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A B S T R A C T 

We present the first fully simulation-based hierarchical analysis of the light curves of a population of low-redshift type Ia 
supernovæ (SNæ Ia). Our hardware-accelerated forward model, released in the Python package slicsim , includes stochastic 
variations of each SN’s spectral flux distribution (based on the pre-trained BayeSN model), extinction from dust in the host and 

in the Milky Way, redshift, and realistic instrumental noise. By utilizing truncated marginal neural ratio estimation (TMNRE), 
a neural network-enabled simulation-based inference technique, we implicitly marginalize o v er 4000 latent variables (for a 
set of ≈100 SNæ Ia) to efficiently infer SN Ia absolute magnitudes and host-galaxy dust properties at the population level 
while also constraining the parameters of individual objects. Amortization of the inference procedure allows us to obtain 

co v erage guarantees for our results through Bayesian validation and frequentist calibration. Furthermore, we show a detailed 

comparison to full likelihood-based inference, implemented through Hamiltonian Monte Carlo, on simulated data and then 

apply TMNRE to the light curves of 86 SNæ Ia from the Carnegie Supernova Project, deriving marginal posteriors in excellent 
agreement with previous work. Given its ability to accommodate arbitrarily complex extensions to the forward model, e.g. 
different populations based on host properties, redshift evolution, complicated photometric redshift estimates, selection effects, 
and non-Ia contamination, without significant modifications to the inference procedure, TMNRE has the potential to become the 
tool of choice for cosmological parameter inference from future, large SN Ia samples. 

Key words: methods: data analysis – methods: numerical – methods: statistical – cosmological parameters – distance scale –
transients: supernovae. 
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 I N T RO D U C T I O N  

ype Ia supernovæ (SNæ Ia) are extremely bright and remarkably 
onsistent – after standardization – stellar explosions, which enabled 
he disco v ery of the Universe’s accelerated expansion (Riess et al.
998 ; Perlmutter et al. 1999 ) and have since been the main probe into
he properties – and ultimately, nature – of dark energy (Huterer & 

hafer 2018 ). They also form a vital rung in the cosmic distance
adder, allowing a local measurement of the Hubble constant (Riess 
t al. 2022 ), which is famously in tension with estimates based
n observations of the cosmic microwave background (CMB; Di 
alentino et al. 2021 ). 
The process of standardization – crucial for using SNæ Ia as 

istance indicators – involves correlating observed properties of a 
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upernova, such as its colour and light-curve shape, to its intrinsic
uminosity, so that it can be compared to the SN’s observed brightness
Phillips 1993 ; Tripp 1997 , 1998 ). Ho we ver, the latter is also affected
y the amount and properties of interstellar dust that surrounds the
upernova and diminishes its brightness. Crucially, the amount of 
ust extinction depends on wavelength, impacting both the brightness 
nd colour of the SN. Historically, SN Ia models like the de-
acto standard SALT (Guy et al. 2005 , 2007 ; Betoule et al. 2014 ;
enworthy et al. 2021; Taylor et al. 2021 ) made no distinction
etween the intrinsic colour of a SN and the reddening induced
y dust and instead explained the twofold effect of extinction by
orrelating the SN’s luminosity with the single parameter measuring 
ts apparent colour ( bluer–brighter ). 

Disentangling dust-induced reddening and dimming from the pure 
imming effect of distance on observed SN Ia brightnesses can lead
o better standardization (and thence, to more powerful cosmological 
onstraints), as illustrated by Mandel et al. ( 2017 ), Brout & Scolnic
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 2021 ) via post-factum corrections of SALT parameters. Brout &
iess ( 2023 ) recently re vie wed ho w the issues surrounding dust are

ackled in conventional SN Ia analyses. 
On the other hand, detailed dust modelling is a principal com-

onent of BayeSN (Mandel et al. 2009 ; Mandel, Narayan & Kir-
hner 2011 ; Thorp et al. 2021 ; Mandel et al. 2022 ; Ward et al.
023a ), a probabilistic SN Ia model that furthermore captures the
roader–brighter correlation observed in SNæ Ia into a trainable
pectro-temporal flux distribution, thus obviating the need for Tripp
orrections involving the magnitude, stretch, and dust parameters
Phillips 1993 ; Tripp 1997 , 1998 ). BayeSN also exploits observations
n the near-infrared (IR), where extinction is reduced and only
eakly dependent on the dust properties, as a convenient ‘anchor’

or measuring the SNæ’s brightness (Avelino et al. 2019 ). 
Astrophysical properties of galaxies are also thought to influence

he population of SNæ Ia they host. Correlations between (standard-
zed) SN Ia absolute magnitudes and colours on one side and the
ost o v erall stellar population age, star-formation rate, metallicity,
nd stellar mass (Kelly et al. 2010 ; Sullivan et al. 2010 ; Childress
t al. 2013 ; Chung et al. 2023 ), as well as the SN’s location within
he host and the local host properties (e.g. Rigault et al. 2013 , 2015 ,
020 ; Jones, Riess & Scolnic 2015 ; Moreno-Raya et al. 2016b , a ;
ill et al. 2018 ; Jones et al. 2018 ; Kim et al. 2018 ; Roman et al.
018 ; Kim, Kang & Lee 2019 ; Rose, Garnavich & Berg 2019 ;
elsey et al. 2021 ) on the other side have been empirically observed,

lthough a definitiv e e xplanation of the causal channels is still
utstanding. 
Studying populations of SNæ Ia has often involved a two-

tep process whereby first, the properties of individual objects are
nferred, and then their distributions are examined. Modern analyses
ethodologies like BAHAMAS (March et al. 2011 ; Shariff et al. 2016 ),
NITY (Rubin et al. 2015 , 2023 ), Ma, Corasaniti & Bassett ( 2016 ),
teve (Hinton et al. 2019 ), and BayeSN are instead hierarchical : they

nclude parameters describing the SN Ia population and infer them
imultaneously with those of the individual SNæ. While the former
hree use a few highly compressed summary statistics instead of the
ull light curves, BayeSN models probabilistically the full spectro-
emporal flux distribution of SNæ Ia. A middle ground is BIRD-
NACK (Ward et al. 2023b ), which models hierarchically the light
urves around peak with a restricted set of colour-related parameters.
he impact of Bayesian hierarchical modelling (BHM) of dust
xtinction on inferred SN Ia distance estimates (used subsequently
or cosmology) was demonstrated by Mandel et al. ( 2017 ), Thorp &

andel ( 2022 , hereafter TM22 ). Recently, Grayling et al. ( 2024 )
xtended the analysis to inferring SN Ia models separately for
igh- and low-mass hosts, while Thorp et al. ( 2024 ) considered an
volution of dust properties by comparing a low- to a higher-redshift
ample. 

Future surv e ys, like those performed by the upcoming Roman
pace Telescope (WFIRST; Hounsell et al. 2018 ) and Vera Rubin
bservatory (LSST; LSST Science Collaboration 2009 ; Ivezi ́c et al.
019 ), are expected to detect hundreds of thousands of supernovæ
Ia and non-Ia), greatly reducing purely statistical uncertainties and
ighlighting the need for principled treatment of systematic effects
hat a v oids approximations and ad hoc assumptions. Apart from
equiring scalable computational methods for their analysis, the
rders-of-magnitude increase in the number of SN Ia candidates
ill also introduce new modelling challenges, mainly related to the

nability to have spectroscopic follow-up for any but a small fraction
f the detected transients. Among those challenges are complicated
non-Gaussian, multimodal) posterior estimates for the objects’ red-
hifts, contamination of the sample due to mis-classification (Kunz,
NRAS 530, 3881–3896 (2024) 
assett & Hlozek 2007 ), covariate shift (Moreno-Torres et al. 2012,
ee also Revsbech, Trotta & van Dyk 2018 ; Autenrieth et al. 2023 )
etween the full sample and a high-quality/spectroscopic sample
sed to train SN Ia models, and selection effects like Malmquist
ias (Malmquist 1922 , 1925 ), whereby the preference for detecting
righter objects skews and shifts the distribution of properties of
etected SNæ Ia away from that of the whole population. 

In principle, these effects can be included in likelihood-based
nalyses, with two approaches pre v ailing. Some studies – see e.g.
he recent photometry-only cosmological analysis of Popovic et al.
 2024 ) – rely on simulations to derive various de-biasing and
orrection factors (Kessler & Scolnic 2017 ), which, ho we ver, are at
est correct and de-biasing on avera g e . Furthermore, the focus of this
rocedure on observed SN properties – inherited from the tradition of
tandardization – makes it difficult to extend to properties of the hosts
see e.g. Popovic et al. 2021 , 2023 ). On the other hand, hierarchical
ikelihood-based analyses (Rubin et al. 2015 ; Hinton et al. 2019 ;
ubin et al. 2023 , see also March et al. 2018 ) can only handle

election effects by transferring them to the level of the unobserved
atent parameters, which necessitates a plethora of ‘counter-intuitive’
Rubin et al. 2015 ) assumptions and approximations to the selection
ikelihood, which is intractable for realistic selection criteria applied
o light curves. 

The framework of simulation-based inference (SBI) is a powerful
lternative to likelihood-based methods which allows simulations to
e used to directly derive quantities of interest: for example, marginal
osteriors for the cosmological parameters or those describing the
ust population. Stemming from approximate Bayesian computation
ABC; for a re vie w, see e.g. Sisson, Fan & Beaumont 2018 ), SBI com-
rises a rapidly expanding collection of techniques centred around
he idea of representing the data-generating process not through
umerical e v aluation of the likelihood but rather through example
mock) data stochastically simulated with known parameters. 

Because the pairs of parameters and simulated data implicitly
ncode the full likelihood, it is possible to define arbitrary parameter
ub-spaces in which to perform marginal simulation-based inference.
his is especially beneficial when analysing large collections of ob-
erved objects, for which likelihood-based methods require exploring
 large latent parameter space even if one is only interested in a
ew global parameters: in the case of SN Ia cosmology, one needs
o infer, e.g. the individual redshifts, stretches, colours, etc. of all
Næ, only to eventually marginalize them out and obtain a two-
imensional marginal posterior for the cosmological parameters of
nterest. While all latent parameters still need to be stochastically
ampled in the context of SBI, this only adds a linear complexity of
imulating all objects, instead of the at least quadratic – but often
orse: see e.g. Handley, Hobson & Lasenby ( 2015 , fig. 5) – scaling

equired to map out high-dimensional spaces. 
SBI also allows seamless inclusion of many aspects of the model

or which a numerical likelihood is intractable or computationally
mpractical: for example, contamination and selection bias can be
epresented through contaminated and biased mock catalogues,
reated by performing on simulated data the same classification
rocedure and enforcing the same selection criteria as on real
bservations. Importantly, because the true input parameters to the
imulations are known, these catalogues can be used to derive
ccurate (de-biased and de-contaminated) posteriors. 

Different SBI fla v ours use different procedures to convert
arameter–simulated data pairs into posteriors conditioned on the
bserved data. ABC, for example, accepts or rejects input parameters
ased on the similarity of simulated and observed data, but this
s computationally wasteful and requires bespoke distance mea-
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ures for all but the simplest types of data. More recent methods
mploy neural networks (NNs) to interpolate in data space and 
ave thus proven much more efficient in terms of simulation 
udget. The inference network can be trained to either emulate 
he lik elihood: neural lik elihood estimation (NLE), approximate 
he posterior of interest: neural posterior estimation (NPE), or 
stimate the likelihood-to-evidence ratio: neural ratio estimation 
NRE). 1 Whereas NLE and NPE require density estimation, NRE 

ransforms Bayesian inference into a classification task, thus allowing 
he greatest freedom to the neural network architecture. We use a 
equential modification known as truncated marginal neural ratio 
stimation (TMNRE; Miller et al. 2021 ), which further optimizes 
imulation use and network expressivity by focusing on regions of 
arameter space consistent with the observed data, while trivially 
omposing with marginalization and preserving local amortization 
see below). 

Neural SBI techniques are also amortized: i.e. rather than the 
articular posterior given the observed data, they learn how to derive 
he posterior from any data. This, in combination with a nearly 
nstantaneous e v aluation speed once trained, allows neural SBI to be
alidated on large sets of simulations, either with random parameters 
rom the priors (Hermans et al. 2022 ) or at fixed parameter values,
.e. in a frequentist context. Amortization can also be used during 
raining to ensure proper Bayesian co v erage properties (Delaunoy 
t al. 2022 ). 

Carried by the rapid developments in the field of deep learning, 
eural SBI has recently grown in popularity, with prominent appli- 
ations in cosmology, particle physics, and beyond. In particular, 
MNRE has been applied to gravitational waves (Alvey et al. 
023b , 2024 ; Bhardwaj et al. 2023 ), 21-cm cosmology (Saxena et al.
023 ), stellar streams (Alv e y, Gerdes & Weniger 2023a ), point-
ource population studies (Anau Montel & Weniger 2022 ), and strong 
ensing (Anau Montel et al. 2022 ; Coogan et al. 2024 ). On the other
and, examples of SBI from the field of SN Ia analysis include
arly uses of ABC (Weyant, Schafer & Wood-Vasey 2013 ; Jennings, 
olf & Sako 2016 ), ABC with evolutionary optimization (Bernardo 

t al. 2023 ), and, more recently, of NPE (Alsing et al. 2019 ; Alsing &
andelt 2019 ; Villar 2022 ; Wang et al. 2022 , 2023 ; Chen et al.

023 ), and TMNRE (Karchev, Trotta & Weniger 2023a , hereafter 
ICRET ). 
The analysis in SICRET (and the majority of other works men- 

ioned abo v e 2 ) is based on pre-deriv ed summary statistics (e.g.
rom SALT) and focused on scaling it to the size of near-future
urv e ys ( ∼10 5 SNæ Ia). The present work, in complement, extends
he methodology in terms of data and modelling complexity by 
raining a neural network to summarize raw light-curve data in a 
ay that is optimal for the particular inference task, thus circum- 
enting the expensive fitting stage present in all current studies. 
hile our focus is on marginal population-level inference (e.g. of 

lobal dust properties and, eventually, cosmology), TMNRE also 
llows simultaneous inference of all object-level (local) parameters 
n the BHM: the very ones that serve as summary statistics in
ownstream tasks. Finally, explicitly modelling the SN light curves 
 See Cranmer, Brehmer & Louppe ( 2020 ), Lueckmann et al. ( 2021 ) for 
 v erviews of the methods and references for each and https://simulation- 
ased-inference.org/ and https://github.com/smsharma/awesome- neural- sbi 
or references to applications. We list rele v ant ones below. 
 except Jennings et al. ( 2016 ), who derived a distance measure between sets 
f light curves that a v oids the curse of dimensionality, and Villar ( 2022 ), who 
esorted to Gaussian process (GP) interpolation to analyse light curves using 
eural networks 

t  

3

4

i
d
l
d
t

e

s indispensable if one wants to account for selection effects (intro-
uced by criteria defined in terms of raw observations) and non-Ia
ontamination. In a forthcoming work, we plan to address these two
ssues, the final hurdle to achieving fully simulation-based SN Ia 
osmology. 

We describe our forward simulator of SN Ia light curves in
ection 2 and briefly introduce TMNRE in Section 3 , detailing the
etwork we use in Section 3.1 . In Section 4 , we validate the results
rom our method against those obtained via Hamiltonian Monte Carlo 
HMC) with simulated data that mimics the Carnegie Supernova 
roject (CSP) surv e y before presenting results on the real SN Ia light
urves in Section 5 and concluding in Section 6 . 

 slicsim :  REALISTIC  SN  IA  L I G H T  C U RV E  

I MULATI ONS  F O R  M AC H I N E  L E A R N I N G  

BI analyses are empowered by the realism of the simulations 
hey employ. This work impro v es in this respect compared to
ICRET by utilizing a simulator that generates realistic SN Ia light
urves while incorporating uncertainties from three different levels: 
bservational noise, the hierarchy of stochastic parameters, and the 
esidual stochasticity of the SN’s spectro-temporal flux surface. 

Alongside the development of SN Ia light-curve models to be 
sed in likelihood-based analyses (e.g. SALT(Guy et al. 2005 , 2007 ;
etoule et al. 2014 ; Kenworthy et al. 2021; Taylor et al. 2021 ),
NEMO (Saunders et al. 2018 ), BayeSN (Mandel et al. 2009 ; Mandel
t al. 2011 ; Thorp et al. 2021 ; Mandel et al. 2022 ; Ward et al. 2023a ),
UPAERNOVA Stein et al. 2022 ), a number of general frameworks
or realizing forward simulations using any given model, notably 
NANA (Kessler et al. 2009 ) and sncosmo (Barbary et al. 2016 ),
ave emerged. 
In this work, we present a new light-curve simulation framework, 
licsim , 3 built from the ground up for close interoperability 
ith modern machine-learning frameworks. Based on PyTorch 

Paszke et al. 2019 ), our simulator is trivially deployable on hardware
ccelerators like graphics processing units (GPUs), parallelizable, 
nd automatically differentiable. 4 

A SN Ia light-curve simulation involves three main components: 
 source model, a number of propagation effects, and an instrument
odel. Its input is a ‘surv e y specification’: the time, passband,

nd a description of the instrument and observing conditions (see 
ection 2.5 ) of each pointing comprising the analysed data. The
urv e y specification is kept constant, so that the simulator is implicitly
onditioned on it, producing an ordered list of simulated flux 

easurements 
[ 
[ d s,i ] 

N s obs 
i= 1 

] N SN 

s= 1 
. This conditioning allows us to use 

he efficient inference network described in Section 3.1 . 

.1 Intrinsic SN Ia spectral time-series: BayeSN 

he simulation starts with the spectral flux distribution (total emitted 
nergy per unit time and unit wavelength interval), � t , λ, of a
upernova s ∈ { 1, . . . , N SN } , i.e. its brightness at each point in
ime and at each wavelength in the SN rest frame. We use the
MNRAS 530, 3881–3896 (2024) 

 https:// github.com/ kosiokarchev/ slicsim 

 A trait we do not exploit in this work but which underpins modern 
nference methods like variational inference (see Karchev ( 2023 ) for a simple 
emonstration on a toy SN Ia problem), automatic differentiation of the model 
ikelihood can also be used in conjunction with likelihood-free methods to 
erive optimal summaries (Charnock, Lavaux & Wandelt 2018 ) or aid in 
raining (Brehmer et al. 2020 ; Zeghal et al. 2022 ). 

cem
ber 2024

https://simulation-based-inference.org/
https://github.com/smsharma/awesome-neural-sbi
https://github.com/kosiokarchev/slicsim


3884 K. Karc he v et al. 

M

B  

2  

m  

�

w  

a  

s  

c
 

p  

i  

s  

p  

e  

q  

s  

t  

p

W

ε

T  

o  

p  

g

2

I  

m

�

w  

a

2

T  

m  

o  

p  

t  

A  

U
 

fl  

p  

f  

b  

i

�

5

g

I  

t  

s
1  

r  

(  

u  

a  

(  

fi  

c  

h
 

b  

a

F

F  

d  

d  

r
 

d  

r  

e  

a  

m  

p  

u  

a  

f  

s  

l  

f  

i  

v

2

D  

h  

w

F

F  

a  

M  

f  

6 Alternatively, the combined effect of cosmological redshift and cosmological 
distance can be expressed through a luminosity distance D L = D M 

(1 + z c ) 
as the familiar 

F 

s 
o ( t o , λo ) = 

1 

(1 + z c ) 

� 

s 
r [ t o / (1 + z c ) , λo / (1 + z c ) ] 

4 πD 

2 
L 

, 

where the prefactor 1/(1 + z c ) is cancelled when integrating to obtain 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/4/3881/7643658 by SISSA - Scuola Internazionale Superiore di Studi Avanzati user on 11 D
ecem

ber 2024
ayeSN model (Mandel et al. 2009 ; Mandel et al. 2011 ; Thorp et al.
021 ; Mandel et al. 2022 ; Ward et al. 2023a ), which decomposes the
agnitude difference from the Hsiao et al. ( 2007 ) SN Ia template,
 Hsiao ( t , λ), as: 

−2 . 5 log 10 [ � 

s ( t , λ) /� Hsiao ( t , λ)] 

= −19 . 5 + δM 

s + W 0 ( t, λ) + θs 
1 W 1 ( t, λ) + εs ( t, λ) , (1) 

ith t , λ in the SN frame. Note that while W 0 and W 1 are shared
mong all SNæ Ia, the residual perturbations εs are not, and this
ets BayeSN apart from other models based on functional principal
omponent analysis (PCA) like SALT and SNEMO. 

The principal components W 0 ( t , λ) and W 1 ( t , λ) and the residual
erturbation surface εs ( t , λ) are defined via two-dimensional spline
nterpolation o v er a fix ed grid [ t g , λg ] in time and wavelength. The
pline knots W k and e s can be learnt from data after setting suitable
riors. Here, we use the pre-trained BayeSN model from Mandel
t al. ( 2022 , hereafter M20 ), based on 79 nearby SNæ Ia with high-
uality optical and near-IR observations. It defines a 6 × 9 grid
panning the ranges t ∈ [ −10; 40] d and λ ∈ [0 . 3; 1 . 85] μm. We fix
he W k and the common covariance matrix � e of the e s to the M20
osterior means: 

 k ( t, λ) = Spline2d ( t, λ; t g , λg , W k ) , W k = fixed , k = 0 , 1; (2) 

s ( t, λ) = Spline2d ( t, λ; t g , λg , e s ) , e s ∼ N ( 0 , � e ) . (3) 

hus, the 44 free parameters controlling the intrinsic brightness
f each SN Ia are δM 

s , θs 
1 , and the 42-component array e s (the

erturbations are fixed to zero at the extreme wavelengths of the
rid, reducing the trainable parameters to 6 × 7). 

.2 Propagation effects: dust extinction 

n the context of BayeSN, dust extinction from the SN host is
odelled with the Fitzpatrick ( 1999 , hereafter F99 ) law: 

 

s ( t, λ) → � 

s ( t, λ) × [
F99 ( λ; R 

s 
V ) 
]A s 

V , (4) 

here t , λ are still in the SN frame, R 

s 
V is the F99 dust-law parameter,

nd A 

s 
V is the optical depth of host-galaxy dust for SN s . 

.3 Propagation effects: redshift and distance 

he wavelength of light from a supernova is affected by the relative
otion of the source and observer, which is made up of: the motion

f the supernova within its galaxy (which is often neglected), the
eculiar velocity of the host galaxy and of the Milky Way with respect
o the CMB, and the Sun and the Earth’s own peculiar motions.
dditionally, distant objects are affected by the expansion of the
niverse and exhibit a cosmological redshift. 
The effect of the total redshift 5 z s is simple: it shifts the spectral

ux distribution in both wavelength ( λ → λo = (1 + z s ) × λ) and
hase ( t → t o = (1 + z s ) × t ) and suppresses its intensity (three-
old: once because of the redshift of photons to lower energies, once
ecause � is a rate (and time is dilated), and once because spectral
ntervals also get dilated): 

 

s 
o ( t o , λo ) = 

� 

s [ t o / (1 + z s , λo / (1 + z s )] 

(1 + z s ) 3 
. (5) 
NRAS 530, 3881–3896 (2024) 

 See e.g. Davis et al. ( 2011 ) for the formulæ for combining and/or disentan- 
ling the various redshifts. 

b
v
e
7

(

n this work, we will assume to have perfect estimates ˆ z s = z s of
he total redshifts, as appropriate for spectroscopically observed
upernovæ (uncertainties in this case are on the order of σ z ≈
0 −5 ). Most supernovæ from future surveys, ho we ver, will only have
edshift estimates from photometric observations of their host galaxy
thus, not including the SN’s peculiar motion), which are highly
ncertain and expected to deviate significantly from the Gaussian
pproximations usually employed and to exhibit multimodality
Leistedt, Mortlock & Peiris 2016 ; see also Autenrieth et al. 2024 ,
g. 1 ). While this puts strain on likelihood-based analyses, SBI is
ompletely transparent to the distributions used and so can easily
andle realistic photometric redshifts. 
On the other hand, the intensity of a supernova’s light is affected

y its distance D from the observer: since the total flux is spread o v er
 sphere with area 4 πD 

2 , the spectral flux density (SFD) is simply 

 

s 
o ( t o , λo ) = 

� 

s 
o ( t o , λo ) 

4 πD 

2 
. (6) 

 or superno væ located at cosmological distances, the appropriate
istance to use (see e.g. Hogg 2000 ) is the transverse comoving
istance 6 D M 

( z c , C), which is related to the object’s cosmological
edshift z s c through the cosmological model parametrized by C. 

Using SNæ Ia for cosmological inference therefore requires
isentangling the effect of peculiar velocities 7 from the cosmological
edshift, especially when using low-redshift ( z � 0.1) SNæ Ia (Davis
t al. 2011 ). While peculiar velocities can be included in the BHM
nd inferred simultaneously with other SN and host parameters (Rah-
an et al. 2022 ), cosmological analyses usually employ a simpler

rocedure of correcting the redshifts and propagating the associated
ncertainty to the observed magnitudes. In Section 5 , where we
nalyse real light curves, we will also use this simpler approach
or comparison with previous work, while for the examination of
imulated data in Section 4, we will assume no peculiar velocity,
eading to an equality of all considered redshifts: z s c = z s = ˆ z s . In
uture work, we will extend our SBI framework to perform joint
nference of SNæ and their hosts, thus fully accounting for peculiar
elocities. 

.4 Propagation effects: Milky Way extinction 

ust extinction in the Milky Way (MW) is similar to that in
ost galaxies, but the F99 law is e v aluated at the observer-frame
avelengths: 

 

s 
o ( t o , λo ) → F 

s 
o ( t o , λo ) × [ F99 ( λo ; R V , MW 

)] A 
s 
V , MW . (7) 

ollowing Schlafly & Finkbeiner ( 2011 , hereafter SF11 ), we assume
n isotropic MW dust law with R V , MW 

= 3.1 and perfectly measured
W optical depths A 

s 
V , MW 

at the sky locations of the SNæ, extracted
rom the SF11 maps. These assumptions can be easily relaxed and
olometric fluxes. This formulation, ho we ver, makes dealing with peculiar 
elocities, which introduce redshift but not distance, cumbersome (Davis 
t al. 2011 ), and so we forward simulate the two effects separately. 
 and other correlated sources of redshift like a local o v er/under-density 
Wojtak, Davis & Wiis 2015 ) 
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Figure 1. Graphical depiction of the model, in which parameters to be 
inferred are represented by shaded squares, the data by a shaded circle, 
and deterministic components and fixed variables by unshaded nodes. The 
distributions of SN-local variables (those inside the ‘SN’ plate) are in dashed 
boxes, while those for the global parameters are omitted for clarity. See 
Fig. 2 for an elaboration of the ‘instrument’ node and Table 1 for a tabular 
representation of the model. 
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Table 1. SN Ia parameters, (hierarchical) priors and values used to generate 
mock data. For local parameters, the support and size of the sampled ‘vector’ 
are listed. See also Fig. 1 for a graphical representation of the model. 

parameter prior mock value 
BayeSN spectro-temporal W k fixed M20 
templates ( k = 0, 1) 
BayeSN ‘stretch’ parameter θs 

1 N (0 , 1 2 ) ∈ R 

⊗N SN 

BayeSN residual variations e s N ( 0 , � e ) ∈ R 

N grid ⊗N SN 

covariance of e s � e fixed M20 
abs. magnitude offset δM 

s N (0 , σ 2 
0 ) ∈ R 

⊗N SN 

abs. magnitude scatter σ 0 HalfCauchy (0.1) 0.088 
F99 dust law parameter R 

s 
V N ( μR , σ

2 
R ) ∈ [1 . 2; ∞ ) ⊗N SN 

‘mean’ R 

s 
V μR U (1 . 2 , 5) 3.0 

‘st. dev.’ R 

s 
V σR HalfNormal(2 2 ) 0.5 

extinction optical depth A 

s 
V Expon(1/ τ ) ∈ R 

⊗N SN + 
mean opt. depth τ HalfCauchy(1) 0.329 

cosmological redshift z s c fixed = z s 

total redshift z s fixed = ̂  z s 

measured redshift ˆ z s fixed K17 
MW dust law parameter R V , MW 

fixed 3.1 
MW optical depth A 

s 
V , MW 

fixed = 

ˆ A 

s 
V , MW 

measured A 

s 
V , MW 

ˆ A 

s 
V , MW 

fixed SF11 
time offset � t s U ( ±7 . 5 d) ∈ [ ±5 d] ⊗N SN 
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he MW dust properties inferred or marginalized with SBI similarly 
o those of the hosts. 

.5 Instrument model 

 telescope measures the photon rate density in a given band b (in
he observer frame): 

 

s 
b ( t o ) = 

∫ 
T b ( λo ) 

F 

s 
o ( t o , λo ) 

hc/λo 
d λo , (8) 

here T b is the filter transmission (including the wavelength depen- 
ence of atmospheric absorption), and hc / λo is an individual photon’s 
observer-frame) energy. In slicsim , the integral is performed 
umerically o v er a dense grid of wavelengths. Photometric light 
urves consist of a collection of noisy measurements of R identified,
n addition to the SN label s , by i ∈ { 1 , . . . , N 

s 
obs } , for each of which

 time t s , i and band b s , i are provided. The translation invariance of
he time axis necessitates the introduction of a time-offset parameter, 
 t s , for each SN, so that t s,i = t s,i o + �t s . 
The instrumental characteristics and amount of atmospheric 

bsorption affecting the observation are summarized into a 
ero-point magnitude , which is the magnitude of a source 
hich produces a read-out of 1 ADU on expectation. An ADU

analogue-to-digital unit), in turn, is related to photoelectrons, 
hich are the actual Poisson-distributed quantity, through the 

nstrumental gain . Finally, the magnitude system is defined 
hrough a zero-point count (rate density) R ZP ,b s,i : this is the
brightness’, in the particular band, of an object of nought 
agnitude. 
The expected signal (number of photoelectrons) from SN s at time

 

s , i in band b s , i is, then 

 d〉 s,i src = 

R 

s 
b s,i 

( t s,i ) 

R ZP ,b s,i 

10 0 . 4 ×ZP s,i 

gain s,i 
, (9) 

o which we must add background noise from: the electronics, the sky, 
nd the host galaxy; cumulatively, 〈 d 〉 bg , before Poisson-sampling the
nal instrument readout: 

 

s,i ∼ Pois 
(
〈 d 〉 s,i src + 〈 d 〉 s,i bg 

)
. (10) 

While R ZP ,b s,i is measured in laboratory conditions, and gain s , i is a
ontrollable setting, the zero-point magnitude includes contributions 
rom the weather and other uncertain effects, so for each pointing
 , i , the surv e y data release contains a noisy measurement of ZP 

s , i ,
ften represented through a mean zero point and a (usually small)
ero-point uncertainty obtained from simultaneous observations of 
hotometric standards. 
A common simplification of the instrument description, which 

e will also adopt, is to consider a simple Gaussian model for the
bserv ed calibr ated flux (‘ FLUXCAL ’) with mean 〈 d 〉 src and standard
eviation FLUXCALERR : 

LUXCAL s,i ∼ (〈 d〉 s,i src , ( FLUXCALERR 
s,i ) 2 

)
(11) 

n this case, linear rescaling does not modify inference, so ZP
nd gain can be set arbitrarily: to 27.5 and 1 as standardized
y SNANA . The uncertainty, instead, is derived from data and
MNRAS 530, 3881–3896 (2024) 
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ombines in quadrature the (Gaussianized) uncertainties from the
ource, the electronics, the zero-point estimate, and from independent
easurements of the sky and the host, which have been substracted 8 

rom the data to produce FLUXCAL . 
If only FLUXCAL s and FLUXCALERR s are released by a surv e y,

nstead of the more detailed information required to use equa-
ion ( 10 ), one could in principle simulate the noise sources, analyse
hem to produce ‘mock’ FLUXCALERR s, and include them as part of
he data in an SBI framework. In this study, however, FLUXCALERR s
re regarded as part of the instrument and are therefore kept fixed
or simplicity, ef fecti vely assuming that Poisson noise from the
ource is a subdominant component, which justifies disregarding
ts dependence on the true source flux. 

.6 Hierarchical Bayesian modelling of SNæ Ia 

he parameters that describe each individual supernova ( θs 
1 , e 

s , δM 

s ),
ts environment ( R 

s 
V , A 

s 
V ), and other related quantities ( A 

s 
V , MW 

, z s ,
 t s ) are, in the context of a Bayesian hierarchical model (BHM),

ssigned priors which may themselves be parametrized by global
yperparameters to be jointly inferred with the SN-specific proper-
ies. This allows for so-called ‘borrowing of strength’: constraints
rom individual objects are partially pooled (with weights given by
he relative uncertainty in each object), and the final posteriors – for
oth global and local parameters – benefit from the whole set of
bservations. 
The hierarchical structure of our model is depicted in Fig. 1 , and the

ariables and their (hyper)priors are listed in Table 1 . We allow each
N Ia to be affected by dust with host-specific properties, adopting
 hierarchical prior distribution of R 

s 
V go v erned by hyperparameters

s in Thorp et al. ( 2021 ), Thorp & Mandel ( 2022 ), Grayling et al.
 2024 ). This hyperprior has the shape of a Gaussian, but its support is
estricted to [1.2; ∞ ) to maintain physicality (the lower limit is set by
ayleigh scattering; see Draine 2003 ). Thus, the hyperparameters μR ,
R no longer represent the mean and standard de viation, respecti vely,
f the distribution of R 

s 
V . Correspondingly, this truncation 9 modifies

he likelihood of μR , σ R by fa v ouring broad R 

s 
V distributions (i.e. a

igh σ R ), which would otherwise predict a number of objects with
ery low – or even negative – R 

s 
V in contradiction with the data.

urther discussion and explanation of the two effects can be found
n Grayling et al. ( 2024 ). 

For this proof-of-concept study, we adopt the following simpli-
cations, which can easily be relaxed in future analyses. First, we
ssume perfect (spectroscopic) redshift estimates and no peculiar
elocities, fixing z s = z s c = ˆ z s (except when analysing real data:
ee Section 5 ). We also fix the cosmological model 10 (and hence
istances D 

s 
M 

) to a flat � CDM with matter density m0 = 0.28
nd Hubble parameter H 0 = 73 . 24 km s −1 Mpc 

−1 
. We also assume

erfectly measured MW optical depth, A 

s 
V , MW 

= 

ˆ A 

s 
V , MW 

, and an
NRAS 530, 3881–3896 (2024) 

 Of course, this might produce ne gativ e (calibrated) ‘flux es’ (which are not 
v en flux es b ut photon counts), b ut one learns to live with it. 
 Curiously, although not part of the truncation scheme for neural ratio 
stimation that we use to impro v e the training and performance of our 
nference network, the likelihood modification discussed here also applies 
o – and is a pitfall for – hierarchical TMNRE. 
0 Since we simulate a low-redshift surv e y (see Section 4.1 ), we have little 
ope of inferring cosmology beyond the combination of the Hubble parameter 
nd the SN Ia average absolute magnitude. We choose to fix cosmology for 
ow in order to allow comparison with the existing likelihood-based BayeSN 

nference code (see Section 4.3 ), although relaxing this is the principal goal 
f our future work. 
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sotropic fixed MW dust law with R V , MW 

= 3.1. Finally, we use a
implified Gaussian description of calibrated fluxes and a toy model
or the uncertain time of maximum – a parameter that shifts the whole
ight curve rigidly in time – by allowing it to fall within a 15-day
ime window around an initial estimate (which we set as the time
rigin). 

 TRUNCATED  M A R G I NA L  N E U R A L  R AT I O  

STIMATION  

onsider a Bayesian model that includes parameters of interest �
nd ‘nuisance’ parameters η in which we are generally not interested
nd would like to marginalize when analysing data d . That is, we
 ould lik e to obtain the marginal posterior 

( � | d ) = 

∫ 
p( � , η) d) η = 

∫ 
p( d | � , η)p( � , η) d η

p( d ) 
. (12) 

Marginal neural ratio estimation uses forward simulations to build
 training set with two classes of ( � , d ) pairs: either sampled from
he joint distribution p( � , d ), or from the product of marginals
( � ) p( d ). The former are obtained by first running the full joint
odel p( � , η, d ) and simply distregarding η, while for the latter,

espectively, d or � are further disregarded to have � ∼ p( � ) and
 ∼ p( d ). A neural network ̂  r ( � , d ) is then trained to minimize the
inary cross-entropy (BCE) loss: 

 p( � , d ) 

[
− ln 

ˆ r ( � , d ) 
1 + ̂  r ( � , d ) 

]
+ E p( � )p( d ) 

[
− ln 

1 

1 + ̂  r ( � , d ) 

]
, (13) 

hich, as Hermans, Begy & Louppe ( 2020 ) show, leads to the neural
etwork approximating the ratio 

( � , d ) ≡ p( � , d ) 
p( � )p( d ) 

= 

p( d | � ) 

p( d ) 
= 

p( � | d ) 
p( � ) 

. (14) 

n approximate posterior for the parameters of interest can then
e obtained either by multiplying the prior density p( � ), if it is
eadily available, by ̂  r ( � , d 0 ), evaluated at the observed (as opposed
o simulated) data d 0 , or more generally, by weighting prior samples,
.g. those used for training/validation, by ̂  r ( � , d 0 ). 

NRE is an amortized technique, which means that the NN tries
o learn r( � , d ) even for data that does not resemble the observed
ne. While this allows its perfromance to be tested and verified,
t is usually advisable to re-train using simulations focused on the
articular (target) observation d 0 . We use the truncation scheme of
iller et al. ( 2021 ), whereby global-parameter priors are restricted to

egions with significant posterior mass (approximately determined
ia an initial NRE run), but their shapes are not modified. This
reserves the amortization of the ratio estimator within the confines
f the truncated priors. We found that truncation was only necessary
or the most complicated inference tasks (global dust population
arameters), while other posteriors were optimally reco v ered from
heir initial priors. 

.1 Inference network 

n SBI analysis is only as powerful as the inference network
mployed in it is e xpressiv e. A collection of light curves is a peculiar

ata set since the data d s ≡ [ d s,i ] 
N s obs 
i= 1 related to each object have

ifferent sizes because of the irregular cadence of observations.
hile NN architectures that accept varying-length inputs exist 11 and
1 For SBI applications, see Rodrigues et al. ( 2021 ), Campeau-Poirier et al. 
 2023 ), Heinrich et al. ( 2024 ). 
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Figure 2. Two kinds of instrument, as discussed in Section 2.5 . In this work, 
we only use the ‘ FLUXCAL ’ simplification from Fig. 2 (b) but include Fig. 2 (a) 
as a more principled approach we will adopt in the future. 
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re presently ubiquitous in areas like natural language processing, in 
he present work, we use a simpler architecture that we found is fast
o train (both in terms of number of steps and time per step) and with
resent-day data sets achieves the best performance while requiring 
easonable resources. 

As a key first step, we use a collection of N SN distinct learnable
mbeddings of the unequal-length d s into a space of fixed dimension: 

 

 

 

s ≡ SNEmbed s ( d 
s ) . (15) 

e found that even a single linear layer (per SN) works well in
ur particular set-up. The embeddings are stacked along a batch 
imension and processed in parallel by a single shared component 
o derive final featurized representations of each supernova: 

 

 

 

s ≡ SNHead ( 𝒻 

𝒻 𝒻 

s ) . (16) 

A data set summarizer then combines information from all objects: 

 

 

 ≡ Summariser 
(

[ 𝒹 

𝒹 𝒹 

s ] N SN 
s= 1 

)
. (17) 

e use a simple summarizer that concatenates the (ordered) tuple of
nputs [ 𝒹 

𝒹 𝒹 

s ] N SN 
s= 1 , as we previously did in SICRET , where we showed

hat, while memory- and compute-intensive, this approach does scale 
o ∼10 5 SNæ with current hardware. We prevent overfitting in this 
ayer via stochastic dropout (Hinton et al. 2012 ). 

Finally, a number of ratio-estimator networks estimate ratios. For 
 group of global parameters � : 

lobal: ln ̂  r ( � , d ) = RatioEstimator � 

( � , 𝒮 

𝒮 𝒮 ) , (18) 

nd similarly for the local parameters θ s of object s : 

ocal: ln ̂  r ( θ s , d ) = RatioEstimator θ ( θ s , 𝒮 

𝒮 𝒮 , d s , a s ) , (19) 

here a s ≡ [ ̂ z s , ˆ A 

s 
V , MW 

] are auxiliary (constant) inputs that com- 
letely identify the object whose parameters are being inferred. 12 

s we previously noted in SICRET , the presence of 𝒮 

𝒮 𝒮 accounts 
or a posteriori correlations between the parameters: i.e. we in- 
er the posterior p( θ s |{ d s } ) instead of p( θ s | d s ). In a hierarchical
odel in which { θ s } are a priori conditionally independent given 

lobal parameters � , i.e. p( { θ s }| � ) = 

∏ 

s p( θ s | � ), this corre-
ponds to the marginalization 

∫ 
p( θ s , � | d) d � instead of simply

( θ s | d , � ) as was done in previous hierarchical SBI analyses of
ermutation-invariant data (Rodrigues et al. 2021 ; Heinrich et al. 
024 ). 
To enhance their expressivity, ratio estimators first ‘featurize’ the 

aw parameters by passing them through a ParamHead � 

, whose 
utput � is concatenated to the data set summary. For latent- 
ariable estimators, θ s ≡ ParamHead θ ( θ s ) is concatenated with a 
rocessed 𝒮 

𝒮 𝒮 θ ≡ SummaryHead θ ( 𝒮 

𝒮 𝒮 ), which extracts the rele v ant 
ummaries from 𝒮 

𝒮 𝒮 , with the pre-processed data d d d s , and with the 
uxiliary inputs a s . Lastly, to enhance constraining power when the 
osterior is significantly more concentrated than the prior, we use the 
eaky parity-odd power (POP) activation layer (Jeffrey & Wandelt 
024 ) on the output of global-parameter ratio estimators. All network 
omponents (SN embedders, summarizer, and all ratio estimators) 
re trained simultaneously using the loss from equation ( 13 ) summed
 v er all marginal parameter groups (i.e. � representing, in turn, each
f the global parameters and each of the local parameters, summing 
 v er the SNæ). 
We implement all the components using multilayer perceptrons 
2 We streamline the discussion and notation from SICRET , section 3, and 
irectly present the case where the same NN is used as the θ-ratio estimator 
or each object, which necessitates the use of a s . 

1

t
S

MLPs) with batch normalization and rectified linear unit (ReLU) 
on-linearities. Details about layer sizes are given in Table 2 , and the
etwork is depicted in Fig. 3 . 

 DEMONSTRATI ON  O N  SIMULATED  DATA  

.1 Mock data and sur v ey specification 

e generate and analyse mock data designed to mimic the third data
elease of CSP, as presented in Krisciunas et al. ( 2017 ) and included in
NANA (Kessler et al. 2009 ). We extract the list of observation times
 t s , i ) and bands ( b s , i ) for each of the SNæ Ia in the data release, their
pectroscopic redshift ( ̂ z s ) and the Milky Way colour excess E ( B − V )

A B − A V , which we convert into ˆ A 

s 
V , MW 

= 3 . 1 × E( B − V ) (since
e assume isotropic R V = 3.1 for the Milky Way). This constitutes

he ‘surv e y specification’ part of the input to the graphical model
rom Fig. 1 . 

Since the M20 model, which we use both to generate and analyse
he mock data, was not trained on u -band observations and outside the
est-frame time range [ −10 d; 40 d], we exclude the corresponding
ntries from our CSP-like set-up. As described in Section 2.1 , we
eep the spectro-temporal templates W k and the covariance � e of 
ntrinsic residual variations fixed in this work (they are inputs to the
raphical model of Fig. 1 ). For the remaining parameters, we set
round-truth values as listed in Table 1 , informed by the posterior
eans reported in M20 . Individual light curves are simulated as

escribed in Section 2 after sampling SN-local parameters from their 
espective priors (also listed in Table 1 and depicted in Fig. 1 ). We
lso add a random time shift of up to 5 d (rest-frame) around the time
f the brightest observation ( SEARCH PEAKMJD ) while, in order
o a v oid boundary effects in the analysis, we widen the prior to
( ±7 . 5 d). 
In this work, we only simulate and analyse FLUXCAL data since

etailed descriptions of the CSP observations (zero-points, gains, 
nd background fluxes) are not available in SNANA . To facilitate
he likelihood-based comparison, we increase very small reported 
LUXCALERR s to be at least 0.01 mag, as has also been done for the

eal data. 
The mock data set contains N SN = 134 simulated SNæ Ia with a

otal of 
∑ N SN 

s= 1 N 

s 
obs = 13 202 flux measurements. 13 Fig. 4 depicts it 

our times, coloured according to the values of the different SN-local
arameters. The impact of A V and θ1 are clearly evident as gradients
MNRAS 530, 3881–3896 (2024) 

3 For the mock data that we generate ourselves, we consider all SNæ from 

he CSP data release instead of the restricted ‘clean’ sample we analyse in 
ection 5 . 
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M

Figure 3. Architecture of the neural network. Solid lines represent linear connections (followed inside the MLPs by batch normalization and ReLU non- 
linearity). Dashed lines, on the other hand, connect layers that are duplicated for presentation (identity operation). When multiple parameter groups are being 
inferred (at the initial stage before truncation), there are multiple parameter heads, whereas here only one is shown for clarity. Notice the similarity with SICRET , 
fig. 2 , the main addition being the SN-embedding layers: N SN distinct components (thus coloured diversely) with different input sizes but the same output 
dimension, which allow the { 𝒻 

𝒻 𝒻 

s } to be stacked into a single tensor along a batch dimension and processed in parallel before being flattened out for input into the 
summarizer. 

Table 2. Details about the components of the inference network: their input and output dimensions and particular implementation in this work. For 
all components, we use MLPs, indicating the number and size of the hidden layers and the output size as MLP( n hidden × d hidden , d out ). Each hidden 
layer consists of a fully connected layer, batch normalization, and a ReLU non-linearity. Inputs are also whitened (shifted and scaled by the mean and 
standard deviation of the training set). The size of global-parameter groups is denoted with m = 1, or 2 for the group [ μR , σR ]. The inference network 
is also depicted in Fig. 3 . 

component inputs ∈ space → output ∈ space implementation 

[ SNEmbed s ] 
N SN 
s= 1 d s ∈ R 

N s obs → 𝒻 

𝒻 𝒻 ∈ R 

256 Linear ( N 

s 
obs → 256 ) 

SNHead 𝒻 

𝒻 𝒻 

s ∈ R 

256 → 𝒹 

𝒹 𝒹 

s ∈ R 

32 MLP (2 × 256 , 32) 
Summariser [ 𝒹 

𝒹 𝒹 

s ] ∈ R 

32 ×N SN → 𝒮 

𝒮 𝒮 ∈ R 

256 MLP (3 × 256 , 256) 
ParamHead � 

� ∈ R 

m → � ∈ R 

256 MLP ( 2 × 256 , 256) 
RatioEstimator � 

� , 𝒮 

𝒮 𝒮 ∈ R 

256 + 256 → ln ̂ r ( � , d ) ∈ R 

1 MLP ( 3 × 256 , 1) + LeakyPOP 
ParamHead θ θ s ∈ R 

1 → θ s ∈ R 

16 MLP ( 1 × 128 , 16) 
SummaryHead θ 𝒮 

𝒮 𝒮 ∈ R 

256 → 𝒮 

𝒮 𝒮 θ ∈ R 

16 MLP ( 1 × 128 , 16) 
RatioEstimator θ θ s , 𝒮 

𝒮 𝒮 θ , 𝒹 

𝒹 𝒹 

s , a s ∈ R 

16 + 16 + 32 + 2 → ln ̂ r ( θ s , d ) ∈ R 

1 MLP ( 3 × 128 , 1) 
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shifts) of the light curves, while those of δM and R V less so, which has
n impact on the inference of the parameters in question. Notice also
he reduced spread of SN Ia light curves in the infrared bands, where

easurements allow disentangling pure-magnitude from colour-and-
agnitude variations (respectively described by δM and R V ). 
NRAS 530, 3881–3896 (2024) 

p  
.2 Training 

e implement and train the neural network described in Section 3.1
n PyTorch (Paszke et al. 2019 ) and PyTorch Lightning
Falcon & The PyTorch Lightning team 2023 ). We target multiple
arameter groups – global � i ∈ { τ, σ0 , [ μR , σR } ] and local θ s ∈
i 
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14 As discussed in Grayling et al. ( 2024 ), dust inference is only mildly affected 
by the peculiar velocity model, which mainly trades off against the residual 
scatter σ 0 . Ho we ver, in SICRET , we sho wed that standard error propagation 
through the non-linear distance modulus can significantly bias cosmological 
inference from large collections of SNæ Ia. With SBI, it would be trivial to 
a v oid this approximation and instead correctly account for (and marginalize) 
any redshift uncertainties, including those from photometric fits, on top of a 
spread of peculiar velocities consistent with large-scale galaxy-flow models 
(see, e.g. Rahman et al. 2022 ). Here, we use the linear approximation solely 
for consistency with likelihood-based codes. 
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 �t s , θs 
1 , A 

s 
V , δM 

s , R 

s 
V } – simultaneously by training separate ratio

stimators for each at the same time as a single data pre-processor

 → 

[ 
{ 𝒹 

𝒹 𝒹 

s } N SN 
s= 1 , 𝒮 

𝒮 𝒮 

] 
. 

We generate a training set of 256 000 mock surv e y realizations
nd use 6400 additional examples for validation, plotting posteriors, 
nd calibration. To prevent overfitting, while training, we resample 
he instrumental noise (equation ( 11 )), which ef fecti vely augments
he training set but avoids the e xpensiv e part of the simulator,
nd stochastically ‘drop out’ 50 per cent of the summarizer input 
Hinton et al. 2012 ). We optimize using Adam (Kingma & Ba
017 ) with the default PyTorch momentum settings, a decaying 
earning rate schedule ( γ = 1/1.5 every 10 epochs) o v er 100 epochs,
nd with mini-batch size of 128 examples. The results we present 
elow use the checkpoint that performed best on the validation set.
raining on one NVIDIA A100 GPU took ≈5 h to converge, in
ddition to ≈30 min needed to generate the training set. Evaluating 
 single set of marginal posteriors then takes on the order of
illiseconds. 

.3 Validation with HMC 

o validate our NRE results, we run a likelihood-based analysis (us-
ng the hierarchical likelihood that corresponds to the forward model 
n Section 2 ) with Hamiltonian Monte Carlo (HMC) and consider 
he resulting posterior the ground truth. We use the code outlined 
n Grayling et al. ( 2024 ), which is based on the implementation
f the No-U-Turn Sampler (NUTS; Hoffman & Gelman 2014 ) in 
umPyro (Bingham et al. 2019 ; Phan, Pradhan & Jankowiak 2019 ).
e run four chains and draw 500 samples each after 500 burn-in

teps, which takes ≈30 min when run in parallel on four NVIDIA
100 GPUs. We v erify conv ergence using the Gelmann–Rubin R
umber, the ef fecti ve sample size, and other standard diagnostics as
escribed in Grayling et al. ( 2024 ). We remind the reader that, as any
ikelihood-based method, this HMC analysis requires sampling the 
oint posterior of all model parameters, including in this case four
lobal parameters and N SN × (5 + 42) = 6298 object-specific ones, 
ost of which describe the residual light-curve variations through 
 

s . In contrast, our SBI methodology implicitly marginalizes e s and 
stimates three global (since we group [ μR , σ R ]) and N SN × 5 SN-
pecific marginal posteriors. 

.4 Comparison of marginal posteriors 

e plot marginal NRE posteriors, e v aluated by weighting prior
amples from the validation set by ˆ r ( � , d ) in Fig. 5, compared
ith the ground-truth marginalized HMC posteriors and the true 
arameter values used to generate the mock data. 
We observ e e xcellent agreement between NRE and HMC pos-

eriors for the global parameters: τ , σ 0 , [ μR , σ R ], with similar
ncertainties from the two methods and relative shifts of at most about
 σ . Since the ratio estimator for [ μR , σ R ] is the most challenging, we
e-trained it after truncating the global-parameter priors, as described 
y Miller et al. ( 2021 ) and illustrated in the figures. 
Similarly, SN-local parameters, with the exception of R 

s 
V , are very 

ell reco v ered and in agreement with HMC. A detailed comparison
f the first two moments of the one-dimensional marginal posteriors 
s shown in the top row of Fig. 5 . In general, NRE exhibits slightly
arger uncertainties for most parameters, as was previously observed 
n SICRET . It is important to note that R 

s 
V inference is almost

ntirely population-driven. Since constraints from individual objects 
re weak, the hierarchical structure induces ‘shrinkage’: a statistical 
ffect whereby all marginal R 

s 
V posteriors concentrate toward the 

opulation mean. This is not an artefact of the inference procedure
sed but rather a feature of the hierarchical model itself, and is
bserved for both NRE and HMC. Thus, small changes in the
R –σ R posterior shift all the R 

s 
V marginals coherently, leading to 

imilar offsets from the HMC results for individual objects. We note
hat, while the N SN + two-dimensional joint μR − σR − { R 

s 
V } N SN 

s= 1 

osterior can be studied using HMC, with NRE, we only derive
arginal posteriors. 

 APPLI CATI ON  TO  R E A L  DATA  

e apply the methodology described and validated abo v e to the real
ight curves from CSP: specifically, the subset of 86 non-peculiar 
nes identified and analysed by Thorp & Mandel ( 2022 , hereafter,
M22 ). Since this is a low-redshift sample, we use redshifts corrected

or peculiar velocity (using the flow model of Carrick et al. ( 2015 ),
s described in TM22 ) and thus have separate (fixed) z s and z s c ,
he former acting to redshift the light curves, while the latter is
nly used to calculate distances under a fixed cosmological model 
flat � CDM with m0 = 0.28 and H 0 = 73 . 24 km s −1 Mpc 

−1 
). As

tandard in SN Ia analyses, we account for a ±150 km s −1 uncertainty
n the peculiar velocity correction by propagating it linearly to 
agnitudes 14 : 

s 
μ = 

5 

ln 10 

1 

ˆ z s 

√ (
150 km s −1 

c 

)2 

+ 

(
σ s 

z 

)2 
, (20) 

here c is the speed of light, and σ s 
z is the measurement uncertainty

which is small for spectroscopic redshift estimates). This is then 
ncluded in the BHM as an additional (in quadrature) spread of
bsolute magnitudes: δM 

s ∼ N (0 , σ 2 
0 + ( σ s 

μ) 2 ). To further match
M22 ’s set-up, we also fix the standard deviation of residual scatter
0 = 0.088 and the time offsets � t s = 0 instead of inferring

hem. 
We present the posterior for μR and σ R in Fig. 6 in comparison with

he one from TM22 . A full comparison is shown in Fig. 7 . The NRE-
nd HMC-derived posteriors are in good agreement with about 1 σ
ffset and similar sizes, as was the case when analysing the simulated
ata set. Moreo v er, for completeness in Appendix A , we validate
he global-parameter inference on simulated data with parameters 
andomly drawn from the priors, observing good Bayesian co v erage
roperties, and calibrate the approximate posteriors to construct 
onfidence regions with exact frequentist coverage. Since the NRE 

s already nearly optimal, this procedure does not lead to results
ignificantly different from those presented in Figs 7 and 6 but serves
s reassurance of their correctness. 

 DI SCUSSI ON,  O U T L O O K ,  A N D  C O N C L U S I O N  

e have presented detailed marginal neural simulation-based in- 
erence in the context of a hierarchical model of SN Ia light
MNRAS 530, 3881–3896 (2024) 
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Figure 4. The mock light curves that we generate and analyse, corrected for cosmological distance (but not for redshift). While we work entirely in linear (flux) 
scale, for presentation purposes, this figure is in magnitudes. Each column shows the same light curves but coloured according to a different SN-local variable, 
as indicated on the top. Each row is a different CSP band: from bluest (top) to (infra)reddest (bottom). Different SNæ might have observations in different sets 
of the bands. All plots have the same scale and limits: notice that the diversity in redder bands is smaller, owing partly to the weaker effect of dust extinction. 
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urves that incorporates realistic intrinsic (to each SN) and extrinsic
due to dust properties of the host galaxy) variability. By training
 neural network to approximate the likelihood-to-evidence ratio
ith a training set of simulated light curves based on the Carnegie
upernova Project (CSP), we have derived marginal posteriors for

he parameters of the populations of SNæ Ia and their hosts: the
ean and standard deviation of dust-law parameters R 

s 
V , the average

ptical depth τ , and the residual scatter of SN Ia absolute magnitudes
NRAS 530, 3881–3896 (2024) 
0 , and simultaneously inferred marginally the parameters of all
100 SNæ Ia. After validating the approach on simulated data,
e have analysed the light curves of 86 real SNæ Ia observed by

he CSP (Krisciunas et al. 2017 ) and selected by TM22 . In both
ases, we observ e e xcellent agreement between our SBI results and
 baseline likelihood-based analysis as in Thorp & Mandel ( 2022 ),
rayling et al. ( 2024 ). Concretely, posteriors for τ and σ 0 are in
erfect agreement from the two methods, as well as the marginals
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Figure 5. Inference results from the mock data set. Top : moments of the marginal posteriors of the local parameters of the N SN supernovæ, as indicated in the 
top-left corner of each plot. Means (standard deviations) are shown in teal (ochre), with scale indicated below (abo v e) the plot. The abscissa (ordinate) coordinate 
comes from the HMC (NRE) posterior, so that the diagonal indicates matching moments from the two methods. Middle : the same per-object marginal posteriors 
(mean ±1 standard deviation) plotted against the true values in the simulation. Only every third error bar is plotted for clarity. Bottom : posterior densities (in the 
two-dimensional plot, 1- and 2 σ credible regions) for the global parameters, as inferred by HMC and NRE, compared with the prior density and the true value 
used to simulate the mock data. Shaded regions indicate the truncation used for re-training the μR –σR NRE posterior depicted in the inset (the estimators for τ
and σ 0 were not re-trained). 

Figure 6. Comparison of marginal dust-population posteriors (1- and 2 σ
credible regions) from the subset of 86 SNæ Ia analysed in TM22 (assuming 
no split according to host mass: upper left in fig. 8 of TM22 ). The small 
offset is comparable to the one observed with mock data (Fig. 5 ) and is due 
to the minuscule effect that varying R 

s 
V has on the data (see Figs 4 and 8 ) 

and the hierarchical nature of μR –σR inference, which makes the problem 

particularly challenging. 
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or most local parameters ( � t s , θs 
1 , A 

s 
V , δM 

s ). For the latter, SBI
xhibits a slightly bigger uncertainty (by ≈10 per cent). Results for
he dust-law parameters R 

s 
V and their population are also in good

greement, with only a small offset of about 1 σ between NRE and
MC observed. As we illustrate in Figs 4 and 8 , R 

s 
V have a minuscule

mpact on the data in comparison with the remaining variability, 
hich makes them the hardest to infer and leads to hierarchy-
ominated results: i.e. inference of one R 

s 
V depends on observations 

f all SNæ, regardless of the analysis methodology (likelihood- or 
imulation-based). In light of this extremely challenging learning 
ask, the neural network e xhibits e xcellent performance, having 
earned to extract and route the rele v ant information without access
o the full high-dimensional likelihood but solely from training 
xamples. 

The precision and accuracy we achieve are largely due to the
etwork architecture we adopt, designed to address the issue that 
ach supernova in a survey has a different number of observations
t different times and in different bands (thus, a surv e y is a tuple :
n ordered collection of different-sized objects). Our NN consists 
f: a single bespoke linear layer embedding each SN individually 
MNRAS 530, 3881–3896 (2024) 
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Figure 7. Inference results from the real data set. Top : comparison of marginal local-parameter posterior moments derived with NRE and HMC. Bottom : 
posteriors for the global parameters. See Fig. 5 for more details. 

Figure 8. Variations in rest-frame B and H absolute magnitudes at phase 
0 (around maximum), as simulated with the BayeSN trained by M20 , 
induced by varying each of the free local parameters according to its fiducial 
hierarchical prior, with respect to a reference value with δM = 0, θ1 = 0, 
A V = 0.1, R V = 3, ε = 0. Numbers along the bottom specify the standard 
deviation for the two bands. 
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15 Current state-of-the-art analyses (e.g. Brout et al. 2022a , b ; Vincenzi et al. 
2024 ) employ a simplistic yet laborious procedure of linear propagation of 
systematic ‘uncertainties’ (in fact, offsets) to the final results (e.g. estimates of 
cosmological parameters). This can be streamlined and made more principled 
with the SBI approach introduced here. 
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nto a common-dimensional space; a shared fully connected SN
ost-processing subnetwork applied in parallel to the embeddings of
ll SNæ; and a fully connected summarizer combining the results.
t is as e xpressiv e and fast to evaluate and train as conventional
ully connected networks (taking a few hours to converge with
raining data generated in ∼30 mins, in the same ballpark as highly
ptimized likelihood codes) but manages to fully extract the rele v ant
nformation before o v erfitting. 

In the present work, we have made a number of simplifying
ssumptions that do not affect significantly the results in the low-
edshift, fairly small-size, high-signal-to-noise case we consider.
 or e xample, we employ the simplified instrumental model that
ummarizes observational uncertainties in a FLUXCALERR ; to
roperly investigate the impact of measurement-related systematics,
ne must introduce calibration parameters (e.g. ZP 

s , i ) for each data
NRAS 530, 3881–3896 (2024) 
oint, which would significantly impact runtimes of likelihood-based
ethods. 15 The same applies to the hierarchical parameters we have

ept fixed in this study: namely, the MW dust law (and its variation
long different lines of sight) and extinction amount and the total
nd cosmological redshifts of the supernovæ. In contrast, with SBI
ll extra parameters can be marginalized implicitly by stochastically
ampling them in the simulator, or marginally inferred in the same
ay (and at the same time) as the parameters we have already

onsidered, provided suitable models: e.g. Zhang, Yuan & Chen
 2023 ) for MW dust and Rahman et al. ( 2022 ) for redshifts induced
y peculiar velocities consistent with models of the galactic bulk flow.
Along the same line of thought, one can also consider training

he SN Ia template used to simulate light curves – represented
n BayeSN through W k and � e – together with the properties of
ndividual SNæ Ia (notably, distances used for cosmology). Even
hough this is the main reason behind using a hierarchical model, for
ayeSN this is yet to be attempted because of subtleties related to

election effects. Likelihood-based analyses are thus typically split
n two stages, with the second one (cosmological inference) using a
xed mean/median SN Ia spectral energy distribution (SED) model.
o SBI, on the other hand, W k and � e are just another set of global
arameters implicitly marginalized in the training data. Sampling
hem from the very general priors used by M22 (and successors)
ill introduce tremendous and difficult-to-handle variability in the

raining data, which, ho we ver, can be remedied through high-
imensional truncated SBI (see, e.g. Anau Montel, Alv e y & Weniger
023 ; List, Montel & Weniger 2023 ). Furthermore, SBI opens up the
ossibility of using implicit (data-driven) priors and/or SN templates
mplemented as neural generative models trained (or fine-tuned)
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imultaneously with the inference, as recently done by Alsing et al. 
 2024 ) for galaxy photometry. 

Beyond individual objects, numerous qualitative enhancements 
f the population modelling of SNæ Ia and their hosts have been 
xplored in the literature. These follow two main threads: considering 
orrelations of SN properties with those of their hosts, and allowing 
or their evolution with time (with redshift used as a proxy). Due to
he high-dimensional nature of the required analysis, confronting 
he different models using likelihood-based pipelines has been 
umbersome and reliant mainly on visual inspection of the results 
f parameter inference, e.g. comparing the dust-law distributions 
f high- and low-mass galaxies or examining trends of inferred 
roperties with redshift. SBI, ho we v er, pro vides an avenue towards
rincipled Bayesian model comparison by giving direct access to 
arginalized model probabilities (and Bayes factors) even for models 
ith thousands of dimensions like the one in this study, as recently
emonstrated by Karchev et al. ( 2023a ). Furthermore, amortization 
llows for exploring the results as a function of the values of the
nderlying parameters on mock data – unthinkable with likelihood- 
ased methods. 
Selection effects and non-Ia contamination thus remain the two 
ajor hurdles left before a fully-fledged application of SBI to SN Ia

osmology becomes viable. Accounting for them requires simulating 
he way transients are identified and classified into a surv e y release,
eading to different-sized surv e ys in the training set and transients
bserved in different time/band configurations. One might imagine 
w o w ays to circumvent these problems. One is to take a step back
n the data processing pipeline, simulating and subsequently feeding 
n the neural ratio estimator raw telescope images, which have a 
et number , order , and characteristics after the surv e y has been
erformed (see, e.g. S ́anchez et al. ( 2022 ) for a similar approach but
sing the conventional SN cosmology pipeline). This is equi v alent 
o padding the light curves, which would be the standard approach to
nequal-length sequences in machine learning, and including light 
urves for undetected objects. The downside is clear: the network 
ust learn selection effects and contamination from a prohibitively 

arge amount of mostly uninformative data. Alternatively, one might 
till try to condition the simulator on the observed light curves 
f detected objects by smartly modifying the hierarchical priors. 
o we ver, this might cause issues when many objects are considered,

s we discuss in Karchev et al. (in preparation). 
In light of this, our current approach – conditioning on the number 

nd order of SNæ in a surv e y and on the number and order of
bservations of each SN – has limited prospects of solving selection 
ffects. In upcoming work, we will demonstrate cosmological in- 
erence in the presence of selection effects and variable-length data 
y using tools that have already been exploited in the SN literature:
.g. Gaussian process regression for regularizing the light curves (e.g. 
evsbech et al. 2018 ; Boone 2019 ), in combination with cutting-edge

echniques for permutation-invariant SBI (Rodrigues et al. 2021 ; 
ampeau-Poirier et al. 2023 ; Heinrich et al. 2024 ; Makinen, Alsing &
andelt 2023 ). 
We make use of Clipppy , 16 a Python package based on pyro

Bingham et al. 2019 ) and PyTorch (Paszke et al. 2019 ), for
he probabilistic part of our forward simulator and PyTorch 
ightning (Falcon & The PyTorch Lightning team 2023 ) for 

raining the inference network. 
6 https:// github.com/ kosiokarchev/ clipppy 
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PPENDIX  A :  BAYESIAN  VA LIDATION  A N D  

REQUENTIST  C A L I B R AT I O N  

mortized inference allows validating the co v erage properties of 
he approximate posteriors (in a Bayesian sense) and producing 
onfidence regions with exact frequentist coverage, as we detailed in 
ICRET Subsection 3.4. Here, we briefly explain the two procedures 
nd related concepts and implement them, respectively, for Figs A1 
nd A2 . 
igure A1. Bayesian P–P plot for global-parameter approximate posteriors 
rained for inference from the real data set. 

We consider approximate posteriors q( � | d ) ≡ ˆ r ( � , d ) p( � ) e v al-
ated for data d simulated from true parameter values � 0 and the
orresponding credibilities 

( � 0 , d ) ≡
∫ 

� � ( � 0 , d ) 
q( � | d ) d � (A1) 

f highest-likelihood regions (HLRs) 17 � � 

( � 0 , d ) ≡ { � : ̂  r ( � d ) >
  ( � 0 , d ) } . 

Bayesian validation uses random parameters sampled from the 
rior: � 0 ∼ p( � 0 ), and the self-consistency of the prior and data-
veraged posterior – the fact that, when averaged over data sets 
ampled from the marginal likelihood p( d ) ≡ ∫ 

p( d | � ) p | � ) d � ,
he exact posterior p( � | d ) reverts to the prior p( � ): 

 p( d ) [p( � | d )] ≡
∫ 

p( � | d )p( d ) d d = 

∫ 
p( � , d ) d d = p( � ) , (A2) 

nd so credibilities computed with q( � | d ) → p( � | d ) are uniformly
istributed o v er [0; 1], or equi v alently, have a cumulati ve distribution
 B ( γ ) = γ . On a probability–probability (P–P) plot, depicting F
ersus γ , this manifests as a diagonal line. If, empirically, F B ( γ )
 γ , the posteriors q( � | d ) are, on average, conserv ati v e: i.e. the y

o v er true values more often than expected. And conversely, F B ( γ ) <
implies they are overconfident, i.e. exhibit a greater scatter around 

he true value (or, possibly, even a bias) than expected from their
izes. Ho we ver, p( � | d ) is not the only distribution which has perfect
ayesian co v erage: in fact, using ev en the prior for q( � | d ) would

ead to F B ( γ ) = γ . 
Instead of averaging over the prior, one can examine the distri-

ution of credibilities, conditioning on a fixed parameter value � 0 , 
hich leads to d ∼ p( d | � 0 ) (instead of d ∼ p( d )) and so can be used

or frequentist inference. In this scenario, in general, F f ( γ | � 0 ) �= γ

ue to the approximate nature of q( � | d ) on one hand, as before,
ut also because of the influence of a non-uniform prior. Calculating
 f ( γ | � 0 ) as a function of � 0 , e.g. on a grid or by using nearest
eighbours among prior samples (we use the latter), allows one to
erive the r equir ed cr edibility ˆ γ ( � 0 ̃  γ ), for any desired confidence

˜ , as the ˜ γ th quantile of F f ( γ | � 0 ): see Karchev et al. ( 2023a , fig. 3)
or an illustration. 

7 In SICRET , we instead used highest posterior density (HPD) regions. The
ifference is usually imperceptible, especially in well-constrained scenarios, 
nd in fact any region definition can be used: here we use the approximate
ikelihood since it is directly accessible through ˆ r and independent of 
arametrization, while posterior densities require e v aluating the prior density
s well (or density estimation from weighted samples). Of note is also an
lternative method of defining credible regions using distances to random 

oints (DRP), as described by Lemos et al. ( 2023 ), which can, in certain
ircumstances, detect a systematic bias in q( � | d ). 
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Figure A2. Calibrated frequentist global-parameter inference from the real CSP data set. As purple lines and coloured surfaces, we show the required credibility 
ˆ γ that achieves 1- or 2 σ coverage (corresponding to 68.3 and 95.4 per cent in one dimension and ≈39 and ≈86 per cent in two dimensions), as a function of 
the parameter value. Everywhere, the colour axis represents the difference between the required credibility and the confidence level (empirical coverage). In the 
top row, using black lines, we depict nominal credibility from the NRE posterior e v aluated on the observed data, which is used to derive calibrated 1- and 2 σ
confidence regions, filled in purple. The difference with the approximate posterior is insignificant, but the confidence region thus constructed has guaranteed 
co v erage. 
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