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Abstract

In the highly relativistic regime around compact objects, signatures of new physics may

be unravelled. For example, dark matter and dark energy problems may be alleviated by

new scalar degrees of freedom. If light scalars are coupled to matter, in relation to the

dark energy problem, they generally mediate a fifth force, which could in turn contribute

to gravitational phenomenology. In order for this phenomenology to be consistent with

existing constraints, it must be suppressed close to matter sources, e.g. through a non-

linear screening mechanism. In regard to the dark matter problem, some compact objects

may in fact be constructed from beyond Standard Model matter. In particular, boson

stars are useful toy models for exotic compact objects that could be produced in the Early

Universe or indeed for understanding the behavior of matter under extreme conditions.

First, we consider a two-body problem in shift-symmetric scalar-tensor theories that

exhibit kinetic screening. The highly non-linear nature of the theory doesn’t allow for

an analytical solution away from spherical symmetry. We will present an approximate

scheme that allows for a qualitative insight and, in most of the parameter space, very

good quantitative agreement with the full numerical results. We will further discuss the

partial breakdown of the screening in such systems that could allow for further constraints

of these theories.

Second, we consider the most compact boson stars that have a false vacuum in their

potential (soliton boson stars), in isolation and in binaries. In the former case, we derive the

analytic solutions in spherical symmetry and compare it with the fully numerical ones. In

the high-compactness limit we find that these objects present an e⇥ectively linear equation

of state, thus saturating the Buchdahl limit with the causality constraint. Far from that

limit, these objects behave either as flat space-time Q-balls or (in the low-compactness

limit) as mini boson stars stabilized by quantum pressure. We establish the robustness of

this picture by analyzing a variety of potentials (including cosine, quartic and sextic ones).

Finally, we study the coalescence of two boson stars via numerical evolution of the fully

relativistic Einstein-Klein-Gordon equations. Owing to the steep mass-radius diagram,

we can study the dynamics and gravitational radiation from unequal-mass binary boson

stars with mass ratios up to q ≈ 23 without the di⌅culties encountered when evolving

binary black holes with large mass ratios. Similar to the previously-studied equal-mass



case, our numerical evolutions of the merger produce either a non spinning boson star or a

spinning black hole, depending on the initial masses and on the binary angular momentum.

Interestingly, in contrast to the equal-mass case, one of the mechanisms to dissipate angular

momentum is now asymmetric, and leads to large kick velocities (up to a few 104 km/s)

which could produce wandering remnant boson stars. We also compare the gravitational

wave signals predicted from boson star binaries with those from black hole binaries, and

comment on the detectability of the di⇥erences with ground interferometers.
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M. Bezares, M. Bošković, S. Liebling, C. Palenzuela, P. Pani, and E. Barausse,

“Gravitational waves and kicks from the merger of unequal mass, highly compact

boson stars,” Phys. Rev. D, vol. 105, no. 6, p. 064067, 2022. [arXiv: 2201.06113]



Acknowledgements

I would like to thank my supervisor Enrico Barausse for all the discussions, advice and

collaborations on Refs. [1, 2, 3] that allowed me to learn a lot on numerical methods,

gravitational wave physics, scalar-tensor theories and other topics. The experience and

the opportunities that I had by being a member of his GRAMS group have been very

valuable. Many thanks are due to my other collaborators on Ref. [2].

I am very grateful to many people with whom I have had the opportunity to discuss the

topics in this thesis as well as other related physics topics (some of them being kind enough

to also read parts of this manuscript) - foremost Miguel Bezares on numerical methods,

soliton stars and kinetic screening, Mario Herrero-Valea on E⇥ective field theories, as

well as to Vitor Cardoso, Paolo Creminelli, Marco Crisostomi, Nicola Franchini, Matthias
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Part I

Introduction

12





In this Part we will provide a theoretical foundation and phenomenological motivation

for the research described in Part II and III. First, in Ch. 1, we will describe e⇥ective

field theories (EFT) and, in particular, their classical regime, which we will be working

with. Secondly, in Ch. 2, we will discuss cosmological problems (dark matter, dark energy)

which motivate the particular theories we shall be considering.

Throughout this thesis, we will employ a metric signature ⇥+++ and natural units

c = � = 1, with M2
Pl = 1/8πG and m2

Pl = 1/G. The only exception is Ch. 5 where we will

be working with geometrical units G = c = 1.
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Chapter 1

Theoretical consistency of classical

EFTs

All theories considered in this thesis are e⇥ective field theories (EFT). In this chapter we

will provide an overview of the main aspects of EFTs and discuss the, sometimes subtle,

issues regarding their regimes of validity (Sec. 1.2), classical dynamics of the EFT (Sec. 1.3)

and what kind of EFTs can have a UV completion (Sec. 1.4).

1.1 Effective field theories

Nature is organized by scales. This has profound consequences on the organization of

our understanding of the natural world - in order to understand the behavior of cellular

membranes we do not need detailed knowledge of nuclear physics, nor do we need a full

theory of quantum gravity to calculate the scattering amplitudes for events at the Large

Hadron Collider. Separation of scales, in particular low-energy [infra-red (IR)] physics from

high-energy scales [ultra-violet (UV)], is the foundation for success of the EFT approach

in (quantum) field theory. Although the rise and appreciation of EFT has historically

taken place in the context of particle physics (e.g. Fermi theory as a low-energy limit of

the electro-weak theory) [4], in this thesis we will focus on EFTs related to gravitational

physics in the classical regime.

Any EFT has three key ingredients - relevant degrees of freedom which should describe

physics at the particular scale; symmetries that constrain the form of the e⇥ective action

and the expansion parameter which, together with the power counting scheme, sets the

hierarchy between the terms in the action [5, 6, 7]. In contrast to renormalizable theories

where all infinities that arise in perturbative calculation can, after regularization, be

absorbed by the redefinition of the finite number of theory parameters (renormalization),

in the EFT one would need an infinite number of terms to renormalize the theory. Thus,

EFTs are non-renormalizable theories - even if one starts with a finite number of terms

15



in the EFT action, all other terms allowed by the symmetry would be generated at the

quantum level. However, calculations performed with the EFT are predictive if performed

in the regime of validity of the EFT.

We will now provide three examples relevant for this work. First, we consider a complex

scalar EFT after integrating out a real scalar. Such a theory can serve as a UV completion

of Q-ball/Boson star models from Part III. Secondly, we consider a Goldstone boson EFT

from a Higgs potential, theory closely related to k-essence theories that admit screening

and are the focus of Part II. Finally, we discuss GR that permeates the whole thesis (as

well as the Universe).

1.1.1 Example 1: Integrating out a massive scalar

Let us consider a renormalizable (UV) theory of one complex and one real scalar

L = ⇥⇥µ⌃⇥
µ
⌃

† ⇥ 1

2
⇥µ⇤⇥

µ⇤ ⇥ µ2|⌃|2 ⇥ 1

2
m2

ψ⇤
2 ⇥ ⌅|⌃|4 ⇥ ⇧⇤|⌃|2 ⇥ 1

2
⌃⇤2|⌃|2 , (1.1)

where |⌃|2 = ⌃
†
⌃. We will consider the limit of the massive real scalar mψ ⇤ p, where p

is a typical momentum scale of the low-energy process that we are interested in. The EoM

for ⇤ is from Eq. (1.1)

�⇤ = ⇧|⌃|2 +mψ⇤ + ⌃|⌃|2⇤ (1.2)

As we are interested in p2 ⌅ m2
ψ we can drop the kinetic term and invert for ⇤

⇤ = ⇥⇧|⌃|2

m2
ψ

+
⇧⌃|⌃|4

m4
ψ

⇥ ⇧⌃2|⌃|6

m6
ψ

+O

 

|⌃|8

m8
ψ

,
p2

m2
ψ

!

. (1.3)

Substituting this expression back in the Lagrangian (1.1) we obtain the e⇥ective action for

⌃. In this way, we have integrated-out the massive scalar ⇤ at the classical (tree) level and

the e⇥ective action for ⌃ will now contain an infinite number of operators (consistent with

U(1) symmetry) that encode the UV physics. For the purposes of Pt. III we will write the

e⇥ective potential, up to the sixth term, in the following form

V6 = µ2|⌃|2
�

1⇥ 2
|⌃|2

⌥2
0

⇥2

, ⌥2
0 =

m2
ψ

⌃
⇥

2⌅m4
ψ

⌃⇧2
. (1.4)

As [⌅] = [⌃] = 0 and [⇧] = 1, if we assume that ⇧ ⇧ mψ, then, ⌅ ⇥ 1/2 and ⌃ > 0 in order

for the matching to make sense.
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1.1.2 Example 2: Goldstone boson from the Higgs potential

Consider a complex scalar renormalizable theory with a Higgs potential

LH = ⇥⇥µ⌃⇥
µ
⌃

† ⇥ VH , VH =
λ

2

�

|⌃|2 ⇥ v2

2

⇥2

. (1.5)

In the weak-coupling regime λ ⌅ 1, the ground state of the theory is given by |⌃|2 = v2/2

and it spontaneously breaks the global U(1) symmetry. According to the Goldstone

theorem this will lead to massless (gapless) excitations of the vacuum [8, 7]. We can

manifest this by performing the field redefinition:

⌃ =
v⌃
2
(1 +  ) exp (i⌦) . (1.6)

In this way the Lagrangian (1.5) becomes

LH = ⇥v2
⇤

1

2
⇥µ ⇥

µ
 +

1

2
(1 +  )2X + V⇥

⌅

(1.7)

V⇥ =
M2

⇥

2

�

 
2 +  

3 +
1

4
 
4

⇥

, M2
⇥ = λv2 , X = ⇥µ⌦⇥

µ⌦ . (1.8)

In the phase of the non-trivial vacuum, the theory describes a mutually interacting massless

scalar ⌦ (Goldstone boson) and a massive and self-interacting scalar  .

From the above action (1.7) the equations of motion (EoM) follow:

� ⇥ (1 +  )X ⇥ V �( ) = 0 (1.9)

⇥µ[(1 +  )⇥µ⌦] = 0 . (1.10)

Following [9], we can write the formal solution for the heavy degree of freedom, using the

Green function method

 (x) = ⇥
Z

d4x�G(x, x�)

⇧

(1 +  )X +

�

V ⇥ 1

2
M2

⇥ 
2

⇥⌃

, (1.11)

(⇥�+M2
⇥ )G(x, x�) = ↵(4)(x⇥ x�) , (1.12)

where all terms in the square bracket on the RHS of Eq. (1.11) are evaluated at x�.

Expanding G(x, x�) and  (x) in powers1 of M⇥2
⇥ and solving order-by-order we obtain an

1Note that, as in Sec. 1.1.1, the dimensionless expansion parameter is p2/M2
ρ , where p is the typical

momentum of the relevant low-energy process and thus powers of M−2
ρ are associated with the perturbative

bookkeeping parameter.
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e⇥ective action for the Goldstone boson

LX = ⇥v2
⇤

1

2
X ⇥ 1

2M2
⇥

X2 +
2

M4
⇥

⇥µX⇥µX +O(M⇥6
⇥ )

⌅

. (1.13)

Note that, as usual, when the symmetry-breaking scale v is larger than the UV scale

M⇥ =
⌃
λv (as λ ⌅ 1), the symmetry of the UV theory is non-linearly realized in the

EFT [7] - in this case, as a shift symmetry ⌦ ⌥ ⌦+ c.

1.1.3 Example 3: General Relativity

Historically, GR was developed by Einstein trying to simultaneously find a dynamical

generalization of Newtonian gravity (analogously to how Maxwell’s electrodynamics gener-

alized electrostatics) and resolve conceptual puzzles of Newtonian mechanics regarding

absolute vs. relative motion [10]. Einstein’s formulation of GR had, at its heart, the

equivalence principle and general covariance as a symmetry of the theory. The subsequent

development of quantum physics posed a question of quantization of classical GR (as quan-

tum electrodynamics was formulated by quantizing Maxwell’s electrodynamics). Although

(quantized) GR can be formulated at the perturbative level [5], a full theory of quantum

gravity is yet to be found.

From a modern perspective, classical physics should arise as an approximation of a

fundamental quantum description. Indeed, just from unitarity and Poincare invariance

one can classify all possible particles by their spin and mass. A natural candidate for the

graviton would be a massless boson particle. As massless particles with spin higher than

3 must be non-interacting (and spin-1 particle carries charge of both signs), in order to

have a single force carrier one can either have a spin-0 or a spin-2 graviton [11, 12, 13].

Furthermore, as spin-0 particles do not couple to light to and hence contradict e.g.

Edington’s experiment, gravity should be described by a spin-2 particle (at least to leading

order, see Sec. 2.2.3). One can further show that classically GR is a unique non-linear

completion of the spin-2 linear theory [14, 15, 13]

LGR = ⇥⌃⇥g
1

2
M2

PlR , (1.14)

where R(⇥g, ⇥2g) is the Ricci scalar and gµ⇤ is the metric tensor. In this way, GR arises

naturally from requiring that the world is both quantum and relativistic. Furthermore,

general covariance is just a (useful) gauge redundancy forced on us for using an object

that naturally carries five degrees of freedom (spin-2 tensor field) to describe a two degree

of freedom particle [16, 17].

Simple power counting (see the next Sec. 1.3) shows that GR is a non-renormalizable

theory. One thus expects that the Einstein-Hilbert term is just part of the whole tower of

18



higher-derivative operators, consistent with general covariance, that encode short-distance

(Planckian) physics [7, 18]. In contrast to the previous two examples, UV completion of

GR is not known and consequently also the values of the coe⌅cients of higher-derivative

corrections (Wilson coefficients). After removing redundant operators 2

LGREFT = ⇥⌃⇥g

⇤

⌥cc +
1

2
M2

PlR +
⌥

a1R
2 + a2Rµ⇤R

µ⇤
�

+O

�

R3

⌥

⇥⌅

, (1.15)

where ⌥cc is the cosmological constant, ⌥ is the strong-coupling scale, ai are dimensionless

coe⌅cients ∼ O(1).

1.2 Radiative stability of an EFT

Let us consider a power counting scheme, based on the momentum scaling of the N -

point scattering amplitude A and using the dimensional regularization. By splitting the

Lagrangian in the free L0 and the interaction part Lint [7]

L0 = ⇥ f 4

⌥2ν2

 

(⇥⇤)2 +m2⇤2
⌦

, Lint = ⇥f 4 cn
⌥dnνfn

On (1.16)

A ∼ f 4

�

1

ν

⇥N �

k⌥

4πf 2

⇥2L �
k

⌥

⇥2+
P

n
(dn⇥2)Vn

, (1.17)

where ⇤ denotes a low-energy bosonic field of mass m, ν and ⌥ are typical high-energy

scales related to the field and the derivative expansion, f is a typical high-energy density

that needs to be set to f = ⌥
2ν2/2 in order to have a canonical normalization, the set

(fn, dn, Vn) counts the number of power of fields, derivatives and vertices in the interaction

On, N and L represent the number of external lines and loops (all in respective order).

In order to illustrate the above power counting let us first consider a generic shift-

symmetric scalar EFT

LX = K(X) + ⌥
4
X

l=1,k=1

⇥lXk

⌥l+k
, K(X)  ⌥

4
X

n=1

cn

�

X

⌥

⇥n

(1.18)

From Eq. (1.17) it follows

A ∼ ⌥
4⇥N

�

k

⌥

⇥N+4L

. (1.19)

In other words, loop correction from the terms organized in K(X) cannot change the tree

2Inter alia, using the topological nature of the Gauss-Bonnet term LGB = R2⇥4Rµ⇥R
µ⇥ +R⇤⌅⇧⌃R

⇤⌅⇧⌃.
Note that in the vacuum GR Rµ⇥R

µ⇥ = R = 0 and the first higher-curvature correction is cubic in the
curvature.
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level coe⌅cients cn as they have too many powers of the momentum. This is an example of

the non-renormalization property shared among massless, derivatively coupled theories [19].

Another example of such theory is precisely GR. Expanding the Einstein-Hilbert action

around Minkowski as

gµ⇤ = ηµ⇤ +
hµ⇤

MPl

, LEH ∼
X

n=0

�

h

MPl

⇥n

(⇥h)2 (1.20)

we find the same property

A ∼ M4⇥N
Pl

�

k

MPl

⇥2+2L

. (1.21)

This can be checked explicitly for higher-curvature terms.

The non-renormalization property is responsible for the radiative stability of the classical

regime of these theories. As the external momentum is set by the typical curvature scale of

the background k2 ∼ ⇥2 the above results imply for GR that one can be in the classically

non-linear (strong-field) regime, but the higher-curvature (quantum) correction will be

sub-dominant. As an illustration in the Schwarzschild spacetime, a gauge-invariant object

that measures the curvature is the Kretschmann scalar given by

K

M4
Pl

 

1

M4
Pl

R⌅⇧⌃⌥R
⌅⇧⌃⌥ = 48

↵rS
r

�2

(MPlr)
⇥4 , rS =

M

m2
Pl

(1.22)

where r is the Schwarzshild coordinate, rS is the Schwarzshild scale and M is the ADM

mass of space-time. For su⌅ciently heavy black hole (BH) [heavier than ∼ µg] the

description of BH horizons is well in the regime of validity of the EFT although certainly

a nonlinear phenomena (as is the case of the formation of BH horizons through the stellar

collapse or the coalescence of binary compact objects). In contrast, as one approaches the

classical singularity r ⌥ 0 higher-curvature corrections will become important and the

EFT will break down. In this way, singularities are not a consistent prediction and one

expects that the full theory of quantum gravity (UV completion of GR) will resolve them.

1.2.1 K(X) theories

The non-renormalization property of K(X) is manifest in the UV-complete example of the

Goldstone boson where we found [Eq. (1.13)] that the first correction in X was ⇥2X. In

the case of this UV completion, as the heavy mode  couples with φ through its derivative

[Eq. (1.11)], higher-derivative corrections in the EFT will be of the ⇥X form. This stays

true in the case of an explicit matching at the one loop level [20]. Similarly to GR, the

non-renormalization property of shift-symmetric theories allows one to study nonlinear

classical solutions of K(X) theories in the EFT regime of validity as long as ⇥ ⌅ ⌥.
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For future applications, let us thus ignore higher-curvature terms in (1.18) and source

the scalar with the trace of the energy-momentum tensor by softly breaking the shift

symmetry ⌅T/Mb, Mb ⇤ ⌥. EoM that follow in the non-relativistic limit is given by

⇥i(KX⇥
i⌦) =

1

2

⌅

Mb

T , KP  
⇥K

⇥P
. (1.23)

Let us consider an isolated point-particle source (positioned at the origin) and the (finite)

polynomial kinetic function

T = ⇥ma↵
(3)(r) , K(X) = ⌥

4KN(X) , KN(X) =
N
X

n=1

cn
2n

X n , X =
X

⌥4
(1.24)

In the classical nonlinear regime, the highest power of X will dominate and thus

�

⇥r⌦

⌥2

⇥2N⇥1

≈ 1

⇥cN

↵rsc
r

�2

(1.25)

rsc =

r

m⌅

4πMb⌥
2
, (1.26)

where rsc is the kinetic screening radius (analogue to the Schwarazhild radius in the GR

example). If we take cN < 0 , ⌦N > 2 and cn ∼ O(1) , 1 < n < N , the scalar force will

be suppressed (screened) with respect to the Newtonian r⇥2 behavior.

In order to understand the condition on which regions of this background are in the

EFT regime of validity, we will use the background field method as in Refs. [21, 22, 23].

Let us first be slightly more general and decompose the action around the slowly-varying

background ⌦̄ as ⌦ = ⌦̄+ π to a quadratic order

L2 = ⇥1

2
Zµ⇤⇥µπ⇥⇤π , Zµ⇤ = ⇥2K̄Xη

µ⇤ ⇥ 4K̄XX⇥
µ⌦̄⇥⇤⌦̄ , (1.27)

where the linear term vanishes from the EoM, K̄, X̄ are evaluated in the background and

we are ignoring the e⇥ects of GR. The above formulation suggest introducing an e⇥ective

metric ⌃µ⇤

⌃⇥⌃⌃µ⇤
 Zµ⇤ . (1.28)

In general, the transformation ηµ⇤ ⌥ ⌃µ⇤ is disformal. In the case of the polynomial kinetic

function and the static spherically symmetric setting the transformation is approximately

conformal to the Minkowski spacetime

Zµ⇤ = ⇥X n⇥1diag

�

⇥1, 1 + 2(n⇥ 1),
1

r2
,

1

r2 sin ✏

⇥

(1.29)
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We will thus take the metric to be conformal to Minkowski as the correction term will

not influence the overall parametric scaling. Using the heat kernel regularization and

Barvinsky-Vilkovsky covariant perturbation theory [24, 25, 26, 5], one obtains the following

e⇥ective action at the one-loop [22]

L1⇥loop ∼ ⌃⇥⌃

�

⌥
4
c + ⌥

2
c

R

6
+

1

240

⌥

R2
⌃ + (R⌃)µ⇤R

µ⇤
⌃

�

⇥

. (1.30)

As power-law divergences are not calculable in the EFT we will assume that they are

renormalized in the UV theory and ignore them (technically, they are zero in dimensional

regularization) [22]. As curvature-squared terms are of the same order we will just focus on

the R2
⌃ term as a representative of the one-loop quantum corrections (see Ref. [22, 23] the

full discussion and on the higher-loops). Thus, the the classical background is radiatively

stable if

⌃⇥⌃R2
⌃ ⌅ K(X) (1.31)

As the curvature of the conformally flat space-time defined from Eq. (1.28) is given by [27]

R⌃ = ⇥6
1

⌃
KX

3

1⌃⇥⌃
⇥µ

↵⌃⇥⌃⌃µ⇤⇥⇤
p

KX

�

, (1.32)

one finds the scale where the quantum corrections become relevant (as in [22])

rpolyUV ∼ 1

⌥
(⌥rsc)

⇥N/(N⇥1) . (1.33)

Note however that the scalar gradients do not grow arbitrarily, because at some point

the radius of the source (e.g. a star) is reached. As demonstrated in Sec. 3.2.3, the

maximal value of X is reached at the surface of the object. X then decreases as one

progresses towards the center, ultimately entering the linear regime. Thus, a su⌅cient

criterion to assess whether one is in the EFT regime consists of checking whether rUV ≈ R,

where R is the e⇥ective radius of the source. Let us focus for concreteness on quadratic

k-essence. From Eqs. (1.25) and (1.33) one has

r
(N=2)
UV ≈ 10⇥43km

↵ ⌅

0.1

�⇥1
�

⌥

meV

⇥⇥1 �
m

M⇤

⇥⇥1

. (1.34)

For cosmologically motivated values of ⌥ ∼ meV [see Part II] and any astrophysical object,

one is clearly in the regime of validity of the EFT.

It needs to be said that the previous discussion, although technically correct, is

somewhat at odds with the Wilsonian spirit of the EFT (unequal treatment of di⇥erent

sectors of higher-derivative operators). This construction thus relies heavily on the existence
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of an appropriate UV completion - both in order to renormalize the power-law divergences

and to provide a specific form of the kinetic function.

1.3 Classical EFT predictivity

EFTs in particle physics are usually used to calculate scattering amplitudes. In this way,

the perturbative nature of the EFT is built in from the start and one can explicitly find

the scales at which the EFT breaks down. On the other hand, in the classical regime one

instead derives the EoM, which are partial di⇥erential equations (PDE), usually elliptic or

hyperbolic in nature. Then, a boundary/initial value problem (IVP/BVP) is posed on

some domain, which may also be the whole space-time. In that way we would treat the

EFT as a “fundamental theory”, which is obviously not a consistent approach. This is,

however, corrected a posteriori by indicating which regions of the classical solution are

outside of the regime of validity of the EFT. In the particular elliptic problems considered

in Sec. 1.2, these regions can be either “excised” and matched to the interior of the source

(both in GR and K(X) theories) or “hidden” inside the horizon (in GR).

Tensions between the EFT approach and the classical description illustrated above are

even more pronounced in dynamical scenarios. We will consider two such issues in turn:

Ostrogradsky instabilities and well-posedness of the IVP.

1.3.1 Ostrogradsky instability

Higher-derivative terms appear in the EFT expansion by construction, as seen in all three

examples analyzed thus far. They generally lead to higher-than-second order EoM. Let us

consider an explicit example [28]

Lg = ⇥1

2
(⇥⌦)2 ⇥ V (⌦) +

a

2⌥2
(�⌦)2 + J⌦ , a = ±1 (1.35)

EoM and the propagator structure that follow are

�⌦⇥ a

⌥2
�2⌦+ V �(⌦) = J , Π0 =

1

�⇥ a
Λ2�2

=
1

�
⇥ 1

�⇥M2
g

, M⇥2
g  

a

⌥2
, (1.36)

where we have considered the leading order propagator Π0 in the self-coupling defined by

V . The last equality shows that the starting Lagrangian “secretly” describes two degrees

of freedom: massless scalar and a massive one with a wrong-sign kinetic term. The degree

of freedom with a wrong-sign kinetic term is referred to as a (Ostrogradsky) ghost. Let us

see this explicitly by reformulating the original theory with the auxiliary field (modulo the
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source)

Lg = ⇥1

2
(⇥⌦)2 ⇥ V (⌦) + ⇣�⌦⇥ ⌥

2

2a
⇣2 , ⇣ = a

�⌦

⌥2
, (1.37)

where the equation on the right follows from the EoM. Introducing the field redefinition

⌦ = ⇤ ⇥ ⇣ we find

Lg = ⇥1

2
(⇥⇤)2 +

1

2
(⇥⇣)2 ⇥ V (⇤,⇣)⇥ ⌥

2

2a
⇣2 , (1.38)

The presence of the ghost implies the instability of the theory as the Hamiltonian is

unbounded from below. Furthermore, if a = ⇥1, the ghost is also a tachyon i.e. it has

negative mass. Tachyons in and of themselves are not necessarily pathological - they

indicate that the perturbation is not performed around the true vacuum of the theory, as

in the action (1.5) [29, 30].

A more general analysis, by Ostrogradsky, demonstrates that the instability is present for

a generic higher than second order EoM in both mechanical and classical-field systems [30].

From the EFT perspective, ghosts indicate that the cut-o⇥ of the the EFT expansion must

be lower than the ghost mass Mg [28, 9]. As long as one is in the regime of validity of the

EFT, the ghost degree is not excited. Thus, the requirement for a healthy theory would

be not to have, for example: a wrong-sign kinetic term in the renormalizable theory; a

ghost term in the “principal” sector of theories that can sustain radiatively stable classical

nonlinear regimes (GR and K(X)). This is also manifest in the first two examples in

Sec. 1.1.1, 1.1.2, where the ghost terms are generated in the low-energy expansion of a

perfectly healthy UV completion with second-order EoM. Thus, the presence of ghosts

is a practical problem of EFT predictivity and not an essential problem of the theory

under consideration. In more detail, one needs to identify those solutions in the EFT that

are low-energy expansions of the UV theory i.e. the solutions that arise as series in the

high-energy scale ⌥
⇥1 (e.g. in Sec. 1.1.1, 1.1.2) [9, 31]. Furthermore, by use of local field

redefinitions and removing total derivatives, terms that would superficially lead to higher

order EoM may in fact be redundant operators. For example, for shift-symmetric scalar

theory one can show that it can be formulated in a ghost-free way up to dimension-11

operators [32].

Finally, let us note that not all of the higher-derivative terms lead to such a ghost-like

instability. Aside from the redundant operators, a class of operators invariant under the
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generalized shift symmetry (Galileon3 symmetry)

φ ⌥ φ+ c+ bµx
µ , (1.39)

also lead to second order EoM [33].

1.3.2 Well-posedness of the IVP

The absence of ghosts does not necessarily imply that the classical dynamics of an EFT are

unproblematic. Instead, one needs to understand whether the classical problem, defined by

the PDE system and prescribed data (i.e. BVP/IVP), is well-posed (Hadamard criteria)

- the problem has a solution; the solution is unique and it depends continuously (with

respect to a function space) on the initial/boundary data [34].

Let us first consider most general second-order PDE in R
n

Df = 0 , D  aij(x)⇥i⇥j + bi(x)⇥i + c(x) , (1.40)

where x = (x1, ..., xn) is a vector on R
n and consider a high-frequency plane wave ansatz

f = exp

�

⇥kix
i

⌘

⇥

, ⌘ ⌅ 1 . (1.41)

To leading order we have

Df = ⇥ 1

⌘2
⌥p +O(⌘⇥1) , ⌥p

 aijk
ikj , (1.42)

where the quadratic form ⌥p is a principal symbol of the PDE. The real symmetric matrix

aij has real eigenvalues whose sign allows one to classify the PDE type. In more detail, the

equation can be elliptic [eigenvalues have the same sign], (ultra)hyperbolic [one (or more)

eigenvalues have a di⇥erent sign] and parabolic [at least one zero eigenvalue] [34]. For

example, in the wave equation ⇥⇥2
t φ+↵2φ = 0 the quadratic form defines the Minkowski

metric in which the waves propagate. Wick rotation of the time variable t ⌥ it makes the

problem elliptic (Laplace equation) and the eigenvalues have the same sign.

In the case of the hyperbolic equation, the plane wave Ansatz in the high-frequency

limit ⌥p ≈ 0 defines a light cone. In general, a surface defined by

f(xi) = 0 , aij⇥if⇥jf = 0 (1.43)

is the characteristic hypersurface that describes the propagation of the solution (signal)

3In 4-dimesional space-time there are exactly five Galileon operators [33]. These operators have
remarkable properties, such as the stronger form of non-renormalization than the one discussed for GR
and K(X) theories [19].
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from the initial data. Let us focus for simplicity on the 1+1 case. The implicit definition of

the characteristic surface f(x, t) = 0 implies x = x(t). Thus, one can find the characteristic

velocity in the following way

h

⇥tf ⇥xf
i

"

a00 a01

a01 a11

#"

⇥tf

⇥xf

#

= 0 =⇒ c  
⇥x

⇥t
= ⇥⇥a01 ±

p

a201 ⇥ a00a11
a01

. (1.44)

In the case of the wave/Laplace equation we have two/zero real characteristic curves,

respectively. Furthermore, the characteristic velocity is c = ±1 for the wave equation - as

expected.

As an illustration of how well-posedness is connected to the characteristic analysis,

consider paradigmatic examples of mixed-type PDEs in 1 + 1

⇥2
t f + t⇥2

xf = 0 , ⇥2
t f +

1

t
⇥2
xf = 0 , (1.45)

known as Tricomi and Keldysh equations, respectively [35, 34]. Depending on the sign

of the time variable t, the equations change their character. In particular, for t < 0,

t = 0 and t > 0, these equations are hyperbolic, parabolic and elliptic, respectively. Their

characteristic velocities are given by

cT = ±
⌃
⇥t , cK = ±

1⌃
⇥t

, (1.46)

where T/K denotes Tricomi or Keldysh. In addition to the change of the character, the

characteristic velocity of the Keldysh equation diverges at t = 0.

As an EFT application, let us consider the K(X) theory and in particular the propa-

gation of the perturbation π on top of some background ⌦̄ that follows from (1.27)

Zµ⇤⇥µπ⇥⇤π = 0 . (1.47)

In order for this equation to be hyperbolic, the eigenvalue criteria of the principal symbol

coe⌅cient function Zµ⇤ imply that the determinant needs to be negative. Applying

Sylvester’s determinant identity4 to Eq. (1.27) it follows

1 +
2KXX

KX

X > 0 (1.48)

Thus, K(X) theory has a mixed-type PDE EoM that describes the propagation of

fluctuations. In other words, there may occur a breakdown of the IVP (formation of

the elliptic region) depending on the form of the kinetic function and the value of the

4If a matrix X is invertible, then det(X + AB) = det(X) det(I + BX−1A), where I is the identity
matrix.
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kinetic energy X [29, 36, 37, 38, 39, 40, 41]. For example, if one takes a quadratic kinetic

function, the previous criteria are not satisfied for all values of the kinetic function X.

However, in Sec. 1.1.2 we have seen that such a K(X) EFT may have UV completion.

This clearly illustrates that the well-posedness of the IVP is not a measure of whether

the EFT is healthy (in contrast to repeated claims in the literature e.g. [29, 42]), but a

practical obstacle to EFT predictability [43, 7, 44, 45].

There is an alternative, more physically transparent, way to reach the condition (1.48).

The stress-energy tensor of the scalar Lagrangian of the form K(⌦, X)

Tϕ
µ⇤ = Kηµ⇤ ⇥ 2KX⇥µ⌦⇥⇤⌦ , (1.49)

can be mapped to an ideal fluid (assuming time-like scalar gradient X < 0)

Tµ⇤ = ( + p)UµU⇤ + pηµµ , (1.50)

Uµ =
1⌃
⇥X

⇥µ⌦ ,  = 2KXX ⇥K , p = K . (1.51)

Furthermore, requiring K = K(X), makes the fluid barotropic. The speed of sound in a

barotropic fluid is given by

c2s =
⇥Xp

⇥X 
= 1 +

2KXX

KX

X (1.52)

Thus, the well-posedness condition in K(X) theories is equivalent to the requirement of

hydrodynamic stability c2s > 0 [39].

Formally, a dynamical problem is strongly hyperbolic if its principal part has real

eigenvalues and a complete set of eigenvectors. This can further be shown to be imply

the requirement of well-posedness (in a particular function space) [46]. In EFTs with

gauge redundancy, such as GR, the issue of Cauchy problem well-posedness is much more

involved as the answer is gauge-dependent [46]. Some of the most important conceptual

results (singularity theorems5) and conjectures (on cosmic censorship) as well as practical

results (simulation of binary coalescence) in GR have followed from the understanding of

the causal structure of spacetime [47].

Going beyond GR one often considers scalar-tensor theories (see Sec. 2.2.3). As an

illustration, assuming a scalar coupled minimally to GR, shift symmetry and parity

invariance, one can construct the following EFT up to six-derivative terms

L6 =
1

2
M2

PlR⇥ 1

2
X +

⌅

4
X2 + λ⌦LGB (1.53)

This action leads to second order EoM and in Refs. [48, 49] gauge construction was

performed that renders a well-posed IVP as long as the higher-order terms are treated

5That also illustrate that the local well-posedness of the IVP does not imply a global one.
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perturbativly (weak-coupling regime). The IVP formulation of Refs. [48, 49] (applicable

to larger class of scalar-tensor theories that lead to second order EoM) and its subsequent

generalizations allowed for numerical evolution of binary systems in such theories [50, 51,

52, 53, 34].

One could hope, by comparing the binary evolution modelled with such scalar-tensor

theory with gravitational wave (GW) observations, to put constraints on higher-derivative

terms in a similar manner to the parametrized post-Newtonian approach [54] for the solar

system or binary pulsars [48]. There are two limitations of such an approach. First, we

have seen in Sec. 1.2 that for some theories we may be justified in going beyond the

weak-coupling regime in the EFT context6. It has been demonstrated in Ref. [41] that

in the non-linear regime of k-essence scalar-tensor theory even a locally well-posed7 IVP

can develop a breakdown of hyperbolicity via Keldysh-type instability, although in this

particular theory such instability can be successfully gauged away [55]. Secondly, with

higher order corrections (akin to a second order parameterized post-Newtonian order) in

the EFT, one is bound to have higher than second order EoM [32] and the well-posedness

is likely to fail (this may manifest as a ghost instability). As the principal symbol ⌥p

[Eq. (1.42)] is sensitive to the highest-derivative terms, the well-posedness strongly depends

on the highest-derivative term in the action, although such terms in the standard EFT

approach are the most suppressed.

In order to perform numerical simulations of the binary coalescence in more general

scalar-tensor EFTs an option would be to devise an approximative procedure that would

“filter” problematic high-frequency modes [56]. The most popular approach is modifying

the EoM and adding a driving term (fixing equations) [43, 57], that has been successfully

applied to various theories, including the shift-symmetric EFTs of the type described in

Sec 1.1.2 [58, 44]. Another is to perturbatively expand around the theory with a well-posed

IVP and then resum secular instabilities, using a dynamical renormalization group [59]

(more precisely, its numerical formulation [60]). The development of these methods and

their mathematical foundation is an active topic in mathematical and numerical relativity.

1.4 UV consistency of an EFT

We have previously seen in Sec. 1.3 that, although practically important, EFT predictivity

cannot be the criterion on whether the theory is “healthy” or not. From the purely

Wilsonian perspective, there are no prior constraints on the values of the coe⌅cients.

6It should be noted that the issue of radiative stability in the strong-coupling regime is not assessed in
most of the scalar-tensor theory parameter space.

7Coupling K(X) theory with GR, the condition (1.48) is carried to curved space-time by general
covariance. In addition, the initial conditions need to be formulated on a hypersurface that is spacelike
with respect to both gµ⇥ and γµ⇥ [38, 39].
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However, there may be some “hidden” IR-UV links that impose such constraints. As an

illustration, let us consider the first non-linear term in the K(X) EFT

LX = ⇥1

2
X +

⇧

4⌥4
X2 + ... (1.54)

We have seen that such an EFT can be obtained starting from the explicit UV completion

(Sec. 1.1.1), where we found ⇧ > 0. Interestingly, such EFTs can arise from di⇥erent

UV completions. e.g. in the low-energy limit of string theory [Dirac-Born-Infeld (DBI)

action] [61]

LDBI = ⇥⌥
4
⌃
1⇥ ⌥⇥4X . (1.55)

Expanding in ⌥, one again finds ⇧ > 0. The same sign is found in other examples as

well [61, 62].

We will discuss two approaches of going beyond the standard Wilsonian picture and

putting prior constraints on the EFT - the occurrence of superluminality, although intuitive

is also more di⌅cult to formulate sharply (although there has been recent progress in that

direction) and positivity bounds (plus extensions), which is more formal and sharper but

also more limited in its scope.

1.4.1 Superluminality

In theories (including EFTs) with a standard kinetic term (e.g. Sec. 1.1.1), causality

implies (sub)luminality i.e. perturbation in the theory can propagate (at most) with

the universal speed of massless particles c = 1. This is not a necessity when the EFT

has a non-trivial kinetic term, as in the case of K(X) theories [29]. Consider again the

fluctuation on top of the background (1.27) and the plane-wave Ansatz with a 4-momentum

kµ = (k0,k) and the phase velocity v = k0/|k|. From (1.47) it follows

K̄X (⇥v2 + 1) + 2K̄XX (⇥v ˙̄⌦+ k̂ ·∇⌦̄) = 0 . (1.56)

If the background is time-like, in its rest frame

v2 =
1

1⇥ 2K̄XX

K̄X

˙̄⌦2
≈ 1⇥ 8⇧

⌥4
˙̄⌦2 , (1.57)

where in the last equality we have assumed that the background is weak i.e. ˙̄⌦/⌥2 ⌅ 1.

As the non-interacting scalar is “living” on the null cone, a non-linear perturbation in the

kinetic term can kick the scalar to di⇥erent sides of the cone. Imposing ⇧ > 0, one has

v < 1.
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At the classical level this result is somewhat at odds with the conclusion on the

well-posedness condition of IVP of K(X) theories, given in (1.48), while the condition

(1.57) implies a stronger criteria 2KXXX /KX ≥ 0. Using hydrodynamic language, the

stability condition (1.52) is c2s ≥ 0 and not cs ≤ 1. Although the subluminality criteria in

K(X) theories are not necessary for a well-posed IVP, it has been argued in Ref. [61] that

superluminality would lead to a breakdown of the global hyperbolicity by the formation

of closed timelike curves, that would in turn give rise to various causal paradoxes. One

should note that such solutions can be found in GR as well (e.g. Gödel spacetime) [38]. An

additional structure is thus needed in order to prevent the formation of such pathologies in

the physical Universe (Hawking’s chronology protection conjecture) and the backreaction

of the quantum e⇥ects serves as a natural candidate [63]. Hawking’s conjecture could

then be extended to a more broader class of scalar-tensor theories. Careful analysis of

the examples presented in Ref. [61] shows that all such examples rest on the particular

construction of the external source, whose origin and backreaction are not under control.

These e⇥ects could then prevent the formation of closed time-like curves [39]. Indeed,

numerical evolution has been successfully performed in K(X) scalar-tensor theories that

can develop superluminal modes, even in the non-linear regime [41, 58, 55].

As the ill-posedness of the IVP may be just an artefact of EFT truncation, one can

think that the same may apply for the superluminality and that in the UV (sub)luminality

is restored. However, from the QFT perspective, superluminality is more worrisome.

One can formulate at the S-matrix level time delay between the signal, of frequency ✓,

propagating in the vacuum and a background such as the one in Eq. (1.56) [64, 65, 66, 67].

If this delay can be calculated in the regime of validity of the EFT

⌦T ⇤ ⇥ 1

✓
(1.58)

it would imply that an asymptotically Lorentz-invariant light cone is not unique in clear

contradiction to the foundations of QFT [64, 65, 66, 67]. In the above K(X) example, the

widening of the light cone that follows from Eqn. (1.57)

⌦r  

Z

⇥t

dt|v ⇥ 1| ≈ 4(⇥⇧)
˙̄⌦2

⌥4
⌦t , (1.59)

can in principle be made arbitrarily large, and thus resolvable ⌦r ⇤ λ (λ is the wavelength

of the fluctuation), if ⌦t is made large (observation time) [64, 65]. This would in turn

discard the possibility of ⇧ > 0, consistently with explicit examples of UV completion.

Note that the time-delay causality criteria depend explicitly on the construction of a

non-trivial background and it being in the regime of validity of the EFT [68].
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1.4.2 Positivity bounds

A much sharper relation between the IR and the UV originates from a powerful theorem,

known as positivity bounds on the Wilson coe⌅cients, formulated in Ref. [61]. Assuming

only that (partial) UV completion of the EFT is local, unitary, causal and Lorentz-invariant

(we will denote this set of properties as standard UV completion), one derives inequalities

on Wilson coe⌅cients which must be obeyed by the scattering amplitudes calculated

with the EFT. This provides a necessary condition for an EFT to have a standard UV

completion. On the flipside, finding observational signatures of the EFT which violate

positivity bounds would provide evidence of much more exotic physics in the UV than is

commonly expected.

Let us sketch the derivation of this theorem. The standard and simplest formulation

assumes 2 ⌥ 2 scattering in a scalar self-interacting theory. From Lorentz invariance it

follows that the amplitude of the process can only depend (modulo coupling constants)

on the Mandelstam variables (s, t, u), which encode the center-of-mass energy and the

transferred momentum

s  ⇥(p1 + p2)
2 , t  ⇥(p1 + p3)

2 , u  ⇥(p1 + p4)
2 (1.60)

s+ t+ u = 4m2 . (1.61)

The concept of causality is implemented by means of analyticity of the amplitude. Let

us first illustrate the connection between causality and analyticity in classical physics.

Considering an external source s(t) acting on a system at t = 0 (e.g. the force in a driven

harmonic oscillator), the response function in the time domain y(t) is given by

y(t) =

Z

dt�Gret(t⇥ t�)s(t�) (1.62)

The retarded Green function Gret must satisfy Gret(t) = 0 for t < 0 in order for causality

to be respected. Transitioning to the Fourier space we have

Gret(t) =

Z

d✓

2π
G̃ret(✓)e

⇥i t (1.63)

The condition t < 0 implies that we need to close the contour in the upper-half of the

complex plane as e⇥i(i⌅)t ⌥ 0 if t < 0. By the Cauchy residue theorem, the RHS of the

previous Eq. will be equal to the sum of the residues of G̃ret(✓). However, if the LHS

needs to be zero, this implies that there are no residues i.e. G̃ret(✓) is analytic in the

upper half plane.

The classical connection carries over to the quantum realm. In particular, it can be

shown that micro-causality implies the analyticity of As(s, t) in the complex s plane, for
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fixed t and Im(s) ✏= 0 [69]. On the real axis, however, there are poles and branch cuts that

correspond to the spectrum of physical states of the theory.

Let us now assume analyticity in both IR and UV i.e. in the whole complex plane,

modulo the real axis, and consider the following integral

I =
1

2πi

I

C

dµ
As(µ, t)

(µ⇥ s)n+1
, (1.64)

where the curve C encircles the pole µ = s. By the Cauchy integral formula

I =
1

n!

⇥nAs(s, t)

⇥sn
(1.65)

Now, let us deform the contour as in Fig. 1.1 and break the integral into several terms8

I =

�
Z ⇥t

⇥⌅
+

Z ⌅

4m2

⇥

dµ

π

ImAs(µ)

(µ⇥ s)n+1
+ C⌅ + s.p. , (1.66)

C⌅ =
1

π

I

dµ
As(µ, t)

µn+1
(1.67)

where s.p. denotes the simple poles at m2 and 4m2 and C⌅ the arcs at infinity. If we

further assume locality, then the Martin-Froissart bound [65, 69]

lim
s⇧⌅

|As(s, t)| < s2 (1.68)

implies that C⌅ = 0 for n ≥ 2. Furthermore, the assumption of crossing symmetry allows

one to further simplify the expression and obtain [69]

1

n!

⇥nAs(s, t)

⇥sn
⇥ 1

π

Z sb

2m2⇥t/2

dµPn(µ, s, t)⇥ s.p. =
1

π

Z ⌅

sb

dµPn(µ, s, t) , (1.69)

Pn(µ, s, t) =
ImAs(µ)

(s⇥ µ)n+1
⇥ ImAu(µ)

(u⇥ µ)n+1
, (1.70)

where sb denotes the scale at the regime of validity of the EFT. Note that the LHS of

Eq. (1.69) is completely calculable within the EFT.

The last step follows from unitarity, where the optical theorem [8] in the forward t ⌥ 0

limit implies [69]

1

π

Z ⌅

sb

dµPn(µ, s, t) ≥ 0 (1.71)

The loop correction in the weak-coupling limit are subdominant and one can calculate the

8There are two contours, on each side of the real axis, infinitesimally shifted from it, contributing to
the numerator in the integrand 2iDiscAs(s, t)  As(s+ i⇥, t)⇥As(s⇥ i⇥, t). Using the Schwarz reflection
principle As(s

⌥, t) = A⌥
s
(s, t) one find 2iDiscAs(s, t) = ImAs(s, t).
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Figure 1.1: Analytic structure of the forward 2 ⌥ 2 scattering amplitude As. Ref: [69]

tree-level leading order contribution. For n = 2

⇥2
sAs

�

�

tree

s=0,t=0
> 0 (1.72)

Let us illustrate on our K(X) toy problem (1.54) how positivity bounds work. The

2-to-2 scattering amplitude is given by

A2⇧2 =
⇧

8

1

⌥4

 

s2 + t2 + u2
⌦

(1.73)

Applying the Eq. (1.72) we find ⇧ > 0 i.e. the same conditions as in the subluminality

constraints (Sec. 1.4.1) as well as the one that is found in all explicit UV completions [61, 62].

Note that, in contrast with subluminality constraints, the positivity bound argument does

not depend on the construction of the classical background.

The argument above just provides a sketch of the basic positivity bound argument. This

approach has been further extended in various directions: including loop-e⇥ects [70], going

beyond the forward limit [71], including higher-spin states [67] and massless particles [72, 73]

etc. Finally, there have been recent e⇥orts to formulate the positivity bounds for EFTs

with spontaneously broken Lorentz symmetry [74, 69, 75].
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Chapter 2

Challenges of the standard

cosmological model

The turn of the century has transitioned cosmology to the phase of precision science. The

standard cosmological model, known as ⌥CDM, assumes that the matter content of the

Universe is at present dominated by the dark energy (DE) that behaves as a cosmological

constant (⌥) and the dark matter (DM). Together with the standard thermal history and

the spectrum of primordial fluctuations that follow from the inflationary paradigm, ⌥CDM

model provides a succinct explanation for the evolution of the Universe, consistent with

observational probes sensitive to the di⇥erent stages of its evolution [76]. However, this

model necessitates new matter content - DM, DE and inflaton field(s), whose nature is not

understood. This chapter gives a short description of how the subject matter of this thesis

relates to the nature of DM and DE. In the end, we will mention a few speculative ideas of

relics from the Early Universe that may be detected with the novel GW astronomy probes.

Let us summarize, for future reference, the dynamics of the homogenous ⌥CDM

Universe. Assuming the cosmological principle (i.e. spatial homogeneity and isotropy),

from the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric

ds2 = ⇥dt2 + a(t)2
⇧

dr2

1⇥ kr2/R2
0

+ r2dΩ2

⌃

, (2.1)

where a is the scale factor, k is the spatial curvature and R0 is the curvature scale, the

Friedmann and Raychaudhuri equation follow, respectively [27, 77]

�

ȧ

a

⇥2

=
1

3

 

M2
Pl

⇥ k

a2R2
0

,
ä

a
= ⇥ 1

6M2
Pl

( + 3p) . (2.2)

Knowing the matter content, these equations allow one to describe the dynamics of the

homogeneous Universe.
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2.1 Scalar dark matter

Cosmological observations are consistent with the presence of an e⇥ective cold DM

component on large scales [78, 79, 80, 81]. There are a plethora of models providing a

microphysical explanation for this component, although none have yet been confirmed

experimentally [81, 82].

In addition, there are tensions between the cold DM matter model and the observations

on small scales [83]. A simple illustration is the “core-cusp” problem, where pure CDM

simulations produce steeper density profiles in galaxy centers than are observed. However,

on small scales the feedback e⇥ects of complex astrophysical processes take place and

it may be the case that such tensions will be resolved as one develops a more realistic

description of the baryonic feedback e⇥ects in cosmological simulations. On the other

hand, an at least partial resolution of these tensions may originate from the departure

from the CDM model on small scales. Let us consider two examples of such microphysics.

2.1.1 Example 1: Solitons from wave DM

If the mass of the DM particle is smaller than m ⇥ 30eV a simple estimate indicates O(1)

occupancies in the DM halo [84]. Light DM of this type is necessarily bosonic due to the

Fermi exclusion principle [85]. Consequently, one can use classical field theory to describe

such classical-wave DM. On the particle physics side, there are several natural candidates

for wave DM: from axions that are leading candidate to solve the strong CP problem in

Quantum Chromodynamics [86, 87], to a plethora of light axion-like particles that are

expected to arise in string theory [88].

The standard scenario for generating scalar DM of this type is the misalignment

mechanism, where in the very early universe a homogeneous scalar field has some primordial

value φ0. The Klein-Gordon eq. in the FLRW metric for such a field is given by

φ̈+ 3Hφ̇+ ⇥⌦V = 0 (2.3)

The e⇥ective equation of state of such a cosmological fluid is [from Eq. (1.51), with

K = ⇥X/2⇥ V (φ)]

w  
 

p
=

1
2
φ̇2 ⇥ V

1
2
φ̇2 + V

(2.4)

Initially, a large Hubble parameter that acts like a friction keeps the scalar slowly rolling

down the potential V and w ≈ ⇥1. When H ∼ m, the scalar rolls down the potential

well and when reaching the minimum it will start oscillating as φ ∼ cos(mt). It follows

from (2.4) that ⇣w⌘ ≈ 0 and from Eqns. (2.2) that  ∼ a⇥3. In this way, this component

behaves like DM.

The above is a standard argument for having a scalar field that exhibits cold DM
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behavior on large scales. If the scalar mass is su⌅ciently light (fuzzy DM range, m ∼
10⇥22eV) scalars in the DM halo will further relax to the self-gravitating pseudo-soliton

structure - the axion star [89]. The stability of the star stems from the interplay of

the kinetic term in the Lagrangian (“quantum pressure”) and gravity. Microscopically,

quantum pressure originates from Heisenberg’s uncertainty principle. Let R be the

characteristic size of the configuration and vvir ∼
p

M/(m2
PlR) its virialized velocity. From

the uncertainty principle, one has

mM ∼ m2
Pl

mR
. (2.5)

The maximum mass, when R ∼ RSch, corresponds to the Kaup limit [90]

MKp ∼ m2
Pl

m
. (2.6)

Note that the quantum pressure is not a polytropic radial pressure, but rather an anisotropic

non-local stress [91]. These axion stars are not strictly speaking solitons (localized, finite-

energy and stable solutions of the equations of motion of a field theory), as prohibited by

Derrick’s theorem (e.g. [92]), and both the energy-momentum tensor and metric are time

dependent [93, 94, 95]. However, owing to the large number of particles, their decay is

exponentially suppressed [96, 97, 98].

Pseudo-soliton configurations in the fuzzy DM scenario are dilute and large ∼ 100pc,

located at the center of the DM halo. Such configurations would make a DM halo

profile more cored and provide a resolution of the core-cusp problem from the DM side.

However, the presence of fuzzy DM solitons is in tension with the data [99, 100, 101].

Di⇥erent particle properties (heavier axion masses, stronger self-interactions) and particular

early Universe conditions or DM production mechanisms could also lead to cosmological

formation of more compact axion stars [102, 103, 104]. Such objects may be discovered

with present and future GW astronomy probes and depending on the strength of the axion

coupling to the SM sector, even with broader multimessenger probes [105].

2.1.2 Example 2: Fifth forces from superfluid DM

An early alternative to DM was the phenomenological proposal of modifying Newtonian

gravity, known as Modified Newtonian Dynamics (MOND) [106, 107], that had some success

on galactic scales [108]. Possible relativistic generalizations of MOND [109, 110, 111, 112]

seem to be disfavored by LIGO/Virgo observations [113, 114] and are yet unsuccessful at

explaining the structure of the Universe on large scales [115]. However, some proposals

have also attempted to combine cold DM’s success on extra-galactic scales with MOND’s

advantages on galactic scales. If these models are viable, a MOND-like phenomenology
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would arise from the fifth force operating on galactic scales.

Let us illustrate the main idea of a cold DM-MOND hybrid model, known as superfluid

DM [116, 117, 42]. The simplest realization of this model is to have a complex scalar of

mass m that on cosmological scales behaves just like cold DM (see previous example).

However, in galaxies, a phase transition occurs and the scalar is in the superfluid phase.

Superfluid phonons ⌦ mediate a force between baryons  b that need to be described by a

non-analytic function in order to reproduce the MOND-ian phenomenology

LSF = K(X) +
⌥

MPl

✏ b , K(X) ∼ ⌥m3/2X
⌃
X , X = ⌦̇⇥mφN ⇥ 1

2m
(↵⌦)2 , (2.7)

and φN is the external Newtonian gravitational potential. Similarly to the fifth force that

develops screening (Sec. 1.4.1), superfluid DM also allows for superluminal propagation [42].

2.2 Cosmological constant problem and the acceler-

ated expansion of the Universe

2.2.1 Accelerated expansion of the Universe

The cosmological constant problem is one of the central puzzles of contemporary physics.

The core of the puzzle is related to the (quantum) nature of the vacuum. If we imagine

that the vacuum is Lorenz-invariant and has non zero energy density one has

Tµ⇤ = ⇥ vacgµ⇤ . (2.8)

Mapping this to the form of the stress-energy tensor of the perfect fluid (1.50) we find

w  
pvac
 vac

= ⇥1 (2.9)

The existence of such a fluid has cosmological consequences. Assuming vacuum dominance,

with respect to the other matter source, from the Friedmann equations (2.2) the accelerated

expansion follows

a = a0 exp{H(t⇥ t0)} , H2 =
1

3

 vac

M2
Pl

(2.10)

The Cosmic Microwave Background measurement, together with distance supernovae,

indicate that the Universe is spatially flat and has an accelerated expansion [118]. Fur-

thermore, from the cosmological measurements [79]

Ωvac  
 vac(a0)

 crit

= 0.67± 0.006 , w = ⇥1.03± 0.03 , (2.11)
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implying  vac(a0) ≈ (3 · 10⇥3eV)4.

2.2.2 Cosmological constant problem(s)

Let us formulate the cosmological constant problem in the EFT spirit, following Refs. [119,

120, 7]. Let us first imagine that we integrate out all heavy states below ∼ meV scales and

measure the cosmological value  vac(µ0). Now, let us consider a heavy scalar m ⇤ meV

in λφ4 theory. We can calculate the (Coleman-Weinberg) e⇥ective 1-loop action e.g. by

using the heat kernel methods as in Sec. 1.2. The renormalized vacuum energy density in

this theory is

 vac(µ) =  vac(µ0) +
m4

64π2
log

�

µ2
0

µ2

⇥

. (2.12)

The value of the cosmological constant at high energies µ ⇤ µ0 is now dominated by the

scalar mass. Thus, its UV value  vac(µ) needs to be fine tuned in such way to cancel the

quantum fluctuation contribution and “arrive” on the renormalization-group flow at µ = µ0.

In the real Universe, this fine tuning becomes even more pronounced as there are plethora

of SM (and presumably beyond SM) particles whose quantum fluctuations will contribute

to the vacuum energy, along with the phase transition contributions. Somehow, the UV

value needs to “know” about all of these contributions and to cancel them appropriately.

A natural explanation for the smallness of the term in the Lagrangian can be found if

there is an approximate symmetry. For example, in the Goldstone boson case, small mass is

technically natural 1 if the breaking of the shift-symmetry is soft (’t Hooft naturalness) [7].

Analogously, the present value of the cosmological constant would be natural if e.g. the

supersymmetry is spontaneously broken at the meV scale as the boson and fermion

quantum contributions would cancel out [121]. However, this is clearly not the case.

The di⌅culty of the cosmological constant problem then follows from the fact that its

resolution needs to somehow “modify” the contribution to the quantum vacuum even from

well-tested low energy physics [119]. In addition, a satisfactory solution to the cosmological

constant problem should not generate new fine tunings or contradict well-established

experimental results. Several theoretical ideas have been pursued to solve the problem,

but it is hardly surprising that none has succeeded as of yet [119, 120]. An exception

could be found in an anthropic approach that relies on having a landscape of vacua in the

UV theory [122]. Only in the “small” set of vacua a near-cancellation described in (2.12)

occurs. However, these vacua are precisely the ones where the value of the cosmological

constant is consistent with structure formation. This kind of consistency reasoning was

used by Weinberg a decade before the measurement of the accelerated expansion of the

Universe to find the range of values of ⌥cc that would be anthropically consistent [123].

1This is the case with axions, where the non-perturbative e⇤ects brake the shift symmetry and generate
a small mass [86, 87].
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Aside from the obvious epistemological di⌅culties of such a solution (falsifiability) and

challenges with defining the statistics on the landscape (measure problem), one still does

not have an example of a UV theory that can generate SM, DM, GR and a positive

cosmological constant in the low-energy regime [118, 119].

An alternative approach is to assume that, for some reason yet to be understood, the

cosmological constant is zero (“old cosmological constant problem”) and that there is some

other matter that drives the accelerated expansion of the Universe (“new cosmological

constant problem”2). The simplest example of non-cosmological constant dark energy (DE)

is a cosmic scalar on a slow-roll potential (2.4) where w ≈ ⇥1. Indeed, such a component

is commonly assumed to drive the accelerated expansion of the Early Universe to solve the

horizon and flatness problems. Notwithstanding the “old cosmological constant problem”

that needs to be solved, scalar DE generates a new fine-tuning question: if DE is dynamical,

why does matter contribute to the energy budget of the Universe at present at the same

order as DE (coincidence problem). The latter question can be addressed by “tracking”

scenarios, the simplest one being the quintessence model [120]. Scalar DE provides a

testable alternative to the cosmological constant as one can look for the departure from

wDE ⇥ 1 in the cosmological observables [124].

2.2.3 Scalar-tensor theories

Even if the signatures of scalar DE were found, this would still leave the “old” cosmological

constant problem unsolved. If this scalar is somehow also responsible for the solution of

the “old” cosmological problem it would need to couple to loops of SM fields like in Fig. 2.1

(left) [30]. However, from the optical theorem, such a coupling would induce the fifth

force (Fig. 2.1 - right). This simple argument suggests broadening the scope of search for

cosmological scalars, also to the ones that couple universally to matter. As this coupling

would phenomenologically contribute to the gravitational force, one considers together

the scalar and graviton degrees of freedom as a scalar-tensor theory that extends GR. It

should be noted that so far no model has been constructed to solve both “old” and “new”

cosmological constant problems [120]. The relevance of scalar-tensor theories is foremost

in their testability both with the cosmological and novel GW astronomy probes [124].

For example, the simplest way of extending GR is to introduce a massless scalar

conformally coupled to matter, which leads to the Fierz-Jordan-Brans-Dicke (FJBD)

theory [125, 126, 127]. As the scalar does not couple to light, light and matter will interact

with a di⇥erent gravitational constant. Consequently, FJBD theory is strongly constrained

in the solar system, e.g. by the Cassini flyby [128]. In order for the fifth force to be

consistent with these local experimental constraints, it must be suppressed close to matter

sources, e.g. through a non-linear “screening” mechanism [129, 130, 131, 30]. In contrast

2The terminology stems from the fact that before 1998. when it was generally believed that ⌅cc = 0. [121]
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Figure 2.1: Unitarity implies that the scalar that couples universally to the matter loops
must mediate a fifth force. Ref: [30].

to GR, whose coupling to matter and self-coupling are completely determined by unitarity

and Poincaré invariance [8], massless scalars allow for di⇥erent screening mechanisms,

e.g. through scalar or derivative self-interactions [30]. Let us consider a general action

that describes scalar fluctuations (decoupled from gravitons for simplicity) around the

non-trivial background. As in Sec. 1.2.1 we have3 ⌦ = ⌦̄+ π and

L = ⇥1

2
Z̄µ⇤⇥µπ⇥⇤π ⇥ 1

2
m̄2π2 + ḡT + ... (2.13)

where the barred quantities depend on the background. Let us for illustrative purposes take

a conformal inertia factor Z̄µ⇤ ∼ Z̄ηµ⇤ (as we have seen in Sec. 1.2.1 this is approximately

the case in K(X) theories and spherical symmetry). After field redefinition π̂ =
⌃
Z̄π, to

leading order we have a massive scalar theory that gives rise to a Yukawa potential

π̂ ∼ ḡ⌃
Z̄

exp
↵

⇥ m̄⌃
Z̄
r
�

r
(2.14)

Thus, one can suppress the scalar-mediated force by environmentally suppressing the

coupling (symmetron mechanism [134]) or increasing the mass (chameleon mechanism

[135] ). Alternatively, by increasing “inertia” Z̄ one can e⇥ectively suppress the coupling.

Implementing this mechanism with first derivatives (i.e. the Newtonian acceleration) is

known as kinetic screening (or k-mouflage) [130], while the implementation with second

derivative (i.e. curvature) is known as Vainshtein screening [129, 131].

For the purposes of phenomenological applications, scalar-tensor theories are usually

organized as the most general action that leads to second order equations of motion

(Horndeski class [136]) or generalizations that are engineered to propagate 2 + 1 degrees of

freedom and evade ghosts (beyond Horndeski [137], DHOST theories [138]). The reason

behind such a choice is that cosmological non-linearities are expected to excite the ghost

degree of freedom and thus lead to loss of predictability [139]. As discussed in Sec. 1.3,

such theories are not consistent EFTs and, indeed, the consistent power coupling would

generate higher-derivative operators that would need to be considered at the same order

3Here we consider only conformal coupling to matter (in the Einstein frame). The disformal one does
not mediate any tree-level interaction between matter particles [132]. If both the conformal and the
disformal coupling are present, the latter one can induce a correction to gravitational phenomenology [133].
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as some of the Horndeski terms [32]. However, a subclass of (beyond) Horndeski theories

can be made structurally robust (Weakly Broken Galileon theories) [140, 139].

GW astronomy and, in particular, electromagnetic follow-up of the event GW170817 [114,

141] and a requirement for DE not to decay to GW have imposed strong constraints on a

class of operators in Horndeski theories [142, 143, 144, 139]. In this framework, the only

term that survives is the k-essence scalar-tensor theory

S =

Z

d4x
⌃⇥g

⇧

M2
Pl

2
R +K(X)

⌃

+ Sm

�

Ψi,
gµ⇤

⌃(⌦, X)

⇥

. (2.15)

It would thus be important to understand whether the K(X) term can be probed. In

particular, to establish whether the screening mechanism breaks down or is less e⇥ective

beyond spherical symmetry and stationarity.

2.3 Solitons from the early Universe

As we have seen previously, novel GW probes may shed light on or at least constrain some

of the DM and DE models. However, GW astronomy can also reveal relics from the early

Universe. Two of the most discussed relics are signatures of the phase transition in the

stochastic GW background and solitons formed in the early Universe [145].

From a more general phenomenological perspective, one of the target objects of GW

astronomy are compact objects that do not have a standard astrophysical formation

scenario - exotic compact objects (ECO) . In particular, ECOs with compactness C  

GM/(Rc2) > 1/3 (M and R being respectively the mass and radius of the body), also

referred to as “ultra-compact objects”, may be hard to distinguish from BHs if they

present a light ring [146]. However, toy models for ECOs (such as wormholes [147],

gravastars [148], anisotropic fluid stars [149] etc) have pointed to a rich range of possible

observational features distinguishing these objects from BHs, e.g. non-vanishing Love

numbers [150, 151], distinct post-merger phase for binary systems coalescence [152], GW

echoes [153, 154, 155, 146] etc.

Many ECO toy models, however, are not realistic candidates, as they contradict some

of the following reasonable requirements: stability (on relevant astrophysical/cosmological

scales); existence of possible production mechanisms and astrophysical/cosmological

formation channels; consistency with known and tested physics and embedding in a

plausible beyond-SM theory. A more promising way to construct realistic ECO models is

to consider solitons. Derrick’s theorem (e.g. [92]) is a powerful constraint on the existence

of these solutions, as it prohibits static non-trivial solutions for a set of real scalar fields in

D ≥ 2, where D is the number of space dimensions. In order to evade Derrick’s theorem,

one must either consider topologically non-trivial configurations (topological solitons) or
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consider a theory with conserved charge (non-topological solitons) [156, 92].

The simplest examples of non-topological solitons are boson stars (BS): configurations

made from complex scalars ⌃ minimally coupled to gravity and admitting a U(1) sym-

metry [157, 158, 159, 146, 160]. Boson stars generally satisfy the soundness checks that

we mentioned above. Non-rotating boson stars have at least one stable branch in the

low-compactness (MBS) limit [161, 159]. Although rotation can lead to instabilities [162],

it has been recently shown that su⌅ciently strong self-interactions can sustain it [163, 164].

These objects are constructed from covariant Lorentz-invariant actions and the modelling

of their dynamics is in principle accessible. Boson stars can form from scalar collapse,

with the excess field “evaporating” (gravitational cooling) [165]. Once a population of

non-rotating boson stars is formed, it can reproduce in binaries through the channel

BS + BS ⌥ BS [166].

If the BS admits a false/degenerate vacuum in its potential, it is known as a solitonic

boson star [167] (SBS). SBS have a bubble-like structure in the most compact part of the

parameter space, where the accumulation of energy near the surface gives rise to a surface

tension between di⇥erent vacua, which in turn allows for developing massive and highly

compact configurations (see Ch. 4). In this way, the configuration is stabilized even in the

absence of gravity MPl ⌥ ✓. In that limit, SBSs are also referred to as Q-balls [168]. SBSs

are the simplest representatives of non-topological solitons that exist in the MPl ⌥ ✓
limit and admit a false or degenerate vacuum in one of the bosonic degrees of freedom4.

Other examples may also include a second boson or a fermion [171, 173, 174, 175, 176].

Besides simplicity, there are also at least two additional reasons to be interested

in these kinds of objects. First, Q-balls/SBSs can be formed in the early Universe,

through scalar fragmentation after inflation [177, 178], thermal phase transitions [179] or

solitosynthesis [180, 181]. Therefore, the possible observation of SBSs or similar ECOs can

shed light on beyond-SM physics - from baryogenesis to dark matter [182]. The charge of

these objects could be protected by an approximate, low-energy global symmetry [183],

and depending on the specific model a fraction of the compact-object population of the

universe could be in this form [184]. Note that even if SBSs are low-compactness at

formation, their subsequent interaction and merger could lead to the formation of more

compact configurations.

SBSs could also be considered as a proxy for similar self-gravitating structures made

from (real) bosons unprotected by a symmetry. Among the latter are axion stars [94], but

also oscillatons [185], moduli stars [183, 186] etc. Notwithstanding their pseudo-solitonic

nature, these objects have macroscopic properties qualitatively similar to the corresponding

boson star models. For example, the M -R curve of scalar stars with a mass-term potential

4The study of these objects was initiated by T. D. Lee and collaborators in the 1980s [169, 170, 167,
171, 172, 156].
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(oscillaton) di⇥ers only by (at most) a few percent from the corresponding MBS model,

and only in the most compact branch [187]. Axion stars and similar objects are expected

to form in a wider variety of settings - through cosmological evolution of axion dark matter

(Sec. 2.1.1), as inflation relics [188, 189, 104] or through other early Universe processes

similar to those giving rise to complex configurations [183, 177, 178, 190]. Although an

exact parallel between boson star models and pseudo-solitonic configurations warrants

a more in-depth study, in particular when a false/degenerate vacuum exists, the static

nature of boson star spacetimes allows for a technically easier preliminary analysis of these

objects.
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Part II

Aspects of kinetic screening
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Chapter 3

Two-body problem in theories with

kinetic screening

3.1 Introduction

In this Chapter we will focus on K(X) theories (k-essence), introduced in Ch. 1, motivated

by the DE/DM problems described in Ch. 2. Self-acceleration of the universe can be

obtained with models of the type K(X,⌦) [191, 192], although those generically do not

lead to screening [193]. Purely kinetic models K(X) can also serve as DE, although with

some degree of fine tuning [194, 195]. Models that produce a MOND-like phenomenology

on galactic scales are also of this type, sometimes featuring complex scalar fields and

additional non-derivative self-interactions [116, 117, 42]. The class of K(X) models can

also generate “anti-screening”, where the fifth force increases near matter [196]. An

interesting feature of these models is that they do not violate the positivity bounds, and

therefore they are expected to have a standard UV completion.

In the non-linear regime, k-essence theories are non-trivial to work with. Recently,

significant e⇥ort has been directed at producing numerical simulations of the full non-

linear dynamics in both k-essence [197, 35, 41, 198, 58, 55, 44, 199] and in theories with

Vainshtein screening [200, 56] (in the flat spacetime limit)1. These breakthroughs allowed

for studying stellar oscillations [58, 199], gravitational collapse [58] and neutron star

mergers [55]. These simulations, as well as numerical results for the two-body problem in

the stationary limit [203, 204, 205] (see also Ref. [206]), indicate that the phenomenology

of screening in dynamical regimes and beyond spherical symmetry presents non-trivial

di⇥erences from the static and spherically-symmetric case. This modified phenomenology

may include a partial breakdown of the screening mechanism [58, 55] and allow for further

constraints on the parameter space of these theories. In addition to the inherent di⌅culties

1Simulations have also been performed in other scalar-tensor theories in the Hordenski class that do
not exhibit screening [48, 201, 53, 51, 202, 34].
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of k-essence theories, a further obstacle in a fully numerical approach arises for the

cosmologically motivated models where ⌥ ∼ (H0MPl)
1/2, as the latter implies a huge

separation between the cosmological scales and the local scales relevant for the solar

system or compact object binaries. It is thus important to understand in more detail,

analytically as much as possible, the physics of kinetic screening.

In this work, we will focus on the two-body problem in theories with kinetic screening.

We consider this problem first analytically, providing a decomposition of the scalar equation

and solving it with various approximation techniques, and we then numerically check their

validity. In particular, we will discover a partial breakdown of the screening mechanism in

the regime where one would expect it to operate. We will consider the two-body problem

for di⇥erent choices of the kinetic function K(X), including a modification of DBI theory

that allows for “opposite” DBI screening [207], i.e.

K(X) = ⌥
4
⌃
1⇥ ⌥⇥4X . (3.1)

Phenomenologically, the two-body problem is relevant in several astrophysical scenarios,

e.g. in the solar system and in binary pulsars, where tests of gravity have historically

been performed [208, 128, 209, 210, 211, 52], and more recently in the merging binaries of

compact objects detected by gravitational wave (GW) experiments [209, 210, 212]. While

the calculations of this Ch. are only at leading post-Newtonian (PN) order and are clearly

inadequate to quantitatively describe binary mergers, they do nevertheless allow for a

qualitative insight into the dynamics of binary systems beyond GR.

This Ch. is organized as follows. In Sec. 3.2 we will provide the field equations of

k-essence, show how they can be reformulated, using the Hodge-Helmholtz decomposition,

review kinetic screening and illustrate it in the case of isolated objects. In Sec. 3.3 we

will describe the analytical approximations and the numerical formalism that we use to

study the two-body problem in k-essence at leading PN order in the scalar sector. In

Sec. 3.3.3 we will focus on a specific finding of our investigation - the appearance of

pockets of linear dynamics inside a region that would be in a non-linear regime in the

absence of the second object. Thus far, our results will be either general or focused on a

polynomial k-essence model. In Sec. 3.4 we will instead explore other models, including

“opposite” DBI screening and anti-screening. We will summarize our results in Sec. 3.5.

Some details on the regime of validity of EFTs in theories with kinetic screening and

on the regularization of point-particle divergences are presented in Appendices A.1 and

A.2, respectively. In App. A.3 we comment on the parallel between the Hodge-Helmholtz

decomposition and classical dual reformulation of self-interacting theories developed in

Refs. [213, 214]. Finally, validations of our numerical code are described in App. A.4.
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3.2 Setup

3.2.1 k-essence equations of motion

The action for a k-essence scalar-tensor theory is given by Eq. (2.15). Matter is assumed

to be minimally coupled to the conformal metric2 g̃µ⇤ = ⌃
⇥1gµ⇤ , for whose conformal

factor we consider the following expansion at leading order ⌦/MPl:

⌃
⇥1 ≈ 1 +

⌅

MPl

⌦ . (3.2)

In spherical symmetry, screening is a robust consequence of this action [for appropriate

choices of K(X)], even when considering higher order corrections to this expansion [216].

From the action, the equations of motion are

Gµ⇤ =
1

M2
Pl

(Tµ⇤ + Tϕ
µ⇤) , (3.3)

Tµ⇤ =
2⌃⇥g

↵Sm

↵gµ⇤
, (3.4)

Tϕ
µ⇤ = K(X)gµ⇤ ⇥ 2KX⇥µ⌦⇥⇤⌦ , (3.5)

↵µ(KX↵µ⌦) =
1

2

⌅

MPl

T , (3.6)

where Gµ⇤ = Rµ⇤ ⇥Rgµ⇤/2 and Rµ⇤ are the Einstein and Ricci tensors for the metric gµ⇤ ,

Tµ⇤ (with T = gµ⇤T
µ⇤) and Tϕ

µ⇤ are the matter and the scalar energy-momentum tensors,

and KX  ⇥K/⇥X.

Let us start by defining

⇣µ  KX↵µ⌦ . (3.7)

In the absence of matter sources, this vector is covariantly conserved and represents the

Noether current associated with the shift symmetry ⌦ ⌥ ⌦+ c. Let us then perform a

Hodge-Helmholtz decomposition of this current into a longitudinal component ⇥µ⇤ and a

transverse component Bµ:

⇣µ = ⇥1

2
↵µ⇤ +Bµ , (3.8)

↵µB
µ = 0 . (3.9)

To check that this decomposition is unique and well-defined, one can compute the divergence

↵µ⇣
µ = �⇤, with � = ↵µ↵µ. One can then conclude that ⇤ is uniquely determined if

2One can also perform a field redefinition and work with the conformal metric directly [215]. This is
usually referred to as “Jordan frame”, as opposed to the Einstein frame used in this Ch.
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the D’Alembertian is invertible, which is the case if ⇤ is given appropriate initial and

boundary conditions. Bµ can then be determined unambiguously3 from Eq. (3.8).

By replacing the decomposition (3.8) in Eq. (3.6), one then gets the following Klein-

Gordon equation for the longitudinal mode:

�⇤ = ⇥ ⌅

MPl

T . (3.10)

As for Bµ, taking a covariant derivative of Eq. (3.7) and anti-symmetrizing we obtain

↵[⇤Bµ] = KXX↵[⇤X↵µ]⌦ , (3.11)

where the antisymmetric part of a tensor Sµ⇤ is defined as S[µ⇤] = (Sµ⇤ ⇥ S⇤µ)/2. This

equation can be put in manifestly hyperbolic form by taking a divergence [using also

Eq. (3.9)], which leads to

�Bµ ⇥Rµ
⇤B

⇤ = Jµ , (3.12)

Jµ = 2↵⇤ [KXX↵[⇤X↵µ]⌦] . (3.13)

Note that this is formally the same as the equation for the relativistic vector potential in

electromagnetism. In particular, in FJBD theory KXX = 0, and this equation therefore

implies Bµ = 0 and ⌦ = ⇤. [This can also be seen directly from Eqs. (3.7)–(3.8), recalling

that KX = ⇥1/2 in FJBD theory]. Thus, we will refer to ⇤ as the FJBD field.

By squaring Eq. (3.7), one obtains ⇣µ⇣µ = K2
XX. In order to express X as a function of

⇣µ⇣µ,K
2
XX needs to be a monotonic function ofX. This therefore requires 1+2XKXX/KX

being sign definite. One can obtain the same condition by requiring invertibility of ⇥µ⌦ in

terms of ⇣µ from the transformation (3.7). That requires the Jacobian of Eq. (3.7), i.e.

Jµ⇤ = KXgµ⇤ + 2KXX⇥µ⌦⇥⇤⌦ , (3.14)

to be sign-definite [218]. Since detJµ⇤ ◆ 1 + 2XKXX/KX ,
4 this yields again the same

condition. By requring additionally invertibility for small values of X, one finally obtains

the condition

1 +
2KXXX

KX

> 0 . (3.15)

Remarkably, this is the same condition that is found by requiring that the field equations

3More generally, the decomposition (3.8) is a consequence of the Hodge decomposition theorem,
which states that any p-form ⇤ on a compact, Riemannian manifold can be uniquely decomposed as
⇤ = d⇧+ d†⌅ + γ, where d† denotes a codi⇤erential and γ is a harmonic form defined by ⌃γ = 0 with
⌃ = (d+ d†)2 [217]. In coordinates, this statement leads to (3.8), provided that the harmonic component
γ vanishes. This will indeed be the case for appropriate boundary/initial conditions.

4This can be easily proven for generic gµ⇥ by projecting the Jacobian (3.14) on a tetrad basis.
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of k-essence are strongly hyperbolic [36, 38, 39, 40, 41].

3.2.2 Non-relativistic and static limit

Let us now consider the scalar equation of motion at leading PN order, i.e. at leading order

in 1/c. To this purpose, let us note that if c ✏= 1 is reinstated, then gµ⇤ = ηµ⇤ +O(1/c2)

and � = ↵2 +O(1/c2) (with ↵2 = ↵ij⇥i⇥j). The scalar equation (3.6) at leading PN (i.e.

Newtonian) order is therefore simply

⇥i(KX⇥
i⌦) =

1

2

⌅

MPl

T . (3.16)

For a binary system of point particles and again up to higher order corrections in 1/c, one

has

T = ⇥ma↵
(3)(r ⇥ ra(t))⇥mb↵

(3)(r ⇥ rb(t)) , (3.17)

where ra,b(t) are the two trajectories. It is then easy to check that if we find a solution

⌦static(r, r̄a, r̄b) for the static problem (with the two particles at rest at positions r̄a, r̄b),

the solution to Eq. (3.16) for two particles in motion with velocities ⌅ c can be obtained

simply as ⌦(t, r) = ⌦static(r, ra(t), rb(t)). In the following we will therefore restrict, with

no loss of generality (at least as long as one is working at Newtonian order), to the case of

two static point particles.

In terms of the (three-dimensional) Helmholtz decomposition5

χ = ⇥1

2
∇⇤ +B , (3.18)

Eq. (3.10) for ⇤ therefore becomes the Poisson equation

↵2⇤ = ⇥ ⌅

MPl

T . (3.19)

This equation can be solved for an N -body system simply by linear superposition. If

one could assume B = 0, one would have to invert Eq. (3.18) in order to find ⌦, i.e., by

squaring that equation, one would have to invert

K2
XX =

1

4
Xψ , (3.20)

with Xψ = (↵⇤)2. This is possible if Eq. (3.15) is satisfied. The implicit assumption

B = 0 was made, in the DBI case, in Ref. [207]. However, it is not a priori clear that the

5This decomposition was also introduced for k-essence in Ref. [40], although the solenoidal component
was set to zero in spherical symmetry (see Sec. 3.2.3). In the context of MOND, the decomposition was
introduced in Ref. [219], while the behavior of the two components was discussed for a particular type of
K(X) and in particular regions of space in a binary problem in Ref. [220] (see Sec. 3.3.3).
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solenoidal component B can be ignored. In the rest of the Ch., we will discuss the role

and importance of this component.

In R
3 the decomposition that we are using, i.e. one into a longitudinal component

(irrotational vector field) and a transverse component (solenoidal vector field), is further

strengthened by the Helmholtz theorem [221], which states that if all involved functions

have appropriate asymptotic behavior, the decomposition (3.18) is unique and

⇤ = ⇥ 1

4πMPl

Z

d3r� ⌅T (r
�)

|r ⇥ r�|
, (3.21)

B = ∇◊

1

4π

Z

d3r� C(r�)

|r ⇥ r�|
, (3.22)

C  ∇◊ χ . (3.23)

From the definition of the vector χ [see Eq. (3.7)], one has

C = KXX∇X ◊∇⌦ = 2KXX⌘ijk⇥l⌦⇥j⇥l⌦⇥k⌦ , (3.24)

where ⌘ijk is the totally antisymmetric Levi-Civita symbol. It is clear that the solenoidal

component will be highly suppressed (or zero) in highly symmetric regions/scenarios where

∇X and ∇⌦ are parallel, or when non-linearities are suppressed.

Note that the total gravitational force (at leading PN order) between two bodies,

separated by a distance D, is the sum of the Newtonian/GR force and the scalar fifth force.

In FJBD theory the scalar force has a Newtonian-like behavior and just renormalizes the

gravitational constant:

Fg = FN + FFJBD =

�

GN +
⌅2

4πM2
Pl

⇥

mamb

D2
, (3.25)

where the term in brackets defines the e⇥ective gravitational constant. In theories with

screening, the fifth force will exhibit a di⇥erent behavior. In the following, we will ignore

the usual Newtonian/GR component and focus on the scalar force.

3.2.3 Isolated object

Let us first briefly review the solution for an isolated object, extensively discussed else-

where [193, 40, 222, 198, 58, 216], from the perspective of the Helmholtz decomposition. In

the case of a point particle or a spherically symmetric object, spherical symmetry implies

that both ∇⌦ and ∇X must be parallel to the radial vector r. Thus, from the discussion

in Sec. 3.2.2 [and particularly Eq. (3.24)], the solenoidal component must vanish. The

solenoidal component will vanish also in other highly symmetric configurations, if there is

only one vector in the problem that all quantities need to be proportional to.
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Consider a point particle at the origin with mass m. For a quadratic choice of the

kinetic function

K(X) = K2(X)  ⇥1

2
X ⇥ 1

4⌥4
X2 (3.26)

the full solution to Eq. (3.16) can be expressed in terms of the generalized hypergeometric

function as [204]:

⌦ = ⇥ 1

4πr
m

⌅

MPl
3F 2

h1

4
,
1

3
,
2

3
;
5

4
,
3

2
;⇥

↵rsc
r

�4i

, (3.27)

rsc =
1

⌥

�

27

4

⇥1/4r
m⌅

4πMPl

(3.28)

= 3◊ 1011km◊

↵ ⌅

0.1

�1/2
�

⌥

1.9◊ 10⇥3eV

⇥⇥1 �
m

M⇤

⇥1/2

.

The length scale that controls the solution is the kinetic screening radius rsc [130]. Fixing

the value of rsc determines the profile of ⌦(r)/(m⌅), although there is degeneracy among

the individual parameters {m,⌅,⌥}. One can compare this “screened” solution to the

FJBD one [Eq. (3.21)]. For a point particle, the latter diverges at the particle’s location,

while the scalar field ⌦, as a result of the non-linear term in the kinetic function K(X),

remains finite, i.e. at small radii one has

⌦ ≈ ⇥3.7⌥

r

m⌅

4πMPl

+ 3⌥4/3

�

m⌅

4πMPl

⇥1/3

r1/3 . (3.29)

The screening therefore acts as a physical “UV regulator” for the field. Expanding the full

result (3.27) around ⌥ ⌥ ✓ , one instead obtains

⌦ = ⇥ m⌅

4πMPl

1

r
+

1

5

�

m⌅

4πMPl

⇥3
1

⌥4r5
+O(⌥⇥8) , (3.30)

which demonstrates that screening is a non-perturbative e⇥ect appearing only in the regime

X/⌥4 ⇤ 1, i.e. in order to recover it one needs to resum all the terms in the perturbative

expansion [74].

Note that although the scalar field is finite at the origin, the scalar gradient still

diverges. This is, however, simply an artifact of the point particle approximation, i.e. the

scalar gradient goes to zero at the origin for a spherical star [198]. In the following, when

solving for the scalar field in a two body system, we will therefore have to resolve (or

“regularize”) the Dirac deltas in order to allow for a numerical treatment of the problem.
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Figure 3.1: Scalar gradients for the quadratic k-essence theory described by Eq. (3.26)
and for an isolated object located at r = 0. The screening radius is rsc = 100R (gray
long dashed vertical line) and the e⇥ective radius of the Gaussian source is R = 2⌥ (pink
short dashed vertical line). f = {⌦,⇤} are respectively the k-essence scalar field and its
irrotational component (which matches the FJBD gradient). Profiles are computed for a
Gaussian source (index ⌥) and a Dirac delta (no index).

We will do so by utilizing a Gaussian density model for each point particle, i.e.

Ti = ⇥ mi

(
⌃
2π⌥)3

exp⇥(r ⇥ ri)
2

2⌥2
, (3.31)

where ⌥ is the width of the Gaussian and ri is the position of the particle. The solution of

Eq. (3.16) with this source cannot be expressed in closed form, even for a single particle,

although Eq. (3.20) provides a closed form expression for ⇥r⌦ [see Eq. (3.47) below]. This

expression, however, needs to be integrated in order to find the scalar profile ⌦(r) for a

single point particle.

To test this regularization, we show in Fig. 3.1 the scalar gradient, calculated with

a Dirac delta and a Gaussian source. As expected, the two profiles coincide outside the

e⇥ective radius of the object (R = 2⌥). The same figure also shows the gradient of the

FJBD field ⇤, again for both sources. As expected from previous studies [130, 198, 58],

the gradients of ⌦ (which can be physically interpreted as the fifth force) are suppressed

with respect to the FJBD gradients ⇥r⇤, even inside the e⇥ective radius R. As the radial

coordinate approaches the origin, both gradients tend to zero for the regular Gaussian

source, as dictated by spherical symmetry and regularity [198, 58]. Further details on the

Gaussian regularization will be presented in App. A.2.

3.3 The two-body problem: polynomial k-essence

Unlike the isolated object case of Sec. 3.2.3, the two-body problem is only axially symmetric,

around the direction that connects the two particles. Let us define the coordinate system

such that the particles (of masses mi) are located on the z axis at zi = ±D/2 , where D
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is the separation and i is an index running on the two particles a and b. We will work in

cylindrical coordinates ( ,◆, z), with  =
p

x2 + y2 and ◆ = arg(x, y). In principle, the

scalar field could depend on ◆, but because the source on the right-hand side of Eq. (3.16)

does not, the dependence must be linear, i.e. ⌦ = L◆ + ⌦̄( , z) for some constant L.

This would ensure that the left-hand side of Eq. (3.16) is independent of ◆. However,

asymptotic flatness requires ⌦ approaching zero far from the two-body system, which in

turn imposes L = 0.

Let us then solve the scalar equation (3.16) with the source (3.17) and the polynomial

kinetic function

K(X) = ⌥
4KN(X) , KN(X) = ⇥

N
X

n=1

1

2n

↵X

⌥4

�n

, (3.32)

which allows for screening as long as the leading order term has a negative coe⌅cient [74].

Note that the choice of the dimensionless series coe⌅cient was made simply for compu-

tational convenience, and is not expected to qualitatively impact our results (see also

Sec. 3.4.1). In App. A.1 we argue, based on Ref. [22], that the non-linear regime of the

above theory is in the EFT regime of validity for generic astrophysical scenarios and every

N > 1.

From the analysis of the scalar profile around an isolated object in the previous section,

we have seen that the screening starts operating when X ⇤ ⌥
⇥4, and that the field strength

is governed by {m,⌅,⌥}. For a generic polynomial function, in the region of deep screening

the highest power of XN will dominate. For an isolated point particle, we then have, from

Eq. (3.16),

�

⇥r⌦

⌥2

⇥2N⇥1

≈
�

m⌅

4πMPl⌥
2

⇥

1

r2
. (3.33)

Thus, the lengthscale that controls the scalar field profile for an isolated object is para-

metrically the same as for quadratic k-essence, i.e.

rsc = cN

r

m⌅

4πMPl⌥
2
, (3.34)

up to a numerical coe⌅cient cN [for a quadratic kinetic function one has e.g. c2 = (27/4)1/4].

In particular, for N = 2, from Eq. (3.33) one finds the small-radius expansion given by

Eq. (3.29), i.e. ⌦ ≈ const + O(r1/3).

Let us now turn to the binary problem and define ma  m and mb  m/q, q ≥ 1.
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Motivated by the previous discussion, we introduce the rescaled dimensionless variables

xi = λxi ,  =
m⌅

4πMPl

�

λ

⌥

⇥2

, φ =
⌦λ

⌥2
, (3.35)

X =
X

⌥4
, Ψ =

⇤λ

⌥2
, B =

B

⌥2
, C =

C

λ⌥2(4π)
, (3.36)

where the constant λ (which has dimensions of a mass) is for the moment left free. Note

that the rescaling of the Cartesian coordinates implies in particular the rescaling � = λ .

Moreover, from now on the spatial derivatives will be assumed to be taken with respect to

the rescaled coordinates xi unless otherwise specified. With these rescalings, the scalar

equation (3.16) takes the form

∇ ·

 

∇φ

N
X

n=1

X n⇥1

!

=

4π

⇧

↵(3)
�

r ⇥ D

2
ẑ

⇥

+
1

q
↵(3)

�

r +
D

2
ẑ

⇥⌃

(3.37)

We will from now on use the scale invariance of Eq. (3.37) to set D = 1, and thus

λ = D⇥1, without loss of generality. Thus, the parameter space of the problem is defined

by the (square of the) ratio of the screening radius of the more massive object and the

inter-particle separation,

 =
m⌅

4πMPl⌥
2

1

D2
◆

↵rsc
D

�2

, (3.38)

and by the mass ratio q. As mentioned earlier, to solve the two-body problem numerically

we will need a finite representation for the Dirac deltas, i.e. Eq. (3.31) for both sources,

centered at z = ±1/2. The appearance of a resolution length scale ⌥ now extends the

dimension of the parameter space from two to three: , q and R, where R = R/D = (2⌥)/D.

In the following, for concrete calculations we will focus on a quadratic model (N = 2),

which makes Eq. (3.20) solvable analytically. However, we will also provide analytic

arguments supporting the (qualitative) applicability of these results to more general

polynomial functions.

3.3.1 To B or not to B

As discussed in Sec. 3.2.3, a perturbative treatment of the dynamics is only useful outside

the screening region(s). In that regime, the solenoidal component is suppressed relative

to the irrotational one, as K�� ⌅ 1 [see Eq. (3.24)]. Inside the screening region(s), the

equation of motion is highly non-linear, and an exact solution cannot be found for the

two-body problem. We will therefore attempt two approximations, whose validity we will
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evaluate by self-consistency and by comparing to our fully numerical results6.

As the Helmholtz decomposition (3.18) breaks the problem into a straightforward

part (irrotational component) and a complicated one (solenoidal component), most of our

focus will be on understanding the solenoidal component. Let us then outline its vectorial

structure. As elaborated in the introduction of this Section, from axial symmetry and

asymptotic flatness one has φ = φ(�, z), and thus from the Helmholtz decomposition (3.18)

one can conclude that B↵ = 0. As the source C is proportional to ∇φ◊∇X , and these

two vectors are spanned by {⇥̂, ẑ}, the only non-zero component of the source vector will

be C↵. From Eq. (3.22) it then follows

B� = ⇥
Z

dV�⇥z

�

1

|r ⇥ r
�|

⇥

C↵(��, z�) , (3.39)

Bz =

Z

dV� 1

 
⇥�

�

�

|r ⇥ r
�|

⇥

C↵(��, z�) .

It is clear that these two components satisfy the zero-divergence condition (3.9)

1

�

⇥(�B�)

⇥�
= ⇥⇥Bz

⇥z
. (3.40)

If the source C↵ is non-zero, as generically expected, the solenoidal component is expected

to be non-vanishing, unlike in the example given in Sec. 3.2.3.

3.3.1.1 Linear superposition approximation

A very simple approximation is to consider the linear superposition of the full single

particle solutions [given by Eq. (3.27) for the quadratic kinetic function], i.e.

φ = φa + φb , (3.41)

where φa,b are the two solutions. We expect this ansatz to work well when the screening

regions of the individual bodies do not overlap, i.e. in the limit  ⌅ 1. In that situation,

non-linearities are strong only in the vicinity of each body, and are sourced by the body

itself (in isolation). These non-linearities are therefore already captured by Eq. (3.27).

This approximation will however receive non-trivial and a priori uncontrolled corrections

6One can perform a field rescaling [223, 224, 225] or introduce an auxiliary field at the level of action
(dual formulation) that replaces the self-interacting terms [213, 214] in order to obtain a well-defined
perturbative expansion in the screening region. In App. A.3 we show that the dual formulation is in fact
equivalent to the Helmholtz decomposition. We have not been able to solve the equation for the solenoidal
component (3.12) in a binary problem even after such a reformulation. Other analytic approaches, based
e.g. on perturbing the scalar field around the background field generated by a fictitious isolated body
located at the center of mass of the system [226], or on a sort of e⇤ective one-body approach [204],
have also failed to solve the two-body problem in a controlled perturbative manner in theories with
kinetic/Vainshtein screening.
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when the screening regions of the individual bodies overlap.

Note that even when  ⌅ 1, the solenoidal component B will be non-zero. In this

regime, we can just insert the ansatz (3.41) into Eq. (3.18) and get a (complicated)

expression for B2 = B · B. The latter can be simplified on the plane � = 0, where both

the solenoidal and irrotational components present maximal amplitudes:

B2(� = 0, z) =
64

3
f(a)2f(b)2

⌥

s(b)f(a) + s(a)f(b)
�2
,

f(i)  sinh
h1

3
arcsinh

�

rsc,i

z⇥ zi

⇥2
i

, (3.42)

s(i)  sgn(z⇥ zi) . (3.43)

In the regime where the superposition approximation is valid ( ⌅ 1), we find that the

irrotational component dominates upon the solenoidal one, as the dimensionless ratio

between their kinetic energies is

X⇤(0, z)

B2(0, z)
∼ 81q2

164
(1⇥ 2z) , (3.44)

when  ⌥ 0. Note that this is a non-trivial result, as it is valid not only in the pertur-

bative regime (outside the screening regions of the individual bodies), but also in the

screening region of each body. Indeed, near the body positions z = ±1/2, one recovers (by

construction) the isolated object solutions, at leading order. Similarly, the isolated object

solution can be recovered in the extreme mass ratio limit. Indeed, expanding for q ⇤ 1 we

find

B2(0, z) ∼ O(q⇥2) , X⇤(0, z) ∼ O(q0) , (3.45)

which shows that the solenoidal component is suppressed, as expected.

3.3.1.2 Irrotational approximation

Motivated by the previous discussion, one can start from the Helmholtz decomposition

(3.18), ignore the solenoidal component and invert Eq. (3.20) to find X. We will refer to

this approach as the irrotational (or longitudinal) approximation. Let us consider first

a general kinetic function K(X), and emphasize that the kinetic energy X obtained in

this way is an infinite series in ⌥
⇥2 (although this scale is absorbed in the parameter ).

Indeed, in the case of an isolated object or other highly symmetric configurations, this

result matches the full result, as shown in Sec. 3.2.3. Once found X, one can reconstruct
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the field by integrating Eq. (3.18) (with B = 0), i.e.

φ(�, z) = ⇥1

2

Z �

⌅
d�̃

⇥�̃Ψ

K�(X )
. (3.46)

(Note that the general solution would include an additional arbitrary function of z, which

is however forbidden by requiring that φ vanishes far from the source.) For example, for

the quadratic function of Eq. (3.26), one finds the following closed form for X :

X =
1

3

 

Y 1/3 + Y ⇥1/3 ⇥ 2
⌦

, (3.47)

Y =
3
⌃
3 (27X 2

⇤
+ 4X⇤)

1/2 + 27X⇤ + 2

2
.

[from Eq. (3.20); see Fig. 3.10].

Once determined X and φ in this irrotational approximation, one can check the validity

of the latter by computing the solenoidal component from Eq. (3.24). In this way, one could

devise an iterating scheme in order to solve the problem self-consistently. We will however

try to understand if there are regimes where the solenoidal component is parametrically

suppressed and the irrotational approximation is valid to leading order. We are thus

interested in comparing B with ⇥∇Ψ/2. As the same derivative power will act on the

radial distance in the denominator on the right-hand side of Eq. (3.21) as in Eq. (3.39),

it follows that if the source of the solenoidal component C  |C| = Cθ is parametrically

suppressed with respect to the irrotational one, i.e.

S⇤ = ⇥1

2


⇧

↵(3)
�

r ⇥ 1

2
ẑ

⇥

+
1

q
↵(3)

�

r +
1

2
ẑ

⇥⌃

, (3.48)

this will be also true for the magnitudes of the components themselves.

The magnitude of the source of the solenoidal component in the irrotational approxi-

mation is given by

C ≈ NKG∇ , (3.49)

NK = ⇥ 1

8π

KXX

KX

dX

dX⇤

|∇X⇤|
p

X⇤ , (3.50)

G∇ =

s

1⇥ (∇X⇤ ·∇Ψ)2

(∇X⇤)2X⇤

, (3.51)

where the kinetic function and its derivatives are functions of X = X (X⇤). As can be seen,

the source C depends on the non-linear terms of the function (encoded in NK) and on the

“misalignment” between ∇X ◆ ∇X⇤ and ∇φ ◆ ∇Ψ (encoded in G∇). In order for the

solenoidal component to be significant, there must be an overlap between the supports of

NK and G∇.
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Let us first consider G∇. Since it depends only on the FJBD fields Ψ and X⇤, this

quantity is independent of the screening radius and only depends on the mass ratio q.

From the definition (3.51), it is also clear that 0 ≤ G∇ ≤ 1, with G∇ = 1 when ∇X⇤

and ∇Ψ are orthogonal. In Fig. 3.2, we plot the support of G∇, defined as the region

where G∇ ≥ 0.1, for various mass ratios. In the equal mass case, the support is symmetric

around the center of mass of the system. As q increases, the support shrinks and gets

shifted towards the smaller object (located at zb = 1/2). In the limit q ⌥ ✓ we find that

G∇ ⌥ 0, i.e. we recover the spherically symmetric solution and the solenoidal component

vanishes, as expected.

The prefactor NK has instead support in the screening region, where the non-linearities

dominate and which is centered on the objects themselves, encoded in  ◆ (rsc/D)2 and

q. Let us first demonstrate two cases where the overlap between NK and G∇ is small.

Consider first the equal mass limit q ≈ 1 and  ⌅ 1: the support of NK shrinks (because

the screening radii of the two objects shrink) and the small overlap with the support of

G∇ suppresses the source of the solenoidal component. When instead q ⇤ 1, the support

of NK is mostly around the more massive body a, while the support of G∇ is closer to

the lighter body b (see Fig. 3.2), resulting again in a small overlap between NK and G∇

and thus in a small source magnitude C. Note that both of these cases (q ≈ 1 and  ⌅ 1;

q ⇤ 1) are consistent with the intuition from the linear superposition approximation (for

the quadratic k-essence), but the arguments presented here extend their validity to a

generic kinetic function.

To gain some insight on the remaining case ( ⇤ 1 and q ≈ 1), let us specialize to the

polynomial form (3.32) for the kinetic function. In the deep screening regime  ⇤ 1, the

highest power in the series dominates, and from (3.20) one therefore concludes that

X ≈ X 1/(2N⇥1)
⇤

, (3.52)

and consequently

NK ≈ ⇥ 

8π

N ⇥ 1

(2N ⇥ 1)

|∇X̂ψ|
p

X̂⇤

, (3.53)

X⇤  2X̂⇤(q) . (3.54)

For N = 1, one recovers the FJBD theory result (X = X⇤ and NK = 0). Since G∇ does

not depend on , one can therefore conclude that C ≈ NKG∇ ◆ .

Let us now compare the source of irrotational and the solenoidal components. As

both S⇤ [see Eq. (3.48)] and C scale linearly with , their ratio will depend only on the

mass ratio q. Since ⇥∇Ψ/2 and B [Eqs. (3.21), (3.39)] depend on the volume integrals of

their respective sources and both sources have a compact support, let us then compute
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Figure 3.2: Support of the function G∇,
which encodes the geometry of the source
(3.51), defined by G∇ > 0.1, for four
choices of the mass ratio q = ma/mb. The
cylindrical coordinates ( , z) are rescaled
by the inter-particle separation, and the
particles are located at zi = ±D/2.
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Figure 3.3: The ratio between the volume-
averaged source of the irrotational component
in the Helmholtz decomposition (3.18), ⇣S⇤⌘,
and the (averaged) source of the solenoidal
component, ⇣C⌘, as function of the mass ratio q
in the deep screening regime  ⇤ 1. The ratio
is multiplied by the factor (2N ⇥ 1)/(N ⇥ 1),
which depends on the choice of the kinetic
function (in polynomial form).

the spatial averages of C and S⇤. For the irrotational component, Eq. (3.48) yields the

average ⇣S⇤⌘ = ⇥(1 + q⇥1)/(2V ), where V is the volume (larger than the individual

supports of C and S⇤) over which the average is peformed. For C, we calculated the

average numerically for a set of values of q. In Fig. 3.3, we show the ratio ⇣C⌘/⇣S⇤⌘,
multiplied by (2N ⇥ 1)/(N ⇥ 1) to eliminate the dependence on N [see Eq. (3.53)]. For

instance, for q = 1 and N = 2, the ratio is ⇣C⌘/⇣S⇤⌘ ≈ 0.38 (Also note that the ratio is

independent of the volume V ). These results demonstrate that the solenoidal component

is always suppressed with respect to the irrotational one even in the deep screening regime,

although when q ≈ 1 this suppression is less evident.

In conclusion, the analytic arguments of this section indicate that the solenoidal

component will be significantly suppressed relative to the irrotational one when  ⌅ 1

and/or q ⇤ 1 (for a generic kinetic function). The suppression also holds in the deep

screening regime  ⇤ 1 (for a polynomial kinetic function), although it becomes less

pronounced for comparable masses (q ≈ 1).

3.3.2 Numerical solution

3.3.2.1 Formulation

In order to validate the analytic approximations of Sec. 3.3.1 and to understand the full

behavior of the two-body dynamics, we have performed numerical simulations for the
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case of a quadratic kinetic function7. The scalar equation of motion (3.37), together with

appropriate boundary conditions (to be described below), defines an elliptic boundary

value problem. We have represented Eq. (3.37) in cylindrical coordinates, and we have

discretized it using a second-order finite di⇥erence scheme, regularizing the Dirac deltas

with the Gaussian source of Eq. (3.31).

Our integration domain is the rectangle [0, �out] ◊ [⇥zout, zout], where the boundary

values �out and zout are chosen to be larger than or at most comparable to the screening

radii of the constituent object. On the � = 0 plane, regularity requires the boundary

condition ⇥�φ|�⇧0 = 0. Defining our grid as � = ih and z = jhz (with h and hz the grid

steps), regularity is then implemented by introducing the ghost point i = ⇥1 and taking

φ(⇥1, j) = φ(1, j). In order to regularize the coordinate singularity of Eq. (3.37) at � = 0,

we apply the L’Hôpital rule

lim
�⇧0

1

�

⇥φ

⇥�
=

⇥2φ

⇥�2
(3.55)

to modify the scalar equation at i = 0 [227].

On the other sides of the grid, we have used two implementations of Dirichlet boundary

conditions. First, we have used the superposition of the FJBD potentials to set the scalar

field on the boundary, as long as the latter is su⌅ciently far from the screening radius.

Moreover, after establishing that Eq. (3.46) provides a good approximation away from the

objects, but inside the screening region, we have used it to set the boundary scalar field in

the case when the size of the domain is comparable to the screening radius, in order to

reduce the size of the grid for the highly non-linear cases.

After discretization, Eq. (3.37) yields the non-linear system

Gij[{φ(i
�, j�)}i�=i⇥1,i,i+1,j�=j⇥1,j,j+1] = 0 , (3.56)

where Gij is a (non-linear) function of the discretized field at the neighboring points i�

and j�. We solve this non-linear system by using a Newton-Raphson method and an LU

decomposition to compute the inverse of the Jacobian. We have set a tolerance of 10⇥5 on

the scalar field profile. In all runs grid size was several times smaller than the e⇥ective

radius of the Gaussian source. As initial guess for scalar profile in the Newton-Raphson

method, we adopt several choices including the superposition of FJBD potentials (A.6)

and the single particle solutions (Sec. 3.3.1). However, as the non-linearities become more

important, corresponding to the growth of  in our units, we use Eq. (3.46) as initial

7The same problem was also studied numerically in Ref. [204]. However, that analysis focused only on
the binary’s energy. Here we discuss several other aspects, and in particular the behavior of the scalar
gradients. In addition, we use a di⇤erent numerical method and provide a more refined code validation
(see App. A.4).
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guess. Moreover, to speed up the calculation we occasionally replace the Newton-Raphson

method iteration with one computed with a Broyden method [228].

A description of our code’s validation, including a comparison with the semi-analytic

solution in the single particle case and convergence tests, is left for App. A.4.

3.3.2.2 Results

Consider first an equal-mass system where the screening regions of the constituent objects

do not overlap, i.e.  < 1. In Fig. 3.4 (left), we show the numerical solution for the

scalar’s kinetic term on the plane  = 0, Xnum, vs the same quantity for FJBD theory X⇤,

and two approximations described in Sec. 3.3.1 (with a Gaussian source). In more detail,

both the linear superposition of the two one-particle solutions Xsup and the irrotational

approximation Xirr provide an excelent agreement with the numerical results. Furthermore,

the di⇥erence between these approximations and the numerical solutions, and hence the

importance of the solenoidal component, is of the order of the numerical error in this

regime. The comparison with FJBD theory demonstrates that the screening is active

inside the screening region of the individual objects (shaded region), and that outside

the individual screening regions the scalar gradient is not suppressed. Note also that the

kinetic term is significantly suppresed (although not zero in contrast to the isolated object,

Sec. 3.2.3), and thus the theory is in the linear regime, near the center of the source.

More interesting is a scenario where  > 1. In Fig. 3.4 (right) we show the same

quantities as for the previous case. In order to appriciate the full spatial behaviour

of the scalar kinetic energy we also present in Fig. 3.5 a contour plot of Xnum for one

such case (bottom), together with the same plot for the corresponding one-particle case

(top). Consider the region around z =  = 0, which is inside the single-particle screening

region. In the binary problem, this region corresponds to the saddle point of the scalar

profile, where the fifth forces cancel each other and thus the scalar gradient is suppressed

(see the next Sec. 3.3.3 for further discussion). This can be clearly seen in the bottom

panel, where the contour lines get deformed to allow for near zero gradients in the saddle

region. On the “outer” side of the binary, the profile is much closer to the expectation

from the single-particle case, although both the scalar gradients and the screening radius

become larger. This is expected, as su⌅ciently far away from the constituent objects,

the system behaves as a composite single object ma + mb. Both the irrotational and

linear superposition approximations considered earlier capture the essential characteristics

of how the screening operates in a binary system as is clear from Fig. 3.4 (right). The

superposition ansatz Xsup tends to overcorrect the di⇥erence between the one-particle case

and the two-body by drastically reducing the peaks inside the binary and enhancing those

outside it. On the other hand, the irrotational approximation Xirr makes these adjustments

closer to the true (numerical) solution.
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Consider now a case with  > 1 , q ⇤ 1, shown in Fig. 3.6. As discussed in Sec. 3.3.1,

both approximations are much closer to the numerical result than in the case of equal-mass

systems. In particular, the discrepancy between the analytic approximations and the

numerical result is most pronounced in the vicinity of the smaller object. Again, the

irrotational approximation is outperforming the simple linear superposition of the one-body

solutions.

In order to compactly describe the two approximations across the mass ratio parameter

space, we define the following L2 norm

||⌦y||2  

s

Z

dV(ynum ⇥ yan)2 (3.57)

where y = {φ,X}, with subscripts {num, an}, denote the numerical result and the analytic

approximation, respectively, and the integral is taken over whole grid. The estimate

is sensitive to the non-linear regime, because in the linear regime both approximations

give a very good description of the numerical results. Results are shown in Fig. 3.7

for a scenario representative of the deep screening regime  ⇤ 1. We find that the

irrotational approximation is outperforming the superposition approximation for all mass

ratios, although the relative error of both approximations increases as q ⌥ 1. This is

completely in line with the conclusions from Sec. 3.3.1. We also find that the relative

error of the kinetic energy saturates at ∼ 10% for q = 1. Thus, even in the case of equal

masses, the irrotational approximation provides a decent quantitative description of the

scalar profile. It is also apparent that, for a given approximation, the error is smaller

for the field than for X. A similar phenomenon is observed in the two-body problem for

cubic Galileons (where the Vainshtein screening operates [33, 215, 226, 222, 30]), when

comparing the superposition approximation and numerical results [205].

3.3.3 Descreened bubbles

In systems where only attractive forces act, there may be special points where all the

forces cancel. For spherical objects in isolation, one such point is the center, while in

N -body systems these are the saddle points, where the gradient of the potential vanishes.

In theories where the screening is activated by the magnitude of the scalar gradient, these

saddle points (and their neighborhoods) are therefore in the perturbative regime, which

leads to a possible breakdown of the screening (Fig. 3.5). This, in turn, suggests that

saddle points and their vicinities may be useful testing grounds for theories with screening

mechanisms. This was recognized for MOND [220], and it was even suggested that LISA

Pathfinder could be used to probe the MOND interpolating function if directed towards

the saddle point of the solar system [229].
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Figure 3.4: Scalar kinetic energy on the plane  = 0 for quadratic k-essence, calculated from
our numerical results (Xnum, red solid line), with the linear superposition approximation
(Xsup, black dashed line), and with the irrotational approximation (Xirr, purple long-dashed
line). Also shown for comparison is the FJBD result (Xψ, orange dot-dashed line). Two
equal-mass (q = 1) binary systems are considered: rsc = 4.5R, D = 17.5R (left) and
rsc = 9.5R, D = 5R (right), with the origin placed at the geometric center. The cyan
shaded areas represent the individual screening regions of each body in isolation (ignoring
the descreening in the vicinity of the object’s center), and the darker shade in the right
panel denotes the overlap of these individual screening regions.

Following Ref. [220], let us then consider a region where the theory dynamics is in the

linear regime near the saddle point. Therefore, we can use the superposition of the FJBD

scalar gradients (along the axis that connects the two bodies) to compute fifth force (per

unit mass) as (restoring physical units)

(∇⇤)z =
⌅

4πMPl

m

(z +D/2)2
⇥ ⌅

4πMPl

mq⇥1

(z ⇥D/2)2
, (3.58)

The (saddle) point where the total scalar gradient is zero is given by

zSP =
D

2

⌃
q ⇥ 1

⌃
q + 1

. (3.59)

Taylor-expanding the scalar gradient around this saddle point, we find the force in its

vicinity8 to be

∇⇤SP ≈ A

�

(z ⇥ zSP)ẑ ⇥ 1

2
 ⇤̂

⇥

, (3.60)

A  ⇥ ⌅

2πMPl

mq⇥3/2

D3
(1 +

⌃
q)4 . (3.61)

The condition |∇⇤SP| =
p

Xψ|SP ⇥ ⌥
2 then defines the region where the screening may

8One can further verify that the Hessian matrix is indefinite and thus (0, zSP) is indeed a saddle point.
For a general discussion see Ref. [230] (we thank Áron Kovács for pointing out this reference).
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Figure 3.5: Contour plot of the scalar kinetic energy X in the ( , z) place. The bottom
panel is for an equal-mass binary with rsc = 9.5R and D = 5R. The top panel is for just
one of the two bodies. The pink semicircles denote the e⇥ective radii of the Gaussian
source model for the point particles. The orange dot-dashed line connects the geometric
center of the left object in the two subplots, while the red dashed line connects the origins
(which are placed at the center of mass of the binary).
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Figure 3.6: The same as in Fig. 3.4 (right),
but for q = 25. The two bodies are placed
at z = ±2.5R.
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Figure 3.7: Relative di⇥erence of the linear
superposition and irrotational approxima-
tions from the numerical results, in terms
of the L2 norm defined in the text and as
a function of the mass ratio q. The di⇥er-
ences are shown for the scalar field φ and
ist kinetic energy X, in the deep screen-
ing regime. The system considered is an
rsc = 9.5R and D = 5R.
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break down. From this condition, one obtains that the size ↵ of this region is given by

↵

D
⇧ 1



q3/2

(1 +
⌃
q)4

, (3.62)

i.e. this region shrinks in both the deep screening regime ( ⇤ 1) and in the extreme mass

ratio limit (q ⌥ ✓).

Although both the GR Newtonian force and the scalar fifth force go to zero precisely

at the saddle point, in their vicinity they are both non-vanishing, with their precise ratio

depending on the value of ⌅. Note that constraints on the time-variation of the e⇥ective

gravitational constant (in the Jordan frame) from Big Bang nucleosynthesis and Lunar

Laser Ranging experiments require ⌅ ⇥ 0.1 [231]. Considering three representative binary

systems, i.e. Earth and Moon, Sun and Earth, and Sun and Jupiter, taking ⌥ ≈ 2◊10⇥3eV

and ⌅ = 0.1, we obtain ↵ ≈ 0.2km, ↵ ≈ 1km and ↵ ≈ 2800km, respectively. As ↵ ◆ ⌅⇥2,

by reducing ⌅ the size of the “descreening” region grows, but the correction to the GR

Newtonian force from the fifth force decreases by the same amount.

Precise modeling of the dynamics near the saddle point of the solar system is challenging,

as it would require accurate ephemeris data [232, 52] and even account for the e⇥ect of

the spacecraft carrying the accelerometer itself. While this is outside the scope of this

work, let us comment on a few parallels with MOND, where these problems have been

analyzed to some extent [220, 229]. First, note that if we had used ⌅ = 1 in our estimates

for ↵ for the Earth and Moon, Sun and Earth, and Sun and Jupiter systems, they would

have di⇥ered only by a factor ∼ a few from the estimate for MOND in Ref. [220]. The

reason is that the scale of the MOND critical acceleration is ao ≈ H0/6, thus leading to

the same parametric scaling as the cosmologically motivated k-essence. In more detail,

the MONDian behavior is triggered by the condition a0 ⇧ aN [where aN ⇧ m/(D2M2
Pl)],

which is equivalent to the k-essence ⇥r⇤ ⇧ ⌥
2 deep screening condition.

Note that although MOND is not a well-defined theory by itself, several attempts have

been directed at constructing a field theory that can develop a MONDian phenomenol-

ogy [107], including hybrid models such as superfluid DM [117]. Implementations that

are of K(X) type combine both screening around matter sources and anti-screening (i.e.

enhancement of the scalar gradient, see Sec. 3.4.3) in the low-acceleration regime. Thus,

MOND saddle point regions can be larger than the simple estimate given above, and

the fifth force may even dominate the Newtonian force inside them [220]. This makes

saddle points a potentially better probe of MOND than k-essence (although not all MOND

interpolating functions can be further constrained in this way [233]).

66



3.3.4 Two-body energy and the fifth force

In a time-independent system such as the one that we consider, the Hamiltonian (density)

is given by H = ⇥L, where the Lagrangian (density) L is obtained from Eq. (2.15)

[specializing to Minkowski space]. From this, one can find the potential energy E =
R

dVH

as a function of the system’s parameters and the inter-particle separation (see Sec. 3.3.1).

From the energy, the magnitude of the fifth force between the two particles can then be

found as

F =
⇥E

⇥D
. (3.63)

Let us consider the polynomial kinetic function of Eq. (3.32), which yields

E = ⇥
Z

dV
h

⇥ ⌥
4

N
X

n=1

1

2n

�

X

⌥4

⇥n

+
⌅

MPl

⌦T
i

. (3.64)

Using the equation of motion (3.37), we can rewrite this integral as

E  
E

D3⌥4
= ⇥

Z

dV
N
X

n=1

↵2n⇥ 1

2n

�

X n , (3.65)

where we have also used the rescaling of Eq. (3.35). Noting that in the deep screening regime

the highest power of X dominates the integral and using the irrotational approximation,

one can apply Eq. (3.52) and obtain that the energy Esc of the screened regions (sc) is

given by

Esc ≈ ⇥
2N

2N⇥1

↵2N ⇥ 1

2N

�

Z

sc

dVX̂N/(2N⇥1)
⇤

. (3.66)

The total energy is then obtained by adding the subdominant term ≈ ⇥
R

un⇥sc
dVX⇤/2

that corresponds to the ‘unscreened’ region un⇥ sc. [Note indeed that the integral in

Eq. (3.66) diverges in the unscreened region]. One can observe that for N = 1, we recover

the FJBD scaling E ◆ D⇥1, while for N = 2 we obtain E ◆ D1/3, as expected on

dimensional grounds and from the single particle limit. Note also that in contrast to

the Newtonian/FJBD case, the scalar self-energy does not diverge in the point-particle

limit thanks to the screening. From the scaling of the source of the solenoidal component

[Eq. (3.53)], we find that B ◆  when  ⇤ 1. Thus, including the solenoidal component in

Eq. (3.65) does not change the overall scaling of the energy with  in the deep screening

regime, as given by Eq. (3.66).
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The amplitude of the fifth force [from Eqs. (3.63) and (3.66)] is then given by

Fsc  

Fsc

D2⌥4
≈ ⇥

2N

2N⇥1 IN(q) ,

IN(q)  

1

2

Z

sc

dVX̂ (1⇥N)/(2N⇥1)
⇤

⇥DX̂⇤

�

�

D=1
. (3.67)

This indicates a clear suppression when N > 1 in comparison to the FJBD limit N = 1.

For instance, for N = 1 one has Fsc ◆ D⇥2 (Newton’s law), while for N = 2 one ontains

Fsc ◆ D⇥2/3. Unlike the energy, the fifth force diverges in the limit D ⌥ 0. However, this

is simply an artifact of the point-particle model, i.e. it disappears for extended sources

(see e.g. Ref. [198] and the discussion in our Sec. 3.2.3, App. A.2). The details of the

calculation of IN(q) are presented in App. A.2.1.

In order to verify the internal consistency of our irrotational approximation (in both

the deep screening and FJBD regimes), we have calculated the fifth force [from Eqs. (3.63)

and (3.65)] semi-analytically in quadratic k-essence (see App. A.2.1 for details). In Fig.

3.8, we show how the magnitude of the fifth force depends on the mass ratio and on the

inter-particle separation in units of the object’s radius (although we stress that our results

do not depend on the details of the object’s internal structure, as long as one focuses on

the object’s exterior). For q = 1, we also show, for comparison, the FJBD limit Fψ and

the deep screening limit given by Eq. (3.67) (which suppresses the fifth force relative to

FJBD theory). As can be seen, the change between the two regimes is abrupt, for all mass

ratios, and the two approximations provide a very good description of the scaling of the

fifth force with distance in a piecewise fashion.

Having established that the deep screening limit of Eq. (3.67) is valid in the context of

the irrotational approximation, we can compare that limit with the full numerical result

of Ref. [204] for quadratic k-essence. Let us define the force in the test-mass limit by

performing the standard Newtonian reformulation of a two body problem into the motion

of a fictitious particle with the reduced mass µ = mamb/(ma +mb) around a particle with

the total mass ma +mb (see e.g. Ref. [54]). The amplitude of the force is then given by

Ftm = (⌅/MPl)µ ⇥r⌦|r=a. Thus, from Eq. (3.33) [and using the rescaling of Eq. (3.35)] we

obtain

Ftm

4π
=

⇧

4

q(q + 1)2

⌃1/3

. (3.68)

From the irrotational approximation, it follows that the force in the deep screening

regime [Eq. (3.67)] has the same scaling with  as the test-mass limit (and the solenoidal

component does not change this scaling, as argued above). Therefore, the ratio of Fsc and

Ftm depends only on the mass ratio q. The same conclusion was reached in Ref. [204]

68



● ● ● ●
● ● ● ●●●●

●
●●●●●●●●

■ ■ ■ ■
■ ■ ■ ■■■■

■
■
■■■■■■■

★ ★ ★
★

★ ★ ★ ★★★★
★

★
★★★★★★★

▲ ▲ ▲
▲

▲ ▲ ▲ ▲▲▲▲
▲

▲
5 10 50 100 500

10

100

1000

104

105

106

●

■

★

▲

Figure 3.8: Fifth force F for four values of
the mass ratio q, calculated using the irro-
tational approximation and various values
of D/R, for fixed rsc/R = 100 (denoted by
the gray dashed line). For q = 1, we also
show the FJBD limit [Eq. (A.5), cyan dot-
dashed line] as well as the deep screening
approximation [Eq. (3.67), solid red line].
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Figure 3.9: Ratio of the fifth force ampli-
tudes between the two point particles and in
the test-mass limit, in quadratic k-essence,
calculated from the numerical simulation of
Ref. [204] (black) and using the irrotational
approximation in the deep screening regime
(pink, dashed).

using an e⇥ective-one-body approach. Following Ref. [204], let us define

Fsc = b0(x)Ftm , x =
1

1 + q
, (3.69)

where we expect that limx⇧0 b0 ⌥ 1. We have found b0(x) [from I2(q)] semi-analytically,

and we have compared it with the fit of the full numerical result from Ref. [204] (Eq. 46)

in Fig. 3.9. As can be seen, this comparison confirms the observation from Ref. [204]

that the screening is more e⌅cient in equal-mass systems than in the extreme-mass ratio

limit. (This implies a breakdown of the weak equivalence principle, as further elaborated

in Ref. [204]). Note that the relative enhancement of the screening relative to the extreme

mass-ratio limit is at most ∼ 25%. Also note that our findinds confirm that the irrotational

approximation is in good agreement with the full numerical results, di⇥ering only by a few

percent from the latter.

Finally, let us emphasize that the breakdown of screening in the descreened bubbles

(see Sec. 3.3.3) is a local phenomenon, which can be probed with a third test body.

Descreened bubbles can in principle a⇥ect the two-body energy and the fifth force, since

the latter are expressed as integrals over all space. For a given , Eq. (3.62) predicts that

the largest descreened bubbles appear for q ≈ 9. However, as clear from Fig. 3.9, in the

deep screening regime this does not significantly impair the e⌅ciency of the screening

mechanism.
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3.4 Other theories

Thus far, we have focused on the polynomial form of the k-essence kinetic functon, given by

Eq. (3.32). Let us now broaden the scope of the possible kinetic functions, and investigate

again the non-relativistic limit for single bodies and for binary systems. We will employ

the same notation as in the previous sections. Note that while in polynomial k-essence a

generic astrophysical system is in the regime of validity of the EFT when the screening

operates, this may not be the case for some theories considered in this section, and in

particular opposite DBI and anti-screening theories (see App. A.1).

3.4.1 Beyond (simple) polynomial k-essence

One may wonder how values of the polynomial coe⌅cients di⇥erent from those in Eq. (3.32)

impact our previous discussion and results. Since the highest power of X dominates upon

the others in the deep screening regime, our results should be qualitatively unchanged

(as long as the coe⌅cient of the highest power of X has the sign leading to screening in

the first place). We have performed simple numerical experiments to check this, e.g. we

have considered a sextic polynomial K6 = ⇥X /2 + c2X
2 + c4X

4 ⇥ X 6/12, with randomly

generated values of the coe⌅cients {c2, c4} in the interval ⇥5 ≤ ci ≤ 5 but requiring that

the condition of Eq. (3.15) is satisfied. We have calculated the suppression factor X /Xψ

for the isolated Gaussian source as in Sec. 3.2.3 for several such realizations. Comparing

with our default model K6 = ⇥X /2⇥ X 6/12, we have found that outside the object but

within the screening region, the suppression factor varies by at most a few percent. The

di⇥erences between the various realizations peak around the screening radius, where they

reach ∼ 10%, as this is the transition region where the e⇥ect of the subleading terms

X 2,X 4 is maximized. The relative di⇥erence is further suppressed outside the screening

region, when the FJBD limit is asymptotically approached. We expect this conclusion to

hold also for the two-body problem.

If one relaxes the assumption of a polynomial kinetic function, one can also engineer

particular functions passing di⇥erent cosmological and solar system constraints while still

providing a viable scalar-tensor theory of gravity [40, 231]. One such model was considered

in Ref. [231] and is given by

Ktan⇥1 = ⇥1⇥ X

2
⇥K�

⇧

X ⇥ X� arctan

�

X

X�

⇥⌃

, (3.70)

where {X�,K�} are free parameters of the model. Note that K�(X ) ⌥ K� as X ⌥ ✓ (see

Ref. [23] for the quantum aspects of this model). In the irrotational approximation, one

cannot invert Eq. (3.15) exactly, although in the deep screening regime the relation is

approximately linear, X ≈ X⇤/(1 +K�)
2, and the suppression of the fifth force is realized
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through a large value for K�. We show a numerical solution X (X⇤) for X� = ⇥2, K� = 103

(model I from Ref. [231]) in Fig. 3.10.

In the context of the two-body problem, let us assess the importance of the solenoidal

component using the arguments of Sec. 3.3.1. The quantity that characterizes the non-

linearities, i.e. NK [Eq. (3.50)], is given in the deep screening regime by

NK ≈ ⇥3K�(1 +K�)
3X 2

�

|∇X̂⇤|

X̂ 5/2
⇤

. (3.71)

As the screening arises in this model from a large factor K�, the relative strength of the

solenoidal and irrotational components is controlled by (K�/)
4 [we remind the reader

that S⇤ ◆ , see Eq. (3.48)]. This scaling makes the solenoidal component much more

suppressed than in the case of a polynomial kinetic function, for the parameter values

considered in Ref. [231].

3.4.2 “Opposite” DBI

Let us consider a class of models where the scalar gradient X saturates in the strongly

interacting regime. A particularly interesting model is the (opposite) DBI one [234, 207, 22]

KDBI =
p

1⇥ X /2 . (3.72)

Standard DBI theory (obtained by flipping the overall sign of the Lagrangian and the sign

in front of X ) can be embedded in string theory, but does not allow for screening [193, 40].

However, the “opposite DBI” kinetic function in Eq. (3.72) may appear naturally in higher

dimensions and possesses a higher symmetry group than the standard shift-symmetric

K(X) theory analyzed thus far [22, 207].

Like in the case of quadratic k-essence, the solution for a single point-particle source

can be expressed in terms of the hypergeometric function:

φ = 1.85rsc ⇥ r 2F 1

h1

4
,
1

2
;
5

4
;⇥

↵

r

rsc

�4i

. (3.73)

This exact solution features a screening radius rsc =
⌃
. Like in Sec. 3.2.3, we show the

scalar gradient for an isolated Gaussian source and for a point particle in Fig. 3.11. In

contrast with the polynomial k-essence, now even in the point-particle case the scalar

gradient does not diverge at the particle’s location, and the point-particle and Gaussian

models are much closer even inside the source, down to very small radii. We also find that

the screening in opposite DBI is more e⌅cient than in quadratic k-essence (see Figs. 3.1

and 3.11, and also Fig. 3.10).

Away from spherical symmetry (or other highly symmetric configurations), the solenoidal
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Figure 3.10: Relation between the kinetic
energy X and the FJBD kinetic energy Xψ

in the irrotational approximation, for sev-
eral choices of the kinetic function. The
latter include quadratic k-essence K2 [Eq.
(3.26)]; the arctan modelKtan⇥1 [Eq. (3.70);
X� = ⇥2, K� = 103]; opposite DBI theory
KDBI [Eq. (3.72)]; and the anti-screening
model Ka⇥sc [Eq. (3.76); p = 5/6]. The
thin solid line corresponds to X = Xψ.
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Figure 3.11: The same as in Fig. 3.1, but
for (opposite) DBI theory.

component is in general not zero in opposite DBI, unlike what was implicitly assumed

in Ref. [207]. However, we can consider the irrotational approximation described in Sec.

3.3.1 (see Fig. 3.10) and obtain

X =
X⇤

1 + X⇤

. (3.74)

We can then calculate the source of the solenoidal field that encodes non-linearities in the

two-body problem [see Eq. (3.50)], obtaining

NK ≈ 1

4

p

X (1⇥ X ) . (3.75)

One can see that as X flattens in the deep screening regime, NK ⌥ 0. Thus, the solenoidal

component in opposite DBI is even more suppressed than for a polynomial kinetic function.

3.4.3 Anti-screening

As noted in Sec. 3.1, a drawback of generic k-essence models is the absence of a standard

UV completion [61, 62]. Thus, in Ref. [196] a class of shift-symmetric theories that do not

violate positivity bounds9 and which are thus expected to admit such a completion were

9These models were unfortunately advertized in Ref. [196] as causal modifications of gravity, as opposed
to superluminal models that allow for screening. However, as elaborated in Sec. 3.1, causality is not an
issue in superluminal k-essence theories [36, 38, 39, 40, 41, 44].
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considered. Those are described by

Ka⇥sc = ⇥1

p
[(1 + X /2)p ⇥ 1] , (3.76)

where 1/2 ≤ p < 1 (p = 1/2 corresponding to the standard DBI theory, see Ref. [40],

while p = 1 yields FJBD theory). These theories, however, lead to anti-screening i.e. an

enhancement of the fifth force near matter sources (see Fig. 3.10). These theories, like

FJBD theory, are then only relevant if the coupling of the scalar to matter satisfies the

Cassini bound. The anti-screening phenomenon could then provide additional constraints

in the solar system and in the strong gravity regime [196].

The Helmholtz decomposition and the arguments of Sec. 3.2.2, 3.3.1 can also be

applied to theories with anti-screening. In particular, in spherical symmetry the solenoidal

component is zero, and X (X⇤) can be found from Eq. (3.20) (see Fig. 3.10). Away from

spherical symmetry, from Eq. (3.50) one finds (e.g. for the special case p = 5/6)

NK ≈ 

8

|∇X̂ψ|
p

X̂⇤

, (3.77)

i.e. the same as in Eq. (3.53) for N = 5/6. Therefore, the details of the anti-screening

model are captured in a dimensionless prefactor, and the dependence on  and q is the

same as in polynomial k-essence (see Fig. 3.3).

3.5 Conclusions

We have shown that shift-symmetric scalar-tensor theories, involving only first derivatives in

scalars, can be reformulated by covariantly splitting the scalar gradient into a longitudinal

⇥µ⇤ and a transverse component Bµ (Hodge-Helmholtz decomposition; Sec. 3.2.1). The

longitudinal component reduces to a (free) Klein-Gordon field, while the transverse

component obeys a hyperbolic equation with a non-linear source. We have shown that

for spherical and static sources, the transverse component identically vanishes (Sec. 3.2.2,

3.2.3). In this situation, the problem reduces to solving a linear elliptic equation and then

an algebraic one.

In general, and also in the case of two-body non-relativistic systems that we consider

in this Ch., the solenoidal component does not vanish (unlike what was implicitly assumed

e.g. in Refs. [213, 207]). Outside the screening region of a two-body system (which is

controlled by the ratio between the screening radius of the more massive objects rsc and

the inter-particle separation D, as well as by the mass ratio q), the solenoidal component is

perturbativly suppressed and the superposition approximation provides a good description

of the full results (see Sec. 3.3.1 and 3.3.2). Inside the screening region, we have developed
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an approximate ‘irrotational’ scheme that starts by ignoring the solenoidal component

and finds the scalar gradients X by solving an algebraic problem. This approach was

validated by checking self-consistency (Sec. 3.3.1), by solving the full system numerically

(Sec. 3.3.2) and by comparing with the previous results of Ref. [204] (Sec. 3.3.4). We have

shown in Sec. 3.3.1 that irrespective of the form of the kinetic function, the irrotational

field dominates upon the solenoidal one when D ⇤ rsc and/or q ⇤ 1. In these regimes,

ignoring the solenoidal component will introduce only small errors in the description of

the scalar gradients. Furthermore, we have shown that even when rsc ⇤ D and q ≈ 1, the

irrotational approximation will introduce only percent-level errors in the binary fifth force,

in comparison with the full numerical results for quadratic k-essence (Sec. 3.3.4). Kinetic

functions whose growth is suppressed in the deep screening regime will have even more

suppressed solenoidal components (Sec. 3.4.1, 3.4.2). The irrotational approximation can

also be applied for theories that exhibit anti-screening (Sec. 3.4.3).

At the physical level, our results, both analytic and numerical, show that the absence

of spherical symmetry in a binary system does not make screening necessarily ine⌅cient.

On the one hand, the non-linear nature of k-essence generally renders screening slightly

more efficient, relative to the test-body limit, in equal-mass systems (Sec. 3.3.4). This

has already been established numerically, and its consequences on violations of the weak

equivalence principle elaborated, in Ref. [204]. However, we show that binaries also

produce “descreened” regions near the system’s saddle point (Sec. 3.3.3). These regions

may in principle be probed in the solar system with su⌅ciently precise accelerometers.

A natural continuation of this work would be to assess the validity of the irrotational

approximation in N -body systems. In relation to k-essence probes in the solar system

(e.g. with these descreened regions), such an irrotational approach could alleviate the

numerical di⌅culty and cost of full multi-body simulations (for a related numerical study

of the Sun-Earth-Moon system in the cubic Galileon theory, see Ref. [205]).

As the Hodge-Helmholtz decomposition can be implemented in a covariant way, it is

an interesting question to consider whether it can be helpful in dynamical problems. For

instance, stellar collapse in k-essence leads to a breakdown of screening [58]. Indeed, due

to black-hole no-hair theorems [235, 236, 237, 238, 239], the star’s scalar “charge” must be

radiated away [58], producing a potentially observable gravitational-wave signal. Another

interesting problem is a binary neutron star’s inspiral. In scalar-tensor theories, the orbital

energy of a binary decreases because of the emission of both scalar and tensor gravitons. In

FJBD, and related perturbative theories where the screening does not operate, the binary

inspiral can be systematically studied within the PN formalism [240, 241, 242, 243, 244, 54].

However, in theories with screening, such an approach is not straightforward. Thus far, in

theories with strong non-linearities the inspiral has been studied by perturbing the scalar

field around the background field generated by a fictitious isolated body located at the
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center of mass of the system [245, 200, 196]. On the other hand, numerical simulations have

been performed in cubic k-essence (including GR), scanning the rsc/D ≈ 1⇥ 6 range [55].

Both of these problems may benefit from (a more systematic) analytic approach based on

the Hodge-Helmholtz decomposition.
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Part III

Soliton boson stars as compact

objects
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Chapter 4

Soliton boson stars, Q-balls and the

causal Buchdahl bound

4.1 Introduction

In this Ch., we focus on self-gravitating objects made from complex scalars (gravitating

Q-balls/soliton boson stars), introduced in Ch. 2 and their structural properties. Besides

the rich literature on Q-balls (starting from the seminal paper by Coleman [168]; see

also [246] for a recent review), the structure of relativistic SBSs has been investigated for

the simplest potential [167, 247, 248, 155, 163],

V = µ2|⌃|2
↵

1⇥ 2
|⌃|2

⌥2
0

�2

, (4.1)

for more general sextic potentials [249, 250, 163] and for related potentials, such as the

cosine one [251, 163]. Quasi-normal modes and geodesics around SBSs have also been

studied [248], their Love numbers have been calculated [150, 252], and they have been

simulated in binary systems [155, 253, 166, 254, 255, 2].

The relation between Q-balls and SBSs has been at least partially discussed previ-

ously [256, 257, 258, 259] and the most dramatic e⇥ects of gravity are non-perturbative in

⌥0/MPl. In this regime, as MPl < ✓, Q-ball limit is not realized. However, there is no

major qualitative di⇥erence between Q-balls and SBSs in the part of the parameter space

where the e⇥ects of gravity are not important and perturbative. For clarity, in the rest of

the Ch. we will refer to the MPl ⌥ ✓ limit as Q-balls and to the gravitating case as SBSs.

Notwithstanding all these studies, to the best of our knowledge some basic aspects

of SBSs and non-topological solitons that admit degenerate vacua in general have not

been appropriately addressed in the literature. In this work we aim to fill this gap by

constructing analytic descriptions of SBSs for the simplest potential (4.1) in the sub-Planck

limit ⌥0/MPl ⌅ 1, by understanding the physics that sets the maximal compactness of
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these objects, and by illuminating the non-trivial connection with the Q-ball limit. We

will establish the robustness and the limits of this picture by exploring the parameter

space in ⌥0/MPl, and also by considering cosine, sextic and quartic potentials. We will

show that diverse choices of the potential do not correspond to dramatically distinct

macroscopic behaviours of SBSs, and that the structure of SBSs mostly depends on the

distance between the central field and the scalar false vacuum, and on whether the false

vacuum is su⌅ciently deep.

This Ch. is organized as follows. In Sec. 4.2 we will provide a brief review of Q-balls,

upon which we build up description of SBS structure and properties in Sec. 4.3. In Sec. 4.4

we will explore the parameter space of these objects and the e⇥ect of the scalar potential

on their structure. The technical details of our numerical methods are presented in App.

B.1, while in App. B.2 we discuss various definitions of the SBS radii and in App. B.3 we

provide some additional details on the analytic construction of SBSs.

4.2 Q-balls: a review

The Lagrangian of a scalar field with U(1) symmetry in flat space-time is given by

L⌅ = ⇥⇥µ⌃
†⇥µ

⌃⇥ V (|⌃|) . (4.2)

The scalar field can be decomposed in Fourier modes as

⌃ = φ(r)e⇥i t , (4.3)

with time translations corresponding to a change in phase. Because of the U(1) symmetry,

and as long as only one Fourier mode is excited, this superficial time dependence does not

propagate to any observable quantity, such as thermodynamics parameters: the density

 = ⇥T t
t , the radial pressure Prad = T r

r etc., and Derrick’s theorem is circumvented.

Varying the action (4.2) with respect to φ, one obtains the Klein-Gordon equation

φ�� +
2

r
φ� = ⇥dU 

dφ
, (4.4)

U =
1

2
(✓2φ2 ⇥ V (φ)) . (4.5)

Note that this equation can be interpreted as the equation of motion of a Newtonian

particle under a friction term and an e⇥ective potential U . The energy of the Newtonian

particle is

E =
1

2
(φ�)2 + U , (4.6)
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and it is conserved only in D = 1 dimensions, when the friction is absent.

In order for the field energy (i.e. the integrated energy density) E =
R

dV  to be

finite, one must have φ(r ⌥ ✓) ⌥ 0, which implies that the Q-ball is a localized object.

Let us assume that at infinity the scalar is free, with leading mass term in the potential

V = 1
2
µ2φ2 + O(φ4). As U ∼ (✓2 ⇥ µ2)φ2 , φ ⌥ 0, we require ✓ < µ for the scalar to

converge to the vacuum state at infinity. The leading order behaviour is of the form

φ ∼ exp (⇥
p

µ2 ⇥ ✓2r), which implies zero “velocity” φ� at infinity and E(✓) = 0. The

asymptotic Yukawa-like behaviour implies that the Q-ball radius is ill defined. We follow

the common practice (e.g. [248]) and arbitrarily define the radius as that enclosing 99% of

the total mass R99. (Note however that di⇥erent conventions and definitions can be found

in the literature, see App. B.2).

At the initial point (in the particle perspective), in order for the friction to be overcome

one must have φ�(r ⌥ 0) ◆ r1+✏ , ⌘ > 0 i.e. φ�(0) = 0. As U (0) = 0, the particle needs to

be released at some point φc|U (φc) > 0 , U �
 
(φc) > 0 in order to overcome the friction and

arrive at infinity with finite energy. The last condition implies that U must admit an

additional hill, or more formally there must be a non-trivial minimum of V/φ2 at some

point φ0 ✏= 0 and ✓ ≥ ✓0  min[V/φ2] [168]. The simplest potential is thus of the form

V = µ2|⌃|2
↵

1⇥ 2
|⌃|2

⌥2
0

�2

, (4.7)

with φ0 = ⌥0/
⌃
2. A theory with this potential is non-renormalizable, and thus must

interpreted in the context of e⇥ective or thermal field theories1.

A sketch of the corresponding U is shown in Fig. 4.1. In the limit ✓ = ✓0, the fictitious

particle is at the second hill φc ⌥ φ0, and the scalar would need an infinite amount of

time to travel to the first hill (trivial vacuum). This scenario, in the Q-ball perspective,

corresponds to an infinitely large configuration. The impact of the friction in this case

can be neglected, as it is proportional to 1/R ⌥ 0. For a small but non-zero value of ✓ ,

the traveling time/Q-ball radius becomes finite, but still large (thin-wall regime). In the

opposite case when ✓ ⌥ µ, the impact of friction is pronounced and the transition to the

origin is smoother (thick-wall regime). The particle picture also demonstrates how one

can construct these solutions numerically - through a shooting algorithm (see Sec. 4.3.2

and App. B.1 for the numerical formulation). If one releases the particle on the left of

φc (e.g. somewhere around the valley for ✓/µ = 0.5), it will not have enough energy to

reach the first hill. However, releasing the particle su⌅ciently near the second hill will let

it reach the trivial vacuum with an excess of energy. In this way, one can iteratively find

the true solution.

1If one considers non-Abelian groups, instead, renormalizable potentials can also admit stable Q-
balls [260].
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From the invariance under internal U(1) symmetry, the Noether current and charge

can be found as

jµ = ⇥i(⌃†⇥µ
⌃⇥ ⌃⇥µ

⌃
†) , (4.8)

Q  ⇥
Z

dV jt = 4π✓

Z

dr r2φ2 . (4.9)

In order for the Q-ball not to decay to constituent scalars, the energy per unit charge

should be lower than the particle mass:

E < µQ . (4.10)

In [168], Coleman proved the stability of Q-balls, under the above restrictions on the form

of the potential in classical field theory (necessary condition) and the requirement (4.10) .

Other aspects of stability are discussed in [261, 262].

To obtain a rough understanding of the Q-ball properties, let us consider the potential

(4.1). When the central field is near the degenerate vacuum ⌥0 (thin-wall regime), the

main contribution to the mass of the object comes from the bulk ⌥2
0R

3 and the surface

tension ↵⇥1⌥2
0R

2, where ↵ ∼ µ⇥1 is the size of the potential wall. In equilibrium one has

[with (⌃ ∼ ⌥0 exp i✓t)]

R ∼ µ

✓2
. (4.11)

This rough argument provides the leading order behaviour of Q-balls in the thin-wall limit.
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Figure 4.1: (Left) E⇥ective particle potential U for various values of the field frequency
✓. The dots correspond to initial field values for physical configurations and all curves
represent the potential (4.1), except for the purple one which represents the quadratic
potential V = µ2|⌃|2 (that doesn’t allow for solitonic solutions in flat space-time). (Right)
Radial field profile (numerical results) for several physical configurations. Note that the
✓/µ = 0 case corresponds to the infinitely large Q-ball with scalar φ = ⌥0/

⌃
2.
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4.2.1 Simplest Q-ball potential: analytic description

We will now focus on the simplest potential with a global U(1) symmetry and which

admits stable Q-balls (4.1). For this potential, we can use the following scaling:

r = µr , w =
✓

µ
,⌦ = φ/(⌥0/

⌃
2) , (4.12)

which makes the equations of motion dimensionless.

In [263], analytic profiles for Q-balls have been constructed (building on [261, 264])

by matching solutions in three regimes – interior (perturbative solution around ⌦c),

boundary (expansion around the radius) and exterior (asymptotic). Here, we only mention

these results, as we will partially review them (together with their curved space-time

generalization) in the next section:

⌦< ≈ ⌦+

↵

1⇥ c<
sinh(⌅r)

r

�

, (4.13)

⌦B ≈ ⌦+
1⌃

1 + 2e2(r⇥R⇤)
, (4.14)

⌦> ≈ ⌦+c>
r

e⇥
⌃
1⇥w2r , (4.15)

where

⌅2 =
4

3

 

1 + 3w2 + 2
⌃
1 + 3w2

⌦

, ⌦2
+ =

1

3
(2 +

⌃
1 + 3w2) .

Here, ⌦+ corresponds to the maximum of U . For w ⌅ 1, the maximum of U lies close

to the degenerate vacuum ⌦ ≈ 1; R⌥ = µR⌥ is the inflection point of the field ⌦��(R⌥) = 0,

taken as the estimate of the size of the Q-ball. We confirm the observation from [263] that

the function (4.14) does a good job at describing the numerical profile of the Q-ball, even

outside its range of validity, in contrast with the interior and asymptotic approximants,

which only work su⌅ciently close/far to the centre, respectively.

By matching the fields (4.13)-(4.15) and their derivatives at {r<, r>}, one finds [263]:

c< ≈ R
⌥e⇥2R⇤

, c> ≈
⌃
2R⌥eR

⇤

. (4.16)

However, this matching is not su⌅cient to close the system. One needs also the energy

balance condition

E(✓)⇥ E(0) = ⇥
Z ⌅

0

dr
⌥2

r
(φ�)2

�

. (4.17)

In summary, we have five equations in five unknowns {c<, c>,R
⌥, r<, r>} as functions of ✓,

or equivalently ⌦c(✓) = ⌦+(1⇥ c<). From Eq. (4.16) we see that in the thin-wall regime

(large Q-balls), the deviation of the field from the central value in the interior zone is
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exponentially suppressed. In the outer zone, the field itself is exponentially suppressed,

and thus the integral on the right hand side of Eq. (4.17) is dominated by the boundary

zone.

From invariance under time reversal, we expect R⌥ to be a Laurent polynomial in even

powers of ✓. From Eq. (4.17) and introducing z = r ⇥ R
⌥, we then have

 

e⇥2R⇤

R
⌥ ⇥ 1

⌦2
(2 +

⌃
1 + 3w2)◊

h

w2
R
⌥ ⇥ R

⌥
↵

1⇥ 1

3

 

e⇥2R⇤

R
⌥ ⇥ 1

⌦2
(
⌃
3w2 + 1 + 2)

�2i

= 4⌦+

Z +⌅

⇥⌅

dz

1 + z
R⇤

4e4z

(1 + 2e2z)3
. (4.18)

If we take the R
⌥ ⌥ ✓,✓ ⌥ 0 limits, the integral on the right hand side is convergent. In

order for the left hand side (i.e. the term in square brackets) to be finite, we must have

R✓2 = 1 +
⌅
X

n=0

c2n✓
2n+2 , (4.19)

which confirms the preliminary expectation given by formula (4.11), i.e. R⌥ ◆ ✓⇥2,✓ ⌥ 0.

By expanding the denominator for z ⌅ R
⌥ and ignoring exponentially suppressed terms,

we find

c0 =
1

4
(2 log 2⇥ 1) , c2 =

1

48

 

4π2 ⇥ 27
⌦

(4.20)

for the leading order behaviour.

In order to connect R⌥ to the mass-based radius R  R99, we must numerically solve

4π
R R

0
dr r2 (r) = 0.99M for R. Here, we construct an analytic approximate solution by

considering the density support of the Q-ball. By construction of the profile, R⇥R
⌥
 λ > 0

and we will assume that λ  R⇥ R
⌥ corresponds to the tail of the boundary zone2. The

width of the boundary zone can be found by taking the derivative of the field (4.14) and

computing the standard deviation of that symmetric function, which we generalize by

changing 2z ⌥ ↵z in the exponent, having in mind the inclusion of gravity in Sec. 4.3.

This yields

λ = 3
1

2

s

⇥
Z +⌅

⇥⌅
z2d

↵ 1⌃
1 + 2e⌥z

�

=
3

2

2.66

↵
. (4.21)

The prefactor arises from the fact that
R +3⌥

⇥3⌥
d(1 + 2e⌥z)⇥1/2 ≈ 0.99

R +⌅
⇥⌅ d(1 + 2e⌥z)⇥1/2.

For Q-balls (in Minkowski space) ↵ = 2 and

R ≈ R
⌥ + λ ,λ = 2.66. (4.22)

2The most compact regime corresponds to ⇤ ⌥ 0 when ⇧ ⌥ 0+. All other, physically reasonable,
profiles would present a smoother decay of the scalar i.e. fatter tails. Thus, they would reach the inflection
point well before most of 99% of the energy density has been accumulated. We have checked this explicitly,
for all of the models considered in this work, both with and without gravity.
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Figure 4.2: Mass-compactness relations for Q-balls. Dots correspond to numerical configu-
rations, while the solid line is found from the analytic expressions (4.22), (4.24).

From the solution, other macroscopic parameters can also be calculated, such as the

energy (mass) E = M and the Noether charge Q [263] :

Q̄  

µ2Q

m2
Pl

≈ ⌥
2

6
(R⌥)3w

h

1⇥ 3 ln 2

2R⌥ +O
 

(R⌥)⇥2
⌦

i

, (4.23)

M̄  

µM

m2
Pl

≈ wQ̄+
⌥

2

24
(R⌥)2

h

1 +
1⇥ ln 2

R⌥ +O
 

(R⌥)⇥2
⌦

i

, (4.24)

where we have introduced

⌥ =
⌥0

MPl

, (4.25)

anticipating the connection with the curved space-time case in the next section. Note

that the previous relations imply the following scaling of the compactness in the thin-wall

regime

C ◆ ⌥
2 1

✓2
. (4.26)

In Fig. 4.2 we show the C ⇥M curve from both the numerical and analytic calculations.

From the plots, we also see that the analytic approximation for R agrees well with the

numerically calculated value. The strong gravity regime is expected to be attained for

values of µ ,M , ⌥0 such that C ⇥ 0.1:

↵ C

0.1

�

≈ 1.6◊
↵ µ

10⇥8eV

�1/2↵ M

1M⇤

�1/2↵ ⌥0

1017GeV

�⇥1

≈ 1.6◊
↵ µ

10⇥14eV

�1/2↵ M

106M⇤

�1/2↵ ⌥0

1017GeV

�⇥1

.

The threshold frequency between the stable and the unstable branch can be found

from Eqs. (4.10), (4.23) and (4.24), and is given by [263]

w < wQb⇥s ≈ 0.82 . (4.27)
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4.3 Soliton boson stars

Turning gravity on introduces a new scale ⌥ in the problem, with both perturbative and

non-perturbative e⇥ects. In the low-compactness limit, SBSs e⇥ectively “see” a quadratic

potential and are thus stabilized by quantum pressure (Sections 4.3.1 and 4.4.2). In the

high-compactness limit, Eq. (4.26) shows that for any given ⌥ there exists a su⌅ciently low

✓ such that at some point the Schwarzschild compactness will be reached, and the scalar

will collapse to a BH, simply because of the hoop conjecture [265, 146]. Thus, from the

one stable and the one unstable branch in the flat space-time limit, we expect two stable

and two unstable branches for any value of ⌥ ⌅ 1. This has already been established

numerically and using catastrophe theory arguments [258, 250]. In the following, we will

confirm previous results and supplement them with a physical interpretation and also an

analytic model, focusing on the compact stable branch in the perturbative regime ⌥ ⌅ 1.

4.3.1 Scaling arguments

The structure of macroscopic objects is determined by the physics that stabilizes them. In

this section, partially inspired by [172, 266, 267], we will provide rough scaling arguments

to demonstrate what kind of configuration properties are to be expected.

A polytropic equation of state P ∼  ⌃m , [] = [M ]⇥n provides pressure support

counteracting the attractive gravitational force. In equilibrium, one has

M2⇥⌃ ∼ m2
PlR

4⇥3⌃ . (4.28)

If these configurations can reach the Schwarzshild compactness scale RSch ∼ M/m2
Pl, where

strong-gravity e⇥ects are important, the maximum Chandrasekhar mass is given by

M2⌃⇥2
Ch ∼ m6⌃⇥6

Pl . (4.29)

Self-interacting boson stars (SIBSs) are pressure-supported by the repulsive interaction

P ∼ λ|⌃|4 for su⌅ciently large values of λ > 0. As the matter density is given by

 m ∼ µ2|⌃|2 (with µ the scalar mass), the equation of state is P ∼ ⇣
µ4 

2
m. SIBSs thus have

the same mass-radius scaling as fermionic pressure-supported objects [scaling (4.28)], and

the maximum mass is given by the Chandrasekhar limit

MCh ∼
⌃
λ
m3

Pl

µ2
. (4.30)

Pressure-supported nature of the SIBS is also the reason why the maximal attainable

compactness for this model Cmax[SIBS] ≈ 0.16 [268] is very close to the neutron star value

Cmax[NS] ≈ 0.19 [269].
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In contrast to Mini boson stars (MBSs), discussed in Sec. 2.1.1, and SIBSs, SBSs

are stabilized already in flat space-time, as discussed in Sec. 4.2. We can estimate the

maximum mass by equating expression (4.11) with the Schwarzschild scale, which gives

the Lee limit [167, 172]

MLee ∼
m4

Pl

⌥2
0µ

. (4.31)

4.3.2 Structure equations in GR

The action (4.2) can be generalized to curved space-time via a minimal coupling to gravity:

S =

Z

d4x
⌃⇥g

�

M2
Pl

2
R + L⌅

⇥

. (4.32)

We will consider spherically symmetric and static space-times of the form

ds2 = ⇥evdt2 + eudr2 + r2dΩ2 . (4.33)

The radial profile of the metric coe⌅cients follows from the Einstein field equations, which

together, with the Klein-Gordon equation for the scalar, describe the full structure of the

object:

1

r2
 

r e⇥u
⌦� ⇥ 1

r2
= ⇥ 1

M2
Pl

 , (4.34)

e⇥u

�

v�

r
+

1

r2

⇥

⇥ 1

r2
=

1

M2
Pl

Prad , (4.35)

φ�� +

�

2

r
+

v� ⇥ u�

2

⇥

φ� = eu
�

dV

d|⌃|2
⇥ ✓2e⇥v

⇥

φ, (4.36)

with the density  , the radial pressure Prad and the tangential pressure Ptan defined by

 = e⇥v✓2φ2 + e⇥u(φ�)2 + V , (4.37)

Prad = e⇥v✓2φ2 + e⇥u(φ�)2 ⇥ V , (4.38)

Ptan = e⇥v✓2φ2 ⇥ e⇥u(φ�)2 ⇥ V . (4.39)

We will now focus on the simplest potential (4.1) and adopt the rescaling

r = µr , m̄(r) =
µm(r)

m2
Pl

, w =
✓

µ
, ⌦ = φ/(⌥0/

⌃
2) (4.40)

[c.f. relations (4.12)]. With this parameterization, the structure equations become

dimensionless. We further assume that �
 d/dr unless we state otherwise.
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Note that a shift v ⌥ ṽ = v⇥v(0) corresponds to a rescaling of the time coordinate and

thus to a redefinition of the scalar frequency ✓̃ = exp (⇥v(0)/2)✓. Fixing ⌦(0)  ⌦c and

⌦(✓) = 0, let us use this gauge freedom to also set ṽ(0) = 0. This specifies3 a boundary

value problem, with eigenvalue ✓̃, which we determine with a shooting method. Once that

the configuration is calculated in this gauge, we can rescale the time coordinate at will, so

that v(✓)  v⌅ = 0. More details on the numerical method are given in the App. B.1.

The Arnowitt-Deser-Misner (ADM) mass [273] can be extracted from the asymptotic

behaviour of the metric functions:

exp [⇥u(r)] = 1⇥ 2M̄

r
+O

↵ 1

r2

�

. (4.41)

From Eq. (4.35), one can also obtain the integral representation

M̄ = 4π

Z

dr r2
 (r�)

µ2⌥2
0

. (4.42)

Finally, the Noether charge is given by

Q  ⇥
Z

dV jt = 4π✓

Z

drd✏
⌃⇥ge⇥vφ2 . (4.43)

4.3.3 Representative configurations

In the rest of this Section, we will set ⌥ = 0.186 in order to illustrate our results. In the

gauge ṽ(0) = 0, the fictitious particle initially does not feel the impact of gravity, and

consequently, in the thin-wall regime, we should expect that the central field is close to

⌦+.

Like in the flat space-time case, in curved space-time numerical results produce two

types of configurations - thin-wall ones for small w, and thick-wall ones for larger w. Unlike

in the Q-ball case, the thin-wall regime of SBSs has two sub-classes, one perturbatively close

to the flat space-time case, and a non-perturbative one close to the maximum compactness

configuration. In Fig. 4.3 we show the w ⇥ ⌦c, w̃ ⇥ ⌦c and C ⇥ ⌦c curves for our choice of

⌥.

Various authors have used catastrophe theory arguments to assess the (local) stability

of Q-balls and boson stars [262, 257, 258, 250]. We will not review these arguments here,

but let us mention that they show that stability can be checked by analyzing the position

of the turning points, for fixed ⌥, in the M̄⇥⌦c curve, up to a final (unstable) “spiral” that

occurs for ⌦c ⇤ 1 in the gravitating case. Thus, one can start from the stable MBS limit

3We are here focusing on the ground state (nodeless) solutions. It has been previously established that
the excited solutions in various boson star models decay to the ground state [270, 271]. However, there
are recent indications that su⌥ciently strong self-interactions can stabilise excited states over long time
scales at least for SIBSs [272].
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φ(0)/(⌥0/
⌃
2) ✓̃/µ ✓/µ ṽ(✓) µR µM/m2

Pl C

I 1.05 0.488 0.454 0.147 7.243 0.188 0.026
II 1.014 0.241 0.146 1.009 29.821 5.719 0.192
III 1.032 0.380 0.088 2.924 41.182 13.84 0.336

Table 4.1: Parameters of the representative configurations of SBSs: thick-wall regime (I);
thin-wall regime perturbatively close to the Q-ball limit (II); strong gravity, thin-wall
non-perturbative branch (III). Configuration III has also the maximal value of mass for
⌥ = 0.186 and thus is at the border between the compact stable and the unstable branch.

and track the turning points as ⌦c increases. Already from Fig. 4.3, we see two turning

points that mark the boundaries of a middle stable branch, with two unstable branches on

the left and on the right of it (a low compactness stable branch is not shown on this plot,

see Fig. 4.14). Note however that the turning point in the M̄ ⇥ ⌦c parameter space does

not map exactly to the same point in the C ⇥ ⌦c parameter space. We have established

that the most massive configurations, which separate the compact stable branch from the

unstable one, have compactnesses slightly bellow the maximum one. For example, for our

representative case, the maximum mass configuration has C = 0.336, while the maximally

compact one has C = 0.346.

We will now focus on the three representative configurations for each of the three

aforementioned (sub-)classes: the thick-wall regime (I); the thin-wall regime perturbatively

close to the Q-ball limit (II); and the thin-wall regime close to the non-perturbative Cmax

cut-o⇥ (III) for our ⌥ = 0.186. Configuration III is also the maximally massive one for

our ⌥. The parameters of these configurations are given in Table 4.1. The field and

density profiles are shown in Figs. 4.5 and 4.6, while the metric coe⌅cients are displayed

in Fig. 4.7.

4.3.4 Origin of maximum compactness

The maximum compactness of an object is usually discussed in the context of Buchdahl’s

theorem [274]. The latter states, in its most general form, that GR self-gravitating

objects with energy density monotonically decreasing outwards  � ≤ 0 and positive (or

vanishing) pressure anisotropy (i.e. radial pressure larger than or equal to the tangential

one) Prad ≥ Ptan must have C ≤ 4/9 [274, 275]. In the case of fluid stars, isotropic

“normal matter” (i.e. one satisfying the weak energy condition  ≥ 0   + P ≥ 0 and

the micro-stability condition P ≥ 0  dP/d ≥ 0) is consistent with these assumptions.

However, Buchdahl’s limit is not a robust concept, as it can be easily evaded by violating

the theorem’s assumptions, producing even more compact objects. A discussion of the

parameterized bounds on C can be found in [276], and various toy models that exceed the

Buchdahl bound have been constructed in the literature [146].
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Figure 4.3: (Left) Frequency vs central field ⌦c  φ(0)/(⌥0/
⌃
2) for ⌥ = 0.186, in two

gauges ✓ , ✓̃ compared to the Q-ball prediction appropriate in the ṽ(0) = 0 gauge (dark
red line). Note that two almost identical segments of the thin-wall regime in the ṽ(0) = 0
gauge, denoted by the pink rectangles and the black stars, correspond to separate segments
in the v(✓) = 0 gauge, denoted by the blue rectangles and the green stars, respectively.
(Right) Compactness vs central field for ⌥ = 0.186 (cyan circles) and the Q-ball result
(dark red line). The three representative configurations (denoted by the orange club for I,
purple triangle for II and black square for III) are indicated.

Buchdahl’s theorem can be additionally strengthened by requiring that the equation of

state be consistent with causality. In [275] (see also [277]), it has been shown that a useful

toy model for understanding the maximally compact and causal configurations is given by

objects described by a linear equation of state (LinEoS)

 =  c +
P

c2s
, (4.44)

where c2s  ⇥P/⇥ > 0 (the speed of sound) and  c are constant. Hence, allowing for

c2s > 1 accounts for violations of causality. The limit c2s ⌥ ✓ corresponds to constant

density stars, whose maximum compactness CB = 4/9 follows from Buchdahl’s theorem.

For a given c2s, the LinEoS describes the sti⇥est possible matter, and consequently it yields

the most compact configurations. Maximally compact and causal configurations consistent

with the assumptions of Buchdahl’s theorem cannot surpass CB+C = 0.354 when c2s = 1.

The dependence of the compactness of LinEoS configurations on c2s is approximately given

(to within a 3.6% error) by the fitting formula [275]

4

9CLinEoS
⇥ 1 ≈ 0.77 + 0.51c2s

c2s(4.18 + c2s)
. (4.45)

SBSs in the thin-wall regime are a physical example of objects with a LinEoS4, because

in the bulk of the star ⌦ ≈ 1 and hence ⌦� ≈ V ≈ 0, making in turn Prad ≈  . This

4This is, as far as we know, original insight. A comparison between SBSs and constant density stars
(c2

s
⌥ ✓) was discussed in Ref. [248].
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argument implies that the maximal compactness of SBS is Cmax ⇥ CB+C, which is consistent

with our numerical results and the values reported in the previous work [167, 247, 155, 160].

Now we address two apparent loopholes in the previous argument. First, SBSs do not have

monotonic energy density profiles in their surface regions (Fig. 4.6, right), which violates

the assumptions of Buchdahl’s theorem [275]. The region where this violation occurs,

however, is parametrically smaller than the size of the SBS bulk in the thin-wall regime,

and thus it does not a⇥ect CB+C significantly. Secondly, although SBSs have anisotropic

pressure, the radial pressure is larger than the tangential one [Eqns. (4.38), (4.39)], which

does not allow for violating the Buchdahl compactness bound (unlike the opposite case in

which the tangential pressure is larger than the radial one [149, 277]).

In more detail, we can estimate how well the LinEoS describes the matter inside

the SBS in the thin wall regime. Assuming the Q-ball results (c.f. Section 4.3.5 for a

justification) we will ignore exponentially suppressed scalar derivatives [Eq. (4.16)] and

approximate Eqns. (4.37), (4.38) to obtain

 

µ2⌘2

0

2

≈ w2
+⌦

2
c + V (⌦c) ,

Prad

µ2⌘2

0

2

≈ w2
+⌦

2
c ⇥ V (⌦c) ,

from where it follows that

(c2s)a ≈
⌦2
c (3⌦

2
c ⇥ 2)

6⌦4
c ⇥ 6⌦2

c + 1
, (4.46)

with w+ being the inverse of Eq. (4.16) and ⌦+ ≈ ⌦c. For ⌦c = 1.032 (configuration III)

from Eq. (4.46) we find (cs)a = 0.95. Using this value in Eq. (4.45) we get CLinEoS = 0.350,

close to CIII = 0.336. Taking the limit ⌦c ⌥ 1, Eq. (4.46) implies (c2s)a ⌥ 1 and hence

Cmax ⌥ CB+C. Note however that the exact limit ⌦c = 1 in the thin-wall regime is

attainable only in the Minkowski space-time (⌥ = 0). This is a singular limit as the

absence of gravity implies C ⌥ ✓ when ⌦ ⌥ 1, as elaborated in Section 4.2.1.

In order to scrutinize previous analysis further, we have calculated (for our representative

⌥ = 0.186) numerically the average

⇣c2s⌘ =
1

R<

Z R<

0

dr
⇥Prad

⇥ 
(4.47)

over several configurations [with R< the boundary of the bulk, c.f. expression (4.64)], and

we have compared the compactness predicted by Eq. (4.45) with the actual one. The

results are shown in Fig. 4.4 , and clearly indicate good agreement in the thin wall regime

(i.e. at high compactnesses). We have also presented results for the position dependence

of c2s in Fig. 4.5 , for two specific configurations (I and III). Note that negative and

seemingly non-causal values of c2s appear in the boundary zone, signaling a breakdown of

90



●●

●

●
●●

●●
●●●

●●●●●

●

●

●●●●

●

●●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●●
●

●●

●

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.01

0.10

1

10

Figure 4.4: Relative di⇥erence between
the numerically determined compactness
C and the prediction from the LinEoS
CLinEoS (4.45) [using the numerically found
average speed of sound (4.47)].
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Figure 4.5: Scalar field ⌦  φ/(⌥0/
⌃
2)

and the speed of sound c2s radial profile
for the two representative configurations:
I (orange) and III (black). The blue dot-
dashed line represents the estimate of the
speed of sound (for III) (c2s)a from Eq.
(4.46).

the hydrodynamic description. This breakdown also occurs in flat space-time [246].

Finally, in the thick-wall regime, commensurability between the bulk and the boundary

does not allow for an e⇥ective LinEoS description (Fig. 4.5). As a result, in this regime

C ⌅ CB+C.

4.3.5 Analytic construction

As already mentioned, the structure of SBSs can also be interpreted in light of the dynamics

of a fictitious Newtonian particle in a time dependent potential, with r playing the role of

time5, as can be seen from the Klein-Gordon equation

⌦�� +
↵2

r
⇥ W �

W

�

⌦� =
h

m
2(1⇥ 4⌦2 + 3⌦4)⇥W 2

i

⌦ ,

µW = ✓e(u⇥v)/2 , µm = µeu/2 , (4.48)

Equations (4.34) and (4.35) can be formulated as dynamical equations for “time-dependent”

frequency µW and scalar mass µm. Their dynamics depends on ⌦ through  and Prad.

However, in certain regimes we can approximately evaluate W,m without knowing the full

behaviour of ⌦.

If we work in the gauge where ṽ(0) = 0, the Q-ball does not “feel” the gravitational

5This interpretation was mentioned in [259] at the qualitative level, but without exploring its imple-
mentation and consequences. A similar approach was also applied to (Minkowski) Q-balls with gauged
U(1) symmetry while this work was well into preparation [278].
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field initially (i.e. at the centre). Like in the flat space-time case, for a given ⌦c we need to

find W (0) = w such that the “SBS-particle” rolls over the time-dependent potential and

reaches ⌦ = 0 in an infinite time (r ⌥ ✓) with E = 0. Note that W is a gauge invariant

object (i.e. it is left una⇥ected by a change of the time coordinate).

The particle analogy sheds light, already at the qualitative level, on some of the

properties of SBSs: as Q-balls have a unique thin-wall regime, for SBSs this regime will be

described by a curve in the w̃⇥⌦c space, very close to the Q-ball result. However, for some

SBS configurations, the e⇥ective particle will exhibit the thin-wall regime perturbatively

close to the Q-ball one (like for configuration II), while others will be in the non-perturbative

part of the parameter space (like in the case of configuration III). Thus, the thin wall

regime in the w̃ ⇥ ⌦c representation consists of two almost degenerate curves (denoted

by black stars and pink rectangles in Fig. 4.3). For example, there are configurations

where the di⇥erence in w̃ can be as low as ∼ 10⇥51, with the corresponding di⇥erence in w

∼ 10⇥6. These curves split into two separate curves in the w ⇥ ⌦c parameter space, one

close to the Q-ball line, while the other is the horizontal asymptote, represented by green

stars and blue rectangles on Fig. 4.3, respectively.

In the following subsections, we will give an analytic description of the scalar in the

strong-field regime in three zones (analogous to the flat-spacetimes ones introduced in Sec.

4.2), starting from the simplest one.

4.3.5.1 Exterior zone

The simplest regime is the asymptotic one, where the space-time is to a good approximation

Schwarzschild, owing to the fast decay of the scalar:

u> = ⇥ log
↵

1⇥ 2M̄

r

�

, (4.49)

ṽ> = ṽ⌅ + log
↵

1⇥ 2M̄

r

�

. (4.50)

The evolution of the scalar is found by solving the Klein-Gordon equation (4.36) with

these u, v, expanding in powers of 1/r:

[OL +ONL]⌦(r) = 0 , (4.51)

OL =
d2

dr2
+

2

r

d

dr
⇥
↵

1⇥ e⇥ṽ⌅w̃2 +
2M̄

r

 

1⇥ 2e⇥ṽ⌅w̃2
⌦

�

,

ONL =
M̄

r

↵

6⌦5 ⇥ 8⌦3
�

+ 3⌦5 ⇥ 4⌦3 .

Note that the non-linear terms can be treated as a perturbation. While it appears that

there is no simple analytic estimate of these corrections, the leading term gives a good

description of the asymptotic behaviour, because the scalar is suppressed (more than
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exponentially).

Requiring ⌦ ⌥ 0 as r ⌥ ✓, we obtain the solution in terms of hypergeometric

functions, or equivalently in terms of the Wittaker function [279]

⌦⌅ =
A

2r
⌃
1⇥ e⇥ṽ⌅w̃2

◊ W
h

M̄
2e⇥ṽ⌅w̃2 ⇥ 1⌃
1⇥ e⇥ṽ⌅w̃2

,⇥1

2
, 2
p

1⇥ e⇥ṽ⌅w̃2
i

. (4.52)

This asymptotic solution is parameterized by ṽ⌅, M̄ , w̃ and the normalization amplitude

A. The linear equation OL⌦(r) = 0 is invariant under the rescaling ⌦ ⌥ C⌦, but the

matching condition breaks the invariance and selects C = A. Expanding the Whittaker

function in 1/r, the leading behaviour gives

⌦⌅ ⇧ A

r1+⇧>
e⇥⌅>r , (4.53)

⌅> =
p

1⇥ e⇥ṽ⌅w̃2 , (4.54)

⇧> =
M̄

⌅>

(1⇥ 2e⇥ṽ⌅w̃2) . (4.55)

Note that for ⌥ ⌥ 0, M̄ ⌥ 0 and we recover the Q-ball result (4.15). We show a

comparison between the numerical and the asymptotic field behaviour in Fig. 4.6.

10 20 30 40
-2.0

-1.5

-1.0

-0.5

0.0

0 10 20 30 40

0.0

0.1

0.2

0.3

0.4

0.5

Numerical

Boundary

Asymptotic

I

II

III

Figure 4.6: (Left) Numerical results vs asymptotic approximation for the ratio between
the field radial profile and its derivative φ/φ� for configurations I, II. (Right) Numerical
results vs boundary zone analytic approximation for the field energy density radial profile

 /(
µ2⌘2

0

2
) for configurations I, II, III. Numerically determined parameters are used as input.

4.3.5.2 Interior zone

In the gauge ṽ(0) = 0, the flat space-time result (4.16) should be valid su⌅ciently close

to the origin, and the scalar field derivative is suppressed by w̃. Thus, we will calculate

the metric coe⌅cients in the interior perturbatively in w̃, and approximate ⌦� ≈ 0 and

V< ≈ V (⌦c). This description provides a good approximation for configurations similar to

II in the strong-field and the thin-wall regime and close to the Q-balls limit, where w̃ is
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small and controls the size of the star.

The perturbative expansion in w̃ must be appropriately resummed (or performed from

the start in a suitable form) so that it can be matched with the exterior. Taking

ũ< = log[ũ0(r) + ũ2(r)w̃
2 + ũ4(r)w̃

4 +O(w̃6)] , (4.56)

ṽ< = log[ṽ0(r) + ṽ2(r)w̃
2 + ṽ4(r)w̃

4 +O(w̃6)] , (4.57)

from Eqns. (4.34) and (4.35) one gets

ũ0 = 1 , ũ2 =
1

6
⌥

2r2 , ũ4 =
1

360

 

45⌥2r2 ⇥ 2⌥4r4
⌦

(4.58)

ṽ0 = 1 , ṽ2 =
1

3
⌥

2r2 , ṽ4 =
1

120

 

15⌥2r2 + 4⌥2r4
⌦

. (4.59)

In Fig. 4.7 we show the numerical results and the interior and asymptotic approximations

for the metric coe⌅cients.
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Figure 4.7: (Left) Numerical vs. approximate analytic (interior, boundary, asymptotic)
results for the u metric coe⌅cient radial profile for II. (Right) Numerical vs. approximate
analytic (interior, asymptotic) results for the v radial profile metric coe⌅cient for II.
Numerically determined parameters are used as input.

4.3.5.3 Boundary zone

In the transition region, let us expand around (R⌥)⇥1 as in Ref. [263]. Thus, we neglect the

friction 1/R⌥ term in the Klein-Gordon equation (4.36). We can estimate the contribution

from the time-dependent frequency as

W �

W
∼ 1

1⇥ 2M̄
R⇤

2M̄

(R⌥)2
∼ 2

R⌥(C⇥1 ⇥ 1)
. (4.60)

As Cmax ∼ 0.35 (cf. Sec. 4.3.4), we find that this term is of the order of 1/R⌥ and can

be neglected. Now, neglecting friction and assuming in the first iteration W ≈ W⌥  

W (R⌥) ,m ≈ m⌥  m(R⌥) (as we are interested only in a tiny strip around of the thin wall),
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we can use the conservation of energy and the fact that E(✓) = 0 to reduce the equations

of motion to [263]

⌦� = ±⌦

r

h

m2
⌥(1⇥ ⌦2)2 ⇥W 2

⌥

i

. (4.61)

In the thin-wall regime, the expectation W 2
⌥ ⌅ 1 leads to

⌦B =
1

p

1 + 2 exp [2m⌥(r ⇥ R⌥)]
, (4.62)

where we have specified the integration constant by requiring ⌦��(R⌥) = 0. Note that the

second integration constant is determined by the value of the energy and the requirement

that the function is monotonously decreasing. Furthermore, [263] includes an ad hoc

prefactor ⌦+ in ⌦B for Q-balls [formula (4.14)], because it slightly improves the analytic

description in the thick-wall limit. (Note that in the thin-wall regime ⌦+ ≈ 1 in any case.)

We have not included this prefactor in the SBS context, as it tends to worsen the model.

From the analysis around Eq. (4.21), we find the estimate of the width of the density

support in the boundary zone to be

λ =
3

4

2.66

m⌥
, (4.63)

R>/< = R
⌥ ± λ (4.64)

In the flat space-time limit m⌥ = 1 and we recover Eq. (4.14).

A plot of the field density is given in Fig. 4.6, where the metric coe⌅cients are taken

from the interior zone perturbative series (4.56), (4.57). Note that the boundary-zone

solution works (somewhat surprisingly) even far from its region of a priori validity, down

to the transition region (like in the flat space-time case). The worst agreement occurs for

the configuration I, as expected since this configuration is in the thick-wall regime.

Having a preliminary understanding of the field behaviour in the boundary zone, as

well as of the radial profile of the metric coe⌅cients in the internal and external zones, we

can understand the junction conditions for the metric coe⌅cients. From expression (4.62):

 ̄kin = e⇥vw̃2⌦2 ≈ e⇥v⇤w̃2

2e2m⇤z + 1
(4.65)

 ̄st = e⇥u(⌦�)2 ≈ 4e4m⇤z

(2e2m⇤z + 1)3
(4.66)

 ̄pot = V ≈ 4e4m⇤z

(2e2m⇤z + 1)3
, (4.67)

with z = r ⇥ R
⌥ and  ̄i =

↵

µ2⌘2

0

2

�⇥1

 i. In the thin wall limit one has  ̄kin ⌥ H(⇥z),

where H is the Heaviside step function, while  ̄st ⌥ ↵(z). From Eqns. (4.34), (4.35) and
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the limiting cases, we can expect that u will have a step-like behaviour at R⌥, while v

will present a smoother transition. This type of behaviour was noted already in [167].

Solving Eq. (4.34) we find a complicated expression that we report in App. B.3.1. For the

configuration II we show uB in Fig. 4.7 (Left).

4.3.5.4 Energy balance

Like in the flat space-time case [Eq. (4.17)], we can determine the inflection point in the

case of SBSs by using energy balance arguments. We now need to account for the “time”

dependence of the potential parameters as

dU 
dr

=
⇥U 
⇥φ

φ� +
⇥U 
⇥r

. (4.68)

One then finds

2

µ2⌥2
0

E(0) =

Z ⌅

0

dr
⌥2

r
(⌦�)2 ⇥ W �

W
(⌦�)2 +m

�
m⌦2(1⇥ ⌦2)⇥W �W⌦2

�

.

Note that in the last expression, only the first term is present in the Minkowski limit

(4.17), because µW ⌥ ✓, µm ⌥ µ and ✓, µ do not run in “time”. Like the first one,

the other terms are also dominant in the particular zones, as can be inferred from their

form. The second and third terms are important in the boundary zone where the field

interpolates between ⌦c and the exponential tail, while the fourth term receives important

contributions both from the interior and the boundary zone. The leading order behaviour

of all these terms is provided separately by

AE  

Z

R>

R<

dr
2

r
(⌦�)2 ≈ m⌥

2R⌥ , (4.69)

BE  ⇥
Z

R>

R<

dr
W �

W
(⌦�)2 ≈ ⇥m⌥

R⌥

h1⇥m
2
⌥

4
+

1

80
m

2
⌥⌥

2
R
⌥2
i

, (4.70)

CE  

Z

R>

R<

drm�
m⌦2(1⇥ ⌦2) ≈ m⌥

R⌥

h1⇥m
2
⌥

8
+m

2
⌥⌥

2
R
⌥2
↵ 1

80
+

1

48
w2e⇥v⇤

�i

, (4.71)

DE <  ⇥
Z

R<

0

drW �W⌦2 ≈ w2⌦2
c

2

⌥

1⇥ eu<(R<)⇥v<(R<)
�

, (4.72)

DE B  ⇥
Z

R>

R<

drW �W⌦2 ≈ ⇥2
m⌥

R⌥ w
2e⇥v⇤

h1

2
log

↵3

2

�

(1⇥m
2
⌥) +

7

648
m

2
⌥⌥

2
R
⌥2
i

.(4.73)

The left hand side of Eq. (4.69) is therefore given as in Eq. (4.18), i.e., neglecting

exponentially suppressed terms, by

Ē(0) ≈
 ⌃

3w2 + 1 + 2
⌦

27

↵

3w2 +
⌃
3w2 + 1⇥ 1

�

. (4.74)
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From the numerical results of Fig. 4.3, it is clear that the e⇥ect of (strong) gravity is

to introduce a new branch. As a result, for a subset of ⌦c ∼ 1 we have two di⇥erent stable

configurations [and possibly one more (un)stable one] for the same ⌦c. For the class of

configurations that contains I and II, we expect the Q-ball result R⌥ ∼ 1/w̃2. For the most

compact configurations, from Eqns. (4.49), (4.56) and ignoring the jumping conditions,

one naively gets

R
⌥ ∼

⌃
12Cmax

⌥w̃
∼ 2

⌥w̃
. (4.75)

where we assumed in the last relation Cmax ≈ CB+C. Although this expectation is too

simplistic, it suggests the useful variable

T  R
⌥
⌥w̃ . (4.76)

Because of the aforementioned degeneracy, T (w̃) is not a single-valued function. Instead,

it is more useful to look for w̃ = w̃(T ). The minimum of this curve, w̃∪, separates the

Q-ball-like branch from the non-perturbative strong-gravity one, and provides the lowest

w̃ for a given ⌥. In flat space-time, one has w̃∪ = 0 (R⌥ ⌥ ✓), so we expect w̃∪ ∼ O(⌥).

Approximating the complicated algebraic expressions in R
⌥ we find (see App. B.3.2 for

the details)

w̃ ≈ ⌥

q

⇥T 4

5
+ 6T 2 + 36 (T 4 + 10T 2 + 30)

T (⇥T 4 + 30T 2 + 180)
. (4.77)

The minimum of this function corresponds to w̃∪/⌥ ≈ 1.1, while for T ⌥ 0 we recover the

Q-ball asymptotics w̃ ∼ ⌥/T . From there the approximate behaviour of w follows:

w

w̃
≈

↵

1 +
5T 2 (3w̃2 + 4)⇥ (2/3)T 4

(2
⌃
30)2

�⇥1/2

◊

↵

1 +
5T 2 (3w̃2 + 8) + 4T 4

(2
⌃
30)2

�⇥1/2

, (4.78)

which we show in Fig. 4.8. Our rough approximations have therefore given us a simple

analytic description that predicts the horizontal branching o⇥ of the w ⇥ ⌦ curve for any

⌥ ⌅ 1 (corresponding to the non-perturbative e⇥ect of strong-gravity), with C getting

close to LinEoS limit discussed in Sec. 4.3.4.

4.3.5.5 Finale: Semi-analytic solution

Instead of ignoring sub-leading terms, which led us to Eq. (4.78), we can also solve the full

master (algebraic) Eqns. (4.69)-(4.74) numerically, using expression (4.77) as a guess for

each T . Now, we use uB when calculating m⌥ in Eqns. (4.69)-(4.73), except in uB itself

[expression (B.15)], where we iteratively take m⌥ ≈ exp (u<(R
⌥)/2) . In contrast to the
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costly numerical solution of the boundary-value Einstein-Klein-Gordon system (App. B.1),

the semi-analytic approach provides a solution in a few seconds on a laptop computer.

This procedure leads to a very good description of the configurations in the stable

compact branch, as shown in Fig. 4.8. The semi-analytic results are in excellent agreement

with the numerical ones for M̄ , v⌅, and consequently for w. For both R
⌥ and R, the

agreement is almost perfect in the Q-ball-like strong-gravity branch (i.e. for configurations

similar to II), while in the non-perturbative strong-gravity branch (similar to III), there

is a systematic deviation, up to a few percent relative error. This error increases as ⌦

increases, but note that this occurs mostly in the unstable branch, for which accurate

approximations are not of crucial importance. We elaborate more on the reason for the

systematic error in App. B.3.3.

Once the parameters are determined in the described way, one can use the expansions

from the previous Subsections to reconstruct both the scalar and the gravitational field

throughout the space-time, as well as the thermodynamic functions: density, pressure(s),

speed of sound etc.

Figure 4.8: (Left) Approximate analytic, semi-analytic (pink diamonds) and numerical
calculations (cyan circles) of the w ⇥ ⌦ behaviour for SBSs. The purple dashed line
shows both branches from expression (4.78), while the dark red line represents the the
Q-ball limit [expression (4.19), using expansion (4.56), (4.57)]. (Right) Semi-analytic vs.
numerical calculation of the M ⇥ R curves. Both plots correspond to the benchmark
scenario ⌥ = 0.186. Three representative configurations from Table 4.1 are also shown.

4.4 Parameter space of Soliton boson stars

In this Section, we will move away from the benchmark scenario of Sec. 4.3, where we

only considered the compact stable branch of SBSs with the simple potential (4.1) for

⌥ ⌅ 1. We will now consider the Planck limit ⌥ ∼ 1 in Sec. 4.4.1 and the low-compactness

stable branch (for generic ⌥) in Sec. 4.4.2. We will then adopt potentials with multiple

degenerate vacua in Sec. 4.4.3, ones with a false vacuum instead of a degenerate one
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in Section 4.4.4, and we will test the robustness of our conclusions in Sec. 4.4.5, by

considering a non-polynomial e⇥ective potential.

4.4.1 Planck scale regime

To understand the qualitative impact of a large “control parameter” ⌥, let us assume that

the Q-ball description is valid up to CB+C i.e. Cmax ∼ Λ2

16✓
⌦2
cR

2w2 ◆ ⌥
2/w2

min < CB+C. As

⌥ increases, in order for Cmax to asymptote to CB+C in the thin wall regime, wmin has to

increase. However, as wmin increases, the thin wall regime is superseded by the thick wall

one, and when wmin ⇧ wQb⇥s [cf. Eq. (4.27)] the stable branch inherited from the flat

space-time limit disappears.

We have presented numerical results for w̃ , w as functions of ⌥ in Fig. 4.9. Note that

the dip in the w(⌦c) curve increases with ⌥. This corresponds to the growth of the height

of the horizontal asymptote of the w(⌦c) and hence minimal possible w as argued above.

Consequently the Planck scale regime leads to less compact configurations (Fig. 4.11).

As strong deviations from the Q-ball description occur in the compact stable branch at

⌥ ⇧ 0.4, we cannot make quantitative predictions for when the compact stable branch will

disappear, but numerically we find that this occurs at ⌥ ⇧ 1.1. The mass-radius relation is

shown in Fig. 4.10, while Fig. 4.11 represents how the maximum achievable compactness

changes6 from CB+C to CMBS ≈ 0.11 over ⌥ ∼ 0.1⇥ 1 range.
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Figure 4.9: (Left) Frequency vs central scalar field value in ṽ(0) = 0 gauge and (Right) in
the v(✓) = 0 gauge, for SBSs with di⇥erent values of ⌥, along with the (gauge-independent)
analytical result for Q-balls (4.16).

6It is interesting to note that scalar stars in Horndeski’s theory have been recently constructed and
present very similar a behaviour for C (c.f. Fig. 10 in [280]). However, we are not aware of a simple
mapping between SBSs in GR and this kind of configurations.
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Figure 4.10: Mass-radius relation for SBSs
with di⇥erent values of ⌥. The dots repre-
sent numerical results, while the dashed
black line represents the analytic result
for NBS (4.83). The shapes and colours
of dots are the same as in Fig. 4.9.
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Figure 4.11: Maximum compactness of
SBSs for given ⌥. We have also indicated
the Buchdahl bound CB = 0.44, the causal
Buchdahl bound CB+C = 0.354, the con-
dition for the photon sphere C = 0.33
and the maximal compactness for MBSs
C = 0.11. In the ultra-compact domain
(cyan region), the numerical results are
supplemented with semi-analytical ones.
Note that for ⌥ = 0: Cmax ⌥ ✓ (Q-ball
limit). The orange region represents the
MBS part of the parameter space and ex-
tends to ⌥ ⌥ ✓.

4.4.2 Low compactness stable branch

The low compactness stable branch of SBSs is supported by quantum pressure, and as a

result in this limit SBSs behave as MBSs. The exact MBS limit of SBSs is ⌥ ⌥ ✓, and

the appropriate field parametrization is

⌦MBS = φ/MPl , (4.79)

as there are no scales on which the structure equations depend, except for the Planck

scale. These configurations were thoroughly studied in the original paper by Kaup [90]

and are reviewed in [159, 158]. The numerical procedure to obtain MBSs is analogous to

the SBS case (App. B.1).

In the SBS setting, at ⌥ ⇧ 1.1 the compact stable branch of SBS vanishes, and only

the MBS one is left. For small ⌥, the low compactness stable branch is replaced by the

unstable Q-ball branch in the weak field regime. As the control parameter increases from

⌥ ⇧ 0.7, more and more configurations in the low compactness stable branch develop

higher compactness, up to the MBS limit of CMBS ≈ 0.11. The low compactness branch

presents di⇥erent behaviour than the compact one, where the Planck scale regime leads to

lower compactness. Note that the highest compactness is achieved in the unstable branch,

100



while in the stable one C
(s)
MBS ≈ 0.08.

In the weak-field approximation of MBSs, the Einstein-Klein-Gordon system reduces

to the Schrödinger-Poisson system (Newtonian boson stars) [161, 281, 159, 279, 95, 282]

eφ = ⇥ 1

2µ
↵2φ+ µφΩ , (4.80)

↵2
Ω =

1

2
M⇥2

Pl µ
2φ2 , (4.81)

where ev ≈ 1+ 2Ω, ✓ ≈ µ+ e and Ω ⌅ 1, e ⌅ µ. Like in the general discussion, the scalar

mass can be factored out, and in addition system admits a scaling symmetry

φ ⌥ k2φ , e ⌥ k2e , r ⌥ r/k , Ω ⌥ k2
Ω . (4.82)

This allows for a universal description of these objects, and for performing the numerical

integration only once (for the analytic solution see [279, 283]).

Fixing the scale with ⇥k2 = e/2, we can find several useful relations between the

macroscopic parameters, which will be compared with the relativistic numerical results,

e.g.

M̄ =
⇧Z

R̄
, (4.83)

M̄ =

r

2⇧2
↵

1⇥ w
�

, (4.84)

⌦c =
2s0
⌥

1⌃
w

↵

1⇥ w
�

, (4.85)

where s0 = 1.022 and ⇧ = 1.753 [279] and we find the scale-invariant radius (that encloses

99% of the BS mass) to be Z = 5.6741.

In Fig. 4.10, we see that the Newtonian boson star scaling gives a good description of

SBS configurations in the ⌦c ⌥ 0 limit.

4.4.3 Cosine potential

In axionic physics, a cosine potential V ∼ cos (a/fa), where a is the axion field and fa is a

decay constant, is often considered. This potential arises from non-perturbative e⇥ects

that generate small masses for the (initially massless) Goldstone boson associated with

the spontaneous breaking of the Peccei-Quinn symmetry [? 89, 94]. In the strong gravity

context, an axion potential can produce non-trivial e⇥ects on the stability of axion stars

[94].

Inspired by axion star solutions with the axion potential, some authors have considered

boson star models with similar potentials [251, 284, 163]. Note that in the absence of
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beyond standard model physics that could motivate such potentials for complex scalars

with U(1) symmetry, one should consider these models only as proxies to understand

(pseudo-real) axion stars (and only if di⇥erent minima are physically sensible). As these

potentials develop multiple minima and having in mind the Taylor expansion of the cos

function, our previous discussion would imply that “axion boson stars” would periodically

replicate SBSs for the di⇥erent values of ⌥ corresponding to di⇥erent minima, up to the

Planckian threshold.

For concreteness we will consider a specific form of the potential, from [251]:

V =
2µ2f 2

a

B

h

1⇥
s

1⇥ 4B sin2
↵ |⌃|

2fa

�i

, (4.86)

where B is a model dependent constant [taken to be B ≈ 0.22 in [251]]. The minimum of

potential (4.86) occurs at

φmin = fa2nπ , n ∈ N . (4.87)

This gives an n-dependent ⌥ scale

⌥n =
fa
mPl

2nπ
⌃
16π , n ∈ N . (4.88)

In Fig. 4.12, we have compared numerical results from [251] with a set of SBSs specified by

the potential (4.1) and the control parameter (4.88). It is clear that the periodic features

for the “axion boson stars” occur for the appropriate field values given by (4.87). The

M̄ ⇥ φ(0) plot for the first minimum is in excellent quantitative agreement with the SBS

results. The agreement, however, is not perfect as cos can only locally be approximated

with the sextic polynomial. As we progress in n, the agreement worsens. This should

come as no surprise, because in the analogue perspective an axion boson star “particle”

has to go through an e⇥ective potential that has several peaks and troughs, unlike in the

SBS case. Finally, a su⌅ciently large n field is in the Planck scale regime, and the final

unstable branch is reached, like in the SBS case (Sec. 4.4.1).

The cosine potential example is illustrative also for the following reason: the sextic

potential is non-renormalizable and thus not valid for arbitrary field values (as one needs

to be within the limit of validity of the e⇥ective field theory). Close to this limit, higher-

dimensional operators become relevant. The cosine potential illustrates that such terms

do not modify qualitatively the macroscopic behaviour, as long as degenerate vacua (and

even false ones, as we will argue next) are present.
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Figure 4.12: Mass-central field dependence for the cosine potential (4.86). The black
line represents numerical results from [251], while dots correspond to a set of SBSs with
⌥n from Eq. (4.88) and n = 1, 2, 3, 4. The left panel represents cosine potential boson
stars with fa/mPl = 10⇥2.2, while the right one assumes fa/mPl = 10⇥2.3, with the other
parameters set to the values used in [251]. Note the di⇥erent rescaling of the scalar with
respect to the rest of this work, in accordance with the conventions of [251].

4.4.4 General sextic potential

The case of degenerate vacua is somewhat special, while a more generic scenario would

allow for a non-zero false vacuum:

V = µ2|⌃|2 ⇥ ⇧|⌃|4 + ξ|⌃|6 , (4.89)

⇧ > 0 , ξ > 0 .

There are two useful reparametrizations of this potential. The first one, used in [263],

parametrizes the potential as a deviation from the degenerate vacuum case:

V6 = φ2
0

h

(µ2 ⇥ ✓2
0)⌦

2(1⇥ ⌦2)2 + ✓2
0⌦

2
i

, (4.90)

⌦ =
|⌃|

φ0

, φ0 =

s

⇧

2ξ
, w0 =

✓0

µ
=

s

1⇥ ⇧2

4ξµ2

The parameter choices ⇧ = 4µ2/⌥2
0, ξ = 4µ2/⌥4

0 imply ✓2
0 = 0 and φ0 = ⌥0/

⌃
2 and

reproduce the potential (4.1) i.e. the benchmark scenario of this work, while ✓0 parametrizes

deviation from the simplest potential (4.1). Another useful approach is to relate ✓0 to the

ratio between the potential barrier φB : dV/dφ|B = 0 , d2V/dφ2|B < 0 and the non-trivial
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minimum (false vacuum) φF:

V6 =
µ3

6
⌃
3ξ

⌦2
x

x3

↵

6x2 +
 

⇥3x2 ⇥ 3
⌦

⌦2
x + 2⌦4

x

�

, (4.91)

⌦x  

φ

φB

, φF/B =
1⌃
3ξ

q

⇧ ±
p

⇧2 ⇥ 3ξµ2 ,

x  

φB

φF

=

s

2⇥
p

1⇥ 3w2
0

2 +
p

1⇥ 3w2
0

, w0 =
✓0

p

µ2 ⇥ ✓2
0

.

In this parameterization, the limits x = 1/
⌃
3 (w0 = 0) and x = 1 (w0 = 1/

⌃
3) interpolate

between the degenerate vacua case and the scenario where the potential develops an exact

stationary inflection point. Allowing for x < 1/
⌃
3 (and hence imaginary w0) makes ⌦F a

true vacuum, but we will not consider that scenario in this work7. In principle, Coleman’s

(necessary) stability criterion (c.f. Sec. 4.2) w0 ≤ w < 1 allows even for the cases where

the second minimum disappears w0 > 1/
⌃
3 (w0 > 1/2) and the parametrization given

in Eq. (4.91) is not applicable. However, such configurations are in the deep thick wall

regime, as we will argue below. Thus, defining the class of non-topological solitons that

we have examined in this work by the presence of the false/degenerate vacuum in the

potential is not completely rigorous. However, not only does that describe the largest part

of the parameter space, but also the region where the phenomenology of these objects

di⇥ers most significantly from “normal matter”.

We can define (as in [263])

⇥
2 =

w2 ⇥ w2
0

1⇥ w2
0

, (4.92)

so that the Minkowski Klein-Gordon equation has the same form as in Sec. 4.2.1 if one

substitutes w ⌥ ⇥ and r ⌥
p

µ2 ⇥ ✓2
0r. One can thus use both analytic and numerical

results for the scalar profile of Q-balls with the simplest potential. The macroscopic prop-

erties R,M,Q..., however, depend explicitly on w0 (see [263] for the relevant expressions).

As w0 increases from 0 to 1, the length scale of the boundary ◆ (1⇥w2
0)

⇥1/2 increases even

if ⇥ ⌅ 1. Thus, as the false vacuum departs from 0, the thick-wall regime increasingly

dominates the Q-ball behaviour.

In curved spacetime, the Klein-Gordon equation is not invariant under the above

7See [262] for the flat space-time case and [258] for the gravitating case.
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reparametrization8. Instead, the system (4.34) - (4.36) can be formulated as:

1

r2

 

r e⇥u
⌦� ⇥ 1

r2
= ⇥⌥

2

2
◊ (4.93)

h

e⇥v
⇥

2⌦2 + e⇥u(⌦�)2 + ⌦2(1⇥ ⌦2)2 + w
2
0⌦

2(1 + e⇥v)
i

, (4.94)

e⇥u

�

v�

r
+

1

r2

⇥

⇥ 1

r2
=

⌥
2

2
◊ (4.95)

h

e⇥v
⇥

2⌦2 + e⇥u(⌦�)2 ⇥ ⌦2(1⇥ ⌦2)2 ⇥ w
2
0⌦

2(1⇥ e⇥v)
i

,

⌦�� +

�

2

r
+

v� ⇥ u�

2

⇥

⌦� = (4.96)

eu
⌥

(1⇥ 4⌦2 + 3⌦4)⇥ ⇥
2e⇥v + w

2
0(1⇥ e⇥v)

�

⌦ ,

where

r =
q

1⇥ w2
0 µr , m̄(r) =

p

1⇥ w2
0µm(r)

m2
Pl

, ⌥ =

⌃
2φ0

MPl

and the other conventions from Eqs. (4.90), (4.91) and (4.92) apply, while the prime �

denotes spatial derivatives with respect to r. In the Minkowski limit, one has u ⌥ 0, v ⌥ 0,

and the explicit dependence on w
2
0 disappears in the Klein-Gordon equation.

Self-gravitating configurations with the potential (4.89) have been considered for

particular values of the coe⌅cients in [249, 258, 250, 163]. The parameterization outlined

here allows us to perform a systematic exploration of the parameter space, by varying

w0 from 0 to 1 in discrete steps using the same numerical approach as in the rest of this

work (App. B.1). In Fig. 4.13 (left) we show how the compactness decreases (for fixed ⌥)

from the most compact configurations w0 = 0 to w0 ⌥ 1. This is represented in the w⇥⌦

parameter space by the growth of the height of the horizontal asymptote, or by that of

the tipping point of the two branches in the ✓̃ ⇥ ⌦ parameter space, as demonstrated in

Fig. 4.13 (right).

The interpretation of these results is straightforward: increasing the height of the false

vacuum implies thicker walls and hence larger minimal frequency/smaller maximal mass

and compactness. The picture outlined in Sec. 4.3.5, where the analogue particle in the

ṽ(0) = 0 gauge does not initially feel the presence of gravity, is valid also for the general

sextic potential. Henceforth, the curve w̃⇥⌦ in the thin-wall regime is given by Eq. (4.16)

(with w ⌥ ⇥):

w̃2 = (1⇥ 4⌦2
c + 3⌦4

c)(1⇥ w2
0) + w2

0 . (4.97)

The compactness dependence on w0 can also be understood in terms of the LinEoS.

Using an arguments analogous to those that lead to Eq. (4.46) one gets, for the general

8This is expected from the equivalence principle: in Minkowski space it is enough to know the energy
di⇤erence between the two vacua, while in GR information about both vacua is needed.
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sextic potential, the following estimate of the speed of sound

(c2s)a =
⌦2
c (w

2
0 (3⌦

2
c ⇥ 4) + 6⌦2

c ⇥ 4)

2 + 4 (w2
0 ⇥ 3)⌦2

c ⇥ 3 (w2
0 ⇥ 4)⌦4

c

. (4.98)

This equation predicts that even for ⌦c = 1, the speed of sound will be subluminal when

w0 ✏= 0. For example, the compactness of the maximum mass configuration with w0 = 0.24

is numerically found to be C = 0.321, while Eqns. (4.98) and (4.45) predict a similar value

for the corresponding ⌦c = 1.083: CLinEoS = 0.326.

In agreement with the discussion in Sec. 4.4.2, for ⌥ ⇤ 1 the configurations exhibit a

MBS-like behaviour, irrespective of the value of w0.
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Figure 4.13: Compactness (left) and scalar frequency (right) of SBSs for the general sextic
potential (4.89), in the v(✓) = 0 gauge, as a function of the central field. Various values
of the parameter ✓0 that describes the deviation from the degenerate vacuum case are
considered, and we set ⌥ = 0.186, comparing also with the vanila case ✓0/µ = 0.

4.4.5 Non-polynomial quartic potential

As one last departure from the benchmark scenario of this work, we will now consider a

real scalar field φ with the renormalizable potential

V4(φ) = µ2φ2 ⇥ gφ3 + λφ4 , (4.99)

g > 0 , λ > 0 .

Q-balls with this e⇥ective potential can form in the presence of other fields [285, 180, 176],

or we can consider this scenario as a proxy for a pseudo-soliton composed of real scalars.

Formally (and in line with the rest of this work) we will take this model to originate from

the non-polynomial potential of a U(1) complex scalar

V4(|⌃|) = µ2|⌃|2 ⇥ g(|⌃|2)3/2 + λ|⌃|4 , (4.100)

106



with the ansatz (4.3) [⌃ = φ(r)e⇥i t] giving a real scalar φ in Eq. (4.99).

Like for the generic sextic potential of Sec. 4.4.4, the potential of Eq. (4.99) admits

false and degenerate vacua, and can be parameterized as a deviation from the degenerate

case

V4 = φ2
0

h

(µ2 ⇥ ✓2
0)⌦

2(1⇥ ⌦)2 + ✓2
0⌦

2
i

, (4.101)

⌦ =
|⌃|

φ0

, φ0 =
g

2λ
, w0 =

✓0

µ
=

s

1⇥ g2

4λµ2
,

or parameterizing the two vacua

V4 =
λφ4

F

3
⌦2
x

 

6x⇥ 4(x+ 1)⌦x + 3⌦2
x

⌦

, (4.102)

⌦x  

φ

φB

, φF/B =
3g ±

p

9g2 ⇥ 32λµ2

8λ
,

1

µ2φ2
F

λφ4
F

3
=

1

6x
,

x  

φB

φF

=
3⇥

p

1⇥ 8w2
0

3 +
p

1⇥ 8w2
0

, w0 =
✓0

p

µ2 ⇥ ✓2
0

.

In contrast to the V6 case in flat spacetime, all configurations are (classically) stable

provided that9 w2
0 ≥ 0 [286, 261, 262]. Otherwise, the discussion is similar to the generic

V6 case: for 1 ⇤ w2 ∼ w2
0 Q-balls are in the thin wall regime, while for w ∼ 1 they are in

the thick wall one.

The gravitating case for this potential was considered in [257], but only for one value

of (in our parametrization) w0 ≈ 0.4, which is in the intermediate thick wall regime.

Expecting a similar phenomenology with respect to w0 ✏= 0 as in Sec. 4.4.4, we have

focused only on the w0 = 0 case (degenerate vacua), noting that the above parametrization

allows for a straightforward systematic exploration with respect to the height of the false

vacuum.

In the thin-wall gravitating limit, the relations among the macroscopic parameters are

very similar to those of SBSs with V6 [Eq. (4.1)], as can be seen in Fig. 4.14 for the mass

and Fig. 4.15 for the compactnesses. This should come as no surprise as the presence of

the non-trivial vacuum renders the equation of state linear in the thin-wall regime and the

same arguments from Sec. 4.3.4 apply. For example, the estimate of the speed of sound,

in analogy with the Eq. (4.46), is

(c2s)a ≈
⌦c(4⌦c ⇥ 3)

12⌦2
c ⇥ 15⌦c + 4

. (4.103)

From the above and the LinEoS results (4.45) we can predict CLinEoS = 0.337 for the

9Quantum e⇤ects can influence stability in part of the parameter space for small Q-balls [180]. Note
that stable solutions (under small perturbations) can exist also for w2

0 < 0 [261, 262].
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Figure 4.14: Mass vs central field of
SBSs in the case of the quartic poten-
tial (4.99), compared with the benchmark
case (4.1) for the same control parameter
⌥ = 0.186. We also show the NBS scaling
(4.85) (black, dashed).
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Figure 4.15: Compactness vs central field
of SBSs in the case of the quartic potential
(4.99), compared with the benchmark case
(4.1) for the same control parameter ⌥ =
0.186. The causal Buchdahl bound CB+C

is indicated as a gray and dashed line.

compactness of the maximaum mass configuration with ⌥ = 0.186 (⌦c = 1.053), whose

true value is C = 0.331.

The presence of only one turning point in the M̄ ⇥ ⌦c diagram [Fig. 4.14] indicates

that only one stable branch is inherited from flat spacetime, in contrast with the V6 case.

This branch is, as in the V6 case, succeeded by the compact unstable branch, as elaborated

using catastrophe theory arguments in [257]. The fact that both SBSs with a quartic

potential and MBSs have only one stable and one unstable branch, noted in [257], is in

fact accidental, as the MBS stable zone originates from the quantum pressure, while the

stable zone of SBSs with the V4 potential is inherited from the corresponding Q-balls. This

is the reason why the M̄ ⇥ ⌦c relation in the low compactness stable branch for the sextic

potential is described by the NBS scaling (4.85) in Fig. 4.14, while the quartic is not.

This di⇥erence can be also illustrated by the w ⇥ ⌦ diagram in Fig. 4.16: for the quartic

potential one can observe a much sharper decline of the w(⌦c) curve from w = 1 than

with the V6 potential. Convergence between the two potentials occurs, manifest in both

M̄ ⇥ ⌦c and w ⇥ ⌦c representations (Figs. 4.14, 4.16), in the compact limit, where gravity

does not discriminate between the highest powers of the scalar potential. In agreement

with Sec. 4.3.5, the w̃(⌦c) curve in the thin wall regime matches well the Q-ball result:

w̃ =
p

1⇥ 3⌦c + 2⌦2
c . (4.104)

4.5 Conclusion

In this work we have provided a comprehensive analysis of the self-gravitating solitonic

objects made of complex scalars that obey potentials with false/degenerate vacua. We
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Figure 4.16: SBSs scalar frequency as a function of the central field in the case of the
quartic potential (4.99), compared with the benchmark case (4.89) for ⌥ = 0.186. Q-ball
(with the quartic potential) results, both numerical and analytical, are indicated with the
purple triangles and the purple line, respectively.

have built on previous studies by reinterpreting and improving them, and also by providing

novel results. In more detail, we find that in the thin wall regime, because of the presence

of the non-trivial vacuum, these objects can achieve high compactness, saturating the

Buchdahl limit with the causality constraint CB+C = 0.354 (Sec. 4.3.4). These values are

the highest that have been found so far for motivated ECO models. This results also

provides a new perspective on SBSs - objects with an incredibly sti⇥ equation of state,

where the information on local disturbances is transmitted at almost the speed of light.

We have established the robustness of this picture by checking various potentials

considered in the literature - general sextic, quartic and cosine potentials (Sec. 4.4).

Although in this work we have stressed the general features of SBSs, particular models

considered in the literature present some di⇥erences. For the ease of navigating amongst

di⇥erent models, we summarise in Table 4.2 the potentials that we have considered in this

work. In addition, the bubble-like (in the thin-wall regime) behaviour of the scalar field

allows for an analytic description of these configurations, which we have presented for the

simplest case of degenerate vacua (Sec. 4.3.5), although we expect that this description

can be extended (in a straightforward manner) to the other potentials considered in Sec.

4.4. This analytic solution can be used as an approximation to the numerical one, and

it has helped us obtain analytic control of SBS solutions for arbitrarily small values of

⌥0/MPl.

In the low compactness limit, the configurations are stabilized either by gravity (thus

behaving as MBS or NBS, cf. Sec. 4.4.2), or by self-interactions (like in the case of the

quartic potential, cf. Sec. 4.4.5). For field values close to the Planck scale, the compact

stable branch shrinks, and only the low-compactness one, described by the MBS model,

survives (cf. Sec. 4.4.1).

One follow up to this project is to generalize our formalism to study scalar-fermion

solitonic configurations as well as higher-spin fields and pseudo-solitions, motivated by
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Boson star model Potential MPl ⌥ ✓ |⌃| ⌅ MPl Cmax

MBS µ2|⌃|2 / NBS 0.11
SIBS µ2|⌃|2 + |λ||⌃|4 / NBS-SI 0.16

SBS: simplest µ2|⌃|2
↵

1⇥ 2 |⌅|2

⌘2

0

�2

Q-ball: simplest NBS/MBS ⇥ 0.354

SBS: sextic µ2|⌃|2 ⇥ |⇧||⌃|4 + |ξ||⌃|6 Q-ball: sextic NBS/MBS ⇥ 0.354⇥ 0.06w2
0

SBS: cosine |⌅|
h

1⇥
r

1⇥ |⇧| sin2
↵

|⌅|
⌘0

�i

Q-ball: cosine NBS/MBS ⇥ 0.354

SBS: quartic µ2|⌃|2 ⇥ |g|(|⌃|2)3/2 + |λ||⌃|4 Q-ball: quartic Q-ball: quartic ⇥ 0.354⇥ 0.2w2
0

Table 4.2: Models considered in this work, their potentials and main properties (including
the non-gravitating limit MPl ⌥ ✓, the low compactness limit |⌃| ⌅ MPl and the maximal
compactness Cmax). For the quartic SBS we have quoted Cmax for the general potential
(4.101) and both general quartic and sextic potential expressions are valid for small w0.
Value for Cmax[SIBS] is taken from [268]. Acronyms: mini BS (MBS), self-interacting BS
(SIBS), soliton BS (SBS), Newtonian BS (NBS), self-interacting Newtonian BS (NBS-SI).

axion or vector DM [89, 84], which could form through di⇥erent channels and possibly

develop other interesting phenomenology [172, 173, 174, 175, 176]. From the astroparticle

physics perspective, it is also important to understand what class of Q-ball production

mechanisms can lead to a significant fraction of compact objects, and how can the presence

or absence of SBS signatures in present and future GW detectors help us constrain

their formation mechanism and possibly gain information on the early universe. On the

phenomenological side, it is therefore imperative to systematically explore the behaviour of

SBSs in binaries and their GW signatures [166], also for low-C configurations [287]. Work

addressing the last topic is reported elsewhere [2].
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Chapter 5

Gravitational waves and kicks from

the merger of unequal mass, highly

compact boson stars

5.1 Introduction

We are well into the era of gravitational wave (GW) astronomy with the rapidly growing

catalog of GW events detected by the LIGO-Virgo collaboration [288, 289].

With the very recent release of the third GW transient catalog [290], the total number

of reported coalescences increased to 90. Some of the more remarkable events detected to

date include:

• GW190412 [291], a binary black hole (BBH) with asymmetric component masses,

showing evidence for higher harmonics in its GW signal;

• GW190425 [292], identified with a binary neutron star (NS) merger lacking evidence

of an electromagnetic counterpart;

• GW190521 [293], a BBH with a total mass greater than 150 solar masses, which

is the most massive binary yet detected, in which the posterior distribution of the

primary mass is nearly entirely in the pair-instability supernova mass gap where

BHs are not expected to form from the collapse of massive stars;

• GW190814 [294], a highly asymmetric system consistent with the merger of a 23

solar mass black hole (BH) with a 2.6 solar mass compact object, making the latter

either the lightest BH or the heaviest NS observed in a compact binary;

• GW200105 and GW200115 [295], which are the first detections consistent with a

NS-BH merger.
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The planned upgrades by the LIGO-Virgo collaboration and the addition of the KAGRA

detector [296] promise even more exciting observations in the future.

A primary target of GW observations is the merger of very compact objects, with BHs

and NSs being the most natural candidates. However, a number of other hypothetical

compact objects have been proposed, called exotic compact objects (ECOs) [297, 146],

discussed in Ch. 2. Phenomenological studies of ECOs are required to perform actual

searches for their signatures. No evidence for such ECOs has yet been found, but, because

they are expected to be too dim electromagnetically, it is mostly through GW detections

that we can hope to observe them [146]. In particular, we will focus on (soliton) boson

stars [(S)BS], extensively discussed in Ch. 4.

Collisions of BSs have been studied extensively, including: head-on and orbital mergers

of mini-BSs [298, 299], head-on mergers of oscillatons [? ? ], orbital collisions of SBSs [253,

166, 254], and head-on and orbital mergers of Proca stars [300, 301, 302]. The merger

of ECOs can be studied within various dark matter scenarios as well, as for example:

mergers between a NSs and a star made of axions, [303, 105, 304] or mergers of binary

NSs containing a small fraction of dark matter [305] modeled using fermion-BSs [306].

Motivated by the recent GW detections of very unequal mass binary mergers, we study

here the coalescence of unequal mass BS binaries, focusing on their dynamics and GW

radiation. As in our previous works [253, 166, 254], we adopt the nontopological SBS

potential [167] to construct our asymmetric binaries because: (i) it allows for very compact

configurations that reach a maximum compactness (see below for its definition) in the

stable branch of approximately C ≈ 0.35 [1, 307] (see Ch. 4), and (ii) one can construct

binaries with a large mass ratio. Indeed, defining the mass ratio q  m1/m2 such that

m1 > m2, we can produce compact binaries with a mass ratio ranging1 approximately from

1 to 45. Here, we focus on binaries within the range q ∈ [2, 23]. We note that in contrast to

the di⌅culties encountered when evolving BBH with large mass ratios [308, 309, 310, 311],

these evolutions require no change to the choice of coordinates, namely gamma-driver shift

condition, nor an exceptionally high resolution. The reason for this di⇥erence is because

the radii of SBSs even with vastly di⇥erent masses are of the same order, whereas the

radius of the BH scales linearly with the mass, and therefore a large mass ratio in a BH

binary necessarily implies a large separation of length scales.

Our mergers of unequal mass SBSs produce either a non-rotating BS or a spinning

BH, as in the equal-mass cases [166]. In the former cases, all the angular momentum

is emitted to infinity through scalar field and GW radiation, while in the latter case,

after performing a very long-term simulation, we find no indication of a scalar cloud

synchronized with the rotation of the remnant BH, as found in Ref. [312] (although such a

1SBSs in general admit two stable and two unstable branches [258, 1]. Here we focus on the more
massive stable branch, while the other stable branch corresponds to the weak-field regime of mini BSs for
our choice of the potential parameters [1]. See Ch. 4 for details.
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cloud was produced from a fine-tuned initial conditions). For one of our simulations with

large angular momentum, a blob of scalar field is ejected after the merger, producing a

significant kick velocity of the remnant. Note that, this blob ejection has already been

observed in SBS binaries of equal mass [166].

This work is organized as follows: in Sec. 5.2, we review the construction of initial data

for binary BSs and numerical implementation. In Sec. 5.3, the coalescence of unequal-mass

BS binaries is studied in detail. The GWs produced by these systems are explored in

Sec. 5.4, in particular, analyzing the imprint of higher-order modes in the signal and the

post-merger frequencies of the remnant’s signal. In Sec. 5.5, we summarize our results. In

contrast with the rest of this thesis, and as appropriate in numerical relativity, here we

will use geometric units in which G = c = 1 unless otherwise stated, while � ✏= 1.

5.2 Setup

In this section, we briefly summarize the construction of binary BSs in quasicircular orbits

that constitute the initial data. For a description of SBS structure, we refer the reader to

Ch. 4. We also outline the numerical methods and grid setup employed to perform the

simulations. Notice that our setup is very similar to the one used in Ref. [166] (in the rest

of this Ch. we will refer to this reference as Paper I) for studying equal-mass binary BSs.

5.2.1 Binary initial data

The procedure to construct the initial data for a binary BS is the same as in Paper I, that

is, a superposition of two boosted, isolated, SBSs.

The solution of a single SBS, whose potential is given by Eq. (4.96) is constructed as

described in Ch. 4, by adopting the usual harmonic ansatz for the scalar field ⌃ = φ(r) e⇥i t

with a real frequency ✓. For the ease of following, let us provide a short summary of

such construction (see Ch. 4 for the detailed description): assuming stationarity and

spherical symmetry, the EKG equations reduce to a set of ordinary di⇥erential equations

which can be solved numerically with a shooting method. Integrating from the center

with a given central value of the scalar field φc and frequency ✓, one looks for solutions

satisfying regularity and boundary conditions. The resulting BS equilibrium configurations

can be characterized by their mass and radius. However, because the scalar field only

vanishes asymptotically as it decays exponentially, the definition of its radius is necessarily

somewhat ambiguous (see App. B.2). Following previous work and Ch. 4, we can define

the e⇥ective radius RM as the radius within which 99% of the total mass is contained,

i.e. m(RM) = 0.99M . Consequently, we define the compactness as C  M/RM . As a

reference, the compactness for a Schwarzschild BH is C = 0.5 and C ≈ 0.1⇥ 0.2 for NSs.

In numerical simulations, it is however more convenient to estimate the radius of the final
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Figure 5.1: Compactness as a function of
the central value of the scalar field φc for
isolated, nonrotating BSs with ⌥0 = 0.05.
Circular markers refer to the equilibrium
configurations used in this work to con-
struct initial data for BS binaries [cf. Ta-
ble 5.1]. The radius RM is defined as that
containing 99% of the mass of the star.

Figure 5.2: Profile of the scalar field as
a function of the isotropic radius for the
di⇥erent configurations.

remnant through the radius that contains 99% of the Noether charge, RN , so we will

use this definition when required. The radius of the remnant is calculated with respect

to its center of mass. Finally, let us note that in our units (in which the scalar field is

dimensionless), mb has the dimensions of an inverse length, µ = mb� is the bare mass of

the scalar field, whereas ⌥0 is dimensionless. We define λ  ⌥0

⌃
8π and set mbλ = 1 for

the rest of the Ch.. However, in some occurrences we shall re-insert the proper factors of

mbλ.

The maximum mass of static configurations in this model is [see Eq. (4.31)]

Mmax ≈ 5M⇤

⇧

10⇥12

⌥0

⌃2 ⇧
500GeV

mb�

⌃

, (5.1)

where the scaling with m⇥1
b is exact, whereas the scaling with ⌥⇥2

0 is approximately valid

only in the ⌥0 ⌅ 1 limit. Thus, depending on (mb, ⌥0) the model supports self-gravitating

configurations across a wide mass range.

Paper I presented a sequence of isolated BS solutions characterized by the central value

of the scalar field φc that we use to construct our unequal mass binaries here. In the top

panel of Fig. 5.1, the compactness C is shown as a function of φc. The circular markers

denote the five representative BSs employed in this Ch. The bottom panel of Fig. 5.1

displays the radial profile of the scalar field for these isolated solutions, while Table 5.1

lists the key properties of these configurations.

Notice that these solutions can be rewritten in terms of the following dimensionless
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C φc/(⌥0/
⌃
2) Mmbλ N(mbλ)

2 (RM , RN)mbλ ✓/(mbλ) I/M3 ktidal

0.03 1.065 0.0463 0.01653 (1.507, 1.380) 2.129620346 245.3 136494
0.06 1.045 0.1238 0.0605 (2.0334, 1.8288) 1.545745909 84.9 8420
0.12 1.030 0.3650 0.2551 (3.0831, 2.8360) 1.066612350 27.8 332
0.18 1.025 0.7835 0.7193 (4.2572, 3.9960) 0.790449025 12.5 41
0.22 1.025 1.0736 1.1147 (4.9647, 4.7068) 0.685760351 8.34 20

Table 5.1: Characteristics of SBS models with ⌥0 = 0.05. The table shows: • the
compactness C, • the central value of the scalar field φc/(⌥0/

⌃
2), • the ADM mass Mmbλ,

• the Noether charge N (mbλ)
2, • the radius of the star (the radius containing 99% of

either the mass or of the Noether charge for RM or RN , respectively), and • the angular
frequency of the field in the complex plane, ✓/ (mbλ), in dimensionless units. In the last
two columns, we give • the normalized, Newtonian, moment of inertia (where I =

R

 
2 dm,

where  is the distance from the axis of rotation), and • the dimensionless tidal Love
number, ktidal, as computed in Refs. [150, 252]. For a NS with an ordinary equation of
state and C ≈ 0.1, ktidal = O(200) while ktidal = 0 for a BH.

quantities [248]

M(mbλ), N(mbλ)
2, r(mbλ), ✓/(mbλ) , (5.2)

recalling that λ = ⌥0

⌃
8π. In terms of these parameters, the equations become independent

of mb, and hence mb serves to set the units of the physical solution. Again, the linear scaling

in mb in the above expressions is exact, whereas that with respect to λ is approximately

valid only in the ⌥0 ⌅ 1 limit. For the chosen value, ⌥0 = 0.05, this scaling is already a

good approximation, and so smaller values of ⌥0 can be studied simply by applying such a

rescaling. Here we restrict ourselves to ⌥0 = 0.05, which su⌅ciently fulfills the condition

⌥0 ⌅ 1 and also allows for very compact, stable configurations. See Sec. 4.3.5 for the

details.

The initial data for the BS binary follows the procedure described in Ref. [253] and

Paper I. Once the isolated BSs are constructed in spherical coordinates, the solution is

extended to Cartesian coordinates, with the centers of the stars located at along the

y-axis at (0, yjc , 0), so that the center of mass of the system is located at the origin.2

A Lorentz transformation is performed to boost each star along the ±x-directions, and

finally the boosted solutions for both stars are superposed to obtain our binary initial

data. Obviously, this superposition is only an approximate solution that does not satisfy

exactly the constraints at the initial time (see Ref. [255] for a partial solution in case of

equal mass binaries of BSs). However, our evolution scheme enforces an exponential decay

of this constraint violation dynamically (e.g., see Fig. 10 in Ref. [253]).

2Here we define the center of mass using the masses of isolated configurations listed in Table 5.1.
Constraint violation transient will change these masses, see the discussion of “e⇤ective” configurations
below.
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Binaries q ν y
(1)
c y

(2)
c v

(1)
x v

(2)
x M0mbλ J0(mbλ)

2 tc tretm

C003 - C022A 23.2 0.039 ⇥9.58 0.42 ⇥0.34 0.02 1.16 0.229 790 811
C003 - C022 23.2 0.039 ⇥9.58 0.42 ⇥0.34 0.02 1.16 0.229 790 808
C006 - C022 8.6 0.093 ⇥8.96 1.04 ⇥0.36 0.05 1.34 0.668 510 539
C012 - C022 2.9 0.189 ⇥8.95 3.05 ⇥0.33 0.136 1.90 2.388 370 402
C012 - C018 2.1 0.21 ⇥8.18 3.81 ⇥0.26 0.135 1.36 1.488 660 684

Binaries remnant Mrmbλ RNmbλ Mr✓
0
r

C003 - C022A BS 1.07 4.50 0.218
C003 - C022 BS 1.13 4.76 0.228
C006 - C022 BS 1.24 5.0 0.239
C012 - C022 BH 1.89 3.48 0.467
C012 - C018 BS 1.17 4.34 0.250

Table 5.2: Properties of unequal binary BS models and of the final remnant. Each case is
characterized by: (Top) • the compactness C of the individual BSs in the binary, • the

mass-ratio q, • the symmetric mass ratio ν, • the two initial centers y
(i)
c , • the initial

velocities of the boost v
(i)
x , • the ADM mass M0 of the system, and • the orbital ADM

angular momentum J0 of the system, after the constraint-violating transient respectively.
The merger and remnant are characterized by: • the coordinate time of contact of the
two stars tc (defined as the time at which the individual Noether charge densities make
contact for the first time), • the merger retarded time (defined as the time when the
maximum of the modulus of the Ψ

2,2
4 is produced minus the travel time to the sphere

where it is measured) (Bottom) • the type of final remnant, • the remnant mass Mrmbλ,
• the remnant radius RNmbλ (i.e., containing 99% of the Noether charge), and • the
main GW frequency Mr✓

0
r in the post-merger. When the final remnant is a BH, the

radius is computed from the expression for Kerr BHs, RH = Mr(1 +
⌃
1⇥ a2), where

a = Jr/M
2
r ≈ 0.5 is the dimensionless spin.

In contrast with Paper I where the positions and initial velocities of each binary were

anti-symmetric (i.e., velocities with the same magnitude but opposite direction), for these

unequal cases we have set those parameters as follows: given an initial separation we

have calculated the 2nd order post-Newtonian orbital velocity [313] such that the system

would be in quasicircular orbit and the velocity of the center of mass would be close to

zero. Then, we modify these velocities by adding a tiny amount of linear drift velocity to

account for the finite initial orbital distance and higher-order relativistic e⇥ects, and fix

this drift velocity such that the velocity of the binary center of mass is close to zero. The

positions and velocities of each binary system considered in this work, together with other

parameters of our simulations, are presented in Table 5.2.

As mentioned, our binary initial data is only approximate, but constraint violations

quickly propagate o⇥ the grid by our evolution scheme. Hence, it makes sense to evaluate

the global characteristics of the initial data not at the initial time but instead just after

the constraint-violating transient. We therefore extract numerically the ADM mass, M0,

of the spacetime after the transient, and, assuming that the mass ratio remains constant
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through the transient, we decompose this mass into the constituent “e⇥ective” masses as

M̃1 =

�

q

q + 1

⇥

M0 , M̃2 =

�

1

q + 1

⇥

M0 . (5.3)

Notice that this calculation tacitly assumes that, even after the constraint violation

transient (approximately) ends, stars are su⌅ciently separated so that GR nonlinearities

are sub-leading. During this transient regime, we note that the masses of the constituent

stars increase which results in a decrease in the number of orbits.

Furthermore, we can construct fitting formulae for the compactness, C(M), and particle

number, N(M), as functions of BS mass from the equilibrium configurations of isolated

BSs (in particular, from the numerical results of Ch. 4). We obtain

C(M) ≈ 0.0157 + 0.376M ⇥ 0.3M 2 + 0.136M3

⇥0.0195M 4 , (5.4)

N(M) ≈ ⇥0.0187 + 0.6221M + 0.3872M2 . (5.5)

With the above functions, one can calculate the “e⇥ective” Noether charges and compact-

nesses of the stars in our binaries as a function of their “e⇥ective” masses, respectively. In

Table 5.3 , we provide this data for all configurations consider in this work and Paper I. We

also provide the relative di⇥erences between the properties of the isolated initial data and

the “e⇥ective” ones. Comparing the total Noether charge in the system, N0, with the sum

of the individually calculated charges, N(M̃1) +N(M̃2), provides a test of the consistency

of this approach. As explained below in Sec. 5.3.2, the “e⇥ective” initial data presented

here agrees roughly with our initial data after the constraint-violating transient.

5.2.2 Numerical setup and analysis

The computational code, generated by the Simflowny platform [314, 315, 316, 317], runs

under the SAMRAI infrastructure [318, 319, 320], which provides parallelization and the

adaptive mesh refinement (AMR) required to resolve the di⇥erent scales in the problem.

We use fourth-order spatial, finite di⇥erence operators to discretize the EKG equations,

which are evolved in time using a fourth-order Runge-Kutta integrator [321].

Our computational domain ranges within [⇥264, 264]3 and contains 8 levels of refine-

ment. Each level has twice the resolution of its coarser parent level, achieving a resolution

of ⌦x8 = 0.03125 on the finest grid. We use a Courant factor λc  ⌦tl/⌦xl = 0.4 on each

refinement level l to ensure the stability of the numerical scheme.

We analyze some relevant global physical quantities from our simulations, such as

the Arnowitt-Deser-Misner (ADM) and the Komar mass, the ADM angular momentum,

and the Noether charge, computed as in Ref. [253]. We focus our attention mainly on
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Binaries M̃1mbλ ⌦M1/M̃1 C̃1 ⌦C1/C̃1 Ñ1(mbλ)
2

⌦N1/Ñ1

C006 - C006 0.13 0.066 0.061 0.0099 0.071 0.14
C012 - C012 0.43 0.15 0.13 0.093 0.32 0.21
C018 - C018 1.0 0.22 0.21 0.14 1.0 0.29
C022 - C022 1.6 0.32 0.28 0.20 1.9 0.42
C003 - C022 0.048 0.034 0.033 0.093 0.012 0.38
C006 - C022 0.14 0.11 0.063 0.044 0.076 0.20
C012 - C022 0.49 0.25 0.14 0.16 0.38 0.32
C012 - C018 0.44 0.17 0.13 0.10 0.33 0.23

Binaries M̃2mbλ ⌦M2/M̃2 C̃2 ⌦C2/C̃2 Ñ2(mbλ)
2

⌦N2/Ñ2

C006 - C006 0.13 0.066 0.061 0.0099 0.071 0.14
C012 - C012 0.43 0.15 0.13 0.093 0.32 0.21
C018 - C018 1.0 0.22 0.21 0.14 1.0 0.29
C022 - C022 1.6 0.32 0.28 0.20 1.9 0.42
C003 - C022 1.1 0.035 0.22 0.0028 1.2 0.034
C006 - C022 1.2 0.11 0.23 0.044 1.3 0.13
C012 - C022 1.4 0.24 0.25 0.14 1.6 0.32
C012 - C018 0.92 0.15 0.20 0.10 0.88 0.19

Table 5.3: E⌅ective properties of the individual stars within the binary after the constraint
violating transient. Tildes represent “e⇥ective“ quantities of the stars in the binary. For
the equal mass binaries of Paper I and the unequal mass binaries studied here: • the mass
from Eq. (5.3), • the compactness C from Eq. (5.4), • the Noether charge from Eq. (5.5),
• for each of these, their fractional di⇥erences, ⌦X/X, with respect to the initial data for
the isolated star used in the construction of the binary.
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the gravitational radiation represented by the strain h, which is the quantity directly

observable by GW detectors. We consider first the Newman-Penrose scalar Ψ4, which can

be expanded in terms of spin-weighted s = ⇥2 spherical harmonics [322, 323] as

rΨ4(t, r, ✏,φ) =
X

l,m

Ψ
l,m
4 (t, r) ⇥2Yl,m(✏,φ), (5.6)

where the coe⌅cients Ψl,m
4 are extracted and calculated on spherical surfaces at di⇥erent

extraction radii. The relation between this scalar and the two polarizations of the strain

is given by Ψ4 = ḧ+ ⇥ i ḧ◊. The components of the strain in the time domain can be

calculated by performing the inverse Fourier transform of the strain in the frequency

domain, hl,m(t)  F⇥1[h̃l,m(f)], where a high-pass filter has been applied in the frequency

domain in order to attenuate the signal with frequencies lower than the initial orbital

frequency [324, 253]. The instantaneous angular frequency of each GW mode can be

calculated easily from Ψ4 as

✓
l,m
GW = ⇥ 1

m
Im

 

Ψ̇
l,m
4

Ψ
l,m
4

!

, f l,m
GW =

✓
l,m
GW

2π
. (5.7)

We will refer to ✓GW as the one given by the dominant mode l = m = 2.

The mass, the angular momentum, and Ψ4 are calculated on spherical surfaces at

di⇥erent extraction radii between Rext = 100 and Rext = 200, which are located far away

from the sources in the wave zone.

5.3 Dynamics for unequal-mass BS binaries

We have evolved four unequal mass binary BS cases, {C003-C022, C006-C022, C012-C022,

C012-C018}, covering mass ratios q  m1/m2 roughly between 2 and 23. Additionally,

we have studied a variation of the most extreme case, C003-C022A, in which the heavier

BS has been transformed into an anti-BS (see Ref. [2] for the details). In what follows,

we describe first qualitatively the dynamics for all the cases and then analyze the GWs

produced by these mergers in the next section.

5.3.1 Binary dynamics in the inspiral

We display some representative snapshots along the equatorial plane to characterize the

dynamics of these binary evolutions. In particular, the Noether charge densities in Fig. 5.3

show the dynamics of the condensed bosons, whereas the scalar field norm in Fig. 5.4

shows the dynamics of the scalar field generally.

The binaries in C003-C022A and C003-C022 complete five full orbits before colliding,
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C006-C022 and C012-C018 complete three orbits, and C012-C022 performs just two. While

such a short inspiral limits their use for guiding templates, the inspiral is long enough for

constraint violations resulting from the construction of the initial data to propagate away.

During the inspiral, the spacetime curvature is dominated mainly by the heavier BS,

which moves in a spiral trajectory very close to the origin (i.e., see the leftmost column of

Fig. 5.3), while the lighter one induces a perturbation orbiting around the most massive

object. This e⇥ect is especially pronounced in the four most unequal mass cases in which

the heavier BS accounts for at least 75% of the binary mass. During the inspiral, the scalar

field constituting each star has no significant overlap (see the first column of Fig. 5.4), and

therefore nonlinear scalar interactions only play a significant role inside the stars. Roughly

speaking, the BSs behave then like point particles with moderate deviations produced by

the tidal deformations. As the mass ratio approaches unity, the binary behaves similarly

to the equal-mass cases of Paper I. In particular, C012-C018 with q = 2.1 resembles those

equal-mass cases.

The aforementioned deviations due to tidal deformations can be estimated by looking

at the quadrupole-moment tensor Q
(i)
ab of the i-th object induced by the tidal-field tensor

G
(j)
ab produced by the j-th object (i, j = 1, 2) [325, 326],

Q
(i)
ab = λiG

(j)
ab ∼ λi

mj

r3
, (5.8)

where r is the orbital distance and λi =
2
3
m5

i k
(i)
tidal is the tidal Love number of the i-th

object, with k
(i)
tidal being its dimensionless counterpart. Hence, the dimensionless quadrupole

moment, Q̄i = |Q(i)
ab |/m

3
i , reads

Q̄1 ∼ k
(1)
tidal

q2

(1 + q)3
M3

0

r3
, (5.9)

Q̄2 ∼ k
(2)
tidal

q

(1 + q)3
M3

0

r3
, (5.10)

where M0 = m1 +m2 is the binary total mass. In the large mass-ratio limit, q ⇤ 1, the

tidally-induced quadrupole moments of the primary and of the secondary are suppressed

by a factor q⇥1 and q⇥2, respectively. For example, for a fixed value of k
(i)
tidal, the tidally-

induced quadrupole moment of the primary for q = 23 is suppressed by a factor 3 relative

to q = 1, whereas that of the secondary is even a factor ∼ 100 smaller. Overall, tidal

e⇥ects on the secondary object are less relevant than those on the primary.

5.3.2 Final fate of the binary merger

If the system is su⌅ciently massive such that the remaining mass after merger exceeds

the maximum stable BS mass (i.e., Mr ≥ Mmax ≈ 1.85/(mbλ)), one expects the system to
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Figure 5.3: Dynamics of the Noether charge. Noether charge densities in the equatorial
plane (z = 0) at representative times. Each row represents one of the cases (from top
to bottom): {C003-C022A, C003-C022, C006-C022, C012-C022, C012-C018}. The first
column illustrates a time roughly one orbit before the contact time tc (defined as the time
at which the individual Noether charge densities make contact for the first time), the
second column occurs at contact time, the third is roughly an orbit after the contact time
(except for the C012-C018 case, in order to visualize the ejected blob), and the fourth
one occurs at the end of our simulations. Note that the final remnant for C012-C022 is a
rotating BH which quickly engulfs the surrounding scalar field (i.e., not visible on this
natural scale).
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Figure 5.4: Dynamics of the scalar field. Logarithm of the modulus of the scalar field ||⌃||
in the equatorial plane (z = 0), at representative times. Each row represents the unequal
cases considered. Notice that there is only some scalar emission around the contact time
tc (defined as the time at which the individual Noether charge densities make contact for
the first time), suggesting that the final object is an almost stationary BS (except for the
simulation on the third row, in which the remnant is a spinning BH).
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collapse to a remnant BH. If instead the total mass is below this threshold, a remnant

BS is expected. In the latter case, the possibility of forming a rotating BS should be

considered. At least two conditions appear to be required for such formation: (i) because

rotating BSs have quantized angular momentum, binaries need to have angular momentum

at the point of contact at least slightly larger than or equal to the first discrete level of

the rotating star, 3 and (ii) the rotating solution to which the remnant might settle must

be stable.

Once the stars contact each other, one expects scalar field interactions to produce

additional attractive forces that accelerate the merger (see the discussion of the e⇥ective

force with just a massive potential in Appendix B of [299]). The newly formed, rotating

object is initially largely nonaxisymmetric, and, even by the end of our simulations, the

remnant is a highly perturbed BS (see the rightmost column of Fig. 5.3). Some general

features of the dynamics can be found in certain global quantities (mass, Noether charge,

and angular momentum) which are displayed in Fig. 5.5.

The mass and the Noether charge are unambiguously defined global quantities, in

contrast to the radius of the star. In the case of a complex field, the U(1) symmetry, which

ensures the conservation of the Noether charge, significantly restricts the ways in which

the remnants might relax. Fig. 5.6 shows the mass-Noether charge phase space for two

representative cases C006-C012 and C012-C018. Here, we present several estimates of the

initial and final data along with families of isolated BSs, to facilitate the understanding of

the relaxation of the remnant.

The orange squares indicate the simplest estimate of the initial data, (M1+M2, N1+N2),

obtained by adding the properties of the isolated BSs used to construct the binary. These

two squares fall far from our two other estimates of the initial data. In particular, the

total mass and Noether charge measured by the numerics after the transient is shown in

black circles. We then construct the “e⇥ective” initial data (red crosses) by decomposing

the numerically obtained total mass via Eq. (5.3) and computing the charge of each BSs

from these individual masses (with Eq. (5.5) in Sec. 5.2.1).

We further note that, due to the nonlinearity of the function N(M), some amount of

scalar and/or GW emission is needed during the merger in order for the remnant to settle

into either a static or rotating configuration. If the remnant is assumed to be a BS that

relaxes only by the emission of GWs, namely no emission of scalar field to infinity, the

evolutionary path of the binary would follow a horizontal line in the N -M phase space

(blue dashed line on Fig. 5.6), ultimately settling into the remnant BS occurring at the

intersection with the family of nonrotating BSs given by Eq. (5.5) (red dotted line). Our

simulations indicate emission of scalar field, in addition to GWs, a process known as

3This argument excludes some exotic possibility in which, say, GWs with some opposite angular
momentum are radiated copiously until the remnant achieves the su⌥cient amount of angular momentum.

123



1.2

1.4

1.6

1.8

M
m

bλ

C003− C022A
C003− C022
C006− C022
C012− C022
C012− C018

0.0

0.5

1.0

1.5

2.0

2.5

J
z
(m

bλ
)2

−100 0 100 200 300

(t− tc)/M0

0.0

0.5

1.0

1.5

2.0

N
(m

bλ
)2

Figure 5.5: Global quantities. ADM mass (top) , angular momentum Jz (middle) and
Noether charge (bottom) as functions of time. The time has been shifted such that
contact time happens at t = 0 and rescaled with the initial total mass M0 of each binary.
Horizontal dashed lines in the middle panel indicate the angular momentum of the ground
state rotating BS corresponding to the Noether charge measured at the contact time.
Notice that the angular momentum decreases monotonically (although slowly) after merger
for all remnants except for that of C012-C022 which collapses to a BH. This decrease
in angular momentum along with the fact that these binaries (except C012-C022 which
collapses to a BH) have less angular momentum than any rotating BS with the same
Noether charge support our claim that all non-collapsed cases settle to a nonrotating
BS. The non-monotonic, brief drops in the mass and angular momentum plots for the
C003-C022A and C012-C018 cases correspond to the passage of transients across the
extraction surface on which mass and angular momentum are calculated (the retarded
time is used). The Noether charge is computed as a volume integral and therefore less
subject to such errors.
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“gravitational cooling” [165, 327]. Indeed, the path of the numerical evolution (green dots)

indicates that the dynamics are driving each system toward a stationary BS (red-dotted

line). Although most of these BS mergers ended before the remnant fully relaxed to

stationarity, we have established for C003-C022 and C012-C012 that the point (Mr, Nr)

(where Nr  N(tend)) indeed lies on the isolated BS curve. However, the near constancy

of the Noether charge in the late postmerger (Fig. 5.5) and the close approach of the final

simulation to the isolated BS curve (Fig. 5.6) both indicate that the mergers that do not

collapse are forming a stable, nonrotating, SBS.

If the late stage evolution is dominated by GW emission (since most of the ambient

scalar field has already been radiated), then we would expect the final object to be that

represented by the black solid diamond, (Mr, N(Mr)), itself a stationary BS, because the

Noether charge would not be changing.

An important unresolved question is whether a merger of two BSs can produce a

rotating BS. The stability of rotating, SBSs has been studied recently. First, rotating

BSs without scalar self-interactions were found to be unstable due to a non-axisymmetric

instability [162]. However, a subsequent study showed that this instability was quenched

for the solitonic model of the potential [163] (see also Ref. [164]) if M > 0.13/(mbλ), for

the value ⌥0 = 0.05 considered here. Without stability, one would not expect formation of

such configurations from a merger.

Rotating BSs have quantized angular momentum, J = kN for some integer k, and one

can calculate the function N(M) for the k = 1 family of rotating BSs following Ref. [163]

(see also [249]). We display this family of solutions as a green solid curve in the right panel

of Fig. 5.6 (case C012-C018) because this binary has angular momentum close to this first

quantized level. Actually, only two cases among those studied in this work and Paper I

(i.e., C012-C018 and C012-C012) are close to satisfying the quantization condition, namely

that the angular momentum is greater than or equal to the Noether charge at the time

of contact. In neither of these two cases do we find a rotating remnant, and the angular

momentum is primarily reduced through emission of scalar “blobs.”

The case C012-C018 is shown in the right panel of Fig. 5.6. We display the Noether

charge equal to the binary’s angular momentum at the time of contact with the horizontal,

yellow dot-dashed line. However, as shown in the figure, the point of intersection of the

dynamical path of the binary, (M(t), N(t)) shown in green dots, with the curve indicating

the k = 1 family of rotating BSs (solid green curve) occurs above this yellow line. Because

these rotating solutions have angular momentum equal to their charge, the evolution

lacks su⌅cient angular momentum to form the rotating BS indicated by this point of

intersection.

In an e⇥ort to understand the configuration space of binaries in terms of possible

endstates, in particular including formation of a rotating remnant or a blob, we parame-
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Figure 5.6: Mass-Noether charge phase space. Evolution of the total mass and charge of the
system for two representative cases: C006-C012 (left) and C012-C018 (right) which ejects
a blob of scalar field after merger. The orange square for each case represents the value of
(M1+M2, N1+N2) obtained from the individual stars as listed in Table 5.1. The black, open
circles are the masses and charges, (M0, N0), obtained from the numerical evolution just
after the transient. The red crosses are the “e⇥ective” values (M̃1 + M̃2, N(M̃1) +N(M̃2)),
as explained in Sec. 5.2.1. The fact that the red crosses and black circles are close to
each other supports the validity of this approach. The green dots trace the numerical
evolution by showing the extracted quantities (M(t), N(t)). The values characterizing
the final state, (Mr, Nr), of the simulation are represented by a green triangle. The black
diamond is the point, (Mr, N(Mr)), with the same mass as the green triangle but with
the charge obtained from the fit in Eq. (5.5). If one assumes that the remnant is a BS
that relaxes only via emission of gravitational waves, one obtains a horizontal phase space
trajectory (blue dashed line) through the initial data (namely the black circle here). The
family of nonrotating BSs given by Eq. (5.5) are plotted with a (red dotted curve). Only
the case on the right has angular momentum comparable to the first rotating solution,
and so for this case we also show the family of k = 1 rotating BS configurations for our
same potential from Ref. [163] with a solid green curve. Because J = kN for such rotating
BSs, we also show the value of N corresponding to the angular momentum of the binary
at contact time with a horizontal, yellow dot-dashed line.

terize the quantization condition. We first compute a Keplerian estimate of the angular

momentum either at the time of first contact Rc = C1/M1 + C2/M2 or when the binary

reaches the innermost stable circular orbit, RISCO = 6M0, whichever occurs first. We

then correct this estimate by including the relativistic e⇥ects of strong gravity. Due to

the pre-contact scalar emission, the total Noether charge in the binary at the point of

contact will be slightly smaller than the initial one. In addition, we have observed blob

emission in both cases where the total charge of the binary is slightly higher than Jc. We

incorporate these two e⇥ects in our quantization condition for rotating boson stars, J ≥ N ,
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Figure 5.7: Scenario classification. The parameter space of solutions represented in two
di⇥erent ways: (left) mass ratio versus total mass, and (right) individual mass of one
star versus the other. The outcomes of our simulations are consistent with Mmax being
the simple delineator for the BS/BH nature of the remnant. The blue region encloses
configurations that satisfy the angular momentum requirement of Eq. (5.11) (informed
by our evolutions that produce blobs), and thus we expect either blob ejection or the
formation of a rotating boson star. The red hashed region is a subset of this region which
we have not sampled, but where rotating BSs may form.

by introducing two new parameters {eN , eJ} in the following way

Jc,K(1 + eJ)

N(M1) +N(M2)
> 1 + eN , (5.11)

where Jc,K is the Keplerian estimate of the angular momentum at the contact time, eN

estimates either the amount of Noether charge radiated during the merger (eN > 0) or

the di⇥erence between the critical angular momentum and the charge at the point of

contact that allows for blob emission (eN < 0). Finally, eJ accounts for general relativistic

corrections to the Keplerian angular momentum calculation.

We use the above cases to estimate the value for the parameters eJ , eN . To estimate eJ ,

we compute the di⇥erences between the Keplerian estimate of the angular momentum at

contact time and the numerical value, obtaining ∼ 25% in scenarios where we observe blob

formation: C012-C012 and C012-C018. In the low-mass regime, where SBSs are in the

weak-field regime, we expect that eJ ⌥ 0. Thus, we linearly interpolate eJ between 0 and

0.25 for M0/2 ∈ [Mmin,MC012] and take the constant value eJ = 0.25 up to M0 = Mmax.

Due to the initial data constraint violation, we cannot estimate reliably how much of the

Noether charge is emitted before contact. For the sake of argument, we take eN = 0.01

in this case, delineating a subset of the parameter space where the strict form of the

quantization condition is satisfied and where rotating remnants may form. In addition, we
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require that the remnant has surpassed the threshold mass estimate from Ref. [163].

In the two cases where the blobs are observed, one finds eN = {⇥0.05,⇥0.02} for

C012-C018 and C012-C012, respectively. Thus, taking eN = ⇥0.05 would encompass both

scenarios where blobs are found and indicate the part of the parameter space where one can

expect blobs generically and even possibly rotating remnants (more restrictive condition).

We sketch the configuration space for these mergers in Fig. 5.7 in two ways: the left panel

plots the mass ratio versus the total mass, (q,M), whereas the right panel shows the

space spanned by individual masses (M1mbλ,M2mbλ). Solutions exist only for binaries

constructed with stable BSs, Mi < Mmax, with regions outside this indicated in white. For

binaries with M1 +M2 < Mmax, the formation of a rotating BS appears possible for the

binaries that do not collapse to a BH and possess angular momentum satisfying Eq. (5.11),

although we have not observed such formation (red hashed region).4 The set where we

expect blob emission based on the results of C012-C018 and C012-C012 cases (blue region)

has a red hashed region as its subset. Note that lacking an understanding of the physics

of the blob formation, the blue region should serve only for illustrative purposes. Both

of these regions are determined approximately and require more simulations in order to

understand their precise extent.

One expects qualitatively similar behavior near M0 ≈ Mmax in the small λ regime

(λ ⌅ 1). In contrast, when M0 ⌥ Mmin BSs behave as thick-walled Q-balls (where

“Q-balls” [168] refers to the flatspace limit of SBSs) [1], we can study the quantization

condition (5.11) in detail in this regime. We consider an equal-mass (q = 1) binary with

N ≈ λM in which the objects collide at Rc (for q = 1 this happens when C < 0.17).

Taking eJ ≈ eN ≈ 0 (in mb = λ⇥1 units) and setting the angular velocity to the Keplerian

estimate, it can be shown with some algebra that Eq. (5.11) becomes

C <
M2

4λ2
. (5.12)

Thus, for su⌅ciently small λ (approximately an order of magnitude smaller than the value

in this work λ = 0.25), the quantization condition will be satisfied. This simple expression

does not change parametrically when a more precise description of the Q-balls is used

[1]. Although rotating Q-ball solutions have been constructed [249], the non-axisymmetric

instability (NAI) probably prevents one from dynamically forming, based on the results of

Ref. [163]. Whether in those cases blobs form or the non-axisymmetric instability would

kick in is an open question.

To conclude, we cannot rule out the formation of a rotating BS with the solitonic

4Because the maximal mass of rotating BSs is larger than that for non-rotating BSs, a priori, even
binaries with total mass slightly higher than the maximum mass for static stars, Mmax, could allow for
the formation of a rotating remnant. Note, however, that the e⇤ective mass of C012-C022 is slightly larger
than the static maximum mass Mmax and the configuration collapses to BH. Whether this also happens
for q ⌥ 1 is an open question.

128



potential although none has been formed. In any case, our parameter space analysis

indicates that the initial conditions would need significant tuning, which may require more

accurate initial data. Even in those cases where the formation of rotating BS might be

feasible, as suggested in Paper I, the organization of the bosonic field into a rotating star

from the very nonlinear merger may be too di⌅cult, particularly because the rotating BS

necessarily has a toroidal energy density 5 .

5.3.3 Scalar blobs and kicks

We now consider the ejection of scalar blobs. As previously explained, the case C012-C018

is the only one with contact angular momentum close to that of the first quantized spinning

BS configuration (namely, Jz ⇤ N) that does not collapse to a BH. Instead, whether the

spheroidal energy density formed in the merger somehow prevents the configuration from

relaxing to the toroidal shape of the rotating BS or not, the system relaxes instead to a

nonrotating BS. To do so, the system must shed its angular momentum.

In this case, the excess angular momentum is emitted in the form of a blob of scalar

field that is ejected from the remnant soon after the merger (see the bottom row of Figs. 5.3

and 5.4). This blob travels outward on the grid, and its passage across the spherical

surface (i.e., around (t⇥ tc)/M0 ≈ 100) at which the system mass and angular momentum

are computed disrupts the assumptions of the calculation, seen as non-monotonicity in the

global quantities shown in Fig. 5.5.

Using the values before and after the drop in mass, we can estimate the blob’s mass

as Mblob ≈ 0.12. Despite the blob containing only a small fraction of the total mass,

it carries a significant fraction of the total angular momentum due to its large velocity,

vblob ≈ 0.5 directed nearly tangentially away from the remnant and its distance from the

center of mass when ejected, L ≈ 7. Indeed, using the same simple estimate for the angular

momentum as in Paper I, we obtain Jz ≈ MblobvblobL ≈ 0.4, which is roughly equal to

the sharp decrease of angular momentum observed in the middle panel of Fig. 5.5. On

the time scale of our simulation, the blob appears bounded. In fact, the blob satisfies

the stability condition (in mb = λ⇥1 units) λMblob < Nblob, with Nblob ≈ 0.05/(mbλ)
2 (see

Ref. [1] and references therein for a discussion of the stability regimes of SBSs).

In addition to the unequal mass case C012-C018 presented here, the ejection of

condensed scalar field was observed in two equal-mass BS binary simulations, one in

Ref. [253] and the other in Paper I. In those two cases, the symmetry of the binary resulted

in two, identical blobs propagating along opposite directions. That three di⇥erent studies

found blob ejection suggests that such ejection might be typical in SBS binaries under

certain conditions.

5Rotating Proca stars instead have a spheroidal energy density and yet none of these have been formed
from a merger either [302].
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The ejection of the blobs has important implications for the astrophysics of BS mergers

should such systems (or similar systems such as axion stars) actually exist in nature. In

contrast to the equal-mass case that ejects two blobs in opposite directions, the ejection

of a single blob generates a kick on the remnant. For binaries with large enough mass

ratios, the kick can be large; large even compared to the superkicks of binary BHs

(which are as large as a few ◊ 103 km/s [328, 329, 330, 331]) and larger than the typical

escape velocities of galaxies and of globular clusters (which are of O(102 ⇥ 103) km/s and

O(10) km/s, respectively). For example, the linear momentum of the blob shown in the

C012-C018 simulation is roughly Mblobvblob ≈ 0.06/(mbλ) which, by linear-momentum

conservation, implies that the remnant with mass Mr = 1.17/(mbλ) recoils with a velocity

vr ≈ 0.05 ∼ 1.4 ◊ 104 km/s . In practice, since the ejected scalar blobs have a sizeable

mass and relativistic speed, they induce remnant kicks much more e⌅ciently than GW

emission in asymmetric binary BH systems [328, 329, 330, 331]. These large kicks would

have important implications for the merger rate of BS binaries in the universe, as they

largely exceed the escape velocity from bound structures (e.g. nuclear star clusters [332]

and galaxies [333]). As a result, the rate of successive generations of mergers (which is

particularly important for supermassive objects, see e.g. Ref. [334]) may be suppressed

relative to the BH case. Moreover, “‘stray” BSs moving at high speeds may be present in

the intergalactic medium as a result of ejections from the host galaxies.

Finally, one might be tempted to associate this disruption and blob ejection to the

nonaxisymmetric instability present in some rotating BSs [162]. However, a recent study

shows that the NAI should be quenched for the solitonic potential for su⌅ciently compact

BSs [163, 75], which suggests that the NAI is not the cause of blob ejection.

5.4 Gravitational Wave Signal

We now turn our attention to the analysis of the gravitational radiation produced by

unequal-mass BS binaries.

5.4.1 Late inspiral and merger

Some of the most relevant (l,m) modes of the gravitational radiation represented by the

strain, together with the angular frequency of the (2, 2) mode, are displayed in Fig. 5.8. A

simple inspection of these profiles already confirms that the dominant mode during the

inspiral is always the l = m = 2 for our wide range of mass ratios. As expected, mass ratios

closer to unity (i.e., such as the C012-C018 case), when the mass quadrupole moment is

stronger, displays a larger predominance of the l = m = 2 mode. On the other hand, for

large mass ratios (i.e., such as the C003-C022 case), the importance of the higher-order
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modes increases. It is interesting to note that after the merger the amplitudes of the

various modes are of the same order, without one clearly dominating over the others.

Furthermore, as the mass ratio increases, the e⇥ects of tidal deformations on the

waveform become less relevant. This can be understood as follows. A generic quadrupole-

moment tensor, Q
(i)
ab , of the i-th object a⇥ects the GW phase starting at second post-

Newtonian order. The extra 1/r3 dependence of the tidally-induced quadrupole moment

[see Eq. (5.8)] implies that tidal e⇥ects enter the GW phase starting at the fifth post-

Newtonian order, with a phase correction [325, 326]

↵φtidal = ⇥117

8

(1 + q)2

q

⌥

M5
0

v5 , (5.13)

where v = (πM0f)
1/3 is the orbital velocity, f is the GW frequency, and ⌥ = 1

26
((1 +

12/q)λ1 + (1 + 12q)λ2) is the weighted tidal deformability. When q = 1, ⌥ = (λ1 + λ2)/2

is simply the average of the two tidal deformability parameters. However, in the large

mass-ratio limit [335], we can write the correction as

↵φtidal = ⇥k1

�

3

8
v5q + . . .

⇥

⇥ k2

�

9

2
v5

1

q3
+ . . .

⇥

, (5.14)

where we include for each of the tidal terms k1 and k2 only the leading-order term in the

q ⇤ 1 expansion. The above equation shows that the tidal deformability of the primary

is much more important than that of the secondary, which is suppressed by a relative

factor ∼ q⇥4. Thus, the net contribution of the tidal deformability in the GW phase,

compared to the point-particle phase, depends on two competing e⇥ects: on the one hand,

less compact BSs have a large tidal Love number (see Table 5.1) but, on the other hand,

for binaries with very disparate mass stars the tidal Love number of the secondary is

negligible. The quantity ⌥/M5
0 , which provides a measure of the relevance of the tidal

contribution compared to the leading-order point particle phase, is presented in Table 5.4.

For the binary systems under consideration, the suppressing e⇥ect of large mass ratio more

than compensate for the large tidal Love number of the secondary, and hence the quantity

⌥/M5
0 is larger for the smallest mass-ratio system in the catalog.

5.4.2 Post-merger

We analyze the post-merger frequencies of the gravitational signal of the remnant, showing

the power spectral density of the dominant l = m = 2 mode in Fig. 5.9. In Fig. 5.10, we

display the frequency of the dominant mode for all the cases studied in this Ch. and Paper

I, together with the fundamental mode for isolated BS stars (from Paper I) as a function

of the remnant mass.

An analysis from Paper I indicates a correspondence between the frequency of the first
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Binaries q k1 k2 ⌥/M5
0

C003 - C022A 23.2 20 136494 0.75
C003 - C022 23.2 20 136494 0.75
C006 - C022 8.6 20 8420 0.99
C012 - C022 2.9 20 332 0.94
C012 - C018 2.1 41 332 1.79

Table 5.4: Tidal properties of unequal binary BS models considered in our simulations. For
each binary studied here, the weighted tidal deformability ⌥ is shown. Despite the large
tidal Love numbers in the most unequal mass binaries, the binary deformability increases
as q ⌥ 1.
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Figure 5.8: GWs in the coalescence. Di⇥erent modes l = m of the strain as a function of
time, together with the frequency of the dominant mode l = m = 2. Clearly, the l = m = 2
mode is always much larger than the others, even for the largest mass ratio. The vertical,
gray lines show the merger time.

132



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

f

10⇥6

10⇥5

10⇥4

10⇥3

10⇥2

h̃
2,
2
(f
)

C022⇥ C003A
C022⇥ C003
C022⇥ C006
C022⇥ C012
C018⇥ C012

Figure 5.9: GWs in the post-merger stage. Power spectral density of the main mode (i.e.,
l = m = 2) of the strain for the post-merger.

peak with the quasi-normal mode (QNM) of isolated BSs. We scrutinize this hypothesis

further by considering the post-merger behavior of all configurations from both work as

well as the QNM of isolated SBSs with C = {0.06, 0.12, 0.18, 0.22} calculated in Paper I.

We fit the spectral lines with a Lorentzian function, i.e.

h̃2,2(✓) ∼ ✓I

(✓2
I + (✓ ⇥ ✓R)2)

(5.15)

to determine the peak frequency of the main mode ✓R and the inverse decay time ✓I . In

line with the discussion on the relaxation of the remnant from Sec. 5.3.2, one can construct

quadratic fits for ✓R(Mr) ,✓I(Mr), where Mr = M(Nr) [Eq. (5.5)],

Mr✓R ≈ 0.05 + 0.3Mr ⇥ 0.13(Mr)
2 , (5.16)

Mr✓I ≈ 0.013 + 0.007Mr , (5.17)

for isolated scenarios from Paper I. As shown in Fig. 5.10 (left panel), excluding the

C018-C018 case from Paper I where the post-merger behavior is not reliable, real parts of

the post-merger main mode frequencies agree well with the isolated SBS QNM fit.

However, in the case of the imaginary frequency (see Fig. 5.10, right panel) all remnants

produced in the binary coalescence have an o⇥set with respect to the isolated QNMs. We

notice that the three configurations in which blobs do not form have lower imaginary

frequencies (longer decay times) compared to the isolated configurations. In contrast, in

the case of blob formation, frequencies are higher (shorter decay times) than expected

from the isolated QNMs. Note the three cases with mbλMr ≈ 1.07⇥ 1.1 that have almost

identical real frequencies but vastly di⇥erent imaginary components. Understanding this

peculiar behavior lies beyond the scope of this work. We speculate that the excess angular

momentum requires longer decay times in contrast to the isolated configurations, except
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in the case of blob formation that removes the excess (rotational) energy more e⌅ciently

than in the isolated case, thus shortening the decay time.

We have also compared the fits with the tabulated BH QNMs [336]. The BH remnant

from Paper I, i.e. the C022-C022 case (a = 0.698), has tabulated value (Mr✓R,Mr✓I) =

(0.532,⇥0.081), while we find (0.469,⇥0.083), which is close to the time-domain fit from

Paper I where (0.5,⇥0.07). For the C022-C012 case (a = 0.5), we find the tabulated value

(0.464,⇥0.086), while the fit gives (0.475,⇥0.061). This mild discrepancy between the fit

and the predicted ones for BHs may originate from the numerical precision of the ADM

mass/angular momentum extraction and the fit, the presence of some remnant scalar

surrounding the BH, or the fact that the frequency estimate depend on the choice of the

post-merger time. Nonetheless, the overall agreement corroborates the conclusion that the

remnant is a BH.
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Figure 5.10: QNMs and post-merger spectrum. (Left) Real and (right) imaginary parts of
the frequencies of the first peak of the l = m = 2 mode with respect to remnant mass Mr

for binaries that form a remnant BS, with the equal mass binaries of Paper I (filled) and
the unequal mass binaries studied here (open). Binaries that eject a blob are denoted with
squares while circles denote those that do not. The frequencies of the QNMs of the four
isolated BSs used for initial data are marked with stars, and the curves (solid) represent
the fits to the real and imaginary components of these QNM frequencies from Eqs. (5.16)
and (5.17).

5.4.3 Soliton BSs in the LIGO/Virgo band

In this subsection, we quantify the di⇥erence between the GW signal expected from

BS binaries and from binary BHs, focusing on the LIGO/Virgo band. In particular,

we assess whether analyzing LIGO/Virgo data with binary BH templates can lead to

missed detections or to biases on the estimate of the parameters of the source, under the

assumption that the latter consists of a BS binary.
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As a preliminary test of this, we consider the BS binary waveforms extracted from the

unequal-mass simulations of this Ch., focusing on the l = m = 2 mode alone. Actually,

each of these simulations can be taken to represent a binary of any total mass, as long

as frequencies and strain amplitudes are properly rescaled, i.e. each simulation actually

corresponds to a one-parameter family of systems with varying binary mass M , but with

fixed dimensionless product mbM/�. We choose therefore to vary M in a range likely

to yield observable e⇥ects in the LIGO/Virgo frequency band, i.e. we choose M in the

interval [Mmin, 100]M⇤, where Mmin is such that the smaller progenitor is always heavier

than ∼ 3M⇤. For each BS waveform obtained in this way, we rescale the (2,2)-mode strain

amplitude to correspond to a fiducial luminosity distance of 400 Mpc. (We recall that

choosing a slightly di⇥erent distance will simply rescale strains and signal-to-noise ratios by

a linear factor, at leading order.) We then compare the BS signal obtained to SEOBNRv4

BH binary waveforms [337], as implemented in the Pycbc python package [338]. The

component masses and luminosity distance of the BH binary waveform are chosen to

match those of the BS binary, the component BH spins are set to zero, and the initial

phase and merger time are chosen so as to minimize the “di⇥erence” of the two signals. In

particular, we minimize the signal-to-noise ratio of the di⇥erence of the two signals,

 (⌦) =

"

4

Z

|⌦̃(f)|2

Sn(f)
df

#1/2

, (5.18)

with ⌦(t)  hBS(t)⇥ hBH(t) the residual, i.e. the di⇥erence between BS and BH signals

(computed for optimal detector orientation and sky position), and with a tilde denoting a

Fourier transform. The (single-sided) power spectral density of the noise, Sn, is chosen to

be that of a single LIGO detector. More precisely, we consider both the case in which Sn

corresponds to the Livingston detector in O3b [290], or to the zero-detuning, high laser

power design sensitivity curve [339]. Accounting for the second LIGO interferometer and

for Virgo will further increase the signal-to-noise ratio, roughly by a factor ⇥
⌃
3 (with

the ⇥ due to the fact that the source can only be optimally placed relative to one detector

at a time, and that Virgo is less sensitive than LIGO in O3b).

Two examples of BS binary waveforms, qualitatively representative of the two possible

post-merger scenarios (i.e. BH or BS remnant), are shown in Fig. 5.11a, where they are

compared to the “most similar” BH binary waveforms identified with this procedure.

The signal-to-noise ratio  (hBH) of the BH binary waveform best matching each BS

signal is shown in the top panel of Fig. 5.11b, as a function of M and for both the

O3b and design LIGO configurations. The signal-to-noise ratio is computed by using the

aforementioned SEOBNRv4 waveforms, which (unlike our short BS signals) include inspiral,

merger and ringdown. In the bottom panel, we show instead the residual signal-to-noise

ratio  (⌦), minimized over initial phase and merger time for all the simulations that we
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Figure 5.11: Soliton BS vs. BH waveforms in the LIGO/Virgo band
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have at our disposal.

This residual signal-to-noise ratio is computed by comparing BH and BS waveforms that

are both cut below the minimum frequency at which constraint violations are significant

in our simulations, in order to avoid biasing the comparison. In this way, the residual

signal-to-noise ratio includes di⇥erences between BH and BS waveforms that occur in the

post-merger phase and also in the late inspiral, thus including at least some contribution

from tidal e⇥ects, while keeping the impact of initial constraint violations subleading 6 .

We then normalize  (⌦) by the full inspiral-merger-ringdown BH signal-to-noise ratio

 (hBH), since we have no access to the full inspiral-merger-ringdown BS waveforms. As

can be seen,  (⌦)/ (hBH) is always very large and grows with M , as expected because for

massive binaries only the merger signal is in the band of terrestrial interferometers (i.e.

for those binaries the BS-BH di⇥erences in the post-merger have a larger relative impact).

Also note that  (⌦)/ (hBH) is smallest (although still quite significant) in the case where

the remnant is a BH (q = 2.9). Again, this is expected: The collision of two non-rotating

BHs with q = 2.9 leads to a rotating remnant with a ≈ 0.52 [340], close to the value of the

BH spin produced by the BS binary in our simulation (a ≈ 0.5). As such, the di⇥erences

in the merger-ringdown, where most of the in-band power resides (at least for moderately

high masses), are small, c.f. e.g. Fig. 5.11a.

As a rough rule of thumb, residual signal-to-noise ratios  (⌦) ⇥ 8/
⌃
3 ∼ 5 may allow

for claiming a BS binary detection (as opposed to a BH binary one), provided that an

accurate determination of the component masses and spins is available (e.g. thanks to

a long inspiral). In the absence of a su⌅ciently long detected inspiral, large residual

signal-to-noise ratios may merely lead to biases in the estimation of the parameters of the

source (i.e. one could mistake a BS post-merger signal for a BH ringdown with remnant

mass di⇥erent from the actual one, and/or non-zero spin), or even missed detections. As

can be seen from Fig. 5.11b, this second possibility seems the most likely at high masses,

for which most of the inspiral is out of band and BH templates miss most of the signal’s

power for binaries producing a BS remnant. Whether this leads to a bias on the recovered

parameters or just a missed detection should be ascertained by considering templates with

varying BH progenitor spins. However, given the long duration of the BS post-merger

signal (c.f. e.g. Fig. 5.11a), it seems unlikely that it can be detected by any one BH

template, i.e. we expect mainly missed detections at high M , at least for second-generation

detectors and for systems that lead to a BS remnant. For systems that instead lead to BH

formation (e.g. the q = 2.9 case in Fig. 5.11b), using BH templates may simply produce a

bias on the parameter estimation.

The situation will be more favorable for third-generation interferometers [341] such as

6Improvements in the initial data would change the residual signal-to-noise ratio only marginally at
high masses, while at low masses they would allow for simulating a longer portion of the inspiral phase.
Our residual signal-to-noise ratios should then be regarded as lower bounds.
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the Einstein Telescope or Cosmic Explorer, which will observe many more inspiral cycles.

Not only will this allow for a better measurement of progenitor masses and spins (which

will reduce degeneracies when comparing the post-merger signal to BH templates), but it

may also allow for measuring the tidal Love number in the late inspiral [150, 342, 343].

This will provide additional hints on the BS versus BH nature of the system. We will

explore the discovery space of these detectors, and at the same time refine our analysis, in

future work.

5.5 Conclusions

The coalescence of BSs allows us to study not only the binary dynamics of one of the most

viable and better motivated models of ECOs, but also the two-body problem in General

Relativity for large mass ratios. The soft dependence of the BS radius with its mass, at

least for the solitonic potential used here, facilitates the numerical simulations of binaries

with very di⇥erent compactness, as compared to the more challenging case of asymmetric

BH binaries. Taking advantage of this feature of SBSs, we have studied numerically the

coalescence of unequal-mass binaries with mass ratios ranging between 2 and 23. The

analysis of our simulations, which extends the equal-mass binaries considered in Paper I

(i.e., Ref. [166]), confirms many of the findings obtained in that previous study.

The fate of these binary mergers is either a nonrotating BS or a Kerr BH, as confirmed

not only by global quantities and by the structure of the solution, but also by the

gravitational QNMs of the remnant. As in Paper I, we once again find no evidence that

any of these binaries form a rotating BS. The asymmetry introduced by the unequal mass

of the constituent stars perhaps makes the formation of either of these remnants less likely.

An analysis of the parameter space indicates the need to refine the initial configurations

to assess whether a rotating remnant can be formed.

For a certain range of the initial angular momentum, the remnant undergoes a process

similar to a tidal disruption in NSs, and a blob of scalar field is ejected. This process has

already been observed in the equal-mass binaries of Paper I, although the symmetry in

that case induced the ejection of two blobs in opposite directions instead of a single blob

observed here. The ejection of a single blob produces a large recoil of the remnant. In our

C012-C018 case, the estimate of the recoil velocity is more than 104 km/s, larger than

the superkicks of binary BHs and large enough to have significant implications for the

expected dynamics of BSs in the universe. Because recent studies suggest that rotating

SBSs should be stable against the nonaxisymmetric instability [163], the ejection of the

scalar blob is not likely a result of such an instability.

Regarding the GWs emitted during the coalescence, we have found results comparable

to those of binary BHs: the l = m = 2 mode of the strain is always dominant, although
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higher-order modes become more relevant as the mass ratio increases.

We have also analyzed the prospect of detecting di⇥erences between binary BS and

binary BH gravitational signals with ground interferometers. We have found that while

the merger portion of the signal is significantly di⇥erent between the two classes of sources

(at least if the final merger remnant is a BS), distinguishing between the two might be

di⌅cult with second-generation detectors due to degeneracies between merger and inspiral

parameters. However, this task will ease considerably with third-generation interferometers,

such as Cosmic Explorer or the Einstein Telescope.

Many interesting questions remain to be addressed, especially regarding the final

state of the remnant. Evolutions of SBSs have yet to produce either a spinning BS or a

synchronized scalar cloud. More accurate and longer simulations together with improved

initial data may shed light on such questions, or perhaps some a priori analysis will indicate

whether and under what conditions such end states will result.

139



Part IV

Conclusions
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In this thesis we have focused on the phenomenological consequences of “dark” bosonic

fields in the context of gravitational physics. These bosons are either very light and

mediate a fifth force between matter in the Universe (Part II) or are massive and may

constitute exotic compact objects (Part III). Let us here provide a quick qualitative survey

of the conclusions:

• Chapter 3: In screening, more is di⇥erent. Due to the nonlinear nature of theories

with derivative screening, going beyond staticity and/or spherical symmetry makes

the scalar equations of motion di⌅cult to solve. In particular, it is not a priori clear

to what extent the screening is e⇥ective in realistic scenarios without high levels of

symmetry. We have demonstrated that the Hodge-Helmholtz decomposition of the

Noether current associated with the shift symmetry allows for analytic understanding

of the non-relativistic two-body problem in good agreement with numerical results.

The formalism developed in this work may be used to formulate a post-Newtonian

expansion and obtain analytical control of problems such as binary coalescence

and stellar collapse in theories with kinetic screening [58, 55]. Furthermore, Hodge-

Helmholtz decomposition can also be applied at the perturbative level to theories

that softly break shift symmetry [344].

We have also found, at the phenomenological level, that the fifth force is screened

slightly more e⌅ciently in equal-mass systems than in extreme mass-ratio ones.

However, systems with comparable masses also exhibit regions where screening is

ine⇥ective. These descreened spheroidal regions (bubbles) could in principle be

probed in the solar system with su⌅ciently precise space accelerometers.

• Chapter 4: Soliton stars that have a false vacuum in the potential are e⇥ectively

described by a linear equation of state, with the speed of sound asymptoting to the

speed of light. In this way such configurations saturate the causal Buchdahl bound

and constitute a well-defined toy model to study matter under extreme circumstances

and demonstrate possibly the most compact exotic objects that can be looked for

with gravitational wave probes. Furthermore, this property doesn’t depend on the

details of the potential but on the presence of a false vacuum.

Our conclusions have been subsequently validated by other researchers - using

di⇥erent and independent methods [307, 345] and considering di⇥erent boson star

potentials [346]. Let us also note that recent work has analyzed the properties of

causal elastic objects, that may have positive pressure anisotropicity, demonstrating

that the anisotropic pressure can allow for Cmax ≈ 0.389 > CB+C if the radial

stability of the object is required [277, 347, 348]. However, in contrast with the
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causal Buchdahl bound and soliton boson stars, there are no explicit examples of

solitonic objects that can have significant pressure anisotropies and saturate the

causal elastic bound. Finally, let us note that compact objects may su⇥er other

types of (non-linear) instabilities that may provide stronger bounds on maximal

compactness. In particular, in the case of boson stars, light-ring instability [349]

seems to be e⇥ective in capping maximal compactness at CLR ≈ 0.33 [350].

• Chapter 5: Boson stars abhor angular momentum. Spinning boson stars seems

non-trivial as they tend to develop non-axisymmetric instability [162], although

strong self-interactions can quench this instability [163]. However, the coalescence

of non-rotating strongly-interacting boson stars fails to produce a rotating remnant

and the excess orbital angular momentum is emitted in the form of “blobs” - small,

apparently self-gravitating structures. We have shown that such a relaxation channel,

established in the equal-mass case in Ref. [166], carries over to the non-equal mass

case. Furthemore, in the non-equal mass case such blobs induce significant kicks to

the remnant boson star.

We have also constructed a model that allows us to classify and predict possible

end states of the binary boson star merger. This model has been consistent with

the catalog of the binary boson star simulations that we had at our disposal. Our

analysis has subsequently been further developed by other researchers. At the

technical level, construction of the initial data for the binary boson star coalescence

has been significantly improved in Refs. [351, 352]. This further allows quantitative

study of gravitational waveforms of the binary coalescence that we have illustrated

in our work. Secondly, if one allows for di⇥erent phases of the scalar field in one of

the stars, the rotating boson stars can in fact form [353]. Thus, in Ref. [353] our

model for the binary coalescence parameter space has been augmented to include

the phase condition. This development further shows that the phenomenology of

(binary) boson stars is much richer than what would naively be expected from such

simple objects.
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Appendix A

Two-body problem in theories with

kinetic screening: Details on

analytics and numerics

A.1 Regime of validity of the Effective Field Theory

We have discussed the topic of the classical regime of validity of a polynomial K(X)

EFT in Sec. 1.2.1. Let us now briefly comment on a DBI case. As a reminder, the EFT

description is valid as long as r ⇤ rUV, where rUV is the scale where quantum corrections

become significant and consequently the UV physics must play a role

rDBI
UV ∼ 1

⌥
(⌥rsc)

2/3 . (A.1)

In the polynomial case we have seen [discussion around Eq. (1.33)] that for cosmologi-

cally motivated values of ⌥ and any astrophysical object, one is clearly in the regime of

validity of the EFT. As an extreme example, let us consider the LISA Pathfinder test mass

(see Sec. 3.3.3), which is 2kg and has a size of 4.6cm [354]. From Eq. (3.27), the screening

radius is rsc ≈ 10⇥4km, while rUV ≈ 10⇥13km. The rUV scale is pushed to even smaller

values as N ⇤ 1 (and even further for Galileons [22]). The presence of a second body will

not change this conclusion, see Sec. 3.3.

Interestingly, the rUV scale for screening in opposite DBI is significantly larger:

r
(DBI)
UV ≈ 105km

↵ ⌅

0.1

�2/3
�

⌥

meV

⇥⇥1 �
m

M⇤

⇥2/3

. (A.2)

Thus, as already noticed in Ref. [207], the opposite DBI EFT is not appropriate for

describing screening around the Sun (R⇤ = 7◊ 105km), at least for ⌥ ≈ ⌥DE. The case

becomes even worse for neutron stars, as RNS ∼ 10km ⌅ rDBI
UV .
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In the case of anti-screening1 i.e. 1/2 < N < 1 [see Eq. (3.76)], based on the results

of Ref. [22], the rough condition for the regime of validity is ra⇥sc ⇤ ⌥
⇥1, where ra⇥sc is

the anti-screening radius. This condition is easily satisfied for any relevant astrophysical

scenario. The exception is the standard DBI anti-screening N = 1/2, where the classical

description breaks down around the anti-screening radius.

A.2 Regularized Newtonian/FJBD potential

The leading order energy for a system of two point particles can be found from Eq. (3.64),

when N = 1, by integrating by parts to substitute X with the source T :

Eψ =
⌅

2MPl

[ma⇤(za) +mb⇤(zb)] . (A.3)

Substituting ⇤ [taking ⌥ ⌥ ✓ in Eq. (3.30)], this expression diverges due to the self-

energies of the two particles. Even classically, however, these self-energy contributions are

actually finite due to the finite size of the two bodies (for which point particles are just a

model valid in the IR). If the bodies have a finite size, the total binary energy is therefore

regular and reads

Eψ,◆ = ⇥ 1

4π

�

⌅

MPl

⇥2 ⇧
m2

a

⌫
+

m2
b

⌫
+

mamb

D

⌃

, (A.4)

where ⌘ is a regularization parameter of the order of the size of the two bodies. Note that

the self energy contributions ◆ 1/⌘ are constant and thus not observable, as the fifth force

is given by the energy’s gradient. For instance, in the FJBD case the force reads

dEψ,◆

da
=

1

4π

�

⌅

MPl

⇥2
mamb

D2
(A.5)

which is finite and manifestly independent of the regulator ⌫.

For numerical purposes, however, we need to specify concrete a “UV completion” of the

point particle model. The Gaussian source that we use in this work admits an analytical

solution for the Poisson equation, i.e.

⇤⌘i
= ⇥ m⌅

4πMPl

Erf
↵ |r ⇥ ri|⌃

2⌥i

�

. (A.6)

One of course needs to establish that the results do not depend on the choice of ⌥, as the

Gaussian distribution above is not a physically motivated “UV model”2. Indeed, we find

1We thank the authors of Ref. [196] for pointing out a small error in the previous version of this
manuscript.

2For example, in order to model a star, one would need to solve the Einstein-Klein-Gordon system for
a realistic matter equation of state, as done e.g. in Refs. [36, 198, 58, 196].

145



that the relative di⇥erence between the FJBD force for Dirac-delta and Gaussian sources

is less than 1% when a/⌥ ⇤ 2.

A.2.1 Calculation of the fifth force in the irrotational approxi-

mation

As the integrals in Sec. 3.3.4 have poles for the point-particle source, we have used the

aforementioned Gaussian regularization to calculate them. Consider first the integral IN (q)

of the fifth force in the deep screening regime [Eq. (3.67)], which depends only on q. As

the integrand scales as ∼ r
(1+2n)/(1⇥2n) near infinity, we can formally identify the screening

region with the whole space. Using the Gaussian regularization, we have IN (q) ⌥ ĨN (q,R),

and we have calculated ĨN(q,R) for a few values of R. These results are well described

by a functional form ĨN(q,R) = IN(q)R
p when R ⌅ 1. Using this fact, we can extract

IN(q), verifying that p ≈ 0 i.e. that our results are independent of the details of the

regularization.

Regarding the calculation of the full energy/force in the irrotational approximation,

the volume integral of Eq. (3.65) can be split as

E ≈ ⇥
Z

dΩ
h

Z R

0

dr
N
X

n=1

↵2n⇥ 1

2n

�

X n +
1

2

Z ⌅

R

drX⇤

i

r
2 ,

where we have assumed that X = X (X⇤) [given by Eq. (3.47) for the quadratic kinetic

function], R ⇤ c2
⌃
D and dΩ = sin ✏d✏d◆. The second integral can be found in closed

form using Mathematica [355]. Di⇥erentiating the integrand with respect to D before

fixing the scale D = 1, we obtain the magnitude of the fifth force. As we perform all

calculations with the Gaussian regularization, di⇥erentiation with respect to D and the

integral commute. In order for these results to be independent of the details of the

regularization, one must consider the limit R ⌅ 1. In practice, we find that already at

D ⇧ 4R the relative di⇥erence between the deep screening approximation and the full

calculation is smaller than 1%. This di⇥erence then gradually increases with D/R, because

of the worsening of the deep screening approximation, up to ∼ 50% when D ≈ rsc.

A.3 Classical dual vs. Helmholtz decomposition

In Ref. [213] it was shown that the theory described by Eq. (2.15), with ⇧ = ⇥1 and

⌃ = 0 and in the decoupling limit of the scalar and tensor degrees of freedom, can be

reformulated, at the classical level, as

Ldual = ⇥1

2
(⇥⌦)2 +

3

4
⌥

4/3(ΓµΓ
µ)2/3 ⇥ Γ

µ⇥µ⌦ , (A.7)
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where one has introduced the new vector field Γµ. The equations of motion that follow

from this action are

�⌦+ ⇥µΓ
µ = ⇥ ⌅

MPl

T , (A.8)

⌥
4/3(ΓµΓ

µ)⇥1/3
Γµ = ⇥µ⌦ . (A.9)

Using the latter, the auxiliary vector Γµ can be integrated out and the original action is

recovered. The appeal of this formulation is that none of the coupling constants in the dual

action given by Eq. (A.7) have a negative mass dimension (except for the scalar-matter

coupling). This in turn allows for a controlled perturbative expansion in the non-linear

regime of the original theory. This formulation was shown to originate from a Legendre

transformation and is generalizable to a large class of self-interacting theories [214].

Let us now Hodge-Helmholtz decompose the vector and redefine the scalar as

Γµ = (⇥2)Bµ + ⇥µΓ̃ , ⇥µB
µ = 0 , ⌦ = ⇤ ⇥ Γ̃ , (A.10)

where Bµ,⇤ are for now generic objects. Substituting this decomposition into Eq. (A.8)

we obtain Eq. (3.10), i.e.

�⇤ = ⇥ 1

2MPl

T . (A.11)

Squaring Eq. (A.9) and substituting the above decomposition, we reconstruct Eq. (3.8)

for the quadratic k-essence, i.e.

⇥1

2

↵

1 +
X

⌥4

�

⇥µ⌦ = ⇥1

2
⇥µ⇤ + Bµ . (A.12)

Thus, the dual formulation of quadratic k-essence is equivalent to the Hodge-Helmholtz

decomposition.

In Ref. [213] a di⇥erent decomposition was used instead of Eq. (A.10):

Γi = (⇥2)Bi + ⇥iΓ̃ , Γ0 = ✓ , ⇥iB
i = 0 , (A.13)

⌦ = ⇤ ⇥ Γ̃ .

It is easy to show that in the static regime, this decomposition is also equivalent to the R3

Helmholtz one in Eq. (3.18). It was then argued in Ref. [213] that one can consistently

choose an ansatz where Bi = 0. This however is not the case, as we have elaborated in

the main body of this work. The reason why this inconsistency has not been noticed in

Ref. [213] is that the dual formulation was applied to isolated systems in spherical and

cylindrical symmetry, where the solenoidal component vanishes as argued in Sec. 3.2.2,
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 q R D/R �fin zfin

(i) 6 ✓ 1.6 4 6 12
(ii) 4.8 1 1.6 1.25 8.4 23.04

Table A.1: Parameters of the systems considered for the numerical tests, in units given by
Eq. (3.35).

3.2.3.

Finally, let us note an advantage of the Helmholtz-decomposition program over the

perturbative expansion in Γ̃ that was performed in Ref. [213], for scenarios where the

solenoidal component is zero. Instead of expanding, one can solve for the square of the

scalar gradient to all orders in the perturbative expansion (see Sec. 3.3.1). If one is

interested in the fifth force or the force acting on test bodies, the scalar gradient is the

relevant object and the full scalar profile is not necessary (Sec. 3.3.4). However, the dual

formulation at the level of action can have other advantages, e.g. allowing for constructing

analogues of the irrotational approximation in other types of theories, like Galileons.

A.4 Code validation

We start by testing our code against the known solution for a single isolated body. Because

our Newton-Raphson/Broyden method needs an initial guess for the solution, we start

from the “linear” solution given by Eq. (A.6), while the exact solution to which we compare

is known analytically up to integration of the ordinary di⇥erential equation gievn by Eq.

(3.47). As a test of our non-linear elliptic solver, we have then solved numerically for the

one-body system (i) given in Tab. A.1, for di⇥erent grid resolutions.

In Fig. A.1, we show the relative di⇥erence between the numerical and the semi-

analytic results as a function of �, with z = zc fixed to the center of the matter source

(where the numerical error is the largest). Results for grid resolutions h/R ⇥ 0.15 have

sub-percent errors with respect to the semi-analytic ones. The plot also shows that the

relative di⇥erence between the initial guess, i.e. the FJBD scalar sourced by a Gaussian

[Eq. (A.6)], and the semi-analytic solution that be as large as ∼ 30%. Finally, we have

checked that the solenoidal vector B is zero (Sec. 3.2.3), up to a numerical errors.

We have also checked the convergence of our residuals (from the semi-analytic solution).

In more detail, in Fig. A.2 (left) we show the L2 norm of the residuals (throughout the

grid) vs the grid resolution, alonside a power law fit (red line). The fitted power law

exponent (p = 1.91) is very close to p = 2, as expected from our discretization scheme. By

using instead the L1 norm of the residuals, we obtain p = 1.99.

In the two-body case, we do not have a semi-analytic exact solution to compare our

numerical results with. However, we can test convergence by considering three di⇥erent
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Figure A.1: Relative di⇥erence of our numerical results φnum from the semi-analytic solution
φ⌥, for a one-body system and four di⇥erent resolutions h/R = {0.0375, 0.075, 0.15, 0.25}
(corresponding respectively to A,B,C,D), at the center of the source and as function of �.
The black long-dashed line represents the di⇥erence between the initial guess (FJBD scalar
sourced by a Gaussian) and the semi-analytic solution. The screening radius rsc = 2.47R
is shown by a gray, long dashed line, and the e⇥ective radius of the Gaussian source is
R = 2⌥ (pink, short dashed line).

resolutions (h1 = 0.32, h2 = 0.16, h3 = 0.08), and estimating the convergence order as

p = log2

�

|φ1 ⇥ φ3|

|φ2 ⇥ φ3|
⇥ 1

⇥

(A.14)

where φ1, φ2 and φ3 are the numerical solutions. For the scenario (ii) in Tab. A.1, Fig. A.2

(right) shows p(�, z) at two radial points and demonstrates that the results are consistent

with the expected second order convergence.
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Figure A.2: Grid resolution convergence tests: (left) L2 norm of the residuals from the
semi-analytic solution for a single isolated object (i) in Table A.1, as a function of the
resolution. The fitted power law (solid line) corresponds to an exponent p = 1.91; (right)
E⇥ective convergence order p for the two-body system (ii) in Table A.1, evaluated at
 = 0 and  = 2R and as function of z, is consistent with the implemented second order
convergence scheme.
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Appendix B

Soliton Boson Stars: Details on

analytics and numerics

B.1 Numerical solutions of Einstein-Klein-Gordon

system

In the following, we present the technical details regarding the well-posedness and numerical

solution of the Einstein-Klein-Gordon system given by Eqs. (4.34), (4.35) and (4.36),

which we reproduce here for clarity:

1

r2
 

r e⇥u
⌦� ⇥ 1

r2
= ⇥ 1

M2
Pl

 , (B.1)

e⇥u

�

v�

r
+

1

r2

⇥

⇥ 1

r2
=

1

M2
Pl

Prad , (B.2)

φ�� +

�

2

r
+

v� ⇥ u�

2

⇥

φ� = eu
�

dV

d|⌃|2
⇥ ✓2e⇥v

⇥

φ. (B.3)

First, let us notice that the structure equations have poles at r = 0, and we thus have

to impose regularity there. In addition, we require solutions to be asymptotically flat. The

resulting boundary eigenvalue problem uniquely determines the eigenvalue ✓. In fact, on

the one hand, a local expansion of the fields around r = 0 up to O(⌘4) yields

u(⌘) ≈ 0 +
1

6
⌥

2⌘2⌦2
c

 

1 + e⇥vcw2 + ⌦4
c ⇥ 2⌦2

c

⌦

, (B.4)

v(⌘) ≈ vc ⇥
1

6
⌥

2⌘2⌦2
c

 

1⇥ 2e⇥vcw2 + ⌦4
c ⇥ 2⌦2

c

⌦

, (B.5)

⌦(⌘) ≈ ⌦c +
1

6
⌘2⌦c

 

1⇥ e⇥vcw2 + 3⌦4
c ⇥ 4⌦2

c

⌦

, (B.6)

where we can set ṽc = 0 and w ⌥ w̃ with a rescaling of the time coordinate. On the other

hand, the leading order asymptotic behaviour, as discussed in Sec. 4.3.5.1, is given by Eqs.
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(4.49), (4.50), (4.53), which we reproduce here for the reader’s convenience:

u> = ⇥ log
↵

1⇥ 2M̄

r

�

, (B.7)

ṽ> = ṽ⌅ + log
↵

1⇥ 2M̄

r

�

(B.8)

⌦⌅ ⇧ A

r1+⇧>
e⇥⌅>r , (B.9)

⌅> =
p

1⇥ e⇥ṽ⌅w̃2 , (B.10)

⇧> =
M̄

⌅>

(1⇥ 2e⇥ṽ⌅w̃2) , (B.11)

One can then match the numerical solution from the interior, obtained with the initial

conditions determined by (B.4)-(B.6) at some small but non-zero radius ⌘, with the

asymptotic expansion at the infinity, at a finite but su⌅ciently large matching radius

(“direct shooting”). This can be done by solving the four junction conditions

⌦u|• = 0 , ⌦v|• = 0 , ⌦⌦|• = 0 , ⌦⌦�|• = 0 , (B.12)

where ⌦x  x> ⇥ x< and r• is the matching radius, in the unknowns ⌦c, w̃, A and ṽ⌅.

Numerical integrations were performed using Mathematica’s [355] default sti⇥ solver. The

sti⇥ness of the system in the thin wall regime requires an extraordinary amount of fine

tuning for the eigenvalues. Examples of the precision levels needed in order to produce

compact configurations with a shooting method are given in [248].

Note that this procedure is applicable to SBSs, MBSs, to the potentials considered in

Sec. 4.4, and by taking v ⌥ 0, u ⌥ 0 also to Q-balls. (The asymptotics of Q-balls are

discussed in Sec. 4.2.1). Note that the local expansion (B.4)-(B.6) is given for the SBS

model and is di⇥erent for the other potentials. We have validated our results by successfully

reproducing the MBS and SBS configurations of [248] and by verifying that the static

configurations that we find do not change when used as initial data in the evolution code

of [2]. The radius of our solutions is found by inverting M̄(R) = 0.99M̄ (using bisection)

and the Noether charge is calculated numerically by integrating Eq. (4.43). An alternative

method for numerical calculation is outlined in [249, 163].

B.2 Definitions of boson star radius

As the radius of boson stars is not well defined, various definitions have been used in the

literature [158]. Besides the definition used in this work (corresponding to 99% enclosed

mass), the radius R95 enclosing 95% of the total mass has also been used [280], as well as
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Figure B.1: Relative di⇥erence between C calculated with the benchmark definition of the
radius enclosing 99% of the mass and Cx = M/Rx, where Rx = {R95, R

⌥, ⇣r⌘,
p

⇣r2⌘}.

the following moments of the density distribution:

⇣r⌘ = 1

M

Z ⌅

0

r (r)dV , (B.13)

p

⇣r2⌘ =
s

1

M

Z ⌅

0

r2 (r)dV . (B.14)

Some authors have also considered radii enclosing a given fraction (95% or 99%) of the total

Noether charge Q [166], or the moments of jt [250]. We will not discuss these definitions,

because in this Ch. we are interested in the behaviour of Q-balls/SBSs as compact objects,

for which energy density based radii are more relevant. Finally, the inflection point R⌥

was also taken as a Q-ball radius in [263, 278].

In Fig. B.1, we show the di⇥erence between our benchmark definition of compactness

C = M/R and the compactness calculated with (respectively) R95 , R⌥ , ⇣r⌘ ,
p

⇣r2⌘ for
⌥ = 0.186. The cuto⇥ for the numerical integrals in Eqs. (B.13) and (B.14) was taken

to be the domain of the integration. As can be seen, while R95 and R⌥ produce relative

di⇥erences in the value of the compactness in the compact stable branch of respectively

∼ 10⇥1 ⇥ 10⇥2 and ∼ 3 ·10⇥1 ⇥ 2 ·10⇥2 for C ⇤ 0.05, ⇣r⌘ and ⇣r2⌘ yield ∼ 0.2 ⇥ 0.7 relative

di⇥erences. This di⇥erence can be understood in the following way: in the flat space-time

and ✓ ⌥ 0 limit, the scalar profile approaches a step function and R⌥ approaches the hard

surface radius. Neglecting the surface tension and the potential in that limit, one finds

⇣r⌘ ≈ (3/4)R⌥ and
p

⇣r2⌘ ≈
p

(3/5)R⌥.
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B.3 Analytic construction of Soliton Boson stars:

technical details

Here we provide some additional information on the analytic construction of SBS.

B.3.1 uB metric coe⌅cient on the boundary

On the basis of the discussion from Sec. 4.3.5.3 we find the ln(gtt) metric coe⌅cient jump:

uB = ⇥2m⌥R⌥ + v<(R
⌥)⇥ log

h

⌥
2

r
(e⇥2m⇤R⇤+v<(R⇤){⇣0 + ⇣1r + ⇣2r

2 + ⇣2r
3}+ cint)

i

, (B.1

⇣0 =
1

24

 

⇥3e⇥v<(R⇤)w2Li3
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m3
⌥
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3Li2
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⌦

m3
⌥

+
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m3
⌥

!

,
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1

24
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+
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⌦

m2
⌥

+
6

m2
⌥ (2e

2m⇤(r⇥R⇤) + 1)

+
6 log
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⌥

�

,
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1
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6e⇥v<(R⇤)w2 log
 

2e2m⇤(r⇥R⇤) + 1
⌦

m⌥
⇥ 6

m⌥ (2e2m⇤(r⇥R⇤) + 1)
2 +

12

2m⌥e2m⇤(r⇥R⇤) +m⌥
⇥ 6
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!

⇣3 = ⇥1

6
e⇥v<(R⇤)w2 .

The integration constant cint is determined by matching the previous solution to u< at R<

and Lin is the polylogarithm function.

B.3.2 Details of the energy balance calculation

Here we provide details on obtaining analytic approximations in Sec. 4.3.5.4 . We will first

approximate the complicated algebraic expressions (4.69) - (4.73). The sum BE +CE +DEB

is subleading, as the dominant contribution, proportional to m
2
⌥⌥

2
R
⌥2, cancels out. In the

Q-ball limit, one also has m2
⌥ ∼ 1, which suppresses the term proportional to (1⇥m

2
⌥). In

the more compact branch, we have numerically established that (1⇥m
2
⌥) ⇥ 2.5; however,

in that regime the terms ∼ 1/R⌥ are subdominant relative to the volume originating terms

in DE <, because (R⌥
⌥w̃)2 ∼ 4, while 1/R⌥ ∼ ⌥w̃/2 ⌅ 1 . Finally, the contributions with

w2e⇥v⇤ are suppressed, both due to v⌥ > 0 and to the numerical pre-factors.

Leaving only the terms AE +DE < on the right hand side of our master equation Eq.

(4.69), approximating m⌥ ≈ exp (u<(R
⌥)/2) and expanding in ⌥, we the find Eq. (4.77)
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which we reproduce here

w̃ ≈ ⌥

q

⇥T 4

5
+ 6T 2 + 36 (T 4 + 10T 2 + 30)

T (⇥T 4 + 30T 2 + 180)
. (B.16)

Inverting this equation, we find complicated expressions for the two branches, which can

be approximated as

T ≈ T (w̃∪/⌥)±
p

3.1 (w̃ ⇥ w̃∪)/⌥ , w̃ ∼ w̃∪ (B.17)

where T (w̃∪/⌥) ≈ 1.6. Using Eq. (B.17), the simple expectation for v⌅ ≈ v<(R
⌥)+u<(R

⌥)

allows us to find an approximate behaviour for w, given in Eq. (4.78).

B.3.3 On the errors of estimating the radius

In Section 4.3.5.5, the semi-analytic calculation develops a few percent systematic error

near the maximum mass. There are two reasons for this. First, the expansion of u

and v in the interior [expressions (4.56)-(4.57)] works well only for small w̃, i.e. for

configurations similar to II. In the thick-wall regime, the perturbative expansion outlined

in Section 4.3.5.2 does not work well by construction. Although the frequency w̃ is higher

for the configurations similar to III, the field derivative is still exponentially suppressed

and physically these configurations have even thinner walls than the ones similar to II.

Thus, one can expect that some di⇥erent perturbative scheme could improve the analytic

description of the metric coe⌅cients for the configurations similar to III.

The second reason for the systematic error is that Eq. (4.21), which describes the

deviation between R and R⌥, does the best job for the configurations similar to II. For

configurations similar to III, we have established numerically that the choice

λIII =
4

2

2.66

↵
(B.18)

is the most appropriate one, while for configurations similar to I:

λI =
2

2

2.66

↵
. (B.19)

This issue can be circumvented by performing the (cheap) numerical inversion 4π
R R

0
dr r2 (r) =

0.99M around the trial value determined by the semi-analytic algorithm, with a piecewise

analytic approximation for  (obtained from the field and the metric coe⌅cients approxi-

mants). Finally, the limits of the analytic description of the thin-wall Q-ball-like region in

the parameter space (i.e. configurations similar to I) are discussed in [263].

Regarding the compact unstable branch: the numerical calculations indicate additional
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step-like features in the bulk of the scalar profile. This feature, not accounted for in our

analytical description, is probably the origin of the increasing error in this branch.
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