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Abstract

In quantum field theory (QFT) perturbation theory, despite giving rise to asymptotic series,

is a powerful tool that provides a lot of useful information. However, the asymptotic nature of

perturbative series demands that they be treated with due care to exploit them to the fullest. To

do so, we have to resort to Borel resummation, trans-series, and the theory of resurgence. In this

thesis, we focus on QFTs in d < 4 dimensions and study them starting from their perturbative

series. When these series are Borel summable, there is no need to invoke trans-series since Borel

resumming the perturbative series alone is enough to reproduce full results.

This is the case of Euclidean O(N) symmetric φ4 vector models in d = 3 and N = 1 φ4

theory in d = 2. We investigate the critical regime and phase diagrams of these theories paying

attention to the renormalization scheme dependence. In particular, we find non-perturbative,

finite changes of scheme for a one-parameter family of renormalization schemes. This allows

us to determine the exact analytic renormalization dependence of the critical couplings and to

investigate in three dimensions a strong-weak duality relation closely linked to the one found by

Chang and Magruder long ago. Interestingly, for some schemes, the weak fixed point and the

strong one move into the complex plane in complex conjugate pairs, making the phase transition

no longer visible from the classically unbroken phase. We verify all our considerations by Borel

resumming several perturbative series in the classically unbroken phase. In d = 3 we computed

them up to order eight.

We also investigate integrable field theories with renormalons where the perturbative series

are not Borel summable. Here, focusing on the free energy in the presence of a chemical potential

coupled to a conserved charge, we study in detail the interplay between the resurgent structure

and the 1/N expansion. Our findings turn out to be different in the three models we analyzed.

For some models, we find terms in 1/N expansion that can be fully decoded in terms of a

resurgent trans-series with one or more IR renormalon corrections, the non-linear sigma model

and principal chiral field, respectively. In the Gross-Neveu model, instead, each term in the

1/N expansion includes non-perturbative corrections, which can not be predicted by a resurgent

analysis of the corresponding perturbative series.
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Chapter 1

Introduction

Quantum field theory (QFT) is a powerful framework that allows to describe many different

physical phenomena, ranging from physics at very high energies to condensed matter physics.

It has produced over the last decades many high precision results. However, at the same time,

we are very far from having a complete understanding of it, and we can’t solve exactly most

physical systems we study in QFT. Even when working in simple models, it is difficult to compute

observables. An important tool that can often come to our help and stands out for its wide scope

of application, is perturbation theory. We are able to address the study of many problems by

starting at a point of the parameter space in which they are solvable exactly, typically the free

theory, adding a small perturbation parametrized by a coupling g � 1 and Taylor expanding

the equations in power series in g. Clearly, the resulting series provides information in the limit

g → 0. It is natural to ask what else is computable from them and when the series breaks down,

namely how far we may go in the strong coupling region. We can rephrase these questions in

the following one: what are the convergence properties of the perturbative series? It turns out

that, generically speaking, the perturbative series are asymptotic, i.e. they have zero radius of

convergence. Why it has to be the case was presented first by Dyson starting from a very simple

observation [5]: typically negative values of the coupling, no matter how small, completely alter

the properties of the theory, making it unstable or ill-defined, hence the value g = 0, around

which we are expanding, is non-analytic and our perturbative series asymptotic. Clearly, this is

an important piece of information that we should take in consideration every time we are using

perturbation theory. Furthermore, the fact that the perturbative series are divergent power series

is the starting point to improve perturbation theory, making it an even more relevant tool to

investigate quantum physics. The asymptotic character concretely manifests itself in the fact

that the coefficients of the series have a leading factorial growth. Just computing more and more

terms is not enough to reproduce the exact result we are expanding since, eventually, our series

will start to diverge. A systematic way to do this is Borel resummation. This procedure consists

in defining a convergent series (Borel transform) starting from the original one after dividing
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10 CHAPTER 1. INTRODUCTION

its terms by a factorially growing coefficient, resumming it, and taking the inverse Laplace

transform. In this way we are able to find a suitable analytic continuation of our asymptotic

series. However, this is not the end of the story: different functions can have the same asymptotic

expansion and the Borel transforms are not entire functions. The asymptotic character of the

perturbative series is, in fact, an indication of the presence of non-perturbative (NP) effects,

contributions of the type e−1/g that are “invisible” to perturbation theory. Thus the natural

objects to consider should include these contributions together with the perturbative series.

They are formal linear combinations of power series with exponential prefactors, i.e. of the

following form ∑
n

ang
n +

∑
`

e
−A`

g

∑
n

a(`)
n gn .

They are called trans-series and go beyond traditional asymptotic expansions since they include

explicit exponentially small corrections. It actually turns out that already in the large-order

behavior of the coefficients of the perturbative series there is much information on the NP

effects, and looking at the singularity structure of the Borel transforms we can reconstruct the

trans-series. The general framework to study these relations is the theory of resurgence [6].

A series is said to be Borel summable if no singularity hinders the integration to be performed

for the resummation. Furthermore, if we can prove that we are reconstructing the exact function,

namely the asymptotic series is Borel summable to exact result, the trans-series will contain

only the perturbative part. In these cases we do not have to worry about any additional NP

correction. The only obstacle left between us and the exact result is the computation of as

many coefficients as possible. The longer perturbative series we manage to calculate, the more

accurate will be our evaluation of the final result we are interested in. When instead singularities

are in the domain of integration, the perturbative series is said to be non-Borel summable.

Properly deforming the contour of integration we can anyhow perform the resummation, at the

cost, however, of introducing a NP ambiguity dictated by our choice in the deformation of the

contour. This ambiguity will eventually be compensated by the contributions coming from other

sectors ` > 0 of the trans-series. This time reproducing the exact result will be considerably

more complicated. We have to write down the trans-series and to combine the result of the

(lateral) Borel resummation of its series. In order to write down the trans-series, we can exploit

resurgence relations to reconstruct the coefficients a
(`)
n , but this requires a detailed knowledge

of the asymptotic form of the perturbative coefficients an.

In this thesis we are going to investigate QFT in d < 4 space-time dimensions via per-

turbation theory and Borel resummation techniques. We will do so both in the case of Borel

summable perturbative series and non-Borel summable ones. In the former, we focus on O(N)

models, where Borel summability has been established [7–9], we investigate the critical regime

and phase diagrams paying particular attention to the renormalization scheme dependence. In

the latter, instead, we choose some notable examples of integrable field theories that at the same
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time have a rich physical phenomenology and renormalons and for which we can extract long

perturbative series. We study their resurgent properties. Renormalons lead to singularities of

the Borel transform and to NP contributions in the trans-series, but differently from instantons,

whose semiclassical interpretation is clear, our knowledge regarding them is still very limited.

Below, we highlight the main new results of this thesis and present its structure.

Chapter 2. We introduce the reader to some basic concepts that will be fundamental through-

out the rest of the thesis: Borel resummation and theory of resurgence. Starting from the asymp-

totic character of the perturbative series, we quickly examine tools and procedures to go beyond

standard perturbation theory. The discourse remains quite general, although we associate phys-

ical meaning with the objects we encounter along the way. The review takes place with the help

of a simple example presented multiple times from different points of view.

Chapter 3. We study N -component φ4 theories in 2 ≤ d < 4 dimensions, using Borel re-

summation techniques of the perturbative series at fixed integer dimensions. We will consider

in particular d = 2, N = 1 φ4 theory and O(N) models in d = 3. At fixed dimension we can

not study directly the critical theory due to the presence of IR divergences. Nevertheless, in a

physical renormalization scheme, the gapless phase can be reached starting from the unbroken

phase by Borel resumming the perturbative series [10]. The usage of perturbative Renormaliza-

tion group (RG) techniques has been at the base of several works for the extraction of critical

exponents using resummation techniques. Since the coupling constant is relevant in d < 4 di-

mensions, the RG is entirely governed by renormalization scheme-dependent terms. Thus, we

introduce a different class of renormalization schemes (RSs), that we call “minimal”. In these

schemes divergences are removed without the need of possibly inverting infinite perturbative

series and counterterms contain a finite number of terms in perturbation theory. Moreover, in

these schemes, that we indicate by S, the critical phase is defined when the physical mass gap

M2 vanishes, while in the non-minimal RS used in ref. [10], that we indicate by S̃, it is reached

looking for zeroes of the β-function. The minimal schemes have several advantages. We show

that only in such schemes the known proofs of Borel summability apply.1 Moreover, working

in minimal schemes, we are able to find non-perturbative, finite changes of scheme. Exploiting

them, we investigate the phase diagram of 3d O(N) models (and 2d N = 1 φ4 theory), we find

that they admit two descriptions connected by a strong-weak duality relation (within the same

phase of the theory), closely related to the one found by Chang and Magruder long ago [11,12].

We determine the exact analytic renormalization dependence of the critical couplings in the

weak and strong branches as a function of the renormalization scheme (parametrized by κ) and

for any N . It is shown that for κ = κ∗ the two fixed points merge and then, for κ < κ∗, they

1It should be stressed that we are not claiming here that the theory is not Borel resummable in RSs such as
the one in ref. [10], but that this does not automatically follow from proofs performed in other schemes [7–9].
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move into the complex plane, making the phase transition no longer visible from the classically

unbroken phase. Similar considerations apply in 2d for the N = 1 φ4 theory, where the role

of classically broken and unbroken phases is inverted. We verify all these considerations Borel

resumming the perturbative series. In d = 2 looking at the scheme dependence of the critical

coupling and at the effectiveness of the Borel resummation in the determination of the critical

exponent ν. If in 2d we mapped an already computed series in different RSs, for the 3d O(N)

models we computed from scratch the perturbative series for the vacuum energy and for the

mass gap up to order eight. We provide numerical evidence for the self-duality and verify that in

renormalization schemes where the critical couplings are complex the theory is gapped. However,

the study of the critical regimes is hindered by large uncertainty. We improved our numerical

techniques and computed also the series for the 1PI functions Γ(2)′ and Γ(4) at zero external

momentum up to order eight. Interestingly enough, studying the critical regime in RS S̃ in

d = 3 grants more accurate results. As a byproduct of our study, we are about to share in [4] a

complete package containing the values of all the Feynman diagrams in d = 3 up to order eight

and many other useful tools.

Chapter 4. We study in detail the interplay between resurgent properties and the 1/N

expansion in various integrable field theories with renormalons. In theories with renormalons

the perturbative series is factorially divergent even after restricting to a given order in 1/N ,

making the 1/N expansion a natural testing ground for the theory of resurgence. We look at

three asymptotically free theories in two dimensions which are integrable: the O(N) non-linear

sigma model (NLSM), the SU(N) principal chiral field (PCF), and the O(N) Gross–Neveu

(GN) model. They have renormalons and at the same time can be studied in detail, both in

perturbation theory and in the 1/N expansion. We focus on the free energy in the presence

of a chemical potential coupled to a conserved charge, which has a non-trivial structure and

can be computed exactly with the thermodynamic Bethe ansatz (TBA). The TBA equations

can be exploited to generate several terms in the 1/N expansion, and thanks to a powerful

method developed in [13, 14] it is possible to extract the perturbative series for the free energy

at very high orders. Our investigations in the three models lead to very different findings. In

some examples, like the first 1/N correction to the free energy in the NLSM, the terms in the

1/N expansion can be fully decoded in terms of a resurgent trans-series in the coupling constant.

In the PCF we find a new, explicit solution for the large N free energy which can be written

as the median resummation of a trans-series with infinitely many, analytically computable IR

renormalon corrections. However, in the GN model, each term in the 1/N expansion includes non-

perturbative corrections which can not be predicted by a resurgent analysis of the corresponding

perturbative series. Moreover, in this chapter we try to answer the question regarding the nature

of the 1/N expansion itself. While for the NLSM and PCF model longer series would be needed

for conclusive results, in the GN model, where this is convergent, we analytically continue the
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series beyond its radius of convergence and show how the continuation matches with known

dualities with sine-Gordon theories.





Chapter 2

Borel resummation and Resurgence

Interacting theories in quantum field theory (QFT) that are exactly solvable are the exception

rather than the rule. Luckily, in a broad range of different systems, we can resort to perturba-

tion theory, one of the few universal analytical tools we have in quantum physics. However, the

perturbative series typically are divergent asymptotic series. Dyson first in the context of Quan-

tum Electro Dynamics presented a simple argument on why this has to be the case [5]. Dyson’s

argument can be rephrased in a more general form such that it concerns most of QFTs and quan-

tum mechanical systems. Let’s consider a generic observable in the path integral formulation in

quantum mechanics (QM) or QFT:

E(g) =

∫
Dφ G[φ] e

−S[φ]
g , (2.1)

where S[φ] is the Euclidean action and φ denotes collectively all the fields. We see that the

point g = 0, around which we are expanding, has to be a singular point since as soon as we

move to negative values, the physics changes completely, and E(g) blows up being the exponent

unbounded from below. We conclude that perturbative expansions generically have null radius

of convergence and are divergent. The asymptotic character of these series brings with itself a

plethora of interesting mathematical and physical consequences that are worth studying. The

most important ones are: optimal truncation, the Borel resummation, the presence of non-

perturbative effects, their link with the large-order behavior of the series coefficients, the need

to upgrade the perturbative series to a trans-series, and the whole general framework of the

theory of resurgence.

In this chapter, we will briefly review these aspects together with some of the key introductory

ingredients for the vast framework of the theory of resurgence.

15
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2.1 Asymptotic Series

A formal power series

ϕ(x) =
∞∑
n=0

anx
n (2.2)

is asymptotic to the function f(x) if, for every N , the remainder after N + 1 terms of the series

is smaller than the last retained term as x→ 0, i.e.

f(x)−
N∑
n=0

anx
n = O(xN ) , as x→ 0 . (2.3)

Notice that the truncated series, ϕN (x) =
∑N

n=0 anx
n, does not approach f(x) in the limit of

N →∞ for any fixed x, in contrast to what happens in convergent series. This leads to two new

remarkable features when compared to series with non-vanishing radius of convergence. Different

functions can have the same asymptotic expansion: all the functions of the form

f̃(x) = f(x) + h(x) e−α/x (2.4)

have indeed the same expansion around x = 0 for any α and any h(x) sufficiently regular function.

Adding more and more terms in the partial sum, i.e. increasing N , we will first approach the true

value of f(x), but after a while, inevitably, we will restart to get away from it and eventually,

our truncated series will diverge. It is natural to ask which is the partial sum that gives the best

possible estimate of f(x), in other words, which is N = NBest that truncates the series in the

optimal way, so that the remainder ∆N = f(x)− ϕN (x) is minimized. This procedure is called

optimal truncation. The maximal “resolution” we can achieve with this method depends on the

behavior of the coefficients an of our series at large n. Let us assume that for n� 1

an ≈ Γ(n+ b)A−n , (2.5)

with the parameter b real positive, we will get to see that this is the typical form in most of the

interesting cases.1 Minimizing an estimate of the reminder we obtain:

NBest ≈
∣∣∣∣Ax
∣∣∣∣ and ∆NBest

= ε(x) ≈ e−|A/x| . (2.6)

A couple of aspects are worth emphasizing. Notice that the more we go at strong coupling,

the fewer and fewer terms we should keep till we reach a point for which optimal truncation

makes the whole series useless. Moreover, notice that the optimal resolution ε(x) of an asymptotic

1The series of this kind are Gevrey-1 series, we could generalize the analysis that follows by taking instead
Gevrey-p formal series whose large-order behavior is of the kind an ≈ Γ(pn+ b).
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Figure 2.1: (Left) The complex plane x with in red the branch-cut [−∞, 0] of the function f(x) defined
in (2.7). (Right) The ratio ∆N (x)/f(x) as a function of N at which we are truncating the asymptotic
series, for f(x) defined in (2.7).

series is consistent with the intrinsic ambiguity of (2.4), this is sometimes called non-perturbative

ambiguity. Its strength is given by the absolute value of A, namely the factor that determines the

growth behavior at next-to-leading order after the factorial. Finally, it is interesting to comment

on the effectiveness of a divergent series when we find ourselves in the case at very weak coupling,

x � |A|, if we have access to a fairly few coefficients of our series N < NBest, as it happens in

several physical cases, we are allowed to neglect the divergence of the series altogether.

Example Let us consider the function

f(x) ≡
∫ ∞

0
dt

e−t

1− xt/A
with A < 0 . (2.7)

Despite being very simple, it has all the typical features of our divergent series. The function f(x)

is not analytic in x = 0, and it has a branch-cut all along the real negative axis, see the left panel

in fig. 2.1. When we expand f(x) at the origin we find the divergent series ϕ(x) =
∑∞

0 A−nn! xn.

In the right panel of fig. 2.1 we show the ratio between the reminder ∆N (x) and the f(x) for

x = |A|/10 and x = |A|/6 as a function of N at which we are truncating the series. Notice that

the values of NBest are, as expected, 10 and 6, respectively.

We have seen how optimal truncation allows keeping somehow under control the divergence

of our asymptotic series, but it is far from being satisfactory, especially at stronger coupling. We

will see how we can do much better taking into account all the information of the terms of the

series and possibly also incorporating the small exponential effects that started to show up.
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2.2 Borel Resummation

The Borel resummation is a standard tool to make sense of asymptotic expansions and try to

construct functions from their expansions. Given a divergent series ϕ(x) like the one in (2.2),

with the typical large-order behavior of (2.5), we define its Borel transform Bϕ(z) as the function

obtained by removing the factorial growth of its coefficients

ϕ(x) =
∞∑
n=0

anx
n =⇒ Bϕ(t) =

∞∑
n=0

an
n!
tn . (2.8)

Now the Borel transform is analytic in a neighborhood of the origin t = 0 and its coefficients grow

exponentially. It has a non-zero radius of convergence, determined by the nearest singularity at

t = A, pole or branch-cut. However, typically Bϕ(t) can be continued to a wider region in the

complex plane. If the positive real axis is free of singularities, we can inverse Laplace transform

it to compute what is called the Borel resummation s(ϕ)(x) of the original series ϕ(x),

s(ϕ)(x) =

∫ ∞
0

dt e−t Bϕ(xt) . (2.9)

In this case we say that ϕ(x) is Borel summable. The Borel resummation s(ϕ)(x) and the

function f(x), the original function we expanded, are both asymptotically equivalent to the

same divergent series. We will indicate “asymptotically equivalent to” with the symbol ∼ .

However, since different functions can admit the same asymptotic series, only after assuming

some analyticity properties of f(x) near the origin we can prove that s(ϕ)(x) = f(x).2 On the

other hand, in certain cases we might be able to rewrite f(x) in the form (2.9) and so the

s(ϕ)(x) = f(x) is proven directly.3 Summarizing, s(ϕ)(x) finally associates a finite value to the

divergent sum (2.2), for each x. Moreover, when s(ϕ)(x) = f(x) we reconstructed the exact

(non-perturbarive) result from the asymptotic series, the asymptotic series is Borel summable

to the exact result.

Example Let us continue with the same function of the first example and construct the Borel

transform associated to the series ϕ(x). It is going to be

Bϕ(t) =
∞∑
n=0

A−ntn =
1

1− t/A
. (2.10)

2These assumption have been given by Watson (see e.g. theorem 136 in chap.VIII of ref. [15]). An improved
version was found by Nevanlinna and rediscovered in ref. [16]. In section 3.3, we will encounter them when briefly
reviewing the early proofs of the Borel summability of Schwinger functions in the d = 2 [7] and d = 3 [8] N = 1
φ4 theory.

3See the recent works [17,9].
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Figure 2.2: (Left) The complex plane of t, Borel plane, for the function defined in (2.10), with singularity
at t = A with A < 0, the path of integration for the inverse Laplace transform is along the positive real
axis. (Right) In the case of A > 0, a singularity forces us to deform the integration contour to avoid it
from above or below, C+ and C− respectively.

Now since A < 0 we know that we can Borel resum ϕ(x) and that since we get the original

definition of the function in (2.7) s(ϕ)(x) = f(x). This example is one of those cases where the

uniqueness comes for free from the form of the starting function. In the left panel fig. 2.2 we

plot on the plane of complex t, the Borel plane, with the singularity of Bϕ(t) and the path of

integration for the inverse Laplace transform.

In physical interesting cases, even in the case of asymptotic series is Borel summable to the

exact result, the story is not that simple: typically we do not know all ϕ(x) but a truncated

version of it. Therefore, we have to find ways to approximate Bϕ(t) and analytically continue it

on the whole positive real axis. Section 2.5 will be dedicated to this topic. We are now going to

investigate what happens when singularities hinder the integration (2.9) and what can be done.

2.2.1 Lateral Borel Resummation and NP contributions

In case of one or more singularities located on the positive real axis, the integration in (2.9) is

ill-defined. This should not stop us from proceeding. In fact, we will show that going on will

bring us to far-reaching conclusions.

We can deform the contour of integration slightly above or below the positive real axis. The

function obtained in this way are

s±(ϕ)(x) =
1

x

∫
C±
dt e−t/x Bϕ(t) , (2.11)

where C± are the contours avoiding the singularities, as in the right panel of fig. 2.2. The functions

s±(ϕ)(x) are called lateral Borel resummations of ϕ(x). Since we deformed our integration
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along paths in the complex plane, even if all coefficients of our series are real, the lateral Borel

resummations will be, in general, complex-valued functions. Notice that the choice of the path

gives rise to an ambiguity and the order of this ambiguity, supposing the usual large-order

behavior (2.5), is e−|A/x|. Once again, we see the appearance of an exponentially small extra

contribution that could not be captured by our original series ϕ(x), but at the same time is

encoded in its coefficients, or better, in their growth.

Example This time let us consider our usual series ϕ(x) =
∑∞

0 A−nn! xn but with A > 0. We

can construct the Borel transform of (2.10), but this time the singularity is on the integration

path for the inverse transform, so we perform a lateral Borel resummation, see the right panel

of fig. 2.2. It is interesting to evaluate the (non-perturbative) ambiguity

ε(x) = s+(ϕ)(x)− s−(ϕ)(x) =
1

x

∫
C+−C−

dt e−t/x Bϕ(t) =
1

x

∮
CA

dt
e−t/x

1− t/A
=

2πi

x
A e−A/x ,

(2.12)

where CA is the circle surrounding the pole.

The interesting cases are certainly more complicated than this. In most cases, not all the

coefficients are known. Nevertheless, one can try to look at the large-order behavior. It will be of

the kind (2.5). The fact that the series is alternating in sign, has some other type of periodicity,

or is non-alternating can give us an important clue on the location of the dominating singularity

and hence on the summability of the series.

2.3 Large-order behavior and NP effects

The large-order behavior of the divergent series is controlled by the singularities of its Borel

transform. The typical large-order behavior in (2.5), as we have seen, gives rise to a singularity

at t = A, while b instead characterizes the brunch-cut structure of Bϕ(t) at t = A (in the

presented example we took b = 1 and so we had just a pole singularity). At the same time the

singularity structure of the Borel transform determines the way in which the Borel resummation

“jumps” when we adopt different prescriptions to avoid the singularities. We have

an ≈ Γ(n+ b)A−n , Bϕ(t) ∝
(

1− t

A

)−b
+ . . . , and ε(x) ≈ x−be−A/x . (2.13)

These are respectively properties of the divergent series, its Borel transform, and the Borel

resummation, and they are in direct relation with each other (as we have shown in the case with

this exact growth with b = 1).

Before inserting these elements into a proper framework and looking at a generalization, let

us dedicate the rest of this section to giving a better, more physical, interpretation to A. We
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start with the simplest zero-dimensional prototype for the general path integral of (2.1)

Z(x) =
1√
x

∫
C0
dz e−V (z)/x , (2.14)

where V (z) is in general a complex function and, for simplicity, an entire function and C0 is

the real axis. The perturbative expansion of Z(x) around x = 0 corresponds to the saddle-point

expansion of the integral (2.14). We expect this expansion to be asymptotic. Due to the fact that

the function V (z) in general has multiple saddle points and each one with its own perturbative

expansion, we have to combine them properly deforming the integration contour, effectively

splitting it into a sum of several disjoint contours. These are going to be the steepest descent

trajectories associated to each saddle point. This procedure and the way of combining them

is called Lefschetz-thimble decomposition.4 No matter if the saddle points contribute to the

integral (2.14), they govern the large order behavior of the series expansion of adjacent saddles.

Let z
(i)
c the i saddle-point of V (z) and let be c

(i)
n the coefficients of the series associated to it,

the large order behavior of expansion around z
(0)
c is given by [19]

c(0)
n ≈ Γ(n)

(
V
(
z(1)
c

)
− V

(
z(0)
c

))−n
, (2.15)

where z
(1)
c is the leading adjacent saddle to z

(0)
c . Thus the difference between the values of V (z)

at the saddle determines the factor A in the large-order behavior and so the position of the

leading singularity on the Borel plane.

Now moving to QM and QFT, the non-trivial saddle points are the instanton configurations

and the singularities on the Borel plane are the complex instantonic actions. The connection

between the large-order behavior of perturbation theory and non-perturbative effects was first

noticed at the quantitative level in QM by Bender and Wu considering the quartic anharmonic

oscillator in [20] and after extended to QFT by Lipatov [21] and other authors [22–24].

The quartic anharmonic oscillator is indeed nowadays one of the most straightforward models

to study. It is possible to extract the perturbative series for the ground state energy E as

a function of the coupling g and see how the growing number of Feynman diagrams, order by

order, is at the origin of the factorial divergence of this series. Moreover, it can be shown how the

next-to-leading exponential growth is determined by a one-instanton configuration at negative

values of the coupling. The perturbative series actually turns out to be alternating in sign and

Borel resummable, since the singularity of its Borel transform is on the negative real axis. The

presence of this instanton determines a discontinuity for E at negative values of the coupling, this

makes g = 0 a non-analytic point. Finally, this discontinuity appears as the difference between

the lateral Borel resummations when performed over and under the negative real axis.

Likewise, in QFT an instanton configuration φ∗ with finite action S[φ∗] gives rise to a singu-

4For an introduction on this topic, see e.g. section 3 of [18].
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larity at S[φ∗] in the Borel transform of any correlation function. Out of the infinite integration

variables of the path integral we can single out the one corresponding to the value of the action

and rewrite the generic path integral (2.1) as [25]

E(g) =

∫
Dφ G[φ] e

−S[φ]
g =

∫ ∞
0

dt e−t
∫
Dφ G[φ] δ

(
t− S[φ]

g

)
=

∫ ∞
0

dt e−t B(gt) . (2.16)

The function B(gt) is now the path integral restricted to the section of phase space with fixed

action and plays essentially the role of Borel transform of E(g). If we have finite action instantons

φ∗ then B(gt) is singular at S[φ∗]. In fact, the manipulation in (2.16) is actually not legitimate

when there are finite action critical points for real field configurations, apart from the trivial

one. This argument is indeed quite heuristic if not treated with proper care as done in ref. [9],

where it is used together with Derrick’s theorem and steepest descent methods to establish Borel

summabilities of a large class of scalar field theories in d < 4.

In QFT there is another type of source of factorial divergence in perturbation theory. They

are the so-called renormalons. Like instantons they give origin to singularities on the Borel

plane, but they are of completely different nature. They were first discovered in renormalizable

QFT [26], but we still lack their complete understanding. Renormalons will play an important

role in chapter 4.

2.4 Theory of Resurgence

In this section we arrange the elements already presented in the context of the theory of resur-

gence [6], this will allow us to generalize several concepts and introduce some new important

elements.5 First of all, we need a single object that gathers both the perturbative series and

non-perturbative contributions. Let us introduce

Φ(x,C) = ϕ(0)(x) +
∞∑
`=1

C` e−
`A
x ϕ(`)(x) with ϕ(`)(x) ≡

∞∑
`=0

a(`)
n xn . (2.17)

and call it a trans-series. Notice that it upgrades the power series by the inclusion of non-analytic

terms. In fact, we can view it as a double series in two parameters: a perturbative one x and a NP

one e−A/x. The series ϕ(0)(x) = ϕ(x) is the usual perturbative series. There are more general

versions of trans-series, depending on the quantity and model that we are are studying. For

example, there could be several instanton actions (or renormalon singularities) Ai, in this case

the sum will be on several `i with different prefactors Ci.
6 Moreover, in general the series ϕ(`)(x)

5The framework of the theory of resurgence is very vast and this section, despite the title, is far from being
an introduction to the topic, for that see e.g. [27], an introduction that includes an extensive list of references.
Suggested pedagogical review are also [28,29].

6The most general form of trans-series has a quite richer structure, e.g they can contain also terms like log(x).
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can have a prefactor x−b` where b` is a characteristic exponent. It is important to remark that

the series ϕ(`)(x) are generically asymptotic series, thus Φ(x,C) generically diverges for every

non-vanishing values of x. The parameter C is called the trans-series parameter. It weights the

NP contributions and, as we will see, it cannot be determined a priori, its value does not enter

directly in the resurgent relations, but it plays a very important role. Many important trans-

series can be interpreted as solutions to ordinary differential equations (ODEs) with irregular

singular points.

Example Let us continue with our usual example from a new point of view. The ODE

x2 df

dx
+ (x−A)f(x) +A = 0 (2.18)

is a variation of Euler’s equation, that has an irregular singular point at x = 0. It is easy to see

that the asymptotic power series ϕ(0)(x) =
∑∞

n=0 anx
n with an = A−nn! is solution of (2.18). In

addition, we can construct a one-parameter family of formal solutions to the ODE

Φ(x,C) = ϕ(0)(x) + C x−1e−
A
x . (2.19)

We found the trans-series associated to our usual divergent series. Moreover, we start to ap-

preciate the role of the trans-series parameter C: it parametrizes different choices of boundary

conditions for our problem.

In the example just presented, the series in ` is truncated since we were dealing with a

linear ODE. When passing to nonlinear ones, we find a structure like the one in (2.17) or more

complicated.

Let us now look the trans-series in the context of the Borel resummation. We construct the

Borel transform Bϕ(0)(t) of the perturbative series. In the case of the trans-series (2.17), we

expect Bϕ(0)(t) to have singularities at the values t = `A for ` ∈ N and ` > 0. It can be shown

that the expansions around these singularities are in direct contact with the Borel transforms

of the series of the other NP sectors, if we consider logarithmic branch-cuts,

Bϕ(0)(t)
∣∣∣
t=`A

= − S`

2πi
log(t)Bϕ(`)(t) . (2.20)

Already inside the perturbative series we have information regarding all the non-perturbative

sectors, or better all the information regarding all other sectors. The constant S is called Stokes

constant. Since the singularities of the Borel transforms dictated the large-order behavior of
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their associated asymptotic series we can rewrite relation (2.20) in terms of the coefficients a
(`)
n ,

a(0)
n ≈ Γ(n)A−n

∞∑
`=1

S`

2πi
`−n

∞∑
k=0

(`A)k
Γ(n− k)

Γ(n)
a

(`)
k , (2.21)

valid at large order.

When Borel resumming the series we already know that particular care has to be taken when

we would like to integrate along a ray that crosses singularities. Let us introduce the generalized

version of the Borel resummation along an arbitrary direction with angle θ on the complex plane,

sθ. Its integration path is (0, eiθ∞) and trivially s0(ϕ) = s(ϕ). The respective generalization for

lateral Borel resummations are sθ±, in which we avoid the singularities on the direction with

angle θ above or below. The directions along which our Borel transform has singularities are

called Stokes lines. We know already that there will be an ambiguity concerning how these

singularities should be avoided by deforming the integration contour and that this ambiguity

encloses information concerning other (NP) sectors. Now since trans-series incorporate all of

them, we should look at the whole Borel resummed trans-series,

sθ (Φ) (x;C) = sθ

(
ϕ(0)

)
(x) +

∞∑
`=1

C` e−
`A
x sθ

(
ϕ(`)

)
(x) . (2.22)

Focusing on our example with just one type of instanton contribution A, we have that at θ =

arg(A) there will be a Stokes line, and, thanks to the resurgent relations of the kind of eq. (2.20),

the following equation will be true,

sθ+ (Φ) (x;C) = sθ− (Φ) (x;C + S) . (2.23)

The trans-series parameter jumps when crossing the Stokes line.

Example In the simple case that we are examining, for the trans-series (2.19) we choose the

normalization ϕ(1) = A, so that recalling (2.12) we have

sθ+

(
ϕ(0)

)
(x)− sθ−

(
ϕ(0)

)
(x) = S x−1 e−

`A
x ϕ(1)(x) , with S = 2πi (2.24)

and it is direct to see that (2.23) is valid.

When one has a richer structure the relation (2.24) becomes rapidly more complicated, in

the case of (2.17)

sθ+

(
ϕ(`)

)
(x)− sθ−

(
ϕ(`)

)
(x) =

∑
k≥1

(
`+ k

`

)
Sk e−

kA
x sθ−

(
ϕ(`+k)

)
(x) , ` ≥ 0 . (2.25)
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In this and even richer cases, all the relations between the different sectors ` become more

clear when introducing other operators such as the Stokes automorphism and the alien deriva-

tives. However, they go beyond the scope of this work, we suggest again [27] for a pedagogical

introduction.

Let us look back at the relation (2.23) and at the role of the trans-series parameters. We

have seen that their values do not enter in the resurgence relations, namely they are not encoded

in the behavior of the coefficients of any of the series. At the level of trans-series they remain

generic parameters. Their values are fixed together with the prescriptions on how to Borel resum

the trans-series, namely on how to choose the integration path, and thanks to additional NP

information, such as the reality of the exact function. For example, given f(x) ∼ Φ(x,C) for

which the real axis is a Stokes line, there will be C+ and C− = C+ + S, such that one can

reconstruct f(x) = s+ (Φ) (x;C+) = s− (Φ) (x;C−).

The idea that different sectors “talk” to each other sounds very reasonable if we go back to

our zero-dimensional path integral of eq. (2.14), we have already seen in (2.15) that saddle points

determine each other expansions.7 The same is valid for path integrals in QM and QFT, the

sectors in the trans-series are nothing but the perturbative expansion for ` = 0 and for ` > 0 the

`-instanton sectors with the power series ϕ(`) being the result of perturbation theory computed

around the instanton backgrounds. However, there are also NP effects for which we still lack a

very clear semiclassical interpretation that are at the origin of singularities on the Borel plane,

that enter in the trans-series, and for which resurgence seems to work anyway. These are the

renormalons.

As we have already mentioned, in a typical QFT we do not have the luxury of knowing all

the perturbative series. That is why a systematic implementation of resurgence is very difficult.

Scenarios in which the theory of resurgence apply to the fullest are quite rare in QFT. Just in

the recent years we are seeing a growing number of physical setups in which resurgence plays

an important role. In chapter 4, we will present a model with a physical observable with a

trans-series as in (2.17), yet analytically tractable. We will get the chance to test numerically

relationship like those in (2.25).

2.5 Numerical approaches for Borel transforms

In physical interesting problems the exact form of the Borel transform Bϕ(t) is usually not

available. For most QM and QFT observables, we can only obtain a finite number of terms

in the perturbative series. That is why prior to inverse Laplace transform we need to find a

way to approximate Bϕ(t). We can not simply truncate the series (2.8) up to some order N

and exchange the order of sum and integration. This will give us back our original truncated

7Moreover, saddle-point analysis and Lefschetz-thimble decomposition lies at the center of the origin of the
Stokes phenomena and of the Stokes lines.
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asymptotic expansion. In exchanging the sum and integration we would end up committing a

similar misstep as the original one when we generated the perturbative series. The function

Bϕ(t) has a finite radius of convergence dictated by the first singularity, ρ = |A|, but at the

same time the integration we need to perform is over the whole positive real axis

s(ϕ)(x) =

∫ ∞
0

dt e−t
∞∑
n=0

an
n!

(xt)n 6=
∞∑
n=0

an
n!
xn
∫ ∞

0
dt e−t tn =

∞∑
n=0

anx
n = ϕ(x) . (2.26)

For a finite truncation of the series of the Borel transform sum and integration commute but we

would end up with the truncate perturbative series we started from.

In order to proceed, we can adopt two possible strategies. We can use the known coefficients

to find a proper ansatz for Bϕ(t), namely whose expansion matches our coefficients. An effective

way of doing so is to use Padé approximants. On the other hand, we can enlarge the radius of

convergence over the whole domain of integration by manipulating the series. We can achieve this

via a conformal map. Both methods provide an approximation of the exact result that improves

with the number of the known coefficients. It is obvious that since they are approximations,

one has to provide an estimate of the uncertainty together with the result. We will devote the

following two subsections to presenting the main aspects of these methods.8

2.5.1 Padé-Borel method

Given a series expansion of a function h(x) =
∑∞

k=0 hkx
k, its Padé approximant of order [m/n]

consist of the rational function

h[m/n](x) =

∑m
i=0 pix

i

1 +
∑n

j=1 qjx
j
, (2.27)

where the m + n + 1 coefficients pi and qj are fixed by expanding (2.27) around x = 0 and

matching them with hn up to the highest possible order, i.e. h(x)−h[m/n](x) = O(xm+n+1). The

usage of Padé approximants is a very efficient technique to analytically continue a function when

just some coefficient of the Taylor expansion are known. Since they are manifestly analytic at the

origin, they work at best when they have to approximate a function with this same property. This

is why in the context of perturbative series and asymptotic expansion, it is more convenient to

use them to approximate the Borel transform, hence the name Padé-Borel method.9 Moreover,

it is known that for convergent series, parametrically diagonal Padé approximants, i.e. with

8There are further details that are not treated here. First of all, the generalization of the Borel transforms to
the Borel-Le Roy transforms with the introduction of the parameter b. Moreover, when doing conformal mapping,
another summation variable can be introduced, s. For the techniques used in this work on how to find the best
values of b and s and how to give reasonable estimates to the uncertainty of the resummation with both Padé-Borel
method and conformal mapping method, see [9].

9There are many other cases in which Padé approximants are of use. For example, in chapter 4 we will encounter
a series in 1/N with a finite radius of convergence and consider its Padé approximants.
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series o(7)
series o(8)
opt. trunc.
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Figure 2.3: (Left up) The complex t plane for a Borel transform whose singularity is at t = A on the
negative real axis. The integration path as usual being on the positive real one. (Left down) The complex
u plane after having performed the change of variable in (2.28). The real positive axis t ∈ [0,∞] got
mapped into u ∈ [0, 1] and the branch-cut t ∈ [−∞,−|A|] into the boundary of the disk. (Right) The
mass gap M2 for the d = 3 φ4 theory, in the MS scheme, as a function of the coupling constant g obtained
by ordinary perturbation theory up to g7 and g8 (dotted grey and black lines), optimal truncation (red
dotted line) and Borel resummation via conformal mapping method (blue line)

m = n, converge (in capacity) to the exact function and the location of their poles and zeros

define an appropriate locus of branch-cuts connecting branch-point singularities [30] (see e.g.

app. D of [31] for a brief overview and [32] for a comprehensive introduction). Thus Padé-Borel

method, when knowing a large number of coefficients, allows to accurately reproduce the Borel

transform and, consequently, the Borel resummation. In addition, doing so gives the possibility

of reconstructing the singularity structure of Bϕ(t) and gaining information on the large-order

behavior of the perturbative series and on possible NP effects. On the other hand, when we have

at our disposal just few coefficients, the approximant can show spurious unphysical poles that

might give rise to numerical instabilities in the integration. This is why when studying the φ4

models in d = 2 and d = 3 in chapter 3, this method turns out to be somewhat less effective

than conformal mapping.

2.5.2 Conformal mapping method

We have seen that NP effects determine the position of the singularities of the Borel transform.

We can exploit this information to manipulate our coefficients and, with a conformal map,

enlarge the radius of convergence on the whole domain of integration [33]. Let us present an

example in the case of the leading singularity being on the negative real axis, A < 0. We can

use the change of variable t→ u of the form

t(u) = 4|A| u

(1− u)2
, (2.28)
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so that it maps the whole plane into the disk of unit radius |u| = 1. Notably, the singularity at

t = −|A| is mapped at u = −1, the point at infinity in t at u = 1, and the branch-cut singularity

t ∈ [−∞,−|A|] to the boundary of the disk. The integral in t from 0 to ∞ becomes an integral

in u ∈ [0, 1]. Assuming any other singularity on the negative real axis the series expansion

B̃ϕ(u) ≡ Bϕ(t(u)) has radius of convergence ρ = 1, i.e. on the whole domain of integration, see

the left panel of fig. 2.3. Thus, it is possible to commute sum and integration. When we have

additional NP information about one or more singularities of the Borel transform, the conformal

mapping method at low orders turns out to be more reliable than the Padé-Borel one due to

the usage of this information. This will be the case of chapter 3 where we know the values of

the action at the leading complex instanton configuration. In chapter 4, on the contrary, we

will have (longer) non-Borel summable series, so we will not be able to use conformal mapping

method and we will extensively use Padé approximants to reconstruct the Borel transform to

lateral Borel resum them.

We report in the right panel of fig. 2.3 a plot that will appear later in this work (fig.

3.8). At this stage, we can neglect its physical interpretation, its purpose is just to show a

comparison between some of the methods to tackle asymptotic expansions we talked about in

this chapter. We are starting from a divergent truncated series in g, knowing the coefficients

up to g8. Moreover, we know that it is Borel summable to exact result. Going towards strong

coupling, we can see how at around g = 0.5 our perturbative series starts to break down and

to diverge, black line in the plot. What we can do is to begin to keep less and less terms doing

optimal truncation, the dashed line in red. This keeps under control the divergence but does

provide a very inaccurate result at this stage. If instead we Borel resum our series using conformal

mapping method we can confidently reproduce, the error bands are almost invisible, our exact

quantity way further in the strongly coupled region. When we know relatively few coefficients

of a perturbative series and we know that is Borel summable to exact result, notice how we are

able to study regimes that otherwise would be totally out of reach, thanks to Borel resummation

and sensible numerical approximations. This is what we will do in the next chapter.



Chapter 3

Borel Summability: To the IR fixed

points in super-renormalizable φ4

theories

The main aim of this chapter is to study the three-dimensional O(N) symmetric φ4 models and

the two-dimensional N = 1 φ4 theory using Borel resummation techniques of the perturbative

series in the unbroken phase. These theories are some of the most studied examples of non-

integrable theories with interesting RG flows. As well-known, by tuning the mass parameter these

theories flow in the IR to a notable class of interacting conformal field theories. Perturbative

RG techniques have been extensively used in the analysis of critical phenomena of these theories

(see ref. [34] for a review that includes an extensive list of references). The two main approaches

developed in the past use RG methods either starting from d = 4− ε dimensions, the so-called

ε-expansion [35], or by keeping the space dimension fixed at d = 2, 3, respectively [10]. In the

ε-expansion we can establish in a renormalization scheme-independent and analytic way the

existence of weakly coupled fixed points for ε� 1. Moreover, we can directly study the critical

theory because of the absence of IR divergences. The gapless phase can also be accessed, for

2 < d < 4, using large N techniques. Both large N and ε-expansion techniques are however not

enough if one wants to analyze the theory at finite N within a non-perturbative definition of the

theory, that requires to work with fixed integer dimensions. At fixed dimension, IR divergences

force us to work away from criticality with m2 6= 0. One instead considers the massive theory and

establishes the presence of IR fixed points by looking for zeroes of a properly defined β-function.

These are necessarily strongly coupled and require a Borel resummation of the perturbative

series to be established.1

1Borel resummation is needed also in the ε-expansion if one wants to reach physical dimensions at ε = 1 or at
ε = 2, given the asymptotic nature of the associated series. However, the Borel summability of the ε-expansion in
the φ4 theory remains to be proven. The main difficulty here is to find a non-perturbative definition of the theory

29
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The Borel summability of the fixed dimension perturbative series in the φ4 theory at para-

metrically small coupling and in the unbroken phase m2 > 0 has been established long ago [7,8]

(see also ref. [37]) and recently extended for finite values of the coupling and to a more general

class of scalar field theories, including for instance d = 3 N -component φ4 theories with both

m2 > 0 and m2 < 0, using steepest descent arguments [9,38]. However, we will show that these

arguments directly apply just to some classes of renormalization schemes. Not to those where

the physical renormalization is only reached working order by order in perturbation, like the one

used in [10], but to minimal renormalization schemes. In these schemes we can study the theory

in a framework that can be compared with purely non-perturbative methods. In d = 2 several

papers have indeed shown that the gapless phase can be reached in this way using lattice [39–42],

Hamiltonian truncation [43–45]2 and Borel resummation [9, 38] methods.

Moreover, we will show how working in this class of schemes, exploiting the super renor-

malizability of our theories, non-perturbative changes of schemes can be studied and used to

investigate the phase diagram of the theories and its RS dependence. Nonetheless, it turns out

that studying the critical regime of 3d the O(N) models in the non-minimal RS introduced

in [10] grants greater accuracy.

The chapter is structured as follows.

Content

We start in section 3.1 by reviewing known facts about RS-dependence of relevant (and irrel-

evant) couplings. We continue in section 3.2, where first we review the approach proposed in

ref. [10], based on a properly defined β-function and then recall how the critical regime can

be analyzed in minimal RSs with no need of RG techniques. In section 3.3 we briefly review

the proofs of Borel summability of scalar field theories of refs. [7, 8] and ref. [9], emphasizing

their renormalization scheme dependence. We show that they straightforwardly apply just to

minimal RSs, where only one mass counterterm is introduced, that can be determined in closed

form in perturbation theory, having only a finite number of terms. We define a specific class

of minimal RSs in section 3.4, parametrized by the variable κ. We will work with them in all

remaining sections apart from the last. We show that 3d O(N) models (in fact, we will consider

at the same time both d = 2 and d = 3) admit two descriptions, equivalent to all orders in

perturbation theory, related by a strong-weak duality relation (within the same phase of the

theory), closely linked to a duality found by Chang and Magruder [11, 12]. In section 3.5 we

describe this connection and the corresponding expected phase diagram for N = 1. We carry on

in d-dimensions for non-integer d. So far the Borel summability is assumed based on the large-order behavior of
the series [22] and the successful results of numerical resummations at finite order, see e.g. ref. [36] for a recent
six-loop study.

2Hamiltonian truncations based on light-cone quantization have also been used [46, 47] but they require a
non-trivial transformation to get mapped to the minimal covariant schemes we will discuss [48,49].
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in section 3.6 analyzing the exact analytic dependence of the critical couplings in the weak and

strong branches as a function of the RS parameter κ, for any N .

From section 3.7 we report our numerical results based on Borel resummations. We start

in the d = 2 (N = 1) φ4 theory. Resumming the series for the mass gap M , defined as the

pole of the propagator, for different values of κ, we determine how the critical coupling moves

as the RS is varied, confirming the theoretical expectations. We study the effectiveness of the

Borel resummation as the RS is varied by computing the accuracy in the determination of a

physical observable, the critical exponent ν. In section 3.8 the numerical study is performed

for the 3d O(N) models. We focus our attention on the 0 and 2-point functions. We discuss

how we obtained the perturbative coefficients up to order eight of the vacuum energy density Λ

and of the mass gap M2and how they are related in different RSs. We show the absence of a

gapless phase for certain values of κ < κ∗, and provide evidence for the self-duality of the O(N)

models by comparing the values obtained for Λ and M2 in the weak branch and (part of) the

strong branch close to the self-dual point. Finally, we determine how the critical coupling in the

weak branch moves as the RS is varied, confirming the theoretical expectations, and we compare

the values of the critical coupling with those obtained in the literature using lattice methods.

The results are in fair agreement, but with large uncertainties, due to the low accuracy of our

resummations. The section 3.9 is instead devoted to presenting the numerical strategies that we

used to compute the perturbative series in d = 3 for the 1PI 0, 2, and 4-point functions up to

order eight. We use these series to study the critical regime of the O(N) models in the scheme

proposed in [10].

3.1 RG and RS Dependence

It is well-known that RG techniques allow us to improve the perturbative expansion by resum-

ming certain logarithmic (leading, next to leading, etc) contributions [50]. Before discussing the

RS dependences of RG flows and possibly of the Borel summability, it is useful to review basic

known facts about the RS dependence of β-functions and the uses of RG in φ4 theories in d < 4.

There are no new results in this section, so the expert reader might skip it and pass directly to

section 3.

By definition, the β-function coefficients in mass-independent RSs (such as minimal subtrac-

tion when using dimensional regularization) depends only on the coupling constants and not

on ratios of the sliding scale µ with mass parameters. In particular, in presence of p marginal

couplings gi (i = 1, . . . , p), we have

βi = µ
dgi
dµ

= βijk0 gjgk +O(g3), (3.1)

where βijk0 are constants. Among mass-independent RSs, the leading β-function coefficients βijk0
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are RS-independent (for p = 1 the next to leading term is also RS-independent). More in

general, in presence of dimensionful couplings, the β-function coefficients can be RS-dependent,

even when mass effects are neglected. Indeed, if we denote by gi and g̃i the couplings in two

different RSs, we have by dimensional analysis

g̃i = gi + µ∆i−∆j−∆kcijkgjgk +O(g3) , (3.2)

where ∆i denote the classical scaling dimensions of the couplings gi and cijk are constant coeffi-

cients. Dimensional analysis fixes also the form of the perturbative expansion of the β-functions.

In terms of the dimensionless rescaled couplings hi = µ−∆igi’s, we have

βi = µ
dhi
dµ

= −∆ihi + bijk0 hjhk +O(h3) , (3.3)

where bijk0 are constant coefficients. It is immediate to get the relation between the two leading

β-function coefficients in the two RSs:

b̃ijk0 = bijk0 + cijk(∆i −∆j −∆k) . (3.4)

Universal coefficients arise when ∆i − ∆j − ∆k = 0. Renormalization schemes where classical

dimensional analysis is preserved at the quantum level, like minimal subtraction when using

dimensional regularization, give automatically bijk0 = 0 when ∆i−∆j−∆k 6= 0, and only keep the

RS-independent coefficients.3 Such dimensional arguments have important simple implications,

not always fully appreciated in the literature. For instance, in an effective field theory with

irrelevant couplings and no relevant or marginal couplings, in the limit where mass effects are

negligible, the dimensionless counterpart λ of the irrelevant coupling with the smallest dimension

∆ has a trivial β-function to all orders in perturbation theory:

βλ = −∆λ , (λ smallest irrelevant coupling) . (3.5)

This is the case, for instance, for the gauge coupling in Yang-Mills or for the quartic coupling of

a φ4 effective theory in d ≥ 5. In these cases there is no analogue of the log resummation needed

in treating marginal couplings and hence no need to improve the perturbative expansion. On the

other hand, in mass-dependent RSs, such as momentum subtraction, dimensional arguments do

not apply and in general βλ is non-trivial. The corresponding RG flow that one obtains amounts

3This property is a consequence of dimensional regularization of setting to zero power-like divergences and
keeping only the logarithmic ones. Logarithmic divergences are the only ones not saturated by UV physics and
sample uniformly all energy scales. Since the IR physics should be insensitive to the details of the different RSs,
we conclude that the associated β-function coefficients should be RS-independent. In presence of dimensionful
couplings dimensional regularization is no longer a mass-independent RS, since by dimensional analysis β-functions
can depend on masses.
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to resum RS-dependent threshold effects.

3.2 Different classes of RSs in φ4 Theories in d < 4

The bare euclidean action (or equivalently the bare Landau-Ginzburg Hamiltonian) for O(N)-

invariant φ4 vector models reads

SB =

∫
ddx
[1

2
(∂µφ)2 +

1

2
m2
Bφ

2 + λB(φ2)2
]
, (3.6)

where φ = (φ1, . . . , φN ) is an N -component scalar. In d = 2 and d = 3, scalar theories with up

to quartic couplings are super-renormalizable. Aside from the ground state energy, which will

be neglected for now, only the mass term requires renormalization, the coupling constant λB

and the elementary field (wave function renormalization) being finite. Finiteness of the coupling

immediately implies that in a mass-independent RS (e.g. minimal subtraction) we have a trivial

β-function to all orders in perturbation theory. There are no logs to be resummed and, like

in the d = 5 case mentioned below (3.5), no RS-independent terms appear in β, besides the

classical contribution. Yet, one can define a non-minimal RS where β is non-trivial and study

the associated RG flow [10].

3.2.1 Use of RG Flows: the RS S̃

Although the wave function renormalization Z and the coupling constant counterterm Zg̃ are

not necessary, yet we can define renormalized parameters using a momentum subtraction RS

like we would do in d = 4 as follows:

φ =
√
Zφr , Zm2

B = M̃2 + δM̃2 , λB = M̃4−dg̃
Zg̃
Z2

, (3.7)

and fix the counterterms by the following three conditions at zero momentum:

Γ
(2)
ij (p = 0) = δijM̃

2 ,
dΓ

(2)
ij (p = 0)

dp2
= δij ,

Γ
(4)
ijkl(p1 = p2 = p3 = 0) = 8g̃ M̃4−d(δijδkl + δikδjl + δilδjk) ,

(3.8)

where i, j, k, l are O(N) indices and as usual Γ(n) are related to the bare 1PI Schwinger functions

Γ
(n)
B as Γ(n) = Γ

(n)
B Zn/2. We will denote the RS defined by (3.8) as S̃. Correspondingly all

parameters in the RS S̃ will be labeled with a tilde. No sliding scale µ needs to be introduced, yet

a β-function can be defined in the spirit of the original Callan and Symanzik derivation [51,52].

Since λB does not depend on the physical mass M̃ , we have M̃ dλB/dM̃ = 0, that gives rise to
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the following equation

β̃(g̃) ≡ M̃ dg̃

dM̃

∣∣∣∣
λB

= (d− 4)
(d log(g̃Zg̃/Z

2)

dg̃

)−1
. (3.9)

In contrast to the more familiar form of the Callan Symanzik equations for which one has

µdΓ
(n)
B /dµ = 0 and thus homogeneous equations in Γ(n), we now have (omitting O(N) indices)[

M̃
∂

∂M̃
+ β̃(g̃)

∂

∂g̃
− n

2
η̃(g̃)

]
Γ(n) = M̃2σ̃Γ(n,1) , (3.10)

where Γ(n,1) are the 1PI n-point functions with one insertion of the renormalized composite

operator φ2
r = φ2Zφ2 at zero momentum, while the parameters η̃ and σ̃ are defined as follows:

η̃(g̃) = M̃
d logZ

dM̃

∣∣∣∣
λB

= β̃(g̃)
d logZ

dg̃
, (3.11)

σ̃ =
1

Zφ2

1

M̃2
M̃
dm2

B

dM̃

∣∣∣∣
λB

. (3.12)

The counterterm Zφ2 can be fixed by demanding

Γ
(2,1)
ij (p1 = p2 = 0) = δij . (3.13)

From Zφ2 and Z we can determine the anomalous dimension of φ2 as

η̃φ2 = −M̃
d log(Zφ2/Z)

dM̃

∣∣∣∣
λB

= −β̃(g̃)
d log(Zφ2/Z)

dg̃
. (3.14)

Consistency between (3.8) and the CS equation (3.10) with n = 2 gives

σ̃ = 2− η̃ . (3.15)

In d = 2, N = 1 and d = 3 for any N , starting from the unbroken phase (m2 > 0), we expect

there should exist a critical value of the coupling g̃ where the theory becomes gapless and a

CFT arises.4,5 This non-trivial IR fixed point should be visible as a non-trivial zero of β̃. The

expansion of β̃ in perturbation theory reads

β̃ = (d− 4)g̃ +O(g̃2) . (3.16)

4Non-unitary CFTs can arise for other values of N , such as N = 0, which describes self-avoiding random walks.
5The possibility that the critical theory is scale-, but not conformal, invariant has been recently excluded for

the d = 3 φ4 theory [53].



3.2. DIFFERENT CLASSES OF RSS IN φ4 THEORIES IN D < 4 35

When d = 3 or d = 2, a non-trivial zero is necessarily strongly coupled. The presence of a

non-trivial fixed point cannot be established perturbatively, but it can at the non-perturbative

level, namely upon Borel resumming the perturbative expansion. Several resummation of the β-

function β̃(g̃) over the years have shown indeed the presence of a zero for some non-perturbative

value of the coupling in d = 2 and d = 3 [33,54–57,9]. In the RS S̃ this zero defines the critical

coupling g̃c:

β̃(g̃c) = 0 . (3.17)

When we approach the critical regime the correlation length diverges, M̃ → 0, the right-hand side

in (3.10) can be neglected and the Schwinger 1PI functions Γ(n) satisfy the scaling relations valid

for a conformal invariant theory. Once g̃c is determined, one can Borel resum the perturbative

series in g̃ for η̃ and η̃φ2 and identify the (RS independent) critical exponents η and ν as

η ≡ η̃(g̃c) , ηφ2 ≡ η̃φ2(g̃c) , ν =
1

2− ηφ2 + η
. (3.18)

Other critical exponents can be obtained using scaling relations.

3.2.2 No Use of RG Flows: the RS S

Let us call minimal RSs, the classes of schemes in which the renormalization procedure has

minimum impact on the action and counterterms are introduced only when necessary to cancel

divergences in the actual dimensionality one is considering. In a super-renormalizable theory,

such counterterms contain a finite number of terms in perturbation theory.6

As we have discussed, for d < 4 in the action (3.6) only the mass term requires renormal-

ization, the quartic coupling and the field φ being finite. Thus, in the minimal RSs we only

introduce a mass counterterm δm2.

We present here two notable examples of minimal RSs: MS scheme and what we call interme-

diate scheme. For the former, we consider dimensional regularization and define the renormalized

mass and coupling in d = 2 or d = 3 as

m2
B = m2 + δm2 , λB = µελ , d = n− ε , n = 2, 3 . (3.19)

Note that λ has mass dimension 2 and 1 in d = 2 and d = 3, respectively. We follow the natural

choice and simply set µ = m in (3.45). However, we will see starting from section 3.4 that

redefining µ is equivalent to change the counterterms and gives rise to a simple one-parameter

6It is important to emphasize here that the minimal schemes alluded here are different from the so-called
“minimal subtraction without ε-expansion” introduced in refs. [58,59] and sometimes used in the statistical physics
community. The minimal RSs, that we are referring to, are not necessarily related to dimensional regularization.
In contrast to our schemes, in the “minimal subtraction without ε-expansion” of refs. [58, 59], counterterms are
computed using minimal subtraction with dimensional regularization in d = 4, and as such contain an infinite
number of terms in perturbation theory.
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class of renormalization schemes. Within dimensional regularization, the tadpole and the sunset

diagrams are the only divergent diagrams respectively in two and three dimensions. On the other

hand, the intermediate scheme is defined by m2
B = m2

I + δm2
I and λB = λ and imposing the

following conditions for the mass counterterm δm2
I :

δm2
I = − (d = 2) ,

δm2
I = −

(
+ p=0

)
(d = 3) .

(3.20)

In d = 2 MS scheme with µ = m and the intermediate are the same and they are equivalent, in

an operatorial formalism, to normal order the operators with respect to the mass m. In d = 3,

even if they differ, there is an explicit mapping between the two schemes, see (3.100).7

Let us denote S a generic minimal RS in φ4 theories in d < 4. In the RS S we have that to

all orders in perturbation theory

δm2

m2
= a

(d)
1 g + δd,3 a

(d)
2 g2 , (3.21)

where a
(d)
i are divergent coefficients8 and g is the effective dimensionless coupling constant

defined as

g =
λ

m4−d . (3.22)

Callan-Symanzik equations like (3.10) can be considered also in the RS S. In this case one simply

gets [
m

∂

∂m
+ β(g)

∂

∂g
− n

2
η(g)

]
Γ

(n)
B = m2σΓ

(n,1)
B , (3.23)

where

β(g) ≡ m dg

dm

∣∣∣
λB

= (d− 4)g , η = 0 , σ = 2


1 + N+2

π g , d = 2 ,

1 + σ
(3)
1 g − 2 (N+2)

π2 g2 , d = 3 .

(3.24)

where σ
(3)
1 is a dependent scheme quantity. Note that the mass m entering (3.23) is the renor-

malized mass m and not the pole mass M as defined in (3.25) below. As a consequence, in the

critical regime M → 0 the term proportional to Γ
(2,1)
B does not vanish, in contrast to what hap-

7The name intermediate comes from the fact that, being suitable for numerical computations, in this work, in
d = 3, it is an intermediate step towards other schemes. In subsection 3.8.1 it will be mapped to a one-parameter
family of minimal RSs and in section 3.9 to the RS S̃, likewise done in ref. [60] where S̃ is dubbed M .

8This is the general form, actually for the RSs where we use dimensional regularization we have that a
(3)
2 = 0.
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pens in (3.10) in the RS S̃ when M̃ → 0. Hence demanding β = 0 in (3.23) does not correspond

to a (non-trivial) critical regime and no interesting RG flow is expected from β in (3.24).

Renormalization group methods are not essential and we can access the critical regime by a

direct computation of observables. One can define the pole mass M as the zero of Γ
(2)
B for complex

values of the Euclidean momentum or define the mass gap as the Γ
(2)
B at zero momentum. We

will use the first definition for our studies of the scheme dependence in d = 2 following ref. [9]

while the latter for d = 3, since it is more convenient.

Γ
(2)
B,ij(p

2 = −M2) ≡ 0 (d = 2) , (3.25)

M2 ≡ Γ
(2)
B,ij(p = 0) (d = 3) . (3.26)

The critical coupling can be determined directly as the value of g where the theory is gapless:

M(gc) = 0 . (3.27)

The critical exponent ν, defined as

M(g) ∝ |gc − g|ν , g → gc , (3.28)

can be computed by resumming a properly defined function of M2. For instance, if

L(g) ≡ 2g2

g∂g logM2
, (3.29)

ν can be extracted as [9]

ν =
gc
∂gL

∣∣∣∣
g=gc

. (3.30)

The exponent η can be determined directly from its definition as the power-like decay of the

two-point function at the critical point:

〈φi(x)φj(0)〉g=gc ≈
δi,jcφ
|x|d−2+η

, i, j = 1, . . . , N , (3.31)

where cφ is a constant. This is the approach that has been taken in ref. [9] to determine gc, ν

and η in the d = 2 φ4 theory. Alternatively, ν could be determined more directly by means of

(3.18), where ηφ2 is extracted as

〈φ2(x)φ2(0)〉g=gc ≈
cφ2

|x|2(d−2+ηφ2 )
, (3.32)

where again cφ2 is a constant. It is worth emphasizing that the value of η found using the above
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procedure in the RS S is in good agreement with the exact result η = 1/4, while a long standing

mismatch is found when using (3.18) in the RS S̃. A similar long standing mismatch occurs

in the evaluation of ω ≡ β̃′(g̃c) in the RS S̃, which significantly differs from the exact value

ω = 2. We have verified that no improvement is achieved by resumming ω from the expression

of β̃ derived in ref. [9], which includes two more orders in the known perturbative expansion.

These problems seem to be related to possible non-analyticities in β̃(g̃) that give rise to a poor

convergence of the numerical Borel resummation to the exact result [61,62], though they might

also be a signal of absence of Borel summablity in the RS S̃ for such observables. It would be

interesting to check if the mismatch for ω disappears (like for η) if the RS S is used and ω

extracted directly from a two-point function, such as 〈φ4(x)φ4(0)〉g=gc .9

In d = 3 for the O(N) models, instead, we will see that studying the critical regime in the

RS S is pretty challenging, at fixed same number of loop l the RS S̃ allows the computation of

more accurate values for gc and ν. We are still in the process of fully understanding the causes

why RS S under-performs in d = 3, we suspect that this might be due to the particular analytic

structure for the observables. We will discuss it in section 3.6.

A direct approach to the critical regime without the use of RG techniques allows to bypass

the need of evaluating the 4-pt function Γ(4). The number of diagrams with l loops in a 2n-pt

function Γ(2n) is expected to scale as the number of loop diagrams in the vacuum energy with

l + n loops. This is seen by noting that if we connect the 2n external lines in pairs, we get a

vacuum energy graph with n more loops. Large order estimates confirm this expectation. At

fixed number of loops l, then, evaluating the 4-pt function is computationally more challenging

than evaluating the 2-pt function, due to the larger number of Feynman diagrams. Moreover,

in d = 2, as we already mentioned, the normal ordering with respect to the mass m, in an

operatorial formalism, is in direct relation to the RS S and this scheme has been used in the

literature as a reference RS to compare various non-perturbative computations of the critical

coupling [39–45,63].

Note that the definition of gc given by (3.27) could be adopted also in the RS S̃, bypassing

the evaluation of the beta-function β̃. Similarly one could compute η and ηφ2 directly from

eqs. (3.31) and (3.32).

3.3 Borel Summability and RS Dependence

In this section we review previous results on the Borel summability of Schwinger functions in

the λφ4 theory, contained in both the early [7, 8] and the more recent papers [9, 17], and show

how they depend on the RS.

We first briefly review the early proofs of the Borel summability of Schwinger functions in

the d = 2 [7] and d = 3 [8] N = 1 φ4 theory. These papers are in the context of constructive

9We thank A. Pelissetto for drawing our attention to the critical exponent ω.
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quantum field theory, an area of research particularly active in the late 60s and in the 70s,

that tries to give a rigorous mathematical foundation to quantum field theories, see e.g. ref. [64]

for an overview. We do not enter into details, but only mention the key steps and the logic

followed in these papers, focusing on the RS chosen. As starting point the bare action (3.6)

is renormalized by adding mass counterterms (we neglect vacuum energy counterterms) as in

(3.21). In particular, bare and renormalized fields and couplings are identified. In d = 2 the RS

chosen in ref. [7] is identical to normal ordering with respect to the mass m2 and hence coincides

with the RS S. The renormalization conditions in d = 3 are not given in an explicit form in

ref. [8], but they are essentially equivalent to the RS S. In particular, only O(λ) and O(λ2) mass

counterterms are present,10 as in the condition (3.21) defining the RS S. In both d = 2 and

d = 3, the local operators φ(xi) are smeared with sufficiently regular functions fi with compact

support around a region surrounding xi to define a field φfi =
∫
d2xif(xi)φ(xi). Finally, it is

shown that for |λ| < ε, Reλ > 0 and large enough m2 > 0 (i.e. at parametrically weak coupling

g � 1 in our notation), the 2n-point smeared Schwinger functions

Gsm
2n (λ) =

∫
Dφφf1 . . . φf2n e−SB [φ]∫

Dφ e−SB [φ]
(3.33)

are analytic in λ with bounded derivatives:∣∣∣∣ dkdλkGsm
2n (λ)

∣∣∣∣ ≤ C1C
k
2k!2 , (3.34)

with C1 and C2 two constants.11 Under suitable conditions on the smearing functions fi, the

analyticity domain of Gsm
2n (λ) can be extended to a region including points where Reλ < 0.

The asymptotic series of the smeared Schwinger functions Gsm
2n (λ) satisfy then the sufficient

criterion for Borel summability as given by Watson (see e.g. theorem 136 in chap.VIII of ref.

[15]). Soon after, it was pointed out that the analytic continuation to a region including points

where Reλ < 0 is unnecessary. One can instead use a necessary and sufficient criterion of

Borel summability, found long ago by Nevanlinna and rediscovered in ref. [16], that requires a

domain of analyticity only in a region with Reλ > 0, see fig. 3.1. In the d = 2 case [7] the

analyticity of the Schwinger functions is extended for more general functions involving normal-

ordered composite operators of the form φq, with q a positive integer, and for generic bounded

polynomial potentials with degree P . In this case, the factor k!2 in (3.34) is replaced by k!P/2.12

10In eq.(2.1.1) of ref. [8] only the O(λ2) term appears, the O(λ) one being hidden in the normal ordering
operation.

11The bound (3.34) found in ref. [8] is actually proportional to k!2+ξ, with ξ > 0, and one has to generalize
Watson criterion to show Borel summability. We thank J. Magnen for discussions on this issue and for pointing
out that the limit ξ → 0 might be taken by using the so called multiscale expansion [65].

12Note that the ordinary Watson criterion for Borel summability requires P = 4. Presumably this is the reason
why the authors [7] did not discuss Borel summability of theories with higher order interaction terms. On the
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Figure 3.1: The green disk shows the minimum region of analyticity for a Borel resummable function [16]
(the origin is excluded).

We now review and expand a bit some of the considerations made in ref. [9] about the Borel

summability of scalar field theories in d < 4. For concreteness we focus on O(N) vector models,

though most considerations apply more in general. Consider a 2n-point Schwinger function

GB2n(x1, . . . , xn) = N
∫
Dφφ(x1) . . . φ(x2n) e−SB [φ] , (3.35)

where N is an irrelevant constant factor, we omitted O(N) indices, and SB is the bare action

(3.44). We renormalize the theory in the RS S using (3.21). It is useful to rescale fields and

coordinates as follows:

φ(x) =
m√
λ

Φ(y) , y = mx , (3.36)

and rewrite (3.35), omitting also the space dependences, as

G2n = G0
2n = N ′g−nm(d−2)n

∫
DΦ Φ(y1) . . .Φ(y2n) e−δS[Φ]e−S[Φ]/g , g =

λ

m4−d , (3.37)

with

S[Φ] =

∫
ddy

[1

2
(∂Φ)2 +

1

2
Φ2 + (Φ2)2

]
, (3.38)

δS[Φ] =
(
a

(d)
1 + δd,3 a

(d)
2 g
)∫

ddy
[1

2
Φ2
]
. (3.39)

The counterterm action δS, in both d = 2 and d = 3, is subleading to S in a saddle point

expansion in g and does not change the saddle point structure of S[Φ] if the convergence of

the path integral at large field values is dictated by S. This is the case in the RS S, since

other hand, the arguments made in ref. [9] and reviewed in what follows allow us to conclude that these theories
are Borel resummable in the proper loopwise expansion. For instance, for a φ2p potential the loopwise parameter
is g2p = (λ/m2)1/(p−1) and Schwinger functions are Borel summable in g2p, though they are not in λ/m2.
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δS is quadratic in the field, while S is quartic. A simple scaling argument, equivalent to an

euclidean version of Derrick’s theorem [66, 23], allows us to show that the action S does not

have any non-trivial critical points with finite energy, aside from the trivial one Φ = 0, for real

field configurations. The combination of reality and boundedness of the action and the presence

of a unique critical point makes the domain of integration of the path integral (3.35) a single

Lefschetz thimble, guaranteeing the Borel summability of the Schwinger functions G(2n) [17].13

A similar argument is expected to apply for Schwinger functions involving composite operators

constructed out of φ and their derivatives.

It might be useful to compare the results of refs. [7,8] with those of ref. [9]. While the proof

of refs. [7,8] requires a detailed study of the analytic properties of the exact Schwinger functions

in the coupling constant λ, the argument based on Lefschetz thimbles in ref. [9] makes it possible

to avoid such study and to reach the same conclusion in a simpler way. Borel summability holds

for all real values of the coupling where the Schwinger functions are well-defined. On physical

grounds, we expect this to hold until the theory undergoes a phase transition, in which case

Schwinger functions or their derivatives can diverge. We can in turn use the necessary and

sufficient criterion of Borel summability of ref. [16] to establish that Schwinger functions should

be analytic in the region in fig. 3.1. We expect this region to extend until the critical coupling

gc where a second order phase transition (or of any other kind, for more general theories)

occurs.14 Moreover, the simplicity of the arguments in ref. [9] immediately allows us to establish

Borel summability for more general theories beyond the φ4 with positive squared mass term, the

subject of study in refs. [7,8].15 Of course, the more heuristic derivation of ref. [9] does not match

the standard of mathematical rigor typically requested in constructive quantum field theory. In

particular, as physicists we do assume that the Schwinger functions (and the theory itself) exist.

In contrast, in constructive field theory the existence of a non-perturbative definition of the

theory is generally the first important point to be established, Borel summability (if any) being

a by-product. Interestingly enough, despite the approaches and the methodologies substantially

differ among refs. [7,8] and [9], in both cases Borel summability is only established in RSs equal

or equivalent to the minimal one we denoted by S.

It is not difficult to show which additional complications can occur in our construction to

prove the Borel summability in other non-minimal RSs. For instance, by repeating the steps

13More precisely, we mean that for any choice of non-coincident points xi the resulting series in g is Borel
summable. Alternatively, as in refs. [7, 8], we could smear the local operators φ(xi) by means of some functions
fi and consider their smeared version φfi . The asymptotic series of the smeared Schwinger functions Gsm

2n would
then be Borel summable for any sensible choice of smearing functions fi.

14Schwinger functions analytically continued past a phase transition might still be physically sensible. See
refs. [9, 38] for more details and for some numerical evidence in the d = 2 φ4 case.

15See ref. [67] for a very recent paper where Borel summability in certain low dimensional theories is established
in the context of constructive quantum field theory.
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from (3.36) to (3.39) in the RS S̃, we would define

φr(x) =
M̃ (d−2)/2√

g̃
Φr(y) , y = M̃x , (3.40)

and write

G2n = ZnGB2n = N ′Zng̃−nM̃ (d−2)n

∫
DΦr Φr(y1) . . .Φr(y2n) e−δS[Φr]e−S[Φr]/g̃ , (3.41)

with S[Φr] as in (3.38) and

δS̃[Φr] =

∫
ddx

[1

2

Z − 1

g̃
(∂Φr)2 +

1

2

δM̃2

g̃
Φ2

r +
Zg̃ − 1

g̃
(Φ2

r)2
]
. (3.42)

The counterterm δS̃ is still subleading to S in a saddle point expansion in g̃, but now two

subtleties arise. First, the counterterms Z, Zg and δM̃2 entering δS̃ are not expressions that

can be computed in closed form. They can only be determined order by order in perturbation

theory but the resulting series are in general asymptotic and would require to be resummed.

In other words, the RS S̃ is intrinsically perturbative in nature and hence is not suitable to be

used to establish a property of a theory that goes beyond perturbation theory, like its Borel

resummability. Second, in contrast to δS, δS̃ contains terms quartic in the field Φr, which could

in principle change the convergence properties of the path integral at large field values as dictated

by S, and possibly invalidate the statement that a resummation of the saddle point expansion

around solutions of S reconstructs the full result. In light of that, the Borel summability of the

expansion in g̃ cannot be assessed. We are not aware of any paper in the constructive quantum

field theory literature where the Borel summability of d = 2 or d = 3 field theories is established

or even attempted in non-minimal RSs such as S̃.

A non-perturbative change of RS of the form g = g(g̃) would not affect Borel summability

if this mapping preserves the necessary and sufficient conditions for Borel summability, namely

a region of analyticity as in fig. 3.1 in the g̃ complex plane and a bound on the growth of the

coefficients of its asymptotic expansion. Unfortunately, we typically do not have access to such

non-perturbative mapping, and only know it in perturbation theory. In this case we will have

g ∼ g̃ +

∞∑
k=2

akg̃
k . (3.43)

In general the above series is asymptotic (that’s why the ∼ sign instead of an equality), as it

happens for instance when relating the coupling g in the RS S with the coupling g̃ in the RS

S̃. We should then first of all face the problem of proving the Borel summability of the series

(3.43), in general a non-trivial task. Even if we can somehow prove that the series (3.43) is Borel
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resummable to its exact form g(g̃), we will still not be able to prove that Borel summability of

Schwinger functions in one RS implies that in the other RS. Indeed, given an observable F (g)

which is Borel reconstructed from its asymptotic series
∑∞

k=0 Fkg
k in the RS with coupling g,

naively plugging (3.43) in the series for F (g) will not in general give rise to a Borel resummable

series in g̃. Borel summability of the composed series expansion of F (g(g̃)) would follow if∑∞
k=0 Fkg

k were convergent (see e.g. proposition 2.11 of ref. [68] or section 4.4c of ref. [69]) or if

both F (g) and g(g̃) satisfy certain analyticity properties close to the origin which are stronger

than the ones required for Borel summability [70, 71]. Hence, without further assumptions, we

would be unable to prove the Borel summability of the observable F in the RS with coupling g̃.

3.4 RS Dependence in Minimal Schemes and Self-Dualities

Let us look back at (3.43). In renormalizable theories it is generally hard to go beyond it because

the process of renormalization occurs to all orders in perturbation theory. On the other hand,

super-renormalizable theories require a finite number of subtractions and therefore provide a

playground for theories where we can hope to do better than (3.43). This is the case when

working on change of schemes inside the minimal RSs. If g and g′ denote the renormalized

couplings in two minimal renormalization schemes we can expect to find the exact form of the

finite change of scheme g′ = g′(g). We will do that in what follows for quartic O(N)-invariant

scalar theories in d = 2 and d = 3 dimensions for a one-parameter family of renormalization

schemes within the same family (like MS vs MS). Let us rewrite once again the euclidean action

of the theories,

S =

∫
ddx
[1

2
(∂µφi)

2 +
1

2
m2
Bφ

2
i + λB(φ2

i )
2 + ρB

]
, i = 1, . . . , N . (3.44)

As we have seen, for d < 4 only the mass term and the vacuum energy term require renormal-

ization, the quartic coupling and the field φ being finite. We consider dimensional regularization

and define the renormalized mass and coupling in d = 2 or d = 3 as

m2
B = m2 + δm2 , λB = µελ , ρB = µ−ε(ρ+ δρ) , d = n− ε , n = 2, 3 . (3.45)

Note that λ has mass dimension 2 and 1 in d = 2 and d = 3, respectively. The introduction

of an RG scale µ might confuse the reader. In fact, there are no large log’s to be resummed

in perturbation theory and consequently no need to introduce a further mass scale µ in the

problem. The natural choice would be to simply set µ = m in (3.45). However, changing µ →
µ e−κ/2, where κ is an arbitrary real parameter, is equivalent to change the counterterms δm2

and δρ in (3.45) and hence is a convenient way to introduce a simple one-parameter class of
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renormalization schemes.16 That said, all the considerations below could be derived using e.g.

cut-off regularization at fixed dimension, but at the price of having more complicated expressions

in d = 3.

Let us assume that m2 > 0, so that we are in the classically unbroken phase of the theory.

To all orders in perturbation theory the β functions are easily determined since there are no

contributions to βλ and only one to βm2 in both d = 2 and d = 3, given respectively by the first

and second diagrams in fig. C.1 of appendix C. One has 17

βλ = 0 , βm2 = 2bd−1λ
d−1 , d = 2, 3, (3.46)

where

b1 = −N + 2

π
, b2 =

N + 2

π2
. (3.47)

If we denote by m2 the squared mass parameter in the original scheme, in the scheme where

µ→ µ e−κ/2 we get a squared mass parameter m′2 equal to

m′2(µ) = m2(µ) + λd−1bd−1κ . (3.48)

Using the running of the mass term, this can be written more explicitly as

m2 + λd−1bd−1 log
µ2

m2
= m′2 + λd−1bd−1 log

µ2

m′2
− λd−1bd−1κ , (3.49)

where m2(µ2 = m2) ≡ m2, m′2(µ2 = m′2) ≡ m′2. The relation (3.49) can be further rewritten

as

fd(x) = fd(x
′) + κ , (3.50)

where

fd(x) ≡ log x+ (−1)dx , x ≡ 1

N + 2

(π
g

)d−1
, g ≡ λ

m4−d . (3.51)

Note that g is the dimensionless loopwise expansion parameter while the variable x (in units of

λ) is proportional to the squared mass term in both d = 2 and d = 3 dimensions. We can use

(3.50) to find an exact change of scheme x′ = x′(x).

Consider first the d = 2 case. Solving for x′ we get for any κ the unique solution

x′ = W0

(
xex−κ

)
, (3.52)

where W0 is the principal branch of the Lambert function W . This function will repeatedly

16In 4d a relation of this kind with κ = log(4π)− γE links the MS and MS schemes.
17We do not report here the β function for the vacuum energy, which for d = 3 can be found in (C.3), since it

does not play any role in the analysis that follows. The vacuum energy will be neglected until section 3.8.
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appear in our considerations, so we refer the reader to appendix A for its definition and a brief

summary of some of its properties. This solution agrees with the one obtained in perturbation

theory by expanding g′ for small g:

g′ = g +
(N + 2)κ

π
g2 +

(N + 2)2κ(κ− 1)

π2
g3 + . . . (3.53)

Instead of expanding W for large values of its argument, that involves iterative logs, one can

alternatively expand for small κ, by noting that at order n in perturbation theory the change

of scheme involves a polynomial of degree n − 1 in κ. Defining y = x − κ, we are left with the

expansion of W (yey + κey) for small κ. The Taylor expansion around κ = 0 can be performed

using (A.6) and the fact that by definition W (yey) = y. We get

x′ = x− κ+

∞∑
n=1

κn

n!

pn(x− κ)

(1 + x− κ)2n−1
. (3.54)

Expanding this relation for large values of x finally reproduces, to all orders in perturbation

theory, the perturbative change of scheme given in (3.53). This expansion for large x is of the

form

x′ = x− κ+ κ
∞∑
n=1

qn(κ)

xn
, (3.55)

where qn are polynomials of degree n − 1 in κ. The coefficients of the monomials entering qn

alternate in sign and indicate that the convergence properties of the series are better when κ > 0.

We have not determined the exact radius of convergence R(κ) of the series (3.55) but we have

checked that R(κ) ∼ 1/|κ|.
It is well-known that the N = 1 φ4 theory has a second-order phase transition at a critical

value of the (inverse) coupling xc in the same universality class of the d = 2 Ising model.18 Given

xc(κ = 0) ≡ xc, the exact relation (3.52) allows us to find the analytic form of the dependence

of the critical coupling on the renormalization scheme:

xc(κ) = W0(xce
xc−κ) . (3.56)

For κ→ −∞, we have

xc(κ) ≈ |κ|+ xc , (3.57)

and the fixed point coupling approaches the Gaussian one, while in the opposite limit κ→∞,

xc(κ) ≈ xcexc e−κ (3.58)

18For N = 2 vortices appear and the theory has a Berezinskii-Kosterlitz-Thouless transition [72–74]. For N ≥ 3
the theories are gapped and no transition occurs. See [75] for a recent analysis of 2d O(N) models for continuous
values of N between −2 and 2.
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the coupling goes to infinity exponentially in κ. As the renormalization scheme is varied, we al-

ways find a fixed point and hence the phase transition is “visible” from the (classically) unbroken

phase in d = 2 for any choice of κ.

Let us now consider the more interesting case of d = 3, where the apparently innocuous sign

difference between d = 2 and d = 3 in (3.51) completely changes the picture. Solving for x′, for

any κ we now get two solutions

x′w = −W−1

(
− xe−x−κ

)
, x′s = −W0

(
− xe−x−κ

)
, (3.59)

where x′w > 1 and x′s < 1, associated to the two different branches W−1 and W0 of the Lambert

function, see appendix A. We label the two branches as weak (w) and strong (s) branches. The

solution that agrees with the one obtained in perturbation theory is obtained by expanding W−1

for x→ +∞, which corresponds to xe−x → 0+. Using (A.5), we get

x′w ≈ x+ κ+ . . . (3.60)

The perturbative change of scheme is obtained by proceeding as before and can be written in

the form of (3.54), with the obvious replacement x→ −x. The other non-perturbative solution

is obtained by expanding W0 for x→ +∞ and gives

x′s ≈ xe−x−κ . (3.61)

Two solutions occur also for κ = 0 and indicate that O(N) vector models in d = 3 admit two

“dual” descriptions in the classically unbroken phase. They are related as follows:

xs = −W0(−xwe−xw) , or xw = −W−1(−xse−xs) , (3.62)

for xw > 1 and xs < 1. In terms of mass scales the first relation in (3.62) gives

lim
m→∞

m2
s ≈ m2e

− π2m2

(N+2)λ2 , (3.63)

where m2
w ≡ m2. Interestingly enough, (3.63) can be interpreted as the “dynamically generated”

RG invariant scale

Λ2
RG = µ2e

− π2

(N+2)g2(µ) , (3.64)

that arises from the β-function for g2:

βg2 = −2(N + 2)

π2
(g2)2 . (3.65)

By taking µ = m, g(m) = λ/m, we see that ΛRG coincides with the weak coupling limit (3.63)
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of ms. The strong and weak branch fuse at the self-dual point

xSD = 1 ⇒ gSD =
π√
N + 2

, (d = 3). (3.66)

In the large N limit with λ → 0, N → ∞, and λN = fixed, the two-loop term in (3.49) drops

out and correspondingly the function f(x) trivializes. No self-duality survives in this large-N

limit.

A similar analysis can be done for m2 < 0, namely in the classically broken phase, but now

the value of N matters. For N > 1 in d = 2 the Coleman-Mermin-Wagner theorem [76,77] forbids

the appearance of Goldstone bosons, so the theory is always non-perturbatively gapped and we

cannot expect to be able to deduce strongly coupled effects by merely looking at perturbative

counterterms. This is in agreement with the fact that for N > 1 in d = 2 Borel summability

is not guaranteed [9]. For N > 1 in d = 3 a continuous symmetry is spontaneously broken

and massless Goldstone bosons appear. The relation (3.49), based on the presence in the theory

of a single O(N)-invariant mass scale, no longer holds and a more refined analysis is required

(see also footnote 20). For simplicity, in what follows we focus on the case N = 1, for which

we expect that the analysis made above for m2 > 0 also holds for m2 < 0.19 We denote the

parameters in the broken phase with a hat and continue to keep generic N in the formulas, with

the understanding that N = 1. The β-functions (3.46) still apply, but we now have

m̂2(µ2 = m̂2) = −1

2
m̂2 , (3.67)

where −m̂2/4 is the renormalized mass term in the action, such that the particle excitation has

squared mass m̂2 > 0. In the broken phase (3.50) reads

f̂d(x̃) = f̂d(x̂
′) + κ̂ , (3.68)

where

f̂d(x̂) ≡ log x̂− (−1)dx̂ , x̂ ≡ 1

2(N + 2)

(π
ĝ

)d−1
, ĝ ≡ λ

m̂4−d . (3.69)

We see that, as far as the scheme dependence is concerned, the d = 2 and d = 3 theories in the

broken phase behave respectively like the d = 3 and d = 2 theories in the unbroken phase! The

whole analysis made before applies with this replacement. In particular, we conclude that the

d = 2 N = 1 theory admits a self-duality in the broken phase. The strong and weak branch fuse

19However, the situation simplifies at large N , where we can see the non-perturbatively generated mass gap
from an analytic continuation in the coupling space, see subsection 3.6.1.
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at the self-dual point

x̂SD = 1 ⇒ ĝSD =
π

2(N + 2)
, (d = 2). (3.70)

3.5 Connection with Chang and Magruder Dualities

We have seen in section 3.4 how to perform an exact change of renormalization schemes within

the same phase of the theory. However, classically unbroken and broken phases are simply

characterized by the sign of the squared mass term and since the latter is in fact divergent, we

should be able to push further our change of schemes (for N = 1) and to relate one phase to

another, passing through infinite coupling (m2 = 0). The relation (3.48) still applies and, in

light of (3.67), reads now

log(x/2) + (−1)dx = log x̂− (−1)dx̂+ κ , (3.71)

in terms of the variables defined in (3.51) and (3.69). The relation (3.71) states that a theory

in the broken phase with negative squared mass term −m̂2/2 is equivalent to a theory in the

unbroken phase with squared mass term m2 (with the same λ) provided the two mass scales are

related as in (3.71). The theories are “dual” because they can be seen as the same theory where

the mass term is renormalized differently. For κ = 0 in d = 2, the relation (3.71) coincides with

Chang duality [11], originally derived using a normal ordering prescription. In d = 3 relation

(3.71) gives rise to a duality first discussed by Magruder [12].20 The original derivation of [12]

made use of cut-off regularization and a different renormalization scheme (without the need of

introducing a RG scale µ), where an extra term proportional to
√
x appeared on both sides

of (3.71) due to a divergence induced by the one-loop tadpole-like diagram. The presence of

such term hinders an analytic solution of the duality relation and it obscures the close analogy

between the d = 2 and the d = 3 cases. This divergence depends on the renormalization scheme

and is set to zero in minimal subtraction schemes based on dimensional regularization. Note

that no duality occurs for non-integer d, since the log terms in (3.71) can only appear for integer

dimensions.

20Magruder actually wrote down a duality for arbitrary N by adding O(N) group theoretical factors to the
N = 1 case, as if the symmetry would be linearly realized, see (3.17) of [12]. For instance, the term proportional
to Λ − µ on the right hand side of the counterterm (3.16) in [12] would naturally arise if all particles in the
one-loop tadpole-like diagram responsible for the linear divergence had mass µ2. Massless particles would induce
IR divergences in the sunset diagram contribution, proportional to log(µ/Λ) in (3.16). Due to the derivative
interactions of Goldstone bosons, we expect that IR divergences cancel, but in a non-trivial way in a linear
parametrization in terms of the field-components of φi. A duality might still hold for N > 1 but establishing it
requires to understand how to map operators in a theory from a phase to another, where a global symmetry is
linearly or non-linearly realized, respectively.
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Figure 3.2: Phase structure of the N = 1 φ4 theory according to the Chang-Magruder dualities in d = 2
and d = 3, in schemes where respectively xc < xI and x̂c < x̂I, as a function of the parameter x
(proportional to the squared mass).

For κ = 0 and at fixed x (x̂), the solutions in x̂ (x) of (3.71) are

x̂w = −W−1(−ωxex) , x̂s = −W0(−ωxex) , x = W0

( x̂
ω

e−x̂
)

(d = 2) , (3.72)

x̂ = W0(xωe−x) , xs = −W0

(
− x̂

ω
ex̂
)
, xw = −W−1

(
− x̂

ω
ex̂
)

(d = 3) , (3.73)

with ω = 1/2. Note that (3.72) and (3.73) are related by the map

x↔ x̂ , ω ↔ 1

ω
, (3.74)

which is again a manifestation of the interplay between unbroken and broken phases in d = 2

and d = 3. In d = 2, at fixed x, the two solutions in (3.72) are real for xex/2 < 1/e, i.e. for

(setting N = 1)

g ≥ gI ≡
π

3W0(2/e)
≈ 2.26 , (d = 2) . (3.75)

In d = 3, at fixed x̃, the two solutions in (3.73) are real for 2x̂ex̂ < 1/e, i.e. for (setting N = 1)

ĝ ≥ ĝI ≡
( π2

6W0(1/(2e))

)1/2
≈ 3.23 , (d = 3) . (3.76)
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Figure 3.3: Positions in the complex x plane of the critical values of the weak (x
(w)
c blue line) and strong

(x
(s)
c red line) branches as the renormalization scheme κ is varied. The black dot corresponds to the

self-dual point xSD = 1 where the critical points merge.

Depending on the value of the coupling, the theories admit one or three equivalent descriptions.

We summarize the phase structure in fig. 3.2. In d = 2 the theory admits only one description

in the classically unbroken phase for x > xI, where xI is the map of the self-dual point x̂SD by

means of (3.71). The region 0 < x < xI can instead be mapped to 0 < x̂ < x̂SD and x̂ > x̂SD,

so three descriptions are possible, one in the classically unbroken and two in the classically

broken phases. Within our class of schemes the position of the self-dual coupling is invariant

while the positions of the critical couplings, denoted by xc, x̂
(w)
c and x̂

(s)
c with obvious notation,

depend on the renormalization schemes and are related, as discussed in the next section. In the

schemes where xc > xI in d = 2, the unbroken region around x̂SD disappears and the phase

transition is accessible only from the unbroken phase. In d = 3 the structure is the same after

the substitutions x↔ x̂ and inverting the role of broken and unbroken phases.

3.6 Fixed Points Annihilation and Analyticity Domain

It is well-known that d = 3 O(N) quartic models undergo a second-order phase transition for

any value of N . So, how could one trust the existence of a strong-weak duality in these theories

based on perturbative treatments around the (classically) unbroken phase? In particular, where

is the broken phase? We will now address these questions.

Suppose that in a given renormalization scheme the d = 3 O(N) models have a phase

transition for o(1) real values of x
(w)
c and x

(s)
c in the weak and strong branches, respectively. The

existence of such schemes will be proved in section 3.8. Using (3.59) we can determine how the
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fixed points move when we change renormalization scheme:

x(w)
c (κ) = −W−1

(
− x(w)

c e−x
(w)
c −κ

)
,

x(s)
c (κ) = −W0

(
− x(s)

c e−x
(s)
c −κ

)
, (3.77)

where x
(w)
c ≡ x

(w)
c (κ = 0), x

(s)
c ≡ x

(s)
c (κ = 0).21 For κ > 0, as κ increases, x

(w)
c (κ) and x

(s)
c (κ)

respectively increases and decreases, moving far apart. On the other hand, for κ < 0, as |κ|
increases x

(w)
c (κ) and x

(s)
c (κ) respectively decreases and increases, approaching each other, until

they merge when the argument of the two branches of the Lambert function equal −1/e, namely

at the self-dual point

x(w)
c (κ∗) = x(s)

c (κ∗) = xSD = 1 , κ∗ = 1 + log(xce
−xc) . (3.78)

For κ slightly smaller than κ∗, x
(w)
c and x

(s)
c move in the imaginary axis in a complex conjugate

pair. As κ decreases they move backwards in an approximate parabolic trajectory and then they

move towards |x| → ∞ in parallel along the negative real axis with Imx
(w)
c → π, Imx

(s)
c → −π,

see fig. 3.3. More precisely, for κ→ −∞, we have

x(w)
c (κ) ≈ −|κ|+ iπ , x(s)

c (κ) ≈ −|κ| − iπ , (3.79)

and both critical couplings approach the free theory, while for κ→∞ we have

x(w)
c (κ) ≈ κ+ x(w)

c , x(s)
c (κ) ≈ x(s)

c e−x
(s)
c e−κ . (3.80)

This implies that for κ < κ∗ the phase transition cannot be seen in d = 3 O(N) theories

when starting from the classically unbroken phase, with real values of the coupling. In these

schemes we can then hope to have access to the strong-weak duality starting from perturbative

considerations, without encountering non-analyticities associated with phase transitions. Note

that this is independent of the Magruder duality and hence apply for any N .

A few studies of the 2d and 3d φ4 theories have been performed away from criticality, and

there was no consensus on the appearance of first/second-order phase transitions when m2 > 0.

Studies using the Gaussian effective potential were either inconclusive on the appearance of a

phase transition [78] or found a phase transition that could be first or second-order [79]. Ref. [80]

studied the φ4 theory at finite volume using Monte Carlo and finite states truncations, and found

no phase transition for m2 > 0. We see that this problem was in fact a red herring, since the

appearance of the phase transition (more precisely a gapless phase for real values of the coupling)

for m2 > 0 is a renormalization scheme-dependent question.

21Note that the parameter κ in (3.77) is shifted by a constant with respect to the κ defined in section 3.8.
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Figure 3.4: Conjectured minimal singularity structure of observables as analytic functions of the coupling
x (proportional to m2) for O(N) vector theories in d = 3 for κ > κ∗ (left) and κ < κ∗ (right).

We can speculate about the analyticity properties of generic observables F (x) as analytic

functions of x, see fig. 3.4.22 We expect that F (x) should have a branch-cut singularity at infinity,

which corresponds to the usual branch-cut associated to perturbative asymptotic expansions

around free theories. Self-duality implies that the origin should also be a singular branch-point.

In the assumption of maximal analyticity, the branch-cut at infinity and the one at the origin

are continuously connected. This branch-cut is depicted by red circles in fig. 3.4. In addition to

that, we expect further branch-cut singularities in correspondence of the critical values x
(w)
c and

x
(s)
c , either on the real line or in the complex plane, depending on the choice of renormalization

scheme. For N > 1 we do not really know the analytic structure in the classically broken phase

(Re x < 0). Assuming again maximal analyticity, we might have a single critical value on the real

line at −x̂c for any κ, as expected in the N = 1 case. The further branch-cuts associated to x
(w)
c ,

x
(s)
c and −x̂c are depicted by black crossed lines in fig. 3.4. These are the minimal singularities

that we expect in the complex x plane, but of course others could be present. It would be

extremely interesting to understand if the analyticity properties of observables, together with

perturbative data and the self-duality condition F (xw) = F (xs) might allow for an exact solution

for the O(N) models.

3.6.1 Large N Non-Perturbative Mass Gap in d = 2

It is well-known that the appearance of a non-perturbative mass gap can be derived at leading

order in a 1/N large N expansion in d = 2 O(N) vector models [81]. We will see here how

such a mass gap can be interpreted to arise from an analytic continuation of the squared mass

from positive to negative values. By introducing a Hubbard-Stratonovich (HS) field σ(x) we can

rewrite S as in (B.5). Neglecting the vacuum energy and the counterterm δ̌m2, sub-leading in

22A relevant class of observables are Schwinger n-point functions smeared with Schwarzian test functions.
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o(N−1), we have

Š =

∫
ddx
[1

2
(∂µφi)

2 +
1

2
m2φ2

i −
1

2
σ2 +

1

2
v̌σφ2

i + σδT

]
. (3.81)

Note that m2 in (3.81) can be positive or negative. If we integrate out the scalar fields φi we get

an effective potential for σ. Its extremum is given in the MS scheme by

σ = −m
2

v̌
+
Nv̌

8π
W (M2) , (3.82)

where

M2 =
πµ2

λ̌
e
πm2(µ)

λ̌ (3.83)

and λ̌ is fixed in the large N limit, see (B.2). Note that M is an RG-invariant scale with respect

to the large N limit of the β-function in (3.46). In particular, we can set µ2 = |m|2. The value

of m2(µ2 = |m|2) corresponds by definition to the classical mass term in the action. In the

classically unbroken case, we have m2 > 0 and (3.82) boils down to σ = 0, since W (xex) = x by

definition and the two terms in (3.82) cancels each other (8λ̌ = Nv̌2). As expected, the HS field

gets no VEV in the unbroken case and the gap in the theory is determined by the classical mass

term m. On the other hand, in the classically broken phase m2 < 0 and the Lambert function

does not “trivialize”. Correspondingly the HS field gets a VEV, the classical m2 term in (3.81)

is cancelled by the first term in (3.82) and we are left with a positive non-perturbative mass

term equal to

m2
np =

λ̌

π
W (M2) . (3.84)

In the parametric weakly coupled limit λ̌/|m2| → 0, we have

m2
np ≈ |m2| e−

π|m2|
λ̌ . (3.85)

Both the perturbative and non-perturbative mass gaps arise from (3.82). We can then also

interpret the NP mass gap as the analytic continuation of the perturbative one from m2 > 0

to m2 < 0, passing through infinite coupling.23 Interestingly enough, the non-perturbative scale

(3.85) can also be deduced from IR renormalons that would appear in a perturbative expansion

around the “naive” vacuum σ = 0 [83].

23A mass gap seen as analytic continuation past infinity in the large N limit of non-linear O(N) sigma models
has been suggested in [82].
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3.7 Numerical Results in the d = 2 φ4 Theory

In this section we determine the critical coupling and the critical exponent ν for the d = 2,

N = 1, φ4 theory for different values of κ, introduced in section 3.4, in order to study the

RS-dependence and the effectiveness of the Borel resummation. We numerically confirm the

theoretical expectation on how the value critical coupling gc varies in the one-parameter family

of RSs. On the other hand ν, being a direct physical observable, should be RS-independent, so

its evaluation in different RSs provides also a consistency check of the results.

Let us consider the perturbative expression for the mass gap defined in (3.25). Its expression

up to order g8 has been found in ref. [9] in the RS where the normal ordering is performed

with respect to a the mass m. This corresponds to having a counterterm δm with value exactly

opposite to the tadpole diagrams. We identify this scheme with κ = 0. Starting from this, we

compute the perturbative series in a generic scheme parametrized by κ by using the expansion

of (3.52). We get:

M2

m2
= 1 +

3

π
κg −

(
3

2
+

9

π2
κ

)
g2 +

(
9

π
+

63ζ(3)

2π3
+

(
27

π3
+

9

2π

)
κ+

27

2π3
κ2
)
g3

−
(

14.655869(22) +
27

2π4

(
6 + 5π2 + 14ζ(3)

)
κ+

27

2π4
(9 + π2)κ2 +

27

π4
κ3
)
g4

+

(
65.97308(43) + 51.538171(63)κ+

81

4π5

(
36 + 17π2 + 42ζ(3)

)
κ2 +

81

2π5
(11 + π2)κ3 +

243

4π5
κ4
)
g5

−
(
347.8881(28) + 301.2139(16)κ+ 114.49791(12)κ2+

81

2π6

(
105 + 37π2 + 84ζ(3)

)
κ3 +

243

4π6
(25 + 2π2)κ4 +

729

5π6
κ5
)
g6

+

(
2077.703(36) + 1948.682(14)κ+ 828.4327(39)κ2 + 205.20516(19)κ3+

243

8π7

(
675 + 197π2 + 420ζ(3)

)
κ4 +

729

20π7
(137 + 10π2)κ5 +

729

2π7
κ6
)
g7

−
(

13771.04(54) + 13765.22(21)κ+ 6373.657(40)κ2 + 1778.1465(75)κ3 + 323.93839(27)κ4+

2187

20π8

(
812 + 207π2 + 420ζ(3)

)
κ5 +

2187

20π8
(147 + 10π2)κ6 +

6561

7π8
κ7
)
g8 . (3.86)

This is the same series one obtains by doing computations the RS where the normal ordering

is performed with respect to a generic scale µ = meκ/2, so that for κ 6= 0 the one-loop tadpole

diagram no longer vanishes:

+ =
3

π
κλ , (3.87)

and hence all loop diagrams involving tadpoles cannot be neglected. The expansion of (3.52)
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−→ + + + + + . . .

Figure 3.5: Starting form the the 1PI propagator p2 + m2 and expanding (3.52) in for small λ we have
the series which accounts for the bubble diagrams. Each term is regularized as in (3.87).

applied to the tree-level term m2 produces all higher-loop bubble diagrams, see fig. 3.5 for their

form up to three-loop level.

3.7.1 Large-Order Behavior

The large-order behavior of the perturbative expansion of n-point Schwinger functions Gn in

N -component φ4 theories in 2 ≤ d < 4 dimensions has been worked out in ref. [84] by looking

at the semi-classical complex instanton configurations. Following the notation of ref. [9],24 the

large-order behavior of the coefficients G
(k)
n of the Schwinger functions Gn is given by

G(k)
n = cn(−a)kΓ(k + bn + 1)

(
1 +O(k−1)

)
. (3.88)

The knowledge of the coefficients entering (3.88) is valuable when using numerical Borel re-

summation techniques (in particular the coefficient a is crucial to use the conformal mapping

method), but they will not be needed in the discussion that follows. It is enough for our pur-

poses to know that the coefficients a and bn are both expected to be RS-independent while cn

is not [84]. It is straightforward to verify this expectation when the cn’s do not depend on m2

using the exapansion of (3.52). For large k we find

G(k)
n (κ) = cn(κ)(−a)kΓ(k + bn + 1)

(
1 +O(k−1)

)
, (3.89)

where

cn(κ) = eκ/acn . (3.90)

While the choice of RS affects only the overall factor in the large-order estimate, the approach to

the asymptotic behavior might and indeed does significantly change as the RS is varied. This is

relevant in practice, since we always deal with truncated series. Let us consider the perturbative

expression for the mass gap defined in (3.86). We can see that the coefficient multiplying the

gn term is a polynomial of degree n − 1 in κ for n > 1. The O(κn−1) term is determined by

the change of scheme and is equal to κn−1(−3/π)n× 1/(1−n). Thus more and more low orders

terms are dominated by the O(κn−1) contribution as |κ| gets larger and larger. As a consequence,

24Note a typo in eq. (3.14) of ref. [9]. The correct formula should be bn = n/2.
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κ Loop Order

3 4 5 6 7 8

-4 -3.1927 -5.0170 -1.6675 4.1456 0.6531 1.2648

-3 -3.0862 5.3535 0.6678 1.1928 1.0617 1.0789

-2 -0.7251 1.4431 1.0521 1.0513 1.0331 1.0309

-1 0.7251 1.0847 0.9993 0.9825 0.9791 0.9829

0 1.0040 0.9531 0.9113 0.9076 0.9158 0.9284

1 0.9665 0.8468 0.8232 0.8311 0.8489 0.8695

2 0.8712 0.7535 0.7423 0.7585 0.7830 0.8097

3 0.7767 0.6736 0.6711 0.6925 0.7214 0.7521

4 0.6947 0.6064 0.6095 0.6341 0.6653 0.6983

Table 3.1: The ratio of ratios R
(k)
M (κ) as given by (3.91) for different values of κ and of the loop order k.

when κ < 0 many perturbative terms at low order will have the same sign and differ from the

asymptotic estimate (3.89). We compare the ratios of the series of M2 in (3.86) with the ratio

of the corresponding asymptotic series for the two-point function G2:

R
(k)
M (κ) =

r
(k)
2,asym

r
(k)
M,κ

, r(k)
n,asym =

G
(k)
n

G
(k−1)
n

, r
(k)
M,κ =

M2(k)(κ)

M2(k−1)(κ)
, (3.91)

and report R
(k)
M (κ) for different loop orders k and values of κ in table 3.1. The behavior described

above is evident. At about κ = −5 all the terms in (3.86) are positive (apart from the linear

term evidently negative). For κ > 0, we see that the alternation of signs is preserved but the

deviation from the asymptotic behavior increases with κ.

3.7.2 Mass and Critical Exponent ν

We report here the results for the mass gap M and the critical exponent ν obtained by a

numerical Borel resummation, starting from the truncated expansion (3.86). We do not report

the details of our numerical implementation. A short introduction to the resummation methods

used can be found in chapter 2, while a more detailed description can found them in ref. [9],

together with the procedures to estimate the uncertainties.

We show in the left panel of fig. 3.6 the mass gap M as a function of the coupling g,

for different values of κ. All the plots are obtained using the conformal mapping method at

order g8. We have checked that similar, but less accurate, results are obtained using Padé-Borel

approximants. We verified that these values are in agreement with equation (3.56), see in the

right panel of fig. 3.6. The numerical findings on how xc depends on κ confirm the theoretical
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Figure 3.6: (Left panel) The pole mass M as a function of the coupling constant g using conformal
mapping for different values of κ, in order (from left) −1,− 1

2 , 0 (in black), 12 , 1. (Right panel) In green
critical coupling gc, determined as M(gc) = 0 using conformal mapping, reported as a function of κ, in
red the analytic curve for gc(κ) from (3.56) given as value of reference gc(κ = 0).

expectation of section 3.4. As expected, the phase transition is visible from the (classically)

unbroken phase in d = 2 for any choice of κ. The larger negative values κ takes, the smaller

gc becomes, until the critical regime becomes almost accessible in perturbation theory. Naively

one might believe that using a RS with κ � −1 should allow us to get better determinations

of the critical regime. This is however not the case, because for large values of κ the tadpole

correction (3.87) becomes large and perturbation theory unreliable. Large values of κ, that in

this case effectively plays the role of a large log, completely modify the asymptotic behavior of

(3.86), thus spoiling the resummation. The breakdown of perturbation theory is most clear if

we take the limit

κ→ −∞, g → 0, with gκ ≡ y = fixed. (3.92)

In this limit the mass gap (3.86) reduces to

M2 = m2
(

1 +
3

π
y
)
. (3.93)

The critical coupling is predicted to be at yc = −π/3 and correspondingly we would analytically

get ν = 1/2, which corresponds to the mean field theory value, far from the actual result ν = 1.

In the limit (3.92) we should instead keep in the scalar propagator the one-loop tadpole term,

effectively replacing m2 with M2. In the critical regime where M → 0 we will then have to face

IR divergences that make the perturbative expansion in g (and its resummation) ill-defined.

We now turn to the determination of ν. For κ 6= 0, where M2 includes a linear term in g, it

is useful to resum

Lκ(g) ≡ 2g

g∂g logM2
, (3.94)
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Figure 3.7: (Left panel) The critical exponent ν for different values of κ. The blue points are computed
with conformal mapping, the red ones with Padè-Borel approximants. (Right panel) The critical exponent
ν is computed with conformal mapping resummation technique for κ = −2 as function of the number of
loops l kept.

instead of using (3.29), as in the κ = 0 case [9], and extract ν as

ν =
1

∂gLκ

∣∣∣∣
g=gc

. (3.95)

We show in the left panel of fig. 3.7 the values of ν so determined, as a function of κ, in the range

κ ∈ [−5, 0]. The resummation using Padé-Borel approximants are not affected by spurious poles

only in the range of κ ∈ [−2,−1] and for the value corresponding to the normal ordering RS

κ = 0. The conformal mapping shows an increasingly worse convergence for values of κ > −3
2 ,

presumably because Lκ(g) has a series that differs more and more from the asymptotic one. As

can be seen, for the more negative values of κ the computed value for ν starts to depart from

its correct value ν = 1, drifting towards ν = 1/2, as expected from the previous discussion. We

have numerically verified that ν → 1/2 as κ → −∞ if we erroneously continue to resum the

perturbative expansion. The accuracy in the determination of ν does not significantly change as

κ is varied in the range where the use of perturbative expansion is justified. For illustration, we

show in the right panel of fig. 3.7 the value of ν as a function of the coefficient terms kept in the

resummation for the value κ = −2. The improvement as l, number of loops kept in the series,

increases is manifest.

3.8 Numerical Results in d = 3 O(N) Models

We report in this section the results obtained by resumming the perturbative series for the

vacuum energy and the mass gap defined as

Λ ≡ Γ(0) , M2 ≡ Γ(2)(p = 0) , (3.96)
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as a function of the coupling g in 3d O(N) vector models. We confirm the theoretical expec-

tations made in the previous sections. In particular, we provide evidence for the self-duality of

these models and determine how the critical coupling gc depends on the renormalization scheme.

We used as usual two independent methods for the resummation: conformal mapping and re-

construction of the Borel function via Padé approximants (in the following denoted for short

conformal-Borel and Padé-Borel respectively). We do not report the details of the numerical

implementation, which can be found in [9].25 The parameters needed to perform the conformal

mapping in 3d O(N) models are well-known and can be found e.g. in [84]. In all our results we

find agreement between conformal-Borel and Padé-Borel methods, typically with slightly smaller

uncertainties in the first one, and a consistent convergence of the results as the number of loops

used in the resummation is increased. For this reason, in order to avoid clutter in the figures, we

have decided to only plot quantities computed using conformal-Borel to the maximum available

order.

3.8.1 Perturbative Coefficients up to g8

We have computed the perturbative expansion of the zero-point function and the two-point

function at zero external momentum up to order g8. The computation has been performed

numerically in momentum space using various simplifications introduced in [85, 86, 60]. In the

following we summarize the principal aspects of the computation.

Choice of the scheme. Since we compute loop integrals numerically, a direct use of di-

mensional regularization is unfeasible. It is instead convenient to regularize divergences without

introducing a regulator, subtracting to integrands of Feynman diagrams their values at a given

fixed momentum, as proposed long ago by Zimmermann [87]. In this intermediate scheme (la-

beled with the subscript I) the mass counterterm δm2
I not only removes the divergence coming

from the sunset-diagram (here chosen in such a way that the sunset diagram is regularized to

be exactly zero at p = 0) but it cancels also the one-loop tadpole-like diagram:

δm2
I = −

(
+ p=0

)
. (3.97)

Renormalization of higher order diagrams is then trivially implemented by substituting every

tadpole and sunset subdiagram by its regularized counterpart:

reg

= 0 , (3.98)

25Padé approximants with poles on the positive real axis of the Borel variable were excluded in [9]. These are
now included taking the Cauchy principal value and adding to the error estimate the residue at the pole.
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reg

p = −λ2N + 2

π2

[
2− log

(
1 +

p2

9m2
I

)
− 6mI

|p|
arctan

(
|p|

3mI

)]
. (3.99)

All the diagrams involving tadpoles are set to zero, greatly reducing the number of integrals to

compute. The vacuum energy counterterm in this scheme is chosen such that all contributions

up to o(g3
I ) vanish.

Simplification of the integrands and numerical computation. In order to improve

the efficiency of the numerical integration we performed some analytical simplifications [85,86] on

the integrands that allowed us to greatly reduce the cost of the integrals for every diagram.26 We

have then numerically integrated each diagram using the Monte Carlo VEGAS algorithm [88]

from the python module vegas and later combined all the results with their corresponding

O(N) symmetry factors. As a sanity check, we compared the large N limit of the perturbative

expressions for Λ and M2 so obtained with those directly computed using large N techniques and

found total agreement within the accuracy of the numerical evaluation of Feynman diagrams. We

report in appendix B the computation of Λ and M2 at the first non-trivial order in the large N

limit. As a further check, we have computed the series of dΓ(2)/dp2(p = 0) and Γ(4)(p = 0) up to

order g8
I . In this way, as explained in section 6.1 of [9], we can determine the series expansion of

the β-function and of the critical exponent η in the physical scheme of [10] and have verified that

they match with those appearing in the literature, known up to order g̃7 and g̃6 respectively [89].

Mapping to the MS scheme. As a last step we have switched to the MS scheme by

perturbatively reexpanding m2
I(m

2) in powers of λ. The matching of the schemes is obtained by

imposing the relation

m2
I + δm2

I = m2 + δm2 , (3.100)

with m2 and δm2 in the MS scheme and we write δm2
I = −Σ1−Σ2a(0). The explicit expressions

for Σ1, Σ2a and δm2 can be found in the appendix C. We get

m2
I = m2 − λmI

N + 2

π
+ λ2N + 2

π2

(
log

9m2
I

m2
− 1

)
. (3.101)

By iteratively substituting mI in the right-hand side we then find the sought expansion. The

first three orders are

m2
I = m2

[
1− gN + 2

π
+ g2 (N + 2)(N + 4 log 3)

2π2
− g3 (N + 2)2(N + 6 + 8 log 3)

8π3
+ o

(
g4
)]

.

(3.102)

26Let us here skip further details, since in section 3.9.1 we are going to present the numerical strategies more
systematically and with some aspects upgraded.
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Figure 3.8: The vacuum energy Λ and the mass gap M2 as a function of the coupling constant g obtained
by ordinary perturbation theory up to g7 and g8 (dotted grey and black lines), optimal truncation (red
dotted line) and conformal-Borel resummation (blue line).

The vacuum energy is divergent up to order g3 and needs to be regularized by a vacuum energy

counterterm δρ. The computation of diagrams up to o(g3) in the MS scheme is presented in

appendix C. The final Taylor expansion up to order g8 of both Λ and M2 in the MS scheme is

reported in appendix D. We can now derive the series for Λ and M2 for the whole one-parameter

class of renormalization schemes presented in section 3.4. We identify κ = 0 with the MS scheme

above. Starting from this, it is straightforward to compute the perturbative series in a generic

scheme parametrized by κ by using the expansion of (3.59). We refrain to write the whole lengthy

series for Λ and M2 as a function of N and κ. For illustration, we just report below the terms

up to o(g2) in both series:

M2

m2
= 1− gN + 2

π
+ g2 (N + 2)(N + 4 log 3− 2κ)

2π2
+ . . . , (3.103)

Λ− ρ
m3

= − N

12π
+ g

N(N + 2)

16π2
− g2N(N + 2)

8π3

(
N + 2

4
− 3 + 4 log 2− κ

)
+ . . . .

For simplicity of notation the dependence on κ of the parameters m2, g and ρ has been left

implicit in (3.103). Note that the series above could equivalently be interpreted as the series in

the MS scheme with κ = 0, but with parameters m2 and ρ evaluated at the scale κ = log(µ2/m2).

In this way, a sanity check of the validity of the change of scheme is obtained by demanding

that both M2 and Λ satisfy the Callan-Symanzik equations(
µ∂µ + βm2∂m2

)
M2 = 0 ,(

µ∂µ + βm2∂m2 + βρ∂ρ
)
Λ = 0 ,

(3.104)

with βm2 and βρ given by (3.46) and (C.3), respectively. We always normalize the vacuum energy

as ρ(κ = 0) = ρ(m) = 0. This implies that in computing Λ in a scheme with κ 6= 0 the parameter
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Figure 3.9: The vacuum energy Λ and the mass gap M2 as a function of the coupling constant g for
different values of N in the scheme κ = 0. The results shown correspond to conformal-Borel resummation.

ρ(κ) is non-vanishing and should be taken into account.

3.8.2 Self-Duality

We report here the results obtained by numerical Borel resummation of the perturbative series

for Λ and M2 for different values of N and provide evidence for the self-duality of 3d O(N)

vector models. We start by showing the need of resumming the perturbative series in the region

of couplings of interest. To this purpose, we compare in fig. 3.8 Λ and M2 as a function of the

coupling g computed using the perturbative seven and eight loop results, optimal truncation,

and Borel resummations. We take N = 1 and choose the renormalization scheme κ = 0, where

M2 does not vanish for real values of g. A similar analysis applies for other values of N . In both

figures it is clear that perturbation theory breaks down before gSD = π/
√

3 at a value of g ≈ 1

for Λ and g ≈ 0.6 for M2, and we observe that these values slightly decrease while increasing

N . Therefore resummation techniques are required in order to study the self-duality.

As discussed in the previous sections, for κ < κ∗ the phase transition is expected to be not

visible from the unbroken phase. We show in fig. 3.9 Λ and M2 as a function of the coupling g

at κ = 0 computed for different values of N and using conformal-Borel resummation. The right

panel in fig. 3.9 clearly shows that M2(g) is always positive, with the curve M2(g) developing

a minimum around g = 0.6 and then continuing to increase for larger values of g, as shown in

fig. 3.11 for N = 1; this confirms the absence of a gapless phase. We can determine κ∗(N) by

computing the critical coupling for a value of κ where the transition occurs and then use the

map to determine the values of κ∗(N) where the two critical points merge. Taking as reference

value κ = 5, we get for the first values of N κ∗(1) = 3.5(2), κ∗(2) = 3.3(2), κ∗(3) = 3.2(2) and

κ∗(4) = 3.1(3).

Let us now focus on the region κ < κ∗, where M2 vanishes for complex values of the coupling,

and discuss the self-duality. First of all let us explain why we can probe self-duality using
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resummations of the perturbative series. The complex points where M2 vanish are generally

expected to be non-analytic points for Schwinger functions. Given a quantity F (g) admitting a

Borel resummable asymptotic expansion around g = 0, the region in the complex g plane where

the Borel reconstruction of the function is guaranteed to reproduce the original function is given

by a disk [16] with a radius which is determined by the first singularities of F (g) in the positive

half-plane. In our case the complex critical points are further away from the origin than the

self-dual point. This implies that the disk of minimal analyticity extends beyond the latter and

allows us to explore (part of) the strong branch when κ < κ∗.

If self-duality is assumed, we can extract useful information on the asymptotic behavior of

an observable F (g) at strong coupling g →∞. Let F (g) be an observable with mass dimension

n. After an appropriate rescaling we can write its Taylor expansion in the weak branch as

F (g) ∼ mngk0f(g) , f(g) = 1 +
∞∑
k=1

ckg
k , g =

λ

m4−d , (3.105)

where k0 ≥ 0 is the first non-vanishing order in perturbation theory. The ∼ is used because the

series is only formal (asymptotic). We consider both the d = 2 and d = 3 cases together, and

for simplicity drop the hats in d = 2 on the couplings. Self-duality implies

F (gw) = F (gs) ⇒ g
k0− n

4−d
w f(gw) = g

k0− n
4−d

s f(gs) . (3.106)

In the limit gw → 0, we obtain the scaling at strong coupling from (3.63) as

g−1
w ∼ (log gs)

1
d−1 , (3.107)

which plugged into (3.106) gives

lim
g→∞

f(g) ∼ g−k0+ n
4−d (log g)α , α =

1

d− 1

( n

4− d
− k0

)
. (3.108)

Therefore the scaling of the observable F (g) as g →∞ is

F (g) ∼ mngs (log g)α , s =
n

4− d
. (3.109)

Note that in general observables do not admit an analytic strongly coupled asymptotic Taylor

expansion around infinity, due to the appearance of the logs.27

We want to test the self-duality, so the scaling (3.109) will not be assumed. As a first indirect

test of the duality, we find that the parameter s, which is fixed by the optimization procedure

27Non-analytic expansions involving logarithms of the coupling have been invoked to cure IR divergences that
appear with massless particles in 2d and 3d [90]. Interestingly enough, we see here how these log’s automatically
arise from the duality.
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Figure 3.10: The shifted vacuum energy Λ = Λ− ρ(λ) (with ρ defined as in (C.3)) and the mass gap M2

as a function of 1√
x

=
√
N+2
π g, for N = 1, 2, 3. The error bands and the central values (dashed lines)

are obtained using conformal-Borel resummation. For any N the self-dual point is at x = 1. The points
correspond to values obtained in the weak branch and mapped in the strong branch using the duality
map (3.62). The vertical segment drawn on each band denotes the theoretical disk of analyticity: beyond
that value the curves have been drawn in gray. To avoid overlapping of the curves we have applied an
offset of ∆(M2/λ2) = (N − 1)/10 to the data in the right panel. In both panels κ = 5/2.

in our conformal-Borel resummations [9], is always close to the theoretical prediction (3.109)

for both Λ and M2. Analogously, with the Padé-Borel resummations we find that the best

approximants [p, q] satisfy the relation p− q = s.

We show in fig. 3.10 the vacuum energy Λ and the mass gap M2 as a function of 1/
√
x

for different values of N at κ = 5/2. In order to take into account the vacuum energy shift,

necessary to map it from the weak to the strong branch, we report the quantity Λ = Λ− ρ(λ),

where ρ is defined in (C.3). In this way, Λ should have an extremum at the self-dual point which,

in the variable x, is at x = 1 for any value of N . The black points in the figure correspond to

values obtained in the weak branch and mapped in the strong branch using (3.62). The vertical

segment drawn on each band denotes the disk of analyticity beyond which Borel resummation is

not guaranteed to work. Beyond that value, the curves have been drawn in gray. Fig. 3.10 gives

us good evidence for the self-duality. Note in particular how x = 1 is to a very good accuracy

an extremum of both Λ and M2, as expected. Interestingly enough, the agreement persists well

beyond the disk of analyticity for both Λ and M2.

3.8.3 Scheme Dependence of Critical Couplings

In this subsection we determine how the critical coupling gc depends on the renormalization

scheme. We show in the left panel of fig. 3.11 M2 as a function of g for N = 1 and different values

of κ. As expected, the phase transition is not always visible and by increasing the value of κ two

zeros appear. While the value of the first is in principle reliable and should be identified with the

weak critical coupling g
(w)
c , the same cannot be said for the second, since it is reached after the
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Figure 3.11: (Left) The mass gap M2/m2 for N = 1 at three different values of κ. (Right) The position of
the critical coupling xc(κ) in the complex x plane as κ is varied for N = 1. The blue bands are computed
with conformal-Borel, the dashed black line is the analytic expectation from (3.77).

theory has passed a phase transition. Being g = g
(w)
c a non-analytic point, Borel resummation is

not guaranteed for g > g
(w)
c . For this reason we can only focus on the region where g ≤ g

(w)
c .28

The accuracy of the numerical resummations depends on κ and only a limited range of optimal

values of κ (when the phase transition occurs) is expected. Indeed, as κ decreases, the two

critical couplings approach each other, and a general instability in the resummation procedure

is expected and in fact does occur. On the other hand, if κ increases, although the value of g
(w)
c

decreases, we are effectively in presence of large logs that spoil the validity of the perturbative

expansion, as already noted in d = 2. We choose as optimal reference scheme κ = 5 for any N .29

In the right panel of fig. 3.11 we plot the position of gc in the complex g-plane as κ is varied

and compare it with the analytic prediction given by (3.77). The movement of gc as κ varies

is in fair agreement with the theoretical prediction, but it shows a small disagreement. This

discrepancy reflects a systematic slow convergence and low accuracy in the resummations for

κ > κ∗. In order to quantify it, we can compare the values of gc defined as the zero of M2

and equivalently as the zero of the function L(g) = (∂g logM2)−1. The function L is useful

because it can be used to extract the critical exponent ν. For example at κ = 5, N = 1, we find

g
(M2)
c (κ = 5) = 0.898(5) and g

(L)
c (κ = 5) = 0.944(16). The two values are not in agreement and

indicate the presence of a systematic error which is not captured by our error estimate. Similarly

the accuracy in the determination of ν is significantly lower than that found in the literature

(see e.g. [57]) in the scheme of [10]. This lack of accuracy might be due to the presence of the

self-duality and an analytic structure for observables more difficult to reconstruct numerically.

28It is however interesting to see that the analytic continuation of the Borel resummed mass gap M2 for g > g
(w)
c

has a further zero, as expected from the self-duality of the theory (see the purple band in the left panel of fig. 3.11).
The numerical accuracy of the resummation does not in any case allow us to determine the second zero accurately
enough to possibly test if it is equal to g

(s)
c .

29The range of optimal values of κ has a mild dependence on N , which can be neglected for low values of N .
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Method N = 1 N = 2 N = 4

Lattice MC 1.0670(17) [91] 0.9509(5) [92] 0.8238(26) [91]

This work 1.08(3) 0.94(2) 0.80(2)

Table 3.2: Comparison of the (weak) critical coupling gMC
c with the results of Lattice Monte Carlo

computations, for 3d O(N) models with N = 1, 2, 4.

The value of gc in O(N) vector models has been computed in the past for N = 2 and N = 1, 4

in [92,93] and [91] respectively, using Lattice Monte Carlo methods. Very recently Hamiltonian

truncation methods have been developed to study the N = 1 theory [94,95]. A comparison with

our results is however still not available, because in [94] the extrapolation to infinite volume has

not be taken and in [95] the use of light-cone quantization requires to work out the non-trivial

map to pass to a covariant quantization. For this reason we restrict our comparison with the

earlier results [91–93]. These works report the value of gc in MS at the scale µ = 8λ, which

we denote by gMC
c . A direct computation at that scale is not possible, since our perturbative

series will involve logarithms of g. However, we can access this value by using the exact one-loop

running of gc(κ). We get

(gMC
c )−2 = g−2

c (κ)− N + 2

π2
log
( eκ

64g2
c (κ)

)
. (3.110)

The right hand side of (3.110) should be independent of κ, but numerically a dependence on κ

remains. We have computed g
(M2)
c and g

(L)
c for a set of values of κ ∈ [5, 6], mapped them with

(3.110) and then taken an average value as our final estimate. In table 3.2 we compare these

values of gMC
c with those given by [91–93]. The values are in agreement, but with large errors

on our side.

3.9 Improved Numerical Results in d = 3 O(N) Models

Since the uncertainties of the resummations in the minimal scheme turned out to be very large

for the critical theory of the O(N) models in d = 3, we decided to study those models at

criticality via the use of RG flow in the scheme S̃. In order to do so, we had to improve the

numerical precision of our perturbative series for the 1PI functions Γ(2), Γ(2)′ and Γ(4) at zero

external momentum. Especially the latter two, that in our previous analysis were used just for a

check of the first series Γ(2)(p = 0) with the literature. Now instead, as we have seen in section

3.2.1, all three are needed to compute the series for β̃(g̃), η̃(g̃), and ν̃(g̃).

We use this as an opportunity to upgrade the way in which we performed the numerical

computations and structure them. Thanks to this, we will provide a package that will appear

together with our upcoming paper [4]. The package Phi4tool will consist of a simple interface for
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displaying Feynman diagrams, their label, symmetry factor, their integrand together with their

numerical result. This will fill a gap in the literature. As every diagram is treated independently,

it will be useful for studies in φ4 theories with other tensorial structures. The package that we

are going to share will work as a repository and thus might come in handy as a source of data

for other studies and for performing checks at any order in perturbation theory up to the eight.

On the other hand, it is structured so that it will be a good starting point to push forward

the computations at the next order (the nine-order for which we already provide diagrams and

integrands) and to further improve their efficiency.

In the following subsection, we are going to describe the strategies used in the computation

of the perturbative series, using the occasion to list some of the content that will be present

in the Phi4tool package. Once again, the computations are performed in what we called the

intermediate scheme. The subsection after that will be dedicated to presenting our results for the

critical phase in the O(N) symmetric field theory computed Borel resumming the perturbative

series in the scheme S̃.

3.9.1 Numerical Strategies

The evaluation of Feynman diagrams in super-renormalizable QFTs poses some technical chal-

lenges that must be addressed in order to push the computation to high orders. In fact, the

difficulties quickly increase with the perturbative order due, on the one hand, to the growing

number of diagram topologies that need to be generated together with their symmetry factors

and, on the other hand, to the increased dimensionality of each integral. The latter issue rep-

resents the main obstacle to the precise computation of the perturbative series since it is still

challenging to obtain high precision results from high-dimensional numerical integrals. In order

to tackle this issue, one can reduce the dimension of the integration space by performing part

of the integration analytically [86]. An effective way of doing it is to work in momentum space,

identify simple subdiagrams in our Feynman diagrams, and substitute them with their analytical

value [60]. This is the central operation that we used to compute the perturbative series up to

eighth order. However, there are several other measures that turned out to greatly reduce the

computational cost and improve the accuracy of our results. In the following, we summarize the

main steps of our computation.

Drawing and labeling the Feynman diagrams

The first step to compute the perturbative series consists in the generation of all the Feynman

diagrams at each given order, together with their symmetry factors. We leveraged the already

available feyngen program [96] to generate all the diagrams for the zero, two, and four point

function with up to nine quartic vertices. The choice of a renormalization scheme in which the
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regularized tadpole is zero greatly reduces the number of Feynman diagrams that one has to

compute, since all the diagrams involving tadpoles vanish. We have also generated the diagrams

for the theory with both quartic and cubic interactions with up to eight total vertices. We

obtained the diagrams for the mixed case with a simple program that, starting from the diagrams

with only quartic vertices, repeatedly removed propagators accounting for the proper correction

to symmetry factor and collected the resulting diagrams based on their topology.

To organize and order the diagrams, we employed the commonly used Nickel index to label

them [97, 98]. We will quickly review here how the labeling algorithm works, namely how to

assign an index to a given graph and how to read it. Consider an arbitrary undirected connected

graph with n internal vertices, already labeled from 0 to n− 1, and with some external vertices

all labeled “e”. The Nickel Index for this labeled graph GL is the sequence constructed in the

following way

N (GL) = c(0)|c(1)| . . . |c(n− 1)| , (3.111)

where c(i) is the sequence of all the vertices connected to the vertex i whose label is j ≥ i,

repeated in case of multiple edges, and ordered in ascending order with the convention that “e”

goes first in the order, i.e. e < 0 < 1 < ... < n− 1. In this way, the sequence (3.111) corresponds

exactly to one graph, which can be directly reconstructed from the sequence. However, the

opposite is not yet true since the string (3.111) depends on the way we enumerated the vertices.

In order to overcome this ambiguity, we first establish a way to order different sequences: the

strings obtained as above are converted to a numeric field, interpreting each sequence as a

number with radix n+ 2 with the following order to its digits e < “|” < 0 < 1 < ... < n− 1. The

correct labeling of the vertices is then identified as the one that corresponds to the sequence

with the smallest number, the minimal graph descriptor. For example, in fig. 3.12 we show three

possible labelings of the same diagram. The central label is the minimal one, hence the correct

Nickel index associated with the diagram.

e
2

e
1

0

e
2

e
0

1

e
1

e
0

2

1122|e2|e| > e112|22|e| < e122|e22|| .

Figure 3.12: Different enumerations and their corresponding sequences. The first one is the biggest of the
three since its first digit is 1 and 1 > e and the central is smaller than the last since e11 < e12. The
central one is hence the smallest one, the minimal graph descriptor.

With a simple program, we assigned the Nickel indices to the Feynman diagrams at each

order and ordered them according to their graph descriptor. Together with our forthcoming
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paper [4] we will provide the text files containing the list of the Feynman diagrams at each

order, consisting in their Nickel index, adjacency list (where the name of the vertices is already

the one used by the Nickel index), and symmetry factor. The Phi4tool package will allow easy

access to the data, providing a convenient interface for the visualization of the graphs and their

Nickel indices.

Multiplicities: O(N) models and cubic anisotropy

Once the topologies of the Feynman diagrams are known, it is not difficult to compute their

respective multiplicities, given a tensorial structure for the quartic vertex. With a simple pro-

gram, that assigns tensor factors to the vertices and performs contractions, we computed the

symmetry factors for the O(N)-symmetric theory and for the N -component cubic-symmetric

theory for the zero, two, and four point function up to order eight. We are going to share those

lists in text files together with the Phi4tool package to quickly navigate through them.

Substitutions of the effective vertices

The number of loops of a diagram is given by l = v4 + v3/2 − e/2 + 1, where v4 and v3 are

the number of quartic and cubic vertices respectively and e is the number of external lines.

Using the spherical coordinates and their symmetries, the dimension of the integration space

in 3 dimensions is D = 1 for l = 1 and D = 3l − 3 for l > 1. Proceeding directly to write the

integrands in momentum space and performing the integrations would result in very demanding

computations: to give the reader a feeling of the task, let us make the example of the two-

point function with eight quartic vertices, where each of the 1622 non-zero 1PI diagrams would

require a 21-dimensional numerical integration. However, it is possible to significantly reduce

the complexity of the integration by substituting analytically known subdiagrams, as done long

ago by Baker, Nickel, Green and Meiron [85,54]. They used the analytically known expressions

for the 1-loop subdiagrams [99] to compute the 6-loop β-function.

It is possible to perform these substitutions directly at the diagrammatic level before writing

the explicit form of the integrands. One just needs to find the known cycles in the graphs and

replace the propagators composing the cycle with a complex vertex connected to the vertices of

the cycle by new edges. Differently from the propagators, these new edges will not contribute

to the integrand. After the substitution, we get a simplified graph, corresponding to an effective

diagram with a reduced number of loops `. By applying the same procedure to the sunset

subdiagrams, we renormalize its divergent contribution, making all the diagrams finite30 (the

diagrams with tadpoles are already set to zero). We summarize below the substitutions that

we have defined, showing the symbols used to denote the effective vertices and the name of the

30The zero-point diagrams up to order three are divergent as well, as mentioned in section 3.8.1, we set them
to zero.



70 CHAPTER 3. BOREL SUMMABILITY: φ4 THEORIES

functions to which they correspond.

Renormalization of sunset subdiagrams. We identified sunset subdiagrams and substi-

tuted them with analytical effective vertices.

Subdiagram Effective vertex Renormalized function

sunset(p)

One loop subdiagrams: bubbles, triangles and squares. We identified three one loop in-

sertions, corresponding to cycles of length 2, 3, and 4, called respectively bubble, triangle,

and square, and substituted them with effective vertices that correspond to the analytic

functions of the external momenta.

Subdiagram Effective vertex Analytic function

bubble(p)

triangle(p1, p2, p3)

square(p1, p2, p3, p4,

|~p1 + ~p2|, |~p2 + ~p3|)

Carrying on more with this same philosophy, we have identified other specific structures in the

diagrams that are amenable for substitutions. These are momentum-independent subdiagrams,

for which we know the analytic value, and subdiagrams depending on a single external momen-

tum p, that are substituted either with an analytic function or with a numeric approximation

constructed from a tabulation of its values as a function of p.
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Momentum independent subdiagrams. We identified two tadpole-like insertions that can

be integrated analytically and we added new effective tadpoles for them.

Subdiagram Effective vertex Analytic factor

tadSunset

tadTrianBub

Numerical two-point subdiagrams. We identified some multi-loop subdiagrams that de-

pend just on one external momentum p and substituted them with new effective vertices.

We have constructed numeric functions for them, tabulating their value as a function of p.

Subdiagram Effective vertex Numeric function

triangle2b(p)

square3b(p)

square1s(p)

square1s1b(p)

Three and four point subdiagrams with zero momentum flow through some legs. We

identified other two multi-loop subdiagrams that would in principle depend on more than

one external momenta, but we focused on the combination where all except one are equal

to zero. These substitutions will affect the portions of the diagrams adjacent to the exter-

nal legs. We found analytical expressions for some of the combinations, while we resorted
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again to numerical tabulations for the others. We report these substitutions below, where

we marked with a dotted line the external legs with zero momentum flow. The first sub-

stitution is analytical, the other two are numerical.

Subdiagram Effective vertex Function

triangle1bA(p)

triangle1bN(p)

kite(p)

Clearly, for complex enough diagrams, there might be more than one possible set of substi-

tutions that could translate into different numerical performances. In our implementation we

chose to minimize the residual number of loops ` and, in case of parity, we prefer the effective

diagrams with more analytic substitutions. Still, it happens quite often that there are equiva-

lent effective diagrams, therefore we implemented an algorithm that allowed us to favor some

substitutions with respect to the others via a set of weights. We chose the weights based on

our empirical experience, noticing that on the one side, squares and triangles seem to produce

better results since they reduce the number of propagators left in the integrand, but on the

other side, they have a more complicated analytical form that depends on many scalar products

that tend to produce more cumbersome integrands which are slower to evaluate. In any case,

the best combination of substitutions is diagram dependent and, for the few integrals in which

the automatic choice of effective diagram did not produce precise enough results, we tested the

other equivalent parametrizations to find the one with the best performance.

Let us present an example of how much these substitutions help in reducing the computa-

tion cost at a given order. If we focus on Γ(4) with five quartic vertices (v4 = 5), we have 27

diagrams at four loops (corresponding to D = 9 integrals) before the substitutions. After the

substitutions we get 5 diagrams with zero residual loops (no integration left), 18 diagrams with

one residual loop, and 4 diagrams with two residual loops. Therefore we just have to perform 18

one-dimensional integrals and 4 three-dimensional integrals. In Table 3.3 we show two examples
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Feynman diagram Effective diagram Effective integrand

bubble(0)2 tadSunset
triangle(0, 0, 0)

kite(q1)bubble(q2)
square(q1, q2, q1, q2, |~q1 −

~q2|, |~q1 + ~q2|)

Table 3.3: Examples of substitutions for two Feynman diagrams. In the first row, we show a four-point
diagram at order seven that results in a zero-loop effective diagram after the analytical substitutions of
two bubbles, one triangle, and one complex tadpole. In the second row, we show a two-point diagram at
order six that results in a two-loop effective diagram after the substitution of a bubble, a square, and a
numerical two-point subdiagram.

of six-loop diagrams that, after the substitution of analytic and numeric effective vertices, result

in a zero-loop effective diagram and a two-loop effective diagram.

With the Phi4tool package it will be possible to draw the Feynman diagrams before and

after the insertion of the first three classes of effective vertices.

Momentum assignation: writing the integrands

We are now ready to write the integrands associated to the effective diagrams that we built in the

last sections. It is quite straightforward to automatically implement the momentum assignation

at every internal edge and then impose the conservation of total momenta at each (effective)

vertex. A generic diagram with ` effective loops then corresponds to an integral over the ` in-

ternal momenta of a function of the form f(~q1, ..., ~q`). Additionally, one can make use of the

spherical symmetry to reduce the number of integrations by placing the vector q1 along the

axis z and q2 along the plane x − z so that q1,θ = q1,φ = q2,φ = 0. There are however many

possible parametrizations depending on the choice of the momenta, some of which may allow

further simplifications and be numerically more stable than the others. In particular, we noticed

that the scalar products of the momenta, appearing in the propagators and as arguments of

the effective vertices, have a sizable impact on the evaluation speed and final precision of the

computation, with the best results obtained for the integrands with fewer scalar products due to
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the simpler structure which limits accidental cancellations. Moreover, for the remaining scalar

products it is better to prefer those expressed in terms of ~q1 and ~q2 since, with our choice of

coordinates, they depend on fewer angles. Furthermore, it is important to select what functions

have the scalar products as arguments, preferring the bubbles and triangles to the propagators.

Our implementation, available in the Phi4tool package, takes into account all these consider-

ations, scanning different linear combinations of the internal momenta, and picking the best one.

In the case of Γ(2)′(p = 0) there is an additional step to write the integrand of a diagram,

because we need to take the derivative with respect to the external momentum ~p before setting

it to zero. We proceed as above by assigning all the momenta, but this time also taking into

account ~p and making sure it appears on the least amount of effective vertices and propagators.

We then evaluate the derivative of the resulting function f̃(~p, ~q1, ..., ~q`) with respect to p2 using

the relation

∂

∂p2

(∫ ∏
i=1...`

dd~qi f̃(~p, ~q1, ..., ~q`)

)∣∣∣∣∣
p=0

=

∫ ∏
i=1...`

dd~qi

(
1

2d

∂

∂~p
· ∂
∂~p

f̃(~p, ~q1, ..., ~q`)

∣∣∣∣
p=0

)
.

(3.112)

At this point one can write the integral in spherical coordinates as explained above.

In [4] we are going to provide the text files containing the list of integrands corresponding to

the Feynman diagrams with up to eight quartic vertices. For each one of them, there is the Nickel

index of the diagram, the value of `, and the function f . With the Phi4tool package it will be

possible to access the data, as well as to write down the integrands in the form f(~q1, ..., ~q`) for

any of the other Feynman diagrams. Moreover, it will allow one to explicitly print the integrand

multiplied by the spherical measure in d = 3 as a function of the radial and angular components

of the momenta.

Performing the integration

As the last step, we have to actually perform the numerical integrations for the diagrams of the φ4

theory. Different numbers of effective loops correspond to different dimensions of integration, we

found that it is better to differentiate the programs used. The integrals with ` = 0 are already

analytic expressions with no need of integrating anything, for ` = 1 we have 1-dimensional

integrals that can be performed with arbitrary precision by Mathematica (a limitation although

is present, if there are some numerical functions in the integrand) in a matter of fractions of

seconds, for ` = 2 we have 3-dimensional integrals that Mathematica can still manage, this time

to achieve a precision of at least 10 significative digits we need some hours, so we run those

integrals on the SISSA cluster Ulysses. For ` ≥ 3, so integrals with D ≥ 6, we used the Monte
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N N = 0 N = 1 N = 2 N = 3

g̃c 1.415(5) 1.4137(35) 1.4048(18) 1.3912(10)

ν 0.5880(6) 0.6299(9) 0.6695(10) 0.7054(12)

η 0.0277(10) 0.0324(11) 0.0344(9) 0.0342(10)

Table 3.4: Estimate of critical coupling and critical exponents in the 3d O(N) models with N = 0, 1, 2, 3.

Carlo VEGAS algorithm [88] from the python module vegas. We run those integrals in part on

the SISSA cluster Ulysses and in part on CINECA cluster Marconi, each one of them for one or

two days.

We are going to attach to the upcoming work text files for each order containing the values

of the Feynman diagrams. For each one of them, there is the Nickel index of the diagram and

its value with uncertainty. With the Phi4tool package it is possible to quickly have the values

of any of the diagrams of the φ4 theory.

3.9.2 Critical regime in the RS S̃

In the last subsection we described how we computed independently the values of the Feynman

diagrams up to order eight for the perturbative series for Γ(2), Γ(2)′ and Γ(4) at zero external

momentum. Combining them with the symmetry factors we have computed, we are going to

use them in [4] to study the three-dimensional O(N) symmetric models and the N -component

models with cubic-symmetric quartic interaction in d = 3. Here we summarize the results at

almost conclusive stage for the O(N) models.

Following the procedure described in section 3.2.1 we passed from the intermediate scheme

to the renormalization scheme S̃. We wrote down in this way the perturbative expansion for

the RG functions β̃(g̃), η̃(g̃), η̃φ2(g̃), and ν̃(g̃). For all of them we compute the series up to the

eight order, one more respect to what appears in the literature. After rescaling the coefficients

to adopt the normalization used by Nickel in [98] g̃ = g̃(N + 8)/(48π) we checked them with the

literature. We compared the coefficients of the series of η̃ and η̃φ2 up to order g̃7 for N = 0, 1, 2,

and 3 with those computed by Murray and Nickel appearing in the appendix of [57]. We compare

also the coefficients of β̃ with those in [54]. We found complete agreement in all cases. Our series

for β̃(g̃), η̃(g̃), and ν̃(g̃) at generic N up to the order eight are reported in appendix D.2.

We Borel resummed these series, as usual, using both methods: Padé-Borel and conformal

mapping.31 We found agreement between the two, typically with slightly smaller uncertainties

in the latter one, and consistent convergence of the results as the number of loops used in the

resummation is increased. In table 3.4 we report our results. They are in agreement with those

31For a quick introduction see chapter 2, instead the details of the numerical implementation can be found
in [9].
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appearing in ref. [57] and [100]. Our uncertainties are a bit smaller.32 We checked that this

improvement is due to the presence of a longer perturbative series since with one order less,

our resummation procedures reproduce errors comparable to theirs. A more detailed analysis,

together with the study of the model with cubic anisotropy at the fixed points, will appear in [4].

32For N = 0, there are discrepancies of approximately two error bars between the values for g̃c and η computed

with fixed dimension resummation in field theory in the scheme S̃ and those computed with Monte Carlo studies
[101,102]. These discrepancies persist and increase slightly for our values at N = 0.



Chapter 4

Non-Borel Summability:

Renormalons in integrable field

theories

The aim of this chapter is to investigate on the interplay between the resurgent structure of

perturbation theory and the 1/N expansion in theories with renormalons.

Since its discovery [103, 104], the 1/N expansion has played an important role as a tool

to study non-perturbative aspects of quantum field theory. The reason that is often given for

these successes is that the 1/N expansion “resums” the perturbative series, and therefore it

goes beyond what is available in perturbation theory. Let us be more specific about what we

mean by resummation. It is known since the earlier work [105,106] that the factorial growth of

diagrams in perturbation theory is tamed to just an exponential growth at the planar level in

large N matrix model QFTs. A similar phenomenon applies to higher order in 1/N and QFTs

based on vector models. The reduced number of diagrams at fixed order in 1/N leads in many

theories to expressions that are analytic functions at the origin of the fixed large N coupling

constant, order by order in 1/N .1 Theories of this kind include zero-dimensional matrix models,

N = 4 super Yang–Mills theory in 4d, Chern–Simons–matter theories, or three-dimensional

O(N) models that we studied in chapter 3, see also appendix B.

However, there are many theories in which the growth of the coefficients in the perturbative

series is not dominated by the proliferation of diagrams, but by integration over momenta of

some specific diagrams. This is the phenomenon of renormalons (see e.g. [108] for a review)

that we mentioned in chapter 2 . The 1/N expansion can tame the first kind of growth, but

1By “expressions” we refer here to physical, and hence RS independent, quantities. At each order in 1/N , the
analyticity properties in the coupling of unphysical quantities, such as beta-functions, depend on the scheme. For
instance, in the limit of large number of flavours nf , the first orders in 1/nf of 4d QED β-functions are analytic
in the MS scheme, while they are non-analytic in other schemes [107].

77
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not the second one. For this reason, in these theories, even after restricting to a given order in

1/N , we will find asymptotic series, and the way the 1/N expansion resums them has to be

more complex and worth studying. The following questions arise naturally. As each order in

the 1/N series is a non-perturbative function which resums perturbation theory, can we decode

each of these functions in terms of the conventional perturbative series and non-perturbative

(renormalon) contributions? Can we in principle recover each of these non-perturbative functions

from the perturbative series? These questions fall directly in the framework of the theory of

resurgence, that we briefly introduced in chapter 2, specifically see section 2.4. We can extend,

in this way, perturbative series to trans-series including the exponentially small contributions

originating from the renormalons and ask if the resurgent relations are valid in these setups.

Furthermore, the resurgent structure of fully-fledged quantum field theories is quite intricate.

We know however that quantum field theories tend to become simpler and more tractable in the

1/N expansion. One can then hope that, by looking at the large N limit, one will find somewhat

simpler resurgent structures which can be studied analytically. Another more difficult question,

due, among other reasons, to the struggle of going to large order in the 1/N expansion in QFT,

concerns the nature of the 1/N expansion itself.

In this chapter in order to answer in detail the questions raised above, we will conduct a

study on three different two-dimensional models: the O(N) NLSM, the SU(N) PCF, and the

O(N) GN model. They are all integrable, i.e. their S-matrices are known exactly, asymptotically

free theories with renormalons.2 It was noted long ago by Polyakov and Wiegmann that a

Thermodynamic Bethe Ansatz can be used to compute exactly the free energy of these theories

in the presence of an external field coupled to a conserved current [113]. In addition, when the

external field is large, one can use asymptotic freedom to calculate this observable in perturbation

theory, and this was exploited in [114–121] to obtain the relation between the mass gap and the

dynamically generated scale (see [122] for a review). In addition, a powerful method developed

in [13, 14] makes it possible to extract the perturbative series for the free energy at very high

orders. This has led to many quantitative studies of renormalon physics and resurgence in

relativistic [123–125] and non-relativistic [126–129] integrable quantum field theories. These

quantum integrable models have been also studied in the 1/N expansion [118,130–134].

The chapter is structured as follows.

Content

We start in section 4.1 by considering the 0d reduction of certain large N vector models. We

show explicitly that each order in 1/N is analytic in the ’t Hooft coupling, the large N expansion

is factorially divergent, while the reduction to 0d of the free energy F(h) defined in (4.16) turns

2As a matter of fact, the existence of renormalon singularities has been analytically established only in inte-
grable models at large N . They were found in the GN model in [109] and studied in some detail in the NLSM,
see e.g. [110–112].
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out to be analytic at N = ∞. In section 4.2 we come back to field theory and introduce the

key observable we will consider in this chapter, the free energy F(h) as a function of a chemical

potential h. We review how this can be computed by using the TBA in 2d integrable QFTs.

Then we move to the main results, reported in sections 4.3, 4.4, and 4.5.

In section 4.3 we consider the NLSM. We compute F(h) at the leading and next-to-leading

order in the 1/N expansion, which resums an infinite number of renormalon diagrams appearing

in ordinary perturbation theory, described in detail in [134]. We extract the exact answer both

from a direct QFT calculation and from the TBA equations. At this order in 1/N there is

a single IR renormalon singularity and the exact answer is obtained by the so-called median

Borel resummation of the perturbative series. We have also studied the properties of the 1/N

expansion of F(h) by exploiting the TBA to generate several terms. Our explicit results do not

show factorial growth and are inconclusive. Either the asymptotic regime has not been reached

yet or the 1/N series is actually convergent. A similar analysis has also been made in the PCF

model, with the same inconclusive result.

In section 4.4 we consider the PCF model. We find a new, explicit solution for F(h) at

leading order in 1/N from TBA, and for the choice of charges used in [116]. The exact answer

can be understood as the median resummation of a non-trivial trans-series which can be obtained

analytically and has an infinite number of IR renormalon singularities (in contrast to the solution

of [130, 131], which has a single IR renormalon singularity, and similar to the numerical results

obtained in [124, 125] for the O(4) NLSM). Therefore, in this case the large N limit provides

an explicit, analytic, yet non-trivial example of resurgence and median resummation in a model

with infinitely many IR renormalon corrections.

In section 4.5 we consider the GN model. In this case, a new phenomenon appears: at each

order in the 1/N expansion, the exact answer includes an infinite number of non-perturbative

corrections. While ambiguities in imaginary terms nicely cancel between one series and the next

in the trans-series, as expected from resurgence, real non-perturbative corrections can not be

obtained from the resurgent properties of the perturbative series. Therefore, in this case there is

a tension between resurgence and the 1/N expansion. The 1/N series of F(h) in the GN model

turns out to be convergent, with a finite radius of convergence. Using the TBA, we generate

many terms in the 1/N series. The latter can be analytically continued beyond its radius of

convergence. Interestingly, the analytic continuation of this series gives reliable results for small

N , such as N = 4 and N = 2, which are in agreement with the well-known dualities between

these models and sine-Gordon theories.

4.1 Ordinary integrals at large N

Before analyzing the 2d QFT models it is useful to consider ordinary integrals, where we can get

complete analytic results and show the generic divergent nature of the 1/N perturbative series.



80 CHAPTER 4. NON-BOREL SUMMABILITY: INTEGRABLE FIELD THEORIES

A notable example is given by the 0d reduction of the large N quartic vector models, given

by

I(m, g) =
1

(2π)N/2

∫ +∞

−∞
dNx e−f(x,m,g) . (4.1)

Here x = (x1, . . . , xN ) is a set of N real variables,

f(x,m, g) =
m

2
x · x+

g

N
(x · x)2 , (4.2)

with m ∈ R and g > 0. We can trivially rescale m, so we get three different cases: m = 1,

m = −1, and m = 0. The integral in (4.1) can be computed analytically, but we won’t need

its exact expression. The large order behavior of the 1/N expansion can be obtained by using

steepest descent methods, see appendix E for details. We have

I(m, g) ∼ 2−N/2e−NK(zc)|K ′′(zc)|−1/2

(
1 +

∞∑
p=1

cp
Np

)
, (4.3)

where the symbol ∼ in (4.3) reminds us that the right-hand side is a divergent asymptotic series,

and K(z) is the function defined in (E.3). For p� 1 the coefficients cp in (4.3) read

cp ≈
Îc
π

Γ(p)ρ−p sin(pθ) , (4.4)

where Îc, ρ and θ are explicit functions of g and m reported in (E.8) and (E.9). As discussed

in the appendix E, the 1/N expansion of (4.1) is divergent asymptotic and Borel resummable

for any real value of m and g > 0. This result should be contrasted with what we would get by

expanding in g at fixed N. In this case, taking N to be odd, we can use radial coordinates with

radial variable r, so that in a g expansion the relevant saddle points of the integral (4.1) are

those of the function

f(r) =
m

2
r2 +

1

4
r4 . (4.5)

The qualitative and quantitative behaviors of such series are well known. In particular, for m = 1

we get one real critical point at r = 0 and a Borel resummable expression, for m = −1 three

real critical points and Borel summability is lost, while for m = 0 the three critical points are

degenerate and no expansion is possible.

Given the relations (E.8) and (E.9), we can easily get the analyticity properties of the

coefficient term cp as a function of the coupling g. In particular, we see that cp = cp(g) are

analytic at g = 0 for any p and go like

lim
g→0

cp(g) ≈ gp+1 +O(gp+2) . (4.6)
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Other useful examples are given by the 0d reductions of two of the three models considered

in this chapter, namely the NLSM and the GN models.

The 0d reduction of the non-linear sigma model is essentially the SN−1 sphere. We can define

e−FNLSM(0) ≡
∫ +∞

−∞
dNx δ(x · x−N) =

1

2
ΩNN

N−2
2 , (4.7)

with ΩN = 2πN/2/Γ(N/2) the volume of the SN−1 sphere. The large N expansion reduces

essentially to the Stirling approximation of the Gamma function, which is well-known to be

divergent asymptotic. In presence of a chemical potential h, the vacuum energy becomes

e−FNLSM(h) ≡
∫ +∞

−∞
dNx δ(x · x−N)e

h2

2
(x2

1+x2
2)

=

(
−h

2

2

) 2−N
2 π

N
2

Γ(N−2
2 )

e−
h2N

2 γ

(
N − 2

2
,−h

2N

2

)
,

(4.8)

where γ(a, z) = Γ(a) − Γ(a, z) is the incomplete Gamma function. The behavior of the 1/N

expansion is now determined by the expansion of γ(a, z) for large a and z, at fixed ratio z/a.

This can be found e.g. in [135], see eq.(8.11.6). After simple algebraic manipulations, we have

e−(FNLSM(h)−FNLSM(0)) =
∞∑
k=0

Qk(h
2)

(1 + h2)2k+1

1

Nk
, (4.9)

where Qk(h
2) are polynomials of degree k in h2 for k > 0 and Q0 = 1. It can be shown that

the above series is absolutely convergent for any real h for N > 3. Interestingly enough, while

FNLSM(h) and FNLSM(0) are separately non-analytic at N = ∞, their difference FNLSM(h) −
FNLSM(0) is a well-defined and analytic function.

The 0d reduction of the Gross-Neveu model is given by the following Grassmann integral:

e−FGN(0) ≡
√
N

2π

∫
dNχdNχ̄ e

1
2N

(χ̄·χ)2
, (4.10)

where χ = (χ1, χ2, . . . , χ2N ) is a set of 2N complex Grassmannian variables. Introducing an

Hubbard-Stratonovich like parameter as in (E.1) we get

e−FGN(0) = 2N−
1
2

Γ
(
N + 1

2

)
NN+ 1

2

. (4.11)

The large N expansion of this result is again manifestly divergent asymptotic. In presence of a
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chemical potential h, the vacuum energy becomes

e−FGN(h) ≡
√
N

2π

∫
dNχdNχ̄ e

1
2N

(χ̄·χ)2+h
∑
i=1,2 χ̄iχi =

( 2

N

)N (2 + h)2N − 1√
2N

Γ

(
N − 1

2

)
, (4.12)

where the last line is readily computed again introducing an Hubbard-Stratonovich like param-

eter. We finally have

e−(FGN(h)−FGN(0)) = 1 +
N

2N − 1
h2 . (4.13)

Like in the NLSM case, FGN(h) and FGN(0) are separately non-analytic at N = ∞, but their

difference FGN(h)− FGN(0) is a well-defined, simple and analytic function.

Summarizing, we have found that the 1/N expansion in 0d reductions of large N vector

models is asymptotic, and each coefficient in the 1/N expansion is analytic in the t’ Hooft

coupling. In agreement with what was anticipated in the introduction, the factorial growth of

diagrams in perturbation theory is reduced to exponential growth, order by order in 1/N . In

contrast, the coefficients in the 1/N expansion we will compute in the 2d models will generally be

non-analytic in the t’ Hooft coupling because (and only because) of the presence of renormalon

singularities. We have also shown that the 1/N expansion of the relative free energy F (h)−F (0)

is better behaved than F (0) and is convergent in the 0d reduction of both the NLSM and the

GN models. This suggests that the relative free energy can have better convergent properties in

1/N also in the 2d models. It will be explicitly verified that the 1/N expansion of this quantity

is indeed convergent in the 2d GN model, while we will not be able to draw firm conclusions on

its nature in the NLSM and PCF models.

4.2 Free energy and integrability

We summarize in this section the general formulation which applies to the three integrable and

asymptotically free models considered in the chapter. More details for each model will be spelled

out in subsequent sections.

The key observable we will study in this chapter is the free energy F (h) as a function of an

external field h coupled to a conserved charge. Let H be the Hamiltonian of the theory and Q

the charge associated to a global conserved current. The external field h can be regarded as a

chemical potential, and we can consider the ensemble defined by the operator

H− hQ. (4.14)

The corresponding free energy per unit volume is defined by

F (h) = − lim
V,β→∞

1

V β
log Tr e−β(H−hQ), (4.15)
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where V is the volume of space and β is the total length of Euclidean time. More precisely, the

observable of interest will be the relative free energy

F(h) ≡ F (h)− F (0) . (4.16)

From now on, for simplicity, we will refer to F(h) just as the free energy.

It was pointed out in [113] that in integrable quantum field theories one can calculate F(h)

by using the exact S-matrix and the TBA ansatz, in terms of a linear integral equation. The

basic physical intuition behind is the following. Let m be the mass gap of the integrable theory.

If the lightest particles in the theory are charged under Q, for h > m the ground state of the

theory will no longer be the vacuum, but a state with non-vanishing number density ρ. The

latter can be determined in terms of Bethe roots χ(θ) by the TBA equation

χ(θ)−
∫ B

−B
dθ′K(θ − θ′)χ(θ′) = m cosh θ , (4.17)

where θ is the particle rapidity and χ(θ) is supported on the interval (to be determined) [−B,B].

The integral kernel appearing in the Bethe ansatz equation is given by

K(θ) =
1

2πi

d

dθ
logS(θ), (4.18)

where S(θ) is the S-matrix element of the particles populating the ground state. In all the cases

considered in this chapter only one species of particles with definite charges are present, so S is

a scalar quantity. The energy per unit length e and the density ρ are given by

e =
m

2π

∫ B

−B
dθ χ(θ) cosh θ, ρ =

1

2π

∫ B

−B
dθ χ(θ). (4.19)

The value of B is fixed by the density ρ and one can eventually obtain an equation of state

relating e to ρ. The free energy F(h) is finally obtained by a Legendre transform of e(ρ):

h ≡ ∂ρe(ρ) , F(h) ≡ e(ρ)− ρh ,
ρ = −∂hF(h) , e(ρ) = F(h) + ρh .

(4.20)

In an alternative formulation of the TBA equations, the basic quantity is a function ε(θ), with

support on an interval [−B,B], which describes physically the excitation of holes. This function

satisfies the integral equation

ε(θ)−
∫ B

−B
dθ′K(θ − θ′)ε(θ′) = h−m cosh θ , (4.21)
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where now the value of B is determined by the condition

ε(±B) = 0, (4.22)

and depends on the external field h. The free energy is then given by

F(h) = −m
2π

∫ B

−B
dθ cosh θε(θ) . (4.23)

We refer the reader to appendix F for the explicit form of the kernel K(θ) in the three models,

for a detailed discussion of the existence and uniqueness of the solutions of (4.17) and (4.21), as

well as for the analyticity properties in 1/N of K(θ) in each case.

Given the free energy F(h), we denote by Fk(h) its coefficients in a 1/N expansion (see

(4.30)-(4.32) below for the precise definition for each model). The coefficients Fk(h) are non-

perturbative functions of the external field h and the mass gap m in each model. In order to

recast the results in terms of asymptotic expansions of ordinary perturbation theory, we have

to define a running coupling constant of some kind. Let us denote by g the coupling constant

(before the large N limit) appearing in the Lagrangian description of our models, with beta

function given by

β(g) = µ
dg

dµ
= −β0g

3 − β1g
5 +O(g7) , (4.24)

with β0 > 0. Since in all the three models considered β0 ∝ N we can conveniently define a ’t

Hooft-like coupling as

α ≡ 2β0g
2 , (4.25)

so that the β-function up to two loops reads

β(α) = −α2 − ξα3 +O(α4) , (4.26)

where

ξ =
β1

2β2
0

. (4.27)

As it is well-known, the first two terms are renormalization scheme-independent, while all the

others are not. A useful definition of running coupling is3

1

α(µ)
+ ξ logα(µ) ≡ log

( µ
m

)
. (4.28)

3Note that the definition (4.28) slightly differs from the one originally defined in [136] and used in subsequent
works where, inside the log, m is replaced by the dynamically generated mass scale Λ. The two definitions are
equivalent, but for our purposes (4.28) is more convenient.
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Applying µ∂µ to (4.28) gives

βTBA
α = µ

dα

dµ
= − α2

1− ξα
= −α2 − ξα3 + . . . . (4.29)

So we see that α is a plausible coupling of the integrable model, in a renormalization scheme

where the β-function has exactly the form (4.29). We will refer to this renormalization scheme

as the TBA scheme in the following. In the three models we expand the free energy as

FNLSM(h) =
∑
k≥0

Fk(h)∆k−1 ∼ −h
2

4π

∑
k≥0

Φk(α,C±)∆k−1, (4.30)

FPCF(h) =
∑
k≥0

Fk(h)∆
k−1 ∼ −h

2

8π

∑
k≥0

Φk(α,C±)∆
k−1

, (4.31)

FGN(h) =
∑
k≥0

Fk(h)∆k ∼ −h
2

2π

∑
k≥0

Φk(α,C±)∆k . (4.32)

Several clarifications are in order. In (4.30)-(4.32)

∆ ≡ 1

N − 2
, ∆ ≡ 1

N
, (4.33)

the numerical factors have been chosen for convenience and α is the coupling (4.28) evaluated at

a convenient scale µ ∼ h that will be spelled out in detail for each model in the next sections. In

order to clearly distinguish exact quantities from their asymptotic expansions, we have denoted

by Fk(h) and Φk(α,C±) the exact and the asymptotic expansion in α of the 1/N coefficients of

F(h). The factors Φk are trans-series of the form

Φk(α,C±) = ϕ
(0)
k (α) +

∞∑
`=1

e−
2`
α ϕ

(`)
k (α,C±) , (4.34)

where ϕ
(`)
k are in general asymptotic divergent series. ϕ

(0)
k coincides with the perturbative series,

while ϕ
(`)
k with ` > 0 are the non-perturbative contributions associated with the trans-series. The

latter can present a two-fold ambiguity, encoded in the trans-series parameters C±. This ambi-

guity is balanced by the one due to the non-Borel summability (because of the IR renormalons)

of the asymptotic series ϕ
(`)
k in a way that will be detailed for each model in the next sections.

The symbol ∼ stands for “asymptotically equivalent to”.4 Note finally that in the NLSM and in

the GN models the Φk’s do not precisely correspond to the expansions of the Fk’s because the

relation between α(µ ∼ h) and h given by (4.28) depends on ∆ by means of the factor ξ.

4For simplicity, and with an abuse of notation, we have used the equality sign in the first relations of (4.30)-
(4.32), though the convergence of the 1/N expansion of F is established only for the GN model.
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4.3 The non-linear sigma model

In this section we present our results for the NLSM. After reviewing general aspects of the theory,

we will present two approaches to obtain the exact F(h) up to next-to-leading order, one based

on the diagrammatic calculation in the 1/N expansion, and another one based on the expansion

of the integral equation from the Bethe ansatz. We will then compare this non-perturbative

result with the resummation of the perturbative calculation.

4.3.1 General aspects

The NLSM is described by the Lagrangian density

L =
1

2
∂µφ · ∂µφ , (4.35)

where φ =
(
φ1, . . . , φN

)
is an N -uple of real scalar fields satisfying the constraint

φ · φ =
N

g2
. (4.36)

In our conventions (4.24) we have

β0 =
1

4π∆
, ξ = ∆ . (4.37)

The NLSM has a global O(N) symmetry. The conserved currents are given by

JIJµ = φI∂µφ
J − φJ∂µφI , (4.38)

where I, J = 1, . . . , N , and we denote by QIJ the corresponding charges. As in [114, 115], we

can add a chemical potential h associated to the charge Q12. In the NLSM it is convenient to

define the ’t Hooft coupling

α ≡ α(µ = h) , (4.39)

where α(µ) is the TBA coupling defined in (4.28).

The free energy F(h) was computed in perturbation theory in the coupling constant up to

two-loops in [114, 115, 136]. In terms of the asymptotic expansions defined in (4.30) and (4.34),

we have at leading order in 1/N (k = 0)

ϕ
(0)
0 (α) =

1

α
− 1

2
. (4.40)

At next-to-leading order (k = 1) the series ϕ
(0)
1 (α) has been calculated explicitly and at all

orders in [134]. It is obtained by selecting Feynman diagrams with the appropriate power of
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N , which turn out to be ring diagrams. The resulting series has the factorial growth typical of

renormalon behavior, due to integration over momenta, and one finds5

ϕ
(0)
1 (α) = 3 log(2) + γE − 1 +

α

2
+

(
1

4
− 21ζ(3)

32

)
α2 +

(
1

4
+

35ζ(3)

32

)
α3 +O

(
α4
)
. (4.41)

We can then ask the question of how the 1/N expansion resums this series. We will now present

two different ways of computing F0(h) and F1(h) as exact functions of h.

4.3.2 The 1/N expansion from QFT

The standard way to perform the 1/N expansion is to introduce an auxiliary field σ which

implements the constraint (4.36) (see e.g. [137,138]). Once this is done, we obtain the action

S =

∫
d2x

[
1

2
∂µφB · ∂µφB +

σB√
N

(
φB · φB −

N

g2
B

)]
=

∫
d2x

[
Zφ
2
∂µφ · ∂µφ+

√
ZσZφ

σ√
N
φ · φ− Zg

√
N

g2
σ +

µ2

2
φ · φ+ C

]
.

(4.42)

The subscript B denotes bare quantities and the second line is a rewriting in terms of renormal-

ized fields and counterterms. The additional couplings for h 6= 0 are

Sh =

∫
d2x

[
ih(φ1

B∂τφ
2
B − φ2

B∂τφ
1
B)− h2

2

(
(φ1
B)2 + (φ2

B)2
)]

=

∫
d2x

[
ihZφ(φ1∂τφ

2 − φ2∂τφ
1)− Zφ

h2

2

(
(φ1)2 + (φ2)2

)
+ Ch

]
.

(4.43)

We do not need a vertex renormalization for h because it couples to a conserved current. Moreover

turning on h does not introduce any new UV divergence, so all the counterterms in (4.42) can be

taken independent of h. Fixing also the finite part of the counterterms to be h-independent means

that we choose the same scheme for h = 0 and h 6= 0. The only exception is the counterterm

C, for which we find that a finite h-dependent shift Ch is needed in order to satisfy a certain

“renormalization condition” on the observable that we explain below.

In order to compute the vacuum energy up to NLO, we need to plug in the action the VEVs

including their 1/N corrections

σ =
√
N(Σ +

1

N
δΣ) + σ̂ , φ =

√
N(Φ +

1

N
δΦ) + φ̂ , (4.44)

where capital letters denote the VEVs and hatted fields denote the fluctuations. Similarly we

5Notice that the constant factor is due to the different definition for α, i.e. (4.28), with respect to the one used
in [134].
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plug the expansion of the renormalization constants, out of which only Zg and C are non-trivial

already at leading order

Zg = Z(0)
g +

1

N
δZg , C = NC(0) + δC , Ch = δCh ,

Zφ = 1 +
1

N
δZφ , Zσ = 1 +

1

N
δZσ , µ2 =

1

N
δµ2 .

(4.45)

It will be convenient to collect some combinations of counterterms

δm2 ≡ δµ2 + 2Σ δZ3 ,

δZ3 ≡ δZφ +
1

2
δZσ .

(4.46)

δm2 is the total counterterm for the mass-squared coupling, and δZ3 the counterterm for the

cubic coupling. As we will show, h 6= 0 induces a non-zero VEV for Φ in the 12 plane, which in

turn induces a quadratic mixing between σ̂, φ̂1 and φ̂2. In the following we will draw diagrams

with the following conventions

φ̂ propagator: ;

σ̂ propagator for h = 0: ; σ̂-φ̂1-φ̂2 mixed propagator for h 6= 0: ;

σ̂ tadpole vertex: ; VEV insertion: ; Counterterm: .

Leading order

The LO (leading order) vacuum energy density for h = 0 is given by the following diagrams

NF0 = + + , (4.47)

subject to the vanishing tadpole condition (this is equivalent to minimizing the effective poten-

tial)

+ = 0 . (4.48)
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We did not write explicitly the tadpole condition for φ̂I but it is easily checked that it is solved

by Φ = 0. Evaluating the diagrams in the tadpole condition we find

−
∫

d2p

(2π)2

1

p2 + 2Σ
+
Z

(0)
g

g2
= 0 . (4.49)

The solution to this equation gives us the physical mass-squared of the scalars at leading order,

that we denote as m2
0, i.e. Σ =

m2
0

2 . Plugging in the diagrams for the vacuum energy we obtain

F0 =

[
1

2

∫
d2p

(2π)2
log[p2 + 2Σ]− Z

(0)
g

g2
Σ + C(0)

]
Σ=

m2
0

2

=
1

2

∫
d2p

(2π)2
log[p2 +m2

0]− m2
0

2

∫
d2p

(2π)2

1

p2 +m2
0

+ C(0) .

(4.50)

The LO vacuum energy density for h 6= 0 is given by

NF0(h) = + + + + , (4.51)

subject to the tadpole conditions (now we cannot avoid considering also the tadpole for φ̂,

without loss of generality we assume the VEV to be in the direction 1)

+ + = 0 , (4.52)

+ = 0 . (4.53)

Assuming Φ1 6= 0 the tadpole condition for φ̂ has a unique solution for Σ, namely Σ = h2

2 .

Plugging this in the tadpole condition for σ̂ we obtain

−
∫

d2p

(2π)2

1

p2 + 2Σ

∣∣∣∣
Σ=h2

2

− (Φ1)2 +
Z

(0)
g

g2
= 0 . (4.54)
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Using the determination of
Z

(0)
g

g2 in terms of the mass-squared for the theory with h = 0 in (4.49),

we get

(Φ1)2 =

∫
d2p

(2π)2

(
1

p2 +m2
0

− 1

p2 + h2

)
=

1

4π
log

h2

m2
0

. (4.55)

Plugging everything back to the vacuum energy density we obtain

F0(h) =

[
1

2

∫
d2p

(2π)2
log[p2 + 2Σ] +

(
Σ− h2

2

)
(Φ1)2 − Z

(0)
g

g2
Σ + C(0)

]
Σ=h2

2

=
1

2

∫
d2p

(2π)2
log[p2 + h2]− h2

2

∫
d2p

(2π)2

1

p2 +m2
0

+ C(0) .

(4.56)

Note that we did not really need the result for (Φ1)2 here because the dependence on this VEV

canceled when plugging the value of Σ.

Taking the difference we get the following LO result for the observable6

F0(h) = F0(h)− F0(0) =

∫
d2p

(2π)2

{
1

2
log

[
p2 + h2

p2 +m2
0

]
− h2 −m2

0

2

1

p2 +m2
0

}
= −h

2

8π

[
log

h2

m2
0

− 1

]
− m2

0

8π
.

(4.57)

Note that we are slightly abusing notation: the symbols F0(h) and F0(0) do not denote the

same function evaluated at two different arguments, as is clear from the fact that the difference

does not vanish for h = 0. This is because we are considering a different stationary point of the

effective potential for h 6= 0, so we are actually taking the difference between the free energies

of two different states, whose energies cross when h = m0 where indeed the observable vanishes

(recall that m0 denotes the physical mass of the bosons at LO). For h > m0 the vacuum with

the condensate Φ1 6= 0 is energetically favored.

6The leading free energy F0 was computed in [132], see eq.(2.7), where µthere = hhere. However, [132] missed
the non-perturbative term proportional to m2

0, crucial to establish that F0(h = m0) = 0.
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Next-to-leading order vacuum diagrams

The NLO (next-to-leading order) vacuum energy density for h = 0 is given by the following

diagrams

F1 = + + + + −m2
0

∂F0

∂m2
0

r . (4.58)

It is a general fact that the various diagrams linear in the NLO correction to the VEVs δΣ,

δΦ drop from the NLO energy density thanks to the LO tadpole condition, so we avoided

drawing such diagrams. We will postpone the NLO tadpole condition for σ̂ to the subsection

4.3.2 and leave δZg as undetermined for the time being. The last contribution comes from the

NLO correction to the physical mass-squared

m2 = m2
0

(
1 +

r

N

)
, (4.59)

when F0 is re-expressed in terms of the physical mass-squared m2. Note that in all the NLO

diagrams we can just use m2 as the mass-squared of the bosons.

The first diagram in (4.58) is a closed loop of the σ̂ field. The propagator coming from the

resummation of the φ̂ bubbles is

〈σ̂(p)σ̂(−p)〉 =
1

−2B(m2, p)
, (4.60)

where B(m2, p) is the “bubble function”

B(m2, p) =

∫
d2q

(2π)2

1

(q + p)2 +m2

1

q2 +m2

=
1

4πm2

log

(
1 + p2

2m2 +

√
p2

m2

(
1 + p2

4m2

))
√

p2

m2

(
1 + p2

4m2

) .

(4.61)

Therefore

=
1

2

∫
d2p

(2π)2
log[−2B(m2, p)] . (4.62)
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Summing up with the other diagrams, we find

F1 =

∫
d2p

(2π)2

1

2

{
log[−2B(m2, p)] +

δZφp
2 + δm2

p2 +m2

}
− δZg

g2

m2

2
+ δC −m2

0

∂F0

∂m2
0

r . (4.63)

The NLO vacuum energy density for h 6= 0 is given by the following diagrams

F1(h) = − 2

N
+ +

+ + + + −m2
0

∂F0(h)

∂m2
0

r .

(4.64)

We again used the LO tadpole condition to avoid drawing all diagrams with insertions of δΣ

and δΦ. Note that due to the quadratic mixing at this order we receive a contribution from the

bubble of the σ̂-φ̂1-φ̂2 propagator (first diagram) and to avoid overcounting we need to subtract

the contribution of φ̂1 and φ̂2 to the LO closed loop of the bosons (second diagram).

Using a matrix notation, we can express the quadratic action involving σ̂, φ̂1 and φ̂2 as

∫
d2p

(2π)2

1

2

(
φ̂1(−p) φ̂2(−p) σ̂(−p)

)
K(p)


φ̂1(p)

φ̂2(p)

σ̂(p)

 ,

K(p) ≡


p2 −2h pτ 2Φ1

2h pτ p2 0

2Φ1 0 −2B(h2, p)

 .

(4.65)

Here pτ is the momentum in the Euclidean time direction. Therefore we have

− 2

N
=

∫
d2p

(2π)2

{
1

2
log[detK(p)]− 2

N

N

2
log[p2 + h2]

}

=

∫
d2p

(2π)2

1

2

{
log

[
−2B(h2, p)− 1

π
log

h2

m2

p2

p4 + 4h2p2
τ

]
+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]}
.

(4.66)

We substituted (4.55) inside the determinant. Summing up with the counterterm diagrams, we
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find

F1(h) =

∫
d2p

(2π)2

1

2

{
log

[
−2B(h2, p)− 1

π
log

h2

m2

p2

p4 + 4h2p2
τ

]
+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]
+
δZφp

2 + δm2
h

p2 + h2

}
+
δm2

h − δZφh2

8π
log

h2

m2
− δZg

g2

h2

2
+ δC + δCh −m2

0

∂F0(h)

∂m2
0

r .

(4.67)

The subscript h in the mass-squared counterterm reminds us that the definition (4.46) of δm2

contains a factor of the VEV Σ, which depends on whether we are at h = 0 or h 6= 0.

Taking the difference F1(h)−F1(0) we note that all the contributions involving the propagator

counterterms cancel and we are left with

F1(h) =

∫
d2p

(2π)2

1

2

log

B(h2, p) + 1
2π log h2

m2
p2

p4+4h2p2
τ

B(m2, p)

+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]

+
δZσ(h2 −m2)

2

1

p2 +m2

}
− δZg

g2

h2 −m2

2
+ δCh +

m2 − h2

8π
r .

(4.68)

Here we used (4.57) to evaluate the terms involving m2
0

∂
∂m2

0
. We still have a UV divergent integral

and some counterterms that did not cancel in the difference, so we need to fix those to get the

finite result for the observable.

Tadpole condition and propagator correction

The NLO Tadpole condition for h = 0 is

+

+ + + + = 0 .

(4.69)
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The two-loop diagram gives

=

(
− 2√

N

)3 1

2
N

∫
d2p

(2π)2

∫
d2q

(2π)2

1

−2B(m2, p)

1

((p+ q)2 +m2)2

1

q2 +m2

=
2√
N

∫
d2p

(2π)2

{
1

4πm2(p2 + 4m2)B(m2, p)
+

1

p2 + 4m2

}
.

(4.70)

Going to the second line we performed the integral in q, which gives∫
d2q

(2π)2

1

((p+ q)2 +m2)2

1

q2 +m2

=
1

16πm4

1 +
log

(
1+ p2

2m2 +

√
p2

m2

(
1+ p2

4m2

))
√

p2

m2

(
1+ p2

4m2

)
1 + p2

4m2

=
1

4πm2

1

p2 + 4m2
+
B(m2, p)

p2 + 4m2
.

(4.71)

Plugging this result and evaluating the one-loop diagrams the NLO tadpole condition can be

rewritten as

δZg
g2
− δZσ

2

∫
d2p

(2π)2

1

p2 +m2

= −2

∫
d2p

(2π)2

{
1

4πm2(p2 + 4m2)B(m2, p)
+

1

p2 + 4m2

}
−

2δΣ + δm2 −m2δZφ
4πm2

.

(4.72)

The left-hand side is precisely the combination that appear in the observable in (4.68) multiplied

by −h2−m2

2 , so substituting this relation we find

F1(h) =

∫
d2p

(2π)2

1

2

log

B(h2, p) + 1
2π log h2

m2
p2

p4+4h2p2
τ

B(m2, p)

+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]

+2(h2 −m2)

(
1

4πm2(p2 + 4m2)B(m2, p)
+

1

p2 + 4m2

)}
+ (h2 −m2)

2δΣ + δm2 −m2δZφ
8πm2

+ δCh +
m2 − h2

8π
r .

(4.73)

However, we are still left with a UV divergent integral and some combination of counterterms. To

fix this remaining combination we need to consider the correction to the physical mass-squared.
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The 1/N correction to the inverse propagator of φ̂ for h = 0 is given by

+ + + . (4.74)

Summing up this diagrams, and imposing that the physical mass-squared at NLO is given by

eq. (4.59) we obtain

− δZφm2 + 2δΣ + δm2 = m2r − 2

∫
d2p

(2π)2

1

B(m2, p)((p+ k)2 +m2)

∣∣∣∣
k2=−m2

. (4.75)

Plugging (4.75) in (4.73), the residual dependence on the counterterms and on r cancels and

we obtain

F1(h) =

∫
d2p

(2π)2

1

2

log

B(h2, p) + 1
2π log h2

m2
p2

p4+4h2p2
τ

B(m2, p)

+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]
+ 2(h2 −m2)

×
[

1

4πm2B(m2, p)

(
1

p2 + 4m2
− 1

(p+ k)2 +m2

∣∣∣∣
k2=−m2

)
+

1

p2 + 4m2

]}
+ δCh . (4.76)

The integral appearing in this final expression is UV finite, confirming that δCh is a finite shift.

In order to fix the finite shift δCh we impose as a further renormalization condition that also at

NLO the observable vanishes for h = m. This ensures that after the inclusion of 1/N corrections

it remains true that the state with a condensate Φ1 6= 0 becomes favored precisely in the range

h ≥ m (recall the comments below eq. (4.57)). By performing the integral for h = m, one can

check that this condition is satisfied by fixing δCh = h2

4π .

To write more explicitly the k-dependent part, it is convenient to choose k in the Euclidean

time direction and simply plug k = (im, 0), so that

1

(p+ k)2 +m2
=

1

p2 + 2impτ
=
p2 − 2impτ
p4 + 4m2p2

τ

. (4.77)

We can then drop the imaginary part because it is odd in pτ . Therefore we obtain the final result

F1(h) =

∫
d2p

(2π)2

1

2

log

B(h2, p) + 1
2π log h2

m2
p2

p4+4h2p2
τ

B(m2, p)

+ log

[
p4 + 4h2p2

τ

(p2 + h2)2

]

+2(h2 −m2)

[
1

4πm2B(m2, p)

(
1

p2 + 4m2
− p2

p4 + 4m2p2
τ

)
+

1

p2 + 4m2

]}
+
h2

4π
.

(4.78)
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4.3.3 The 1/N expansion from the Bethe ansatz

As discussed in section 4.2, since the NLSM is integrable, the free energy F(h) can be calculated

exactly by solving the integral equation (4.21). One could think that the 1/N expansion of the

free energy can be obtained by simply expanding the kernel in a power series in 1/N . However,

this turns out to be subtle, since the kernel is singular in the limit ∆ → 0, see appendix F.

The 1/N expansion of the integral equation (4.21) for the NLSM was studied in [132] at the

first non-trivial order. The calculation of higher order corrections in similar models introduces

additional subtleties, as shown in [133], but in our analysis we will restrict to the next-to-leading

order term.

It turns out that the 1/N expansion of the kernel requires the introduction of distributions.

The expansion of the kernel reads,

K(θ) = δ(θ) +
∑
k≥1

∆kKk(θ), (4.79)

where δ(θ) is Dirac’s delta function. The first two terms in the expansion read

K1(θ) = − d

dθ
L1(θ),

K2(θ) = −2π2δ′′(θ)− d

dθ
L2(θ).

(4.80)

In these expressions,

L1(θ) =
1

θ
+

1

sinh(θ)
, (4.81)

and

L2(θ) =
i

4π

{
ψ(1)

(
iθ + π

2π

)
− ψ(1)

(
π − iθ

2π

)
− ψ(1)

(
iθ

2π

)
+ ψ(1)

(
− iθ

2π

)}
, (4.82)

where ψ(1) is the first derivative of the digamma function. The expansion (4.79) has to be

understood in the following sense: when acting on a test function f(θ) which is differentiable

and vanishes at the boundaries, one has∫ B

−B
K(θ − θ′)f(θ′)dθ′ = f(θ)−∆

(
P

∫ B

−B
L1(θ − θ′)f ′(θ′)dθ′

)
+ ∆2

∫ B

−B
K2(θ − θ′)f(θ′)dθ′ +O(∆3).

(4.83)

where P means the principal value.
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We can now solve the integral equation by using a large N ansatz for the distribution

ε(θ) =
1

∆

∑
k≥0

∆kεk(θ), (4.84)

and for the endpoint

B =
∑
k≥0

∆kBk. (4.85)

The leading term in the integral equation (4.21) is then given by

P

∫ B0

−B0

L1(θ − θ′)ε′0(θ′)dθ′ = h−m cosh(θ). (4.86)

By splitting the kernel L1(θ) as

L1(θ) =
2

θ
+ Lr

1(θ) (4.87)

where

Lr
1(θ) =

1

sinh(θ)
− 1

θ
(4.88)

is regular at θ = 0, we can write (4.86) as

P

∫ B0

−B0

2ε′0(θ′)

θ − θ′
dθ′ +

∫ B0

−B0

Lr
1(θ − θ′)ε′0(θ′)dθ′ = h−m cosh(θ). (4.89)

After integrating by parts and an integration w.r.t. θ, one can also write (4.86) as

P

∫ B0

−B0

L1(θ − θ′)ε0(θ′)dθ′ = hθ −m sinh(θ), (4.90)

which is the form used in [132].

We conclude that the large N limit of the distribution appearing in the TBA equation (4.21),

ε0(θ), can be obtained as a solution of the singular integral equations (4.86) or (4.90). (4.90) is

very similar to the integral equation that one would find for the density of states of a large N

matrix integral. The singular part of L1(θ) is what one would find for a conventional, Hermitian

matrix model. The additional term Lr
1(θ) would correspond to a non-conventional eigenvalue

interaction. We note that the integral equation (4.90) does not determine by itself the value of

B0 as a function of h. It was argued in [132] that this value is fixed by requiring the following

behavior near the edges of the distribution:

ε0(θ) ∼ (B2
0 − θ2)3/2, θ → ±B0. (4.91)

When Lr
1(θ) = 0, as it happens in the PCF model studied in the next section, one can show
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that the condition (4.91) follows from (4.89), by requiring ε′0(θ) to be regular at ±B0.

The solution to the singular integral equation (4.90) is not known explicitly. However, there

is both analytic and numerical evidence that the leading order free energy obtained from this

solution,

F0(h) = −m
2π

∫ B0

−B0

dθ cosh(θ) ε0(θ), (4.92)

agrees exactly with (4.57). By assuming this analytic value for F0(h) one can deduce the value

of B0 [132]:

B0(h) =

√
log

(
h

m

)(
log

(
h

m

)
+ 1

)
+ sinh−1

[√
log

(
h

m

)]
. (4.93)

Let us now write down the equation for the next-to-leading correction ε1(θ). By using (4.91),

it can be seen that B0 does not get corrected at that order, and one finds the equation

P

∫ B0

−B0

L1(θ − θ′)ε1(θ′)dθ′ = −2π2ε′0(θ)−
∫ B0

−B0

L2(θ − θ′)ε0(θ′)dθ′. (4.94)

This equation can be solved numerically to obtain the next-to-leading correction to the free

energy, given by

F1(h) = −m
2π

∫ B0

−B0

dθ cosh(θ) ε1(θ). (4.95)

We checked, for some values of h, that F1(h) computed as above agrees with (4.78). The nu-

merical resolution of the singular integral equation is quite time consuming: with few hours of

computation we reached an agreement with a relative error of order 10−7. Proceeding to higher

orders in ∆ in the expansion of the kernel (4.79) and solving singular integral equations to com-

pute Fk for k > 1 becomes very challenging. We have been able to extract more coefficients of

the series in ∆ by following an indirect procedure: we first solve numerically with high precision

the TBA for fixed h0 and different values of ∆, and from this sequence of F(h0) we compute

the value of the asymptotic expansion at each order, using Richardson transforms to accelerate

the series. This allowed us to compute, for a given h, the functions Fk(h) up to k = 6. These

first coefficients do not present a factorial growth as it would be expected from the properties

of the kernel discussed in appendix F. However, they are not enough to allow us to make claims

on the nature of the 1/N series.

4.3.4 Trans-series expansion and comparison with perturbation theory

We can now compare the exact results for F0 and F1 found in the previous subsections with

perturbation theory. Up to order ∆, (4.28) gives

h = e
1
αm
(
1 + ∆ logα

)
+O(∆2) . (4.96)
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Given (4.57) and the definitions (4.30) and (4.34), it is straightforward to get

ϕ
(0)
0 (α) =

1

α
− 1

2
, ϕ

(1)
0 (α) =

1

2
, ϕ

(`)
0 (α) = 0 , ` ≥ 2 . (4.97)

The perturbative series ϕ
(0)
0 agrees with (4.40), as it should, but in addition we see a non-

perturbative single trans-series term, which cannot be captured in perturbation theory. The mis-

match between the exact free energy and its perturbative calculation is due to the h-independent

term proportional to m2. It is given by the non-perturbative free energy at h = 0, evaluated at

the non-trivial large N point, which has been calculated in [139] and has the value

∆F(0) =
m2

8π
+O(∆2). (4.98)

This suggests that the difference between perturbation theory and the 1/N expansion is only

due to the difference between a perturbative and a non-perturbative evaluation at h = 0. We will

give further evidence of this when we consider the next-to-leading term in the 1/N expansion.

A direct expansion in α of the NLO term F1 in (4.78) is challenging. Luckily enough, we

will verify that it has the same structure of F0, namely its trans-series expansion is composed

of only two terms ϕ
(0)
1 and ϕ

(1)
1 . The coefficient ϕ

(0)
1 is the perturbative result and its first terms

can be read from (4.41). This series is factorially divergent, and its Borel transform has a Borel

singularity in the positive real axis (i.e. an IR renormalon), which was analyzed in detail in [134].

We can then use lateral Borel resummations s±(ϕ
(0)
1 )(α), i.e. integrating the Borel transform

slightly above or below the real axis avoiding in this way the singularities, indicated respectively

by s+ and s−. They lead to an imaginary piece. Let us denote by s±(ϕ
(0)
1 ) the function obtained

from ϕ
(0)
1 by using the lateral Borel resummations of the series (4.41). The results of [134] imply

that

Im
(
s±

(
ϕ

(0)
1

))
= ∓π

2
e−

2
α , (4.99)

which is the imaginary contribution of the IR renormalon unveiled in [134]. A detailed numerical

comparison indicates that the exact 1/N result (4.78) agrees precisely with the real part of the

lateral Borel resummations. Defining f1(α) = −h2/(4π)(− logα+ ϕ
(0)
1 (α)), we have

F1(h) = Re (s± (f1) (α)) , (4.100)

where in (4.100) α = 1/ log(h/m). We can use the so-called median resummation, which in this

case is simply

smed =
s+ + s−

2
(4.101)

to write the above result as

F1(h) = smed (f1) (h) . (4.102)
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Figure 4.1: Comparison between the median resummation of the perturbative series and the exact result.
The orange curve is obtained computing the + and − lateral Padé-Borel resummations of the first 41
terms of the perturbative series and taking their average, while the error is estimated from the convergence
of the resummation. The black curve (mostly covered by the orange one) is the numerical evaluation of
(4.78). The mass m is set to 1, so h = 1 is maximally strong coupling.

F1(h = 3) −1.00252688160157404. . .

smed (f1) (h = 3) −1.00252688160157404(4)

Table 4.1: Comparison between the exact result and the median resummation of the perturbative series for
h = 3 and m set to 1. The error in the Padé-Borel resummations of the first 41 terms of the perturbative
series is estimated from the convergence of the resummation.

These results indicate that the trans-series expansion of F1 is rather trivial, namely we have

ϕ
(1)
1 (α,C±) = C±

π

2
, ϕ

(`)
1 = 0 , ` ≥ 2 , (4.103)

where C± = ±i. In fig. 4.1 we illustrate the agreement between the median resummation and the

numerical evaluation of the exact result. In order to show the high precision of the resummation

and the agreement with the exact value, in table 4.1 we report the comparison between the

numerical evaluation of F1 in (4.78) and the median resummation of f1 for a fixed value of h,

taken to be h = 3.

This is similar to the result found in [130, 131] for the PCF model at large N , in which the

exact answer is the real part of a Borel-resummed series. One additional insight of the result

above is that we have an explicit diagrammatic interpretation of the underlying perturbative
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series, in terms of the ring diagrams considered in [134].

4.4 The principal chiral field model

In this section we present our results for the PCF model. In the first subsection we review some

general aspects of the model. Then, we present the large N exact solution for F0(h). In the final

subsection we “decode” this exact solution in terms of an explicit, resurgent trans-series: we find

a trans-series extension of the perturbative expansion, and we show that the exact solution can

be obtained from this trans-series by Borel resummation.

4.4.1 General aspects

The PCF model is a quantum field theory for maps Σ : R2 → SU(N), with Lagrangian density

L =
1

g2
0

Tr
(
∂µΣ ∂µΣ†

)
. (4.104)

In our convention (4.24) we have

β0 =
1

16π∆
, ξ =

1

2
. (4.105)

The PCF has a global symmetry SU(N)L×SU(N)R, therefore there are conserved charges that

can be used to construct the free energy F (h). We will consider a vectorial symmetry SU(N)V ⊂
SU(N)L × SU(N)R, and the corresponding charge will be denoted by Q. Its eigenvalues in the

fundamental representation will be denoted by q = (q1, · · · , qN ). Two choices of charges have

been studied in the literature. In [130,131] one takes

qk = rk − rk−1, rk =
sin(πk/N)

sin(π/N)
. (4.106)

This leads to an explicitly solvable large N limit. There is a different setting, considered originally

in [116] to determine the mass gap of the theory, in which one chooses the charge

q =

(
1

2
,− 1

2(N − 1)
, · · · ,− 1

2(N − 1)

)
. (4.107)

We will consider in this work the setting (4.107). As we will see, the large N limit is also

solvable in this case. In addition, the resulting large N free energy leads to an infinite series

of IR renormalon contributions which can be calculated explicitly. The relevant kernel for the

choice of charges (4.107) is reported in (F.26). In the PCF model it is convenient to define the
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’t Hooft coupling

α ≡ α
(
µ =

√
2π

e
h
)
, (4.108)

where α(µ) is the TBA coupling defined in (4.28).

The free energy F(h) can be computed in perturbation theory. The one-loop result was

presented in [116] for an arbitrary choice of charges, and it is given by

F(h) = −4h2

g2

N∑
j=1

q2
j −

h2

2π

∑
1≤i<j≤N

(qi − qj)2

[
log |qi − qj | −

1

2

]
+O(g2), (4.109)

where g2 is the MS coupling defined by

log
(µ
h

)
= −

∫ g

g

dx

βMS(x)
. (4.110)

It follows from (4.109) that in terms of the ’t Hooft coupling α, we have

F0(h) ∼ −h
2

8π

{
1

α
− 1

2
+O(α)

}
, (4.111)

where F0 is the leading 1/N term of F appearing in (4.31).

The free energy F(h) can also be computed from the TBA equations (4.21), (4.23). The

TBA solution can be used to extract the perturbative expansion of F0(h) up to very high orders

in the coupling constant and at finite N , by using the methods in [13,14]. This was done in [123]

for the normalized energy density, but the results in that paper can be easily translated into an

expansion in α for F0(h), and one finds

F0(h) ∼ −h
2

8π

{
1

α
− 1

2
− α

4
− 5α2

16
− 53α3

96
+O(α4)

}
. (4.112)

4.4.2 Exact solution at large N

As in the case of the NLSM, the kernel (4.18) given by (F.26) has a 1/N expression which

involves distributions:

K(θ) = δ(θ) +
∑
k≥1

∆
k
Kk(θ) , (4.113)

where the first term is simply

K1(θ) = − d

dθ
L1(θ), L1(θ) =

2

θ
. (4.114)
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The integral equation at leading order in 1/N , (4.90), reads in this case

P

∫ B

−B

2ε0(θ′)

θ − θ′
dθ′ = hθ −m sinh(θ). (4.115)

Here, we have denoted B0 by B, since we will not consider subleading corrections to the value of

the endpoint. Due to the simplicity of the leading kernel, (4.115) is the equation for the density

of eigenvalues of a Hermitian matrix model with a potential

V (x) =
hx2

2
−m cosh(x). (4.116)

Since the support of ε0(θ) is the full interval [−B,B], we are considering a so-called one-cut

solution. This solution can be obtained by using standard matrix model techniques, see e.g. [138].

The density is given by

ε0(θ) =
1

2π

√
B2 − θ2M(θ), (4.117)

where the function M(θ) can be written as a contour integral around z = 0

M(θ) =

∮
0

V ′(1/z)

1− zθ
1√

1−B2z2

dz

2πi
. (4.118)

To obtain the explicit solution, it turns out to be useful to write V (x) in (4.116) as a power

series around x = 0,

V (x) =
∑
k≥0

gkx
2k, (4.119)

where, in our case,

g1 =
h−m

2
, gk = − m

(2k)!
, k ≥ 2. (4.120)

Then, by using the expansion

1√
1−B2z2

=

∞∑
k=0

(
2k

k

)(
B2

4

)k
z2k, (4.121)

we find the expression

ε0(θ) =
1

2π

√
B2 − θ2

h− 2m
∑
r,k≥0

(
2k

k

)
r + k + 1

(2(r + k + 1))!

(
B2

4

)k
θ2r

 . (4.122)
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The value of B is determined by the condition (4.91), as in [132], and one finds

h− 2m
∑
r,k≥0

(
2k

k

)
r + k + 1

(2(r + k + 1))!
4−kB2(k+r) = 0. (4.123)

This series defines an entire function of B which can be written down in closed form in terms

of the Bessel functions I1,2(z):
2

B
I1(B) + I2(B) =

h

m
. (4.124)

This gives the relation between B and h.

To obtain the large N free energy we just have to calculate the integral

F0(h) = −m
2π

∫ B

−B
ε0(θ) cosh(θ)dθ. (4.125)

By expanding the cosh, we find

F0(h) = −m
2π

∑
t≥0

Mt

(2t)!
, (4.126)

where

Mt =

∫ B

−B
ε0(θ)θ2tdθ (4.127)

are the moments of ε0(θ). As it is well-known from the matrix model literature, they can be

calculated by using the expansion at infinity of the resolvent

ω0(θ) =
1

2

(
V ′(θ)−

√
θ2 −B2M(θ)

)
=
∑
t≥0

Mtθ
−2t−1. (4.128)

By doing this, one finds

F0(h) = −m
2

4π

{
h

m
BI1(B)

−B2
∑
k,r,t≥0

(
2k

k

)
(2(r + t))!

(2(r + k + 1))!

r + k + 1

r + t+ 1

1

((r + t)!)2(2t)!

(
B2

4

)k+r+t}
.

(4.129)

Note that, from the point of view of quantum field theory, this is a strong coupling expansion,

since small B corresponds to small h/m. Fortunately, this expression can be summed up in

closed form in terms of a generalized hypergeometric function, and we obtain in the end

F0(h) = −h
2

4π

{
B2I1(B)

2I1(B) +BI2(B)
− 1

2

B4

(2I1(B) +BI2(B))2 1F2

(
1

2
; 1, 2;B2

)}
. (4.130)
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From these expressions it is also possible to obtain exact formulae for the large N limits of the

density of particles and of the energy density, defined by

∆ρ = ρ0 +O(∆), ∆e = e0 +O(∆). (4.131)

One finds,
ρ0

m
=

B

4π
I1(B),

e0

m2
=
B2

8π
1F2

(
1

2
; 1, 2;B2

)
. (4.132)

4.4.3 Trans-series expansion

We can now address the question of what is the relation between the exact large N result (4.130),

and the trans-series expansion of the free energy, including exponentially small corrections. It

turns out that all the special functions appearing in (4.130) and (4.124) have simple trans-series

expansions which can be used to obtain a trans-series expansion of F0(h). Let us start with

(4.124). By using the trans-series asymptotics of the Bessel functions, we have the following

equality, valid for B > 0:

2

B
I1(B) + I2(B) =

eB√
2πB

(
s±(γ(0))(B) + C±e−2Bs(γ(1))(B)

)
. (4.133)

Here,

γ(0)(B) = 1 +
1

8B
+

9

128B2
+ · · · , γ(1)(B) = γ(0)(−B) (4.134)

are Gevrey-1 series, s with no subscripts ± denotes the standard Borel resummation, available

when there are no singularities in the positive real axis of the Borel plane, and

C± = ∓i. (4.135)

As usual in Borel–Écalle resummation, the value of C± is correlated with the choice of lateral

resummation. We also have

BI1(B) ∼
√
B

2π
eB
(
ν(0)(B)− C±e−2Bν(1)(B)

)
, (4.136)

where

ν(0)(B) = 1− 3

8B
− 15

128B2
+ · · · , ν(1)(B) = ν(0)(−B). (4.137)

Finally, we have the following formula for the generalized hypergeometric function,

B2

2
1F2

(
1

2
; 1, 2;B2

0

)
=

e2B

4π

(
s±(f (0))(B) + C±e−2B4Bs±(f (1))(B) + e−4Bs(f (2))(B)

)
,

(4.138)



106 CHAPTER 4. NON-BOREL SUMMABILITY: INTEGRABLE FIELD THEORIES

where

f (0)(B) = 1 +
1

4B
+ · · · , f (2)(B) = f (0)(−B), f (1)(B) = 1− 1

8B2
+ · · · (4.139)

It follows from (4.130) that F0(h) has a trans-series expansion in terms of the small parame-

ters 1/B, e−2B. We are however interested in obtaining the trans-series expansion in terms of the

’t Hooft coupling α introduced in (4.28), which makes contact with conventional perturbation

theory. To do this, we need the relation between α and B, which is obtained by combining (4.28)

and (4.124). This relation can be written as a trans-series equation,

B − 1

2
log(B)− 1

2
+ log γ(0)(B) + log

(
1 + C±e−2B γ

(1)(B)

γ(0)(B)

)
=

1

α
+

1

2
log(α), (4.140)

and it has a trans-series solution of the form

B =
1

α
B(0)(α) +

∑
`≥1

C`±e−2`/αB(`)(α). (4.141)

The leading term in this trans-series is given by

b =
1

α
B(0)(α) =

1

α
+

1

2
+
α

8
− 11α3

384
− 35α4

768
+ · · · (4.142)

We can also compute the first exponential corrections. This is better done in terms of b. We

find, for the very first terms,

e−2/αB(1)(α) = −e−2b

(
1 +

1

4b
+

9

32b2
+ · · ·

)
,

e−4/αB(2)(α) = −3

2
e−4b

(
1 +

2

3b
+

3

4b2
+ · · ·

)
.

(4.143)

We obtain in this way the following trans-series structure for F0(h):

F0(h) ∼ −h
2

8π

{
1

α
− 1

2
− α

4
− 5α2

16
− 53α3

96
− 487α4

384
− 13789α5

3840
− 185143α6

15360
+O

(
α7
)

− 4C±
eα2

e−2/α

(
1 + α+

α2

4
− α3

16
+
α4

96
− 31α5

384
− 23α6

1280
+O

(
α7
))

+
2C2
±

e2α
e−4/α

(
1− α

4
+

3α2

8
− α3

2
+

4α4

3
− 181α5

64
+

3227α6

320
+O

(
α7
))

+O
(

e−6/α
)}

,

(4.144)

where C2
± = −1. To make this completely explicit, we can write (4.144) with the notations
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introduced in (4.34) as a trans-series in α, e−2/α. We have

F0(h) ∼ −h
2

8π
Φ(α,C±) = −h

2

8π

∑
`≥0

C`±e−2`/αϕ(`)(α) , (4.145)

where we have factorized C± and dropped the unnecessary subscript 0:

Φ(α,C±) ≡ Φ0(α,C±) , ϕ
(0)
0 (α) ≡ ϕ(0)(α) , ϕ

(`)
0 (α,C±) ≡ C(`)

± ϕ(`)(α) , ` ≥ 1 . (4.146)

The series ϕ(`)(α) can be read from (4.144),

ϕ(0)(α) =
1

α
− 1

2
+ · · · , ϕ(1)(α) = − 4

eα2
(1 + α+ · · · ) , ϕ(2)(α) =

2

e2α

(
1− α

4
+ · · ·

)
.

(4.147)

Then, we have the following equality:

F0(h) = −h
2

8π
s± (Φ) (α;C±) = −h

2

8π

∑
`≥0

C`±e−2`/αs±
(
ϕ(`)

)
(α) . (4.148)

There are many aspects of the above result which are worth commenting in detail, both at the

physical and the mathematical level.

From the physics point of view, let us note that the trans-series (4.145) has an infinite

number of exponentially small corrections, corresponding to an infinite number of IR renormalon

singularities. This is in contrast to the NLO term in the 1/N expansion of the NLSM, studied

above, and also to the planar solution of the PCF model [130, 131] with the choice of charges

(4.106). However, all corrections are built up of a finite number of trans-series in the variable

B, appearing in (4.130). A similar phenomenon appears in the trans-series solution of certain

Riccati ordinary differential equations [140,141], in which all the exponential corrections in the

trans-series are obtained from a finite number of building blocks.

From a more formal point of view, one can ask whether the exponentially small corrections

are determined by the perturbative series. It turns out that, in this case, Φ(α;C) satisfies the

same resurgent equations that the trans-series solution to Painlevé II described in detail in [142].

Namely, we conjecture the following equality of laterally resummed trans-series

s+ (Φ) (α;C) = s− (Φ) (α;C + S), (4.149)

where

S = 2i (4.150)

and C is now an arbitrary complex parameter. As shown in [142], (4.149) leads to the following
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Figure 4.2: Leading rescaled free energy Φ as a function of the coupling α. The black line corresponds to
the exact result, the orange, red, green and blue lines to the approximate result given by Borel resumming
the first series in the trans-series, as in the legend. The box to the bottom-right is a zoom of the region
marked by the dashed black rectangle above. The dashed lines are the central values, while the shaded
area corresponds to the error associated to the Borel resummation, as explained in the main text.

relationships

s+(Φ(`))(α)− s−(Φ(`))(α) =
∑
k≥1

(
`+ k

`

)
Sks−(Φ(`+k))(α), ` ≥ 0. (4.151)

where

Φ(`)(α) ≡ e−2`/αϕ(`)(α) . (4.152)

We have explicitly verified some of these equations numerically, by including up to the fourth

term in the trans-series. (4.151) gives the so-called Stokes automorphism of Φ(`) across the

positive real axis, and it expresses it as an infinite linear combination of the higher order terms

in the trans-series, Φ(`+k)(α). The coefficients in the r.h.s. of (4.151) are called Stokes constants

and are explicitly known. Equivalently, (4.151) says that the Borel transform of Φ(`)(α), BΦ(`)(t),

has singularities at t = 2k, k ∈ Z>0. By expanding BΦ(`)(t) around the k-th singularity, one can

obtain Φ(k+`)(α). In particular, when applied to ` = 0, (4.151) implies that all the higher order

terms in the trans-series can be obtained from the perturbative series. It follows from (4.151)



4.4. THE PRINCIPAL CHIRAL FIELD MODEL 109

that the Borel resummed trans-series

s+ (Φ) (α;C − S/2) = s− (Φ) (α;C + S/2) (4.153)

is real for any real C [142]. This is sometimes called a median resummation (see also [143]).

Since C± = ∓i = ∓S/2, (4.148) is a median resummation corresponding to C = 0.

For illustration we compare in fig. 4.2 the exact value of the leading rescaled free energy

Φ ≡ s± (Φ) (C±) with the real part of its approximations given by the truncated trans-series

Φ
(T,n)
± ≡

n∑
`=0

C`±s±(Φ(`)) . (4.154)

The term Φ
(T,0)
± corresponds to the lateral Borel resummation of the perturbative series, Φ

(T,1)
±

to the lateral Borel resummation of the perturbative series plus the first trans-series, and so on.

Notice that Φ
(T,n)
+ and Φ

(T,n)
− are complex conjugate. The Borel resummation of the asymptotic

series entering Φ(`) with ` ≤ 2 has been performed using 89 perturbative coefficients and by

reconstructing the Borel function using a diagonal [44/44] Padé approximant, while for ` = 3

we have used 29 coefficients and reconstructed the Borel function with the diagonal [14/14]

Padé approximant. The dashed lines represent the central values, with an error band given by

the uncertainty in the numerical reconstruction of the Borel function. The dominant source

of uncertainty comes from the convergence of the Padé approximation, estimated by taking

the difference between the two highest diagonal approximants: P[44/44]− P[43/43]. Other sub-

dominant contributions -such as the one obtained by introducing one or more dummy variables

(e.g. a Borel-Le Roy parameter) and minimizing with respect to them- have been neglected (see

e.g. section 4 in [9] for an overview of possible numerical recipes to estimate the error when using

Borel resummation techniques). We see how the exact result is approached when considering

more and more terms in the trans-series expansion. In table 4.2 we show more in detail the

cancellations happening between the different orders of the trans-series. We report, for fixed

α = 1
5 , the difference between the exact value and the real part of the truncated trans-series,

and its imaginary part. It is interesting to notice how both values approach zero with a change

of magnitude happening every two orders, a consequence of the fact that the Φ(`)’s satisfy the

relationships (4.151).

In order to better appreciate how the exact result is approached when taking more and more

terms in the trans-series, we show in fig. 4.3 the resummation of Φ for a fixed α = 1, and as

a function of the number of trans-series terms n included in the resummation. In this plot the

error interval is given by the left-over ambiguity in the trans-series, namely by the imaginary

part of s±(Φ(n)) at each order. The numerical error associated to the Borel resummation is

sub-leading and has been neglected. Note how quick is the convergence to the exact result and

how the choice of the uncertainty gives a reliable estimate of the error.
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Φ(1
5)− Re Φ

(T,n)
± (1

5) Im Φ
(T,n)
± (1

5)

n = 0 2.68541385336. . . · 10−9 ±0.0020200401313. . .

n = 1 −2.685413850(1) · 10−9 ∓9.162556(5) · 10−14

n = 2 −3.9(1) · 10−18 ±4.581282(5) · 10−14

n = 3 1.4(1) · 10−18 ∓3(5) · 10−20

Table 4.2: First orders of the truncated trans-series. In the first column the difference between the exact
value and its real part and in the second column its imaginary part. The uncertainty correspond to the
error associated to the Borel resummation, as explained in the main text.

All the statements above were made for the observable F0(h), but a similar trans-series

expansion can be made for the normalized energy density using (4.132). In this expansion it is

convenient to introduce the coupling a defined by

log

(
4
√

2π3/2ρ0

em

)
=

1

a
− 1

2
log(a) , (4.155)

where the numerical factor inside the log has been chosen to match this definition with that

in [123]. Note that the coupling a here was denoted by α there. The resulting trans-series is

e0

2πρ2
0

∼ a+
a2

2
+
a3

4
+

5a4

16
+

53a5

96
+ · · ·

+
4C±

e
e−2/a

(
1 + a+

a2

4
− a3

16
+

7a4

96
+ · · ·

)
+

2C2
±

e2
e−4/a

(
a+

a2

4
− 7a3

8
+ a4 + · · ·

)
+O(e−6/a).

(4.156)

The first line reproduces the result obtained in [123]. The trans-series appearing here, in terms

of a, has the same formal properties of its close cousin (4.144), like for example (4.149).

Our main conclusion is that, in this example, the exact large N free energy of the PCF

model can be obtained by a median Borel resummation of a non-trivial resurgent trans-series,

and therefore provides a beautiful success for the program of resurgence in an asymptotically

free quantum field theory. Mathematically, this works because the building blocks of the exact

solution (4.130) are special functions with known trans-series representations. From the physical

point of view it is however gratifying to have a non-trivial example of resurgence at work with

infinitely many non-trivial IR renormalons, yet analytically tractable.

In a recent tour de force, Abbott and collaborators [124, 125] were able to obtain detailed

information on the trans-series expansion for the normalized energy density in the O(4) sigma
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Figure 4.3: The real part of of the resummed truncated trans-series Φ(T,n) defined as in (4.154) as a
function of n. The black horizontal line is the exact value. The box to the top-right is a zoom of the
last two points and their error bars. The error bars are given by the left-over ambiguity in the truncated
trans-series.

model, which is nothing but the PCF model we are studying at N = 2. By extrapolating

numerical results to analytic results, they obtained an expression very similar to (4.156), and

they gave evidence that the exact answer can be recovered by median resummation of the trans-

series. Our results are an analytic version, at large N , of their result for N = 2.

4.5 The Gross–Neveu model

In this section we present our results for the GN model. In subsection 4.5.1 we review some

general aspects of the model. Then, in subsection 4.5.2 we present the trans-series expansion

for F0(h) and F1(h) and show that these trans-series cannot be reconstructed using resurgence.

Finally in subsection 4.5.3 we numerically study the 1/N series expansion of F up to high order,

we analytically continue the series beyond its radius of convergence, and see how this continuation

matches with known dualities between GN models at low N and sine-Gordon theories.
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4.5.1 General aspects

The Lagrangian density describing the Gross–Neveu (GN) model [109] is

L =
i

2
χ · /∂χ+

g2

8
(χ · χ)2 , (4.157)

where χ = (χ1, . . . , χN ) is a set of N Majorana fermions in two dimensions. As is well-known,

a non-perturbatively generated mass gap and spontaneous breaking of a Z2 chiral symmetry

occur in this theory. For N > 4 the lightest particle in the spectrum is the fundamental fermion

in the Lagrangian (4.157). In our conventions (4.24) we have

β0 =
1

4π∆
, ξ = −∆. (4.158)

The GN model has a O(N) global symmetry, under which the N fermions transform as vectors,

with conserved currents given by

JIJµ = χ̄IγµχJ . (4.159)

We couple the fermions to a chemical potential h associated to the U(1) ⊂ O(N) charge Q12.

In the GN model it is convenient to define the ’t Hooft coupling

α ≡ α(µ = 2h) , (4.160)

where α(µ) is the TBA coupling defined in (4.28).

The first two terms F0 and F1 in the 1/N expansion (4.32) have been analytically computed

in [117,118] using both QFT and TBA techniques. They read

F0(h) = −h
2

2π

(
tanhB0 −

B0

cosh2B0

)
,

F1(h) = −h
2

2π

2

cosh2B0

(sinh2B0 +B2
0 −B0Shi(2B0)) , (4.161)

where

B0 = cosh−1

(
h

m

)
, (4.162)

and Shi(x) is the hyperbolic sin integral function

Shi(x) =

∫ x

0

sinh t

t
dt . (4.163)
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4.5.2 Trans-series expansion

Let us now work out the explicit form of the first terms of the trans-series Φk(α) defined in

(4.32), for k = 0, 1, using (4.161) and (4.28) relating α and h. This map depends on ∆ through

the ξ factor in (4.158). Up to order ∆ we get

h = e
1
α
m

2

(
1− ∆

2
log(α2)

)
+O(∆2) . (4.164)

For k = 0, the first few terms of the series ϕ
(`)
0 defined in (4.34) read

ϕ
(0)
0 (α) = 1 , ϕ

(1)
0 (α) = −2− 4

α
, ϕ

(2)
0 (α) = 2 , ϕ

(3)
0 (α) = 2 , ϕ

(4)
0 (α) =

10

3
. (4.165)

Note that the perturbative expansion ϕ
(0)
0 is trivial and all trans-series terms ϕ

(`)
0 with ` ≥ 1 are

truncated, yet non-vanishing. We see that here is no way to reconstruct the non-perturbative

terms ϕ
(`)
0 (α) with ` ≥ 1 from ϕ

(0)
0 . Since the leading order is somewhat trivial, it is useful to go

through the next-to-leading order Φ1, where each term ϕ
(`)
1 (α,C±) has a non-trivial asymptotic

expansion in α. After some algebra, the first terms read

ϕ
(0)
1 (α) = −

(
α+ α2 +

3

2
α3 + 3α4 +

15

2
α5 +

45

2
α6 +O(α7)

)
,

ϕ
(1)
1 (α,C±) = C±

4π

α
+

8

α2
− 4

α
log(α2)− 4 + α

(
2 + α+ α2 +

3

2
α3 + 3α4 +O(α5)

)
,

ϕ
(2)
1 (α,C±) = −C±4π − 16

α
+ 4 log(α2) + α

(
2 +

1

2
α+ 3α2 − 3

4
α4 +O(α5)

)
. (4.166)

with C± = ±i. The perturbative series ϕ
(0)
1 turns out to be equal to

− 2

∞∑
n=1

Γ(n+ 1)
(α

2

)n
. (4.167)

This series is non-Borel resummable, but can be studied analytically. Its Borel transform is

Bϕ(0)
1 (t) =

2t

t− 2
. (4.168)

The simple pole at t = 2 hinders Borel summability. We can deform the contour to avoid the

pole, passing either above (C+) or below (C−) it. The Borel resummation of this series gives then

s±
(
ϕ

(0)
1

)
(α) =

2

α

∫
C±

dt e−
t
α

t

t− 2
=

2

α
P
(∫ ∞

0
dt e−

t
α

t

t− 2

)
∓ e−

2
α

4iπ

α
. (4.169)
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Figure 4.4: Free energy coefficients F0,1 rescaled by −2π/h2 as a function of the coupling of the external
field h with m set to 1. The orange and black lines correspond to the perturbative and exact results,
respectively, for both the leading (left) and next-to-leading (right) orders in ∆.

Nicely enough, the ambiguity in the imaginary part in (4.169) is exactly the same appearing in

ϕ
(1)
1 (α,C±). The two contributions cancel each other if we choose the contour C± for C±, respec-

tively. The terms in parenthesis in the series (4.166) for ϕ
(1)
1 (α,C±) form the same asymptotic

series (4.167). Their Borel resummation gives

s±
(
ϕ

(1)
1

)
(α,C±) ⊃

∫
C±

dt e−
t
α

4

2− t
= P

(∫ ∞
0

dt e−
t
α

4

2− t

)
± e−

2
α 4iπ , (4.170)

where for simplicity we have not reported the first four terms of ϕ
(1)
1 appearing in (4.166) (that’s

why the ⊃ sign instead of the equality sign). Again, if we pick up the contour C±, the imaginary

part in (4.170) cancels respectively the imaginary terms proportional to −C± appearing in

the second trans-series ϕ
(2)
1 . In the spirit of resurgence, imaginary parts nicely match between

one series and the next, but we see a plethora of real non-perturbative terms which cannot

be detected. The asymptotic series ϕ
(1)
1 and those with ` ≥ 2 cannot be reconstructed from

the knowledge of ϕ
(0)
1 only. In order to quantify and illustrate the phenomenon, in fig. 4.4 we

compare the exact free energies F0,1, rescaled by h2, with the median Borel resummation of their

perturbative series expressed in terms of h and m, i.e smed(ϕ
(0)
0,1)(1/ log(2h/m)).7 We restrict to

the perturbative series because higher trans-series terms can not be obtained from a resurgence

analysis. As expected, for both k = 0, 1, the perturbative and full results are in good agreement

at large h, i.e. weak coupling, but they significantly differ at strong coupling, when the terms

with ` ≥ 1 are no longer negligible.

All the above analysis could be repeated for the energy density e(ρ), Legendre transform of

7Since ϕ
(0)
0 (α) = 1, there is no need of resummation at LO and this order does not contribute at the next one,

differently to what happens in the NLSM.
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F(h), expanded in ∆ and written as a trans-series as

e(ρ) ∼ π

2
ρ2
∑
k≥0

Φ̃k(a,C±)∆k , (4.171)

where

Φ̃k(a,C±) =
∞∑
`=0

e−
2`
a ϕ̃

(`)
k (a,C±) . (4.172)

The asymptotic expansion in this case is more conveniently written in terms of the coupling

a ≡ α(µ = 2πρ) . (4.173)

For ϕ̃0 we get

ϕ̃
(0)
0 (a) = 1 , ϕ̃

(1)
0 (a) = 2 +

4

a
, ϕ̃

(2)
0 (a) = 2 , ϕ̃

(3)
0 (a) = −2 , ϕ̃

(4)
0 (a) =

10

3
, (4.174)

while for ϕ̃1 we have

ϕ̃
(0)
1 (a) = a+ a2 +

3

2
a3 + 3a4 +

15

2
a5 +

45

2
a6 +O(a7) ,

ϕ̃
(1)
1 (a) = −C±

4π

a
− 8

a2
+

4

a
log(a2) + 4 + a

(
2 + a+ a2 +

3

2
a3 + 3a4 +O(a5)

)
,

ϕ̃
(2)
1 (a) = −C±4π − 16

a
+ 4 log(a2)− a

(
2 +

1

2
a+ 3a2 − 3

4
a4 +O(a5)

)
. (4.175)

We see that the expansions of Φ̃0 and Φ̃1 in terms of a are very similar to those of Φ0 and Φ1 in

terms of α. The perturbative series ϕ̃
(0)
1 in (4.175) agrees with the perturbative expansion found

in eq.(A.12) of [123] using the techniques of [13,14], while ϕ̃
(`)
1 , with ` > 0, are non-perturbative

terms that could not be captured in that analysis. All the considerations made above about

imaginary part cancellations and impossibility of recovering the non-perturbative terms from

the perturbative series of F(h) apply also for e(ρ) and will not be repeated.

4.5.3 Higher orders in the 1/N expansion

In contrast to the NLSM and PCF models, the kernel in the GN model is analytic at N = ∞.

This implies that the TBA solution can easily be expanded in powers of 1/N , with each term

a regular function of θ, making it possible to solve the integral equations (4.21) in a systematic

1/N expansion:

K(θ) =
∑
k≥1

Kk(θ)∆
k , ε(θ) =

∑
k≥0

εk(θ)∆
k, B =

∑
k≥0

Bk∆
k . (4.176)
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The kernel coefficients Kk(θ) are trivially derived from the GN kernel reported in (F.32). The

Bk with k ≥ 1 can be expressed in terms of the values of the εm(B0) with m ≤ k and their

derivatives by solving recursively the condition (4.22) at each order in ∆. For instance, for the

first few orders we have

ε0(B0)+∆

(
ε1(B0)+∂θε0

∣∣
B0
B1

)
+∆2

(
ε2(B0)+∂θε1

∣∣
B0
B1+∂2

θ ε0
∣∣
B0

B2
1

2
+∂θε0

∣∣
B0
B2

)
+· · · = 0 .

(4.177)

Plugging (4.176) in (4.21) we have

ε(θ) = h−m cosh θ +
∑
k≥1

∆k

∫ B0

−B0

dθ′
( k−1∑
n=0

Kk−n(θ − θ′)εn(θ′)
)

(4.178)

+
∑
p≥1

1

p!

(∑
q≥1

Bq∆
q
)p
∂p−1
θ′

(∑
k≥1

∆k
k−1∑
n=0

(
Kk−n(θ − θ′) +Kk−n(θ + θ′)

)
εn(θ′)

)∣∣∣∣
B0

,

where we used the fact that Kn(θ) and εn(θ) are even functions. Solving the equation at each

order in ∆, we can compute iteratively all the εk(θ) knowing the values of εm(θ) for m < k and

the Bq with q < k − 1. Finally, in order to compute Fk(h) it is enough to expand (4.23) in ∆:

F(h) = −m
2π

∫ B

−B
dθ cosh θ

(∑
k≥0

εk(θ)∆
k
)

(4.179)

= −m
2π

(∑
k≥0

∆k

∫ B0

−B0

dθ cosh θ εk(θ) + 2
∑
p≥1

1

p!

(∑
q≥1

Bq∆
q
)p∑

n≥0

∆n∂p−1
θ

(
cosh θ εn(θ)

)∣∣∣∣
B0

)
,

where we used once again the fact that εn(θ) is an even function.

In order to make more explicit the procedure and show how the iterative process starts, let’s

rederive F0(h) and F1(h) given in (4.161). At order ∆0 we simply have

K0 = 0 , ε0(θ, h) = h−m cosh(θ) , B0 = cosh−1

(
h

m

)
. (4.180)

The leading order free energy reads

F0(h(B0)) = −m
2π

∫ B0

−B0

dθ cosh(θ) ε0(θ, h(B0)) = −h
2

2π

(
tanh(B0)− B0

cosh2(B0)

)
, (4.181)

as already reported in the first equation of (4.161).

At order k = 1 we have

K1(θ) =
1

θ2
− cosh(θ)

sinh2(θ)
, (4.182)
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and

ε1(θ, h) =

∫ B0

−B0

K(1)(θ − θ′) ε0(θ′, h)dθ′ . (4.183)

Performing the integral we get

ε1(θ, h(B0)) = m sinh(θ)(Chi(B0 + θ)− Chi(B0 − θ)− log(sinh(B0 + θ)csch(B0 − θ)))
+ m cosh(θ)(2B0 − Shi(B0 − θ)− Shi(B0 + θ)) ,

(4.184)

and from it

B1(B0) = − ε1(B0, h(B0))

∂θε0(θ, h(B0))
∣∣∣
B0

= Chi(2B0) + (2B0−Shi(2B0)) coth(B0)− log(sinh(2B0))− γE ,

(4.185)

where Chi(x) is the hyperbolic cos integral function

Chi(x) = γE + log(x) +

∫ x

0

cosh t− 1

t
dt . (4.186)

Given that ε0(B0) = 0, the next-to-leading term of the the free energy reads

F1(h(B0)) = −m
2π

∫ B0

−B0

dθ cosh(θ) ε1(θ, h(B0)) . (4.187)

Plugging (4.184) in (4.187) and computing the integral gives the second equation of (4.161).

At higher order in ∆ the computation becomes analytically prohibitive. On the other hand, it

is straightforward to proceed numerically and, for a given B0, automatize the iteration procedure

to compute higher order terms in ∆. We have been able to compute with high precision, for

different values of h, Fk up to k = 28. This allowed us to study the large order behavior of the

series. We get8

Fk ∝ ρ−k sin(k ϑ) , (4.188)

where ρ and θ are two parameters that we can numerically evaluate. For example, for h = 3 we

get

ρ = 0.50± 0.02 and ϑ = 0.35± 0.07 . (4.189)

This result confirms that the 1/N series of F(h) is convergent in the GN model, in agreement

with what found in appendix F. The radius of convergence ρ should equal 1/2 independently of

h, while we did not investigate the possible dependence on h of ϑ. The value ∆ = 1/2 corresponds

to N = 4, so we see that for any integer value N > 4, where the fundamental fermions are stable

and the TBA equations (4.17) and (4.21) apply, the free energy can be recovered from its 1/N

8The presence of a period of oscillation in the 1/N coefficients makes less straightforward the determination
of the large order behavior. We have made use of a program written by Jie Gu and based on the work [144].
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expansion.

It is now natural to ask if the analytic continuation of the series in ∆ beyond |∆| ≥ 1/2

contains any physical information. This analytic continuation can be obtained by considering

Padé approximants PF[m/n](∆, h) of the series of Fk we computed. It is known that for con-

vergent series, parametrically diagonal Padé approximants converge (in capacity) to the exact

function and the location of their poles and zeros define an appropriate locus of branch-cuts

connecting branch-point singularities [30] (see e.g. app. D of [31] for a brief overview and [32] for

a comprehensive introduction). Moreover, as we will see below, F(∆, h), at fixed h, is analytic at

∆ = ∞ and non-vanishing, hence diagonal approximants are the optimal choice to reconstruct

the function.

We calculated PF[14/14](∆, h) for a given set of values of h, and compared the result with

F(∆, h) computed by directly solving (numerically) (4.21) at given h and ∆. We find full agree-

ment for all values of h sampled and for 0 < ∆ < 1
2 , and consider it a sanity check of the

correctness of the coefficients Fk. The location of the poles and zeros of PF[14/14](∆, h) shows

that the point ∆ = 1/2 is a branch-point of F(∆). On the other hand, no singularities appear

for ∆ < 0 (as expected from the form of the GN kernel) and hence we can reliably continue

F(∆) for ∆ < 0 using its approximant PF[14/14](∆, h). The two interesting points to discuss are

∆ = 1/2 (N = 4) and ∆ = −∞ (N = 2).

For N = 4 the stable particles in the model are the kinks and their mass equals

mk =
m

2
. (4.190)

Since the fermions are exactly at threshold and are marginally unstable, we can use (4.21) to

compute the free energy by choosing either kinks or fermions as particles populating the vacuum,

but some care is needed. It is useful to briefly review how the analysis goes [117].

Kinks are in the (±1/2,±1/2) spinorial representation of O(4), so their charges are half

those of the fermions. When h/2 > m/2 (or h > m) the vacuum is populated by kinks with

O(4) components (1/2, 1/2) and (1/2,−1/2), which do not interact with each other. The S-

matrix is identical for the two chiralities and the associated kernel is

Kk(θ) =
1

π2

∞∑
n=1

(−1)n+1 n

n2 + (θ/π)2
. (4.191)

If we consider kinks, the associated TBA equation is

εk(θ)−
∫ B

−B
Kk(θ − θ′)εk(θ′)dθ′ =

1

2
(h−m cosh θ) , (4.192)
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where εk describes the excitation of the kink holes. Given εk(θ), the free energy is computed as

F(h) = −2
mk

2π

∫ B

−B
dθ εk(θ) cosh θ = −m

2π

∫ B

−B
dθ εk(θ) cosh θ , (4.193)

where the factor 2 counts the two-fold degeneracy of the kink and exactly compensates for the

1/2 factor in the mass. The kink kernel (4.191) is naively 1/2 of the fermion kernel in (F.33) for

∆ = 1/2. If we take the limit carefully, however, we also get a δ function because

lim
y→0

1

π

y

y2 + x2
= δ(x) . (4.194)

Hence

lim
∆→1/2

Kf(θ) = −δ(θ) + 2Kk(θ) , (4.195)

where we denote by Kf the fermion kernel. So, for ∆ → 1/2, the TBA equation (4.21) for the

fermion excitation holes εf becomes

εf(θ)−
∫ B

−B

(
− δ(θ) + 2Kk(θ)

)
εf(θ

′)dθ′ = 2εf(θ)− 2

∫ B

−B
Kk(θ)εf(θ

′)dθ′ = h−m cosh θ , (4.196)

which is identical to (4.192) with

εk(θ) = εf(θ) . (4.197)

Note that we would not get the correct result by setting N = 4 directly in the fermion case,

because in this way we would not detect the δ(θ) term in (4.195). On the other hand, the analytic

continuation of PF[14/14](∆, h), computed using fermion states for ∆ < 1/2, gives the correct

result at ∆ = 1/2.

The N = 4 model is also equivalent to a pair of decoupled sine-Gordon models:

L =
∑
j=1,2

(
1

2

8π

b2
(∂φj)

2 +
π

4

(8π

b2
− 1
)

cos
√

8πφj

))
, (4.198)

where b is the inverse radius of the compact scalars. For b2 > 4π the only asymptotic states in

the sine-Gordon models are given by kinks and anti-kinks. In presence of a chemical potential h,

the vacuum gets populated by kinks (and no anti-kinks) with a kernel whose Fourier transform

is given by [145]

K̃SG(ω, p) =
sinh π(p+1)ω

2

2 cosh πω
2 sinh πpω

2

, (4.199)

where the parameter p is defined in terms of b as follows:

8π

b2
≡ p+ 1

p
. (4.200)
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Figure 4.5: Free energy as as function of ∆ at fixed h = 3. The red dot corresponds to the (wrong) free
energy one would get by setting ∆ = 1/2 in the kernel appearing in (4.21). The black dot is the correct
value found using (4.193).

On the other hand, the Fourier transform of the kink kernel (4.191) reads

K̃k(ω) ≡
∫ ∞
−∞

eiωθKk(θ)dθ =
1

1 + eπ|ω|
. (4.201)

Interestingly enough,

lim
p→∞

K̃SG(ω, p) = K̃k(ω) , (4.202)

so there is an equivalence of the free energy F (h) in the two models provided

b2 = 8π (4.203)

in the two sine-Gordon models. Note that when b2 → 8π, the coupling of the sine-Gordon

interaction at the same time becomes marginal and vanishes. From (4.198) it might seem that

we get in this limit a pair of decoupled free field scalars, but in fact this is an artefact. The only

asymptotic states are kinks and these are still interacting, as evident from the non-triviality of

the kernel (4.202).9 In the correspondence the kink mass of the GN model is mapped to the

mass of the sine-Gordon kink: mk = mN=4
SG .

For N = 2, i.e. |∆| =∞, the TBA equations (4.21) are physically meaningless, since funda-

9See e.g. [146] for a detailed analysis of the sine-Gordon model when b2 ∼ 8π2.
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mental particles are no longer asymptotic states. Yet, we can wonder if its analytic continuation

is of physical interest and is related in some way to the actual N = 2 Gross-Neveu model. The

latter is nothing else than the Thirring model, famously dual to the sine-Gordon theory [147]. If

we approach the infinite limit from negative values of ∆, we see from direct inspection of either

(F.32) or (F.33) that the GN kernel is analytic at infinity (recall that the digamma function

ψ(z) is meromorphic with simple poles at z = −n, with integer n ≥ 0). By direct inspection we

can also check that this kernel is a contraction:∫ B

−B
K(θ − θ′)dθ′ < 1 . (4.204)

All iterated kernels are hence bounded and the solution of the TBA equation is analytic in ∆. By

taking the analytic continuation of (F.34) for ∆ < 0 and then the limit ∆→ −∞ we immediately

see that the Fourier transform of the kernel equals the kernel for the kink in the sine-Gordon

theory as p→∞ (and the kernel for kinks in the N = 4 GN model). Quite interestingly, the in

principle meaningless |∆| =∞ point of the GN TBA equation (4.21) is related to the free energy

F(h) of a sine-Gordon model at b2 = 8π! In the correspondence the fermion mass appearing in

(4.21) is identified with the mass of the sine-Gordon kink: mf = mN=2
SG .

We can match the values of h in the N = 2 and N = 4 theories, since h multiplies a conserved

quantity and does not renormalize. In particular, we can compute the ratio hN=2/hN=4. Recall

that h is the chemical potential for a single U(1) current of the form χ̄1γµχ2. Bosonizing we

have

χ̄1γµχ2 =
i√
π
εµν∂νφ . (4.205)

When N = 2 the scalar is free and its Lagrangian reads

1

2

4π

b2
(∂φ)2 +

h√
π
∂xφ −→

b2=8π

1

4
(∂φ)2 +

h√
π
∂xφ , (4.206)

while for N = 4 the Lagrangian of the two scalars at b2 = 8π reads10

∑
j=1,2

(
1

2
(∂φj)

2 +
h√
2π
∂xφj

)
. (4.208)

10Note that the relation between the inverse radius of the sine-Gordon and the GN coupling is different in the
two cases, namely

b2N=4 =
8π

1 + g2

2π

, b2N=2 =
4π

1 + g2

2π

. (4.207)

Both for N = 2 and for N = 4 the kernel on the GN side (for fermions and for kinks, respectively) coincides
with the kernel of the sine-Gordon kink, when their corresponding b2 parameters are set to 8π. Curiously, this
corresponds to g2 = 0 for N = 4 and g2 = −π2 for N = 2.
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∆ = 1/2 ∆ = −∞
FTBA(∆, h0 = 3) -0.7028. . . -1.4056352. . .

PF[14/14](∆, h0 = 3) -0.7029(2) -1.4056353(10)

Table 4.3: Comparison between the numerical values of the free energy at h0 = 3 obtained by a direct nu-
merical evaluation of the TBA equation and by using the analytic continuation given by PF[14/14](∆, h0)
for ∆ = 1/2 and ∆ = −∞.

Rescaling the fields to have a canonically normalized kinetic term in (4.205) we get

hN=2 = 2hN=4 . (4.209)

When h < m the vacuum is empty and F(h = m) = 0 for both N = 2 and N = 4. This implies

that the kink mass ratio is the same as in (4.209), mN=2
SG = 2mN=4

SG and hence that the free

energies of the two models are related, namely

F(∆ = −∞, h) = 2F(∆ = 1/2, h) . (4.210)

In figure 4.5 we plot PF[14/14](∆, h0) as a function of ∆ at fixed h0. At ∆ = 1/2 the black

dot corresponds to the (correct) free energy numerically computed using (4.193), while the

red dot is the (wrong) value one would get by naively setting ∆ = 1/2 in the fermion kernel

appearing in (4.21). We see that the analytic continuation given by PF[14/14](∆, h0) gives the

correct value. The dashed black line corresponds to the asymptotic value for ∆ = −∞ which

should equal to 2F(∆ = 1/2, h), according to (4.210). In table 4.3 we compare the numerical

values of F(h0) obtained by a direct numerical evaluation of the TBA equation and by using

the analytic continuation given by PF[14/14](∆, h0) for ∆ = 1/2 and ∆ = −∞. The two results

are in total agreement.



Chapter 5

Conclusions

In this thesis we investigated low-dimensional QFTs with perturbation theory by means of

Borel resummation and resurgence. We decided to organize the conclusions and the outlook of

our work following its two main directions, namely the study of theories where perturbative

series are Borel summable and where they are not.

Chapter 3

In chapter 3 we investigated O(N) φ4 vector models in d = 2 and d = 3 using perturbation

theory around the Gaussian fixed point. In particular, we have pointed out the importance of

the RS in the proof of their Borel summability. We have shown that the proofs in refs. [7,8] and

ref. [9] are both based on the minimal RSs, which we denoted by S. Despite the absence of a non-

trivial β-function, the RS S can be used to determine the strong coupling behavior of the theory

and its critical regime. Physical observables such as critical exponents can be extracted from

correlation functions or from the behavior of the mass gap as the critical coupling is approached.

On the other hand, most of the results in the literature that make use of the resummation of

the fixed dimension expansion (not ε-expansion) are based on other RSs, such as the one we

denoted by S̃ (momentum subtraction) where a non-trivial β-function occurs. We have shown

that in the RS S̃ the proof given in ref. [9] no longer holds, and we are not aware of papers in

constructive quantum field theory generalising the proofs in refs. [7, 8] to other RSs such as S̃.

Focusing on minimal RSs, we studied the scheme dependence in an one-parameter family of RSs

(parametrized by κ) and have been able to find exact finite changes of scheme, given in (3.51)

and (3.59), for d = 2 and d = 3 respectively. This allowed us to write down the exact analytic

renormalization dependence of the critical couplings. In d = 2, we verified it Borel resumming

the perturbative series for the mass gap for different values of κ, see fig. 3.6. In d = 3, where

the structure of the classically unbroken phase is richer, we have reassessed the strong-weak

Magruder duality. Starting from the weak branch in perturbation theory, for certain schemes

we encounter a critical coupling where the theory is gapless and a second-order phase transition

123
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takes place. On the other hand, for other choices of schemes, if one restricts to real values of the

coupling the theory always turns out gapped and a pair of complex conjugate critical couplings

appears. In this case the weak and strong branches are no longer separated by a phase transition

(for real parameters in the Lagrangian) and we can access the strong branch from the Gaussian

fixed point. We have, once again, numerically verified these considerations by Borel resumming

the perturbative series of the 3d O(N) models for the vacuum energy and for the mass gap, see

figs. 3.10 and 3.11.

The merging of critical points is reminiscent of the fixed point annihilation advocated in [148]

as a mechanism for loss of conformality in QFT, see also [149–151]. The fixed point annihilation

described in those papers occurs when parameters (such as the number of fields) in a family of

critical theories are varied and so differs from the merging found in this paper, which is within

a given theory when the renormalization scheme is varied.1 The two CFTs, that we would have

at the two complex conjugate complex values x
(w)
c (κ) and x

(s)
c (κ) for κ < κ∗, should eventually

correspond to the usual O(N) symmetric CFTs, because they merely arise from a coupling

constant redefinition. It would be interesting however to better establish the correspondence

because it is not obvious if (and how) the CFT data of the two complex CFTs are in fact identical

to those of the ordinary unitary O(N) symmetric CFTs. The appearance and disappearance of

fixed points makes also clear that a phase diagram of a theory is not universally determined,

but it depends on the renormalization scheme. For example, we see that according to fig. 3.2 in

the N = 1 case the number of critical points that occur in the entire range of the real squared

mass parameter is either three or one, depending on the renormalization scheme. The universal

presence of a second-order phase transition could be argued from the fact that this number

modulo two is always one.2

Computing the perturbative series for the 0, 2 and 4-point functions at zero momentum up

to order eight, we extended to the next order with respect to the literature the series for the

β-function and the critical exponents η and ν for the d = 3 O(N) models in the RS S̃, see

appendix D.2. Borel resumming them, we computed the value of the critical coupling and of

these critical exponents for several values of N obtaining very accurate results, see table 3.4.

While for d = 2 the accuracy of Borel resummations in the RS S, found in [9], is greater than

the one found in S̃, the opposite is true in d = 3. We suspect that this might be related to the

different analytic structure for observables in d = 2 and d = 3 in the RS S: in three dimensions

the presence of the self-duality in the classically unbroken phase gives rise to two fixed points and

makes observables more difficult to reconstruct numerically. In the spirit of our study, it would

be very interesting to understand more in detail the reasons behind such differing outcomes.

Especially taking in account all our considerations made on the RS S̃.

1Note however that a renormalization scheme dependence on the position of the critical points always occurs.
It would be interesting to study more carefully the interplay between the position of fixed points determined by
the parameters of the theory and by the renormalization scheme dependence of its couplings.

2It would be nice to understand if this is associated to an index, in the spirit of [152].
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Chang and Magruder dualities are crucially based on the super-renormalizability properties

of φ4 theories in d = 2 and d = 3. One can then try to derive similar dualities from more

general super-renormalizable theories. The dualities so obtained would be in general only valid

to all orders in perturbation theory, but not non-perturbatively. In order to hope to have exact

dualities, one should argue for the absence or decoupling of non-perturbative effects, like in the

2d N = 1 and 3d O(N) φ4 models in infinite volume studied in this work.

Extending our methods to other QFTs would be exciting, namely starting from perturbation

theory at fixed dimension to study strongly coupled regions via Borel resummation procedure.

In this direction, the recent results in [153] provide a first positive answer for a study in 3d

abelian gauge theories at finite N . However, for these theories there are no proof about the Borel

summability of the perturbative series. At the same time, neither instantons nor renormalons

singularities are expected to obstruct the Borel resummation. Thus attempting to investigate

the critical behavior in sQED3 and QED3 for different values of N is appealing. Moreover, in

these theories and more in general in fermionic QFTs we still do not have a clear prediction for

the large-order behavior of the perturbative series, see [154] for an old review in this regard.

Chapter 4

In chapter 4 we have discussed the interplay between resurgence and the 1/N expansion in

three integrable theories with a continuous global symmetry: the non-linear sigma model, the

principal chiral field and the Gross-Neveu models. All these theories have marginal interactions,

they are UV free and are affected by IR renormalon singularities. A notable observable is the

relative free energy F(h) defined in (4.16). Its special role comes from the fact that it is possible

to compute it exactly using TBA techniques [113] and has a non-trivial structure (unlike, e.g.,

S-matrix elements in integrable theories). Standard large N QFT and/or TBA techniques also

allow to analytically determine the first 1/N coefficients Fk(h) defined in (4.30)-(4.32).

We have computed F0 and F1 in the NLSM, given respectively in (4.57) and (4.78), and

determined F0 analytically in the PCF model (for the choice of charges in [116]), given in (4.130).

Crucial for the latter computation has been the observation that the NLSM and the PCF kernels

can be expanded in 1/N if the non-analytic term is treated separately. In this way we have also

been able to check F1 in the NLSM by using TBA techniques. These expressions, as well as

the previously known coefficients F0,1 in the GN model [117, 118], have then been compared to

the asymptotic series expansion, one gets in terms of the coupling constant defined in (4.28).

While the perturbative asymptotic expansion agrees with the ones previously determined [123],

we get a plethora of non-perturbative trans-series terms which are associated to the non-Borel

summability of the series due to the presence of IR renormalons.

The final results turned out to be different in the three models. In the NLSM F0 contains

a non-perturbative term which cannot be captured from the (trivial) perturbative expansion.

On the other hand, the median Borel resummation of the perturbative series reconstructs the



126 CHAPTER 5. CONCLUSIONS

full next-to-leading coefficient F1, see fig.4.1. The series for F1 is non-Borel resummable because

of the presence of an IR renormalon, yet somehow unexpectedly no non-perturbative terms are

missed. In the PCF model the expansion of F0 gives rise to the non-trivial trans-series (4.144),

with a perturbative series affected by an infinite number of IR renormalon singularities. In this

case, resurgence techniques work nicely and allow us to reconstruct the full answer from the

perturbative series. In the GN model the expansion of both F0 and F1 give rise to trans-series

(4.165) and (4.166) which can not be reconstructed from the perturbative series only, using

resurgence.

We also studied the behavior of the 1/N series for F(h). The non-analyticity of the kernel

at N =∞ for the NLSM and the PCF models suggest that the 1/N expansion of ε(θ) and χ(θ)

should be divergent asymptotic. This points towards a divergent 1/N expansion of F(h), as well

as of its Legendre transform e(ρ). In contrast, the 1/N expansion of F(h) (and e(ρ)) in the GN

model is expected to be convergent. We have numerically computed higher values of Fk in each

model (for some values of h) in order to verify these expectations. Our results for the NLSM

and PCF models are inconclusive. The number of coefficients Fk we computed does not allow

us to establish whether the series are convergent or divergent asymptotic. The first possibility is

not in contradiction with the 1/N non-analyticities of the kernel, because F(h) is obtained by

integrating ε(θ) over rapidities and we cannot exclude that these non-analyticities are smoothed

out by the integration procedure. It would be nice to settle this issue in future studies. In the

Gross-Neveu model the expected convergence of the 1/N series is numerically confirmed. We

analytically continued the series beyond its radius of convergence (see fig.4.5), where the TBA

equations (4.21) and (4.17) no longer make sense, and showed how this continuation gives values

of F(h) in complete agreement with those obtained for the sine-Gordon theories dual to the GN

models with N = 2 and N = 4.

There are several directions worth exploring in future studies. From the point of view of the

general theory of resurgence, our most important finding is its breakdown in certain models,

when combined with the 1/N expansion. By a breakdown of resurgence we mean that the

structure of non-perturbative corrections at each order in the 1/N expansion can not be predicted

from the study of the perturbative series only. A better understanding of this breakdown is

perhaps the most important problem open by our investigation. There are two possibilities

here. One possibility is that this is a feature of the 1/N expansion and does not apply at

finite N . It might happen that, when fixing the order in the 1/N expansion, the resulting

perturbative series in the coupling constant is not sufficiently generic and cannot be used to

predict non-perturbative corrections. This would be somewhat similar to the “Cheshire cat

resurgence” in supersymmetric theories [155]. The other possibility is that the phenomenon we

have found is generic in theories with renormalons. The detailed study performed for the O(4)

sigma model in [124, 125, 156] validates standard resurgence expectations and seems to favor

the first possibility. Clearly, additional studies are necessary in order to clarify this fundamental
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issue. A detailed resurgent analysis of the free energy of the GN model at finite N , along the lines

of [124,125,156], would be very useful. It would be interesting to clarify if the failure of resurgence

in the GN model is related to the different analyticity properties in 1/N of its kernels. More

generally, it would be important to study observables other than F(h) which can be computed

exactly in the 1/N expansion and can be analytically decoded in terms of trans-series.

Let us propose a distinction between three different levels of validity of the theory of resur-

gence, in order to understand what is at stake. The first, more general level of validity is the

statement that observables in quantum theory are given by ambiguity-free Borel–Écalle resum-

mations of trans-series. This statement is probably true and it is implicit in many of the early

studies of renormalons, like e.g. [110, 111]. All of our results, including the example of the GN

model, vindicate this first level of validity. The second level of validity is the stronger statement

that the trans-series is fully determined by its perturbative part, up to the numerical values of

the trans-series parameters. It is this second level of validity that breaks down in some of the

examples that we have studied, when restricting to a fixed order in the 1/N expansion. Finally,

a third and largely independent issue is whether renormalon singularities and the associated

trans-series have a semi-classical interpretation, in terms of expansions around saddle-points of

a classical action. It has been argued that, after a twisted compactification, the renormalon sec-

tors of the PCF model and the NLSM can be interpreted semiclassically [157,158]. Note however

that the successful examples of resurgence that we have considered (like e.g. the PCF model at

large N) are independent of such a semiclassical interpretation. It is perfectly conceivable (and,

in our opinion, quite likely) that, for theories with renormalons at infinite volume, one does not

have a semiclassical interpretation of the trans-series, but some version of resurgence will be still

valid. In that scenario, a crucial open question will be to find a generalization of perturbation

theory which makes it possible to calculate the trans-series from first principles, and without

relying on resurgence properties or integrability. The use of the OPE, as in QCD sum rules, goes

along this direction, but it is clear that a more general procedure has to be devised in order to

compute general observables for which OPE techniques are in principle not applicable, as it is

the case of the free energy studied in this paper.

The results that we have obtained apply to the TBA renormalization scheme defined in (4.28)

and might not be valid in others. It would be useful to better understand if and to what extent

resurgence methods depend on the renormalization scheme, given also the impact that the choice

of scheme can have when resumming perturbative series even in absence of renormalons, as we

have seen in details in chapter 3. It would be nice to investigate how resurgence methods apply,

for example, in the MS scheme.3

Finally, it would be very interesting to extend these considerations to non-integrable theories.

One possibility would be to compute F(h) in the quartic linear O(N) model when m2 < 0 at

some order in 1/N and check if the result can be reconstructed from a perturbative expansion

3see e.g. [159] for a recent study addressing related questions.
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around the naive vacuum, where IR renormalons have been shown to appear [83].

There has been recently much progress in investigating trans-series in integrable field theo-

ries starting from the TBA equations and Volin’s method [13, 14]. The results have been very

interesting and quite unexpected. New unconventional IR renormalons have been uncovered

in [160]. Their location at finite N on the Borel plane goes against the common lore. Instead,

they become indistinguishable from the conventional ones at large N and give rise to the those

studied in this work for the PCF and the GN model. At the same time, the O(3) NLSM seems

to present another counter-example to the strong version of resurgence [160,161] and, even more

surprisingly, seems to come from an instanton contribution, while the renormalon ones seem to

satisfy the resurgence relations [162,163].

This thesis and the recent progresses, we have just mentioned, show and confirm how, if

we are able to compute (possibly long) perturbative series, they can play a central role in

understanding many aspects of QFT. This is valid whether the perturbative series are Borel

summable or not. Note, at the same time, that in this effort to compute perturbative series, we

are helped by the growing computational power at our disposal.



Appendix A

The Lambert W Function

Many results of chapter 3 of this work feature the Lambert function, so it is useful to review

here some of its properties. We refer the reader to [164] for more details. The Lambert function

is the function W (x) that is obtained by inverting the relation

wew = x . (A.1)

For large values of w it behaves like the log function, but it deviates from it for small values. For

x > 0, W (x) is monotonic, while for x < 0 it is double-valued, see fig. A.1. Over the reals, W (x)

has non-trivial support for x ∈ [−1/e,∞). As analytic complex function, W (z) has an infinite

number of branches, parametrized by an integer k. Only two branches, denoted by W0 and W−1,

have real sections over x, see fig. A.1. In all other branches Wk(z), with k 6= −1, 0, take complex

values. The function W0(z) is analytic at z = 0 and it admits there the series expansion

W0(z) =

∞∑
n=1

(−n)n−1

n!
zn . (A.2)

The series above has a convergence radius equal to 1/e. At z = −1/e W0 has a branch-cut

singularity, where it branches into W1 and W−1. Aside from W0, all Wk have a branch-cut at

the origin and a logarithmic singularity at infinity. In particular, for any branch, we have

lim
z→∞

Wk(z) ≈ log z + 2iπk +O(log log z) , (A.3)

and in particular for real x

lim
x→∞

W0(x) ≈ log x− log log x+O
( log log x

log x

)
. (A.4)
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Figure A.1: The two branches of the Lambert function that take real values over x. The black dot
corresponds to the branching point x = −1/e.

We will be mostly considering the branches k = −1 and k = 0. A useful formula is

lim
x→0−

W−1(x) = log(−x) +O(log(− log(−x))) . (A.5)

Another useful formula for W is the following:

dnW (x)

dxn
=

e−nW (x)pn(W )

(1 +W (x))2n−1
, n ≥ 1 , (A.6)

where pn are polynomials of degree n− 1 in W , defined by the recursion relation

pn+1(x) = −(nx+ 3n− 1)pn(x) + (1 + x)p′n(x) , p1(x) = 1 . (A.7)

It is worth recalling a few QFT works where the Lambert W -function has appeared: in [165]

it has been shown that the two-loop QCD beta-function can exactly be solved in terms of W

and studied the analyticity properties of the solution. In [166] it has been shown that an infinite

subset of diagrams in the 4d SUSY massless Wess-Zumino model can be resummed and leads

to a beta-function and field anomalous dimension in terms of W . A solution for the 2-point

function for a non-commutative version of the 2d φ4 theory in terms of W was found in [167].

More recently [168] found that a subset of diagrams for the field anomalous dimensions in 4d

massless Yukawa theory can be computed to all orders using a truncation of the Schwinger-Dyson

equations. The ansatz for the trans-series associated with the known perturbative coefficients

can be expressed in terms of W.



Appendix B

Large N for O(N) Models in d < 4

Large N techniques are typically used in O(N) models by taking m2 = 0 and by going directly at

the critical point, avoiding the problem of IR divergences. In this way one can extract physical

quantities such as scaling dimensions of the CFT operators, see e.g. section 2 of [169] for a

clear and concise review. In contrast, in this appendix we consider large N of the massive O(N)

models, in line with the analysis in the main text. In particular, we compute the vacuum energy

Λ = Γ(0) and the mass gap M2 = Γ(2)(p = 0) at the first non-trivial leading order in large N

and to all orders in the coupling λ. Although the diagrams surviving in the large N limit are a

small subset of the total and are not the hardest to determine, a comparison with large N has

been useful as a sanity check of the accuracy of the numerical evaluation of Feynman diagrams.

We report here once again the euclidean action of the theory

S =

∫
ddx
[1

2
(∂µφi)

2 +
1

2
m2
Bφ

2
i + λ(φ2

i )
2 + ρB

]
, i = 1, . . . , N , (B.1)

and we consider the large N -limit

N →∞ , λ→ 0 , with λ̌ ≡ Nλ = fixed . (B.2)

We define the renormalized parameters

m2
B = m2 + δm2 , ρB = ρ+ δρ , (B.3)

where

δm2 = δm2
(0) +

1

N
δm2

(1) + o(N−2) , δρ = Nδρ(−1) + δρ(0) + o(N−1) , (B.4)

and we choose a renormalization scheme where the vacuum energy counterterm δρ and the mass

counterterm δm2 exactly cancel the contributions in Λ and M2 up to order λd/(4−d) and λ2/(4−d),
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respectively.1 Introducing a Hubbard-Stratonovich auxiliary field σ(x), we can rewrite S as

Ŝ =

∫
ddx
[1

2
(∂µφi)

2 +
1

2
(m2 + δ̌m2)φ2

i −
1

2
σ2 +

1

2
v̌σφ2

i + σδT + ρ+ δ̌ρ
]
. (B.5)

If we integrate out σ we recover the action (B.1) provided we identify2

v̌ = 2
√

2λ , δ̌ρ = δρ−
δ2
T

2
, v̌δT + δ̌m2 = δm2 . (B.6)

There is an arbitrariness in splitting the mass counterterm δm2 in terms of δT and δ̌m2. We

choose

v̌δT = δm2
(0) , δ̌m2 =

1

N
δm2

(1) , (B.7)

so that the tadpole counterterm δT for σ completely cancels the radiatively induced tadpole at

o(N0). Let us first consider the 2-point function 〈φi(−p)φj(p)〉 = Γ
(2)
ij (p2) ≡ δijΓ

(2)(p2). Since

Γ
(2)
ij is 1PI with respect to the φi, but not with respect to σ, Feynman diagrams reducible when

cutting a σ-propagator should be considered. At o(N0) and o(λ̂) only one diagram contributes.

In the chosen renormalization scheme its contribution is canceled by δT . The cancellation of

tadpole-like graphs at o(N0) persists to all orders in λ̌, so no contribution whatsoever arises at

o(N0) in Γ(2)(p2). We now compute the 〈σσ〉 propagator at o(N0). The relevant 1PI diagram is

p

p + q

q

= 4λ̌

∫
ddq

(2π)d
1

q2 +m2

1

(p+ q)2 +m2
≡ λ̌Πd(p

2) , (B.8)

where we used wavy lines for the field σ along with the usual solid lines for the vector field φi.

For d < 4 the loop integral converges. The resummation of the bubbles leads to the exact o(N0)

propagator, which will be denoted by a double wavy line:

p

≡ −
∞∑
n=0

(−λ̌Πd(p
2))n = − 1

1 + λ̌Πd(p2)
. (B.9)

We are now ready to study Γ(2) at o(N−1). At this order 3 diagrams and the δm2
(1) counterterm

contribute, see fig. B.1. Note that we also have o(N−1) corrections to the σ propagator, but

these can enter in Γ(2) at this order only through tadpole graphs, and hence they vanish. The

divergences in graph (a) arising from n = 0 (d < 3) or n = 1 (3 ≤ d < 4) insertions of Πd in the

1This is the generalization for any d < 4 of what we denoted intermediate scheme in section 3.8.1 of the main
text. We have omitted in this appendix the subscript I to avoid clutter.

2The Gaussian integral in σ is computed by analytic continuation from pure imaginary values, where the path
integral converges.
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(a) (b) (c) (d)

Figure B.1: Contributions of o(N−1) to the two-point function 〈φi(−p)φj(p)〉. The counterterm depicted
in (c) and (d) corresponds to δ̌m2.

expansion of the resummed propagator are cancelled by the mass counterterm, so (a) + (d) is

finite. Similar considerations apply for the graphs (b)+(c). We do not report the expressions for

these graphs, that can be derived by standard manipulations. Let us now consider the vacuum

energy. In the chosen renormalization scheme, the o(N) contributions to the vacuum energy are

exactly canceled.3 So the leading finite contribution arises at o(N0) and is given by a one-loop

vacuum diagram of the exact o(N0) σ-propagator. Collecting the results above, we finally get

Λ =
1

2

∫
ddq

(2π)d
log
(

1 + λ̌Πd(q
2)
)

+ δ , (B.10)

M2 = m2 +
8λ̌

N

∫
ddq

(2π)d

∞∑
n=2

λ̌n
(−Πd(q

2))n

q2 +m2
+ (b) + (c) + o(N−2) , (B.11)

Γ(4)(p = 0) = −24λ̌

N

1

1 + λ̌Πd(0)
+ o(N−2) . (B.12)

We have also reported the leading order expression of the 4-point 1PI function Γ(4), which is

o(N−1), and is trivially given by tree level diagrams only. There is no need to keep track of the

form of the counterterm δ appearing in (B.10), because in our scheme it is equal and opposite

to the first divergent terms arising from the loop integral when expanded in powers of λ̌. The

form of Πd(q
2) and more explicit expressions for M2 will be given below for the specific d = 2

and d = 3 cases. In what follows it will be useful to use dimensionless quantities and rewrite

λ̌Πd(q
2) ≡ ǧ Ud(y), ǧ ≡ λ̌

m4−d , y ≡ q2

4m2
. (B.13)

3It is easy to see that the o(N) counterterm δρ(−1) in (B.4) precisely cancels the term δ2
T /2 in (B.6), which is

also of order o(N), so that the counterterm δ̌ρ is o(N0).
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d = 2

We specialize here to the d = 2 case. Working out the contributions from graphs (b) + (c) in

fig. B.1, we obtain the following expression for M2:

M2

m2
= 1− 8ǧ

πN

∫ ∞
0
dy

∞∑
n=1

(−ǧ U2(y))n
(

1

1 + 4y
− ǧ

1 + ǧ
π

V2(y)

)
+ o(N−2) , (B.14)

where

U2(y) =
1

π

log(
√
y +
√

1 + y)√
y(1 + y)

, V2(y) ≡ 1

4π

√
y(y + 1) + arctanh

(√
y

1+y

)
√
y(1 + y)3/2

. (B.15)

We report below the numerical values for the first coefficients in an expansion in ǧ of Λ and M2:

Λ = − 0.016961ǧ2 + 0.0015425ǧ3 − 0.00023173ǧ4 + o(ǧ5) + o(N−1) ,

M2

m2
= 1 +

1

N

(
ǧ(−0.47497ǧ2 + 0.23046ǧ3 − 0.090670ǧ4 + o(ǧ5)

)
+ o(N−2) ,

Γ(4)(0)

m2
=− 24ǧ

N

1

1 + ǧ
π

+ o(N−2) . (B.16)

It is known that generally the large-order behavior of the large N coupling expansion, at given

order in N , is convergent. The above results are in agreement with this expectation. From a

numerical exploration we find that the series in ǧ for Λ at o(N0) and Γ(2) at o(N−1) are

convergent, with a radius of convergence equal to π. This is in agreement with the radius of

convergence of Γ(4) that is manifest from its analytic form at o(N−1).

d = 3

Proceeding as above for the d = 3 case, we get the following expression for M2:

M2

m2
= 1−

ǧ3 log
(

4
3

)
Nπ3(1 + ǧ

2π )
+

2ǧ

Nπ2

∫ ∞
0
dy
√
y

∞∑
n=2

(−ǧU3(y))n
(

8

4y + 1
− ǧ

π(1 + ǧ
2π )

1

y + 1

)
+ o(N−2) ,

where the function U3(y) is given by

U3(y) =
1

4π

arccot
(

1
2y

)
y

. (B.17)

The numerical values for the first coefficients in an expansion in ǧ read

Λ = − 0.000073108ǧ4 + 3.4816× 10−6ǧ5 + o(ǧ6) + o(N−1) ,
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M2

m2
= 1 +

1

N

(
0.023840ǧ3 − 0.0053959ǧ4 + o(ǧ5)

)
+ o(N−2) ,

Γ(4)(0)

m
=− 24ǧ

N

1

1 + ǧ
2π

+ o(N−2) . (B.18)

Like in the d = 2 case, the series in ǧ for Λ at o(N0) and Γ(2) at o(N−1) are convergent, with a

radius of convergence equal to 2π. This is in agreement with the radius of convergence of Γ(4)

that is manifest from its analytic form at o(N−1).





Appendix C

Vacuum Energy Renormalization in

d = 3 O(N) Models

In the following we derive the counterterm, in the 3d O(N) models, for the vacuum energy in

the MS scheme needed to establish the duality of the theory.

First, we recall the determination of the mass counterterm δm2. Within dimensional regular-

ization only the sunset diagram has a pole in ε = d−3 and contributes to the mass counterterm

δm2. Below we give the explicit expressions for the three diagrams in fig. C.1:

Σ1 = −λmN + 2

π
,

Σ2a(k) = −λ2N + 2

π2

[
1

ε
+ 3 + log

µ2

9m2
− log

(
1 +

k2

9m2

)
− 6m

|k|
arctan

(
|k|
3m

)]
,

Σ2b = λ2 (N + 2)2

2π2
.

Hence we find

δm2 =
λ2

ε

N + 2

π2
. (C.1)

Secondly, we turn to the determination of the vacuum energy counterterm δρ. Since the

divergences in the vacuum energy can be found up to four loops we have explicitly computed

the diagrams in fig. C.2 within dimensional regularization and we report their values below. The

contributions at order zero and one are finite within dimensional regularization and give

Υ0 = −m3 N

12π
, Υ1 = λm2N(N + 2)

16π2
.
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Σ1 Σ2a(k) Σ2b

4λ(N + 2) −32λ2(N + 2) −16λ2(N + 2)2

Figure C.1: The two-point diagrams up to 2 loops together with the multiplicity factors.

Υ0 Υ1 Υ2a Υ2b Υ2c

N/2 λN(N + 2) −4λ2N(N + 2)2 −4λ2N(N + 2) N/2

Υ3a Υ3b Υ3c Υ3d Υ3e

16λ3N(N + 2)3 32
3
λ3N(N + 2)3 64λ3N(N + 2)2 −2λN(N + 2) 32

3
λ3N(N+2)(N+8)

Figure C.2: The zero-point diagrams up to 4 loops together with the multiplicity factors. The filled black
squares represent factors of δm2.

At order two we find two diagrams giving 1/ε poles that cancel out:

Υ2a = −λ2m
N(N + 2)2

32π3
,

Υ2b = λ2m
N(N + 2)

8π3

[
1

ε
− 3

2
log

m2

µ2
+ 4− 5 log 2

]
,

Υ2c = −λ2m
N(N + 2)

8π3

[
1

ε
− 1

2
log

m2

µ2
+ 1− log 2

]
.

At order three the poles given by the diagrams Υ3c and Υ3d cancel out, leaving one divergent

contribution from Υ3e only:

Υ3a = λ3N(N + 2)3

64π4
.

Υ3b = −λ3N(N + 2)3

192π4
,

Υ3c = −λ3N(N + 2)2

16π4

(
1

ε
− 2 log

m2

µ2
+ 2− 6 log 2

)
,

Υ3d = λ3N(N + 2)2

16π4

[
1

ε
− log

m2

µ2
+ 1− 2 log 2

]
,
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Υ3e = λ3N(N + 2)(N + 8)

384π2

(
1

ε
− 2 log

m2

µ2
+ 1− 2 log 2− 42ζ(3)

π2

)
.

Therefore the counterterm δρ is determined as

δρ = −λ
3

ε

N(N + 2)(N + 8)

384π2
, (C.2)

which implies

βρ = −4λ3N(N + 2)(N + 8)

384π2
, ρ(µ) = ρ(m) + λ3N(N + 2)(N + 8)

384π2
2 log

m2

µ2
. (C.3)

The self-duality is then obtained by mapping the parameters between the theory at the scale m

and the theory at the scale m′. In other words we find the scale µ = m′ such that m2(m′) = m′2.

From (C.3) we find the constant contribution to the vacuum energy ρ(m′) that one has to take

into account in order to completely match the two theories.





Appendix D

Series Coefficients in d = 3 O(N)

Models

In this appendix, we report the coefficients for some series expansions in the three-dimensional

O(N) models.

D.1 Series Coefficients in the RS S

In this section, we report the coefficients for the series expansion of the vacuum energy Λ and of

the mass gap M2 in the MS scheme (i.e. at µ = m or equivalently κ = 0) obtained as explained

in section 3.8.1. The numerical coefficients appearing without error have been computed to a

higher accuracy and have been truncated here to nine relevant digits.

141



142 APPENDIX D. SERIES COEFFICIENTS IN D = 3 O(N) MODELS

Λ− ρ
m3

=−
N

12π
+ g

N(N + 2)

16π2
− g2N(N + 2)

8π3

(
N + 2

4
− 3 + 4 log 2

)
− g3N(N + 2)

384π4

[
(N + 8)

(
42ζ(3)− π2 + 2π2 log 2

)
− 24(N + 2)(4 log 2− 1)− 4(N + 2)2

]
− g4

[
0.0103030380(14)N + 0.0073758023(10)N2 + 0.00138423945(16)N3

+ 0.000148813598N4 +
N5

512π5

]
+ g5

[
0.00174385(8)N − 7.97(9)× 10−6N2 − 0.000543315(31)N3

− 0.0000463208(26)N4 + 2.68116618× 10−6N5

]
− g6

[
0.00348107(8)N + 0.00204121(9)N2 + 0.00002997(4)N3 − 0.000060341(10)N4

− 6.346(8)× 10−7N5 − 3.31589818× 10−7N6 −
N7

12288π7

]
+ g7

[
0.00463840(9)N + 0.00311902(11)N2 + 0.00029512(6)N3 − 0.000043397(17)N4

+ 5.8275(22)× 10−6N5 + 5.9986(13)× 10−7N6 − 3.20181996× 10−8N7

]
− g8

[
0.007050(7)N + 0.004976(9)N2 + 0.000506(4)N3 − 0.0001247(10)N4 − 4.67(11)× 10−6N5

+ 1.314(7)× 10−6N6 − 2.519(11)× 10−8N7 + 1.84663100(33)× 10−9N8 +
N9

131072π9

]
.

(D.1)

M2

m2
= 1− g

N + 2

π
+ g2 (N + 2)(N + 4 log 3)

2π2
+ g3

[
0.254293918 + 0.0394597748N

− 0.0519064757N2 −
N3

8π3

]
− g4

[
0.30782412(5) + 0.170601023(33)N + 0.001281784(5)N2 − 0.00353134874N3

]
+ g5

[
0.38362587(23) + 0.24910600(22)N + 0.02194130(8)N2

− 0.002994545(9)N3 + 0.000230093158N4 +
N5

128π5

]
− g6

[
0.5571505(8) + 0.3825440(10)N + 0.0381541(5)N2 − 0.00760405(12)N3

− 0.000234300(11)N4 + 0.0000550745909N5

]
+ g7

[
0.976392(5) + 0.732438(7)N + 0.1065630(35)N2 − 0.00120274(10)N4

− 0.0105821(8)N3 + 0.000096815(7)N5 − 1.9329992326(35)× 10−6N6 −
N7

1024π7

]
− g8

[
1.923506(21) + 1.546272(32)N + 0.281617(19)N2 − 0.012955(6)N3 − 0.0033825(9)N4

+ 0.00023996(7)N5 + 9.1854(28)× 10−6N6 − 1.0854670647(15)× 10−6N7

]
.

(D.2)

Recall that we have normalized the vacuum energy by taking ρ = ρ(m) = 0.
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D.2 Series Coefficients in the RS S̃

In this section, we report the coefficients for the series expansion of the β-function, of the critical

exponents η and ν in the physical scheme of [10] for generic N . They are obtained as explained

in section 3.9.2. We use the normalization used by Nickel in [98] g̃ = g̃(N + 8)/(48π). The

numerical coefficients appearing without error have been computed to a higher accuracy and

have been truncated at 10−15.

β̃(g̃) = − g̃ + g̃2 −
g̃3

(N + 8)2

4(41N + 190)

27
+

g̃4

(N + 8)3

[
1.348942760866478 N2

+ 54.940377049302200 N + 199.640417221105907

]
−

g̃5

(N + 8)4

[
− 0.155645907585201 N3 + 35.82020347182(7)N2 + 602.5212285602(6)N

+ 1832.2067281779(14)

]
+

g̃6

(N + 8)5

[
0.051236212811530 N4 + 3.237874(11)N3 + 668.55456(24)N2

+ 7819.5673(20)N + 20770.183(5)

]
−

g̃7

(N + 8)6

[
− 0.023424226049759 N5 − 1.07182(8)N4 + 265.8411(20)N3

+ 12669.295(24)N2 + 114181.79(13)N + 271300.61(28)

]
+

g̃8

(N + 8)7

[
0.012640642324067 N6 + 0.5433(5)N5 − 14.386(16)N4 + 8828.74(25)N3

+ (246972.5± 2.0)N2 + (1840997± 8)N + (3981620± 14)

]
.

(D.3)
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η̃(g̃) =
g̃2

(N + 8)2

8(N + 2)

27
+

g̃3

(N + 8)3

[
0.0246840009259343 (N2 + 10N + 16)

]
+

g̃4

(N + 8)4

[
− 0.004298563333341 N3 + 0.667985910868(20)N2 + 4.60922100685(3)N

+ 6.51210986356(18)

]
−

g̃5

(N + 8)5

[
0.006550923035200 N4 − 0.13245107140(8)N3 + 1.891116(10)N2

+ 15.18794(6)N + 21.64700(9)

]
+

g̃6

(N + 8)6

[
− 0.005548920737435 N5 − 0.02039935040(31)N4 + 3.05407(7)N3

+ 64.0777(8)N2 + 300.7218(34)N + 369.714(4)

]
−

g̃7

(N + 8)7

[
0.004390810855773 N6 + 0.0612032025(13)N5 − 1.2705(4)N4 + 35.311(7)N3

+ 751.79(5)N2 + 3345.53(18)N + 3988.40(21)

]
+

g̃8

(N + 8)8

[
− 0.003473417276666 N7 − 0.070431737(5)N6 + 0.151(3)N5 + 11.6(1)N4

+ (1111± 1.5)N3 + (13674± 9)N2 + (52140± 27)N + (58297± 30)

]
.

(D.4)

ν̃(g̃) =
1

2
+

g̃

(N + 8)

(N + 2)

4
+

g̃2

(N + 8)2

(27N2 + 16N − 76)

216
+

g̃3

(N + 8)3

[
N3

16
+ 0.357987483753229 N2

+ 2.20259658610878 N + 3.473243237204659

]
−

g̃4

(N + 8)4

[
−
N4

32
− 0.399474877149036 N3 + 0.609039560891(5)N2 + 14.977065564467(32)N

+ 24.82217386818(4)

]
+

g̃5

(N + 8)5

[
N5

64
+ 0.333425900294786 N4 + 0.7393030(9)N3 + 27.122009(18)N2

+ 184.70641(11)N + 262.00439(15)

]
−

g̃6

(N + 8)6

[
−
N6

128
− 0.245952216148592 N5 − 1.875537(5)N4 + 0.87861(19)N3

+ 417.7907(19)N2 + 2385.941(7)N + 3130.387(8)

]
+

g̃7

(N + 8)7

[
N7

256
+ 0.170195139781328 N6 + 2.298000(25)N5 + 0.1341(20)N4 + 328.511(29)N3

+ 7521.91(19)N2 + 35180.6(6)N + 42962.6(6)

]
−

g̃8

(N + 8)8

[
−
N8

512
− 0.113811144429731 N7 − 2.23349(12)N6 − 9.232(14)N5 − 116.02(24)N4

+ (9073.7± 2.2)N3 + (139051± 11)N2 + (567393± 30)N + (652860± 29)

]
.

(D.5)
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Appendix E

d = 0 reduction of quartic vector

models

In this appendix we present the details necessary to reproduce the 1/N large order behavior (4.4)

of the coefficients in the 0d reduction of quartic vector models and provide some further technical

comments. To make contact with QFT models, it is useful to introduce an Hubbard-Stratonovich

like parameter σ to rewrite the quartic term (x · x)2 as

e−
g
N

(x·x)2
=

1√
2π

∫ ∞
−∞

dσ e
−σ

2

2
+i
√

2g
N
σ x·x

. (E.1)

Inserting in (4.1) and integrating over x gives

I(m, g) =

√
N

2π
2−

N
2

∫ ∞
−∞

dσ e−NK(σ) , (E.2)

where

K(z) =
z2

2
+

1

2
log
(m

2
− i
√

2gz
)
, (E.3)

and we rescaled σ →
√
Nσ. The function K is complex and the original contour of integration

is not a downward flow, so that we have to decompose it in terms of Lefschetz thimbles. We get

two critical points

z(±)
c =

i

4
√

2g

(
−m±

√
m2 + 16g

)
. (E.4)

The function K has a branch-cut singularity at zbc = −im/
√

8g. The point z
(−)
c sits on top of

the branch-cut and K(z) has two saddles for each of the infinite Riemann sheets associated to

the log function. The deformed contour passing through z
(+)
c ≡ zc is a regular Lefschetz thimble.

As shown in [17], this is a sufficient condition for Borel summability to the exact result of the
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asymptotic saddle point series expansion around zc. The large-order behavior of the coefficients

cp around a saddle zc is given by the lowest-order coefficients of the series associated to the

so-called adjacent saddles ẑc [19]. In our case, we have one adjacent saddle ẑc = z
(−)
c which

contributes twice according to the two different analytic continuations of the log function in

K(z):

Kη(ẑc) = ReK(ẑc) +
iπη

2
, η = ± . (E.5)

The large order behavior is given by eq.(20) of [19] as follows:

cp =
Îc

2πi

∑
η=±

η
Γ(p)

(Kη(ẑc)−K(zc))p

(
1 +O

(1

p

))
, (E.6)

where

Îc =

√
K ′′(zc)

K ′′(ẑc)
=

√
m2 + 16g −m

4
√
g

, (E.7)

Kη(z(−)
c )−K(z(+)

c ) = ρ eiηθ , ρ =

√
Z2 +

π2

4
, θ = arccos

(Z
ρ

)
, (E.8)

and

Z = −m
√
m2 + 16g

16g
− 1

2
log

√
m2 + 16g +m√
m2 + 16g −m

. (E.9)

For p� 1 we then get (4.4), which agrees with the earlier result (2.16) of [170] for m = 1. Note

that the large order behavior for m = 1 and m = −1 are related, since θ → π− θ and Îc → 1/Îc

when m→ −m. We see that the large order coefficients oscillate with a period given by θ.

When θ = π/2, cp = 0 for even p and one has to look at the sub-leading O(1/N) corrections.

This situation is realized when m = 0. In this case, the integral (4.1) simply equals to

I(0, g) =
( N

16g

)N
4

√
π

Γ(N+2
4 )

, (E.10)

and (4.4) simplifies to

cp(m = 0) =
Γ(p)

π

( 2

π

)p
sin

πp

2

(
1 +O

(1

p

))
. (E.11)

The sub-leading contributions are captured by the full resurgent (asymptotic) formula [19]

cp ≈
Îc

2πi

∑
η=±

η

∞∑
q=0

Γ(p− q)ĉηq
(Kη(ẑc)−K(zc))p−q

, (E.12)
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where ĉηq are the first terms of the expansion around the adjacent saddle ẑc, normalized so that

ĉη0 = 1. Interestingly, cηq = cq, because these saddles are all equivalent for m = 0. We easily get

cp =
Γ(p)

π

( 2

π

)p(
sin

πp

2

(
1−
(π

2

)2 1

72(p− 1)(p− 2)

)
−cos

πp

2

(
π

2

1

6(p− 1)

)
+O

( 1

p3

))
. (E.13)

This series alternates every two terms and has odd terms parametrically larger than the even

ones by a factor of p, for large p.





Appendix F

Existence, uniqueness and analyticity

in 1/N of the TBA equations

Both TBA equations (4.17) and (4.21) are instances of a class of equations of the form

f(θ)−
∫ B

−B
K(θ − θ′)f(θ′)dθ′ = L(θ) , (F.1)

where L(θ) is a given continuous function, K(θ) is an integral kernel, and f(θ) is the function to

be determined. Equations of this kind are known as non-homogeneous Fredholm linear integral

equations. In this appendix we would like to show the existence and uniqueness of the solutions

of (4.17) and (4.21) in the three models considered in chapter 4 of this work, as well as some

analyticity properties in 1/N of the kernel K(θ).

Let us start by briefly reviewing basic mathematical facts. The above equation (F.1) can be

compactly written as a fixed point equation Tf = f , where

Tf(θ) = L(θ) +

∫ B

−B
K(θ − θ′)f(θ′)dθ′ . (F.2)

Importantly, the operator T is a contraction if

sup
−B≤θ≤B

∣∣∣∣∫ B

−B
K(θ − θ′)dθ′

∣∣∣∣ ≡ k < 1 . (F.3)

Indeed, for arbitrary functions f1 and f2 we have

|Tf1 − Tf2| = |Kf1 −Kf2| ≤ k|f1 − f2| < |f1 − f2| . (F.4)

If T is a contraction, by the contraction theorem (also known as Banach fixed point) the solution
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Tf = f exists and is unique, and it can be written schematically as

f =
∞∑
p=0

KpL . (F.5)

The key quantity to study is the kernel K, which will be discussed separately for each model in

the next subsections. Our goal will be two-fold: we will first show that K is a contraction, hence

proving the existence and uniqueness of the solution, in each case. Secondly, we will study the

analyticity in 1/N of the solution. Thanks to (F.5), the analyticity of the solution in a certain

region can be established by proving that all the iterated kernels Kp are analytic in that region

(in particular it is not enough to establish this property for K alone). We will see that there is

analyticity in a disk close to the origin of the 1/N plane, but not including it, for the NLSM and

PCF, while in the case of GN the solution is analytic in the origin within a certain radius. The

analysis will be quite detailed for the NLSM and more sketchy for the PCF and GN models.

F.1 Non-Linear sigma model

For the non-linear sigma model the kernel reads

K(θ) =
1

4π2

(
ψ
(

1 +
iθ

2π

)
− ψ

(1

2
+

iθ

2π

)
+ ψ

(1

2
+ ∆ +

iθ

2π

)
− ψ

(
∆ +

iθ

2π

))
+ c.c. , (F.6)

where ψ is the digamma function and ∆ = 1/(N − 2). The Fourier transform K̃(ω) of K(θ)

admits a simple analytic expression [115], which is straightforwardly obtained by expanding the

digamma functions. For ∆ > 0 it reads

K̃(ω) ≡
∫ ∞
−∞

eiωθK(θ)dθ =
1 + eπ|ω|(1−2∆)

1 + eπ|ω|
. (F.7)

The kernel (F.6) is point-wise positive definite, i.e. K(θ) ≥ 0 for any θ ∈ R.1 This allows us to

immediately prove that the kernel is a contraction and there exists a unique solution to (F.1)

for any finite positive N . Indeed,

sup
−B≤θ≤B

∫ B

−B
|K(θ − θ′)|dθ′ <

∫ ∞
−∞
K(θ − θ′)dθ′ = K̃(0) = 1 . (F.9)

1It is also positive definite in the sense that∫ ∞
−∞

dθdθ′ K(θ − θ′)f(θ)f(θ′) ≥ 0 (F.8)

for any square integrable function f(θ).
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Following the appendix B of [171], we can also prove some analyticity properties in θ of f(θ), by

showing that the kernel K and all its derivatives are bounded, and so are the iterated kernels

Kn. We omit this analysis and instead focus on analyticity in ∆ for small values of ∆, which is

the limit relevant for large N . Let then ∆ = z/2 be complex and focus on a small disc D around

the point 0 ≤ λ � 1, defined as z = λ + α + iβ and α2 + β2 ≤ δ2, where 0 ≤ δ ≤ λ/
√

2. The

kernel (F.6) can be conveniently written as

π2K(θ, z) =
z

z2 + (θ/π)2
+ F (θ, z) , (F.10)

where

F (θ, z) ≡
∞∑
n=1

(−1)n
(

z + n

(z + n)2 + (θ/π)2
− n

n2 + (θ/π)2

)
. (F.11)

Note that the first term in (F.10) coincides with the integral kernel appearing in the Bethe

ansatz solution of the Lieb–Liniger model [171], while the second term is an analytic function

of z for small z. For sufficiently small z, we have

|F (θ, z)| = |zF ′(θ) +O(z2)| ≤ (λ+ δ)|F ′(θ)| , (F.12)

where

F ′(θ) = − π2

2θ2
+
π2

8

(
sech2(θ/2) + csch2(θ/2)

)
. (F.13)

We also have [171] ∣∣∣∣ z

z2 + (θ/π)2

∣∣∣∣ ≤ λ+ δ

(λ− δ)2 + (θ/π)2
≤ λ+ δ

(λ− δ)2
. (F.14)

For sufficiently small λ, we then get

|K(θ, z)| ≤ 1

π2

( λ+ δ

(λ− δ)2
+ (λ+ δ)|F ′(θ)|

)
. (F.15)

Let us now define the iterated kernel (z dependence omitted for simplicity)

K(p+1)(θ − θ′) ≡
∫ B

−B
K(p)(θ − θ′′)K(θ′′ − θ′)dθ′′ , K(1)(θ) ≡ K(θ) , p ≥ 1 , (F.16)

and suppose that for a certain p ≥ 1 and for any −B ≤ θ ≤ B

|K(p)(θ)| ≤ Cp−1

π2

λ+ δ

(λ− δ)2
. (F.17)
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Then

|K(p+1)(θ − θ′)| =
∣∣∣∣∫ B

−B
K(p)(θ − θ′′)K(θ′′ − θ′)dθ′′

∣∣∣∣ ≤ Cp−1

π2

λ+ δ

(λ− δ)2

∣∣∣∣∫ B

−B
K(θ′′ − θ′)dθ′′

∣∣∣∣
≤ Cp−1

π2

λ+ δ

(λ− δ)2

( 1

π2

∫ B

−B

λ+ δ

(λ− δ)2 + δθ2
dθ′′ +

λ+ δ

π2

∫ B

−B
|F ′(δθ)|dθ′′

)
,

(F.18)

where δθ ≡ (θ′′ − θ′)/π. Let us first set F = 0, in which case we recover the same kernel as

in [171]. Performing the integral, we have, for δ � λ,

|K(p+1)(θ − θ′)| ≤ Cp−1

π2

λ+ δ

(λ− δ)2

[
1− 1

π

(
arctan

( πλ

B − θ

)
+ arctan

( πλ

B + θ

))]
. (F.19)

For any positive B, θ ≤ B and (small) λ strictly greater than 0, the square bracket is bounded

by (1− ε), with 0 < ε < 1. Then, if we choose

C = 1− ε , (F.20)

the relation (F.17), if valid for p, is also valid for p+ 1. Since it applies for p = 1, it follows that

it is valid for any p ≥ 1. It then follows that the resolvent kernel

κ(θ, z) ≡
∞∑
p=0

K(p+1)(θ, z) , (F.21)

and the solution of (F.1)

f(θ) = L(θ) +

∫ B

−B
κ(θ − θ′)L(θ′)dθ′ (F.22)

exists and is analytic for ∆ > 0. The point ∆ = 0 is excluded, because for λ = 0 we have C = 1

and the resolvent series does not converge. This reproduces the analysis in appendix B of [171].

Let us now come back to the situation of interest with F ′ 6= 0. The second integral in (F.18)

is easily bounded by a finite constant M . For instance, we have

|F ′(θ)| < π2

12

1

1 + θ2/8
(F.23)

and
1

π2

∫ B

−B
|F ′(θ′′ − θ′)|dθ′′ < 1

π2

∫ ∞
−∞

π2

12

dθ

1 + θ2/8
=

π

3
√

2
. (F.24)

We then get

|K(p+1)(θ − θ′)| ≤ Cp−1

π2
(1− ε+ λM) . (F.25)
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For any finite M there exists a sufficiently small λ (and δ � λ) such that the bracket in (F.25)

equals (1 − ε′), with ε′ > 0. By choosing C = 1 − ε′ we see that the resolvent kernel and the

solution are analytic for small ∆ > 0 but not at ∆ = 0. The analyticity region is given by

0 < |∆| < 1/2, with ∆ = −1/2 a non-analytic point, as can be inferred from (F.11).

F.2 Principal Chiral Field

In the PCF model the kernel equals

K(θ) =
1

4π2

(
2ψ
(

1 +
iθ

2π

)
− ψ

(
1− ∆̄ +

iθ

2π

)
− ψ

(
∆̄ +

iθ

2π

))
+ c.c. , (F.26)

where ∆̄ = 1/N . It can also be rewritten as

π2K(θ, 2∆̄) =
2∆̄

(2∆̄)2 + (θ/π)2
+ F (θ, 2∆̄) , (F.27)

where

F (θ, z) ≡
∞∑
n=1

(
2n+ z

(z + 2n)2 + (θ/π)2
+

2n− z
(z − 2n)2 + (θ/π)2

− 4n

(2n)2 + (θ/π)2

)
. (F.28)

For 0 < ∆̄ < 1 its Fourier transform reads

K̃(ω) ≡
∫ ∞
−∞

eiωθK(θ)dθ =
e−2π|ω|(1−∆̄) + e−2π|ω|∆̄ − 2e−2π|ω|

1− e−2π|ω| . (F.29)

Like in the NLSM, the kernel is point-wise positive definite and is a contraction:

sup
−B≤θ≤B

∫ B

−B
|K(θ − θ′)|dθ′ <

∫ ∞
−∞
K(θ − θ′)dθ′ = K̃(0) = 1 . (F.30)

We can similarly study the analyticity in 1/N = ∆̄ of K. We will be very brief since the analysis

is similar to the one performed in the NLSM. Let ∆̄ = z/2 be complex and focus on a small

disc D around the origin, defined as in the NLSM case. The function F (θ, z) is analytic around

z = 0 and can be expanded for small z as

|F (θ, z)| = |z2F ′′(θ) +O(z3)| < (λ+ δ)2|F ′′(θ)| . (F.31)

For sufficiently small z, the analyticity properties of the PCF kernel coincide with those of both

the NLSM model and the Lieb–Liniger model. The iterated kernels K(p+1) are bounded as in

(F.18), with the replacement (λ+δ)|F ′(δθ)| → (λ+δ)2|F ′′(δθ)| in the last term of the second row
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of (F.18). The integral involving |F ′′(δθ)| is easily bounded by a finite constant, so we conclude

that the kernel in the PCF model is analytic for 0 < |∆̄| < 1, but not at ∆̄ = 0 and at ∆̄ = ±1,

as evident from (F.28).

F.3 Gross-Neveu model

In the Gross-Neveu model the kernel equals

K(θ) =
1

4π2

(
ψ
( iθ

2π

)
− ψ

(1

2
+

iθ

2π

)
+ ψ

(1

2
−∆ +

iθ

2π

)
− ψ

(
1−∆ +

iθ

2π

))
+ c.c. , (F.32)

where ∆ = 1/(N − 2), which can also be written as

π2K(θ) =
∞∑
n=1

(−1)n
(

n− 2∆

(2∆− n)2 + (θ/π)2
− n

n2 + (θ/π)2

)
. (F.33)

Its Fourier transform for ∆ < 1/2 reads

K̃(ω) ≡
∫ ∞
−∞

eiωθK(θ)dθ = e−π|ω|
e−2π|∆||ω| − 1

1 + e−π|ω|
. (F.34)

The kernel (F.32) is not point-wise positive, as in the NLSM and PCF models, but it is still a

contraction. For small ∆ this can be established by noticing that the kernel vanishes for ∆ = 0.

For any B and −B ≤ θ ≤ B, for small ∆, we have∫ B

−B
|K(θ − θ′)|dθ′ ≈ ∆

∫ B

−B
|K ′(θ − θ′,∆ = 0)|dθ′ < 2∆M , (F.35)

where M is finite. So, for sufficiently small ∆, K is a contraction. Numerically we see that K is

a contraction for arbitrary ∆, not necessarily small. So the unique solution (F.5) is guaranteed

to exist. The analyticity in ∆ is trivial in the GN model (see also Appendix A of [117]). Let

again be ∆ = z/2 and z = λ+ α + iβ, where α and β span a disc of radius δ around the point

λ, with λ > 0. Suppose that for a certain p ≥ 1

|K(p)(θ)| ≤ σp , σ ≡ (λ+ δ)M . (F.36)

Then

|K(p+1)(θ − θ′)| =
∣∣∣ ∫ B

−B
K(p)(θ − θ′′)K(θ′′ − θ′)dθ′′

∣∣∣ ≤ σp ∫ B

−B
|K(θ′′ − θ′)|dθ′′ ≤ σp+1 . (F.37)
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The relation (F.36), if valid for p, is then also valid for p+ 1. Since it applies for p = 1, it follows

that it is valid for any p ≥ 1. We see that K and the associated solution f(θ) are analytic for

small ∆ > 0, including ∆ = 0. By looking at (F.33) we can determine the radius of convergence of

the small ∆ expansion. The above expression is analytic up to the point 2∆ = z < 1. Replacing

z = 1 + w in (F.33) gives

π2K(θ) =
w

w2 + (θ/π)2
− F (θ, w) . (F.38)

with the function F as in (F.11). We see that around z = 1 the kernel is locally identically to

the one of the NLSM close to the origin. Hence the point z = 1 is non-analytic. We conclude

that the large N expansion should be convergent with a radius of convergence around ∆ = 0

ρ =
1

2
. (F.39)





Bibliography

[1] G. Sberveglieri, M. Serone, and G. Spada, Renormalization scheme dependence, RG flow,

and Borel summability in φ4 Theories in d < 4, Phys. Rev. D 100 (2019), no. 4 045008,

[arXiv:1905.02122]. 5

[2] G. Sberveglieri, M. Serone, and G. Spada, Self-Dualities and Renormalization

Dependence of the Phase Diagram in 3d O(N) Vector Models, JHEP 02 (2021) 098,

[arXiv:2010.09737]. 5

[3] L. Di Pietro, M. Mariño, G. Sberveglieri, and M. Serone, Resurgence and 1/N Expansion

in Integrable Field Theories, JHEP 10 (2021) 166, [arXiv:2108.02647]. 5

[4] G. Sberveglieri and G. Spada, in preparation, . 5, 12, 66, 69, 74, 75, 76

[5] F. J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev.

85 (Feb, 1952) 631–632. 9, 15
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Mathematics and its Applications. Cambridge University Press, 1996. 27, 118

[33] J. C. Le Guillou and J. Zinn-Justin, Critical Exponents from Field Theory, Phys. Rev. B

21 (1980) 3976–3998. 27, 35

[34] A. Pelissetto and E. Vicari, Critical phenomena and renormalization-group theory,

Physics Reports 368 (2002), no. 6 549–727. 29

[35] K. G. Wilson and M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett.

28 (1972) 240–243. 29

[36] M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of

O(n)-symmetric φ4 theory and critical exponents, Phys. Rev. D96 (2017), no. 3 036016,

[arXiv:1705.06483]. 30

[37] J. P. Eckmann and H. Epstein, Borel summability of the mass and the s matrix in phi**4

models, Commun. Math. Phys. 68 (1979) 245–258. 30

[38] M. Serone, G. Spada, and G. Villadoro, λφ4
2 theory — Part II. the broken phase beyond

NNNN(NNNN)LO, JHEP 05 (2019) 047, [arXiv:1901.05023]. 30, 41

[39] A. Milsted, J. Haegeman, and T. J. Osborne, Matrix product states and variational

methods applied to critical quantum field theory, Phys. Rev. D 88 (Oct, 2013) 085030. 30,

38

http://arxiv.org/abs/1802.10441
http://arxiv.org/abs/1206.6272
http://arxiv.org/abs/1411.3585
http://arxiv.org/abs/2003.01742
http://arxiv.org/abs/1705.06483
http://arxiv.org/abs/1901.05023


162 BIBLIOGRAPHY

[40] P. Bosetti, B. De Palma, and M. Guagnelli, Monte Carlo determination of the critical

coupling in φ4
2 theory, Phys. Rev. D 92 (2015), no. 3 034509, [arXiv:1506.08587]. 30, 38

[41] S. Bronzin, B. De Palma, and M. Guagnelli, New Monte Carlo determination of the

critical coupling in φ24 theory, Phys. Rev. D 99 (2019), no. 3 034508,

[arXiv:1807.03381]. 30, 38

[42] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda, and Y. Yoshimura, Tensor

network analysis of critical coupling in two dimensional φ4 theory, JHEP 05 (2019) 184,

[arXiv:1811.12376]. 30, 38

[43] S. Rychkov and L. G. Vitale, Hamiltonian truncation study of the φ4 theory in two

dimensions, Phys. Rev. D 91 (2015) 085011, [arXiv:1412.3460]. 30, 38

[44] J. Elias-Miro, S. Rychkov, and L. G. Vitale, High-Precision Calculations in Strongly

Coupled Quantum Field Theory with Next-to-Leading-Order Renormalized Hamiltonian

Truncation, JHEP 10 (2017) 213, [arXiv:1706.06121]. 30, 38

[45] J. Elias-Miro, S. Rychkov, and L. G. Vitale, NLO Renormalization in the Hamiltonian

Truncation, Phys. Rev. D 96 (2017), no. 6 065024, [arXiv:1706.09929]. 30, 38

[46] M. Burkardt, S. S. Chabysheva, and J. R. Hiller, Two-dimensional light-front φ4 theory

in a symmetric polynomial basis, Phys. Rev. D 94 (2016), no. 6 065006,

[arXiv:1607.00026]. 30

[47] N. Anand, V. X. Genest, E. Katz, Z. U. Khandker, and M. T. Walters, RG flow from φ4

theory to the 2D Ising model, JHEP 08 (2017) 056, [arXiv:1704.04500]. 30

[48] A. L. Fitzpatrick, J. Kaplan, E. Katz, L. G. Vitale, and M. T. Walters, Lightcone

effective Hamiltonians and RG flows, JHEP 08 (2018) 120, [arXiv:1803.10793]. 30

[49] A. L. Fitzpatrick, E. Katz, and M. T. Walters, Nonperturbative Matching Between

Equal-Time and Lightcone Quantization, JHEP 10 (2020) 092, [arXiv:1812.08177]. 30

[50] M. Gell-Mann and F. E. Low, Quantum electrodynamics at small distances, Phys. Rev.

95 (Sep, 1954) 1300–1312. 31

[51] C. G. Callan, Jr., Broken scale invariance in scalar field theory, Phys. Rev. D 2 (1970)

1541–1547. 33

[52] K. Symanzik, Small distance behavior in field theory and power counting, Commun.

Math. Phys. 18 (1970) 227–246. 33

http://arxiv.org/abs/1506.08587
http://arxiv.org/abs/1807.03381
http://arxiv.org/abs/1811.12376
http://arxiv.org/abs/1412.3460
http://arxiv.org/abs/1706.06121
http://arxiv.org/abs/1706.09929
http://arxiv.org/abs/1607.00026
http://arxiv.org/abs/1704.04500
http://arxiv.org/abs/1803.10793
http://arxiv.org/abs/1812.08177


BIBLIOGRAPHY 163

[53] S. Meneses, J. Penedones, S. Rychkov, J. M. Viana Parente Lopes, and P. Yvernay, A

structural test for the conformal invariance of the critical 3d Ising model, JHEP 04

(2019) 115, [arXiv:1802.02319]. 34

[54] G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Critical Indices from Perturbation

Analysis of the Callan-Symanzik Equation, Phys. Rev. B 17 (1978) 1365–1374. 35, 69, 75

[55] E. Orlov and A. Sokolov, Critical thermodynamics of the two-dimensional systems in

five-loop renormalization-group approximation, Physics of the Solid State 42 (04, 2000)

[hep-th/0003140]. 35

[56] A. Sokolov, Pseudo-epsilon expansion and the two-dimensional ising model, Physics of

the Solid State 47 (10, 2005) [cond-mat/0510088]. 35

[57] R. Guida and J. Zinn-Justin, Critical exponents of the N vector model, J. Phys. A 31

(1998) 8103–8121, [cond-mat/9803240]. 35, 65, 75, 76

[58] R. Schloms and V. Dohm, Minimal renormalization without ε-expansion: Critical

behavior in three dimensions, Nuclear Physics 328 (1989) 639–663. 35

[59] R. Schloms and V. Dohm, Minimal renormalization without ε expansion: Critical

behavior above and below tc , Phys. Rev. B 42 (Oct, 1990) 6142–6152. [Erratum: Phys.

Rev. B 46, 5883 (1992)]. 35

[60] R. Guida and P. Ribeca, Towards a fully automated computation of RG-functions for the

3-d O(N) vector model: Parametrizing amplitudes, J. Stat. Mech. 0602 (2006) P02007,

[cond-mat/0512222]. 36, 59, 67

[61] A. Pelissetto and E. Vicari, Four-point renormalized coupling constant and

callan-symanzik β-function in o(n) models, Nuclear Physics B 519 (1998), no. 3 626–660,

[cond-mat/9711078]. 38

[62] P. Calabrese, M. Caselle, A. Celi, A. Pelissetto, and E. Vicari, Non-analyticity of the

callan-symanzik β-function of two-dimensional o(n) models, Journal of Physics A:

Mathematical and General 33 (nov, 2000) 8155–8170, [hep-th/0005254]. 38

[63] A. Pelissetto and E. Vicari, Critical mass renormalization in renormalized φ4 theories in

two and three dimensions, Phys. Lett. B 751 (2015) 532–534, [arXiv:1508.00989]. 38

[64] A. Jaffe, Constructive quantum field theory, Mathematical Physics 2000 (05, 2000)

111–127. 39

[65] V. Rivasseau, From Perturbative to Constructive Renormalization. Princeton University

Press, 1991. 39

http://arxiv.org/abs/1802.02319
http://arxiv.org/abs/hep-th/0003140
http://arxiv.org/abs/cond-mat/0510088
http://arxiv.org/abs/cond-mat/9803240
http://arxiv.org/abs/cond-mat/0512222
http://arxiv.org/abs/cond-mat/9711078
http://arxiv.org/abs/hep-th/0005254
http://arxiv.org/abs/1508.00989


164 BIBLIOGRAPHY

[66] G. H. Derrick, Comments on nonlinear wave equations as models for elementary

particles, Journal of Mathematical Physics 5 (1964), no. 9 1252–1254,

[https://doi.org/10.1063/1.1704233]. 41

[67] H. Erbin, V. Lahoche, and M. Tamaazousti, Constructive expansion for vector field

theories i. quartic models in low dimensions, Journal of Mathematical Physics 62 (2021),

no. 4 043501. 41

[68] K. Iwaki and T. Nakanishi, Exact wkb analysis and cluster algebras, Journal of Physics

A: Mathematical and Theoretical 47 (01, 2014). 43

[69] O. Costin, Asymptotics and Borel summability, vol. 141. Chapman and Hall, 2008. 43

[70] G. Auberson and G. Mennessier, Some properties of borel summable functions, Journal

of Mathematical Physics 22 (1981), no. 11 2472–2481,

[https://doi.org/10.1063/1.524806]. 43

[71] G. Auberson and G. Mennessier, The reciprocal of a Borel summable function is Borel

summable, Communications in Mathematical Physics 100 (1985), no. 3 439 – 446. 43

[72] V. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional

systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP 32

(1971) 493–500. 45

[73] V. Berezinsky, Destruction of Long-range Order in One-dimensional and

Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum

Systems., Sov. Phys. JETP 34 (1972), no. 3 610. 45

[74] J. Kosterlitz and D. Thouless, Ordering, metastability and phase transitions in

two-dimensional systems, J. Phys. C 6 (1973) 1181–1203. 45

[75] V. Gorbenko and B. Zan, Two-dimensional O(n) models and logarithmic CFTs, JHEP

10 (2020) 099, [arXiv:2005.07708]. 45

[76] S. R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math.

Phys. 31 (1973) 259–264. 47

[77] N. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in

one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17

(1966) 1133–1136. 47

[78] P. Cea and L. Tedesco, Perturbation theory with a variational basis: The Generalized

Gaussian effective potential, Phys. Rev. D 55 (1997) 4967–4989, [hep-th/9607156]. 51

http://arxiv.org/abs/https://doi.org/10.1063/1.1704233
http://arxiv.org/abs/https://doi.org/10.1063/1.524806
http://arxiv.org/abs/2005.07708
http://arxiv.org/abs/hep-th/9607156


BIBLIOGRAPHY 165

[79] I. Stancu, The Post Gaussian effective potential in scalar and scalar - fermion theories,

Phys. Rev. D 43 (1991) 1283–1299. 51

[80] M. Windoloski, A Nonperturbative study of three-dimensional phi**4 theory,

hep-th/0002243. 51

[81] S. R. Coleman, R. Jackiw, and H. Politzer, Spontaneous Symmetry Breaking in the O(N)

Model for Large N*, Phys. Rev. D 10 (1974) 2491. 52

[82] M. Yamazaki and K. Yonekura, Confinement as analytic continuation beyond infinite

coupling, Phys. Rev. Res. 2 (2020), no. 1 013383, [arXiv:1911.06327]. 53

[83] M. Mariño and T. Reis, A new renormalon in two dimensions, JHEP 07 (2020) 216,

[arXiv:1912.06228]. 53, 128

[84] E. Brezin and G. Parisi, Critical exponents and large order behavior of perturbation

theory, J. Stat. Phys. 19 (1978) 269–292. 55, 59

[85] G. Baker, B. Nickel, M. Green, and D. Meiron, Ising Model Critical Indices in

Three-Dimensions from the Callan-Symanzik Equation, Phys. Rev. Lett. 36 (1976)

1351–1354. 59, 60, 69

[86] B. Nickel, Evaluation of Simple Feynman Graphs, J. Math. Phys. 19 (1978) 542–548. 59,

60, 67

[87] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum

space, Commun. Math. Phys. 15 (1969) 208–234. 59

[88] G. Lepage, A New Algorithm for Adaptive Multidimensional Integration, J. Comput.

Phys. 27 (1978) 192. 60, 75

[89] S. Antonenko and A. Sokolov, Critical exponents for 3-D O(n) - symmetric model with n

> 3, Phys. Rev. E 51 (1995) 1894–1898, [hep-th/9803264]. 60

[90] R. Jackiw and S. Templeton, How Superrenormalizable Interactions Cure their Infrared

Divergences, Phys. Rev. D 23 (1981) 2291. 63

[91] X.-p. Sun, Monte Carlo studies of three-dimensional O(1) and O(4) phi**4 theory related

to BEC phase transition temperatures, Phys. Rev. E 67 (2003) 066702,

[hep-lat/0209144]. 66

[92] P. B. Arnold and G. D. Moore, Monte Carlo simulation of O(2) phi**4 field theory in

three-dimensions, Phys. Rev. E 64 (2001) 066113, [cond-mat/0103227]. [Erratum:

Phys.Rev.E 68, 049902 (2003)]. 66

http://arxiv.org/abs/hep-th/0002243
http://arxiv.org/abs/1911.06327
http://arxiv.org/abs/1912.06228
http://arxiv.org/abs/hep-th/9803264
http://arxiv.org/abs/hep-lat/0209144
http://arxiv.org/abs/cond-mat/0103227


166 BIBLIOGRAPHY

[93] P. B. Arnold and G. D. Moore, Transition temperature of a dilute homogeneous imperfect

Bose gas, Phys. Rev. Lett. 87 (2001) 120401, [cond-mat/0103228]. 66
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