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We study, by means of the time-dependent Gutzwiller approximation, the out of equilibrium dy-
namics of a half-filled Hubbard-Holstein model of correlated electrons interacting with local phonons.
Inspired by pump-probe experiments, where intense light pulses selectively induce optical excitations
that trigger a transient out-of-equilibrium dynamics, here we inject energy in the Hubbard bands
by a non-equilibrium population of empty and doubly-occupied sites. We first consider the case of
a global perturbation, acting over the whole sample, and find evidence of a mean-field dynamical
transition where the lattice gets strongly distorted above a certain energy threshold, despite the
weak strength of the electron-phonon coupling by comparison with the Hubbard repulsion.
Next, we address a slab geometry for a correlated heterostructure and study the relaxation dynamics
across the system when the perturbation acts locally on the first layer. While for weak deviations
from equilibrium the excited surface is able to relax by transferring its excess energy to the bulk,
for large deviations the excess energy stays instead concentrated into the surface layer. This self-
trapping occurs both in the absence as well as in the presence of electron-phonon coupling. Phonons
actually enforce the trapping by distorting at the surface.

PACS numbers: 71.10.Fd, 71.30.+h, 78.47.-p

I. INTRODUCTION

The transient dynamical behavior of correlated mate-
rials optically excited far from equilibrium is currently
attracting growing interest, due to the impressive ad-
vances in time-resolved spectroscopy with femtosecond
resolution. By shining the sample with intense ultra-fast
pulses (pump), one can trigger non-equilibrium transient
states, whose physical properties are then recorded by a
second pulse arriving at fixed time delay (probe). The
unique feature of these experimental techniques is to give
access to dynamical information unavailable to conven-
tional time-averaged frequency domain spectroscopies.1

In addition, when irradiation is sufficiently strong, one
can even stabilize transient states with fundamentally
different physical properties,2 thus paving the way to a
complete control of material properties by light.3 As cor-
related electron systems are often on the verge of a Mott
metal-to-insulator transition, this portends the utmost
important possibility of optically manipulating their con-
ducting properties on ultra-short time-scales.4

Motivated by these achievements, the research activity
on transient ultrafast dynamics in correlated electronic
systems has rapidly grown in recent years.5–9 From a the-
oretical perspective, one can expect a non trivial and rich
transient dynamical behavior to emerge, reflecting the
complex interplay between electrons, phonons, spins and
orbital degrees of freedom that characterizes the phase di-
agram of these materials. On a more fundamental level,
the crucial question concerns whether these experiments
could allow to explore novel metastable phases of corre-
lated quantum matter that can only be accessed along

non-thermal pathways.
A common wisdom is that the effect of perturb-

ing the system by an ultra-short laser pulse can be
qualitatively accounted for by an effective-temperature
description.10–13 Within this picture, the injected energy
would turn first, on few femtoseconds, into heat for the
electron sub-system only. At later times, picoseconds,
the electronic heat is gradually transferred to the lattice
so that, eventually, the whole system flows to a thermal
state at higher temperature than the initial one. Un-
der such a thermodynamic assumption, optical pumping
should mimic the role of heating, hence allow accessing,
possibly much faster, all phases that are reached upon
raising temperature at equilibrium. In the specific case of
correlated materials, this entails the possibility of photo-
inducing metal-to-insulator transitions. Indeed, there ex-
ist many examples of Mott insulators that can be driven
metallic upon increasing temperature, like e.g. V2O3

14,15

and VO2
15, and, vice versa, metals that turn Mott insu-

lating upon heating, like the same V2O3
14,15 at higher

temperatures, or like doped manganites.16

However, a deeper thought of what is known about
correlated systems in equilibrium already raises questions
on this point of view. Indeed, according to this picture
one must conclude that energy-pumping, assumed to be
equivalent to temperature raising, should make a metal
less metallic and a band insulator less insulating. It is
believed17 that a correlated metal near a Mott transition
actually shares properties of both metals and insulators;
itinerant quasiparticles narrowly centered around the
chemical potential coexisting with incoherent atomic-like
high-energy excitations, the so-called Hubbard bands. If
intense light exposure is the same as heating, and since
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the light is selective via its frequency and polarization,
then one could envisage the quasiparticles or else the
Hubbard bands being heated first, which would corre-
spond, respectively, to conductivity decrease or increase.
Such a non-monotonous behavior would however contrast
the effect of raising temperature at equilibrium, which
is supposed to always lower conductivity.17 The above
observation thus challenges the picture of pump-probe
experiments as effective thermodynamic perturbations.

A different perspective, pointing toward an intrinsic
kinetic nature of these experimental settings, is offered
by the intense research activity around the non equi-
librium dynamics of closed isolated many-body systems,
which has recently attracted lot of interest in the differ-
ent context of cold atoms trapped in optical lattices.18

In this respect, it is by now well established that, when
driven out of equilibrium by intense sudden perturba-
tions, strongly correlated systems can be trapped into
long-lived metastable states that differ qualitatively from
their equilibrium counterpart. Example along this line
is provided by the single band Hubbard model, likely
the simplest model to describe strong correlation physics.
Different theoretical approaches19–21 have shown, for ex-
ample, that a sudden increase of the Hubbard repul-
sion drives the system into a long-lived metastable state
which, although highly excited, shows intrinsic features
of a zero temperature metallic state, rather than in-
coherent finite temperature effects as one would have
guessed by thermodynamic arguments. Seemingly, sud-
denly switching on a large Hubbard repulsion stabilizes
metastable phases rich of energetically unfavorable dou-
bly occupied sites, which are kinetically blocked20 and
unable to decay22 or even to coherently propagate.23 A
qualitative picture of the crossovers or genuine dynami-
cal transitions between different metastable states in the
Hubbard model driven by sudden quantum quenches has
been recently obtained using a time-dependent extension
of the Gutzwiller approximation (t-GA).24,25 While miss-
ing important quantum fluctuations, which are crucial
for the long-time dynamics, this approximate scheme has
been shown to capture important qualitative features of
the intermediate time evolution, which is actually of in-
terest in the description of the pump-probe dynamics.

In this work, we aim to elaborate further on this out
of equilibrium perspective by including additional in-
gredients that might play an important role in model-
ing pump-probe experiments on actual correlated mate-
rials. Firstly, we add phonons to the half-filled single
band Hubbard model and study the transient dynamics
induced by a sudden perturbation. It is worth notic-
ing that lattice vibrations play a crucial role in actual
experiments by triggering selective perturbation for the
electronic subsystem26, and their role in ultrafast pump
probe experiments is a subject of current experimental
interest.27–29 Here, we consider Einstein phonons coupled
to the local charge and study the dynamics of the result-
ing Hubbard-Holstein model using a suitable extension of
t-GA. Although extremely simplified, this model repre-

sents a first attempt to figure out how highly excited elec-
trons succeed in transferring their excess energy to the
lattice. Results reveal, akin to the pure Hubbard model,
the existence of a metastable state for high enough exci-
tation, where phonons get strongly displaced in spite the
large Coulomb repulsion and in striking contrast to what
one would have guessed in equilibrium.

A second important ingredient that we add to the de-
scription builds on the observation, recently reported
in a number of theoretical investigations, that non-
thermal metastable states are extremely sensitive to spa-
tial fluctuations and prone to spontaneous generation
of inhomogeneities,23,30 which could play a crucial role
in the dynamics, in particular around dynamical transi-
tion points.25,31 To investigate this issue, we consider the
same Hubbard-Holstein model at half-filling but now in a
slab geometry that lacks translational symmetry, model-
ing ultra-fast dynamics in correlated heterostructures.29

We assume that, initially, only the surface layer is driven
out of equilibrium and study by t-GA how the excess en-
ergy is redistributed inside the bulk. Remarkably, if the
energy initially stored on the surface exceeds a critical
threshold, it remains trapped on the uppermost layers.
Concomitantly, the phonons distort at the surface, pro-
viding a further trapping potential. This result demon-
strates not only the importance of inhomogeneities, but
also suggests that, under specific circumstances, the lat-
tice might not provide a dissipative bath to speed up
relaxation, but rather play the opposite game to slow
down thermalization.

The paper is organized as follows. In section II we in-
troduce the model and an out-of-equilibrium version of
the Gutzwiller approximation that may cope with the
electron-phonon coupling. In section IIA we show that
the method is equivalent to the mean-field approximation
applied to a model of free electrons coupled to phonons
and Ising spins. In section III we move to discuss the
results for two different cases. First, in section III A, we
study the time-evolution when the whole bulk is suddenly
driven out-of-equilibrium. Next, in section III B we con-
sider the situation in which an external pulse only excites
the surface layer, and study if and how the surface can
relax by transferring energy to the bulk. Finally, section
IV is devoted to concluding remarks.

II. THE MODEL AND THE GUTZWILLER

APPROXIMATION

We consider a half-filled Hubbard-Holstein model de-
scribed by the Hamiltonian

H = −t
∑

<ij>σ

(

c†iσcjσ +H.c.
)

+
U

2

∑

i

(

ni − 1
)2

+
ω

2

∑

i

(

p2i + x2i
)

− g
∑

i

xi
(

ni − 1
)

,
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where c†iσ(ciσ) creates(annihilates) an electron with spin
σ at site i, xi is the phonon displacement at that site
and pi its conjugate variable. The hopping is restricted
to nearest neighbors and ni is the electron number op-
erator. We note that (1) is invariant under particle-hole
transformation provided xi → −xi.
In the following, we study the unitary dynamics in-

duced by the Hamiltonian (1) using the Gutzwiller vari-
ational scheme introduced at equilibrium by Barone et

al.32 and extended to the time dependent case following
Ref. 24. We emphasize at this point that, in real experi-
ments, the light pulse couples via the vector potential to
the electronic degrees of freedom. While in principle the
variational description could be extended to include this
feature, here we assume for the sake of simplicity that
the effect of the pump is mainly to induce an initial non
equilibrium distribution of electronic degrees of freedom,
whose dynamics is then driven by the Hubbard-Holstein
Hamiltonian. Furthermore, while in real experimental
settings the system is always in contact with a thermostat
that eventually allows the injected energy to flow away,
here we assume the whole system made by electrons and
lattice to be isolated. While in different contexts, e.g.
when current-carrying stationary states driven by static
electric fields are present, this assumption may be highly
questionable, here we stress that our focus concerns the
transient relaxation dynamics on time scales of electronic
and phononic degrees of freedom. As the coupling with
the environment is typically very weak, we do not be-
lieve that this assumption can qualitatively change the
physical picture that we will draw.
With these assumptions on the theoretical side, we

now introduce our time-dependent variational wave func-
tion for the dynamics of the Hubbard-Holstein model.(1)
Specifically we write

| Ψ(t)〉 =
∏

i

Pi (xi, t) | Ψ0(t)〉, (1)

where | Ψ0(t)〉 is a time-dependent Slater determinant,
to be determined variationally, and Pi (xi, t) a time-
dependent electron operator at site i that depends explic-
itly on the phonon coordinate xi. We define, neglecting
the index i for convenience,

P =
√
2 φ0(x, t) | 0〉〈0 | +

√
2 φ1(x, t)

(

|↑〉〈↑| + |↓〉〈↓|
)

+
√
2 φ2(x, t) | 2〉〈2 |, (2)

where φn(x, t) are site-dependent phonon wave-functions,
and | Γ〉〈Γ | is the projector onto the site being empty,
Γ = 0, singly-occupied by a spin up, Γ =↑, or down,
Γ =↓, electron, or, finally, doubly-occupied, Γ = 2.
Particle-hole symmetry implies that, under n → 2 − n,
φn(x, t) → φ2−n(−x, t), namely

φ0(x, t) = φ2(−x, t),
φ1(x, t) = φ1(−x, t).

We evaluate average values on the wave-function (1)
by means of the Gutzwiller approximation, following
Refs. 33 and 32, which amounts to impose that

∫

dx |φ0(x, t)|2 + |φ1(x, t)|2 = 1.

The above condition implies that the average over the
Slater determinant | Ψ0(t)〉 and the phonons of the oper-
ator that remains after extracting from Pi(xi, t)

†Pi(xi, t)
any two fermionic operators vanishes identically. This
property allows to evaluate explicitly all average values
on the wavefunction (1) in the limit of infinite lattice-
coordination,33,34 although it is common to use the same
results also for lattices with finite coordination numbers,
hence the name Gutzwiller approximation.
Within the Gutzwiller approximation, the average

value of the Hamiltonian (1) on the wavefunction | Ψ(t)〉
can be shown to coincide with the average on | Ψ0(t)〉 of
the Hamiltonian

H∗(t) = −t
∑

<ij>σ

Ri(t)Rj(t)
(

c†iσcjσ +H.c.
)

+
1

2

∑

i

∫

dx
(

U + 2gx
)

|φ0i(x, t)|2 (3)

+
ω

2

∑

i

∑

n=0,1

∫

dxφni(x, t)
∗ h(x)φni(x, t) ,

where h(x) =
(

− ∂2x + x2
)

. The parameters

Ri(t) =

∫

dx
(

φ1i(x, t)
∗φ0i(x, t) + c.c.

)

, (4)

are commonly interpreted as the amplitudes of quasi-
particles at sites i, hence H∗ as their effective non-
interacting Hamiltonian with renormalized hopping
tij(t) ≡ Ri(t)Rj(t) t.
The variational principle that we assume is the saddle

point of the action S =
∫

dtL(t), i.e. δS = 0, whose
Lagrangian is

L(t) = i〈Ψ(t) | Ψ̇(t)〉 − 〈Ψ(t) | H | Ψ(t)〉, (5)

which, within the Gutzwiller approximation,25 reads sim-
ply

L(t) = i
∑

i

∑

n=0,1

∫

dxφni(x, t)
∗ φ̇ni(x, t) (6)

+i〈Ψ0(t) | Ψ̇0(t)〉 − 〈Ψ0(t) | H∗(t) | Ψ0(t)〉.

We define on each site i a normalized two-component
spinor

| Φi〉 = Φi(xi) ≡
(

φ1i(xi)
φ0i(xi)

)

, (7)

so that

〈Φi | (. . . ) | Φi〉 =
∫

dxΦi(x)
† (. . . )Φi(x) ,
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and further introduce Pauli matrices σa, a = x, y, z,
which act on the two components of the spinor. With
the above notations, the saddle point equations read:

i | Φ̇i〉 =
ω

2
h (x) | Φi〉 − t

n.n. of i
∑

j

Rj wij σ
x | Φi〉

+
1

4

(

U + 2gx
) (

1− σz
)

| Φi〉, (8)

i | Ψ̇0〉 = H∗ | Ψ0〉, (9)

where

Ri = 〈Φi | σx | Φi〉, (10)

wij =
∑

σ

〈Ψ0 |
(

c†iσcjσ +H.c.
)

| Ψ0〉. (11)

It is worth noticing here that, when the electron-phonon
interaction vanishes, the two subsystems decouple and
the above dynamics reduces, for the electronic degrees
of freedom, to the one studied in Ref. 24 for the simple
Hubbard model. In the general case, one has to inte-
grate the equations of motion starting from initial values
for the spinor wave-functions and the Slater determinant.
In order to integrate the spinor part, we follow the ap-
proach outlined in Ref. 32 and project each component on
the basis of eigenfunctions of the harmonic oscillator, the
Hermite functions ϕn(x), namely we write for ν = 0, 1

φν(x, t) =

∞
∑

n=0

cνn(t)ϕn(x) (12)

and obtain time dependent equations for the complex co-
efficients cνn(t) by plugging this expansion into equation
(8). In practice, we truncate the basis set to a finite
number of coefficients n = 0, . . . , Nb and check that con-
vergence is guaranteed by choosing Nb ≃ 60. All cal-
culations that are presented here have been performed
on a cubic lattice using U = 12t and the phonon fre-
quency ω = t. An important scale of energy is the value
of the critical Uc at the equilibrium Mott transition in
the absence of phonons. In the cubic lattice and within
the Gutzwiller approximation Uc = 16t, whose inverse
we shall use as the unit of time. As we mentioned, the
Eqs. (8)-(11) are strictly valid only in lattices with infi-
nite coordination numbers, therefore our use in a cubic
lattice is just an approximation.

A. The Gutzwiller approximation as a mean-field

theory

The Eqs. (9) and (8) resemble time-dependent mean-
field equations, with the Schrœdinger-like evolution of
| Ψ0〉 that depends implicitly on the average values of
selected operators over the wavefunctions | Φi〉, and vice
versa for the latter ones. Indeed, one recognizes readily
that, given the Hamiltonian

HI = −t
∑

<ij>σ

σx
i σ

x
j

(

c†iσcjσ +H.c.
)

+
1

4

∑

i

(

U + 2gxi

)(

1− σz
i

)

+
ω

2

∑

i

(

p2i + x2i

)

, (13)

where σa
i , a = x, y, x, are Ising variables defined on each

site i, and assuming a factorized wave-function

| ΨI〉 =| Ising+phonons〉× | electrons〉, (14)

where

| Ising+phonons〉 =
∏

i

| Ising+phonons〉i,

the same variational principle δS = 0 that we applied
before would lead right to Eqs. (9) and (8). The Hamil-
tonian (13) thus extends to the Hubbard-Holstein model
the mapping derived in Ref. 25 for the simple Hubbard
model. We just recall that the mapping states that, if
Z is the partition function of the original model with
the Hamiltonian H of Eq. (1), and ZI that one of the
Hamiltonian HI of Eq. (13), then, in the limit of infinite
coordination lattices and at particle-hole symmetry,

Z =

(

1

2

)N

ZI , (15)

where N is the number of sites.25 Essentially, the map-
ping demonstrates that the constraint required to imple-
ment the so-called slave-spin representation of the Hub-
bard model35–37 is actually unessential in the limit of in-
finite lattice-coordination and at particle-hole symmetry.
The advantage of dealing with HI instead of the original
Hamiltonian is that it provides a simple framework to
disentangle already at the mean field level the quasipar-
ticle degrees of freedom, the fermionic operators, from
the Hubbard bands, the Ising variables.
The chosen factorization (14), where the phonon de-

grees of freedom are entangled with the Hubbard bands
and both influence in a mean-field fashion the quasi-
particles, is actually inspired by the DMFT result that,
for large repulsion and weak electron-phonon coupling,
phonon signatures are hardly visible in the quasiparti-
cle spectrum but quite evident in the Hubbard bands.38

Different choices could be more appropriate in different
contexts or easier to deal with, as the extreme factoriza-
tion | ΨI〉 =| Ising〉× | phonons〉× | electrons〉.

III. RESULTS

We shall now analyze the time-dependent mean field
equations (9) and (8) that describe within t-GA the evo-
lution of a variational wave-function under the action of
the Hubbard-Holstein Hamiltonian, or equivalently the
Hamiltonian (13).
We will assume that the pump that drives the system

out-of-equilibrium is selective in the sense that it only
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injects energy in the Hubbard bands, i.e. in the Ising
subsystem, specifically increasing the concentration of
doubly-occupied sites (doublons), hence of empty sites
(holons) because of particle conservation. In the Ising
language, it corresponds to assuming that initially the
average values of σz

i are lower than those at equilibrium.
We note that the equilibrium conditions are obtained by
replacing the time-dependent mean-field equations (9)
and (8) with stationary mean-field equations. In partic-
ular, the equilibrium values of | Φi〉 are the lowest energy
eigenstates of the right hand side of Eq. (8), which must
be self-consistently determined since the effective Hamil-
tonian depends on Rj = 〈Φj | σx | Φj〉.39
As we mentioned earlier, in real experiments the light

pulse couples via the vector potential to both Hubbard
bands and quasiparticles. Therefore the above assump-
tion is only an approximation, whose validity we intend
to weight up in the near future, while, in the present
work, we shall keep assuming that the initial state is just
characterized by an out-of-equilibrium equal population
of doublons and holons. We will consider first the case
in which such a population is uniformly distributed over
the whole sample, and next move to inhomogeneous sit-
uations.

A. Whole bulk driven out-of-equilibrium

Let us therefore consider the Hubbard-Holstein Hamil-
tonian (1) at half-filling and assume that the system is
initially prepared with a uniform concentration of dou-
blons and holons higher than at equilibrium. The system
is then let evolve, its time evolution being approximated
within t-GA by Eqs. (9) and (8). This case is actually
similar to the quench described in Ref. 24; the new in-
gredient being just the electron-phonon coupling.
We first need to determine the equilibrium condition in

the presence of the electron-phonon coupling. This is ac-
complished by a self-consistent iterative mapping method
similar to the one described in Ref . 40. The outcome is a
homogeneous wave-function, with the same spinor at any
site, and the Slater determinant that is just the uniform
ground state of the hopping energy. The concentrations
of doublons and holons are then artificially augmented
by the same amount while keeping the phonon wave-
function unaltered. This is accomplished by the scale
transformation φ0(x) → λ0φ0(x) and φ1(x) → λ1φ1(x),
with λ0 > 1 and λ1 < 1 such that normalization is main-
tained,

∫

dxλ20 | φ0(x) |2 +λ21 | φ1(x) |2= 1,

but the concentration of doubly occupied and empty sites
is increased. The system is then allowed to evolve as pre-
viously explained. The novelty with respect to Ref. 24
is that we can now monitor how the energy, initially in-
jected in the electron subsystem only, is transferred to
phonons. We note that, because translational symmetry

FIG. 1: The time evolution of the parameter Ri = R, Eq. (10)
for two different concentrations δD of injected doublons, one
below and the other above the critical point, see Fig. 2. Below
the critical point, δD = 4% (blue curve), R oscillates around a
finite value, while, above, δD = 17% (red curve), it oscillates
between +1 and -1 with zero average.

is preserved by the time evolution, the effective Hamil-
tonian H∗(t) in Eq. (3) has Ri(t) = Rj(t) = R(t), ∀ i, j,
hence describes at all times a simple tight-binding model
with uniform time-dependent nearest neighbor hopping.
As a result, the Slater determinant that is initially the
lowest energy eigenstate of the hopping, does not change
in time, hence cannot provide dissipative channels for the
spinor evolution. For this reason, the dynamics of both
electronic and phononic observables lack relaxation to a
steady state but rather shows undamped coherent oscil-
lations. Still, as shown in Ref. 24, the mean field dynam-
ics captures important features of the non-equilibrium
problem and provides a qualitatively correct picture of
the short-to-intermediate time dynamics.
In Fig. 1 we plot the time evolution of the renormal-

ization factor Ri(t) = R(t), Eq. (10), which shows two
distinct regimes of oscillations depending on the amount
of doublons injected, δD, which measures the strength of
the non equilibrium perturbation and that we define as
δD ≡ D(t = 0) − Deq., with D(t = 0) the initial value
and Deq. the equilibrium one.
For small perturbations, R oscillates around a finite

average, while, upon increasing δD above a threshold, it
oscillates from -1 to +1, with average zero. In the Ising
model language of section IIA, this behavior is represen-
tative of the transition from the ordered phase, 〈σx〉 6= 0,
to the disordered one, 〈σx〉 = 0. A similar dynamical
transition was observed in Ref. 24 for the pure Hubbard
model without electron-phonon coupling. The mean field
coherent oscillations, although artificial, reflect the real
tendency of the system to be trapped into long lived pre-
thermal metastable states, whose properties are correctly
captured by the long-time averages of the mean field dy-
namics.
With this insight, we plot in Fig. 2 the time-averaged

double occupancy as a function of the concentration of
injected doublons δD. The first observation is that the
electron-phonon interaction does not change qualitatively
the behavior with respect to the Hubbard model alone,
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FIG. 2: The time average value of the percentage of dou-
bly occupied sites as function of the percentage δD of dou-
blons, hence holons, injected in the initial state with respect
to the equilibrium value. We plot three values of the electron-
phonon couplings, g = 0 (black), g = 0.1t (blue) and g = 0.2t
(red). Larger g correspond to more pronounced kinks near
the critical point, which is identified by the point at which
the double occupancy drops down.

see Ref. 24; namely, we still find two distinct regimes sep-
arated by a critical point where the double occupancy
goes to zero, although numerically we cannot hit the
precise value when this occurs. We note that the lo-
cation of the critical point is not appreciably affected
by phonons because of the tiny electron-phonon coupling
(g2/ω ∼ 10−3U).
We find that the transition occurs right when the ini-

tial energy happens to coincide with the equilibrium en-
ergy at the Mott transition,24,31 which is simply the zero
point energy of the phonons for our model Hamiltonian
(1) and within the Gutzwiller approximation. In fact,
one readily realizes that Eqs. (8) and (9) admit another
stationary point besides the one that corresponds to the
equilibrium condition, namely φ0(x) = 0 hence R = 0,
with energy just ω/2. We finally mention that, unlike in
the absence of phonons,24 here the critical point is not
associated to an exponential relaxation towards a station-
ary state that seems to be a characteristic of integrable
dynamics,31 which is presumably not our case.
We now move our attention to the phonon sector, in

order to unveil the entanglement between the electrons
and the lattice as the former are driven out of equilib-
rium. A natural quantity to look at would be the average
lattice displacement 〈xi〉, which however is constrained to
be zero on average by particle-hole symmetry. Still, we
can define as a measure of the effective displacement the
average of the operator qi ≡ xi(ni − 1), which is just the
electron-phonon coupling operator. In Fig. 3 we plot the
relative variation of the time-averaged effective displace-
ment

q∗ = lim
τ→∞

1

τ

∫ τ

0

dt 〈qi(t)〉, (16)

FIG. 3: The time average value of the lattice distortion, de-
fined as the relative variation with respect to the equilibrium
value, as function of the percentage of doublons δD injected
in the initial state with respect to the equilibrium value. The
curve that is more singular near the critical point corresponds
to g = 0.1t (blue), the other to g = 0.2t (red).

i.e. (q∗−qeq.)/qeq., where qeq. is the equilibrium value, as
function of the concentration of injected doublons. We
note that, at small concentrations, the displacement is
mostly unchanged from its equilibrium value. However,
for higher concentrations past the critical point, the dis-
placement starts increasing substantially; a growing dis-
tortion being a way to store the initial excess energy.
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FIG. 4: Color plot of the Fourier transform (in arbitrary
units) of the time evolutions of the double occupancy and the
effective phonon distortion, as function of the concentration
of injected doublons and of the frequency in units of Uc.

Although the gross behavior seems not to be affected
by phonons, there are details which feature their pres-
ence. In particular, we note some anomalies, tinier in
Fig. 2 and more visible in 3. These anomalies appear
when the oscillation frequency of the electronic dynam-
ics, which decreases on approaching the critical point,



7

FIG. 5: Slab geometry for simulating the hypothetical exper-
iment in which only the surface layer is driven out of equilib-
rium

hits the renormalized phonon frequency, or a multiple
of it. Since the latter is small, these resonances occur
near the critical point. This is evident in Fig.4, where
we draw by a color plot the spectral decomposition of
the time evolutions both of the double occupancy and
the phonon distortion as function of the concentration of
injected doublons and of the frequency of the signal. In
particular, we observe the avoided crossing between the
two lowest frequencies around δD ∼ 5% that causes the
kink visible in Fig.2. Among these two frequencies, the
lowest one is visible mostly in the dynamics of q(t), hence
can be regarded as a renormalized phonon frequency that
blue-shifts upon increasing δD, i.e. the energy injected
into the system.

B. Surface driven out-of-equilibrium

Let us now consider a slab geometry as depicted in
Fig. 5, denoting by z the direction perpendicular to the
surface, which lies in the xy-plane. This setting allows
us to mimic the non-equilibrium dynamics across a cor-
related heterostructure, that has recently attracted ex-
perimental interest.29 We consider a system described by
the Hubbard-Holstein model and consider a perturbation
acting only at the surface layer, by triggering an out-
of-equilibrium population of doublons and holons, while
keeping the bulk in its equilibrium ground-state configu-
ration. This initial state is then let evolve and its time-
evolution is approximated by the Eqs. (9) and (8).

This particular geometry has the additional complica-
tion that, at equilibrium, the optimized | Φi〉 are layer
dependent and the optimized Slater determinant is not
uniform anymore. Therefore, the first step we need to
undertake is solving the equilibrium problem, which we
accomplish by the method developed in Ref. 40. Because
of the slab geometry, we can choose a basis of single-
particle wave-functions for building the Slater determi-
nant defined by

ψǫk(r, i) =
eik·r√
A
ψǫk(i),

FIG. 6: Time evolution of the percentage of doubly occupied
sites on three different layers, indicated in the figure, for small
percentage of injected doublons. The time is measured in
units of the inverse of Uc. The simulation is performed with
a slab of 100 layers.

where r is the space coordinate and k = (kx, ky) the
momentum in the xy-plane, which is assumed to contain
A lattice sites, while i = 1, . . . , N is the layer index,
and typically we used N = 100 layers. Since there is
translational symmetry in the xy-plane, we can choose
the spinor | Φi〉 to depend only on the layer index i.
Then, the stationary solution of (8) and (9) amounts to
solve at fixed Ri the eigenvalue problem

ǫ ψǫk(i) = t R2
i ǫk ψǫk(i)− t Ri

∑

a=±1

Ri+a ψǫk(i + a),

(17)
where ǫk = −2 (cos kx + cos ky), with the boundary con-
dition ψǫk(0) = ψǫk(N + 1) = 0. The lowest energy
eigenfunctions ǫ < ǫF , ǫF = 0 because of particle-hole
symmetry, are then used to define the Slater determi-
nant | Ψ0〉 and the average hopping between layer i and
i+ a

wi→i+a =
1

A

∑

ǫ<0

∑

k∋ǫ<0

(

ψǫk(i)
∗ψǫk(i+ a) + c.c.

)

, (18)

as well as the average hopping within layer i

wi→i =
1

A

∑

ǫ<0

∑

k∋ǫ<0

ǫk | ψǫk(i) |2 . (19)

These parameters are used to solve the spinor eigenvalue
problem

E | Φi〉 =
ω

2
h(x) | Φi〉 − tRiwi→i σ

x | Φi〉

−t
∑

a=±1

Ri+a wi→i+a σ
x | Φi+a〉

+
1

4
(U + 2gx) (1− σz) | Φi〉, (20)
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FIG. 7: Same as Fig. 6 at higher percentage of injected dou-
blons.

whose lowest energy solution defines new parameters
Ri = 〈Φi | σx | Φi〉 that are used to solve again Eq. (17)
and so on, until convergence is reached.39,40

The breaking of translational symmetry by the pres-
ence of the surfaces is actually amplified by electron cor-
relations that create a surface dead layer,40,41 with sup-
pressed double occupancy, hence reduced hopping renor-
malization parameters Ri. The dead layer penetrates
inside the bulk over a length proportional to the Mott-
transition correlation length.40,41

Given this starting state, we suddenly increase the pop-
ulation of doublons and holons on the first layer i = 1
and let the system evolve. Essentially, we simply turn
Eqs. (17) and (20) into self-consistent non-linear time-
dependent Schrœdinger equations that we solve numer-
ically. Unlike in the homogeneous case of section IIIA,
here the Slater determinant evolves with time because
the wave-functions ψǫk(i, t) acquire a non-trivial time de-
pendence, which provides additional dissipative channels
that were previously absent. In other words, the hopping
parameters wi→i+a(t) and wi→i(t) defined in Eqs. (18)
and (19) become time-dependent and influence the evo-
lution of | Φi〉, see Eq. (20), which in turns affects ψǫk(i, t)
via the parameters Ri(t).
The mutual feedback between | Ψ0〉 and the | Φi〉’s

brings about a non-trivial dynamics much richer than
in the example discussed in section III A. Nevertheless,
even in this case we do find two completely different dy-
namical behaviors, depending on the amount of injected
doublons. For small values, the perturbed surface layer
is able to relax by dissipating its excess energy inside
the bulk, see Fig. 6. Indeed, the time-average values of
the double occupancies on each layer tend towards their
equilibrium values, which, as we mentioned, are lower the
closer the layer to the surface. We emphasize that here,
as opposite to the previous case and to the case of global
quantum quenches, the perturbation is local and the en-
ergy injected does not scale with the system size. As
a result, the relaxation dynamics we find in this regime

FIG. 8: The lattice distortion on three different layers with
the same amount of injected doublons as in Fig. 7.

is toward the equilibrium ground state and no heating
or finite temperature effects are expected in the long-
time limit. This is a specific example of a local quantum
quench and shows that our time dependent Gutzwiller
approximation, with the above mentioned feedback be-
tween variational parameters and Slater determinant, is
able to describe thermalization. We also mention that,
working with a finite-size geometry, recurrence effects
are present at long enough times, when the perturba-
tion reaches the opposite surface and starts oscillating
back and forth. We expect that by taking the thermody-
namic limit in the z direction these finite-size effects will
be washed away. Nevertheless, even for finite lengths the
relaxation and the trend towards equilibrium are clearly
evident.
Upon increasing the concentration of injected doublons

a different dynamical behavior emerges. In particular,
above a certain threshold the excitation remains trapped
near the surface, see Fig. 7. This is quite remarkable
because, as we mentioned, the Slater determinant now
adjusts to the spinors | Φi〉 during the time evolution,
hence could in principle absorb the excess energy and
transfer it in the interior of the bulk. What actually
happens is that the parameters Ri and Ri+1 of adjacent
layers interfere destructively, i.e. oscillate out-of-phase,
at some i near the surface, effectively suppressing the
quasiparticle inter-layer hopping tii+1 = RiRi+1 t, hence
cutting layer i from the rest of the bulk. This anomalous
trapping exists also in the absence of electron-phonon
coupling, hence it is primarily an electronic effect, pre-
sumably the dynamical counterpart of the surface dead

layer at equilibrium.40,41 What changes at finite electron-
phonon coupling is that this phenomenon is accompanied
by a lattice deformation, also localized on the uppermost
layers, see Fig. 8.
The physical picture that emerges can be visualized

much better by the long-time layer-dependent profiles of
the percentages of doubly occupied sites and of the dis-
tortion, shown in Fig. 9. We observe that the deviations
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FIG. 9: The percentage of doubly occupied sites and of the
lattice distortion at each layer at very long times.

of both quantities with respect to equilibrium are indeed
concentrated just near the surface, while the bulk is prac-
tically unaffected. Also instructive are the profiles of the
intra-layer and inter-layer hopping renormalization fac-
tors, R2

i and RiRi+1, shown in Fig. 10. We note that
the first layer has a much larger hopping renormalization
factor, R2

1, than at equilibrium, when it would be very
small due to the dead layer phenomenon.40,41 However,
this layer is practically decoupled from the second layer,
R1R2 being vanishingly small.
We end by mentioning that, in contrast to the case of

section IIIA, the two different regimes that we observe
seem not to be separated by a genuine dynamical criti-
cal point, but rather by the dynamical counterpart of a
first order phase transition. Indeed, in the intermediate
regime the system does not show a well defined behav-
ior but instead oscillates between the two distinct phases
above.

IV. CONCLUSIONS

In this work we have studied the real time dynamics
of the Hubbard-Holstein model at half-filling by a very
simple extension of the Gutzwiller approximation in two
different toy cases: (i) a bulk system is prepared with an
equal out-of-equilibrium population of doubly occupied
and empty sites and let evolve in time; (ii) a slab is con-
sidered and it is assumed that only the surface layer is
initially driven out-of-equilibrium.
In case (i) we find similar results as in the quantum

quench of the pure Hubbard model: a dynamical criti-
cal point that separates two different regimes. The novel
feature introduced by the phonons is the presence of a
substantial phonon-displacement that occurs for large
enough deviation from equilibrium, a remarkable out-
come in that the electron-phonon coupling we consider
is extremely small as compared with the Hubbard repul-
sion.
In the slab geometry (ii) we still find two dynamical

FIG. 10: The intra-layer, bottom panel, and inter-layer, top
panel, hopping renormalization factors at long times.

behaviors, although this time without a true dynami-
cal transition in between. If the energy injected at the
surface is below a threshold, it is able to diffuse within
the bulk and the system seems to relax towards the
equilibrium ground state with the dead layer near the
surface.40,41 On the contrary, if the excess energy at the
surface exceeds that threshold, it does not succeed any-
more to diffuse in the bulk and remains concentrated
practically at the surface, bringing about a substantial
phonon displacement. Surprisingly, we finds that the
first layer has a larger hopping renormalization factor
than at equilibrium, which can be sustained because the
layer effectively decouples from the rest of the system.
However, we can not conclude that such an enhancement
corresponds to an increased metallicity, which would be
indeed a remarkable result. In fact, we tend to believe
that the hopping renormalization as defined within the
Gutzwiller approximation is a measure of the whole, co-
herent plus incoherent, single-particle spectrum at low
energy, not just of the quasiparticle coherent contribu-
tion alone. Therefore, what we feel safe to state is just
that low energy spectral weight grows in the first layer,
whatever being its nature.
We cannot exclude that such a long-lived localized ex-

citation could indeed correspond to some kind of exciton
already present in the equilibrium spectrum, which can
be unveiled by our variational technique only because we
are exploring the dynamics. It is also plausible that such
a localized excitation exists just in correspondence with
the surface dead layer,40,41 where the low-energy spectral
weight is negligible hence there is room for excitons inside
the preformed Mott-Hubbard gap. It is as well possible
that our finding is actually related to the debated issue
about the lifetime of doublons in the strongly interact-
ing Hubbard model,9,22,42 which could also be the clue to
understand the lack of thermalization of highly excited
states when correlation is strong. Further investigations
with different and complementary approaches are needed
to clarify these interesting issues.
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