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Tis true without lying, certain & most true.
That wch is below is like that wch is above &
that wch is above is like yt wch is below to do
ye miracles of one only thing.
The Emerald Tablet, translation by Isaac Newton

1 Overview: moduli spaces as gravitational instantons

The swampland program [1, 2] (for reviews see [3, 4]) looks for a characterization of the
effective field theories which arise as low-energy limits of consistent theories of quantum
gravity, separating them from the vast swampland of effective theories which “look” con-
sistent from a low-energy perspective, but cannot be completed to a fully consistent theory
of quantum gravity. The program has produced a dozen or so conjectural necessary con-
ditions (the “swampland conjectures” [1–4]) that all effective theories of quantum gravity
should satisfy.

Dually, there is an inverse-swampland procedure. If we know that a certain effective
theory does arise from quantum gravity, we may apply the swampland ideas to predict
properties of the model. Often such properties are too fancy for anybody to have enough
fantasy to guess them, and they escaped us when we looked at these theories with pre-
swampland eyes. With post-swampland insight we know better. This short note illustrates
a simple application of the inverse-swampland strategy. The result echos the opening
quotation, which was a major inspiration for Newton in formulating his own consistent
theory of gravity.
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We focus on the Weil-Petersson (WP) geometry of moduli spaces of compact Calabi-
Yau (CY) manifolds Xd of complex dimension d ≤ 4. These CY manifolds describe stable
supersymmetric vacua in string/M-theory, and the quantum-consistent low-energy effective
theories around these vacua are captured by the geometry of their moduli spaces. Hence
inverse-swampland may yield new insights on the geometry of CY moduli.

We claim1 that for d ≤ 4 the CY moduli geometry yields a finite-action solution to
the classical equations of motion of a moduli-space field theory of the form∫

M
d2mx

√
detG

(
− 1

2κ2 R+ 1
2 G

αβ h(φ)ab ∂αφa ∂βφb + Λ
)
, (1.1)

where M is the CY moduli space, Gαβ its metric, and R its scalar curvature. In d = 1
the only CY spaces are the elliptic curves; their moduli space has real dimension 2, so
in this case the Einstein term in (1.1) is topological, while the cosmological constant Λ
vanishes — eq. (1.1) reduces for d = 1 to the classical Polyakov action of a string moving
in the appropriate target space (which is also 2-dimensional). When d = 2 the moduli-
space Newton constant κ2 is an adjustable parameter (this freedom reflects the fact that
the moduli metric is always Einstein for CY 2-folds). For d = 3, 4 the Newton constant
depends only on the dimension d of the CY, while the cosmological constant Λ depends on
d and the complex dimension m of the moduli space:

1
κ2 =

free parameter d = 2
gcd(d, 2) d = 3, 4

, Λ = −
(
m− 1

)(m
κ2 + d

)
. (1.2)

When m = 1 the real dimension of the moduli space M is 2 and Λ = 0, and again (1.1)
reduces to the classical Polyakov action. For m > 1 the moduli-space gravity is “dynami-
cal”, and the cosmological constant negative. For m = 2 we get instantons of a “realistic”
four-dimensional gravity with matter. In the d = 2 case the matter decouples in the
limit κ2 → 0, and the moduli-space Einstein equations reduce to Rαβ = −mGαβ . In this
limit it is clear that the finiteness of the moduli volume (one of the swampland conjec-
tures [2–4]) should be really understood as a finite action condition for the moduli-space
field theory (1.1). This observation applies in general.

The matter part of the action (1.1) is a standard σ-model with target a locally symmet-
ric space Γ\G(R)/K, where the non-compact real Lie group G ≡ G(R) is the automorphism
group of the corresponding Griffiths period domain, that is, explicitly

G(R) =


Sp(2n,R) with 2n =

d∑
p=0

hp,d−pprim for d odd

SO(s, t) with s =
d∑

k=0
h2k,d−2k

prim , t =
1∑

k=0
h2k+1,d−1−2k

prim for d even,

(1.3)

where {hp,d−pprim } are the primitive Hodge numbers in middle dimension2

hp,d−pprim
def= dimC

{
ξ ∈ Hp,d−p(Xd) : ω ∧ ξ = 0

}
ω ≡ Kähler form. (1.4)

1The sharp version of the Claim will be presented momentarily, after fixing the necessary notation.
2Hp,q(Xd) stands for the space of harmonic forms of type (p, q) on Xd.
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K ⊂ G(R) is a maximal compact subgroup. For comparison, we recall that the Griffiths
period domain D is the reductive coset G(R)/H where [5–7]

H = SO
(
h
d/2,d/2
prim

)
×

∏
0≤p<d/2

U(hp,d−pprim ) ⊂ K. (1.5)

One may replace G(R) with the Lie subgroup MT (R) ⊆ G(R) given by the real locus of
the Mumford-Tate group MT [8–10] of the moduli of Xd. Indeed the relevant matter field
configuration φ : M → Γ\Γ(R)/K has image in the totally geodesic submanifold3

Γ\MT (R)/[MT (R) ∩K] ↪→ Γ\G(R)/K. (1.6)

The discrete group Γ ⊂MT (Z) ⊆ G(Z) is the monodromy group of the CY period map.
Very roughly speaking, the moduli space has the form M = G\M̃ , with M̃ diffeomor-

phic to R2m and G a discrete group with a neat subgroup of finite index. We call G the
U -duality group. (In the present context it is isomorphic to the monodromy group Γ, but
we denote them with distinct symbols for clarity).

A classical solution to (1.1) consists of two pieces of data: a metric Gαβ on M̃ admitting
G as a group of isometries, and a harmonic map φ̃ : M̃ → G(R)/K satisfying the G-
equivariant condition

φ̃(g · x) = ρ(g) · φ̃(x), x ∈ M̃, g ∈ G (1.7)

for some group homomorphism

ρ : G � Γ ≡ ρ(G) ⊂ G(Z) ⊂ G(R) (1.8)

called the monodromy representation. When (1.7) holds, one also says that the map φ̃ is
twisted by ρ. A ρ-twisted map descends to a map φ : M → Γ\G(R)/K, and we shall use φ̃
and φ interchangeably. Our claim states that the CY moduli geometry is given by a pair
(Gαβ , φ̃) which satisfies the equations of motion following from the action (1.1):

Dα∂αφ̃ = 0 (1.9)

Rαβ −
1
2 Gαβ R+ κ2 ΛGαβ = κ2 Tαβ , (1.10)

where the derivative Dα is covariant for the combined Levi-Civita connections of T ∗M and
φ̃∗T (G/K). Eq. (1.9) just expresses the fact that φ̃ is a harmonic map M̃ → G(R)/K for
the source-space metric Gαβ .

Having fixed the notation, let us make our claim sharp:

Claim. Let Gαβ be the Weil-Petersson metric on the complex moduli space M of a CY
d-fold, with d ≤ 4, and let φ be the composed map φ ≡ π ◦ p where

p : M → Γ\G(R)/H the (global) Griffiths period map [5–10] (1.11)
π : Γ\G(R)/H � Γ\G(R)/K the canonical projection. (1.12)

Then the pair (Gαβ , φ) is a finite-action solution to eqs. (1.9), (1.10) with constants as in
eq. (1.2).

3This statement follows from the structure theorem for the period map [8–10].

– 3 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
8

Remark 1. Eq. (1.9) remains true when d ≥ 5. The WP metric Gαβ still satisfies an
“Einstein-like” equation. However it seems that one cannot construct an off-shell action
with positive kinetic terms whose canonical energy-momentum tensor yields the source term
in the equation. This is to be expected since the moduli geometry of d ≥ 5 Calabi-Yau’s
is not required to have “magical” properties by swampland consistency conditions.

The moduli space fields (Gαβ, φ) as effective couplings. To make explicit contact
with the swampland program, let us recall the low-energy 4d effective Lagrangian of Type
IIB compactified on the (simply-connected) CY 3-fold X3

LIIB =
√
−g
(
−1

2R+ 1
2G(ϕ)αβ ∂µϕα∂µϕβ+ i

16πτ(ϕ)abF a+F b+−
i

16π τ̄(ϕ)abF a−F b−+· · ·
)
,

(1.13)
where for brevity we wrote only the matter terms involving the bosonic fields of the vector-
multiplets. The metric Gαβ appearing in the vector-multiplet scalars’ kinetic terms coin-
cides with the Weil-Petersson metric on the moduli space M of X3 [11, 12]. For a fixed
point ϕ ∈ M̃ , the gauge coupling τ(ϕ)ab is a symmetric complex matrix with positive
imaginary part, that is, a point in the Siegel upper half-space

τ(ϕ)ab ∈ Sp(2h2,1 + 2,R)
/
U(h2,1 + 1) ≡ G(R)/K

(
cf. eq. (1.3) with d = 3

)
. (1.14)

Hence the 4d gauge coupling may be identified with the map

φ̃ : M̃ → G(R)/K, φ̃ : ϕ 7→ τ(ϕ)ab. (1.15)

However this way of describing the gauge couplings is not intrinsic, since τ(ϕ)ab depends
on a choice of duality frame. Even worse: the τ(ϕ)ab are multi-valued4 functions on M

because when we go around a non-trivial loop in M we come back with a rotated electro-
magnetic duality frame. The intrinsic description of the gauge couplings is instead given
by the quotient map

φ : M ≡ G\M̃ → Γ\G(R)/K, φ : [ϕ] 7→ [τ(ϕ)ab]. (1.16)

In other words, the lifted gauge coupling map φ̃ is twisted by the monodromy representation
ρ as in eqs. (1.7), (1.8). Indeed, the U -duality group G acts both on M̃ (by isometries)
and on the vector field-strengths (by electro-magnetic dualities) while leaving the physical
energy-momentum tensor Tµν invariant; this entails that the ‘naive’ gauge coupling map φ̃
is twisted by the monodromy representation ρ of G. This being understood, the on-shell
configurations (1.11), (1.12) of the two fields (Gαβ , φ) which propagate in the moduli space
M are exactly the same as the couplings appearing in the Type IIB 4d effective Lagrangian
LIIB:

Gαβ ≡ vector-multiplet scalars’ metric
φ ≡ (intrinsically-defined) gauge couplings, eq. (1.16).

(1.17)

4The structure theorem yields the dichotomy: either the gauge couplings τ(ϕ)ab are field-independent
numerical constants (as in the case of rigid CY 3-folds [13]) or τ(ϕ)ab must be multivalued.
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Remark 2. More generally, it is pretty obvious that all couplings appearing in the La-
grangian Leff of any 4d supergravity which is consistent with the swampland conjec-
tures [1–4] and has ≥ 8 supercharges describe (as functions of the scalar fields) gravitational
instantons. Again, the finite volume conjecture gets re-interpreted as the statement that
the field configuration in moduli space which decribes the effective couplings in Leff has
finite action.

Remark 3. Conversely, the N ≥ 2 sugra’s which do not satisfy the swampland conjec-
tures are not gravitational instantons. E.g. the homogeneous N = 2 models constructed
in [14], all of which fall in the swampland [15], do satisfy eqs. (1.9), (1.10) but have infinite
action.

2 Details and proofs

Of course, once we have strong reasons — such as the swampland story — to believe
that something ought to be true, we look for actual proofs rather than relying on widely
believed conjectures. Our treatment in this note will be totally rigorous (except that we
do not discuss the singularities of the relevant solution — a crucial issue, but not one
consistent with the purpose of writing a short note).

We present an informal discussion of the general picture in section 2.1. Then in
sections 2.2–2.11 we enter in the technical details, and write explicit expressions for all
relevant quantities.

2.1 An informal sketch

There are two approaches (or languages) for the geometry of Calabi-Yau moduli spaces:
(i) Griffiths theory of variations of Hodge structures (VHS) [5–7], and (ii) tt∗ geome-
try [16–18]. Equivalence of the two viewpoints (in the appropriate contexts) was proven
in [16, 19] (and enshrined in the math literature as a theorem in [20]). We shall use both
languages, with a preference for the second one.

On the moduli space of a Calabi-Yau d-fold there is an infinite family of a priori distinct
canonical Kähler metrics. From the point of view of VHS this plethora arises because the
Griffiths period domain D ≡ G(R)/H [5–7] carries several holomorphic homogeneous line
bundles whose canonical connection has a curvature which is positive when restricted to the
Griffiths horizontal tangent bundle. The pull-back toM , via the period map p : M → Γ\D,
of any one of these curvatures yields a Kähler form onM . There is one horizontally-positive
line-bundle which exists on the period domain D for all Hodge numbers {hp,q}, namely the
Griffiths canonical line bundle [21]. The corresponding Kähler metric is called the Hodge
metric Kjk̄, and is the best behaved one in the family. In the case of Calabi-Yau d-folds,
one has hd,0 = 1 and there is another important horizontally-positive line bundle whose
sections are the holomorphic (d, 0)-forms. Its curvature defines the Weil-Petersson (WP)
Kähler metric Gjk̄. Kjk̄, Gjk̄ do not exhaust the list of canonical VHS metrics. Taking
linear combinations with positive coefficients of the several canonical metrics, we construct

– 5 –
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a convex cone Cd of God-given Kähler metrics on the moduli M . The term “God-given”
here has a precise technical meaning:

the U -duality group G acts by isometries with respect to
all Kähler metrics in the convex cone Cd.

This is quite remarkable, since G is a “huge” group: for CY 3-folds, say, unless the IIB
4d gauge couplings τ(ϕ)ab are numerical constants (i.e. the CY is rigid [13]), the Zariski
closure of G is a semi-simple real Lie group of positive dimension [15]. We stress that Cd
is a cone of actual Kähler metrics, not just Kähler classes. We write K(c)

jk̄
for the Kähler

metric associated to a point c ∈ Cq.
Not all the canonical Kähler metrics are independent: decreasing the dimension d of

the Calabi-Yau space, the dimension of the cone gets smaller and smaller

dim Cd = rank
(
group of homogeneous line-bundles over G/H

)
≡

≡ rank Hom(H,U(1)) ≤
[
d+ 1

2

]
equality for connected
Hodge structures

(2.1)

For d ≤ 4 the inequality is saturated provided the CY is not rigid.
The Ricci tensor Rjk̄ of the WP metric Gjk̄ is also the pull-back of the curvature of a ho-

mogenous line-bundle on D, hence Rjk̄ belongs to the linear span of the God-given metrics,
i.e. Rjk̄ can be written as a linear combination of canonical VHS metrics. This is consistent
since all Kähler metrics K(c)

jk̄
satisfy the same Bianchi identity as the WP Ricci tensor

Dj
(
K

(c)
jk̄
− 1

2 Gjk̄K
(c)
)

= 0, where K(c) def= 2Gjk̄K(c)
jk̄
, (2.2)

and Dj is the Levi-Civita connection of the WP metric. On the moduli space of CY d-folds
we have an identity of the form

Rjk̄ −
1
2 Gjk̄ R =

dim Cd∑
c=1

λ(c)
(
K

(c)
jk̄
− 1

2Gjk̄K
(c)
)

(2.3)

for certain numerical constants λ(c) (to be computed in section 2.11 below). We conclude
that the WP metric Gjk̄ is a solution to the Einstein equations provided the r.h.s. of (2.3)
may be written as a physically sound energy-momentum tensor plus a cosmological con-
stant term.

For CY’s of dimension d = 1, 2 one has dim Cd = 1, so all canonical VHS metrics are
multiples of the WP one which then must be Einstein, i.e. Rjk̄ = −ΛGjk̄ for some Λ.

For d = 3, 4 there is a 2-parameter family of VHS Kähler metrics on M , and then the
Ricci tensor of the WP metric must be a linear combination of the WP metric Gjk̄ and
the Hodge one Kjk̄. Now our Claim follows from the fact5 that the combination entering
in (2.3)

Kjk̄ −
1
2 Gjk̄K ≡ Tjk̄, (2.4)

is nothing else than the canonical energy-momentum tensor of the Γ\G(R)/K σ-model
evaluated on the on-shell field configuration (1.11), (1.12).

Having sketched the general picture, let us now write the explicit formulae.
5See eq. (2.31) below.
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2.2 Review of the Γ\G/K σ-model

G ≡ G(R) is a non-compact real Lie group and K ⊂ G a maximal compact subgroup which
is fixed by the Cartan involution θ. A map M → Γ\G/K can be lifted (non-uniquely) to
a map E : M̃ → G. We see the lifted map as a field E(x) on the Euclidean space-time M̃
which takes value in the concrete matrix group given by the Hodge representation of G(R)
which, for the groups in (1.3), is the fundamental one (2n and, respectively, s+ t). The
field E(x) is twisted by the monodromy representation (cf. eq. (1.7))

E(g · x) = ρ(g) · E(x), ∀ g ∈ G, (2.5)

so it descends to a field (or map) E : M → Γ\G. Two field configurations, E(x) and E(x)′,
which differ by the multiplication on the right by a position-dependent element of K, are
declared to be gauge-equivalent (i.e. the same physical configuration)

E(x)′ ∼ E(x) ⇐⇒ E(x)′ = E(x)U(x), with U(x) ∈ K. (2.6)

By a global field configuration E(x) we actually mean a local lift E(x)α : Uα → G for each
open set of a cover ∪αUα = M̃ , with transition function E(x)−1

β E(x)α ∈ K in Uα ∩ Uβ .
We have the K-principal bundle $ : G→ G/K, and the physical gauge-invariant map

is $ ◦ E : M̃ → G/K or, more precisely, its G-equivariant quotient

$ ◦ E : M → Γ\G/K. (2.7)

We adopt the following notation: for a ∈ g (the Lie algebra of G), ae and ao denote,
respectively, the projection on the even and odd parts under the Cartan involution θ. The
action of the σ-model with target space Γ\G/K is

1
2

∫
M
d2mx

√
detG Gαβ tr

[
(E−1∂αE)o(E−1∂βE)o

]
(2.8)

(one checks that it is K gauge invariant). The energy-momentum tensor is

Tαβ = tr
[
(E−1∂αE)o(E−1∂βE)o

]
− 1

2 Gαβ G
γδ tr

[
(E−1∂γE)o(E−1∂δE)o

]
. (2.9)

The equations of motion say (by definition) that the field E is on-shell if and only if the
corresponding physical map, $ ◦ E : M → Γ\G/K, is harmonic.

2.3 Pluri-harmonic maps

Let M be a Kähler manifold and Y any Riemannian manifold. A map f : M → Y is
pluri-harmonic iff

Dj∂k̄f = 0. (2.10)

Note that the covariant derivative Dj contains only the Levi-Civita connection of f∗TY . If
f is pluri-harmonic, Gjk̄Dj∂k̄f ≡ 0, so f is a fortiori harmonic, hence a classical solution
of the σ-model with target space Y and source space M . We stress that (2.10) does not
contain the Kähler metric of M , so a pluri-harmonic map is harmonic for all choices of
Kähler metric.

– 7 –
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In our application Y is the locally symmetric space Γ\G/K which is non-compact of
finite volume.6 We assume M to be non-compact and the existence of some complete
Kähler metric g̊jk̄ on M of finite volume; “some” means that the reference metric g̊jk̄ may
have nothing to do with the physical metric Gjk̄.7 We claim that in these circumstances8

any classical solution E0 of the σ-model (defined with the space-time metric g̊jk̄) which has
finite action

S(E0) ≡
∫
M
d2mx (det g̊) g̊jk̄ tr

[
(E−1

0 ∂jE0)o(E−1
0 ∂k̄E0)o

]
<∞ (2.11)

is automatically pluri-harmonic, hence a solution of the equations of motion for any other
choice of Kähler metric Gjk̄ 6= g̊jk̄ on the source space M . The claim is a special case of a
more deep fact, crucial for the swampland story, which shall be discussed elsewhere in its
proper context. A sketch of the proof (for the special situation at hand) will be given in
the next paragraph after the introduction of the necessary notation.

2.4 Review of tt∗ geometry

A tt∗ geometry on the complex manifold M is just a pluri-harmonic map M → Γ\G/K of
finite action,9 whereG,K and Γ are as in section 2.2. As in that paragraph, the tt∗ map may
be lifted to a map S : M̃ → G. Again, we see S as a field on M̃ taking value in the concrete
matrix group G. In facts, S is just a special instance of the σ-model field E of section 2.2:
S is not just an on-shell field configuration, it satisfies the stronger condition of being pluri-
harmonic (this is essentially automatic in the present circumstances, see below). S has a
direct physical meaning: in the tt∗ literature [18, 25, 26] S is called the BPS brane amplitude
(for some value ζ = eiθ of the spectral parameter which depends on the chosen lift).

Since M is complex, we may decompose the differential forms into definite type

(S−1dS)e = A+ Ā, (S−1dS)o = C + C̄, (2.12)

where unbarred (barred) stands for type (1,0) (resp. (0,1)). We introduce the K-covariant
Dolbeault differentials D = ∂ +A and D̄ = ∂̄ + Ā. We have the identity

DC =
(
(d+ S−1dS)2)o∣∣∣

(2,0)-part
= 0, (2.13)

while the condition that the G-twisted tt∗ map $ ◦ S : M̃ → G/K is pluri-harmonic reads

D̄C = 0. (2.14)
6More precisely: we may reduce to the case of finite volume without loss of generality. If Γ is thin,

replace it by an arithmetic group which contains it.
7Actually, taking as reference metric g̊jk̄ the physical one Gjk̄ only improves the situation.
8For the statement to be true, one needs to require some extra “regularity” conditions which are tauto-

logically satisfied for the spaces of interest.
9In this note we add to the “standard” definition of tt∗ geometry the condition that the underlying

pluri-harmonic map has finite action; all tt∗ geometries arising from physics satisfy this condition. For the
geometries relevant for the present paper this will be shown in section 2.6 below.

– 8 –
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Before proceeding, let us pause a while to sketch the idea behind the claim made at the
end of the previous paragraph: ifM is a non-compact Kähler manifold of finite volume, sat-
isfying some mild regularity condition, then a harmonic map M → Γ\G/K of finite-energy
is automatically pluri-harmonic. One starts from Simpson’s Bochner-formula [20, 27] for
harmonic maps with source space a Kähler manifold M . In the present set-up and nota-
tions, this Bochner-formula takes the form (see eqs. (4.1)-(4.8) of [15])

$ ◦ S harmonic ⇒ D
i
D
jtr(CiCj) = ‖DC‖2 + non-negative. (2.15)

When M is compact, the integral of the total derivative in the l.h.s. vanishes, so the two
non-negative terms in the r.h.s. should vanish separately, and we have DC = 0, which is the
statement that the map $ ◦ S is pluri-harmonic. If M is non-compact, the integral of the
l.h.s. yields a boundary term at infinity, and the same conclusion applies provided we can
show that this boundary term vanishes. This vanishing condition at infinity holds when M
has finite volume and satisfies the mild technical assumptions (roughly: “the ends of M at
∞ have vanishing size”) while the harmonic map has finite-energy (i.e. it is “trivial at ∞”).

We return to tt∗ geometry. A short computation [15, 28] shows that the compatibility
condition of (2.13) with (2.14), [D, D̄]C = 0, implies

C ∧ C = 0, (2.16)

which expresses the fact that the tt∗ chiral ring R is commutative. Using (2.13), (2.14),
and (2.16) one checks that the Maurier-Cartan identity (d+ S−1dS)2 = 0 is equivalent to
the statement that the10 gC-valued connection

∇(ζ) def= d+A+ Ā+ ζ C + ζ−1 C̄ (2.17)

is flat for all values of the spectral parameter ζ ∈ P1

(
∇(ζ))2 ≡ 0. (2.18)

Eq. (2.18) is the Lax form of the tt∗ PDEs [16–18, 28].
The application of tt∗ geometry to 2d (2,2) QFT [16] works as follows. Let P be the

complex space of F -term11 parameters. Over P we have the vector bundle V whose fiber
at p ∈ P is the space of susy vacua of the QFT with couplings p. The tt∗ connection
D+D̄ acts on V ; by eq. (2.18) it endows V with a holomorphic structure. By construction
the tt∗ connection is metric for the QFT Hilbert space inner product, and hence it is the
unique Chern connection on V (and also the Berry one). In a holomorphic gauge we have

A = g∂g−1, Ā = 0, (2.19)

where g ≡ (gab̄) is the Hilbert space Hermitian metric along the fibers (the tt∗ metric [16]).
The spectral flow isomorphism [22] states that

V ∼= R ↪→ End(V ) ∼= V ⊗ V ∨ ∼= V ⊗2, (2.20)
10Here and below gC ≡ g⊗ C, where g is the Lie algebra of the real Lie group G.
11The distinction between F -term and twisted F -term is a matter of convention. We loosely say “F -term”

to mean either one, depending on the particular application one has in mind.
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where R is the holomorphic bundle whose fiber Rp is the chiral ring at p ∈ P . The last
isomorphism in (2.20) is the reality structure12 [16]. The holomorphic vacuum bundle V is
then isomorphic to a sub-bundle of its tensor-square V ⊗2. This yields an induction on the
bundle metrics: start with the fiber metric g for V ; it induces a fiber metric for V ⊗2, and
its restriction to the sub-bundle R is then a second fiber metric h for V (one may iterate
the process ad infinitum).

2.5 Superconformal tt∗ geometry

The discussion in section 2.4 applies to all 2d (2,2) QFTs [16]. When the (2,2) QFT is
superconformal one is mainly interested in the tt∗ geometry restricted to the conformal sub-
manifold M ⊂ P of (exactly) marginal deformations. When so restricted, the holomorphic
bundles R →M and V →M get graded by the superconformal U(1) charge q

R =
ĉ⊕

q=0
Rq, V =

ĉ/2⊕
q=−ĉ/2

Vq, V ∨q
∼= V−q, Vq−ĉ/2 ∼= Rq. (2.21)

The decomposition of V is orthogonal for the tt∗ fiber metric g [16]. Conformal perturba-
tion theory gives us the isomorphism13

holomorphic tangent bundle
of conformal manifold M TM ∼= V1−ĉ/2 ∼= R1 ↪→ V ⊗2. (2.22)

The Hodge metric is the metric on TM given by the induced metric on R1 as a sub-bundle
of V ⊗2, while the WP metric is the normalized tt∗ metric restricted to V1−ĉ/2 [16, 24]:

WP metric on M =
g|V1−ĉ/2

g−ĉ/2
, Hodge metric on M = h|V1−ĉ/2 . (2.23)

When the tt∗ geometry describes the complex moduli of a CY d-fold Xd — that is, when
the 2d (2,2) SCFT is the Xd σ-model — one has ĉ = d and

rank Vq = h
d/2−q,d/2+q
prim , in particular, rank V∓ĉ/2 = 1. (2.24)

In this case the tt∗ Lie group G ≡ G(R), introduced in section 2.4, is Sp(2n,R) or SO(s, t)
for ĉ odd, respectively, even; that is, the tt∗ group G(R) coincides with the VHS automor-
phism group (cf. eq. (1.3)). Moreover there is a U(1) grading element Q ∈ g ⊗ C such
that14 [24]

[Q,C] = −C, Q
∣∣
Vq

= q IdVq . (2.25)

Refs. [16, 19, 20] show that the VHS geometry of the complex moduli of a CY d-fold is
described by a tt∗ geometry which satisfies the additional conditions (2.21)–(2.25). The
Lie sub-group H ⊂ G (cf. eq. (1.5)) is the centralizer of the U(1) charge operator Q in G.15

12Equivalently, the topological metric η [23].
13In the VHS language this isomorphism is called the “local Torelli theorem”.
14The adjoint action of Q on g gets transported on the bundles Vq → M because these bundles are the

pull-back (via the period map) of homogeneous bundles on the Griffiths domain. See, e.g. chapter 11 of [29].
15Here it is crucial that in the SCFT case the real Lie group G is of “Mumford-Tate type” i.e. that it

contains a compact maximal torus, i.e. rankG = rankK [15].
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2.6 Proof of eq. (1.9)

The crucial fact is that a solution to tt∗ corresponds to a pluri-harmonic map

$ ◦ E : M → Γ\G/K, (2.26)

hence, in particular, to a solution of the σ-model (2.8). Since $ ◦ E is a solution for all
Kähler metrics on M (cf. section 2.3), the tt∗ map $ ◦E is in particular harmonic for the
WP metric Gjk̄.

The particular σ-model solution which describes the moduli geometry of a CY moreover
has finite action in the sense that∫

M
d2m√GLσ-model <∞ where Lσ-model ≡

1
2 G

αβ h(φ)ab ∂αφa ∂βφb (2.27)

We defer the proof of (2.27) to section 2.9 below.
This shows eq. (1.9). The argument works for all dimensions d of the Calabi-Yau.

2.7 Review of [24]

The Hodge metric Kjk̄ was introduced in tt∗ geometry in ref. [24], and further studied
in [30], for its relation with the τ -function of isomonodromic problems and, respectively,
the Ray-Singer torsion. As already mentioned, in VHS theory the Hodge metric makes
sense in the complex moduli space of any projective variety, Calabi-Yau or not. Corre-
spondingly, from a tt∗ perspective the Hodge metric should be a good Kähler metric for
all 2d (2,2) QFTs whether they are superconformal or not. When the 2d theory is super-
conformal, however, the metric Kjk̄ (restricted to the exactly marginal deformations) has
nicer properties.

For a general (2,2) QFT the Hodge metric reads [24]

Kjk̄ = tr
[
Cj C̄k̄

]
, (2.28)

where Cj and C̄k̄ are the coefficients of the matrix-valued 1-forms C ≡Cj dtj and C̄ ≡ C̄k̄ dt̄k̄

(cf. (2.12)); {tj} are complex coordinates in the parameter space P of the (2,2) QFT [16].
In the superconformal case we restrict the 1-forms C, C̄ to the conformal submanifold

M ↪→ P , i.e. to marginal deformations. Conservation of the conformal U(1) charge yields

tr[CiCj ] = 0, (2.29)

and we can rewrite equation (2.28) in arbitrary real (that is, not necessarily holomorphic)
local coordinates xα in the form

ds2
Hodge ≡ Kαβ dx

α dxβ = tr
[
(C + C̄)α(C + C̄)β

]
dxα dxβ =

= tr
[
(S−1∂αS)o(S−1∂βS)o]dxα dxβ , (2.30)

where, in the second line, we used eq. (2.12). From eq. (2.9) we see that the energy-
momentum tensor of the σ-model, evaluated on the particular tt∗ on-shell field configuration
E = S, is

Tαβ = Kαβ −
1
2 Gαβ G

γδKγδ. (2.31)
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In refs. [24, 30] there is a second formula for the Hodge metric — this one valid only
along the conformal manifoldM of a superconformal tt∗ geometry. It is convenient to adopt
the holomorphic gauge (2.19). We write gab̄ for the tt∗ Hermitian metric on the fibers of
the vacuum bundle V written in a holomorphic trivialization, and (gq)uv̄ for its restriction
to the sub-bundle Vq ⊂ V of definite U(1) charge q, cf. (2.21), (2.25). For the sub-bundle
V1−ĉ/2 ∼= TM we use the holomorphic local frame {∂zj} with zj complex coordinates on
M ; from now on indices from the middle of the latin alphabet j, k, l, . . . always refer to
tensors defined in this holonomic holomorphic trivialization of V1−ĉ/2 ⊂ V . Then, along
the submanifold M ↪→ P , one has [24, 30]

Kjk̄ = ∂i∂̄k̄

∑
q<0

2q log det gq

. (2.32)

Eq. (2.32) says that the Hodge metric is the curvature of the Griffiths canonical bundle [21]⊗
q<0

(
det Vq

)−2q →M (note that 2q ∈ Z) (2.33)

equipped with its canonical Chern connection [7]. For comparison, the WP metric is the
curvature of the line bundle V−ĉ/2 →M [12, 16]

Gjk̄ = −∂j ∂̄k̄ log g−ĉ/2. (2.34)

The tt∗ equations yield a simple formula for the Riemann tensor of the WP metric on
the conformal manifold of a (2,2) SCFT. Taking the trace, we get a universal formula for
the Ricci tensor valid on M for all ĉ

Rjk̄ = (CjC̄k̄)l
l − (m+ 1)Gjk̄, (2.35)

where
m ≡ dimCM ≡ rank V1−ĉ/2, (2.36)

In the special case ĉ = 3 eq. (2.35) is sometimes called the ‘Strominger formula’ [12].
Writing Pq for the orthogonal projection V → Vq, we have

∂̄k̄∂j log gq = −tr
(
Pq ∂̄k̄(g∂jg

−1)
)

= −tr
(
Pq[Cj , C̄k̄]

)
, (2.37)

where in the last equality we used eq. (2.18) in the form16

0 ≡ coeff ζ0 in
[(
∇(ζ))2∣∣∣

(1,1)-part

]
= D∂̄ + ∂̄D + C ∧ C̄ + C̄ ∧ C. (2.38)

Setting q = −ĉ/2 in (2.37) we recover the formula (2.34). The next case, q = 1− ĉ/2, yields

∂̄k̄∂j log g1−ĉ/2 = Gjk̄ − (CjC̄k̄)l
l = −Rjk̄ −mGjk̄. (2.39)

16Recall that D ≡ d+ (g∂g−1) is the tt∗ Chern connection [16].

– 12 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
8

The same result may be obtained more directly by the first equation in (2.23)

Gjk̄ =
(g1−ĉ/2)jk̄
g−ĉ/2

⇒ log detG = log det g1−ĉ/2 −m log g−ĉ/2, (2.40)

using the general Kähler identity Rjk̄ = −∂j ∂̄k̄ log detG, and eq. (2.34).
From eqs. (2.32), (2.34) and (2.39) we read the linear relations between the three

tensors Gjk̄, Kjk̄, and Rjk̄ on the moduli space of a Calabi-Yau d-fold. From the general
discussion in section 2.1 we know that there are two linear relations for d = 1, 2 and one
for d = 3, 4:

d = 1 Kjk̄ = Gjk̄ Rjk̄ = −2Gjk̄ (2.41)

d = 2 Kjk̄ = 2Gjk̄ Rjk̄ = −mGjk̄ (2.42)

d = 3 Kjk̄ = (m+ 3)Gjk̄ +Rjk̄ (2.43)

d = 4 Kjk̄ = (2m+ 4)Gjk̄ + 2Rjk̄. (2.44)

The first 3 lines are known to mathematicians [31] (eq. (2.43) was first derived in [24, 30]).

2.8 Proof of eq. (1.10)

By eq. (2.29) we may rewrite the linear relations between the tensors in arbitrary real local
coordinates xα since all three tensors have pure type (1, 1).

For d = 1 eq. (2.41) implies (cf. (2.9))

Tαβ ≡ Kαβ −
1
2 Gαβ G

γδKαβ = 0 (2.45)

which is the classical Virasoro constraint of the Polyakov world-sheet string action.
For d = 2 the two equations (2.42) yield

Rαβ −
1
2GαβR− κ

2 Tαβ = (m− 1)(m+ 2κ2)Gαβ (2.46)

for all choice of κ2.
For d = 3, 4 eqs. (2.43), (2.44) give

Tαβ ≡ Kαβ −
1
2Gαβ G

γδKγδ = gcd(d, 2)
(
Rαβ −

1
2GαβR

)
− (m− 1)

(
gcd(d, 2)m+ d

)
Gαβ .

(2.47)
Eqs. (2.45), (2.46), and (2.47) yield the various cases of (1.10).

2.9 Finite actions and finite volume

We have two distinct finite action statements. First, the σ-model action (2.27) is finite,
that is, the moduli-space scalar field configuration, seen as a smooth map from M to the
target space Γ\G(R)/K, has finite energy in the sense of differential geometry. This holds
for all CY dimension d. The second statement, valid for d ≤ 4, is that the total gravity +
matter action (1.1) is finite and proportional to the volume of the moduli M , so that the
finite volume condition should be re-interpreted as a finite action requirement.
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The σ-model Lagrangian Lσ-model evaluated on the particular solution describing the
CY moduli geometry is just the WP trace of the Hodge metric (cf. eqs. (2.28), (2.30)), a
quantity which is bounded by a constant outside a compact U b M , as we see from the
known asymptotics of VHS at infinity [21]. This shows the first statement.

For the relevant cases d ≤ 4 we give an alternative and more direct argument. The
cases d = 1, 2 are trivial, so we focus on d = 3, 4. From eqs. (2.43), (2.44) we have

Lσ-model
∣∣
tt∗ solution ≡ G

k̄jKjk̄ =
(
m

κ2 + d

)
m+ 1

2κ2R, (2.48)

where m = dimCM and R is the moduli scalar curvature which is negative outside some
compact U [2]. Thus, outside the compact U , 0 ≤ Lσ-model < (m+ 3)m and

σ-model action <
∫
U
d2mz det(Gjk̄)Lσ-model +

(
m

κ2 + d

)
m · vol(M \ U) <∞, (2.49)

since the volume of M is finite.
In the total action (1.1), the Einstein term −R/(2κ2) cancels the last term in eq. (2.48)

so that
total action =

∫
M
d2mx

√
G

(
m

κ2 + d

)
=
(
m

κ2 + d

)
· vol(M), (2.50)

so that WP volume and total action agree up to overall normalization. In particular, since
WP volumes of CY moduli spaces are finite [32], the total action is finite.

Remark 4. The total action is given by eq. (2.50) for all classical solutions of the
model (1.1), not just for the particular one describing the moduli WP geometry.

2.10 The canonical Kähler metrics for arbitrary d

Consider the functions on M of the form (d ≡ ĉ)

K(c) def=
d/2∑

q=−d/2
c(q) log det gq, c(q) ∈ R. (2.51)

In a holomorphic gauge where det η = 1 (they exist [23]) the reality constraint [16] implies

log det gq = − log det g−q, (2.52)

so the function (2.51) depends only on the [(d+ 1)/2] combinations {c(q)− c(−q)}q<0, the
same number as the dimension of the convex cone Cd of canonical metrics, and we are free
to assume c(q) to be an odd function. The Kähler potential of the WP metric has the
form (2.51) with c(q) = ±1/2 for q = ±d/2 and zero otherwise. The Kähler potential of
the Hodge metric has this form with c(q) = q, see eq. (2.32).

The general “God-given” Kähler metric in the cone Cd is then

K
(c)
jk̄
≡ ∂j∂k̄

 d/2∑
q=−d/2

c(q) log det gq

 = tr
[(
c(Q+ 1)− c(Q)

)
CkC̄k̄

]
≡

≡
∑
q

(
c(q + 1)− c(q)

)
tr(Pq CjC̄k̄) ≡ −tr

([
c(Q), Cj

]
C̄k̄

)
,

(2.53)
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where, as before, Pq is the projector V → Vq. K
(c)
jk̄

is a positive Kähler metric when
the coefficient function c(q) belongs to the appropriate convex cone Cd ⊂ R[(d+1)/2] which
manifestly includes the cone of increasing functions c(q + 1) > c(q).

We show that all metrics K(c)
jk̄

satisfy the “Bianchi identity” (2.2). This property is
automatic since these tensors correspond to ∂∂-exact (1,1)-forms κ(c). ∂κ(c) = 0 reads

DiK
(c)
jk̄

= DjK
(c)
ik̄

Di: the (1,0) part of the
WP Levi-Civita connection (2.54)

Contraction with Gik̄ yields the “Bianchi identity”.

2.11 The explicit “Einstein equation” for arbitrary d

From eq. (2.39) we get

Rjk̄ −
1
2 Gjk̄ R− (1−m2)Gjk̄ = tr

(
P1−d/2CjC̄k

)
−Gjk̄G

kl̄ tr(P1−d/2CkC̄l
)

(2.55)

which is the explicit form of the linear relation (2.3). The tensor in the r.h.s. is conserved
by the “Bianchi identity”. While the r.h.s. looks as a valid energy-momentum tensor when
evaluated on the on-shell configuration S, it is hard to find an off-shell action with positive
kinetic terms which reproduces it. Our feeling is that it does not exist.
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