wall interaction is sufficiently attractive, the particle will bind to the wall and,
as usual in scattering theory [8,30], the bound state corresponds to a value E0 < m of the
energy, namely to p2 < 0, or β = iθ0 with θ0 ∈ (0, π). It follows that in the bound regime
the contribution of the interface to the energy per unit length is N

Lm cos θ0 = σ cos θ0,
where we used (2.18) and (2.9). Hence, if e is the energy per unit length associated to the
wall, the energy per unit length of the wall-interface bound state is

ẽ = e+ σ cos θ0 . (2.27)

The value of the binding angle θ0 depends on the strength of the particle-wall interaction,
and the unbinding transition occurs at θ0 = 0, when the binding energy per unit length
σ(1− cos θ0) vanishes.

Remarkably, (2.27) accounts for the basic relation of the phenomenological wetting
theory [27], namely the equilibrium condition for a liquid drop on the wall, in which ẽ and
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Figure 2.4: In field theory a drop on the wall corresponds to the unbinding and recom-
bination of a wall-interface bound state. The contact angle θ0 vanishes at the unbinding
transition.

e are the wall-vapor and wall-liquid surface tensions, respectively, and θ0 is the angle that
the drop forms with the wall (figure 2.4). The wetting transition occurs at θ0 = 0, when
the drop spreads on the wall.

Consider now the dependence of θ0 on the parameters of the system. The wall con-
tributes to the Euclidean action of the theory a term h

∫
dydzΦB(0, y, z). Since the action

is dimensionless, if XB is the scaling dimension of the boundary field ΦB, the coupling h
has the dimension of a mass (or inverse length) to the power 2−XB. Hence, θ0 is a function
of the dimensionless combination h/m2−XB , where m = 1/ξ ∼ (Tc − T )ν . For h fixed, the
condition θ0 = 0 determines the unbinding (or wetting) transition temperature Tw(h) < Tc.
It is clear that for T sufficiently close to Tc, namely for a mass m sufficiently small, the
near-critical fluctuations become too strong and the particles have to be unbounded, so
that the bound regime corresponds to T < Tw. We also see that the interface is unbound
for h = ∞, which corresponds to the boundary field considered in the previous sections.

It is customary (see [28, 29]) to characterize the transition through the exponent αS

defined for T → T−
w by

(1− cos θ0) ∝ (Tw − T )2−αS , (2.28)

and the transition is said to be continuous if αS < 1. The terminology refers to the
continuity of the first derivative of (2.28) at Tw, taking into account that the contact angle
θ0 is phenomenologically set to zero in the unbound regime Tw < T < Tc. We can get
insight on the exponent αS recalling that, as usual in scattering theory, the bound state
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corresponds to a pole at E = E0 in the scattering amplitude of the particle on the wall (see
chapter 1). Then general analytical properties of the amplitude [8,30] tell us that when we
move from the bound to the unbound regime, namely when T increases through Tw, the
pole does not disappear, but slides through a square root branch point at E = m into a
second sheet of the complex energy plane. Within the parametrization E = m cos θ0 this
corresponds to a continuation from positive to negative values2 of θ0, namely to

θ0 ∝ (Tw − T )2n+1 , n = 0, 1, 2, . . . (2.29)

in the vicinity of Tw. Comparison with (2.28) then yields

αS = −4n . (2.30)

Clearly, the generic case is expected to correspond to n = 0, and then to αS = 0. As
reviewed in [29], this value agrees with numerical simulations within the Ising model3

[32, 33].
A second exponent βS < 0 describes the divergence of the distance of the interface from

the boundary,
l ∝ (Tw − T )βS , (2.31)

as T → T−
w . In the scattering framework l is related to the decay e−x/l of the wave

function for a distance x→ ∞ from the wall in the bound regime. Such a behavior can be
seen as originating from the plane wave eipxx and the imaginary value of the momentum
in the bound regime: |p| = im sin θ0 from (2.26). Close to Tw, where θ0 is small, one
could naively argue l ∝ 1/mθ0, and infer βS = αS/2− 1 from comparison with (2.28) and
(2.31). αS = 0 then leads to βS = −1, a value that has been observed experimentally [34].
However, experimental systems include long range interactions that are not present in our
framework. The safest comparison is that with simulations within the nearest-neighbor
Ising model4, which are consistent with l ∝ | ln(Tw − T )| (see [32, 33] and the discussion
in [36]). This indicates that the fact that px → 0 does not imply |p| → 0 cannot be
forgotten. The implication holds instead in two dimensions [37] (i.e. in absence of the y
direction), where the values αS = 0 and βS = −1 indeed correspond to the exact Ising
lattice solution of [21,38].

2Such a continuation is regularly exploited in the context of exact scattering solutions, see [31].
3We also notice that the value αS ≈ −5 deduced from a phenomenological renormalization group

approach (see [29] and references therein) is reminiscent of the case n = 1, i.e. αS = −4.
4It can be noted that the value αS = 0, which agrees with simulations in the Ising model, is also

consistent with the experiment of [35].





Chapter 3

Topological defect lines

In this chapter we consider the spontaneously broken phase of the O(n) vector model in
(n+1) dimensions with boundary conditions enforcing the presence of a topological defect
line. We derive the exact expression for one-point functions such as the order parameter,
in the limit in which the length of the defect line is large, and discuss the implications for
the mass of the topological excitation in the underlying quantum field theory.

3.1 Introduction

Some quantum field theories allow for a nontrivial mapping between the ground state man-
ifold and the spatial boundary, and then for topological excitations. These are among the
most fascinating objects in quantum field theory [7,39]. Topological excitations correspond
to extended configurations of the fields entering the action, a feature which requires non-
perturbative methods for their characterization as quantum particles. It is well known that
these methods have been available in the case of spacetime dimension d = 2, as illustrated
by sine-Gordon solitons: on one hand fermionization maps them onto the fundamental
fields of the massive Thirring model [40, 41], on the other integrability provides the exact
soliton scattering amplitudes [42].

In the last years it has been pointed out that the correspondence – through analytic
continuation to imaginary time – between relativistic and Euclidean field theories can be
exploited to gain insight into the case d > 2 [43, 44]. For this purpose one works in the
spontaneously broken phase of the Euclidean theory, with boundary conditions enforcing
the presence of a topological defect, and with a finite size R in the imaginary time direc-
tion. Then the large R asymptotics of one-point functions such as the order parameter are
determined by the state with a single topological particle, and can be obtained analyti-
cally [43]. In addition, comparison between these analytical results and their determination
in numerical simulations of the corresponding spin system allows the measurement of ba-
sic parameters of the theory such as the mass of the topological particle; this program
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was illustrated in [44] for the case of the scalar O(2) theory in d = 3, which describes
the universality class of the superfluid transition (see [45]) and possesses quantum vortex
excitations.

More recently, the program of [44] has been carried through in [46,47] for the O(3) scalar
theory in d = 4. Intriguingly, the numerical simulations showed a scaling dependence on
the parameters – the finite size R and the deviation from criticality – markedly different
from that observed in [44]. It was shown in [48] that the theory of [43] accounts for both
cases, with the difference arising from the fact that the mass of the topological particle is
finite in the three-dimensional O(2) model and infinite in the four-dimensional O(3) model.
This is due to the passage from the nontrivial renormalization group fixed point of the first
case to the Gaussian fixed point of the second. All this is discussed in detail below.

3.2 General setting and partition function

We consider the universality class of O(n)-symmetric ferromagnets, whose simplest repre-
sentative (see e.g. [5]) is the vector model defined by the reduced Hamiltonian

H = − 1

T

∑
<i,j>

si · sj , (3.1)

where T is the temperature, si is a n-component unit vector located at site i of a regular
lattice, and the sum is performed over all pairs of nearest neighboring sites. Denoting by
Tc the critical temperature, we focus on the regime T < Tc in dimension

d = n+ 1 ≥ 2 . (3.2)

Then the O(n) symmetry of the Hamiltonian is spontaneously broken, i.e. ⟨si⟩ ≠ 0, with
⟨· · · ⟩ denoting the average over spin configurations weighted by e−H.

Close to Tc, where the intrinsic length scale becomes much larger than lattice spacing,
the system is described by an O(n)-invariant Euclidean scalar field theory, which in turn
is the continuation to imaginary time of a quantum field theory in n space and one time
dimensions. Switching to notations of the continuum, we denote by (x, y) a point in
Euclidean space, with y the imaginary time and x = (x1, . . . , xn), and by s(x, y) the order
parameter field, namely the continuous version of the lattice spin variable si. Then the
Landau-Ginzburg field theory takes the usual form specified by the action

A =

∫
ddx

{
[∂µs(x)]

2 + g2 s
2(x) + g4[s

2(x)]2
}
, (3.3)

with the O(n) critical point reachable tuning the couplings (see e.g. [5]). Since the ground
state manifold and the space boundary both correspond to the sphere Sn−1, the quantum
theory possesses particle excitations associated with extended field configurations, with
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Figure 3.1: Geometry considered in the text (n = 2), where it is understood that L→ ∞.
The spins on the top and bottom surfaces are fixed to point radially outwards, so that a
topological defect line (one configuration is shown) runs between the central points of these
surfaces.

different points on the space boundary mapped onto different ground states. Such topo-
logical excitations are kinks in the 2D Ising model (n = 1), vortices in the 3D XY model
(n = 2), hedgehogs in the 4D Heisenberg model (n = 3), and so on. The propagation
of these particles in imaginary time generates topological defect lines for the Euclidean
system.

We consider the system in the hypercylinder |x| ≤ L, |y| ≤ R/2, with L → ∞ and R
large but finite. The boundary conditions are chosen in such a way that the spin field s(x, y)
points outwards in the radial direction x/|x| ≡ x̂ on the hypersurfaces |x| = L, |y| < R/2,
and 0 < |x| ≤ L, y = ±R/2. This leads to the formation of a topological defect on
each section with constant y, with the defect center spanning as y varies a line (particle
trajectory) running between the endpoints at x = 0, y = ±R/2. The system geometry and
boundary conditions1 are illustrated in fig. 3.1 for the case n = 2.

1As long as the topology is preserved and the L → ∞ limit is considered, the system geometry does not
need to be cylindrical for comparison with our subsequent analytical results in the continuum limit; see [44]
for a parallelepiped realization which is equivalent for our purposes.
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The boundary conditions at y = ±R/2 act as boundary states |B(±R/2)⟩ = e±
R
2
H |B(0)⟩

of the Euclidean time evolution, where H denotes the Hamiltonian of the relativistic quan-
tum system. These boundary states can be expanded on the basis of asymptotic particle
states of the quantum field theory2, and will contain the topological particle τ as the
contribution with minimal energy, namely

|B(±R/2)⟩ =
∫

dp

(2π)nEp
ap e

±R
2
Ep |τ(p)⟩+ · · · , (3.4)

where p is the n-component momentum of the particle, Ep =
√
p2 +m2

τ its energy, mτ its
mass, ap an amplitude, and we normalize the states by ⟨τ(p′)|τ(p)⟩ = (2π)nEp δ(p− p′).
In the calculations performed with the boundary conditions we have chosen (which we
will indicate with a subscript B) the contribution in (3.4) with one topological particle
determines the asymptotics for mτR ≫ 1. In the following, the symbol ∼ will indicate
omission of terms subleading in the large R limit. To begin with we have

ZB ≡ ⟨B(R/2)|B(−R/2)⟩ = ⟨B(0)|e−RH |B(0)⟩

∼ |a0|2
∫

dp

(2π)nmτ
e
−
(
mτ+

p2

2mτ

)
R
=

|a0|2

mτ

( mτ

2πR

)n/2
e−mτR . (3.5)

3.3 One-point functions

The expectation value of a scalar field Φ is given by3

⟨Φ(x, 0)⟩B =
1

ZB
⟨B(R/2)|Φ(x, 0)|B(−R/2)⟩

∼
(
2πR

mτ

)n/2 ∫ dp1dp2

(2π)2nmτ
FΦ(p1|p2) e

− R
4mτ

(p2
1+p2

2)+ix·(p1−p2), (3.6)

where

FΦ(p1|p2) = ⟨τ(p1)|Φ(0, 0)|τ(p2)⟩ , p1,p2 → 0 (3.7)

is the matrix element on the topological particle state, evaluated in the low-energy limit
enforced by the large R expansion. It decomposes as

FΦ(p1|p2) = F c
Φ(p1|p2) + (2π)nEp1δ(p1 − p2) ⟨Φ⟩ , (3.8)

where ⟨Φ⟩ is the bulk expectation value, and we see that only the connected part F c
Φ

contributes to the x-dependence of (3.6). If F c
Φ behaves for small momenta as momentum

2We refer here to the bulk theory, namely the fully translation invariant theory.
3We consider for simplicity y = 0, the extension to y generic being straightforward (see [44]).
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to the power αΦ, rescaling of momentum components by
√
R shows that the x-dependent

part of (3.6) is suppressed at large R as

R−(n+αΦ)/2 . (3.9)

The order parameter ⟨s(x, 0)⟩B is an odd function of x which interpolates between zero
at x = 0 and the asymptotic value

lim
|x|→∞

⟨s(x, 0)⟩B ∼ v x̂ , (3.10)

where
v = |⟨s(x, y)⟩| (3.11)

is the modulus of the bulk magnetization. This interpolation is not suppressed as R→ ∞
and requires αs = −n, and it was seen in [43] that F c

s (p1|p2) is proportional to

p1 − p2

|p1 − p2|n+1
. (3.12)

Upon insertion in (3.6) this leads to [43]

⟨s(x, 0)⟩B ∼ v
Γ
(
n+1
2

)
Γ
(
1 + n

2

) 1F1

(
1

2
, 1 +

n

2
;−z2

)
z x̂ , (3.13)

where 1F1(α, γ; z) is the confluent hypergeometric function, and

z ≡
√

2mτ

R
|x| . (3.14)

For n = 1 the result (3.12) is the low-energy limit of the matrix element known exactly
[49] from 2D Ising field theory, which is integrable (see [23] for a review). On the other
hand, (3.13) reduces to v erf(z); this result, which describes the separation of phases in
the 2D Ising model, was obtained from the exact lattice solution in [20, 21] and from field
theory in [16,17] (see [13,14] and chapter 2 for the relation with phase separation in d = 3).

It is interesting to extend the analysis to the energy density field ε ∝ s2. Recalling
(3.9) and (3.14), the result of (3.6) for this field will take the form

⟨ε(x, 0)⟩B ∼
[

fε(z)

(mτR)(n+αε)/2
+ 1

]
⟨ε⟩ , (3.15)

where fε depends on the specific form of the connected matrix element F c
ε (p1|p2) for small

momenta. It follows from (3.6) and (3.8) that the |x|-dependent term in (3.15) is the
contribution to the energy density on the hyperplane y = 0 coming from the propagation
of the topological particle between the endpoints (x, y) = (0,±R/2) of its trajectories.
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Hence, the dimensionless function fε(z) is proportional to the probability of finding the
particle at a distance |x| from the origin on that hyperplane, and monotonically decreases
from fε(0) to fε(∞) = 0; the limit

lim
|x|→∞

⟨ε(x, 0)⟩B ∼ ⟨ε⟩ , (3.16)

with ⟨ε⟩ the bulk energy density, is the expected one.

3.4 Mass of the topological particle

As anticipated above, the large R leading expression of the order parameter (3.13) for n = 1,
i.e. in the 2D Ising model, coincides with the exact lattice solution obtained in [20,21] and
with the result from field theory given in [16,17].

For n = 2 the result (3.13) was successfully tested against Monte Carlo simulations of
the 3D XY model in [44]. In particular, this allowed to numerically determine the mass mτ

of the vortex particle, which was the only unknown parameter involved in the simulations.
This finding is particularly relevant in view of Derrick’s theorem [50] (see also [39]), which
prevents the existence of finite energy topological configurations in theories of classical self-
interacting scalar fields in d > 2. The finite value of mτ measured in [44] provided the first
direct verification that this obstruction does not in general persist at the quantum level. In
particular, a result of classical field theory such as Derrick’s theorem has no special reason
to hold in presence of the nontrivial fixed point of the renormalization group exhibited by
the 3D XY model.

At the same time, the last observation suggests that something might change for n ≥ 3.
Indeed, d = 4 is the upper critical dimension dc of the theory (3.3), meaning that for d ≥ dc
the fixed point ruling the critical behavior is the Gaussian one, the role of fluctuations is
suppressed and the critical exponents take mean field values (see e.g. [5]). Derrick’s result
might persist in this case and it is relevant to see what the above analysis predicts for
mτ → ∞. In this case, for any finite R, (3.14) yields z → ∞ as long as x ̸= 0, and the
result (3.13) for the order parameter becomes

lim
mτ→∞

⟨s(x, 0)⟩B ∼


v x̂ , x ̸= 0 ,

0 , x = 0 .
(3.17)

It is worth stressing howmτ = ∞ does not mean that the topological particle is absent: the
result (3.17) is entirely due to this particle. In other words, the infinitely massive particle
does not contribute to fluctuations but provides the topological charge required when the
boundary conditions enforce the presence of a topological defect.

It follows from (3.17) that, if the topological particle has an infinite mass, the order
parameter becomes R-independent in the large R limit we consider. The absence of an
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Figure 3.2: Qualitative profiles at y = 0 for the modulus of the order parameter (left) and
the energy density (right) as a function of the distance from the center. The width W (eq.
(3.18)) of the pre-asymptotic region is replaced by W̃ (eq. (3.20)) when the mass of the
topological particle becomes infinite (n ≥ 3).

appreciable R-dependence of the one-point functions is the key difference observed in the
numerical simulations of [46,47] for n = 3 with respect to those of [44] for n = 2. We now
see that this difference is explained by the theory and indicates that the topological mass
mτ is infinite for n = 3, i.e. for d = 4. The same is then expected to hold more generally
for d ≥ dc = 4, namely in presence of a Gaussian critical point. Spontaneous symmetry
breaking around a Gaussian point is taken into account already at the classical level, and
mτ = ∞ means that Derrick’s result of classical field theory persists in the mean field
regime.

Consider now the result (3.15) for the energy density. The form (3.14) of the scaling
variable z shows that the width W of the peak of (3.15) around x = 0 (fig. 3.2) depends
on the parameters as

W ∝
√
R/mτ ∝

√
(Tc − T )−νR , (3.18)

where ν is the correlation length critical exponent. Hence, (3.15) becomes flat as R→ ∞,
and (3.16) requires αε > −n. The dependence (3.15) of the energy density for large R is
known in full detail for n = 1 [16,17,51], and has been confirmed numerically for n = 2 [44].
Passing to the case n ≥ 3, we know by now that it requires the limit mτ → ∞. Knowing
that fε(∞) = 0 and αε > −n, (3.15) yields

lim
mτ→∞

⟨ε(x, 0)⟩B ∼ ⟨ε⟩ . (3.19)

This result explains, in particular, why no appreciable R-dependence of the energy density
was observed in the simulations of [46] for n = 3.
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3.5 Residual fluctuations

An additional element which complicated the interpretation of the numerical results of
[46, 47] for n = 3 is that, in spite of the R-independence that we have now explained, the
overall qualitative x-dependence of the one-point functions was found to be quite analogous
to that observed in [44] for n = 2. In particular, ⟨s(x, 0)⟩B was found to exhibit a smooth
interpolation between zero at x = 0 and v x̂ at |x| = ∞, at variance with the step-like
interpolation of (3.17). The energy density ⟨ε(x, 0)⟩B was observed to display a bell shape
centered in x = 0 and approaching the bulk value ⟨ε⟩ for |x| large enough.

These corrections to (3.17) and (3.19) should come from contributions not considered
in the previous discussion. In the Ising case (n = 1) it is known [16, 17] that the leading
corrections to (3.13) and (3.15) expand in powers of R−1/2 and are due to the subleading
terms of the expansion for small momenta associated to the state |τ⟩ itself4 in (3.6). For
n ≥ 3, however, this type of corrections are eliminated by the divergence of mτ , and
we should consider the states contributing to the dots in (3.4). These are of the type
τ (which provides the required topological charge) plus Goldstone bosons associated to
the spontaneous breaking of the continuous symmetry. The analytical evaluation of the
contribution of these states to the one-point functions would require information about
the matrix elements of the fields on these states, which is not available. Remarkably,
however, we now show that implications sufficient for our purposes can be obtained from
the following considerations. For n ≥ 3 the nonzero width W̃ of the pre-asymptotic region
in the profiles of fig. 3.2 – i.e. the deviation from the results (3.17) and (3.19) – is due to
the Goldstone fluctuations. Since mτ = ∞ suppresses the R-dependence5, the width W̃
can only depend on the temperature and scales in the way expected for a length,

W̃ ∝ (Tc − T )−ν , (3.20)

where the critical exponent ν takes the mean field value 1/2 around the Gaussian fixed point
relevant for n ≥ 3. If one tries to explain the scaling observed in simulations performed
for n ≥ 3 through the formulae which apply to the case of mτ finite (n = 1, 2), this means
reproducing the behavior (3.20) using (3.18), namely writing (Tc − T )−ν ∝

√
R/mτ . One

is then led to the formal identification mτ ∝ (Tc − T )2νR = (Tc − T )R. This is precisely
what was observed using (3.13) for the fits of [46, 47] at n = 3. We now see why the
R-dependence of mτ obtained in this way is artificial and, at the same time, how the data
of [46,47] confirm mτ = ∞ and (3.20).

4See [51] for an accurate comparison between theoretical predictions and the results of numerical simu-
lations.

5It cannot be excluded that the cumulative effect of Goldstone bosons results in a residual, very weak –
e.g. logarithmic – R-dependence which was not detected within the numerical accuracy of the simulations
in [46,47]. For the purpose of explaining the data of [46, 47], this possibility can be consistently ignored.
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3.6 Final remarks

In this chapter we considered the O(n) vector model in d = n+ 1 dimensions in its spon-
taneously broken phase, with boundary conditions giving rise to a topological defect line.
Recent Monte Carlo simulations for the cases n = 2 [44] and n = 3 [46,47] showed different
scaling dependence of one-point functions (e.g. the order parameter) on the parameters
of the theory, namely the finite size R and the deviation from critical temperature. We
showed that the theory of [43] accounts for both cases, the difference being produced by
a mass mτ of the topological particle which is finite for n = 2 and infinite for n = 3. We
argued that this is due to the fact that d = 4 is the upper critical dimension of the O(n)
model. For d ≥ 4 the critical behavior is controlled by the Gaussian fixed point, namely
the fixed point explicitly present in the Landau-Ginzburg action (3.3). This action belongs
to the class covered by Derrick’s theorem [39,50] of classical field theory, which states that
static solutions in self-interacting scalar theories in d > 2 have infinite energy. The Monte
Carlo data of [46, 47] and their present theoretical interpretation indicate that Derrick’s
result gets through to the mean field regime d ≥ 4, in the sense that topological particles
have infinite mass. For d < 4, instead, the critical behavior is controlled by a nontrivial
fixed point, for which arguments of classical field theory have no reason to remain quantita-
tively reliable. In particular, the R-dependence of one-point functions observed numerically
in [44] for n = 2 showed that the quantum vortex has a finite mass which was estimated
from the comparison between theory and Monte Carlo data. It is worth recalling that
this is a particularly relevant result in view of the long debate concerning the definition of
a mass of vortices in superfluids (see [44] and references therein), a debate in which the
transposition of considerations of classical field theory (Derrick’s theorem) to the quantum
case plays a substantial role. Our analysis gives concrete evidence that such a transposition
is possible only in the mean field regime d ≥ dc. It is remarkable that this insight could
be obtained comparing considerations of quantum field theory with numerical simulations
performed in the Euclidean case, thus providing a very fruitful operative illustration of the
interplay between real and imaginary time.





Part II

Non-equilibrium quantum
dynamics
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Chapter 4

Quantum quenches in d dimensions

In this chapter we obtain analytical results for the time evolution of local observables in
systems undergoing quantum quenches in d spatial dimensions. For homogeneous systems
we show that oscillations undamped in time occur when the state produced by the quench
includes single-quasiparticle modes and the observable couples to those modes. For the
more general case in which the quench is performed only in a subregion of the whole
d-dimensional space occupied by the system, the time evolution occurs inside a lightcone
spreading away from the boundary of the quenched region as time increases. The additional
condition for undamped oscillations is that the volume of the quenched region is extensive
in all dimensions.

4.1 Introduction

Recent advances in experiments with cold atomic gases have sparked significant interest in
the non-equilibrium dynamics of quantum many body systems (see e.g. [52] for a review),
leading to extensive numerical and theoretical investigations [53, 54]. A main question
is whether time evolution eventually leads to some form of relaxation or can produce a
different behavior. The problem of the fate at large times of an extended and isolated
quantum system out of equilibrium was addressed analytically in [55] for the case of non-
interacting fermions in one dimension. Understanding the case of interacting quasiparticles
turned out to be a difficult problem that could be faced through the perturbative approach
introduced in [56] and further developed in [57–60]. The perturbative analysis applies to
the basic way of dynamically generating non-equilibrium evolution, which has been called
“quantum quench” [61,62] in analogy with thermal quenches of classical statistical systems:
the system is in a stationary state until the sudden change of an interaction parameter leads
to the new Hamiltonian that rules the unitary time evolution thereafter. The theory is
perturbative in the quench size, while the interaction among the quasiparticles can be
arbitrarily strong. It allows to actually determine the non-equilibrium state generated
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by the quench and to follow analytically the time evolution. One result is that, in any
spatial dimension, interaction leads to persistent oscillations of one-point functions (e.g.
the order parameter) when the state produced by a homogeneous quench includes a one-
quasiparticle mode and no internal symmetry prevents the observable to couple to that
mode [56]. It was argued in [58] that, if undamped oscillations are present at finite order
in perturbation theory, they will remain as a feature of the non-perturbative result, a
prediction that found a remarkable confirmation in [63], where no decay of the oscillations
was observed in a simulation of the Ising chain reaching times several orders of magnitude
larger than the perturbative timescale. The undamped oscillations of [56] have also been
observed in simulations and experiments performed on shorter time intervals, see [64–68]
for a non-exhaustive list and [58,59] for a discussion of the different instances.

In this chapter we perform the study of quantum quenches in d spatial dimensions
for both the homogeneous and inhomogeneous cases. We consider a d-dimensional system
occupying the whole space Rd. Before the quench the system is translation invariant and in
the ground state |0⟩ of the Hamiltonian H0. We perform the theoretical analysis exploiting
the complete basis of asymptotic quasiparticle states |p1, . . . ,pn⟩ of the pre-quench theory,
with pi denoting the d-dimensional momenta of the quasiparticles. The asymptotic states
are eigenstates of H0 with eigenvalues equal to the sum of the quasiparticle energies Epi =√
M2 + p2

i . M > 0 is the quasiparticle mass and measures the distance from a quantum

critical point. In order to simplify the notation we refer to the case of a single quasiparticle
species; generalizations are straightforward and will be discussed when relevant.

We will show that for a translation invariant system with post-quench Hamiltonian

H = H0 + λ

∫
dxΨ(x) , (4.1)

the large time limit of the one-point function of an operator Φ takes the form

⟨Φ(xt)⟩ = ⟨Φ⟩eqλ + λ

[
2

M2
FΨ
1 F

Φ
1 cosMt+O(t−α)

]
+O(λ2) , (4.2)

where ⟨Φ⟩eqλ is the equilibrium expectation value in the theory with the Hamiltonian H,
FO
1 the matrix element of O between |0⟩ and the single-quasiparticle state, and

α ≥ d/2 . (4.3)

In case of systems possessing several quasiparticle species the term in the square bracket is
summed over the species. The result (4.2) shows, in particular, the presence of undamped
oscillations under the same conditions determined in [56] for the case d = 1 (for which α
is generically 3/2), namely when the excitations produced by the quench include a single-
quasiparticle mode1 (FΨ

1 ̸= 0) and the observable couples to this mode (FΦ
1 ̸= 0).

1This in turn requires interacting quasiparticles, otherwise Ψ creates only quasiparticle pairs.
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In turn, (4.2) is a particular case (D = Rd) of the more general situation that we are
going to consider, namely that of a quench performed only in a subregion D of the full
space Rd occupied by the system. For such an inhomogeneous quench, corresponding to
the post-quench Hamiltonian

H = H0 + λ

∫
D
dxΨ(x) , (4.4)

we will show that the large time limit (4.2) generalizes to

⟨Φ(x, t)⟩ = ⟨Φ(x)⟩eqλ

+ λ

[
2FΨ

1 F
Φ
1

(2π)d

∫
D
dy

∫
dp

cos(
√

p2 +M2 t+ (x− y) · p)
p2 +M2

+O(t−α−βD)

]
+O(λ2) , (4.5)

where α is the same entering (4.2), while

βD ∈ [0, d/2] (4.6)

rules the large time behavior t−βD of the integral term. If Ld, with L→ ∞, is the volume
of Rd, there are undamped oscillations (βD = 0) when the volume of D, vol(D), is of
order Ld, a condition weaker than D = Rd. On the other hand, βD = d/2 when vol(D) is
finite. Intermediate values of βD occur depending on the number of dimensions in which
vol(D) is extensive. We will also show that the effect of the quench is appreciable only
inside a lightcone that at time t contains D and the external region within distance t from
the boundary ∂D. More specifically, the oscillations propagate inside a lightcone and are
sustained by the energy produced in the quench and carried by the quasiparticles. In
order the oscillations to stay undamped, a nonzero energy density inside the lightcone is
needed at late times (besides FΨ

1 F
Φ
1 ̸= 0). Since the energy produced by the quench and

conserved by the time evolution is proportional to vol(D), and since the volume enclosed
by the lightcone becomes Ld as t → ∞, a nonzero energy density at late times requires
that vol(D) is of order Ld, and this is the case corresponding to βD = 0.

4.2 Post-quench state and one-point functions

The quench at t = 0 is performed changing the Hamiltonian H0 to (4.4) and for D ≠ Rd

breaks translation invariance. Since the quench excites quasiparticle modes, the pre-quench
state |0⟩ evolves into the state |ψ0⟩ = Sλ|0⟩, where

Sλ = T exp

(
−iλ

∫ ∞

0
dt

∫
D
dxΨ(x, t)

)
(4.7)
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(T denotes chronological ordering) is the operator whose matrix elements ⟨n|Sλ|0⟩ give
the probability amplitude that the quench induces the transition from |0⟩ to |n⟩. Here we
adopt the compact notation |n⟩ = |p1, . . . ,pn⟩. To first order in the quench parameter λ
we have

|ψ0⟩ ≃ |0⟩+ λ
∑∫
n,pi

gD(P)

E
[FΨ

n ]∗|n⟩ , (4.8)

where we defined

E =
n∑

i=1

Epi , P =
n∑

i=1

pi , (4.9)

gD(P) =

∫
D
dx eiP·x , (4.10)

FO
n (p1, ...,pn) = ⟨0|O(0, 0)|p1, ...,pn⟩ , (4.11)

introduced the notation ∑∫
n,pi

=
∞∑
n=1

1

n!

∫ ∞

−∞

n∏
i=1

dpi

(2π)dEpi

, (4.12)

and used

O(x, t) = eiP·x+iH0tO(0, 0) e−iP·x−iH0t , (4.13)

with P the momentum operator and O a generic local operator. An infinitesimal imaginary
part is given to the energy to make the time integral in (4.7) convergent2. The result (4.8)
shows that the quench produces excitation modes with any number of quasiparticles and
all possible momenta. Only when the quasiparticles do not interact, so that H0 and H are
quadratic in the quasiparticle modes and FΨ

n ∝ δn,2, a post-quench state with quasiparticles
organized in pairs is obtained.

The one-point function of a local observable Φ is given by the expectation value ⟨Φ(x, t)⟩
on the post-quench state (4.8). In the formalism of asymptotic states the spacetime depen-
dence is carried by the operator and is extracted exploiting (4.13). The variation δ⟨Φ(x, t)⟩
of the one-point function of a hermitian observable with respect to the pre-quench value is
given, at first order in λ, by

δ⟨Φ(x, t)⟩ = ⟨ψ0|Φ(x, t)|ψ0⟩ − ⟨0|Φ(0, 0)|0⟩+ CΦ(x)

≃ 2λ
∑∫
n,pi

1

E
Re
{
gD(P) [FΨ

n ]∗FΦ
n e−i(Et+P·x)

}
+ CΦ(x) , (4.14)

2The sum in (4.12) starts from n = 1 rather than from n = 0 because the O(λ) contribution to (4.8)
with n = 0 (corresponding to E = P = 0) diverges and must be subtracted. Such a term corresponds to
vacuum energy renormalization and can be canceled through a counterterm in the Hamiltonian [56].
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where we took into account that normalizing by ⟨ψ0|ψ0⟩ = 1+O(λ2) is immaterial at first
order, and added the term

CΦ(x) ≃ −2λ
∑∫
n,pi

1

E
Re
{
gD(P) [FΨ

n ]∗FΦ
n e−iP·x} (4.15)

to ensure continuity at t = 0, namely the condition δ⟨Φ(x, 0)⟩ = 0, which has no reason to
be automatically satisfied.

4.3 Large time behavior

We can use (4.10) to rewrite (4.14) as

δ⟨Φ(x, t)⟩ ≃ 2λ
∑∫
n,pi

∫
D
dy

1

E
Re
{
[FΨ

n ]∗FΦ
n e−i[Et+P·(x−y)]

}
+ CΦ(x) .

For t large the rapid oscillation of the exponential suppresses the integrals over momenta
unless the phase is stationary, namely unless

∇pi [Epit+ pi · (x− y)] = vit+ x− y = 0 , i = 1, 2, . . . , n , (4.16)

where we introduced the quasiparticle velocities

vi = ∇piEpi =
pi√

M2 + p2
i

. (4.17)

Since3 |vi| < 1, the stationarity condition (4.16) is satisfied when

|x− y| < t . (4.18)

This means that, for any point y ∈ D, the effect of the quench is appreciable only within
a distance t from y, namely the maximal distance that the quasiparticles excited by the
quench at the point y could reach at time t. Hence, the time evolution takes place inside
a lightcone4 containing D and the external region within distance t from ∂D (figure 4.1).

For D finite, x fixed and t large enough, the stationarity condition vi = (y − x)/t
implies that the time dependence in (4.14) receives a significant contribution only when
all momenta pi are small, and then can be evaluated with gD → vol(D) and Epi →
M + p2

i /2M . The matrix elements (4.11) do not diverge at small momenta (see e.g. [70]),

3We adopt natural units in which the maximal velocity of the quasiparticles is vmax = 1.
4See [69] for the derivation of the lightcone associated to the spreading of two-point correlations in the

translation invariant case, which involves the connectedness properties of matrix elements as an additional
ingredient.
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Figure 4.1: Implications of the stationarity condition (4.16) for a quench in a region D
of the space Rd occupied by the system. Left: The quench operator Ψ acting at a point
y ∈ D creates excitations that at time t have spread inside a sphere of radius t. Right:
Since Ψ acts at all points of D, the effect of the quench is appreciable only inside the
lightcone containing D and the region within distance t from its boundary.

and in such a limit [FΨ
n ]∗FΦ

n will behave as momentum to a power 2αn ≥ 0. In particular
α1 = 0, since FO

1 is a real constant for the scalar hermitian operators that we consider.
With this information, it is easy to rescale the momenta and see that the n-quasiparticle
contribution in (4.14) behaves at large times as t−(nd/2+αn).

More generally, suppose that D goes from −∞ to +∞ in k of the d spatial dimensions
(say x1, x2, . . . , xk). Now gD ∝ δ(P1) · · · δ(Pk), and this gives an extra contribution −k
to the counting of the powers of momentum, so that the large time behavior is modified
to t−[(nd−k)/2+αn]. As long as FΨ

1 F
Φ
1 ̸= 0 the leading contribution comes from the single-

quasiparticle mode n = 1 and goes as t−(d−k)/2. For an homogeneous quench (D = Rd, i.e.
k = d) we have undamped oscillations and the result in the square bracket of (4.2), with
the lower bound (4.3) coming from n = 2. A generic k gives the time dependence in the
square bracket of (4.5), behaving as t−βD , with βD = (d− k)/2 that satisfies (4.6).

On the other hand, suppose that D differs from Rd for the subtraction of a finite region,
namely D∪D̃ = Rd with D̃ finite. In this case gD = gRd − gD̃, and the dependence at large
times corresponds to the difference of the previous cases k = d and k = 0. Hence, we have
βD = 0 and undamped oscillations at sufficiently large times produced by the integral in
(4.5). The conclusion that in general there are undamped oscillations when

ρD = vol(D)/vol(Rd) (4.19)

is nonzero corresponds to the physical picture anticipated in the introduction: the energy
produced by the quench is proportional to vol(D) and spreads in time inside the lightcone,
so that the energy density will be asymptotically proportional to ρD; a nonzero ρD is able to
keep the oscillations undamped. The amplitude of the undamped oscillations goes to zero
if ρD goes to zero. The condition ρD > 0 amounts to vol(D) extensive in all dimensions.
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We finally explain the origin of the time-independent term in (4.2) and (4.5). For
this purpose observe that in the equilibrium theory with Hamiltonian (4.4) the first order
contribution in λ to the one-point function ⟨Φ(x)⟩eqλ is5

δ⟨Φ(x)⟩eqλ ≃ −iλ
∫ +∞

−∞
dt

∫
D
dy ⟨0|T Ψ(y, t)Φ(x, 0)|0⟩c

= −2λ
∑∫
n,pi

1

E
Re

{
[FΨ

n ]∗FΦ
n

∫
D
dy e−iP·(x−y)

}
= CΦ(x) , (4.20)

where we used (4.13), expanded over asymptotic states, and finally compared with (4.15).
Hence, recalling what we just concluded about the time-dependent part, we have

lim
t→∞

⟨Φ(x, t)⟩ = ⟨Φ(x)⟩eqλ +O(λ2) (4.21)

when βD ̸= 0. When βD = 0, namely when vol(D) is extensive in all dimensions, the r.h.s.
of (4.21) is the value around which the undamped oscillations take place.

4.4 Time evolution

We rewrite (4.5) in the form

⟨Φ(x, t)⟩ = ⟨Φ(x)⟩eqλ + λ

[
2

M2
FΨ
1 F

Φ
1 f(x, t) +O(t−(α+βD))

]
+O(λ2) , (4.22)

where

f(x, t) =
M2

(2π)d

∫
dp

1

p2 +M2
Re
{
gD(p) e

−i(
√

p2+M2 t+p·x)
}

(4.23)

is a dimensionless function. For FΨ
1 F

Φ
1 ̸= 0, f(x, t) determines the large time behavior

of the one-point function for small quenches, until a time scale tλ that goes to infinity as
λ is reduced6. On the other hand, the analysis of the previous section does not allow to
neglect the terms with n > 1 in (4.14) when t is not large. However, it is known that in
d = 1 [57, 58] the contribution of the n-quasiparticle state is normally rapidly suppressed
as n increases, so that f(x, t) provides a good approximation also for short times. If this
is true also for d > 1 we should expect, recalling (4.20) and (4.15), that the first order
contribution to the equilibrium expectation value is well approximated as

δ⟨Φ(x)⟩eqλ ≈ −λ 2

M2
FΨ
1 F

Φ
1 f(x, 0) . (4.24)

We will soon explicitly illustrate that (4.24) indeed yields the result expected for δ⟨Φ(x)⟩eqλ ,

5The subscript c indicates the connected part of the two-point function.
6The expression of tλ was given in [56] for d = 1. Its generalization to the present d-dimensional case is

tλ ∼ 1/λ1/(d+1−XΨ), where XΨ < d+ 1 is the scaling dimension of Ψ at the quantum critical point.
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-1.0 -0.5 0 0.5 1.0

Figure 4.2: f(x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D
a disk of radius b = 30/M .

namely a function that is essentially constant for x ∈ D and zero otherwise. With this
anticipation, we see that (4.22) (without the term O(t−α−βD)) can be used not only for
large times but, with good approximation, also for short times, meaning that the function
(4.23) yields a global view of the time evolution for small quenches. We now consider this
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Figure 4.3: f(x, t) for a quench in d = 2 with D a disk of radius b = 10/M . Left:
Mt = 10. The function is essentially zero outside the edges of the lightcone located at
distance r = b+ t from the origin. Right: Mr = 20. Time evolution becomes appreciable
only after that the lightcone is reached at time t = r − b.
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Figure 4.4: f(0, t) for a quench in d = 2 with D a disk of radius b = 20/M . The oscillations
in the origin stay undamped until the arrival at time t = b of the modes originating from
∂D. Eventually, the damping factor t−d/2 prescribed by (4.5) with D finite sets in for large
times.

function for a number of quenching domains D.

4.4.1 Rotationally invariant quenched domains

If D is the d-dimensional sphere of radius b centered in the origin, (4.10) and (4.23) yield

gsphere(P) =

(
2πb

|P|

) d
2

J d
2
(|P|b) , (4.25)
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and

f(x, t) =
M2 b

d
2

r
d
2
−1

∫ ∞

0
dp J d

2
(pb)J d

2
−1(pr)

cos(
√
M2 + p2 t)

M2 + p2
, (4.26)

respectively, with Jα(z) the Bessel function and r = |x|. The function (4.26) is plotted
at different times in d = 2 (D = disk) in figure 4.2. The result for t = 0 confirms what
we anticipated about (4.24) and the ability of f(x, t) to give an accurate view of the time
evolution also for short times. As t increases the figure clearly shows the spreading of
the lightcone located at distance t from the boundary of the disk. The boundary modes
propagate also inside the disk, but for t < b they leave unaffected the central region with
r < b − t. Here the function essentially behaves as for a homogeneous quench, namely is
spatially constant with undamped oscillations in time. The presence of the lightcone is also
illustrated in figure 4.3. Figure 4.4 shows the damping of the oscillations at large times,
with the suppression t−d/2 expected for the case D finite.

A straightforward generalization is that of a quench with D the d-dimensional spherical
shell b1 < r < b2, which yields

f(x, t) =
M2

r
d
2
−1

∫ ∞

0
dp

[
b
d
2
2 J d

2
(pb2)− b

d
2
1 J d

2
(pb1)

]
J d

2
−1(pr)

cos(
√
p2 +M2 t)

p2 +M2
. (4.27)

The time evolution is illustrated in figures 4.5 and 4.6 for b2 finite, and in figure 4.7 for b2
infinite.

4.4.2 Quenched domains with corners

If the quenched domain is a d-dimensional box, D = [−b1, b1]× · · · × [−bd, bd], we have

gbox(P) =
d∏

k=1

2

Pk
sin(Pkbk) . (4.28)

Figure 4.8 shows the corresponding function f(x, t) at different times in d = 2 for a square
domain. Again, the image at t = 0, with the function essentially constant inside the square
and vanishing outside, illustrates (through (4.24)) that the time evolution is described with
good approximation also at short times. For t > 0, the general result that the lightcone
is located at distance t from the boundary of D leads to a rounding in correspondence of
the corners of the square. This example gives an idea of the patterns that can be expected
when ∂D increasingly deviates from a smooth surface.

4.5 Ising model

The model-dependent information for the use of (4.2) and (4.5) is whether the matrix
elements FΨ

1 and FΦ
1 vanish or not. They are generically nonzero, unless a symmetry
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-1.0 -0.5 0 0.5 1.0

Figure 4.5: f(x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D
an annulus occupying the region 20 < Mr < 40. The initial central gap in the lightcone
closes when the boundary modes reach r = 0 at Mt =Mb1 = 20. See also figure 4.6.

forces them to vanish. In this section we illustrate the role of symmetries through the
basic example of the d-dimensional quantum Ising ferromagnet. This is defined by the
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Figure 4.6: f(x, t) for the same quench
of figure 4.5.
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Figure 4.7: f(0, t) for a quench in d = 3
with D extending everywhere except a
sphere of radius b = 10/M centered in
the origin. The time evolution in the ori-
gin starts at t = b, with oscillations that
become undamped at large time, as for
the general case of vol(D) extensive in all
dimensions.

Hamiltonian

HIsing = −J
∑
⟨i,j⟩

σxi σ
x
j − hz

∑
i

σzi − hx
∑
i

σxi , (4.29)

where σx,y,zi are Pauli matrices at site i, ⟨i, j⟩ denotes a pair of nearest-neighbor sites, J is
positive, and hz and hx are the transverse and longitudinal magnetic fields, respectively.
For hx = 0 and |hz| = hcz the system possesses a quantum critical point associated to the
spontaneous breaking of spin reversal (Z2) symmetry in the x direction and belonging to
the universality class of the classical Ising model in (d + 1) dimensions. The operator σzi
(σxi ) is Z2-even (odd). The paramagnetic (ferromagnetic) phase corresponds to hx = 0 and
|hz| > hcz (|hz| < hcz).

We will consider quenches in which the system, which for t < 0 is in the ground state |0⟩
of the Hamiltonian H0 given by (4.29) with hx = 0, evolves for t > 0 with the Hamiltonian
(4.4) with7 λΨ(x) equal to δhz σ

z(x) (δhz ≪ hz) or to hx σ
x(x). Depending on the fact

that we start from the paramagnetic or ferromagnetic phase, we have the four quenches
depicted in figure 4.9.

The specialization of (4.2) and (4.5) to the different quenches proceeds through symme-
try considerations in the pre-quench theory. In the paramagnetic phase, the fundamental
quasiparticle excitation is created by the order parameter operator σx(x) and then is Z2-

7Our theory is formulated in the continuum, which in the present case is accessed working not too far
from the critical point.
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Figure 4.8: f(x, t) at different times in the plane Mx1-Mx2 for a quench in d = 2 with D
a square of side 40/M .

odd; it follows that F σz

1 = 0 and F σx

1 ̸= 0. In the ferromagnetic phase the symmetry is
spontaneously broken and both F σz

1 and F σx

1 are nonzero in d > 1. The case d = 1 is
special because the excitations in the ferromagnetic phase have a topological nature (they
are kinks, see [23] for a review) and can couple to σx and σz only in topologically neutral
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Figure 4.9: The different quenches in the quantum Ising model considered in the text. The
critical point is located at (hcz, 0). With reference to the Hamiltonian (4.29), each arrows
goes from the pre-quench to the post-quench values of the parameters.

Quench λ Ψ FΨ
1 F

σx

1

d = 1 d > 1

I δhz σz 0 0

II hx σx ̸= 0 ̸= 0

III hx σx 0 ̸= 0

IV δhz σz 0 ̸= 0

Table 4.1: Quenches in the d-dimensional quantum Ising ferromagnet indicated in figure 4.9.
The information about FΨ

1 F
σx

1 determines the time evolution of the order parameter ⟨σx⟩
for homogeneous quenches through (4.2), and for quenches in the subregion D through
(4.5). The peculiarities of the case d = 1 are discussed in the text.

pairs, with the consequence that F σz

1 = F σx

1 = 0.

This information about F σz

1 and F σx

1 determines the time evolution of ⟨σx⟩ and ⟨σz⟩
through (4.2) when the quenches8 I-IV are performed in the whole space Rd, and through
(4.5) when they are performed only in a subregion D. In particular we saw that, if vol(D)
is extensive in all dimensions, undamped oscillations at large time occur when FΨ

1 F
Φ
1 ̸= 0,

and we explicitly provide this information in table 4.1 for the case Φ = σx. The peculiarity
of the cases III and IV in d = 1 follows from the previous observation about kinks.

The topological nature of the excitations of the ferromagnetic phase in d = 1 gives
rise to an additional caveat about quench III in the Ising chain. While (4.2) and (4.5)
hold also in this case and do not yield undamped oscillations at first order in λ = hx,
the longitudinal field makes kinks unstable and confines them into topologically neutral
pairs [22, 23, 71], thus generating non-perturbatively the single-quasiparticle modes able
to produce undamped oscillations of the order parameter on a time scale that becomes

8For quench I the symmetry implies ⟨σx⟩ = 0 at all orders in λ.
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accessible for hx not too small9. These oscillations have indeed been observed numerically
in [65]. Hence, we see that for quench III kink confinement in d = 1 produces for hx large
enough the undamped oscillations that in d > 1 are already present at first order in hx. For
quench IV, instead, the stability of the kinks precludes in d = 1 the undamped oscillations
that arise in d > 1. It is worth recalling that the presence of kinks in the spontaneously
broken phase of systems with discrete symmetry, as well as their confinement under explicit
symmetry breaking, are generic in d = 1 (see [74,75]), so that considerations analogous to
those we made for Ising apply more generally.

In d = 1 the theory (4.29) possesses a single species of quasiparticles at hx = 0, so that
(4.2) and (4.5) hold as they are. In d > 1, on the other hand, more species may be present,
in which case the term 2M−2FΨ

1 F
Φ
1 cosMt in (4.2) is replaced by

∑
a 2M

−2
a FΨ

1,aF
Φ
1,a cosMat,

where a labels the different species; a similar generalization occurs in (4.5). For the fer-
romagnetic phase in d = 2 there is numerical consensus [76–81] about the existence, be-
sides the lightest quasiparticle with mass M1, of a second stable quasiparticle with mass
M2 ≈ 1.8M1. A spectral analysis of the undamped oscillations expected for quench IV
should provide an alternative, possibly more accurate, way of determining this mass ratio.

It was also observed in [58] that in presence of several quasiparticle species oscillation
frequencies Ma −Mb can arise at order λ2. In addition, the comparison performed in [57]
with the result of [73] for non-interacting fermions indicates that corrections of order λ2

and higher lead to the replacement of the pre-quench masses with the post-quench ones,
and numerical evidence in this sense for interacting quasiparticles was given in [63,82]. By
post-quench masses we mean the masses of the equilibrium theory with the post-quench
values of the couplings; their difference from the pre-quench masses is of order λ. The mass
ratio M2/M1 to be observed in quench IV in d = 2 does not depend on λ in the scaling
region.

The time evolution of the order parameter ⟨σx⟩ (in our notations) following a homoge-
neous quench in the Ising ferromagnetic phase has been numerically investigated in d = 2
in [83,84], for a pre-quench value hiz = 0 that maximizes the distance from the continuum
limit of our analytical study. Still, confirming a robustness of our results, the plots show
undamped oscillations, at least for post-quench values hfz not too close to hcz. When hfz
approaches hcz the correlation length becomes large, the long cylinder with a six-site cir-
cumference used in the simulation no longer approximates the plane, and a crossover to
one-dimensional behavior (with damping of the oscillations) can be expected. In perspec-
tive, it would be very interesting to have numerical results for small quenches to perform
the first quantitative comparison with analytical results in d = 2.

9As recalled above, the results at first order in λ quantitatively hold until a time scale that goes to infinity
as λ goes to zero. Ref. [57] contains a more detailed discussion of Ising quenches in d = 1, including the
agreement with other analytical results [72, 73] available for quenches I and IV (non-interacting fermions)
when D = R. More generally, for d = 1 one can exploit the exact knowledge of all matrix elements (4.11)
when the pre-quench theory is integrable [56].
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4.6 Final remarks

In the present chapter we studied quantum quenches of systems in d spatial dimensions that
are initially in the ground state of a spatially homogeneous Hamiltonian H0. The quench
is performed instantaneously changing an interaction parameter inside a spatial region
D. The analytical results that we derived provide unique benchmarking for numerical
and experimental methods, as well as a general picture of the time evolution of local
observables. In the first place the evolution takes place inside a lightcone that originates
from the boundary of D at the moment of the quench and spreads outwards as time
increases. Inside the lightcone the observable undergoes oscillations with frequency equal to
the quasiparticle mass, which persist undamped at late times under two types of conditions.
The first type, of dynamical nature, requires that the state produced by the quench includes
single-quasiparticle modes and that the observable couples to them. These requirements
are generically fulfilled when the quasiparticles interact, unless internal symmetries of the
system cause the vanishing of some matrix elements, a mechanism that we illustrated
through the paradigmatic example of the quantum Ising model. The second condition, of
geometrical type, is that the energy density does not tend to zero at large times, and is
fulfilled when the volume of D is extensive in all dimensions. The wavefronts spreading
from the boundary of D are increasingly structured as the boundary deviates from a smooth
surface. Our formulae apply to any choice of D, and we provided explicit illustrations of
these features through some examples.



Chapter 5

Quantum quenches from an
excited state

Here we show how the theory of quantum quenches can be extended to the case in which
before the quench the system is in an excited state.

5.1 Introduction

Determining the role of initial conditions in the late time evolution is a key issue for
the theory of non-equilibrium dynamics of isolated quantum systems. In this chapter we
investigate the dependence on initial conditions for the case of a non-equilibrium state that
is generated dynamically by a change of an interaction parameter at time t = 0, i.e. after
a quantum quench. It was shown in [56] that for a homogeneous one-dimensional system
with Hamiltonian

H =

{
H0 , t < 0 ,

H0 + λ
∫
dxΨ(x) , t > 0 ,

(5.1)

which for t < 0 is in the ground state |0⟩ of the pre-quench Hamiltonian H0, it is possible to
obtain general results perturbatively in the quench size λ, for the different quench operators
Ψ(x) and independently of the strength of the interaction among the quasiparticles. In
particular, the result1

⟨Φ(x, t)⟩0 = ⟨Φ⟩eqλ + λ

[
2

M2
FΨ
1 F

Φ
1 cosMt+O(t−3/2)

]
+O(λ2) (5.2)

is obtained for the one-point function of an operator Φ at large time (this coincides with
the result (4.2) of the previous chapter with d = 1 and α = 3/2). Here ⟨Φ⟩eqλ is the

1The subscript 0 in (5.2) refers to the number of quasiparticle excitations in the pre-quench state, which
is zero for the ground state.

59
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equilibrium expectation value in the theory with the post-quench Hamiltonian [57], M the
quasiparticle mass, and FO

1 the matrix element of O between the ground state |0⟩ and the
one-quasiparticle state2. As a particularly interesting feature, the result (5.2) first revealed
that undamped oscillations are present whenever an internal symmetry does not cause the
vanishing of the product FΨ

1 F
Φ
1 of the one-quasiparticle matrix elements [56]. In particular,

the undamped oscillations of one-point functions are absent in the case of non-interacting
quasiparticles – for which FΨ

1 = 0 – thus showing that interaction makes a qualitative
difference in non-equilibrium quantum dynamics.

The extension of the analytical results of [56] to higher spatial dimensions was given
in [59], where it was shown, in particular, that FΨ

1 F
Φ
1 ̸= 0 continues to be the condition

for undamped oscillations in a homogeneous quench3. It is natural to ask to which extent
the presence of persistent oscillations depends on the initial conditions. Answering this
question, however, proved to be quite difficult. Indeed, changing the initial condition
for the homogeneous quench (5.1) means starting with a pre-quench state other than the
ground state of H0, and then with a non-normalizable state whose direct use leads to
undetermined expressions.

Here we show how to overcome these technical difficulties considering an infinite and
homogeneous system in one spatial dimension which before the quench (i.e. for t < 0) is in
the first excited state, namely the one-quasiparticle state |q⟩. The latter is an eigenstate
of the pre-quench Hamiltonian H0 with momentum q and energy

Eq =
√
M2 + q2 , (5.3)

and is normalized as
⟨p|q⟩ = 2πEqδ(p− q) . (5.4)

A direct use of the pre-quench state |q⟩ for the determination of the post-quench dynamics,
however, is complicated by the appearance of singular factors such as ⟨q|q⟩. These factors,
appearing in the numerator and denominator of the expressions for the observables, lead to
indeterminate expressions. It is then necessary to first prevent the singularities introducing
a regulator R to be removed at the end of the calculations, leaving a finite result for the
observables. We do so starting with a pre-quench state in the form of the wave packet∫ ∞

−∞
dq f(q) |q⟩ , (5.5)

with

f(q) =
R√
2π

e−
R2

2
q2 . (5.6)

2We refer for simplicity to the case of a single species of quasiparticles. Otherwise, the square bracket
in (5.2) is summed over species [56].

3For the more general case of inhomogeneous quenches there is an additional condition about the exten-
siveness of the quenched domain [59], see also the previous chapter.
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The results corresponding to the pre-quench state4 |q = 0⟩ are obtained taking the limit
R→ ∞ in the final expressions for observable quantities.

5.2 Post-quench state and one-point functions

The state |ψ1⟩ produced by the quench is given by

|ψ1⟩ = Sλ

∫
dq f(q) |q⟩ = T exp

(
−iλ

∫ +∞

0
dt

∫ +∞

−∞
dxΨ(x, t)

)∫
dq f(q) |q⟩ , (5.7)

where T denotes chronological order and Sλ is the operator whose matrix elements ⟨n|Sλ|q⟩
give the probability amplitude that the quench induces the transition from |q⟩ to |n⟩. Here
we adopt the compact notation |n⟩ = |p1, ..., pn⟩ for the n-quasiparticle states of the pre-
quench theory, having energy and momentum

E =
n∑

i=1

Epi , P =
n∑

i=1

pi , (5.8)

respectively. To first order in the quench parameter λ we have

|ψ1⟩ ≃
∫
dq f(q) |q⟩+ 2πλ

∑∫
n,pi

∫
dq f(q) δ(P − q)

[FΨ
1,n(q |{pi})]∗

E − Eq
|n⟩ , (5.9)

where we defined the matrix elements

FO
1,n(q |{pi}) = ⟨q|O(0, 0)|p1, ..., pn⟩ (5.10)

for a generic operator O(x, t), introduced the notation

∑∫
n,pi

=
∑
n ̸=1

1

n!

∫ +∞

−∞

n∏
i=1

dpi
2πEpi

, (5.11)

and used
O(x, t) = eiPx+iH0tO(0, 0) e−iPx−iH0t , (5.12)

with P the momentum operator. An infinitesimal imaginary part was given to the energy to
make the time integral in (5.7) convergent. The sum (5.11) is taken on the non-negative in-
tegers with the exclusion of n = 1, which in (5.9) corresponds to −iLT+λ

∫
dq f(q)FΨ

1,1(q|q),
where LT+ is the infinite post-quench spacetime volume; this contribution is due to mass
renormalization and is subtracted by a corresponding counterterm in the Hamiltonian5.

4A state |q0⟩ can be obtained centering the Gaussian in q0. Since we will only consider scalar operators,
the results for R → ∞ do not depend on q0, and setting it to zero involves no loss of generality.

5See [71] for an analogous subtraction in the equilibrium context.
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In an interacting theory, the matrix elements FΨ
1,n entering (5.9) are nonzero for any

n, so that the state produced by the quench is a superposition of states containing any
number of quasiparticles with all possible momenta. It is worth emphasizing that it is our
ability to deal with this structure in its full complexity that allows us to obtain general
analytical results about quantum quench dynamics.

The result (5.9) gives in particular

⟨ψ1|ψ1⟩ =
∫
dpdq f(p)f(q)⟨p|q⟩ +O(λ2) ∼

√
πMR+O(λ2) . (5.13)

Here and below the symbol ∼ indicates omission of terms subleading for R→ ∞.

The one-point function of a scalar hermitian operator Φ(x, t) after a quench from the
single-quasiparticle state is given by

⟨Φ(x, t)⟩1 =
⟨ψ1|Φ(x, t)|ψ1⟩

⟨ψ1|ψ1⟩
+DΦ

∼ 1

⟨ψ1|ψ1⟩

∫
dp dq f(p)f(q)

[
FΦ
1,1(p|q)

+ 2πλ
∑∫
n,pi

δ(P − q)

E − EP
2Re

{
[FΨ

1,n(P |{pi})]∗FΦ
1,n(p |{pi}) ei(Ep−E)t

}]
+DΦ +O(λ2) . (5.14)

Here and below the limit R → ∞ is understood. Then the limit p, q → 0 is enforced by
the Gaussian f(p)f(q), so that the factors ei(p−q)x and ei(Ep−Eq)t produced by (5.12) can
be omitted at leading order for large R; this yields the x-independence expected for the
homogeneous system, as well as the t-independence of the pre-quench value

AΦ =

∫
dp dq f(p)f(q)FΦ

1,1(p|q)∫
dp dq f(p)f(q)⟨p|q⟩

. (5.15)

The term DΦ is added to ensure continuity at t = 0, namely to impose that ⟨Φ(x, 0)⟩1 is
equal to (5.15). Defining

BΦ(t) =
2π

⟨ψ1|ψ1⟩
∑∫
n,pi

∫
dp
f(p)f(P )

E − EP
2Re

{
[FΨ

1,n(P |{pi})]∗FΦ
1,n(p |{pi}) ei(Ep−E)t

}
,

(5.16)
we have

DΦ = −λBΦ(0) +O(λ2) , (5.17)

and

⟨Φ(x, t)⟩1 = AΦ + λ [BΦ(t)−BΦ(0)] +O(λ2) . (5.18)
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5.3 Large time behavior

The time dependence of the one-point function (5.18) is contained in the term (5.16).
For t → ∞ the integrand rapidly oscillates due to the factor ei(Ep−E)t and the leading
contribution to the integral is obtained when all the momenta p, p1, . . . , pn are small. Notice
that this is true also in case of cancellation of energy terms in the exponent. Indeed, p is in
any case made small by the large R limit, so that Ep ≃M + p2/2M can only be canceled
by a single energy term Epi , with the consequence that pi = p is also small.

The matrix elements in (5.16) can be rewritten in terms of the form factors

FO
n (p1, . . . , pn) = ⟨0|O(0, 0)|p1, . . . , pn⟩ (5.19)

by crossing the quasiparticle on the left. For p, p1, . . . , pn → 0 this gives

FO
1,n(p|p1, . . . , pn) = FO

n+1(p̄, p1, ..., pn)

+

n∑
i=1

2πEpiδ(pi − p) (−1)i−1 FO
n−1(p1, ..., pi−1, pi+1, ..., pn) , (5.20)

where p̄ corresponds to the crossed quasiparticle with momentum −p and energy −Ep,
the first term on the r.h.s. is the connected part, and the terms with the delta function
are the disconnected parts produced by the annihilation between the crossed quasiparticle
and the quasiparticle with momentum pi. In writing (5.20) we took into account that for
small momenta interacting theories in one spatial dimension exhibit fermionic statistics;
this produces the factor (−1)i−1 when the crossed quasiparticle reaches the quasiparticle
to be annihilated. It follows that the product of matrix elements in (5.16) is given by

[FΨ
1,n(P |{pi})]∗FΦ

1,n(p|{pi}) = [FΨ
n+1(P̄ , p1, ..., pn)]

∗FΦ
n+1(p̄, p1, ..., pn)

+ [FΨ
n+1(P̄ , p1, ..., pn)]

∗
n∑

i=1

2πEpiδ(pi − p) (−1)i−1 FΦ
n−1(p1, ..., pi−1, pi+1, ..., pn)

+ FΦ
n+1(p̄, p1, ..., pn)

n∑
i=1

2πEpiδ(pi − P ) (−1)i−1
[
FΨ
n−1(p1, ..., pi−1, pi+1, ..., pn)

]∗
+

n∑
i=1

n∑
j=1

(2π)2EpiEpjδ(pi − P )δ(pj − p) (−1)i+j−2
[
FΨ
n−1(p1, ..., pi−1, pi+1, ..., pn)

]∗
× FΦ

n−1(p1, ..., pj−1, pj+1, ..., pn) . (5.21)

We call the four terms in the r.h.s. connected-connected (cΨcΦ), connected-disconnected
(cΨdΦ), disconnected-connected (dΨcΦ) and disconnected-disconnected (dΨdΦ), respec-
tively. For the latter we further distinguish the terms with i = j (diΨd

i
Φ) from those with

i ̸= j (diΨd
j
Φ). Inserting (5.21) back into (5.16), the exponential factor in the integrand for

each type of contribution reads
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• cΨcΦ : e−
R2

2
(p+P 2)+i[M(1−n)t− t

2M

∑n
i=1 p

2
i ]

• cΨdΦ : e−
R2

2
(pi+P 2)+i[M(1−n)t− t

2M

∑n
k ̸=i p

2
k]

• dΨcΦ : e−
R2

2
(p+p2i )+i[M(1−n)t− t

2M

∑n
k ̸=i p

2
k]

• diΨd
i
Φ : e−R2p2i+i[M(1−n)t− t

2M

∑n
k ̸=i p

2
k]

• diΨd
j
Φ : e−

R2

2
(p2i+p2j )+i[M(1−n)t− t

2M

∑n
k ̸=i,j p

2
k] .

Due to the delta functions, some energies can cancel in ei(Ep−E)t and no longer couple to
t; as already observed, however, the corresponding momenta are still made small by the
large R limit. Moreover, if p2i coming from Epi ≃ M + p2i /2M couples in the exponential
both to R2 and t, we have (R2 ± it/M)p2i → R2p2i in the limit R → ∞, which must be
taken before that of large times.

For small momenta the form factors FΦ
n+1 in (5.21) behave as

n∏
i=1

1

p− pi

∏
1≤i<j≤n

(pi − pj) , (5.22)

where the numerator accounts for the fermionic statistics and the denominator for the
annihilation poles6; the same is true for FΨ

n+1 after replacing p with P . On the other hand,
the form factors FΦ

n−1 and FΨ
n−1, which are the products of the annihilations, behave as∏

k<l (k,l ̸=i)(pk−pl). The large time behavior of the different contributions to (5.18) is now
easily determined rescaling the momenta which couple to t in the exponent. Up to the
oscillating factor e−i(n−1)Mt we have

• cΨcΦ : t−n(n−1)/2

• cΨdΦ, dΨcΦ, d
i
Ψd

i
Φ : t−n(n−2)/2

• diΨd
j
Φ : t−(n−2)2/2 .

We see that the leading contribution at large time comes from n = 0 (cΨcΦ) and n = 2
(cΨdΦ, dΨcΦ, d

i
Ψd

i
Φ, d

i
Ψd

j
Φ), and is purely oscillatory7. It is easily checked in a similar way

that the term diΨd
j
Φ with n = 3 actually vanishes as R → ∞, so that the first subleading

contribution at large t comes from cΨcΦ with n = 2 and is suppressed as t−1.
Concerning the explicit calculation of the leading large time behavior of (5.16), it is

straightforward for the n = 0 contribution. For the n = 2 contributions we know from
(5.22) that

FΦ
3 (p̄, p1, p2)

∣∣
p,p1,p2→0

≃ aΦ
p1 − p2

(p− p1)(p− p2)
, (5.23)

6See [85] for explicit illustrations in the case of integrable theories.
7We recall that n ̸= 1 and that n = 0 produces no disconnected part.
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and similarly

FΨ
3 (P̄ , p1, p2)

∣∣
P,p1,p2→0

≃ aΨ
p1 − p2
p1p2

. (5.24)

The fermionic statistics at low energies yields the expression

Res
q1=q2

FO
k+2(q̄1, q2, p1, ..., pk) = iM

[
1− (−1)k

]
FO
k (p1, ..., pk) , (5.25)

for the residue on an annihilation pole in the limit q1, q2, p1, ..., pk → 0 of our present
interest. This in turn determines the coefficients

aΦ = 2iMFΦ
1 , (5.26)

aΨ = 2iMFΨ
1 . (5.27)

The integrals in (5.16) are then computed using the expressions (5.23) and (5.24) with the
prescription

1

p− iϵ
= iπδ(p) + p.v.

(
1

p

)
(5.28)

for the poles. The results for the leading contributions are8

• n = 0

– cΨcΦ : −2
√
2λ

M2 FΨ
1 F

Φ
1 cosMt

• n = 2

– cΨdΦ : 2λ
M2 (1−

√
2)FΨ

1 F
Φ
1 cosMt

– dΨcΦ : 2λ
M2 (1 +

√
2)FΨ

1 F
Φ
1 cosMt

– diΨd
i
Φ : 2λ

M2 F
Ψ
1 F

Φ
1 cosMt

– diΨd
j
Φ : −2

√
2λ

M2 FΨ
1 F

Φ
1 cosMt ,

where we took into account that for scalar hermitian operators FO
1 is a real constant.

Putting all together we obtain

BΦ(t) =
FΨ
1 F

Φ
1

M2
(6− 4

√
2) cosMt+O(t−1) , t→ ∞ . (5.29)

We see from (5.18) and (5.29) that for t → ∞ the one-point function ⟨Φ(x, t)⟩1 tends
to (if FΨ

1 F
Φ
1 = 0) or oscillates around (if FΨ

1 F
Φ
1 ̸= 0) the asymptotic offset AΦ +DΦ. The

8They come only from the delta function terms in the pole prescription, since the principal values turn
out to be subleading for R → ∞.
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pre-quench value AΦ is given by (5.15) and involves FΦ
1,1(p|q). Equations (5.20) and (5.25)

yield9

FO
1,1(p|q) = FO

2 (p̄, q) + 2πEp δ(p− q)FO
0 , (5.30)

Res
p=q

FO
2 (p̄, q) = 0 . (5.31)

It follows that in the limit R→ ∞ implied in (5.15) we obtain

AΦ = FΦ
0 = ⟨0|Φ|0⟩ . (5.32)

We see that the pre-quench value on the excited state coincides with that on the ground
state10. On the other hand, since the post-quench state (5.9) differs from that obtained
from a quench from the ground state, the time evolution is in general different in the two
cases. In particular, recalling also (5.17), for the asymptotic offset we obtain

EΦ ≡ AΦ +DΦ = ⟨0|Φ|0⟩ − λBΦ(0) +O(λ2) , (5.33)

which differs at order λ from that in (5.2). Equations (5.29) and (5.33) lead to the large
time result

⟨Φ(x, t)⟩1 = EΦ + λ

[
6− 4

√
2

M2
FΨ
1 F

Φ
1 cosMt+O(t−1)

]
+O(λ2) . (5.34)

Comparing this result with (5.2) we see that, although the amplitude of the undamped
oscillations has changed, the condition for their presence continues to be FΨ

1 F
Φ
1 ̸= 0. The

offset EΦ in general differs at order λ from ⟨Φ⟩eqλ in (5.2). Actually, as we will see, EΦ can
differ from ⟨Φ⟩eqλ at order 1 for a quench in a spontaneously broken phase, for which the
first excited state is a topological excitation.

5.4 Topological quasiparticles

Some additional considerations are needed if the quench is performed within a phase with
spontaneously broken symmetry. In the one-dimensional case we are considering this means
that there are degenerate ground states |0a⟩ labeled by a = 1, 2, . . . , N , and that the
fundamental quasiparticle excitations have a topological nature, namely they are kinks
|Kab(q)⟩ interpolating between |0a⟩ and |0b⟩, with a ̸= b. It follows that the first excited

9It can be noted that, although the limit R → ∞ in (5.15) ensures that p, q → 0, eqs. (5.30) and
(5.31) hold for generic momenta. Indeed, the annihilation which produces the disconnected part requires
no permutation, and no consideration on low-energy statistics.

10This result requires a generalization in the case of topological quasiparticles, to be discussed in the next
section.
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state we consider in this chapter as the pre-quench state now corresponds to such a kink.
Then, when considering the pre-quench expectation value (5.15), eq. (5.30) still holds with

FO
0 = ⟨0a|O(0, 0)|0a⟩ ≡ ⟨O⟩a , (5.35)

and
FO
2 (p̄, q) = ⟨0a|O(0, 0)|Kab(p̄)Kba(q)⟩ . (5.36)

Now, however, (5.31) is replaced by11 [86]

Res
p=q

FO
2 (p̄, q) = iM [⟨O⟩a − ⟨O⟩b] . (5.37)

The pole associated to (5.37) now gives an additional contribution when (5.15) is evaluated
using (5.28), with the result that the pre-quench expectation value becomes

AΦ =
⟨Φ⟩a + ⟨Φ⟩b

2
. (5.38)

The meaning of this result is quite clear. In the kink state, the system is in the ground
state |0a⟩ on one side of the spatial location of the kink, and in the ground state |0b⟩ on
the other side. Since the kink has a definite momentum q, it is completely delocalized in
space, so that the expectation value of the field is given by the average (5.38).

With this new expression for AΦ, the post-quench one-point function is still given by
(5.18) and (5.16). Concerning its large time behavior, an undamped oscillating term would
be again proportional to FΨ

1 F
Φ
1 . However, the physically relevant cases correspond to a

topologically neutral quench operator Ψ, and this implies that FΨ
1 = ⟨0a|Ψ(0, 0)|Kba(q)⟩

vanishes. It follows that the large time result (5.34) now becomes

⟨Φ(x, t)⟩1 =
⟨Φ⟩a + ⟨Φ⟩b

2
− λ

[
BΦ(0) +O(t−1)

]
+O(λ2) . (5.39)

It is interesting to compare this result with that obtained in [87], where the time
evolution in a non-equilibrium state interpolating between the degenerate ground states
|0a⟩ and |0b⟩ was studied in a “no-quench” setting12. We mean by this that, instead
of considering the non-equilibrium state produced by a quench as in the present case,
in [87] an infinite-dimensional space of interpolating non-equilibrium states was considered.
Hence, the two results for the one-point function at large time, while referring to the same
topological setting, have a significantly different origin. It is then nontrivial that they turn
out to exhibit similar features13. In both cases undamped oscillations are absent and the
approach to the asymptotic offset is through terms decaying as t−1. In both cases the
offset involves the average (5.38): in (5.39) the expectation values ⟨Φ⟩a and ⟨Φ⟩b refer to
the t < 0 Hamiltonian, and there is the correction −λBΦ(0) due to the quench; in [87] the
offset is (5.38) with ⟨Φ⟩a and ⟨Φ⟩b referring to the t > 0 Hamiltonian.

11While (5.37) was considered in [86] in the context of an integrable theory, the derivation given there is
general, since involves no scattering.

12See the following chapter for a detailed discussion.
13For the case of [87] we refer to t → ∞ with x fixed.
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5.5 Final remarks

In this chapter we studied analytically the dependence on the initial condition of the late
time dynamics following a quantum quench of a generic homogeneous one-dimensional
system. More precisely, we considered the case in which before the quench the system
is in the first excited state of its Hamiltonian H0, at variance with the case of quenches
from the ground state (see chapter 4). We overcame the technical difficulties related to
the non-normalizability of the excited state working in presence of a regulator which, once
removed at the end of the calculations, leaves a finite result for the observables. In this way
we showed, in particular, that the condition for the presence of persistent oscillations of
one-point functions is not affected by the change of the initial condition and remains that
first found in [56] for quenches from the ground state: persistent oscillations of one-point
functions arise if the post-quench spectrum of excitations includes neutral quasiparticles,
and if the observable couples to these quasiparticles. The argument of [58] pointing to
oscillations persisting beyond the perturbative scale of our calculations – a circumstance
indeed numerically observed in [63] – applies also to the present case. At the same time,
the comparison with the case of quenches from the ground state also shows quantitative
differences in the amplitude of the oscillations, as well as in the value of the asymptotic
offset. Another difference with the case of quenches from the ground state is that those
from the excited state heavily involve, already at first order in the quench parameter λ,
the connectedness structure of the matrix elements, with disconnected parts playing a
substantial role. The role of disconnected parts in non-equilibrium quantum dynamics was
already pointed out in [69], where it was generally shown that they are responsible for the
lightcone propagation of two-point correlations.

We also illustrated the implications of our results for quenches performed within a
spontaneously broken phase, for which the first excited state corresponds to a topological
excitation: a kink, or domain wall. We observed how the results for one-point functions at
late times share quantitative properties with those obtained in [87] in a very different way,
namely considering an infinite-dimensional space of initial conditions of domain wall type,
not necessarily produced by a quench (see the following chapter).



Chapter 6

Space of initial conditions and
universality

We study analytically the role of initial conditions in non-equilibrium quantum dynamics
considering the one-dimensional ferromagnets in the regime of spontaneously broken sym-
metry. We analyze the expectation value of local operators for the infinite-dimensional
space of initial conditions of domain wall type, generally intended as initial conditions
spatially interpolating between two different ground states. In systems with more than
two ground states the tuning of an interaction parameter can induce a transition which
is the non-equilibrium quantum analogue of the interfacial wetting transition occurring in
classical systems at equilibrium.

6.1 Introduction

Universality is a central paradigm of statistical physics. In the equilibrium setting, in
which it originated and is well established [2], it says that systems possessing a continuous
phase transition exhibit a number of quantitative properties that do not depend on the
microscopic details of the Hamiltonian, for example the range of the interaction as long as
it is short. In a given space dimensionality, these universal properties depend instead on
the group G of internal transformations that leave the Hamiltonian invariant, so that G is
the label of the different universality classes (see chapter 1).

The extension of such a notion of universality to the non-equilibrium framework is a
nontrivial task. In the quantum case, a time independent Hamiltonian H generates unitary
time evolution as in equilibrium. However, observables are now expectation values on a
non-equilibrium state |ψ⟩ that is not an eigenstate of H, but rather, in the physically
interesting cases, a superposition of infinitely many eigenstates. The question then arises
of whether the notion of universality is compatible with the presence of the infinitely many
coefficients of the superposition, which in turn correspond to infinitely many possible initial

69
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conditions of the time evolution. Since at the mathematical level these coefficients can be
arbitrary, it is essential to refer to well defined physical problems.

We discussed in previous chapters the case on non-equilibrium states generated by
quantum quenches. A physical problem involving no quench but still leading to a non-
equilibrium state |ψ⟩ is that in which H is the Hamiltonian of a translation invariant
system, but the initial condition of the time evolution is spatially inhomogeneous. In
this chapter we will study this problem for the case of the one-dimensional ferromagnets
with interaction parameters in the range in which the spontaneous breaking of a discrete
symmetry G leads to degenerate ground states that we denote |0a⟩, a = 1, 2, . . . , N . We
are interested in the expectation value ⟨Φ(x, t)⟩ab of a local operator Φ (e.g. the order
parameter operator), for initial (t = 0) conditions that interpolate between a ground state
|0a⟩ as x → −∞, and a different ground state |0b⟩ as x → +∞. This interpolation is
chosen to preserve the symmetry G of the system, but still can be realized in infinitely
many ways, meaning that the corresponding non-equilibrium states |ψ⟩ form an infinite-
dimensional space W. We refer to W as the space of domain wall states or, equivalently,
of domain wall initial conditions.

6.2 Space of domain wall initial conditions

The elementary excitation modes of a one-dimensional ferromagnet in the regime of spon-
taneously broken symmetry are kinks interpolating between two degenerate ground states.
In the proximity of the quantum critical point these are relativistic quasiparticles with
energy and momentum

(E, p) = (M cosh θ,M sinh θ) , (6.1)

where θ is called rapidity, and the mass M is a measure of the deviation from criticality.
The interpolating initial conditions we are interested in correspond to non-equilibrium
states of the form

|ψ⟩ =
∞∑
n=1

|ψn⟩ =
∞∑
n=1

∫
dθ1 . . . dθn fn(θ1, . . . , θn) |θ1, . . . , θn⟩ , (6.2)

where |θ1, . . . , θn⟩ is a n-kink state starting in |0a⟩ and ending in1 |0b⟩. The different choices
of the functions fn span the space W of the domain wall states |ψ⟩ and allow for arbitrary
spatial interpolation in the initial condition. Since we consider initial conditions that do
not introduce any explicit breaking of the symmetry of the system under the group G, the
functions fn are required to preserve this property. They are also required to decay for
θi → ±∞ sufficiently rapidly to ensure convergence of the integrals over rapidities, and to
be free of singularities for real values of the rapidities. The expectation value of a local

1It is understood that for N > 2 degenerate ground states and n > 1 the expansion (6.2) includes a sum
over the intermediate ground states visited in the n-step path from |0a⟩ to |0b⟩.
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operator with such a general symmetry preserving domain wall initial condition is given
by

⟨Φ(x, t)⟩ab =
⟨ψ|Φ(x, t)|ψ⟩

⟨ψ|ψ⟩
. (6.3)

6.2.1 Time evolution

We will now investigate the properties of the dynamics in the infinite-dimensional subspace
W1 of initial conditions corresponding to one-kink states

|ψ1⟩ =
∫
dθ f(θ) |θ⟩ , (6.4)

where we have simplified the notation setting f1 = f . In this subspace the expectation
value (6.3) reads

GΦ(x, t) =
1

Nf
⟨ψ1|Φ(x, t)|ψ1⟩

=
1

Nf

∫
dθ1dθ2 f

∗(θ1)f(θ2)FΦ(θ1 − θ2) e
i[(p1−p2)x+(E1−E2)t] , (6.5)

where we defined2

Nf = ⟨ψ1|ψ1⟩ = 2π

∫
dθ |f(θ)|2 , (6.6)

FΦ(θ1 − θ2) = ⟨θ1|Φ(0, 0)|θ2⟩ , (6.7)

and used

Φ(x, t) = ei(Px+Ht)Φ(0, 0) e−i(Px+Ht) , (6.8)

with P the momentum operator. The operators Φ of our interest are invariant under
relativistic transformations and, since such a transformation shifts rapidities by a constant,
the matrix element (6.7) depends on the rapidity difference. It can be written as [86]

FΦ(θ) = i
⟨Φ⟩a − ⟨Φ⟩b
θ − iϵ

+
∞∑
k=0

CΦ
k θ

k + 2π δ(θ)⟨Φ⟩a , (6.9)

where

⟨Φ⟩a = ⟨0a|Φ(x, t)|0a⟩ (6.10)

is the equilibrium expectation value in the ground state |0a⟩, the term containing δ(θ) is
the disconnected part corresponding to the annihilation of the particle on the left with the
particle on the right, while the connected part has been expanded in powers of θ. The pole

2We use the state normalization ⟨θ|θ′⟩ = 2π δ(θ − θ′).
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term is a remnant in the connected part of the annihilation configuration3 θ = 0, and the
infinitesimal imaginary part iϵ specifies the regularization prescription for the integral in
(6.5).

Let us call Gsing
Φ the contribution to (6.5) of (6.9) without the regular part

∑∞
k=0C

Φ
k θ

k.
Defining θ± = θ1 ± θ2 we write this contribution in the form

Gsing
Φ (x, t) = ⟨Φ⟩a + i

⟨Φ⟩a − ⟨Φ⟩b
2Nf

∫
dθ+dθ−

f∗(θ1)f(θ2)

θ− − iϵ
e2iMtB(x/t,θ+) sinh

θ−
2 , (6.11)

where

B(x/t, θ+) =
x

t
cosh

θ+
2

+ sinh
θ+
2
. (6.12)

We can set sinh θ−
2 = p and consider the integral over p in which we close the contour

in the upper (lower) complex half-plane if B is positive (negative). In particular, we can
close the contour along the line with constant imaginary part Im p = c. When t→ ∞, the
contribution coming from the integral on this line is suppressed as e−2M |cB|t and can be
neglected. On the other hand, we can reduce |c| in such a way that the closed integration
contour contains only the singularity at p = iϵ/2 for c > 0, and no singularity at all for
c < 0. Hence, Cauchy’s residue integration tells us that for t large

Gsing
Φ (x, t) ≃ ⟨Φ⟩a −

⟨Φ⟩a − ⟨Φ⟩b
Nf

2π

∫ ∞

θ0

dθ |f(θ)|2 , (6.13)

where θ0 is the value of θ above which tanh θ > −x/t. Since θ0 is equal to +∞ when
x/t < −1 and to −∞ when x/t > 1, we have

Gsing
Φ (x, t) ≃

{
⟨Φ⟩a , x < −t ,
⟨Φ⟩b , x > t ,

(6.14)

for t large. On the other hand, θ0 ≃ −x/t when |x|/t≪ 1, and we can break the integration
over θ into that on the small interval between −x/t and 0, in which f(θ) ≃ f(0), and that
for θ > 0. Since the ground states |0a⟩ and |0b⟩ are exchanged by the symmetry G of the
Hamiltonian and play a symmetric role preserved by the initial condition, |f(θ)|2 is an even
function. As a consequence 2π

∫∞
0 dθ |f(θ)|2 = Nf/2 and we have

Gsing
Φ (x, t) ≃ ⟨Φ⟩a + ⟨Φ⟩b

2
− 2πAf [⟨Φ⟩a − ⟨Φ⟩b]

x

t
, |x| ≪ t , (6.15)

with Af = |f(0)|2/Nf .

3The pole is known to account for phase separation in the classical case at equilibrium [16], in which it
yields, in particular, the exact order parameter profile originally obtained in [88,89] from the lattice solution
of the two-dimensional Ising model. Annihilation poles are well known in the multiparticle matrix elements
of integrable theories [85], but integrability plays no role in the determination of the residue for the matrix
element (6.7) [86].
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Now we consider the contribution to (6.5) coming from the regular part
∑∞

k=0C
Φ
k θ

k of
(6.9), namely

Greg
Φ (x, t) =

1

Nf

∞∑
k=0

CΦ
k

∫
dθ1dθ2 f

∗(θ1)f(θ2) (θ1 − θ2)
k ei[(p1−p2)x+(E1−E2)t] . (6.16)

We first observe that for t large enough the rapid oscillations of the integrand suppress
the integral unless the phase is stationary, namely unless Ejx + pjt = 0, j = 1, 2. Since
|pj |/Ej = | tanh θj | < 1, the stationarity condition is satisfied inside the lightcone4 |x| < t.
Hence, for t large we have

Greg
Φ (x, t) ≃ 0 , |x| > t , (6.17)

where the corrections are small and rapidly vanishing as |x| increases with t fixed.
On the other hand, the stationarity condition tanh θj = −x/t implies that inside the

lightcone small rapidities dominate the integral for |x|/t ≪ 1. Hence in this limit we can
write

Greg
Φ (x, t) ≃ Af

∞∑
k=0

CΦ
k

∫
dθ1dθ2 (θ1 − θ2)

k eiM [(θ1−θ2)x+
1
2
θ21(t+iϵ)− 1

2
θ22(t−iϵ)] , (6.18)

where the infinitesimal imaginary parts added to t preserve the convergence of the integral.
We can now rescale the rapidities and deduce that the k-th term decays at large times as
t−(k+2)/2. Hence the leading contribution comes from k = 0 and we have

Greg
Φ (x, t) ≃ Af C

Φ
0

∣∣∣∣∫ dθ eiM [θx+ 1
2
θ2(t+iϵ)]

∣∣∣∣2 = Af C
Φ
0

2π

M |t+ iϵ|
e
−Mϵx2

t2+ϵ2

→ Af C
Φ
0

2π

Mt
, |x| ≪ t . (6.19)

Putting all together, since GΦ(x, t) is the sum of Gsing
Φ (x, t) and Greg

Φ (x, t), the results
that we obtained for these two terms lead to the large time behaviors

GΦ(x, t) ≃


⟨Φ⟩a , x < −t ,
1
2 [⟨Φ⟩a + ⟨Φ⟩b] +A

{
CΦ

0
M − [⟨Φ⟩a − ⟨Φ⟩b] x

}
t−1 , |x| ≪ t ,

⟨Φ⟩b , x > t ,

(6.20)

where CΦ
0 is determined by the equilibrium universality class, while the positive dimen-

sionless amplitude

A = 2πAf = 2π
|f(0)|2

Nf
(6.21)

4This mechanism leading to the lightcone can be compared with that for two-point functions in ho-
mogeneous systems out of equilibrium, in which the connectedness structure of matrix elements plays an
essential role [69]. The presence of a lightcone was originally observed in the study of a free fermionic chain
with a steplike initial condition [90].
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is the only quantity depending on the specific initial condition.

When ⟨Φ⟩a ̸= ⟨Φ⟩b, GΦ(x, t) should tend as t → ∞ to a non-constant limit shape as
a function of x/t, since in this variable the edges of the lightcone are fixed at ±1. To
see this, we notice that if the large time analysis of the contribution (6.16) of regular
terms is performed at a generic point x inside the lightcone, the stationarity condition
tanh θj = −x/t selects the rapidities around which to expand to evaluate the integral, and
considerations analogous to those we just made for x small lead to the conclusion that
again this contribution is suppressed at large times. It follows that (6.16) goes to zero for
any x at large times, so that in this limit the dominant x-dependence is given by (6.13),
as long as ⟨Φ⟩a ̸= ⟨Φ⟩b. Hence, for t → ∞ and ⟨Φ⟩a ̸= ⟨Φ⟩b, GΦ(x, t) → Gsing

Φ (x, t) and is
a function of x/t, since θ0 in (6.13) depends on x/t. We also see that the large time limit
of GΦ(x, t)/⟨Φ⟩a changes with the initial condition and depends on the universality class
only through the “dilatation” factor ⟨Φ⟩b/⟨Φ⟩a.

We saw that the generality of the large time result (6.20) for |x| ≪ t is due to the
dominance in this region of the low-energy modes5 and these are maximally insensitive to
the details of the initial condition. Since the energy of a n-kink state is at least nM , this
result should generically6 hold in the whole space W of domain wall states, as long as the
one-kink contribution from W1 is present, and we show in the appendix 6.A the mechanism
through which this extension occurs. The one-kink state will naturally be present in the
states (6.2) arising in physical applications, but an interesting exception occurs for systems
with more than two degenerate ground states, where the tuning of an interaction parameter
can induce a transition to a regime in which W1 is empty; we illustrate this phenomenon
in section 6.3.3.

6.3 Some universality classes

6.3.1 Ising model

A first illustration of the results of the previous section is provided by the Ising universality
class (symmetry group G = Z2), whose simplest lattice realization is the nearest neighbor
transverse field Ising chain with Hamiltonian

HIsing = −J
∑
i

(
σxi σ

x
i+1 + g σzi

)
, (6.22)

where σx,zi are Pauli matrices at site i, and J > 0, |g| < 1 is the ferromagnetically ordered
regime of our interest. Denoting the two degenerate ground states as |0+⟩ and |0−⟩, we

5The fact that the low-energy modes dominate the large time dynamics in the general case of interacting
quasiparticles is known for quantum quenches (see chapters 4, 5).

6Fine tuning of the functions fn can lead to peculiar states. These, however, will form some zero measure
subset, and typically will not be physically relevant.
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Figure 6.1: Ising magnetization components in the non-equilibrium state (6.27) with
MR = 1. Left: Order parameter ⟨σx(x, t)⟩−+/⟨σx⟩+. Right: Connected transverse
magnetization ⟨σz(x, t)⟩c−+/⟨σz(0, 0)⟩c−+, with ⟨σz(x, t)⟩c−+ = ⟨σz(x, t)⟩−+ − ⟨σz⟩+.

have ⟨σx⟩− = −⟨σx⟩+ and ⟨σz⟩− = ⟨σz⟩+. Hence, for the order parameter operator σx,
the large time result (6.20) becomes

⟨σx(x, t)⟩−+

⟨σx⟩+
≃


−1 , x < −t ,
2Ax/t , |x| ≪ t ,

1 , x > t .

(6.23)

Here we also took into account that Cσx

0 = 0, as expected on symmetry grounds and
explicitly following from [49] (see [23] for a review)

Fσx(θ) = [i coth(θ/2) + 2π δ(θ)] ⟨σx⟩− . (6.24)

Recalling our result that A depends on the initial condition, (6.23) is consistent with the
behavior displayed by the plots of [91,92] for the chain (6.22) with two different realizations
of sharp (steplike) domain wall initial conditions. Similarly, our result that (6.23) tends at
large times to a function of x/t depending on the initial condition explains the observations
of [92] about the plots against x/t.

We already remarked that for |x| ≪ t the dependence on the initial condition in (6.20) is
limited to the constant A because long wavelength modes dominate in this region. On the
other hand, when moving towards the edges of the lightcone from inside, the fine structure
of the initial condition becomes more and more relevant. For the chain (6.22) this feature
is illustrated by the modulated behavior7 of the order parameter observed in [91] zooming

7This type of behavior was originally observed in a free fermion chain with sharp domain wall initial
condition [93].
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Figure 6.2: Ising order parameter ⟨σx(x, t)⟩−+/⟨σx⟩+ in the non-equilibrium state (6.27)
with MR = 1. Left: Mt = 5, 10, 20, in order of decreasing slope at x = 0. Right: In the
variable x/t the three curves approach the large time limit given by (6.13).
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Figure 6.3: Ising magnetization components in the non-equilibrium state (6.27). Left:
Large time limit (6.13) of the order parameter ⟨σx(x, t)⟩−+/⟨σx⟩+ for MR = 1 (contin-
uous line) and MR = 0.1 (dashed line). Right: Connected transverse magnetization
⟨σz(x, t)⟩c−+/⟨σz(0, 0)⟩c−+ (as defined in fig. 6.1) for MR = 1 and Mt = 5, 10, 20, in order
of decreasing value at x = 0.

in close to the edges of the lightcone for the two sharp domain wall initial conditions.
For the transverse magnetization, the result [23,49]

Fσz(θ) = [C cosh(θ/2) + 2π δ(θ)] ⟨σz⟩+ , (6.25)

with C real and dimensionless, gives Cσz

0 = C⟨σz⟩+, and then

⟨σz(x, t)⟩−+

⟨σz⟩+
≃

{
1 , |x| > t ,

1 +AC/(Mt) , |x| ≪ t .
(6.26)

We show in figs. 6.1, 6.2 and 6.3 the expectation values ⟨σx(x, t)⟩−+ and ⟨σz(x, t)⟩−+
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Figure 6.4: Potts order parameter component ⟨σ1(x, t)⟩12/⟨σ1⟩1 in the non-equilibrium
state (6.27) with MR = 1. On the right Mt = 1 (dashed), Mt = 3 (dotted) and Mt = 20
(continuous); the latter curve is indistinguishable from the large time limit shape (6.13).

for the state (6.4) with f(θ) = e−MRθ2 , namely for the Gaussian wave packet∫
dθ e−MRθ2 |θ⟩ . (6.27)

The distance over which the order parameter significantly differs from the asymptotic values
in the initial condition grows with R. The large time regime corresponds to t much larger
than 1/M and R. The state (6.27) conveniently illustrates some global features of the
large time behavior as the initial condition varies. In particular, the change in the order
parameter limit shape shown in the left panel of fig. 6.3 is essentially due to the fact that
A, and then the slope in the origin, decreases with MR.

6.3.2 Potts model

The three-state Potts universality class, characterized by invariance under the permuta-
tional group G = S3, finds its simplest representative in the nearest neighbor chain [94]

HPotts = −J
∑
i

[
σ†iσi+1 + σiσ

†
i+1 + g(Mi +M †

i )
]
, (6.28)

where σi and Mi are 3 × 3 matrices satisfying σ2i = σ†i , σ
3
i = M3

i = 1, M2
i = M †

i , and
Miσi = ω σiMi, where ω = e2iπ/3. Explicit representations are

σ =

 1 0 0
0 ω 0
0 0 ω2

 , M =

 0 1 0
0 0 1
1 0 0

 . (6.29)
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Figure 6.5: Potts order parameter component ⟨σ3(x, t)⟩12/⟨σ3⟩1 in the non-equilibrium
state (6.27) with MR = 1. On the right, Mt = 1, 5, 10, 20 in order of increasing value at
x = 0. The deviation from 1 measures the presence of the phase not selected by the initial
condition.

We refer to the ferromagnetically ordered regime J > 0, |g| < 1, in which there are three
degenerate ground states |0a⟩, a = 1, 2, 3. The hermitian order parameter operator with
components

σa = ω−a σ + ωa σ† , a = 1, 2, 3 , (6.30)

satisfies
∑3

a=1 σa = 0 and, by permutational symmetry,

⟨σa⟩b =
1

2
(3δab − 1) ⟨σa⟩a . (6.31)

Hence, σa detects phase a and does not distinguish between the other two phases. The
matrix elements [86]

Fσ1(θ) =

[
−
√
3

2

sinh
(
θ
6 − iπ

3

)
sinh θ

2

F(θ) + 2πδ(θ)

]
⟨σ1⟩1 , (6.32)

and

Fσ3(θ) =

[√
3

2

sinh
(
θ
6 − iπ

3

)
+ sinh

(
θ
6 + iπ

3

)
sinh θ

2

F(θ)− πδ(θ)

]
⟨σ1⟩1 , (6.33)

where

F(θ) = exp

{∫ ∞

0
dx

2 sinh 2x
3

x sinh2 x
sin2

θx

2π

}
, (6.34)
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determine through (6.9) Cσ1
0 = −⟨σ1⟩1/(4

√
3) and Cσ3

0 = ⟨σ1⟩1/(2
√
3), so that we have the

large time behaviors

⟨σ1(x, t)⟩12
⟨σ1⟩1

≃


1 , x < −t ,
1/4−A

(
1

4
√
3
+ 3

2Mx
)
/(Mt) , |x| ≪ t ,

−1/2 , x > t ,

(6.35)

and
⟨σ3(x, t)⟩12

⟨σ3⟩1
≃

{
1 , |x| > t ,

1−A/(
√
3Mt) , |x| ≪ t .

(6.36)

Figures 6.4 and 6.5 show the order parameter components ⟨σ1(x, t)⟩12 and ⟨σ3(x, t)⟩12
in the state (6.27). In (6.36) and fig. 6.5 the deviation from 1 measures the presence of
phase 3. Although this phase is not selected by the initial condition, it is produced by
quantum fluctuations.

6.3.3 Ashkin-Teller model

The Ashkin-Teller chain [94, 95] corresponds to two transverse field Ising chains with site
variables σ1,i and σ2,i interacting via the Hamiltonian

HAT = −J
∑
i

[
σx1,iσ

x
1,i+1 + σx2,iσ

x
2,i+1 + λσx1,iσ

x
1,i+1σ

x
2,iσ

x
2,i+1 + g(σz1,i + σz2,i + λσz1,iσ

z
2,i)
]
.

(6.37)
The theory possesses a Z2 symmetry in each of the two Ising variables, as well as the
symmetry under exchange of the two variables. It is characterized by the fact that g = 1
leads to a line of critical points as λ varies in an interval including the decoupling point
λ = 0, with critical exponents varying continuously with λ [96]. In the ferromagnetically
ordered regime there are four degenerate ground states |0++⟩, |0+−⟩, |0−+⟩, |0−−⟩, labeled
by the signs that the two Ising order parameters take in each of them. The vicinity of the
critical line is described by the sine-Gordon theory [42], through a mapping that determines,
in particular, the nature of the kinks interpolating between the different ground states [97].
A pair of ground states such as |0++⟩ and |0−+⟩ (|0+−⟩), related by spin reversal in the
first (second) Ising copy, is connected by a kink A1 (A2) with mass M . For λ > 0, A1

and A2 form a bound state B with mass MB that connects the ground states |0++⟩ and
|0−−⟩. Consider now ⟨Φ(x, t)⟩++,−−. We deduced from the analysis of section 6.2 and the
appendix 6.A that the leading behavior at large times for |x| ≪ t is determined by the
n-kink states with minimal n among those connecting |0++⟩ and |0−−⟩. For λ > 0, n = 1
and the relevant states are given by (6.4) with |θ⟩ = |B(θ)⟩. However, when the decoupling
point λ = 0 is approached, MB tends to the unbinding threshold 2M , and for λ < 0 the
bound state B no longer exists. Hence, for λ < 0 the space W1 is empty and the dominant
contribution comes from the n = 2 state A1A2. It follows that two-kink contributions that
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in the appendix are neglected as subleading with respect to one-kink contributions become
leading for λ < 0 and modify the result (6.20) for |x| ≪ t. This same unbinding mechanism
accounts for interfacial wetting in the theory of phase separation in classical systems at
equilibrium [16, 17, 37, 98] (see chapter 2). Clearly, the mechanism requires at least three
degenerate ground states. For the Potts chain of the previous section the existence of a
single-kink excitation connecting any pair of ground states is ensured by the permutational
symmetry.

6.4 Final remarks

We studied the role of initial conditions in non-equilibrium quantum dynamics in the frame-
work of one-dimensional ferromagnets in the regime of spontaneously broken symmetry.
We considered domain wall initial conditions, generally intended as initial conditions that
spatially interpolate between two different ground states. The interpolation is arbitrary,
with the only constraint of preserving the symmetry characteristic of the equilibrium uni-
versality class (e.g. the Z2 symmetry for Ising). In this setting we obtained analytical
results for the one-point functions of local operators at large times. We showed that in this
limit the time evolution takes place inside a lightcone produced by the spatial inhomogene-
ity of the initial condition, and that in the innermost region of the lightcone (|x| ≪ t) the
spacetime dependence is (up to an overall amplitude depending on the initial condition)
universal, namely is determined by data of the equilibrium universality class. The origin
of the universality is that the result in this region is determined by the excitations with
the largest wavelength, which are maximally insensitive to the fine structure of the initial
condition. This result should then hold also when the distance from the critical point is
not small, in spite of the fact that it was derived in the continuum limit. We also showed
that the large time limit curve in the variable x/t (which is nontrivial for operators that
distinguish between the two ground states involved in the initial condition) changes with
the initial condition. Our formalism also allowed us to show that in systems with more
than two degenerate ground states the tuning of an interaction parameter (within the spon-
taneously broken regime) can change the structure of the space of non-equilibrium states,
since the subspace of one-kink excitations disappears via the unbinding of a bound state.
The corresponding transition is the non-equilibrium quantum analogue of the interfacial
wetting transition observed at equilibrium in classical systems at phase coexistence.

6.A Composite excitations

This appendix is devoted to a generalization of the analysis performed in the present
chapter. Let us consider the state

|ψ⟩ = |ψ1⟩+ |ψ2⟩ , (6.38)
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where |ψ1⟩ is the one-kink state (6.4) and |ψ2⟩ is a superposition of two-kink states
|Kac(θ1)Kcb(θ2)⟩ with a, b, c all different. Since such a state requires at least three de-
generate ground states, we will consider the three-state Potts universality class of section
6.3.2. It is convenient to exploit the fact that this model possesses a duality between the
ferromagnetically ordered and the paramagnetic regime. One implication is the correspon-
dence A = Ka,a+1 (mod 3), Ā = Ka,a−1 (mod 3) between the kinks of the ordered phases and
the elementary excitations A, Ā of the paramagnetic phase. A and Ā are charge conju-
gated quasiparticles and the theory is invariant under charge conjugation. It follows that
a general superposition of states |K12K23⟩ corresponds to

|ψ2⟩ =
∫
dθ1dθ2 f2(θ1, θ2) |A(θ1)A(θ2)⟩ . (6.39)

The Potts theory is integrable in the scaling limit we consider [99,100], and we have8

⟨A(θ′1) . . . A(θ′m)|Φ̃(0, 0)|A(θ1) . . . A(θn)⟩ =
⟨A(θ′2) . . . A(θ′m)|Φ̃(0, 0)|Ā(θ′1 + iπ)A(θ1) . . . A(θn)⟩

+
n∑

j=1

2πδ(θ′1 − θj)

[
j−1∏
k=1

SAA(θk − θ′1)

]
× ⟨A(θ′2) . . . A(θ′m)|Φ̃(0, 0)|A(θ1) . . . A(θj−1)A(θj+1) . . . A(θn)⟩ , (6.40)

where SAA(θ1 − θ2) is the scattering amplitude9 of A(θ1) with A(θ2); it satisfies crossing

SAA(θ) = SĀA(iπ − θ) , (6.41)

and unitarity

SAA(θ)SAA(−θ) = 1 . (6.42)

We also took into account that when working in the paramagnetic phase we have to consider
the dual Φ̃ of the operator Φ of interest in the regime of spontaneously broken symmetry.
Iterative use of (6.40) allows one to express any matrix element in terms of the form factors

F Φ̃
α1...αn

(θ1, . . . , θn) = ⟨0|Φ̃(0, 0)|α1(θ1) . . . αn(θn)⟩ , (6.43)

where αi = A, Ā, and |0⟩ is the unique ground state of the paramagnetic phase. We will
consider operators whose expectation values ⟨Φ⟩a in the ordered phases are a-independent.
This introduces some simplifications in the equations satisfied by the form factors, which

8See [101] for an early advanced application of this formalism in the Potts paramagnetic phase.
9The scattering in the three-state Potts theory is completely elastic, meaning that the final state is

identical to the initial one.
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read [85]

F Φ̃
...αjαj+1...(. . . , θj , θj+1, . . .) = Sαjαj+1(θj − θj+1)F

Φ̃
...αj+1αj ...(. . . , θj+1, θj , . . .) , (6.44)

F Φ̃
α1...αn

(θ1 + 2iπ, θ2, . . . , θn) = F Φ̃
α2...αn,α1

(θ2, . . . , θn, θ1) , (6.45)

Resθ′=θF
Φ̃
ᾱβα1...αn

(θ′ + iπ, θ, θ1, . . . , θn)

= iδαβ

1− n∏
j=1

Sααj (θ − θj)

F Φ̃
α1...αn

(θ1, θ2, . . . , θn) . (6.46)

Let us consider ⟨Φ(x, t)⟩13 = ⟨ψ|Φ(x, t)|ψ⟩/⟨ψ|ψ⟩ with |ψ⟩ given by (6.38). The contri-
bution proportional to ⟨ψ1|Φ|ψ1⟩ follows from the results of section 6.2. We now consider
the contribution proportional to

⟨ψ2|Φ(x, t)|ψ2⟩ =
∫
dθ1dθ2dθ3dθ4 f

∗
2 (θ2, θ1)f2(θ3, θ4)

× ⟨A(θ2)A(θ1)|Φ̃(0, 0)|A(θ3)A(θ4)⟩ ei[(p1+p2−p3−p4)x+(E1+E2−E3−E4)t] ,
(6.47)

where

⟨A(θ2)A(θ1)|Φ̃(0, 0)|A(θ3)A(θ4)⟩

= F Φ̃
ĀAAĀ(θ2 + iπ, θ3, θ4, θ1 − iπ)

+ 2π

[
δ(θ14)SAA(θ12)SAA(θ31)F

Φ̃
ĀA(θ2 + iπ, θ3) + δ(θ13)SAA(θ12)F

Φ̃
ĀA(θ2 + iπ, θ4)

+ δ(θ23)F
Φ̃
ĀA(θ1 + iπ, θ4) + δ(θ24)SAA(θ34)F

Φ̃
ĀA(θ1 + iπ, θ3)

]
+ (2π)2 [δ(θ23)δ(θ14) + δ(θ24)δ(θ13)SAA(θ32)] ⟨Φ̃⟩ , (6.48)

with θij = θi − θj and ⟨Φ̃⟩ = ⟨0|Φ̃|0⟩ = ⟨Φ⟩a.
Let us call G4 the contribution to (6.47) of the term F Φ̃

ĀAAĀ
in (6.48). It follows from

(6.46) that when integrating over θ2 we have to deal with poles at θ2 = θ3, θ4. Proceeding

as in section 6.2, the contribution Gpole
4 of these poles at large times is determined by the

residues on the poles, which we know from (6.46), and reads

Gpole
4 (x, t) ≃ −2π

∫ ∞

θ0

dθ

{∫
dθ1dθ4 f

∗
2 (θ, θ1)f2(θ, θ4)F

Φ̃
AĀ(θ4, θ1 − iπ)

× [1− SAA(θ1 − θ)SAA(θ − θ4)] e
i[p14x+E14t]

+

∫
dθ1dθ3 f

∗
2 (θ, θ1)f2(θ3, θ)SAA(θ3 − θ)F Φ̃

AĀ(θ3, θ1 − iπ)

× [1− SAA(θ1 − θ)SAA(θ − θ3)] e
i[p13x+E13t]

}
, (6.49)
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where pij = pi − pj and Eij = Ei − Ej . Since (6.46) shows that F Φ̃
AĀ

(θ4, θ1 − iπ) has no
pole10 on the integration path, the behavior of (6.49) at large times can now be analyzed as
the contribution of regular terms along the lines already seen in section 6.2. The stationary
phase condition yields the lightcone and the suppression of the integral outside it. Deeply
inside the lightcone, namely for |x|/t ≪ 1, small values of θ1, θ4 (θ1, θ3) dominate in the
first (second) term, and the expressions in the square brackets become 1−SAA(−θ)SAA(θ),

which vanishes due to (6.42). Hence, Gpole
4 can be ignored in the regions specified in (6.20).

Concerning the contribution Greg
4 coming from the regular part of F Φ̃

ĀAAĀ
, we have again

suppression outside the lightcone and dominance of small rapidities θ1, . . . , θ4 for |x|/t≪ 1.
In this region, rescaling of rapidities in (6.47) yields that Greg

4 is suppressed at least as t−2,
and is then subleading with respect to the one-kink contribution.

Let us now call G2 the contribution to (6.47) of the four terms in (6.48) containing F Φ̃
ĀA

.

It will be sufficient to consider one of these terms, say δ(θ14)SAA(θ12)SAA(θ31)F
Φ̃
ĀA

(θ2 +
iπ, θ3). Since the form factor has no pole at θ2 = θ3, we have suppression of the integral out-
side the lightcone and dominance of small values of θ2, θ3 for |x|/t≪ 1. In this region f∗2 (θ2,

θ1)f2(θ3, θ1)SAA(θ12)SAA(θ31)F
Φ̃
ĀA

(θ2 + iπ, θ3) ≃ |f2(0, θ1)|2SAA(θ1)SAA(−θ1)F Φ̃
ĀA

(iπ, 0),

which reduces to |f2(0, θ1)|2CΦ
0 using (6.9), (6.42) and duality. The integral over θ2 and θ3

is analogous to (6.18) and, taking into account that the other terms in G2 behave in the
same way, we get

G2(x, t) ≃ Bf2

CΦ
0

Mt
, |x|/t≪ 1 . (6.50)

The last contribution to (6.47) comes from the term in (6.48) proportional to ⟨Φ̃⟩, and
is equal to G0 = ⟨ψ2|ψ2⟩ ⟨Φ̃⟩ = ⟨ψ2|ψ2⟩ ⟨Φ⟩a.

Finally, ⟨Φ(x, t)⟩13 includes the off-diagonal contribution proportional to ⟨ψ1|Φ|ψ2⟩ +
⟨ψ2|Φ|ψ1⟩. It is sufficient to consider the first term, which involves

⟨Ā(θ1)|Φ̃(0, 0)|A(θ2)A(θ3)⟩ = F Φ̃
AAA(θ1 + iπ, θ2, θ3) . (6.51)

Since (6.46) shows that this matrix element yields no poles on the integration path, we
have suppression outside the lightcone and dominance of small θ1, θ2, θ3 for |x|/t ≪ 1. In
this region rescaling of the rapidities shows at least a t−3/2 suppression at large times,
which is again subleading with respect to the one-kink contribution.

Putting all together, and recalling that ⟨ψ|ψ⟩ = ⟨ψ1|ψ1⟩+⟨ψ2|ψ2⟩, we see that inclusion
in |ψ⟩ of the two-kink contribution gives again the result (6.20), specialized to the case of
a-independent ⟨Φ⟩a that we considered in this appendix. The difference with respect to the
one-kink result is a change of the constant A that encodes the dependence on the initial
condition.

10This corresponds to the fact that (6.9) has no pole for ⟨Φ⟩a = ⟨Φ⟩b.





Chapter 7

Unitary time evolution in isolated
systems

In this chapter we consider d-dimensional quantum systems which for positive times evolve
with a time-independent Hamiltonian in a non-equilibrium state that we keep generic
in order to account for arbitrary evolution at negative times. We show how the one-
point functions of local operators depend on the coefficients of the expansion of the non-
equilibrium state on the basis of energy eigenstates. We express in this way the asymptotic
offset and show under which conditions oscillations around this value stay undamped at
large times. We also show how, in the case of small quenches, the structure of the general
results simplifies and reproduces that obtained perturbatively in chapter 4.

7.1 Problem and general setting

It is our present purpose to further investigate the properties of unitary non-equilibrium
evolution at large times. To this end, we consider a quantum system in d spatial dimensions
with Hamiltonian {

H0(x, t) , t < 0 ,

H , t ≥ 0 ,
(7.1)

where H does not depend on time and is also translation invariant in space. We are
interested in the time evolution of the system for t > 0, and expand the non-equilibrium
state on the basis of the quasiparticle states |p1, . . . ,pn⟩ of the Hamiltonian H, with
coefficient functions fn(p1, . . . ,pn) which know about the evolution of the system since
t = −∞. The main question we want to answer is how the one-point function of a local
operator Φ depends on the coefficients fn. Hence, in order to study the features of the
generic case, these coefficients are not specified and we perform a non-perturbative analysis
relying on the structural properties of unitary time evolution of quasiparticle modes.

85
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We consider the expectation values ⟨Φ(x, t)⟩ of local, scalar, hermitian operators Φ(x, t).
If I denotes the identity operator, the normalization

⟨Φ(x, t)⟩ = 1 if Φ = I (7.2)

is enforced at t = −∞ and is then preserved by the time evolution. We have

Φ(x, t) = ei(P·x+Ht)Φ(0, 0) e−i(P·x+Ht) , t ≥ 0 , (7.3)

where P denotes the momentum operator. We expand the non-equilibrium state on the
basis of the quasiparticle states |p1, . . . ,pn⟩ of the Hamiltonian H, with coefficient func-
tions fn(p1, . . . ,pn) which know about the evolution of the system since t = −∞. The
main question we want to answer is how the one-point function ⟨Φ(x, t)⟩ depends on the
coefficients fn. Hence, in order to study the features of the generic case, these coefficients
are not specified and we perform a non-perturbative analysis relying on the structural
properties of unitary time evolution of quasiparticle modes.

The state |ψ⟩ of the system can be generally expanded on the basis of asymptotic
quasiparticle states |p1, . . . ,pn⟩ of the theory with Hamiltonian H, which are eigenstates
of energy and momentum with eigenvalues

E =
n∑

i=1

Epi , P =
n∑

i=1

pi , (7.4)

respectively. Energy and momentum of the quasiparticles are related as

Ep =
√
M2 + p2 , (7.5)

whereM > 0 is the quasiparticle mass1 and measures the distance from a quantum critical
point; we also adopt the state normalization

⟨q|p⟩ = (2π)dEp δ(q− p) . (7.6)

The expansion of the state |ψ⟩ on the basis of asymptotic quasiparticle states takes the
form

|ψ⟩ =
∞∑
n=0

∫ ∞

−∞

n∏
i=1

dpi

(2π)dEpi

fn(p1, ...,pn) |p1, ...,pn⟩ , (7.7)

where the coefficient functions fn(p1, . . . ,pn) give the probability amplitude that the state
|p1, ...,pn⟩ is observed at t = +∞.

The one-point function ⟨Φ(x, t)⟩ is related to the expectation value

GΦ(x, t) = ⟨ψ|Φ(x, t)|ψ⟩ . (7.8)

1For the sake of notational simplicity we refer to the case of a single quasiparticle species. Generalizations
will be discussed when relevant.
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⟨Φ(x, t)⟩ is continuous at t = 0, although in general non-differentiable. GΦ(x, 0) does not
automatically coincide with ⟨Φ(x, 0)⟩ and continuity at t = 0 is ensured writing

⟨Φ(x, t)⟩ = GΦ(x, t)−GΦ(x, 0) + ⟨Φ(x, 0)⟩ . (7.9)

Recalling (7.7), we have

GΦ(x, t) =
∞∑

n,m=0

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

fn(p1, ...,pn)f
∗
m(q1, ...,qm)

× FΦ
m,n(q1, ...,qm|p1, ...,pn) e

i[(Q−P)·x+(Ẽ−E)t] , t ≥ 0 , (7.10)

where we used (7.3) and defined

Ẽ =
m∑
j=1

Eqj , Q =
m∑
j=1

qj , (7.11)

and

FΦ
m,n(q1, ...,qm|p1, ...,pn) = ⟨q1, ...,qm|Φ(0, 0)|p1, ...,pn⟩ . (7.12)

The matrix elements (7.12) decompose into the sum of a connected term

FΦ,c
m,n(q1, ...,qm|p1, ...,pn) = ⟨q1, ...,qm|Φ(0, 0)|p1, ...,pn⟩c , (7.13)

plus disconnected terms containing delta functions associated to the annihilations of par-
ticles on the left with particles on the right, namely

FΦ
m,n(q1, ...,qm|p1, ...,pn) = FΦ,c

m,n(q1, ...,qm|p1, ...,pn)

+
n∑

i=1

m∑
j=1

(2π)dEpiδ(pi − qj)F
Φ,c
m−1,n−1(q1, ...,qj−1,qj+1, ...,qm|p1, ...,pi−1,pi+1, ...,pn)

+
n∑

i,l=1
i ̸=l

m∑
j,k=1
j ̸=k

(2π)2dEpiEpl
δ(pi − qj)δ(pl − qk)

× FΦ,c
m−2,n−2(q1, ...,qj−1,qj+1, ...,qk−1,qk+1, ...,qm|p1, ...,pi−1,pi+1, ...,pl−1,pl+1, ...,pn)

+ ... , (7.14)

where the final dots stay for all the terms with more than two annihilations2.

2Clearly, the matrix elements FΦ
m,n with m and/or n equal 0 coincide with the connected ones.
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As a consequence of (7.14), the expectation value (7.10) expands as

GΦ(x, t) = |f0|2FΦ
0,0+

+

∫
dp1

(2π)dEp1

f1(p1)f
∗
0 e

−i(p1·x+Ep1 t)FΦ
0,1(|p1) + c.c.

+

∫
dp1dq1

(2π)2dEp1Eq1

f1(p1)f
∗
1 (q1)e

i[(q1−p1)·x+(Eq1−Ep1 )t]FΦ,c
1,1 (q1|p1)

+

∫
dp1

(2π)dEp1

|f1(p1)|2FΦ
0,0

+

∫
dp1dp2

(2π)2dEp1Ep2

f2(p1,p2)f
∗
0 e

−i(P·x+Et)FΦ
0,2(|p1,p2) + c.c.

+

∫
dp1dp2dq1

(2π)3dEp1Ep2Eq1

f2(p1,p2)f
∗
1 (q1)e

i[(q1−P)·x+(Eq1−E)t]FΦ,c
1,2 (q1|p1,p2) + c.c.

+ 2

∫
dp1dp2

(2π)2dEp1Ep2

f2(p1,p2)f
∗
1 (p2)e

−i(p1·x+Ep1 t)FΦ
0,1(|p1) + c.c.

+

∫
dp1dp2dq1dq2

(2π)4dEp1Ep2Eq1Eq2

f2(p1,p2)f
∗
2 (q1,q2)e

i[(Q−P)·x+(Ẽ−E)t]FΦ,c
2,2 (q1,q2|p1,p2)

+ 4

∫
dp1dp2dq1

(2π)3dEp1Ep2Eq1

f2(p1,p2)f
∗
2 (q1,p2)e

i[(q1−P)·x+(Eq1−E)t]FΦ,c
1,1 (q1|p1)

+ 2

∫
dp1dp2

(2π)2dEp1Ep2

|f2(p1,p2)|2FΦ
0,0 + · · · , (7.15)

where the complex conjugated (c.c.) terms come from the relation

FΦ,c
n,m(p1, ...,pn|q1, ...,qm) = [FΦ,c

m,n(q1, ...,qm|p1, ...,pn)]
∗ (7.16)

satisfied by the hermitian operators we consider. It follows that the expansion (7.10) can
be re-expressed in terms of the connected matrix elements as

GΦ(x, t) =

∞∑
n,m=0

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

gm,n(q1, ...,qm,p1, ...,pn)

× FΦ,c
m,n(q1, ...,qm|p1, ...,pn) e

i[(Q−P)·x+(Ẽ−E)t] , (7.17)

where the coefficient functions gm,n(q1, ...,qm,p1, ...,pn) expand in terms of the coefficients
of (7.10) as

gm,n(q1, ...,qm,p1, ...,pn) =

∞∑
k=0

(m+ k)! (n+ k)!

m!n! k!

∫ k∏
i=1

dai
(2π)dEai

f∗m+k(q1, ...,qm,a1, ...,ak) fn+k(p1, ...,pn,a1, ...,ak) .

(7.18)
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Notice that the contribution to (7.17) with m = n = 0 has, in particular, E = Ẽ = 0,
and is then time-independent. If we subtract it from (7.17) defining

Gs
Φ(x, t) =

∞∑
m,n=0

(m,n)̸=(0,0)

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

gm,n(q1, ...,qm,p1, ...,pn)

× FΦ,c
m,n(q1, ...,qm|p1, ...,pn) e

i[(Q−P)·x+(Ẽ−E)t] , (7.19)

the one-point function (7.9) can be rewritten as

⟨Φ(x, t)⟩ = Gs
Φ(x, t)−Gs

Φ(x, 0) + ⟨Φ(x, 0)⟩ , t ≥ 0 . (7.20)

7.2 Translation invariant case

So far we allowed for t > 0 the presence of spatial inhomogeneities inherited from the time
evolution at negative times. We now consider the case in which such inhomogeneities are
absent and the state of the system is translation invariant. This is a particular case in
which the coefficient functions in (7.7) take the form3

fn(p1, ...,pn) = δ(P) f̂n(p1, ...,pn) , (7.21)

so that we have

|ψ⟩ =
∞∑
n=0

∫ ∞

−∞

n∏
i=1

dpi

(2π)dEpi

δ(P) f̂n(p1, ...,pn) |p1, ...,pn⟩ , (7.22)

and the expression (7.10) for the expectation value becomes

GΦ(t) =

∞∑
n,m=0

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

δ(P)δ(Q)

× f̂n(p1, ...,pn) f̂
∗
m(q1, ...,qm)FΦ

m,n(q1, ...,qm|p1, ...,pn) e
i(Ẽ−E)t . (7.23)

3For n = 0 there are no momenta and (7.21) reduces to f0 = f̂0.
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Use of (7.14) now leads to an expansion in terms of connected matrix elements which for
the subtracted expectation value (7.19) reads

Gs
Φ(t) =

∫
dp1

(2π)dEp1

δ(p1)f̂1(p1)f̂
∗
0 e

−iEp1 tFΦ
0,1(|p1) + c.c.

+

∫
dp1dq1

(2π)2dEp1Eq1

δ(p1)δ(q1)f̂1(p1)f̂
∗
1 (q1)e

i(Eq1−Ep1 )tFΦ,c
1,1 (q1|p1)

+

∫
dp1dp2

(2π)2dEp1Ep2

δ(p1 + p2)f̂2(p1,p2)f̂
∗
0 e

−iEtFΦ
0,2(|p1,p2) + c.c.

+

∫
dp1dp2dq1

(2π)3dEp1Ep2Eq1

δ(p1 + p2)δ(q1)f̂2(p1,p2)f̂
∗
1 (q1)e

i(Eq1−E)tFΦ,c
1,2 (q1|p1,p2) + c.c.

+ 2

∫
dp1

(2π)2dEp1M
δ(p1)f̂2(p1, 0)f̂

∗
1 (0)e

−iEp1 tFΦ
0,1(|p1) + c.c.

+

∫
dp1dp2dq1dq2

(2π)4dEp1Ep2Eq1Eq2

δ(p1 + p2)δ(q1 + q2)f̂2(p1,p2)f̂
∗
2 (q1,q2)e

i(Ẽ−E)t

× FΦ,c
2,2 (q1,q2|p1,p2)

+ 4

∫
dp1dq1

(2π)3dEp1E
2
q1

δ(q1 − p1)f̂2(p1,−q1)f̂
∗
2 (q1,−q1)e

i(Eq1−Ep1 )tFΦ,c
1,1 (q1|p1)

+ · · · . (7.24)

Notice that the terms coming from the connected part of the original matrix elements
(7.12) contain delta functions that do not mix the momenta {pi} and {qj}, while the
terms coming from the disconnected parts involve delta functions of differences of these
momenta. Hence, the expansion in terms of the connected matrix elements can be written
in the form

Gs
Φ(t) =

∞∑
m,n=0

(m,n)̸=(0,0)

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

[
δ(P)δ(Q)hm,n(q1, ...,qm,p1, ...,pn)

+ δ(Q−P) h̃m,n(q1, ...,qm,p1, ...,pn)
]
FΦ,c
m,n(q1, ...,qm|p1, ...,pn) e

i(Ẽ−E)t, (7.25)

with coefficient functions hm,n(q1, ...,qm,p1, ...,pn) and h̃m,n(q1, ...,qm,p1, ...,pn) related

to the coefficients f̂n of (7.23) as

hm,n(q1, ...,qm,p1, ...,pn) = f̂n(p1, ...,pn)f̂
∗
m(q1, ...,qm) , (7.26)
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and4

h̃m,n(q1, ...,qm,p1, ...,pn) =
∞∑
k=1

(m+ k)! (n+ k)!

m!n! k! (2π)d

∫ k−1∏
i=1

dai
(2π)dEai

1

EA+Q

× f̂n+k(p1, ...,pn,a1, ...,ak−1,−A−Q) f̂∗m+k(q1, ...,qm,a1, ...,ak−1,−A−Q) , (7.27)

where

A =
k−1∑
i=1

ai . (7.28)

7.2.1 Large time behavior

For t → ∞ the integrand of (7.25) rapidly oscillates because of the exponential factor

ei(Ẽ−E)t and suppresses the integrals unless the phase is stationary, namely unless the
momenta are small. The coefficient functions and the matrix elements in (7.25) generically
go to constants in this limit5. The behavior for t large enough of the contribution to
(7.25) with (m,n) quasiparticles is then obtained using the non-relativistic expression of
the energies and rescaling the momentum components by

√
t; this gives[

BΦ
m,n t

−(m+n−2+δn,0+δm,0)d/2 + B̃Φ
m,n t

−(m+n−1−δn,1δm,1)d/2

]
ei(m−n)Mt, (7.29)

where BΦ
m,n and B̃Φ

m,n are constants and we took into account that the term (m,n) = (0, 0)
is not present in (7.25). We see that the leading time dependence comes from (m,n) equal
(1, 0) and (0, 1) and corresponds to undamped oscillations. Notice that in absence of the
delta function in (7.22) (i.e. in the generic inhomogeneous case of previous section) the
oscillations coming from the (1, 0) and (0, 1) contributions would be damped as t−d/2.

Since the only relativistic invariant that can be formed from the energy and momentum
of a single particle is a constant, FΦ

m,n with m + n = 1 is a constant. Besides (7.16), the

matrix elements FΦ
m,n with m and n interchanged are related by crossing symmetry [8],

which amounts to analytic continuation in the momenta; this leads to the real constant

FΦ
0,1 = FΦ

1,0 ≡ FΦ
1 . (7.30)

Putting all together, the large time limit of the one-point function (7.20) is given by

⟨Φ(t)⟩ = AΦ +
FΦ
1

(2π)dM
(h1 e

−iMt + h∗1 e
iMt) +O(t−d/2) , t→ ∞ , (7.31)

with
h1 = h0,1(0) + h̃0,1(0) , (7.32)

4For m = 0 and k = 1 there no momenta qi and ai. In this case EA+Q = E0 = M .
5The case d = 1 involves some additional consideration that we postpone to section 7.3.
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and

AΦ = ⟨Φ(0)⟩ −
∞∑

m,n=0
(m,n)̸=(0,0),(1,1)

∫ n∏
i=1

dpi

(2π)dEpi

m∏
j=1

dqj

(2π)dEqj

[
δ(P)δ(Q)

× hm,n(q1, ...,qm,p1, ...,pn) + δ(Q−P) h̃m,n(q1, ...,qm,p1, ...,pn)
]

× FΦ,c
m,n(q1, ...,qm|p1, ...,pn) . (7.33)

In the physical dynamical problems we consider, the f̂n’s in (7.22) are nonzero unless an
internal symmetry6 forces some of them to vanish. In the current case of a single particle
species, a Z2 symmetry may lead to the vanishing of the f̂n’s with n even or of those with
n odd. Since h1 is a sum of terms containing f̂∗nf̂n+1, we have h1 ̸= 0 unless f̂0f̂1 = 0.
Hence, the condition for the presence of undamped oscillations in (7.31) is f̂0f̂1F

Φ
1 ̸= 0.

Notice that the asymptotic offset (7.33) differs from the constant ⟨Φ(0)⟩−Gs
Φ(0) entering

(7.20) for the subtraction of the term (m,n) = (1, 1) in the sum; the reason is that in (7.20)
this term is canceled by the (1, 1) contribution to (7.25), which has Ẽ = E and is time-
independent. Equation (7.29) shows that the first subleading contributions to (7.31) come
from (m,n) equal (0, 2), (2, 0), (1, 2) and (2, 1) and correspond to damped oscillations.

The analysis we performed above is easily generalized along the same lines to the case
of several quasiparticle species a = 1, 2, ..., k with massesMa. In particular, the oscillations
that remain undamped at large times take the form

k∑
a=1

FΦ
1a

(2π)dMa
(h1a e

−iMat + h∗1a e
iMat) +

∑
a,b

Ma ̸=Mb

FΦ
1b,1a(0|0)
(2π)2d

h1b,1a(0, 0)

MaMb
ei(Mb−Ma)t, (7.34)

where the first sum generalizes the term present in (7.31), with FΦ
1a and h1a corresponding

to (7.30) and (7.32) with the specification of the species of the particle. The second sum,
on the other hand, is a contribution arising from the fact that the term (m,n) = (1, 1) is no
longer time-independent when the two particles have different masses; h1b,1a corresponds
to h1,1 of (7.26) with the specification of the quasiparticle species7. We also see that the

condition for the presence of this second type of undamped oscillations is f̂1bf̂1aF
Φ
1b,1a ̸=

0. Once again this condition involves one-quasiparticle states and is satisfied unless an
internal symmetry causes the vanishing of one of the three factors. This clarifies the role
of symmetries for undamped oscillations, a role that had been debated in the literature
(see [102] and references therein). In the perturbative theory of quantum quenches, the
undamped oscillations with frequencies Mb −Ma arise at second order in the quench size
[58], as will also be seen in the next section.

6The symmetry can also be topological, see the example of [87] (chapter 6).
7For a ̸= b, FΦ

1b,1a = FΦ,c
1b,1a follows from the fact that particles of different species cannot annihilate each

other. The contribution multiplying h̃1b,1a is damped at large times.
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7.3 Comparison with perturbative results

The Hamiltonian (7.1) includes as a particular case that in which the negative and positive
time Hamiltonians differ for the change of an interaction parameter, namely the homoge-
neous quench {

H0 , t < 0 ,

H = H0 + λ
∫∞
−∞ dxΨ(x) , t ≥ 0 .

(7.35)

We then refer to Ψ(x) as the quench operator and to λ as the quench size. As seen in
chapter 4, a general perturbative analysis can be performed in the quench size [56], in any
dimension d [59] and for arbitrarily strong interaction among the quasiparticles. When the
system is in the ground state of H0 for negative times, the post-quench state is given by
(7.22) with8 [56, 59]

f̂0 = 1 +O(λ2) , (7.36)

f̂n≥1(p1, ...,pn) = λ
(2π)d

n!E
FΨ
n,0(p1, ...,pn|) +O(λ2) . (7.37)

It then follows from (7.32), (7.26), (7.27) and (7.30) that

h1 = h0,1(0) +O(λ2) = f̂1(0) +O(λ2) =
λ

M
(2π)dFΨ

1 +O(λ2) , (7.38)

and from (7.31) that undamped oscillations

λ
2

M2
FΨ
1 F

Φ
1 cosMt+O(λ2) (7.39)

show up already at leading order in the quench size, as originally shown in [56]. Notice
also that (7.26) leads to

h1b,1a(0, 0) = λ2
(2π)2d

MaMb
FΨ
1aF

Ψ
1b +O(λ3) , (7.40)

so that in perturbation theory the undamped oscillations with frequencies Ma − Mb in
(7.34) arise at second order in the quench size, as observed in [58].

While the expressions (7.39) and (7.40) coincide with those of the perturbative calcu-
lations of [56, 58], a subtlety has to be pointed out: those perturbative calculations were
performed in the basis of the quasiparticle states of the pre-quench theory (i.e. the unper-
turbed theory λ = 0), while the basis we use in this chapter is that of the t > 0 theory. The

8The result (7.37) shows the peculiarity of the case of non-interacting quasiparticles, for which H0 and
the quench operator are quadratic in the excitation modes and FΨ

n,0 vanishes for n ̸= 2. As a consequence
the post-quench state is made of pairs of quasiparticles with opposite momenta, a structure that does not
occur for interacting quasiparticles.
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point, however, is that the difference between the two bases can be ignored when working
at leading order in perturbation theory9.

We see from (7.36), (7.37), (7.26) and (7.27) that hm,n are of order λ2 unless m or n
vanish, and that h̃m,n are in any case of order λ2. It follows that the asymptotic offset
(7.33) takes the form

AΦ = ⟨Φ(0)⟩ −
∞∑
n=1

∫ n∏
i=1

dpi

(2π)dEpi

δ(P)
[
h0,n(p1, ...,pn)F

Φ
0,n(|p1, ...,pn) + c.c.

]
+O(λ2) ,

(7.41)
where ⟨Φ(0)⟩ is now the expectation value on the ground state of the pre-quench theory,
and

h0,n(p1, ...,pn) = f̂∗0 f̂n(p1, ...,pn) = λ
(2π)d

n!E
[FΨ

0,n(|p1, ...,pn)]
∗ +O(λ2) . (7.42)

It was shown in [57] that (7.41), (7.42) lead to

AΦ = ⟨Φ⟩λ +O(λ2) , (7.43)

where ⟨Φ⟩λ is the expectation value on the ground state of the post-quench theory. The non-
perturbative expression (7.33) suggests that in general there is no simple way of expressing
the offset.

In our analysis of the large time behavior of one-point functions in the previous section
we used the fact that the matrix elements (7.13) generically go to some finite constant
when the momenta tend to zero. In d = 1, however, the quasiparticles often possess a
fermionic statistics10, and for the matrix elements (7.13) this leads to a zero when qi = qj

or pi = pj , as well as to a pole11 when qi = pj . The combined effect of these poles and
zeros in the matrix elements (7.13) and in the coefficient functions which multiply them in
the expressions such as (7.25) can affect the powers of time in (7.29), but not the undamped
oscillations in (7.31) which are generally derived in any dimension. The perturbative results
recalled above are of course consistent with this fact, and indicate that fermionic statitistics
in d = 1 affects the decay of the remainder in (7.31) (t−3/2 instead of t−1/2) [56,59]. If the
quasiparticles have fermionic statistics the suitable sign factors have to be introduced in
(7.14) and will affect the combinatorial prefactor in (7.27).

7.4 Final remarks

In this chapter we studied the non-equilibrium dynamics of quantum statistical systems in
d spatial dimensions which for positive times evolve with a Hamiltonian H which is time-

9This is true in the generic case for which the quasiparticle content does not change when passing from
λ = 0 to λ small. See [57] for the discussion and examples of the special case in which this condition is not
fulfilled.

10The basic example is provided by the Ising chain, see [23] for a review.
11The residues on such annihilation poles are generally known in the case of integrable theories, see [85].
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independent and translation invariant in space. The non-equilibrium state was expanded
on the basis of energy eigenstates (asymptotic quasiparticle states) of H, with coefficient
functions fn which were left generic in order to account for arbitrary evolution for t < 0
under some Hamiltonian H0(x, t). We then showed how the evolution for positive times of
the one-point functions of local operators (e.g. the order parameter) depends on the fn’s.

While the theory shows that the large time dynamics is determined by low-energy
modes, our framework ensures that the results hold also in the vicinity of quantum critical
points. It also allows to appreciate the role played by the connectedness structure of matrix
elements, a circumstance noted since [69], where this structure was shown to account for
the lightcone spreading of correlations in two-point functions.

In the generic case (7.1), in which translation invariance is absent, the theory leads to
oscillations of the one-point functions that normally decay as t → ∞. This is the case,
in particular, when the system is confined in a finite region of space before this spatial
constraint is removed for t > 0 (release from a trap12). In such a situation, the energy
density carried by the quasiparticle excitations goes to zero in any point of space as t→ ∞
(local dissipation) and is insufficient to sustain the oscillations at large enough times. A
first illustration of this phenomenon was given perturbatively in [58, 59] in the framework
of inhomogeneous quantum quenches.

On the other hand, when the analysis is specialized to the case in which no spatial
inhomogeneity is inherited from negative times, the theory shows that one-point functions
exhibit undampend oscillations when no internal symmetry prevents a one-quasiparticle
contribution to the non-equilibrium state or the coupling of the operator to this contri-
bution. This result confirms the one obtained perturbatively since [56, 58] for the case of
the instantaneous change of an interaction parameter. Since the theory shows the role
of translation invariance in keeping the oscillations undamped, observing no damping in
the cases predicted by the theory can be used to test up to which timescale numerical
simulations remain reliable (i.e. insensitive to finite size or other undesired effects).

We also obtained the expression (7.33) of the asymptotic offset of one-point functions
in terms of the matrix elements of the operator and of the coefficients specifying the non-
equilibrium state. We showed how the structure of this result simplifies in the particular
case of a small quench from the ground state and allows, up to higher order corrections in
the quench size, the resummation originally shown in [57]. While no similar resummations
seem likely for the full result (7.33), it is known that expansions over quasiparticles modes
often converge rapidly providing very good approximations from the first few terms13. It
will be interesting to investigate to which extent this happens in the present case.

12See the early experimental realization of [103], where oscillations were observed.
13This has been checked in detail for integrable models, see [23].
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